WO2022224988A1 - 凹部充填材キット、その硬化物及び凹部充填法 - Google Patents

凹部充填材キット、その硬化物及び凹部充填法 Download PDF

Info

Publication number
WO2022224988A1
WO2022224988A1 PCT/JP2022/018284 JP2022018284W WO2022224988A1 WO 2022224988 A1 WO2022224988 A1 WO 2022224988A1 JP 2022018284 W JP2022018284 W JP 2022018284W WO 2022224988 A1 WO2022224988 A1 WO 2022224988A1
Authority
WO
WIPO (PCT)
Prior art keywords
radically polymerizable
resin composition
mass
compound
parts
Prior art date
Application number
PCT/JP2022/018284
Other languages
English (en)
French (fr)
Inventor
陽一郎 坂口
広平 斉藤
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to EP22791759.8A priority Critical patent/EP4328206A1/en
Priority to CN202280015663.3A priority patent/CN116917249A/zh
Priority to JP2023515496A priority patent/JP7439991B2/ja
Publication of WO2022224988A1 publication Critical patent/WO2022224988A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/18Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00051Mortar or concrete mixtures with an unusual low cement content, e.g. for foundations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like

Definitions

  • the present invention relates to a recess filling material kit, its cured product, and a recess filling method.
  • the present invention provides a recess for connecting bolts, which is opened at the periphery of a segment used as a material in constructing a subway passage, a sewer pipe, a collecting pipe such as an electric wire or a gas pipe, etc., which are underground pipes.
  • the present invention relates to a resin mortar filling method for filling recesses including inner or worn/worn or damaged reinforcing steel structures.
  • a vertical hole is excavated to a predetermined depth and a device is brought in to form a predetermined horizontal hole. While forming a horizontal hole by operating this device, the segments are sequentially connected to construct a pipeline having a predetermined diameter. The larger the diameter of the pipe, the deeper the excavation depth, and the weaker the ground, the stronger the segment.
  • a concave portion (bolt box, box cut portion) is formed, and the segments are arranged so that the concave portions are adjacent to each other, and are joined by bolts and nuts or PC steel materials. There are an enormous number of these recesses and bolts and nuts in proportion to the size of the diameter of the pipe and the length of the pipe.
  • a mortar filling method has been used to prevent the corrosion of joints and, as a result, prevent the deterioration of joint strength.
  • the mortar filling method used at the time of construction has deteriorated due to long-term use, and various materials used at the time of construction are missing or completely damaged (falling off, etc.). It has also come to be seen here and there that the bolts and nuts are corroding.
  • Examples of possible applications for this mortar filling method include a quick-setting mortar method in which a quick-setting mortar containing a quick-setting agent is manually filled or sprayed as described in Patent Document 1, and a lightweight mortar with a reduced specific gravity described in Patent Document 2.
  • a lightweight mortar construction method in which mortar is hand-filled, a cured foaming urethane construction method in which a two-liquid curing/foaming urethane composition is injected and filled as shown in Patent Document 3, and the like are known.
  • a case where an epoxy resin mortar is used to fill the recessed portions, or a case where an epoxy resin is mixed with water and emulsified as in Patent Document 5 is also conceivable.
  • none of the materials can solve all of the problems, such as adhesion to reinforcing bars, bolts, and concrete structures, and shrinkage of materials due to aging, and they always suffer from problems such as re-deterioration of repaired parts. .
  • Radically polymerizable resin compositions such as unsaturated polyester resins and vinyl ester resins (epoxy acrylate) usually also undergo shrinkage during curing. Since "styrene" and "methyl methacrylate", which are the monomers shown in Table 1 of Non-Patent Document 1, are often used as monomers, the unsaturated polyester resin in a general formulation is 8 to 12%, and the vinyl Ester resins are accompanied by volumetric shrinkage of about 8-10%. This numerical value is a considerably large numerical value even when compared with the volumetric shrinkage of 3 to 6% for general epoxy resins. Therefore, it has prevented the use of unsaturated polyester resins or vinyl ester resins for industrial purposes, or their advancement into other industries and applications.
  • Patent Document 6 As a method for solving this problem, in Patent Document 6, by using polystyrene beads as a low-shrinkage material, it is possible to reduce the number of manufacturing steps or shorten the manufacturing time, and to achieve excellent low-shrinkage, dimensional stability, and surface smoothness. It is possible to produce a low-shrinkage unsaturated polyester resin composition having
  • Patent Document 7 by blending an AB type block copolymer into an unsaturated polyester resin composition, shrinkage at the time of curing is low, and a molded article having excellent heat resistance can be produced. It is stated that a shrinkable unsaturated polyester resin composition can be obtained.
  • Patent Document 8 by mixing an AB type block copolymer (vinyl acetate-styrene type) consisting of segments A and B with an unsaturated polyester resin and fine particles of silicic acid, It is stated that it is possible to obtain a low-shrinkage unsaturated polyester resin composition that has a large low-shrinkage effect when molded at moderate temperatures and has a high degree of water resistance.
  • AB type block copolymer vinyl acetate-styrene type
  • Japanese Patent No. 2700609 Japanese Patent Application Laid-Open No. 2001-270765 Japanese Patent No. 3479819 JP 2020-94192 A JP 2019-52203 A JP-A-11-315198 Japanese Patent No. 2794802 JP-A-05-222282
  • the present invention has been made in view of the above-mentioned conventional situation, and is compatible with materials for various mortar filling methods such as cement concrete materials, polymer cement mortar materials, two-component curing/foaming urethane compositions, and epoxy resin mortar materials. It is possible to provide a construction method that eliminates construction defects such as initial adhesion, initial adhesion to concrete materials and steel materials used in recesses, and dropping due to shrinkage of resin materials during hardening. Further, in conventional radically polymerizable resin compositions, thermoplastic resins such as polystyrene are blended alone or block copolymers of two or more types are used in order to create resins with low shrinkage. Most of them functioned as "anti-shrinkage materials".
  • the present invention has been made in view of the above-mentioned conventional circumstances, and by incorporating an expanding material instead of an anti-shrinking material, the curing of the resin composition is not limited to the molding method, temperature of use, application, etc. It is intended to provide a recess filling material kit containing a radically polymerizable resin composition whose shrinkage rate is small when the whole expands at a constant ratio and then stabilizes, a cured product thereof, and a recess filling method using the same. In addition to the purpose, by using a primer for metal adhesion, it is possible to ensure adhesion to reinforcing steel structures, bolts, etc. existing in the recess.
  • a recess filling material kit comprising a first radically polymerizable resin composition and a second radically polymerizable resin composition
  • the first radically polymerizable resin composition comprises a first radically polymerizable compound (A-1), a first radically polymerizable unsaturated monomer (B-1), an acidic compound (C), and a first containing a radical polymerization initiator (D-1)
  • the second radically polymerizable resin composition comprises a second radically polymerizable compound (A-2), a second radically polymerizable unsaturated monomer (B-2), and a second radical polymerization initiator (D- 2), an expansion material (J), and an aggregate (K).
  • the content of the aggregate (K) is based on a total of 100 parts by mass of the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2) , 200 parts by mass to 900 parts by mass.
  • the first radically polymerizable compound (A-1) and the second radically polymerizable compound (A-2) each independently contain a vinyl ester resin according to [1] or [2].
  • the recess filling material kit according to any one of [1] to [3], wherein the expanding material (J) contains at least one selected from the group consisting of quicklime and calcium sulfoaluminate.
  • the first radically polymerizable resin composition further contains a first metal-containing compound (E-1) and a first thiol compound (F-1),
  • the recess according to any one of [1] to [5], wherein the second radically polymerizable resin composition further contains a second metal-containing compound (E-2) and a second thiol compound (F-2). filler kit.
  • the expansion agent (J) is 0.3 parts per 100 parts by mass of the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2).
  • the recess filling material kit according to any one of [1] to [6], which is 30 parts by mass to 30 parts by mass.
  • the first radical polymerization initiator (D- 1) is 0.1 parts by mass to 10 parts by mass
  • the second radical polymerization initiator (D-2) is added to a total of 100 parts by mass of the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2).
  • the structure itself can be protected from corrosion and wear caused by the fluid flowing through the pipe, vibration from cars and trains, wind pressure, etc., and the long-term operation of the pipeline itself becomes possible.
  • the addition of an acidic compound to the first radically polymerizable resin composition can achieve initial adhesion not only to concrete substrates but also to steel jigs and reinforcing steel structures.
  • the first radically polymerizable resin composition has the effect of complexing a metal soap with a thiol having a specific structure, and the addition of an acidic compound. Initial adhesion with jigs, rebar structures, etc. can be achieved.
  • an appropriate amount of expansion material is added to a radically polymerizable resin composition that causes cure shrinkage due to a decrease in the free volume of the liquid component during curing.
  • a recess filling material kit having a radically polymerizable resin composition that expands at a constant rate when the resin composition is cured and then stabilizes, so that the shrinkage rate is small, without being limited to the application, and A cured product thereof can be provided.
  • a recess filling method that combines these methods.
  • the recess filling material kit of the present embodiment basically consists of a first radically polymerizable resin composition and a second radically polymerizable resin composition. However, other members, compositions, and the like may be included.
  • the first radically polymerizable resin composition comprises a first radically polymerizable compound (A-1), a first radically polymerizable unsaturated monomer (B-1), an acidic compound (C), and a first and a radical polymerization initiator (D-1).
  • the second radically polymerizable resin composition comprises a second radically polymerizable compound (A-2), a second radically polymerizable unsaturated monomer (B-2), and a second radical polymerization initiator (D- 2), an expanding material (J), and an aggregate (K). It is preferable that the second radically polymerizable resin composition does not contain free water. In the recess to be filled, the first radically polymerizable resin composition and the second radically polymerizable resin composition are arranged independently of each other.
  • the recess filling material kit of the present embodiment includes the first radically polymerizable resin composition and the second radically polymerizable resin composition is that, with respect to the filling (repairing) portion of the recess, Both radically polymerizable compositions are arranged independently. It is not intended to mix both radically polymerizable compositions and use them as one recess filling material mixture. Also, the meaning of "arranged independently" means that they are not mixed with each other before use. For example, a form of storing in each container or a form of storing in one container having a structure that is not mixed can be mentioned.
  • the first radically polymerizable resin composition of the present embodiment comprises a first radically polymerizable compound (A-1), a first radically polymerizable unsaturated monomer (B-1), and an acidic compound (C). , and a first radical polymerization initiator (D-1).
  • the first radically polymerizable resin composition of the present embodiment comprises, if necessary, a first metal-containing compound (E-1), a first thiol compound (F-1), a first polymerization inhibitor (H-1), A first curing retarder (I-1) or the like may be contained.
  • the first radically polymerizable compound (A-1) of the present embodiment does not contain a first radically polymerizable unsaturated monomer (B-1) and an acidic compound (C) described below, and does not contain an ethylenic unsaturated monomer in the molecule. It refers to a resin or polymeric compound that has one or more saturated groups and undergoes a polymerization reaction by means of radicals.
  • the first radically polymerizable compound (A-1) of the present embodiment uses a radically polymerizable compound described below for the second radically polymerizable compound (A-2) of the present embodiment or preferred examples thereof. be able to.
  • the first radically polymerizable compound (A-1) is preferably the same radically polymerizable compound as the second radically polymerizable compound (A-2), and the first radically polymerizable compound (A-1) is , it is more preferable to use the same radically polymerizable compound as the second radically polymerizable compound (A-2).
  • a radically polymerizable compound different from the second radically polymerizable compound (A-2) may be used as the first radically polymerizable compound (A-1).
  • the first radically polymerizable compound (A-1) it is preferable to use one or more selected from vinyl ester resins (epoxy (meth)acrylate resins), unsaturated polyester resins, and urethane (meth)acrylate resins. , it is more preferable to use a vinyl ester resin.
  • vinyl ester resins epoxy (meth)acrylate resins
  • unsaturated polyester resins unsaturated polyester resins
  • urethane (meth)acrylate resins unsaturated polyester resins
  • urethane (meth)acrylate resins it is more preferable to use a vinyl ester resin.
  • the first radically polymerizable unsaturated monomer (B-1) of the present embodiment is not particularly limited as long as it is a monomer that does not contain an acidic compound (C) described later and has a radically polymerizable unsaturated group. do not have. Preferred are monomers having a vinyl group, an allyl group or a (meth)acryloyl group.
  • the first radically polymerizable unsaturated monomer (B-1) of the present embodiment is a radically polymerizable unsaturated monomer (B-2) described later in the second radically polymerizable unsaturated monomer of the present embodiment. Unsaturated monomers or preferred examples thereof can be used.
  • the first radically polymerizable unsaturated monomer (B-1) is preferably the same radically polymerizable unsaturated monomer as the second radically polymerizable unsaturated monomer (B-2), More preferably, the first radically polymerizable unsaturated monomer (B-1) uses the same radically polymerizable unsaturated monomer as the second radically polymerizable unsaturated monomer (B-2). A radically polymerizable unsaturated monomer different from the second radically polymerizable unsaturated monomer (B-2) may be used as the first radically polymerizable unsaturated monomer (B-1).
  • the first radically polymerizable unsaturated monomer (B-1) it is preferable to use styrene from the viewpoint of versatility. is preferred, a cyclic hydrocarbon group-containing (meth)acrylate is more preferred, dicyclopentanyl (meth)acrylate is even more preferred, and dicyclopentanyl methacrylate is even more preferred.
  • the viscosity of the first radically polymerizable resin composition can be lowered and workability can be improved.
  • the hardness, strength, chemical resistance, water resistance, etc. of the cured product can be improved.
  • the content of the first radically polymerizable unsaturated monomer (B-1) is 10 to 250 parts by mass with respect to 100 parts by mass of the first radically polymerizable compound (A-1). preferably 50 to 200 parts by mass, and even more preferably 80 to 150 parts by mass.
  • the content of the first radically polymerizable unsaturated monomer (B-1) is 10 parts by mass or more, the viscosity of the first radically polymerizable resin composition is sufficiently low, and the impregnation of the concave portion filling portion is also improve.
  • the content of the first radically polymerizable unsaturated monomer (B-1) is 250 parts by mass or less, sufficient coating film strength is obtained, and chemical resistance, water resistance, and the like are improved.
  • the acidic compound (C) used in the present embodiment is not particularly limited as long as it is a compound exhibiting acidity.
  • an organic acid having a carboxy group is preferable, and a compound having an ethylenically unsaturated bond and a carboxy group is more preferable.
  • Monobasic acids are particularly preferred.
  • (meth) acrylic acid, crotonic acid, cinnamic acid, unsaturated monobasic acids such as sorbic acid, acetic acid, saturated monobasic acids such as propionic acid, dicyclopentadiene and polyvalent carboxylic acid compounds for example, succinic anhydride, maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, etc.
  • unsaturated monobasic acid is preferred, and (meth)acrylic acid is more preferred.
  • the amount of the acidic compound (C) used is preferably 0.00 parts per 100 parts by mass in total of the first radically polymerizable compound (A-1) and the first radically polymerizable unsaturated monomer (B-1). 5 to 25 parts by mass, more preferably 1 to 20 parts by mass, still more preferably 5 to 15 parts by mass.
  • the amount of the acidic compound (C) used is 0.5 parts by mass or more, sufficient adhesion to the adherend can be obtained.
  • the amount is 25 parts by mass or less, a sufficient effective strength is obtained and the adhesion to the adherend is not adversely affected.
  • the first radical polymerization initiator (D-1) of the present embodiment is a radical polymerization initiator described in the second radical polymerization initiator (D-2) of the present embodiment described later, or preferred examples thereof are used. be able to.
  • the first radical polymerization initiator (D-1) is preferably the same type of radical polymerization initiator as the second radical polymerization initiator (D-2), and the first radical polymerization initiator (D-1) is , it is more preferable to use the same radical polymerization initiator as the second radical polymerization initiator (D-2).
  • a different radical polymerization initiator from the second radical polymerization initiator (D-2) may be used as the first radical polymerization initiator (D-1).
  • the content of the first radical polymerization initiator (D-1) is a total of 100 parts by mass of the first radically polymerizable compound (A-1) and the first radically polymerizable unsaturated monomer (B-1). On the other hand, it is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, still more preferably 1 to 3 parts by mass.
  • the content of the first radical polymerization initiator (D-1) is 0.1 parts by mass or more, sufficient curability can be expected without tackiness on the surface of the cured product.
  • the content of the first radical polymerization initiator (D-1) is 10 parts by mass or less, the physical properties of the cured product are not adversely affected.
  • the first radically polymerizable resin composition of the present embodiment may contain the first metal-containing compound (E-1) as a curing accelerator, if necessary.
  • the first metal-containing compound (E-1) metal-containing compounds described in the second metal-containing compound (E-2) of the present embodiment described below or preferred examples thereof can be used.
  • the first metal-containing compound (E-1) is preferably the same kind of metal-containing compound as the second metal-containing compound (E-2), and the first metal-containing compound (E-1) is the second metal It is more preferable to use the same radical polymerization initiator as the containing compound (E-2).
  • a metal-containing compound different from the second metal-containing compound (E-2) may be used as the first metal-containing compound (E-1).
  • the content of the first metal-containing compound (E-1) is based on a total of 100 parts by mass of the first radically polymerizable compound (A-1) and the first radically polymerizable unsaturated monomer (B-1). , preferably 0.0001 to 5 parts by mass, more preferably 0.001 to 3 parts by mass, still more preferably 0.005 to 1 part by mass.
  • the content of the first metal-containing compound (E-1) is 0.0001 parts by mass or more, curing proceeds rapidly.
  • the content of the first metal-containing compound (E-1) is 5 parts by mass or less, the physical properties of the cured product are not adversely affected.
  • the first radically polymerizable resin composition of the present embodiment may contain the first thiol compound (F-1) as a curing accelerator, if necessary.
  • the first thiol compound (F-1) when used in combination with the first metal-containing compound (E-1), the first thiol compound (F-1) is coordinated in the vicinity of the metal of the first metal-containing compound (E-1). , can also be expected to prevent the deactivation of metals by water.
  • a thiol compound described in the second thiol compound (F-2) of the present embodiment described below or preferred examples thereof can be used.
  • the first thiol compound (F-1) is preferably the same type of thiol compound as the second thiol compound (F-2), and the first thiol compound (F-1) is the second thiol compound (F- It is more preferable to use the same thiol compound as in 2).
  • a thiol compound different from the second thiol compound (F-2) may be used as the first thiol compound (F-1).
  • the content of the first thiol compound (F-1) is based on a total of 100 parts by mass of the first radically polymerizable compound (A-1) and the first radically polymerizable unsaturated monomer (B-1).
  • the content of the first thiol compound (F-1) is 0.01 Curing advances rapidly as it is more than a part by mass.
  • the content of the first thiol compound (F-1) is 10 parts by mass or less, the physical properties of the cured product are not adversely affected.
  • the first radically polymerizable resin composition of the present embodiment for the purpose of improving the curability, the first curing accelerator other than the first metal-containing compound (E-1) and the first thiol compound (F-1) It may contain an agent (G-1).
  • the first curing accelerator (G-1) of the present embodiment can be a curing accelerator described in the second curing accelerator (G-2) of the present embodiment described later or preferred examples thereof.
  • the first curing accelerator (G-1) is preferably the same type of curing accelerator as the second curing accelerator (G-2), and the first curing accelerator (G-1) is the second curing It is more preferable to use the same curing accelerator as the accelerator (G-2).
  • a curing accelerator different from the second curing accelerator (G-2) may be used as the first curing accelerator (G-1).
  • the first radically polymerizable resin composition of the present embodiment contains the first curing accelerator (G-1)
  • the amount thereof is the first radically polymerizable compound (A-1) and the first radically polymerizable non- With respect to a total of 100 parts by mass of the saturated monomer (B-1), preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, still more preferably 0.1 to 3 parts by mass be.
  • the first radically polymerizable resin composition of the present embodiment may contain a polymerization inhibitor from the viewpoint of suppressing excessive polymerization of the first radically polymerizable compound (A-1) and from the viewpoint of controlling the reaction rate.
  • a polymerization inhibitor from the viewpoint of suppressing excessive polymerization of the first radically polymerizable compound (A-1) and from the viewpoint of controlling the reaction rate.
  • the first polymerization inhibitor (H-1) of the present embodiment polymerization inhibitors described in the second polymerization inhibitor (H-2) of the present embodiment described below or preferred examples thereof can be used.
  • the first polymerization inhibitor (H-1) is preferably the same type of polymerization inhibitor as the second polymerization inhibitor (H-2), and the first polymerization inhibitor (H-1) is the second polymerization inhibitor. It is more preferable to use the same polymerization inhibitor as the inhibitor (H-2).
  • a polymerization inhibitor different from the second polymerization inhibitor (H-2) may be used as the first polymerization inhibitor (H-1).
  • the amount thereof is the first radically polymerizable compound (A-1) and the first radically polymerizable unsaturated monomer ( B-1) is preferably 0.0001 to 10 parts by mass, more preferably 0.001 to 3 parts by mass, and still more preferably 0.01 to 1 part by mass, based on 100 parts by mass of B-1).
  • the first radically polymerizable resin composition of the present embodiment may contain a curing retarder for the purpose of retarding the curing of the first radically polymerizable compound (A-1).
  • the first curing retarder (I-1) of the present embodiment can be a curing retarder described in the second curing retarder (I-2) of the present embodiment described later or preferred examples thereof.
  • the first curing retarder (I-1) is preferably the same type of curing retarder as the second curing retarder (I-2), and the first curing retarder (I-1) is the second curing It is more preferable to use the same retarder as the retarder (I-2).
  • a different curing retarder from the second curing retarder (I-2) may be used as the first curing retarder (I-1).
  • the amount thereof is the first radically polymerizable compound (A-1) and the first radically polymerizable unsaturated monomer ( B-1) is preferably 0.0001 to 10 parts by mass, more preferably 0.001 to 5 parts by mass, and still more preferably 0.05 to 3 parts by mass, per 100 parts by mass of B-1).
  • the first radically polymerizable resin composition of the present embodiment may contain components other than the above components as long as they do not affect the strength development and acid resistance of the cured product.
  • Ingredients that can be contained include, for example, hydraulic inorganic substances such as calcium sulfate and pozzolanic substances, as well as properties such as setting adjustment, curing acceleration, curing delay, thickening, water retention, defoaming, water repellency, and waterproofing.
  • Admixtures such as fibers made of materials such as metals, polymers, and carbon, pigments, extenders, foaming materials, and clay minerals such as zeolite can be mentioned.
  • Components that can be contained include coupling agents, plasticizers, anion-fixing components, solvents, polyisocyanato compounds, surfactants, wetting and dispersing agents, waxes, and thixotropic agents.
  • the other components that can be used in the first radically polymerizable resin composition of the present embodiment are those described as other components that can be used in the second radically polymerizable resin composition of the present embodiment described later. Preferred examples thereof can be used.
  • first radically polymerizable resin composition When the same other components are used in both the first radically polymerizable resin composition and the second radically polymerizable resin composition, different compounds may be used. It can be used for the first radically polymerizable resin composition of the present embodiment. As the other components, in addition to the compounds exemplified in the item of the second radically polymerizable resin composition, those exemplified below can also be used. In addition, components whose purpose of addition is different from that of the second radically polymerizable resin composition will be supplemented below.
  • the coupling agent a coupling agent that may be contained in the second radically polymerizable resin composition described later can be used.
  • the content of the coupling agent is preferably 0.5 parts per 100 parts by mass in total of the first radically polymerizable compound (A-1) and the first radically polymerizable unsaturated monomer (B-1). 1 to 20 parts by mass.
  • an anion-fixing component that may be contained in the second radically polymerizable resin composition described later can be used.
  • the influence of such metal corrosion, particularly metal corrosion due to salt content can be reduced.
  • the first radically polymerizable resin composition of the present embodiment may further contain a first thixotropic agent.
  • a first thixotropic agent A known one can be used as the first thixotropic agent used in the present embodiment.
  • the first thixotropic agent used in the present embodiment can be a second thixotropic agent that may be contained in the second radically polymerizable resin composition described later.
  • the first thixotropic agent used in the present embodiment include inorganic silica powder (Aerosil type), mica powder, calcium carbonate powder, short fiber asbestos, and organic hydrogenated castor oil.
  • a silica powder-based thixotropic agent is preferred.
  • a thixotropic agent or the like may be used in combination.
  • the amount of the first thixotropic agent used in the present embodiment is 100 parts by mass in total of the first radically polymerizable compound (A-1) and the first radically polymerizable unsaturated monomer (B-1). On the other hand, it is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass.
  • the amount of the first thixotropic agent used is 0.1 or more, sufficient thixotropy can be obtained, and when it is 20 parts by mass or less, sufficient curability as the first radically polymerizable resin composition can be obtained, and Adhesion to the adherend is improved.
  • the method for producing the first radically polymerizable resin composition of the present embodiment is not particularly limited, and methods known in the art can be used.
  • the first radically polymerizable resin composition comprises the first radically polymerizable compound (A-1) and the first radically polymerizable unsaturated monomer (B-1), and optionally the first metal-containing compound It can be produced by mixing (E-1), mixing the acidic compound (C), and further blending and mixing the first radical polymerization initiator (D-1).
  • the first radically polymerizable compound (A-1) and the first radically polymerizable unsaturated monomer (B-1) are A step (1-S1) of obtaining a mixture (1-i) by mixing the first metal-containing compound (E-1) as necessary, and mixing the mixture (1-i) with an acidic compound (C) , a step (1-S2) of obtaining a mixture (1-ii), and a first radically polymerizable resin composition (hardening and a step (1-S3) of obtaining a primer).
  • step (1-S1) of obtaining the mixture (i) (sometimes simply referred to as “step (1-S1)”), the first radically polymerizable compound (A-1) and the first radically polymerizable unsaturated
  • the first metal-containing compound (E-1) with the monomer (B-1)
  • the first thiol compound (F-1) and the first polymerization inhibitor ( H-1), the first curing retarder (I-1), the first thixotropic agent, an anion fixing component, etc. may be mixed.
  • the resulting first radically polymerizable resin composition is optionally Fibers and the like may be further mixed in, as required.
  • the second radically polymerizable resin composition of the present embodiment comprises a second radically polymerizable compound (A-2), a second radically polymerizable unsaturated monomer (B-2), and a second radical polymerization initiator. (D-2), expansive material (J), and aggregate (K). It is preferred that the second radically polymerizable resin composition does not contain free water.
  • the second radically polymerizable resin composition of the present embodiment comprises, if necessary, a second metal-containing compound (E-2), a second thiol compound (F-2), a second polymerization inhibitor (H-2), A second curing retardant (I-2), fiber (L), etc. may be contained.
  • the second radically polymerizable resin composition of the present embodiment uses the second radically polymerizable compound (A-2).
  • the second radically polymerizable compound (A-2) does not contain a second radically polymerizable unsaturated monomer (B-2) described later, and has an ethylenically unsaturated group in the molecule. It refers to a resin or multimeric compound that has one or more and undergoes a polymerization reaction by means of radicals.
  • Examples of the second radically polymerizable compound (A-2) include vinyl ester resins (epoxy (meth)acrylate resins), unsaturated polyester resins, polyester (meth)acrylate resins, urethane (meth)acrylate resins, and (meth)acrylate resins. etc. Among them, one or more selected from vinyl ester resins and unsaturated polyester resins are preferable, and vinyl ester resins are more preferable.
  • “(meth)acrylate” means "acrylate or methacrylate.”
  • Vinyl ester resin As the vinyl ester resin, one obtained by reacting an epoxy resin with an unsaturated monobasic acid can be used.
  • epoxy resins examples include bisphenol-type epoxy resins, biphenyl-type epoxy resins, novolak-type epoxy resins, trisphenolmethane-type epoxy resins, aralkyldiphenol-type epoxy resins, naphthalene-type epoxy resins, and aliphatic-type epoxy resins. These may be used singly or in combination. From the viewpoint of reducing the viscosity of the synthesized vinyl ester resin, it is preferable to use only an aliphatic epoxy resin or to use a combination of a bisphenol epoxy resin and an aliphatic epoxy resin.
  • bisphenol-type epoxy resins include those obtained by reacting bisphenols with epichlorohydrin and/or methyl epichlorohydrin, and those obtained by reacting glycidyl ether of bisphenol A with condensates of the bisphenols with epichlorohydrin and/or methyl epichlorohydrin. and the like.
  • Bisphenols include bisphenol A, bisphenol F, bisphenol S, tetrabromobisphenol A and the like.
  • biphenyl-type epoxy resins include those obtained by reacting biphenol with epichlorohydrin and/or methyl epichlorohydrin.
  • novolac-type epoxy resins examples include those obtained by reacting phenol novolak or cresol novolac with epichlorohydrin and/or methyl epichlorohydrin.
  • trisphenolmethane-type epoxy resins examples include those obtained by reacting trisphenolmethane, tris-cresolmethane with epichlorohydrin and/or methylepichlorohydrin.
  • aralkyldiphenol type epoxy resins include those obtained by reacting aralkylphenol with epichlorohydrin and/or methyl epichlorohydrin.
  • naphthalene-type epoxy resins include those obtained by reacting dihydroxynaphthalene with epichlorohydrin and/or methyl epichlorohydrin.
  • Aliphatic epoxy resins include alicyclic epoxy resins, alicyclic diol diglycidyl ether epoxy resins, aliphatic diol diglycidyl ether epoxy resins, poly(oxyalkylene) glycol diglycidyl ether epoxy resins, and the like. mentioned.
  • Alicyclic epoxy resins include, for example, allicyclic diepoxyacetal, allicyclic diepoxyadipate, and allicyclic diepoxycarboxylate.
  • Specific examples of the alicyclic diol diglycidyl ether include those having 3 carbon atoms such as cyclohexanedimethanol diglycidyl ether, dicyclopentenyldialcohol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, and dihydroxyterpene diglycidyl ether. to 20 (preferably 6 to 12 carbon atoms, more preferably 7 to 10 carbon atoms) diglycidyl ethers of alicyclic diols.
  • "Denacol EX-216L” manufactured by Nagase ChemteX Corporation is available as a commercial product of cyclohexanedimethanol diglycidyl ether.
  • aliphatic diol diglycidyl ether examples include 1,6-hexanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and the like. to 20 (preferably 4 to 12 carbon atoms, more preferably 4 to 8 carbon atoms, particularly preferably 4 to 6 carbon atoms), and diglycidyl ethers of aliphatic diols.
  • 1,6-hexanediol diglycidyl ether examples include "Denacol EX-212L” manufactured by Nagase ChemteX Corporation, “SR-16H” and “SR-16HL” manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., Yokkaichi Gosei Co., Ltd.'s "Epogose (registered trademark) HD” and the like.
  • 1,4-butanediol diglycidyl ether there is “Denacol EX-214L” manufactured by Nagase ChemteX Corporation.
  • poly(oxyalkylene) glycol diglycidyl ether examples include diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and poly(tetramethylene) glycol diglycidyl ether. etc.
  • Preferred examples of aliphatic epoxy resins include 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, and poly(tetramethylene) glycol diglycidyl ether. Among them, those having a number average molecular weight of 150 to 1,000 are more preferable.
  • the epoxy resin may be a diglycidyl ester such as diglycidyl dimer acid or diglycidyl hexahydrophthalate.
  • the epoxy resin which has an oxazolidone ring obtained by reacting the said epoxy resin and diisocyanate is mentioned.
  • Specific examples of epoxy resins having an oxazolidone ring include Araldite (registered trademark) AER4152 manufactured by Asahi Kasei Epoxy.
  • a known unsaturated monobasic acid can be used, and examples thereof include (meth)acrylic acid, crotonic acid, and cinnamic acid.
  • a reaction product of a compound having one hydroxy group and one or more (meth)acryloyl groups and a polybasic acid anhydride may also be used.
  • (meth)acrylic acid means one or both of "acrylic acid and methacrylic acid”
  • (meth)acryloyl group” means "acryloyl group and methacryloyl group means one or both of
  • the polybasic acid is used to increase the molecular weight of the epoxy resin, and known polybasic acids can be used.
  • succinic acid glutaric acid, adipic acid, sebacic acid, phthalic acid, fumaric acid, maleic acid, itaconic acid, tetrahydrophthalic acid, hexahydrophthalic acid, dimer acid, ethylene glycol/2 molar maleic anhydride adduct, polyethylene Glycol/2 mol maleic anhydride adduct, propylene glycol/2 mol maleic anhydride adduct, polypropylene glycol/2 mol maleic anhydride adduct, dodecanedioic acid, tridecanedioic acid, octadecanedioic acid, 1,16-(6 -ethylhexadecane)dicarboxylic acid, 1,12-(6-ethyldodecane)dicarboxylic acid, carboxyl group-terminated butadiene-acrylonitrile copolymer (trade name: Hycar CTBN), and the like
  • the unsaturated polyester resin one obtained by subjecting an unsaturated dibasic acid, and optionally a dibasic acid component containing a saturated dibasic acid, to an esterification reaction with a polyhydric alcohol component can be used.
  • the unsaturated dibasic acid include maleic acid, maleic anhydride, fumaric acid, itaconic acid, and itaconic anhydride. These may be used alone or in combination of two or more.
  • saturated dibasic acid examples include aliphatic dibasic acids such as adipic acid, suberic acid, azelaic acid, sebacic acid and isosebacic acid, phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, and terephthalic acid.
  • aliphatic dibasic acids such as adipic acid, suberic acid, azelaic acid, sebacic acid and isosebacic acid, phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, and terephthalic acid.
  • tetrachlorophthalic acid tetrachlorophthalic anhydride
  • dimer acid 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic anhydride
  • 4 , 4′-biphenyldicarboxylic acid aromatic dibasic acids such as dialkyl esters thereof, halogenated saturated dibasic acids, etc.
  • the polyhydric alcohol is not particularly limited, but examples include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5- pentanediol, 1,6-hexanediol, neopentyl glycol, 2-methyl-1,3-propanediol, 2-methyl-1,4-butanediol, 2,2-dimethyl-1,3-propanediol, 2 , 2,4-trimethyl-1,3-pentanediol, 2-ethyl-2-butyl-1,3-propanediol, 3-methyl-1,5-pentanediol, diethylene glycol, triethylene glycol, polyethylene glycol , dipropylene glycol, polypropylene glycol, 1,2-cyclohexane glycol, 1,3-cyclohexane
  • one modified with a dicyclopentadiene compound may be used as long as the effects of the present embodiment are not impaired.
  • the modification method with a dicyclopentadiene-based compound for example, after obtaining a dicyclopentadiene and maleic acid addition product (cidecanol monomaleate), this is used as a monobasic acid to introduce a dicyclopentadiene skeleton. and other known methods.
  • Oxidative polymerization (air curing) groups such as allyl groups or benzyl groups can be introduced into the vinyl ester resin or unsaturated polyester resin used in this embodiment.
  • the introduction method is not particularly limited, but for example, addition of a polymer containing an oxidation polymerizable group, condensation of a compound having a hydroxyl group and an allyl ether group, allyl glycidyl ether, 2,6-diglycidylphenyl allyl ether, hydroxyl group and allyl ether.
  • a method of adding a reaction product of a compound having a group and an acid anhydride can be used.
  • the oxidative polymerization (air curing) in the present embodiment refers to cross-linking associated with generation and decomposition of peroxide due to oxidation of the methylene bond between the ether bond and the double bond, which is found in, for example, allyl ether groups. Point.
  • polyester (meth)acrylate resin for example, a polyester obtained by reacting a polyhydric carboxylic acid and a polyhydric alcohol, specifically, for hydroxyl groups at both terminals such as polyethylene terephthalate, ( A resin obtained by reacting meth)acrylic acid can be used.
  • a polyurethane (meth)acrylate resin for example, a polyurethane obtained by reacting an isocyanate and a polyhydric alcohol is obtained by reacting hydroxyl groups or isocyanato groups at both ends of the polyurethane with (meth)acrylic acid. Resin can be used.
  • (meth)acrylate resins include, for example, poly(meth)acrylic resins having one or more substituents selected from hydroxyl groups, isocyanato groups, carboxyl groups and epoxy groups, and monomers having the substituents and (meth )
  • a resin obtained by reacting a (meth)acrylic acid ester having a hydroxyl group with a substituent of a polymer with an acrylate can be used.
  • the second radically polymerizable compound (A-2) may contain residual catalysts and polymerization inhibitors used in synthesizing resins and the like.
  • the catalyst include compounds containing tertiary nitrogen such as triethylamine, pyridine derivatives and imidazole derivatives; amine salts such as tetramethylammonium chloride and triethylamine; phosphorus compounds such as trimethylphosphine and triphenylphosphine.
  • polymerization inhibitors include hydroquinone, methylhydroquinone, and phenothiazine.
  • the second radically polymerizable unsaturated monomer (B-2) is not particularly limited as long as it is a monomer having a radically polymerizable unsaturated group, but a vinyl group, an allyl group or a (meth)acryloyl group is preferred. Also, it may be an unsaturated monobasic acid.
  • vinyl group-containing monomers include styrene, p-chlorostyrene, vinyltoluene, ⁇ -methylstyrene, dichlorostyrene, divinylbenzene, tert-butylstyrene, vinyl acetate, diallyl phthalate, and triallyl isocyanurate. etc.
  • monomers having a (meth)acryloyl group include (meth)acrylic acid esters. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, tert-butyl (meth) acrylate, (meth) acrylic 2-ethylhexyl acid, lauryl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, stearyl (meth)acrylate, tridecyl (meth)acrylate, cyclohexyl (meth)acrylate, dicyclopentanyl (Meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, phenoxyethyl methacrylate, 2-hydroxyethyl methacrylate,
  • polyfunctional (meth)acrylic acid esters include, for example, ethylene glycol di(meth)acrylate, 1,2-propylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, 1, alkanediol di(meth)acrylates such as 4-butylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate; diethylene glycol di(meth)acrylate, dipropylene glycol Polyoxyalkylene glycol di(meth)acrylates such as di(meth)acrylate, triethylene glycol (meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol (meth)acrylate; trimethylolpropane di(meth)acrylate, Glycerin di(meth)acrylate, pentaerythritol di(meth)acrylate, trimethylol
  • the following compounds can also be used as the second radically polymerizable unsaturated monomer (B-2). Specifically, divinylbenzene, diallyl phthalate, triallyl phthalate, triallyl cyanurate, triallyl isocyanurate, allyl (meth)acrylate, diallyl fumarate, allyl methacrylate, vinyl benzyl butyl ether, vinyl benzyl hexyl ether, vinyl benzyl octyl Ether, Vinylbenzyl(2-ethylhexyl)ether, Vinylbenzyl( ⁇ -methoxymethyl)ether, Vinylbenzyl(n-butoxypropyl)ether, Vinylbenzylcyclohexyl ether, Vinylbenzyl( ⁇ -phenoxyethyl)ether, Vinylbenzyldicyclo Pentenyl ether, vinylbenzyldicyclopentenyloxyethyl ether, vinylbenzyldicyclopentenylmethyl ether, diviny
  • styrene from the viewpoint of versatility, and from the viewpoint of reducing odor and reducing the burden on the environment, a (meth) acryloyl group-containing monomer is preferable, and a cyclic hydrocarbon group-containing (meth) acrylate is more preferred, and dicyclopentanyl (meth)acrylate and dicyclopentenyloxyethyl (meth)acrylate are even more preferred.
  • the second radically polymerizable unsaturated monomer (B-2) lowers the viscosity of the second radically polymerizable resin composition of the present embodiment, and improves hardness, strength, chemical resistance, water resistance, etc. can be used for From the viewpoint of preventing deterioration of the cured product and environmental pollution, the content of the second radically polymerizable unsaturated monomer (B-2) is It is preferably 90% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less, relative to the total amount of the unsaturated monomer (B-2).
  • the total content of the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2) in the second radically polymerizable resin composition of the present embodiment is preferably 5 to 99.9% by mass, more preferably 10 to 80% by mass, still more preferably 15 to 60% by mass, and even more preferably 18 to 40% by mass.
  • the hardness of the cured product is further improved.
  • the second radically polymerizable resin composition of the present embodiment contains a second radical polymerization initiator (D-2) as a curing agent.
  • the second radical polymerization initiator (D-2) includes a thermal radical polymerization initiator (D-21) and a photoradical polymerization initiator (D-22).
  • the thermal radical polymerization initiator (D-21) is preferred.
  • the thermal radical polymerization initiator (D-21) include diacyl peroxides such as benzoyl peroxide, peroxyesters such as tert-butyl peroxybenzoate, cumene hydroperoxide (CHP), and diisopropylbenzene.
  • Hydroperoxide tert-butyl hydroperoxide, hydroperoxide such as paramenthane hydroperoxide (RCOOH, Hydroperoxide), dialkyl peroxide such as dicumyl peroxide, ketone peroxide such as methyl ethyl ketone peroxide, acetylacetone peroxide, peroxy Organic peroxides such as ketal, alkyl perester, and carbonate may be mentioned.
  • hydroperoxide such as paramenthane hydroperoxide (RCOOH, Hydroperoxide)
  • dialkyl peroxide such as dicumyl peroxide
  • ketone peroxide such as methyl ethyl ketone peroxide
  • acetylacetone peroxide peroxy
  • Organic peroxides such as ketal, alkyl perester, and carbonate
  • hydroperoxide-based radical polymerization initiators RCOOH
  • hydroperoxides also simply referred to as hydroperoxides
  • cumene hydroperoxides such as Parkmil (registered trademark) H-80 manufactured by NOF Corporation, manufactured by NOF Corporation Diisopropylbenzene hydroperoxides such as Percumyl® P are more preferred.
  • photoradical polymerization initiators (D-22) include benzoin ethers such as benzoin alkyl ether, benzophenones such as benzophenone, benzyl, and methyl orthobenzoyl benzoate, benzyl dimethyl ketal, 2,2-diethoxyacetophenone, 2-hydroxy -Acetophenones such as 2-methylpropiophenone, 4-isopropyl-2-hydroxy-2-methylpropiophenone, 1,1-dichloroacetophenone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, etc.
  • a thioxanthone type etc. are mentioned.
  • the photoradical polymerization initiator (D-22) having photosensitivity from ultraviolet light to the visible light region includes known initiators such as acetophenone-based, benzyl ketal-based, and (bis)acylphosphine oxide-based initiators.
  • 2-hydroxy-2-methyl-1-phenylpropan-1-one (trade name: Darocur 1173, manufactured by Ciba Specialty Chemicals Co., Ltd.) and bis(2,6-dimethoxybenzoyl)-2,4 , 4-trimethylpentylphosphine oxide (manufactured by Ciba Specialty Chemicals Co., Ltd.) at a ratio of 75%/25%, trade name Irgacure-1700 (manufactured by Ciba Specialty Chemicals Co., Ltd.); 1-hydroxycyclohexyl phenyl Ketone (trade name: Irgacure 184, manufactured by Ciba Specialty Chemicals Co., Ltd.) and bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide (manufactured by Ciba Specialty Chemicals Co., Ltd.) Irgacure 1800 (manufactured by Ciba Specialty Chemicals Co.
  • Photoradical polymerization initiators (D-22) having photosensitivity in the visible light region include camphorquinone, benzyltrimethylbenzoyldiphenylphosphinoxide, methylthioxanthone, dicyclopentadiethyltitanium-di(pentafluorophenyl), and the like. mentioned. These second radical polymerization initiators (D-2) may be used alone or in combination of two or more. The other reaction may be incorporated for the purpose of assisting the main reaction of heat curing and photocuring, and a thermal radical polymerization initiator (D-21) and a photoradical polymerization initiator (D-22) are used. They may be used together as needed.
  • organic peroxide/dye, diphenyliodine salt/dye, imidazole/keto compound, hexaallylbiimidazole compound/hydrogen donating compound, mercaptobenzothiazole/thiopyrylium salt, metal arene/cyanine It can also be used in a composite form such as a dye, hexaallylbiimidazole/radical generator and the like.
  • the second radically polymerizable resin composition of the present embodiment contains the second radical polymerization initiator (D-2), the amount thereof is the second radically polymerizable compound (A-2) and the second radically polymerizable Preferably 0.1 to 10 parts by mass, more preferably 0.2 to 8 parts by mass, still more preferably 0.3 to 6 parts by mass with respect to a total of 100 parts by mass of the unsaturated monomer (B-2) and most preferably 0.5 to 5 parts by mass.
  • the second radically polymerizable resin composition of the present embodiment contains one or more second metals selected from metal soaps (E-21) and metal complexes having a ⁇ -diketone skeleton (E-22) as curing accelerators.
  • Compound (E-2) can be used.
  • the metal soap (E-21) in the present embodiment refers to a salt of a long-chain fatty acid or an organic acid other than a long-chain fatty acid and a metal element other than potassium and sodium.
  • the metal complex (E-22) having a ⁇ -diketone skeleton in the present embodiment refers to a complex in which a compound having a structure in which one carbon atom is present between two carbonyl groups is coordinated to a metal element. .
  • the content of the second metal-containing compound (E-2) in the second radically polymerizable resin composition in terms of the metal component is the above-described second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated It is preferably 0.0001 to 5 parts by mass, more preferably 0.001 to 4 parts by mass, and still more preferably 0.005 to 3 parts by mass with respect to the total 100 parts by mass of the monomer (B-2). is.
  • the content of the second metal-containing compound (E-2) in terms of metal component is within the above range, curing proceeds rapidly.
  • fatty acids having 6 to 30 carbon atoms are preferred.
  • heptanoic acid, octanoic acid such as 2-ethylhexanoic acid, nonanoic acid, decanoic acid, neodecanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, eicosanoic acid, docosanoic acid, tetracosanoic acid Chain or cyclic saturated fatty acids such as hexacosanoic acid, octacosanoic acid, triacontanoic acid and naphthenic acid, and unsaturated fatty acids such as oleic acid, linoleic acid and linolenic acid are preferred.
  • the organic acid other than the long-chain fatty acid in the metal soap (E-21) is not particularly limited, but weakly acidic compounds having a carboxy group, a hydroxy group and an enol group and soluble in organic solvents are preferred.
  • compounds having a carboxyl group include carboxylic acids such as formic acid, acetic acid, and oxalic acid; hydroxy acids such as citric acid, bile acid, sugar acid, 12-hydroxystearic acid, hydroxycinnamic acid, and folic acid; alanine, Amino acids such as arginine; aromatic acids such as benzoic acid and phthalic acid;
  • Examples of compounds having a hydroxy group and an enol group include ascorbic acid, ⁇ acid, imidic acid, erythorbic acid, croconic acid, kojic acid, squaric acid, sulfinic acid, teichoic acid, dehydroacetic acid, delta acid, uric acid, hydroxamic
  • long-chain fatty acids are preferred, chain or cyclic saturated fatty acids having 6 to 16 carbon atoms, or unsaturated fatty acids having 6 to 16 carbon atoms are more preferred, octanoic acid, 2-ethylhexanoic acid, and Naphthenic acid is more preferred, and 2-ethylhexanoic acid and naphthenic acid are even more preferred.
  • Metal elements constituting the metal soap (E-21) include group 1-2 metal elements such as lithium, magnesium, calcium, and barium (excluding potassium and sodium), titanium, zirconium, vanadium, and manganese. , iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, silver, gold, zinc and other group 3-12 metal elements, aluminum, indium, tin, lead and other group 13-14 metal elements , rare earth metal elements such as neodymium and cerium, and bismuth.
  • group 1-2 metal elements such as lithium, magnesium, calcium, and barium (excluding potassium and sodium), titanium, zirconium, vanadium, and manganese. , iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, silver, gold, zinc and other group 3-12 metal elements, aluminum, indium, tin, lead and other group 13-14 metal elements , rare earth metal elements such as neodymium and cerium, and bismuth.
  • metal elements of Groups 2 to 12 are preferred, and zirconium, barium, vanadium, manganese, iron, cobalt, copper, titanium, bismuth, calcium, lead, tin and zinc are more preferred, and zirconium, manganese, More preferred are iron, cobalt, copper, titanium, bismuth, calcium, lead, tin and zinc, and even more preferred are zirconium, manganese, cobalt, bismuth and calcium.
  • Specific metal soaps (E-21) include zirconium octylate, manganese octylate, cobalt octylate, bismuth octylate, calcium octylate, zinc octylate, vanadium octylate, lead octylate, tin octylate, and naphthene.
  • Cobalt acid, copper naphthenate, barium naphthenate, bismuth naphthenate, calcium naphthenate, lead naphthenate, and tin naphthenate are preferred, among which zirconium octylate, manganese octylate, cobalt octylate, bismuth octylate, and calcium octylate.
  • zirconium octylate, manganese octylate, cobalt octylate, bismuth octylate, and calcium octylate zirconium octylate, manganese octylate, cobalt octylate, bismuth octylate, and calcium octylate.
  • cobalt octylate is hexoate cobalt manufactured by Toei Kako Co., Ltd. (content of cobalt in the total amount of product: 8% by mass, molecular weight: 345.34).
  • manganese octylate Toei Kako Co., Ltd. make hexoate manganese (8 mass % of manganese content in product whole quantity, molecular weight 341.35) is mentioned.
  • Metal complex having a ⁇ -diketone skeleton (E-22) Metal complex (E-22) having a ⁇ -diketone skeleton (hereinafter also referred to as “metal complex (E-22)”.
  • metal complex (E-22) include acetylacetone, ethyl acetoacetate, benzoylacetone, and the like.
  • Metal complexes (E-22) also exhibit the same function as the metal soap (E-21).
  • Examples of the metal element constituting the metal complex (E-22) include the same metal elements as those of the metal soap (E-21).
  • Specific metal complexes include zirconium acetylacetonate, vanadium acetylacetonate, cobalt acetylacetonate, titanium acetylacetonate, titanium dibutoxybis(acetylacetonate), iron acetylacetonate, and acetoacetonate.
  • Ethyl ester cobalt acetate is preferred, and zirconium acetylacetonate, titanium acetylacetonate, and titanium dibutoxybis(acetylacetonate) are more preferred.
  • the second radically polymerizable resin composition of the present embodiment contains at least one second thiol compound (F-2) selected from secondary thiol compounds (F-21) and tertiary thiol compounds (F-22). may contain.
  • the second thiol compound (F-2) functions as a curing accelerator and is coordinated in the vicinity of the metal of the second metal-containing compound (E-2) to deactivate the metal with water.
  • the second thiol compound (F-2) used in the present embodiment has a mercapto group that binds to a secondary or tertiary carbon atom in the molecule (hereinafter referred to as "secondary mercapto group” and “tertiary mercapto group” respectively).
  • secondary mercapto group and “tertiary mercapto group” respectively.
  • Difunctional thiols which are compounds having two primary or tertiary mercapto groups, are preferred.
  • the secondary thiol compound (F-21) is more preferable than the tertiary thiol compound (F-22).
  • polyfunctional thiol as used herein means a thiol compound having two or more mercapto groups as functional groups
  • bifunctional thiol as used herein means two mercapto groups as functional groups. is a thiol compound.
  • the compound having two or more secondary or tertiary mercapto groups in the molecule is not particularly limited.
  • it has at least one structure represented by the following formula (Q), and Compounds having two or more secondary or tertiary mercapto groups in the molecule are preferred, including the mercapto groups in the structure.
  • R 1 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms
  • R 2 is an alkyl group having 1 to 10 carbon atoms or a carbon It is an aromatic group of numbers 6 to 18, * indicates that it is connected to an arbitrary organic group, and a is an integer of 0 to 2.
  • secondary thiol compounds include 1,4-bis(3-mercaptobutyryloxy)butane (Showa Denko K.K. manufactured by Karenz MT (registered trademark) BD1), pentaerythritol tetrakis (3-mercaptobutyrate) (manufactured by Showa Denko K.K., Karenz MT (registered trademark) PE1), 1,3,5-tris[2-(3- mercaptobutyryloxyethyl)]-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (manufactured by Showa Denko K.K., Karenz MT (registered trademark) NR1), trimethylolethane tris (3-mercaptobutyrate) (manufactured by Showa Denko KK, TEMB), trimethylolpropane tris (3
  • the total amount of the second thiol compound (F-2) in the second radically polymerizable resin composition of the present embodiment is the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer.
  • the amount of the second thiol compound (F-2) is 0.01 parts by mass or more, a sufficient curing function can be obtained, and when it is 10 parts by mass or less, curing progresses rapidly.
  • the total molar ratio [(F-2)/(E-2)] of the second thiol compound (F-2) to the metal component of the second metal-containing compound (E-2) is 0.1 to 15. It is preferably 0.5 to 15, more preferably 1 to 12, even more preferably 1.5 to 10, and even more preferably 3 to 9.
  • the second thiol compound (F-2) is sufficiently close to the metal of the second metal-containing compound (E-2). can be coordinated, and by setting the molar ratio to 15 or less, the balance between the production cost and the effect is improved.
  • the second thiol compound (F-2) may be used alone or in combination of two or more.
  • the molar ratio of the two [(F-21)/(F-22)] is 0.001 to 1000. is preferred, and 1 to 10 are more preferred.
  • the second metal-containing compound (E-2) and the second thiol compound ( F-2) is stable, and no disulfide compound is generated as a by-product due to bonding between the second thiol compounds (F-2).
  • the secondary thiol compound (F- 21) or the tertiary thiol compound (F-22) is preferably used alone.
  • the second radically polymerizable resin composition of the present embodiment has a second curing accelerator other than the second metal-containing compound (E-2) and the second thiol compound (F-2). It may contain an agent (G-2).
  • Examples of the second curing accelerator (G-2) other than the second metal-containing compound (E-2) and the second thiol compound (F-2) include amines, specifically aniline, N, N-dimethylaniline, N,N-diethylaniline, p-toluidine, N,N-dimethyl-p-toluidine, N,N-bis(2-hydroxyethyl)-p-toluidine, 4-(N,N-dimethyl amino)benzaldehyde, 4-[N,N-bis(2-hydroxyethyl)amino]benzaldehyde, 4-(N-methyl-N-hydroxyethylamino)benzaldehyde, N,N-bis(2-hydroxypropyl)-p - N,N-substituted anilines such as toluidine, N-ethyl-m-toluidine, triethanolamine, m-toluidine, diethylenetriamine, pyridine, phenylmorpholine, pipe
  • the second radically polymerizable resin composition of the present embodiment contains the second curing accelerator (G-2), the amount thereof is the second radically polymerizable compound (A-2) and the second radically polymerizable It is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, and still more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the saturated monomer (B-2) in total.
  • the second radically polymerizable resin composition of the present embodiment contains a second polymerization inhibitor (H-2) from the viewpoint of suppressing excessive polymerization of the second radically polymerizable compound (A-2) and controlling the reaction rate ) may be included.
  • the second polymerization inhibitor (H-2) include known ones such as hydroquinone, methylhydroquinone, phenothiazine, catechol, and 4-tert-butylcatechol.
  • the amount thereof is the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer ( B-2) is preferably 0.0001 to 10 parts by mass, more preferably 0.001 to 3 parts by mass, still more preferably 0.01 to 1 part by mass, relative to the total 100 parts by mass of B-2) be.
  • the second radically polymerizable resin composition of the present embodiment may contain a second curing retarder (I-2) for the purpose of retarding the curing of the second radically polymerizable compound (A-2).
  • the second curing retarder (I-2) includes free radical curing retarders such as 2,2,6,6-tetramethylpiperidine 1-oxyl free radical (TEMPO), 4-hydroxy-2 , 2,6,6-tetramethylpiperidine 1-oxyl free radical (4H-TEMPO), 4-oxo-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (4-Oxo-TEMPO), etc.
  • TEMPO derivatives are mentioned.
  • the second radically polymerizable resin composition contains the second curing retarder (I-2), the amount thereof is the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer ( B-2) with respect to 100 parts by mass in total, preferably 0.0001 to 10 parts by mass, more preferably 0.001 to 5 parts by mass, still more preferably 0.05 to 3 parts by mass be.
  • the expansive material (J) used in the present embodiment is any expansive material that satisfies the standard of Japanese Industrial Standards JIS A 6202 "expansive material for concrete" generally used as an expansive material for concrete. may be used. Specifically, it may be one that produces calcium hydroxide or ettringite by hydration reaction.
  • an expansive material (J) containing at least one selected from the group consisting of quicklime and calcium sulfoaluminate is preferred.
  • More preferable expanding materials include (1) expanding material containing quicklime as an active ingredient (quicklime-based expanding material), (2) expanding material containing calcium sulfoaluminate as an active ingredient (ettringite-based expanding material), and (3) Quicklime-ettringite composite expansion material and the like.
  • the quicklime-based expansive material examples include Taiheiyo Hyper Expan-K, Taiheiyo Hyper Expan-M, Taiheiyo Expan-K, Taiheiyo Expan-M, and N-EX manufactured by Taiheiyo Materials Co., Ltd.
  • Specific examples of the ettringite expansion material include Denka CSA #10 and Denka CSA #20 manufactured by Denka.
  • Specific examples of the quicklime-ettringite composite expansion material include Denka Power CSA Type S, Denka Power CSA Type R, and Denka Power CSA Type T manufactured by Denka.
  • the content of the expanding material (J) in the present embodiment is It is preferably 0.3 to 30 parts by mass, more preferably 0.5 to 25 parts by mass, even more preferably 1 to 20 parts by mass, and most preferably 1 to 16 parts by mass. If the content of the expanding agent (J) is 30 parts by mass or less, the expansion rate will not exceed the elongation of the resin when the second radically polymerizable resin composition is cured. Conversely, if it is 0.3 parts by mass or more, the expansion performance for the second radically polymerizable compound (A-2) is not exhibited. Moreover, these expansive materials (J) may be used alone, or two or more of them may be mixed and used.
  • the second radically polymerizable resin composition of the present embodiment does not substantially contain cement.
  • the meaning of "substantially free” is 3% by mass or less, preferably 2% by mass or less, more preferably 1% by mass or less, still more preferably 0.5% by mass, relative to the second radically polymerizable resin composition. % or less.
  • Examples of cement include Portland cement, other mixed cements, and ultra-rapid hardening cements.
  • Portland cement include various Portland cements such as low heat, moderate heat, normal, high early strength, ultra early strength, and sulfate resistant.
  • Mixed cement includes blast furnace cement, fly ash cement, silica cement, and the like.
  • the second radically polymerizable resin composition of the present embodiment contains aggregate (K).
  • the water content of the aggregate (K) is not particularly limited, but is preferably 0.10% by mass or more, such as 0.20% by mass. % or more, more preferably 0.30 mass % or more, and most preferably 0.40 mass % or more.
  • the water content of bound water in the aggregate (K) is preferably 5.0% by mass or less, more preferably 2.5% by mass or less, and 1.5% by mass or less. is more preferable, and it is most preferably 1.0% by mass or less.
  • the water content of the bound water of the aggregate (K) is not particularly limited.
  • the water content of the bound water in the aggregate (K) is based on a total of 100 parts by mass of the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2). It is preferably 7 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 2.5 parts by mass or less, and most preferably 2.0 parts by mass or less.
  • the aggregate (K) is not particularly limited, and those used in mortar and concrete can be used.
  • aggregates include, but are not particularly limited to, calcium carbonate, crushed stone, sandstone, cold water stone, marble, quartz, limestone, silica sand, silica stone, and river sand.
  • lightweight aggregates such as sintered shale, silicic acid-based balloon, and non-silicic acid-based balloon perlite can also be used.
  • Calcium carbonate functions as an extender pigment that is transparent in the coating film and does not hide the surface to be coated (substrate surface), and has functions such as filling of recesses and reduction of coating cost.
  • TM-2 manufactured by Yuko Mining Co., Ltd.
  • Calcium carbonate has a specific particle size distribution, is excellent in dispersibility, and is porous, so that the specific gravity of the aggregate itself can be reduced to make it difficult to sag and improve film formability.
  • Silicic acid balloons include shirasu balloons, perlite, glass (silica) pearls, fly ash balloons, and the like.
  • non-silicic acid balloons include alumina balloons, zirconia balloons, and carbon balloons.
  • the content of the aggregate (K) in the composition of the present embodiment is not particularly limited, but the content of the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2) It is preferably 200 to 900 parts by mass, more preferably 250 to 800 parts by mass, still more preferably 300 to 500 parts by mass, based on a total of 100 parts by mass.
  • the aggregate content is 200 parts by mass or more, practical fluidity can be ensured.
  • the content of the aggregate is 900 parts by mass or less, the amount of iron adhered is reduced, and deterioration of workability can be prevented.
  • the radically polymerizable composition of the present embodiment may contain fibers, if necessary.
  • fibers that can be used in the present embodiment include glass fibers, carbon fibers, vinylon fibers, nylon fibers, aramid fibers, polyolefin fibers, acrylic fibers, polyester fibers such as polyethylene terephthalate fibers, cellulose fibers, metal fibers such as steel fibers, and the like. fibers, ceramic fibers such as alumina fibers, and the like.
  • polyolefin fibers can be used as thixotropic agents.
  • a thixotropic agent thixotropy-imparting agent
  • polyolefin fibers include polyethylene-based Chembest (registered trademark) FDSS-2 (average fiber length 0.6 mm), Chembest (registered trademark) FDSS-5 (average fiber length 0.1 mm), Chembest (registered trademark) FDSS-25 (average fiber length 0.6 mm, hydrophilic product), Chembest (registered trademark) FDSS-50 (average fiber length 0.1 mm, hydrophilic product), etc. (manufactured by Mitsui Petrochemical Industries, Ltd.).
  • the carbon fiber is not particularly limited, and any known carbon fiber can be used. Examples thereof include polyacrylonitrile-based (PAN-based) carbon fiber, rayon-based carbon fiber, and pitch-based carbon fiber. Carbon fibers may be used alone or in combination of two or more. From the viewpoint of low cost and good mechanical properties, it is preferable to use PAN-based carbon fiber. Such carbon fibers are commercially available. Carbon fiber reinforced plastic (CFRP) may be used as the carbon fiber.
  • PAN-based polyacrylonitrile-based
  • CFRP Carbon fiber reinforced plastic
  • the diameter of the carbon fiber is preferably 3-15 ⁇ m, more preferably 5-10 ⁇ m.
  • the carbon fiber length is usually 5-100 mm.
  • the carbon fiber may be cut to 10.0 mm to 100.0 mm, further 12.5 mm to 50.0 mm and used.
  • fibers are used in the form of fiber structures, biaxial meshes, triaxial meshes selected from, for example, plain weaves, satin weaves, nonwoven fabrics, mats, rovings, chops, knits, braids, and composite structures thereof. preferably.
  • the fiber structure may be impregnated with a radically polymerizable composition, optionally prepolymerized, and used as a prepreg.
  • the mesh for example, biaxial mesh and triaxial mesh are used.
  • the length (mesh) of one side of the square of the biaxial mesh and the length (mesh) of one side of the equilateral triangle of the triaxial mesh are each preferably 5 mm or more, more preferably 10 to 20 mm.
  • a biaxial mesh or a triaxial mesh By using a biaxial mesh or a triaxial mesh, it is possible to obtain a hardening material for preventing spalling of concrete which is lightweight, excellent in economy, workability and durability.
  • These fibers are preferably used to reinforce coating film performance such as concrete spalling resistance and FRP waterproofness, and to produce FRP molded articles.
  • coating film performance such as concrete spalling resistance and FRP waterproofness
  • FRP molded articles are preferable from the viewpoint that deterioration of the substrate can be visually inspected from the outside.
  • the content of such fibers is 0.3 to 200 parts per 100 parts by mass in total of the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2). It is preferably 0.5 to 100 parts by mass, even more preferably 1.0 to 50 parts by mass.
  • the second radically polymerizable resin composition of the present embodiment may optionally contain a usable water reducing agent (M) capable of imparting water reducing properties.
  • a usable water reducing agent capable of imparting water reducing properties.
  • known water reducing agents used for concrete such as liquid or powder water reducing agents, AE water reducing agents, high performance water reducing agents, and high performance AE water reducing agents, can be applied without limitation.
  • the polycarboxylic acid-based water reducing agent can suppress the decrease in the fluidity of concrete due to the addition of the above-mentioned swelling aluminosilicate, and from the viewpoint of maintaining good fluidity and improving workability.
  • a naphthalenesulfonic acid-based water reducing agent has a high dispersibility and a high water reducing effect, and is therefore suitable from the viewpoint of improving workability.
  • the water reducing agent is preferably contained in an amount of 0.1 to 3.0% by mass in the second radically polymerizable resin composition.
  • the second radically polymerizable resin composition of the present embodiment may contain components other than the above components as long as they do not particularly affect the strength development and acid resistance of the cured product.
  • Ingredients that can be contained include, for example, hydraulic inorganic substances such as calcium sulfate and pozzolanic substances, as well as properties such as setting adjustment, curing acceleration, curing delay, thickening, water retention, defoaming, water repellency, and waterproofing.
  • admixtures that can be used for mortar or concrete admixtures that can be used for mortar or concrete, such as fibers made of materials such as metals, polymers, and carbon, pigments, extenders, foaming materials, and clay minerals such as zeolite. be able to.
  • Components that can be contained include coupling agents, plasticizers, anion-fixing components, solvents, polyisocyanato compounds, surfactants, wetting and dispersing agents, waxes, and thixotropic agents.
  • a coupling agent may be used in the second radically polymerizable resin composition of the present embodiment for the purpose of improving processability, and for the purpose of improving adhesion to a substrate.
  • Coupling agents include known silane-based coupling agents, titanate-based coupling agents, aluminum-based coupling agents, and the like.
  • Examples of such a coupling agent include a second silane coupling agent represented by R 3 —Si(OR 4 ) 3 .
  • R 3 include aminopropyl group, glycidyloxy group, methacryloxy group, N-phenylaminopropyl group, mercapto group, and vinyl group.
  • R 4 include methyl group and ethyl group. etc.
  • the amount thereof is the sum of the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2). It is preferably 0.001 to 10 parts by mass with respect to 100 parts by mass.
  • the second radically polymerizable resin composition of the present embodiment may contain a plasticizer, if necessary.
  • the plasticizer is not particularly limited, for the purpose of adjusting physical properties and properties, for example, phthalates such as dibutyl phthalate, diheptyl phthalate, di(2-ethylhexyl) phthalate, butylbenzyl phthalate; dioctyl adipate , dioctyl sebacate, dibutyl sebacate, isodecyl succinate and other non-aromatic dibasic acid esters; butyl oleate, methyl acetylricinoleate and other aliphatic esters; diethylene glycol dibenzoate, triethylene glycol dibenzoate, penta Polyalkylene glycol esters such as erythritol esters; Phosphate esters such as tricresyl phosphate and tributyl phosphate; Trimellitic
  • examples thereof include vinyl-based polymers obtained by polymerization.
  • the viscosity of the radical polymerizable composition and the mechanical properties such as tensile strength and elongation of the cured product obtained by curing the composition can be adjusted. It is preferred to add an agent.
  • the polymer plasticizer is preferable because it can maintain the initial physical properties for a long period of time as compared with the case of using a low-molecular-weight plasticizer, which is a plasticizer that does not contain a polymer component in the molecule.
  • this polymeric plasticizer may or may not have a functional group.
  • the number average molecular weight of the polymer plasticizer is more preferably 800-10,000, more preferably 1,000-8,000. When the number average molecular weight is 500 or more, the plasticizer is prevented from flowing out over time under the influence of heat, rainfall, and water, and the initial physical properties can be maintained for a long period of time. Moreover, if the number average molecular weight is 15,000 or less, it is possible to suppress the increase in viscosity and ensure sufficient workability.
  • Hydrotalcites or hydrocalumites can also be used to immobilize anions such as chloride ions.
  • These hydrotalcites may be natural products or synthetic products, and can be used regardless of the presence or absence of surface treatment and the presence or absence of water of crystallization.
  • M is an alkali metal or zinc
  • x is a number from 0 to 6
  • y is a number from 0 to 6
  • z is a number from 0.1 to 4
  • r is the valence of M
  • m is (the number of water of crystallization from 0 to 100).
  • the hydrocalumites may be natural products or synthetic products, and can be used regardless of the presence or absence of surface treatment and the presence or absence of water of crystallization. For example, the following general formulas (S), (T)
  • the calumites carry nitrite ions (NO 2 ⁇ ), which are said to have the effect of suppressing the corrosion of reinforcing bars in the manufacturing stage.
  • hydroxide ion (OH ⁇ ), oxalate ion (CH 3 COO ⁇ ), carbonate ion (CO 3 ⁇ ), sulfate ion (SO 4 2 ⁇ ), and the like.
  • hydrotalcites or hydrocalumites may be used alone, but they can be used by being mixed in the paste.
  • hydroxide ions (OH ⁇ ) coexisting during the hydration reaction have various effects on the anion exchange reaction that is characteristic of Calmite.
  • hydrocalumites supporting nitrite ions are preferred.
  • solvent can be blended into the second radically polymerizable resin composition of the present embodiment, if necessary.
  • solvents that can be blended include aromatic hydrocarbon solvents such as toluene and xylene; ester solvents such as ethyl acetate, butyl acetate, amyl acetate and cellosolve acetate; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and diisobutyl ketone. is mentioned. These solvents may be used during polymer production.
  • the second radically polymerizable resin composition of the present embodiment may contain a polyisocyanato compound.
  • the polyisocyanato compound reacts with the hydroxyl groups of the second radically polymerizable compound (A-2) to form a cured coating film.
  • the polyisocyanato compound contains two or more isocyanato groups in the molecule, and the isocyanato groups may be blocked with a blocking agent or the like.
  • the amount of the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2) is preferably from 0.1 to 50 parts by mass, more preferably from 1 to 30 parts by mass, and even more preferably from 2 to 20 parts by mass, based on a total of 100 parts by mass.
  • the blocked polyisocyanate compound is obtained by blocking the isocyanate groups of the above polyisocyanate compound with a blocking agent.
  • blocking agents include phenols such as phenol, cresol and xylenol; ⁇ -caprolactam; lactams such as ⁇ -valerolactam, ⁇ -butyrolactam and ⁇ -propiolactam; methanol, ethanol, n- or iso-propyl alcohol.
  • n-, iso- or tert-butyl alcohol ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, alcohols such as benzyl alcohol; formamide Blocking of oximes such as xime, acetaldoxime, acetoxime, methylethylketoxime, diacetylmonoxime, benzophenone oxime, cyclohexane oxime; active methylenes such as dimethyl malonate, diethyl malonate, ethyl acetoacetate, methyl acetoacetate, and acetylacetone agents.
  • the isocyanate groups of the polyisocyanate can be easily blocked.
  • the second radically polymerizable compound (A-2) in the second radically polymerizable resin composition of the present embodiment and the polyisocyanate compound are Since the two react when mixed, it is preferable to separate the second radically polymerizable compound (A-2) and the polyisocyanato compound before use, and then mix the two at the time of use.
  • a curing catalyst can be used to react the second radically polymerizable compound (A-2) with the polyisocyanate compound.
  • Suitable curing catalysts include, for example, tin octoate, dibutyltin di(2-ethylhexanoate), dioctyltin di(2-ethylhexanoate), dioctyltin diacetate, dibutyltin dilaurate, dibutyltin oxide, dioctyl Examples include organometallic catalysts such as tin oxide and lead 2-ethylhexanoate.
  • the amount of the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2) is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 4 parts by mass, based on a total of 100 parts by mass.
  • the second radically polymerizable resin composition of this embodiment may contain a surfactant.
  • Surfactants include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants. These surfactants may be used alone or in combination of two or more. Among these surfactants, one or more selected from anionic surfactants and nonionic surfactants are preferred.
  • anionic surfactants include alkyl sulfate ester salts such as sodium lauryl sulfate and triethanolamine lauryl sulfate; polyoxyethylene alkyl salts such as sodium polyoxyethylene lauryl ether sulfate and triethanolamine polyoxyethylene alkyl ether sulfate; Ether sulfate ester salts; sulfonates such as dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, sodium alkylnaphthalenesulfonate, and sodium dialkylsulfosuccinate; fatty acid salts such as sodium stearate soap, potassium oleate soap, and castor oil potassium soap ; naphthalenesulfonic acid formalin condensates, special polymer systems, and the like.
  • alkyl sulfate ester salts such as sodium lauryl sulfate and triethanolamine lauryl sulfate
  • nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxylauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene distyrenated phenyl ether, poly Polyoxyethylene derivatives such as oxyethylene tribenzylphenyl ether and polyoxyethylene polyoxypropylene glycol; Sorbitan fatty acid esters such as polyoxyalkylene alkyl ether, sorbitan monolaurylate, sorbitan monopalmitate and sorbitan monostearate; polyoxyethylene polyoxyethylene sorbitan fatty acid esters such as sorbitan monolaurate, polyoxyethylene sorbitan monolaurate, and polyoxyethylene sorbitan monopalmitate; polyoxyethylene sorbitol fatty acid esters such as polyoxyethylene sorbit tetraoleate; glycerin monostearate; Examples include glycerin fatty acid esters
  • polyoxyethylene lauryl ether polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, and polyoxyethylene alkyl ether are preferred.
  • the HLB (Hydrophile-Lipophil Balance) of the nonionic surfactant is preferably 5-15, more preferably 6-12.
  • the amount thereof is the sum of the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2). It is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 7 parts by mass, and still more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass.
  • the second radically polymerizable resin composition of the present embodiment may contain, for example, a wetting and dispersing agent in order to improve permeability to a wet or submerged site to be repaired.
  • wetting and dispersing agents include fluorine-based wetting and dispersing agents and silicone-based wetting and dispersing agents, and these may be used alone or in combination of two or more.
  • fluorine-based wetting and dispersing agents include Megafac (registered trademark) F176, Megafac (registered trademark) R08 (manufactured by Dainippon Ink and Chemicals), PF656, PF6320 (manufactured by OMNOVA), Troisol S- 366 (manufactured by Troy Chemical Co., Ltd.), Florard FC430 (manufactured by 3M Japan Ltd.), polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
  • Megafac registered trademark
  • F176 Megafac (registered trademark) F176
  • Megafac (registered trademark) R08 manufactured by Dainippon Ink and Chemicals
  • PF656, PF6320 manufactured by OMNOVA
  • Troisol S- 366 manufactured by Troy Chemical Co., Ltd.
  • Florard FC430 manufactured by 3M Japan Ltd.
  • silicone-based wetting and dispersing agents include BYK (registered trademark)-322, BYK (registered trademark)-377, BYK (registered trademark)-UV3570, BYK (registered trademark)-330, and BYK (registered trademark)-302. , BYK (registered trademark)-UV3500, BYK-306 (manufactured by BYK-Chemie Japan Co., Ltd.), polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
  • silicone-based wetting and dispersing agent preferably contains a compound represented by the following formula (U).
  • Examples of commercially available silicone-based wetting and dispersing agents containing the compound represented by the formula (U) include BYK (registered trademark)-302 and BYK (registered trademark)-322 (manufactured by BYK-Chemie Japan Co., Ltd.).
  • the second radically polymerizable resin composition of the present embodiment contains a wetting and dispersing agent, the amount thereof is the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B- It is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 2 parts by mass, based on 100 parts by mass of 2).
  • the second radically polymerizable resin composition of the present embodiment may contain wax.
  • Waxes include paraffin waxes and polar waxes, and these may be used alone or in combination of two or more.
  • paraffin waxes known waxes having various melting points can be used.
  • polar waxes those having both a polar group and a non-polar group in the structure can be used. Rou Co., Ltd.), Emanone (registered trademark) 3199, Emanone (registered trademark) 3299 (manufactured by Kao Corporation), and the like.
  • the amount thereof is the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2). It is preferably 0.05 to 4 parts by mass, more preferably 0.1 to 2.0 parts by mass with respect to the total 100 parts by mass.
  • the second radically polymerizable resin composition of the present embodiment may contain a second thixotropic agent for the purpose of viscosity adjustment and the like for securing workability on vertical surfaces and ceiling surfaces.
  • the second thixotropic agent include inorganic thixotropic agents and organic thixotropic agents.
  • Organic thixotropic agents include hydrogenated castor oil, amide, polyethylene oxide, polymerized vegetable oil, Examples thereof include surfactant systems and composite systems using these in combination, and specific examples include DISPARLON (registered trademark) 6900-20X (Kusumoto Kasei Co., Ltd.).
  • inorganic thixotropic agents include silica and bentonite.
  • Hydrophobic ones include Rheolosil (registered trademark) PM-20L (vapor-phase silica manufactured by Tokuyama Corporation) and Aerosil (registered trademark) AEROSIL. R-106 (Nippon Aerosil Co., Ltd.) and the like, and hydrophilic ones include Aerosil (registered trademark) AEROSIL-200 (Nippon Aerosil Co., Ltd.) and the like. From the viewpoint of further improving thixotropy, thixotropic modifier BYK (registered trademark)-R605 or BYK (registered trademark)-R606 (manufactured by BYK-Chemie Japan Co., Ltd.) is added to hydrophilic pyrogenic silica.
  • the second radically polymerizable resin composition of the present embodiment contains the second thixotropic agent
  • the amount thereof is the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer. It is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, based on 100 parts by mass of (B-2) in total.
  • the second radically polymerizable resin composition of the present embodiment does not substantially contain water from the viewpoint of obtaining strength at a practical level. That is, when preparing the second radically polymerizable resin composition, water is not added as a constituent of the composition.
  • the water content of the second radically polymerizable resin composition is based on a total of 100 parts by mass of the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2). , preferably less than 0.25 parts by mass, more preferably 0.20 parts by mass or less, even more preferably 0.15 parts by mass or less, most preferably 0.10 parts by mass or less preferable.
  • the method for producing the second radically polymerizable resin composition of the present embodiment is not particularly limited, and methods known in the art can be used.
  • the second radically polymerizable resin composition comprises a second radically polymerizable compound (A-2) and a second radically polymerizable unsaturated monomer (B-2), and optionally a second metal-containing compound It can be produced by mixing (E-2), further blending and mixing the second radical polymerization initiator (D-2), the aggregate (K), and the expansion agent (J).
  • the method for producing the second radically polymerizable resin composition preferably does not include the step of adding water.
  • the second radically polymerizable resin composition When water is added, the second radically polymerizable resin composition contains free water, and the compression strength of the cured product of the second radically polymerizable resin composition deteriorates. However, the bound water contained in raw materials such as the aggregate (K) has little effect on the compressive strength of the cured product, unlike the added free water.
  • the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2) are A step (2-S1) of obtaining a mixture (2-i) by mixing a second metal-containing compound (E-2) as necessary, and adding a second radical polymerization initiator to the obtained mixture (2-i)
  • a step (2-S2) of mixing (D-2) to obtain a mixture (2-ii); and a step (2-S3) of obtaining a second radically polymerizable resin composition are A step (2-S1) of obtaining a mixture (2-i) by mixing a second metal-containing compound (E-2) as necessary, and adding a second radical polymerization initiator to the obtained mixture (2-i)
  • a step (2-S3) of obtaining a second radically polymerizable resin composition are A step (2-S1) of obtaining a mixture (2-i) by mixing a second metal-containing compound (
  • step (2-S1) (sometimes simply referred to as “step (2-S1)”) for obtaining the mixture (2-i), the second radically polymerizable compound (A-2) and the second radically polymerizable
  • a second polymerization inhibitor (H-2) and a second curing A retarder (I-2), a second thiol compound (F-2), etc. may be mixed.
  • step (2-S3) of obtaining the second radical polymerizable resin composition (sometimes simply referred to as “step (2-S3)”), the step of obtaining the mixture (2-ii) (2-S2) (simply In addition to mixing the expansion material (J) and the aggregate (K) with the mixture (2-ii) obtained in “step (2-S2)"), if necessary, A fiber (L), a water reducing agent (M), or the like may be mixed.
  • Specific examples of the aggregate (K) include No. 9 silica sand, calcium carbonate TM-2, Perlite FL-0, Hardlite B-04, Enshu No. 5.5 silica sand, N50 silica sand, N40 silica sand, and N90 silica sand. , etc. can be used.
  • the second radically polymerizable resin composition produced in this way can be cured at room temperature and is excellent in workability, early strength development and curability. Since the expansion material (J) is included, the shrinkage rate during curing is small, and the expansion rate of the cured product can be made greater than 0 depending on the conditions.
  • the cured product of the recess filling material kit of the present embodiment includes a first cured product that is a cured product of the first radically polymerizable resin composition and a second cured product that is a cured product of the second radically polymerizable resin composition. and A hardened product of the recess filling material kit is formed in the recess such that the first hardened product is formed on the surface of the recess and the second hardened product is formed on the surface of the first hardened product.
  • a cured product of the first radically polymerizable resin composition of the present embodiment is obtained by curing the first radically polymerizable resin composition.
  • Method for Curing First Radically Polymerizable Resin Composition For example, when the first radically polymerizable resin composition contains a thermal radical polymerization initiator, the same method as the curing method for the second radically polymerizable resin composition, which will be described later, can also be used.
  • a cured product of the second radically polymerizable resin composition of the present embodiment is obtained by curing the second radically polymerizable resin composition.
  • the second radically polymerizable resin composition of the present embodiment contains a thermal radical polymerization initiator (D-21), as an example of a method of curing the second radically polymerizable resin composition of the present embodiment, A curing method in which the second radically polymerizable resin composition of the present embodiment is applied to the surface of a substrate and cured at room temperature can be mentioned.
  • the second radically polymerizable resin composition of the present embodiment is used as a recess filling material for inorganic structures.
  • Base materials include concrete, asphalt concrete, mortar, brick, wood, metal, phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, vinyl ester resin, alkyd resin, polyurethane, polyimide, etc. thermosetting resin; thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, polyurethane, Teflon (registered trademark), ABS resin, AS resin, and acrylic resin.
  • the timing of photocuring is to apply the second radically polymerizable resin composition to the substrate.
  • a method of photocuring after curing a method of preparing a sheet in which the second radically polymerizable resin composition is prepolymerized (also referred to as B-stage or prepreg), attaching the sheet to a base material, and then photocuring.
  • the light source may be a light source having a spectral distribution in the photosensitive wavelength range of the radical photopolymerization initiator (D-22), such as sunlight, an ultraviolet lamp, a near-infrared lamp, a sodium lamp, a halogen lamp, and a fluorescent lamp. , metal halide lamps, LEDs, etc. can be used.
  • the wavelength necessary for prepolymerization and main polymerization can also be used separately.
  • the wavelength used for prepolymerization is desirably a long wavelength with a low energy level, and the use of near-infrared light makes it easy to control the degree of polymerization.
  • ultraviolet light refers to light in the wavelength range of 280 to 380 nm
  • visible light in the range of 380 to 780 nm
  • near-infrared light near infrared rays
  • the irradiation time of the lamp necessary for prepolymerization cannot be generally specified because it is affected by the effective wavelength range of the light source, output, irradiation distance, thickness of the composition, etc., but for example, 0.01 hours or more, preferably 0.05 hours. Irradiate for more than an hour.
  • the method of filling recesses or the method of filling recesses with mortar according to the present embodiment can be widely used in civil engineering work and construction work that require filling.
  • the material for forming the recess may be a structure including at least one of a concrete member, a metal member, and a resin member.
  • the concave portion is only an example because a 10 cm square cube is most suitable, and the shape may be a cube, a rectangular parallelepiped, or a spherical shape. It may be a conical body.
  • Structures in which concave portions according to this embodiment are generated include, for example, tunnels, manholes, waterways, conduits, guardrails, signs, anchor bolts, rock bolts, and reinforced structures, regardless of the material.
  • a re-repaired portion of a previously repaired portion includes a portion repaired with cement concrete, a portion repaired with polymer cement mortar, a portion repaired with epoxy resin mortar or urethane resin, a steel plate reinforcement portion, and the like.
  • Another embodiment of the recess filling method of the present embodiment or the method of filling recesses with mortar includes a base layer forming step of applying a first radically polymerizable resin composition to the surface of the recess to form a base layer; and a filling step of filling the surface of the underlayer formed on the surface of the recess with a second radically polymerizable resin composition.
  • Another embodiment of the recess filling method of the present embodiment or the method of filling recesses with mortar includes a step of applying a first radically polymerizable resin composition to a part or all of the surface of a recess, and a second radical polymerization. and curing the first radically polymerizable resin composition and the second radically polymerizable resin composition.
  • One embodiment of the recess filling method or the recess mortar filling method of the present embodiment includes the steps of applying the first radically polymerizable resin composition to a part or all of the surface of the recess; a step of curing the composition to form a cured product layer of the first radically polymerizable resin composition on the surface of the recess; You may have the process of filling a resin composition, and the process of hardening a 2nd radically polymerizable resin composition.
  • another embodiment of the recess filling method of the present embodiment or the method of filling recesses with mortar includes a step of applying the first radically polymerizable resin composition to a part or all of the surface of the recess; a step of drying or semi-curing the radically polymerizable resin composition to form a first radically polymerizable resin composition layer or semi-cured layer on the surface of the recess; A step of filling the concave portion with the second radically polymerizable resin composition and a step of curing the first radically polymerizable resin composition and the second radically polymerizable resin composition may be provided.
  • another embodiment of the recess filling method of the present embodiment or the method of filling recesses with mortar includes the step of applying the first radically polymerizable resin composition to a part or all of the surface of the recess; You may have the process of filling a radically polymerizable resin composition, and the process of hardening a 1st radically polymerizable resin composition and a 2nd radically polymerizable resin composition.
  • the bolt box can be filled by the recess filling method described above.
  • the bolt box filling method includes a base layer forming step of applying the first radically polymerizable resin composition to the surface of the bolt box to form a base layer, and removing the base layer formed on the surface of the bolt box. and a filling step of filling the surface with the second radically polymerizable resin composition.
  • the second radically polymerizable unsaturated monomer (B-2) 300.0 g of dicyclopentenyloxyethyl methacrylate (manufactured by Hitachi Chemical Co., Ltd., FA-512MT), dicyclopentanyl methacrylate (by adding 100.0 g of FA-513M manufactured by Hitachi Chemical Co., Ltd., a non-styrene type mixture 1000 having a viscosity at 25 ° C. of 280 mPa s and a radically polymerizable compound (A-iii) component ratio of 60% by mass. .0 g was obtained.
  • KS-1260 0.02 g. , and 60° C. for 3 hours.
  • 93.08 g of 2-hydroxyethyl methacrylate manufactured by 2-HEMA Nippon Shokubai Co., Ltd.
  • 2-HEMA Nippon Shokubai Co., Ltd. was added dropwise to the reactant while stirring over 30 minutes, and the reaction was allowed to proceed for about 3 hours after completion of the dropwise addition to obtain a radically polymerizable compound ( Av) urethane methacrylate resins were synthesized.
  • dicyclopentenyloxyethyl methacrylate manufactured by Hitachi Chemical Co., Ltd., FA-512MT: 600.0 g was added to obtain a temperature of 25°C.
  • 1000.0 g of a non-styrene type mixture having a viscosity of 420 mPa ⁇ s at 420 mPa ⁇ s and a component ratio of the radically polymerizable compound (A ⁇ v) of 40% by mass was obtained.
  • phenoxyethyl methacrylate (light ester PO manufactured by Kyoeisha Chemical Co., Ltd.): 150.0 g
  • dicyclopentenyloxyethyl methacrylate (FA-512MT) , manufactured by Hitachi Chemical Co., Ltd.): 1000.0 g of a non-styrene type mixture having a viscosity of 570 mPa s at 25 ° C. and a radically polymerizable compound (A-vi) component ratio of 50% by mass.
  • lauryl methacrylate (Light Ester L, manufactured by Kyoeisha Chemical Co., Ltd.): 150.0 g, dicyclopentenyloxyethyl methacrylate (FA-512MT, Hitachi Chemical Co., Ltd.): By adding 450.0 g, 1000.0 g of a non-styrene type mixture having a viscosity of 320 mPa s at 25 ° C. and a radically polymerizable compound (A-vii) component ratio of 40% by mass. Obtained.
  • the secondary thiol compound (Fi) which is a bifunctional secondary thiol, manufactured by Showa Denko Co., Ltd., Karenz MT (registered trademark) BD1 (1,4-bis (3-mercaptobutyryloxy) butane, molecular weight 299 .43) was used.
  • the polymerization inhibitor (H-ii) 2,6-di-tert-butyl-4-methylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was used.
  • Resin adjustment step (1-S1) A mixture of the first radically polymerizable compound (A-1) and the first radically polymerizable unsaturated monomer (B-1), in the amount shown in Table 1, the first metal-containing compound (E-1) , the first thiol compound (F-1), the first polymerization inhibitor (H-1), and the first curing retarder (I-1) were mixed well to prepare a mixture (1-i).
  • Acidic compound mixing step (1-S2) The mixture (1-i) obtained in step (1-S1) was mixed with the acidic compound (C) in the amount shown in Table 1 to prepare the mixture (1-ii). .
  • Curing agent mixing step (1-S3) The mixture (1-ii) obtained in the step (1-S2) is mixed with the first radical polymerization initiator (D-1) in the amount shown in Table 1 to obtain the first radically polymerizable resin composition. (curable primer) was prepared.
  • Resin adjustment step (2-S1) To the second radically polymerizable compound (A-2) and the second radically polymerizable unsaturated monomer (B-2), the second metal-containing compound (E-2), the second The 2-thiol compound (F-2), the second polymerization inhibitor (H-2), and the second curing retarder (I-2) were thoroughly mixed to prepare a mixture (2-i).
  • Curing agent mixing step (2-S2) The mixture (2-i) obtained in step (2-S1) was mixed with the second radical polymerization initiator (D-2) in the amount shown in Table 1 to prepare the mixture (2-ii). did.
  • Second radically polymerizable resin compositions RC-1 to RC-10 and cRC-1 to cRC obtained by the above-described method at the blending amounts of the raw materials of Examples 7 to 16 and Comparative Examples 3 to 4 shown in Table 2.
  • Table 2 shows the results.
  • ⁇ Curability test (measurement of gelling time, curing time, and curing temperature)>
  • the first radically polymerizable resin compositions PC-1 to PC-6 and cPC-1 to cPC-2 of Examples 1 to 6 and Comparative Examples 1 and 2 shown in Table 1 were tested at 25°C.
  • a tube (outer diameter 18 mm, length 165 mm) was inserted 100 mm from the bottom and the temperature was measured using a thermocouple.
  • the time required for the temperature of the radically polymerizable resin composition to rise from 25°C to 30°C was defined as the gelling time. The time from 25° C.
  • the maximum exothermic temperature of the radically polymerizable resin composition was defined as curing time, and the maximum exothermic temperature was defined as curing temperature, and measured according to JIS K 6901:2008.
  • the radically polymerizable resin composition is adjusted to 25° C. in advance before the measurement. Table 1 shows the results.
  • the specimen of the cured product is molded according to the method of making the specimen for strength test specified in JIS R 5201 10, and after molding, it is left in the formwork and left in a room at a temperature of 23 ° C ⁇ 2 ° C and a humidity of 50%. It was placed (cured) and removed from the mold about 24 hours after molding. Then, using the instrument specified in JIS A 1129-3-3, measurement was started under the conditions specified in 4.3 of JIS A 1129-3 (time 0).
  • Amount of change long side length at the time of passage - long side length at start (0 o'clock) (160 mm) (1)
  • the obtained first radically polymerizable resin compositions (primer compositions) PC-1, PC-2, PC-4, PC-6, and cPC-1, and the second radically polymerizable resin composition (resin mortar composition ) RC-1, RC-2, RC-7, RC-8, RC-9, RC-10 and cRC-1 were used.
  • the first radically polymerizable resin composition was applied to the inner wall of the concrete wall at a coating amount of 0.3 kg/m 2 .
  • the second radically polymerizable resin composition was tightly packed and cured at 25° C. for 24 hours to prepare a specimen. The specimens were evaluated according to the following evaluation criteria.
  • dry conditions temperature 15 ° C., humidity 60% for 4 days
  • wet conditions temperature 60 ° C., humidity 90% for 3 days
  • the sample was also subjected to a rebar pull-out test.
  • immersion conditions temperature 25 ° C., underwater curing for 18 hours
  • cooling conditions temperature -20 ° C. for 3 hours
  • heating conditions temperature 50 ° C. for 3 hours
  • test equipment Measurement was performed using an Amsler universal testing machine (MR type) manufactured by Mayekawa Test Instruments Co., Ltd.
  • Test method The tensile load was measured according to JSTM C 2101T, and the degree of adhesion stress was calculated by the following formula (3). As the tensile load used for calculating the degree of bond stress, the value measured when the amount of slippage at the free end was 0.002D (D is the diameter of the reinforcing bar) was adopted.
  • hole-filling method it is described as a hole-filling material for bolt boxes, but as an application, it can also be applied to a method for repairing defective parts of concrete structures such as box culverts and waterways.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Ceramic Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

凹部に使用されているコンクリート製材料、鋼鉄製材料との初期接着等の施工不良をなくす工法等を提供することができる凹部充填材キット、その硬化物、及びそれを用いる凹部充填法を提供する。本発明の凹部充填材キットは第1と第2ラジカル重合性樹脂組成物を有する。前記第1ラジカル重合性樹脂組成物は、第1ラジカル重合性化合物(A-1)と第1ラジカル重合性不飽和単量体(B-1)と酸性化合物(C)と第1ラジカル重合開始剤(D-1)とを含有し、前記第2ラジカル重合性樹脂組成物は、第2ラジカル重合性化合物(A-2)と第2ラジカル重合性不飽和単量体(B-2)と第2ラジカル重合開始剤(D-2)と膨張材(J)と骨材(K)とを含有する。

Description

凹部充填材キット、その硬化物及び凹部充填法
 本発明は、凹部充填材キット、その硬化物及び凹部充填法に関する。また、本発明は、地中埋設管路である地下鉄通路、下水管路、電線やガス管などの集合管路等の構築に際し、材料として用いられるセグメントの周縁に開口されたボルト連結用の凹部内、あるいは摩耗・損耗や破損した鉄筋構造物を含む凹部に充填する樹脂モルタルの充填工法に関する。
 本願は、2021年4月23日に、日本に出願された特願2021-073533号に基づき優先権を主張し、その内容をここに援用する。
 地中埋設管路である地下鉄通路、下水管路、電線やガス管等の集合管路等を構築する場合、縦穴を所定深さまで掘削形成し、所定の横穴を形成するための装置を搬入し、この装置を稼働させて横穴を形成しながら、セグメントを順次連結して所定の径を有する管路を構築している。このセグメントは、管路径が大きいほど又掘削深度の深いもの、地盤が脆弱なほど高強度のものが用いられ、一般的にプレキャストコンクリート、鉄等から作製されているが、この内側周縁に連結用の凹部(ボルトボックス、箱抜き部)が形成され、この凹部が隣接するようにセグメントを配設し、ボルトナットやPC鋼材により接合されている。この凹部とボルトナットは管路の直径の大きさと管路の長さに比例して、莫大な数が存在している。
 この凹部を露出したままで管路を使用すると、環境中の色々な要素により、ボルトナット部が腐食してしまうので、この凹部にセメントモルタルやエポキシ樹脂モルタル、ポリウレタン樹脂等を充填してボルトナットの腐食を防止し、その結果、接合の強度低下を防止するモルタルの充填工法がなされていた。
 しかし、建設当時に実施されたモルタル充填工法は、長年の使用による劣化が進み、建設当時に使用された様々な材料が欠損、あるいは全損(脱落等)している状態となっており、中身のボルトナットが腐食している様子も散見されるようになってきた。
 腐食したボルトナットをこのまま放置しておくと、連結された管路の接合が弱くなり、セグメント同士の隙間から、地下水などが浸入したり、あるいは管路内を流れる流体が流出したり、と問題が多発するようになる。また、モルタル充填工法で使用された材料が欠損もしくは全損しているボルトボックスは、管路内を流れる流体の抵抗を増大させることにもつながるため、早急な対策が求められている。
 また、これらの凹部の補修と同一の問題として、都市部の地下に建設された鉄筋構造物を含む地下鉄道路や下水道管路、電線やガス管路等の集合管路の経年劣化がある。この経年劣化により、集合管路にはひび割れや破損が無数にあり、鉄筋がむき出しとなって、管路への地下水や河川水の染み出し、あるいは管路からの下水の流出など様々な問題を誘発する。そのため、早急な対策を求められる。しかし、鉄筋やコンクリート構造物との接着や、地下構造物特有の問題でもある工事可能時間が限られるなど、既存材料では工事がうまくいかないことの方が多かった。
 このモルタル充填工法に適用が考えられるものとして、特許文献1に示された急結剤を配合した急結モルタルを手詰め又は吹き付けする急結モルタル工法、特許文献2に示された比重を小さくした軽量モルタルを手詰めする軽量モルタル工法、特許文献3に示された2液硬化・発泡型のウレタン組成物を注入・充填する硬化発泡ウレタン工注などが知られており、また、特許文献4に示されたエポキシ樹脂モルタルを凹部の穴埋めに用いるケースや、特許文献5のようにエポキシ樹脂に水を混ぜ、エマルジョン化して使用するケースなども考えられる。
 しかし、どの材料も鉄筋やボルト、およびコンクリート構造物との密着、さらに経時変化による材料の収縮等、全てを同時に解決できる材料ではなく、常に補修箇所が再劣化するなどの問題に悩まされている。
 一方、樹脂モルタルの充填工法において、ラジカル重合性樹脂組成物が良く使用されている。例えば、一般的な液状のビニルモノマーを用いて重合を行う際、かなり大きな収縮が発生する。この収縮により、凹部充填材にビニルモノマーを用いる場合、強度不足などの問題を発生させる。そのため、重合時に収縮率の小さい樹脂を創り出すことは、工業的に非常に有意義なことである。
 不飽和ポリエステル樹脂やビニルエステル樹脂(エポキシアクリレート)等に代表されるラジカル重合性の樹脂組成物も通常硬化時の収縮は発生する。非特許文献1の表1に示されたモノマーである「スチレン」や「メチルメタクリレート」をモノマーとして使用していることが多いため、一般的な配合における不飽和ポリエステル樹脂は8~12%、ビニルエステル樹脂は、8~10%ほどの体積収縮を伴う。
 この数値は、一般的なエポキシ樹脂で言われる3~6%の体積収縮と比較しても、かなり大きな数値となる。そのため、不飽和ポリエステル樹脂、あるいはビニルエステル樹脂の工業用途への使用、あるいはそれ以外の各業界・各用途への進出を阻んできた。
 この問題を解決する方法として、特許文献6では、ポリスチレンビーズを低収縮材として用いることで、製造の工数低減若しくは製造時間の短縮が図れ、優れた低収縮性、寸法安定性及び表面平滑性を有する低収縮性不飽和ポリエステル樹脂組成物を製造できるとしている。
 また、特許文献7では、不飽和ポリエステル樹脂組成物にA-B型のブロック共重合体を配合することにより、硬化時の収縮が低く、耐熱性に優れた成形体を作製することができる低収縮性不飽和ポリエステル樹脂組成物を得ることができるとしている。
 更に、特許文献8では、不飽和ポリエステル樹脂に対して、A及びBのセグメントからなるA-B型のブロック共重合体(酢酸ビニル-スチレン系)と微粒子ケイ酸を混合することで、常温または中温成形に際して低収縮効果が大きく、かつ高度な耐水性を有する低収縮性不飽和ポリエステル樹脂組成物を得ることができるとしている。
特許第2700609号公報 特開2001-270765号公報 特許第3479819号公報 特開2020-94192号公報 特開2019-52203号公報 特開平11-315198号公報 特許第2794802号公報 特開平05-222282号公報
遠藤剛、重合時の体積収縮は不可避か、高分子、27巻2月号(1978年)第108~111頁。
 本発明は上記従来の実情を鑑みてなされたものであり、セメントコンクリート材料、ポリマーセメントモルタル材料、2液硬化・発泡型のウレタン組成物、エポキシ樹脂モルタル材料の各種モルタル充填工法用の材料との初期接着、あるいは凹部に使用されているコンクリート製材料、鋼鉄製材料との初期接着、および樹脂材料の硬化時の収縮に由来した脱落等の施工不良をなくす工法等を提供することができる。
 また、従来のラジカル重合性の樹脂組成物において、低収縮率の樹脂を創り出すため、ポリスチレン等の熱可塑性樹脂の単独配合、もしくは2種以上のブロック共重合体が利用されている。これらは「収縮防止材」として機能していることがほとんどであった。
 これらの樹脂組成物は、硬化発熱による熱可塑性樹脂の熱膨張と不飽和ポリエステル樹脂の硬化収縮とを相殺させる考えに立脚しており、用途的にはシートモールディングコンパウンド(SMC)やバルクモールディングコンパウンド(BMC)等の、中温域以上で加熱成形がなされる用途に限定されていることが多かった。
 本発明は、上記従来の実情を鑑みてなされたものであり、収縮防止材ではなく、膨張材を取り入れることによって、成形方法、使用温度、用途等に限定されることなく、樹脂組成物の硬化時に全体が一定の比率で膨張し、その後、安定することで、収縮率の小さいラジカル重合性樹脂組成物を含む凹部充填材キット、その硬化物、及びそれを用いる凹部充填法を提供することを目的とし、併せて、金属接着用のプライマーを用いることで、凹部に存在する鉄筋構造物やボルトなどとの接着も担保できるものである。
すなわち、本発明は以下の[1]~[14]で示される。
[1] 第1ラジカル重合性樹脂組成物と第2ラジカル重合性樹脂組成物とからなる凹部充填材キットであって、
 前記第1ラジカル重合性樹脂組成物は、第1ラジカル重合性化合物(A-1)と、第1ラジカル重合性不飽和単量体(B-1)と、酸性化合物(C)と、第1ラジカル重合開始剤(D-1)とを含有し、
 前記第2ラジカル重合性樹脂組成物は、第2ラジカル重合性化合物(A-2)と、第2ラジカル重合性不飽和単量体(B-2)と、第2ラジカル重合開始剤(D-2)と、膨張材(J)と、骨材(K)とを含有することを特徴とする凹部充填材キット。
[2] 前記骨材(K)の含有量は、前記第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、200質量部~900質量部である[1]に記載の凹部充填材キット。
[3] 前記第1ラジカル重合性化合物(A-1)及び前記第2ラジカル重合性化合物(A-2)が、それぞれ独立して、ビニルエステル樹脂を含む[1]又は[2]に記載の凹部充填材キット。
[4] 前記膨張材(J)が生石灰及びカルシウムサルフォアルミネートからなる群から選択される少なくとも1種を含む[1]~[3]のいずれかに記載の凹部充填材キット。
[5] 前記第1ラジカル重合開始剤(D-1)及び前記第2ラジカル重合開始剤(D-2)が、それぞれ独立して、ヒドロペルオキシドである[1]~[4]のいずれかに記載の凹部充填材キット。
[6] 前記第1ラジカル重合性樹脂組成物が、更に第1金属含有化合物(E-1)と第1チオール化合物(F-1)とを含有し、
 前記第2ラジカル重合性樹脂組成物が、更に第2金属含有化合物(E-2)と第2チオール化合物(F-2)とを含有する[1]~[5]のいずれかに記載の凹部充填材キット。
[7] 前記第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、前記膨張材(J)が0.3質量部~30質量部である[1]~[6]のいずれかに記載の凹部充填材キット。
[8] 前記第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の合計100質量部に対して、前記第1ラジカル重合開始剤(D-1)が0.1質量部~10質量部であり、
 前記第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、前記第2ラジカル重合開始剤(D-2)が0.1質量部~10質量部である[1]~[7]のいずれかに記載の凹部充填材キット。
[9] 前記第1ラジカル重合性樹脂組成物において、第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の合計100質量部に対して、前記酸性化合物(C)が1~20質量部である[1]~[8]のいずれかに記載の凹部充填材キット。
[10] 前記酸性化合物(C)が不飽和一塩基酸である[1]~[9]のいずれかに記載の凹部充填材キット。
[11] 前記第1ラジカル重合開始剤(D-1)が紫外光から可視光領域まで感光性を有する光ラジカル重合開始剤である[1]~[10]のいずれかに記載の凹部充填材キット。
[12] [1]~[11]のいずれかに記載の凹部充填材キットの硬化物であって、凹部の表面に、前記第1ラジカル重合性樹脂組成物の硬化物である第1硬化物が形成され、前記第1硬化物の表面に前記第2ラジカル重合性樹脂組成物の第2硬化物が形成されていることを特徴とする凹部充填材キットの硬化物。
[13] [1]~[11]のいずれかに記載の凹部充填材キットを用いて、凹部を充填する凹部充填法であって、
 凹部の表面に前記第1ラジカル重合性樹脂組成物を塗布し、下地層を形成する下地層形成工程と、
 前記凹部の表面に形成された前記下地層の表面に、前記第2ラジカル重合性樹脂組成物を充填する充填工程と含むことを特徴とする凹部充填法。
[14] 前記凹部がボルトボックスである[13]に記載の凹部充填法。
 本発明によれば、コンクリート下地や鋼鉄製の治具(ボルト)や鉄筋構造物などとの初期接着、有機系の樹脂材料の硬化時の収縮に由来した脱落、および管路運用時のボックス内部を流れる流体による腐食、摩耗や、車や鉄道などの振動、風圧等から躯体そのものを守ることができ、管路そのものの長期間の運用が可能となる。
 本発明によれば、第1ラジカル重合性樹脂組成物としては、酸性化合物の添加をもって、コンクリート下地はもちろん、鋼鉄製の治具や鉄筋構造物などとの初期接着を達成することができる。また、本発明の一実施形態によれば、第1ラジカル重合性樹脂組成物としては、金属石鹸と特定構造を持つチオールの錯体効果と、酸性化合物の添加をもって、コンクリート下地はもちろん、鋼鉄製の治具や鉄筋構造物などとの初期接着を達成することができる。第2ラジカル重合性樹脂組成物としては、硬化時の液状成分の自由体積の減少により硬化収縮を引き起こすラジカル重合性の樹脂組成物に対して、膨張材を適量加えることによって、成形方法、使用温度、用途等に限定されることなく、樹脂組成物の硬化時に全体が一定の比率で膨張し、その後、安定することで、収縮率の小さいラジカル重合性樹脂組成物を有する凹部充填材キット、及びその硬化物を提供することができる。
 また、これらを組み合わせた凹部充填法を提供することができる。
供試体の作製方法を示す図である。(a)打設前、(b)打設中、(c)養生中。
 以下に本発明を詳細に説明する。
 [凹部充填材キット]
 本実施形態の凹部充填材キットは、基本的に第1ラジカル重合性樹脂組成物と第2ラジカル重合性樹脂組成物とからなる。ただし、他の部材、組成物などが含まれてもよい。前記第1ラジカル重合性樹脂組成物は、第1ラジカル重合性化合物(A-1)と、第1ラジカル重合性不飽和単量体(B-1)と、酸性化合物(C)と、第1ラジカル重合開始剤(D-1)とを含有する。前記第2ラジカル重合性樹脂組成物は、第2ラジカル重合性化合物(A-2)と、第2ラジカル重合性不飽和単量体(B-2)と、第2ラジカル重合開始剤(D-2)と、膨張材(J)と、骨材(K)とを含有する。前記第2ラジカル重合性樹脂組成物が遊離水を含まないことは好ましい。充填されるべき凹部において、前記第1ラジカル重合性樹脂組成物と第2前記第2ラジカル重合性樹脂組成物とはそれぞれ独立に配置されている。
 本実施形態の凹部充填材キットが、前記第1ラジカル重合性樹脂組成物と第2前記第2ラジカル重合性樹脂組成物とを有することの意味は、凹部の充填(修復)箇所に対して、両ラジカル重合性組成物がそれぞれ独立に配置されていることである。両ラジカル重合性組成物を混合して、1つの凹部充填材混合物として使用する意味ではない。また、「それぞれ独立に配置されている」意味は、使用する前に、お互いに混合することがない意味である。例えば、それぞれの入れ物に保存する形態、又は、混合されない構造を有する1つの入れ物に保存する形態などが挙げられる。
(第1ラジカル重合性樹脂組成物)
 本実施形態の第1ラジカル重合性樹脂組成物は、第1ラジカル重合性化合物(A-1)と、第1ラジカル重合性不飽和単量体(B-1)と、酸性化合物(C)と、第1ラジカル重合開始剤(D-1)とを含有する。本実施形態の第1ラジカル重合性樹脂組成物は、必要に応じて第1金属含有化合物(E-1)、第1チオール化合物(F-1)、第1重合禁止剤(H-1)、第1硬化遅延剤(I-1)等を含有しても良い。
<第1ラジカル重合性化合物(A-1)>
 本実施形態の第1ラジカル重合性化合物(A-1)は、後述の第1ラジカル重合性不飽和単量体(B-1)及び酸性化合物(C)を含まず、分子内にエチレン性不飽和基を1または複数個有し、ラジカルによって重合反応が進行する樹脂あるいは多量体化合物を指す。
 本実施形態の第1ラジカル重合性化合物(A-1)は、後述の本実施形態の第2ラジカル重合性化合物(A-2)に記載されているラジカル重合性化合物又はそれらの好ましい例を用いることができる。第1ラジカル重合性化合物(A-1)は、第2ラジカル重合性化合物(A-2)と同じ種類のラジカル重合性化合物を用いることが好ましく、第1ラジカル重合性化合物(A-1)は、第2ラジカル重合性化合物(A-2)と同じラジカル重合性化合物を用いることがより好ましい。
 第1ラジカル重合性化合物(A-1)は、第2ラジカル重合性化合物(A-2)と異なるラジカル重合性化合物を用いてもよい。
 例えば、第1ラジカル重合性化合物(A-1)としては、ビニルエステル樹脂(エポキシ(メタ)アクリレート樹脂)、不飽和ポリエステル樹脂、ウレタン(メタ)アクリレート樹脂から選択される一種以上を用いることが好ましく、ビニルエステル樹脂を用いることがより好ましい。
<第1ラジカル重合性不飽和単量体(B-1)>
 本実施形態の第1ラジカル重合性不飽和単量体(B-1)は、後述の酸性化合物(C)を含まず、ラジカル重合性不飽和基を有する単量体であれば、特に制限はない。好ましくは、ビニル基、アリル基又は(メタ)アクリロイル基を有する単量体である。
 本実施形態の第1ラジカル重合性不飽和単量体(B-1)は、後述の本実施形態の第2ラジカル重合性不飽和単量体(B-2)に記載されているラジカル重合性不飽和単量体又はそれらの好ましい例を用いることができる。第1ラジカル重合性不飽和単量体(B-1)は、第2ラジカル重合性不飽和単量体(B-2)と同じ種類のラジカル重合性不飽和単量体を用いることが好ましく、第1ラジカル重合性不飽和単量体(B-1)は、第2ラジカル重合性不飽和単量体(B-2)と同じラジカル重合性不飽和単量体を用いることがより好ましい。
 第1ラジカル重合性不飽和単量体(B-1)は、第2ラジカル重合性不飽和単量体(B-2)と異なるラジカル重合性不飽和単量体を用いてもよい。
 例えば、第1ラジカル重合性不飽和単量体(B-1)としては、汎用性の観点からスチレンを用いることが好ましく、臭気低減や環境への負担軽減の観点からは、(メタ)アクリロイル基を有する単量体が好ましく、環式炭化水素基含有(メタ)アクリレートがより好ましく、ジシクロペンタニル(メタ)アクリレートがさらに好ましく、ジシクロペンタニルメタクリレートがさらにより好ましい。第1ラジカル重合性不飽和単量体(B-1)を使用することにより、第1ラジカル重合性樹脂組成物の粘度を下げ、作業性を向上することができる。また、硬化物の硬度、強度、耐薬品性、耐水性等を向上させることができる。そのような観点から、第1ラジカル重合性不飽和単量体(B-1)の含有量は、第1ラジカル重合性化合物(A-1)100質量部に対して、10~250質量部であることが好ましく、50~200質量部であることがより好ましく、80~150質量部であることがさらに好ましい。第1ラジカル重合性不飽和単量体(B-1)の含有量が10質量部以上であると、第1ラジカル重合性樹脂組成物が十分に低粘度化し、凹部充填箇所への含侵性も向上する。第1ラジカル重合性不飽和単量体(B-1)の含有量が250質量部以下であると、十分な塗膜強度が得られ、耐薬品性や耐水性等が向上する。
<酸性化合物(C)>
 本実施形態において使用される酸性化合物(C)としては、酸性を示す化合物であれば特に限定されない。酸性化合物(C)としては、カルボキシ基を有する有機酸が好ましく、更にはエチレン性不飽和結合とカルボキシ基を有する化合物が更に好ましく、第1ラジカル重合性樹脂組成物の硬化性の観点から不飽和一塩基酸が特に好ましい。具体的には、(メタ)アクリル酸、クロトン酸、桂皮酸、ソルビン酸等の不飽和一塩基酸、酢酸、プロピオン酸等の飽和一塩基酸、ジシクロペンタジエンと多価カルボン酸化合物(例えば、無水コハク酸、無水マレイン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等)との反応物が挙げられる。第1ラジカル重合性樹脂組成物の硬化性の観点からは、不飽和一塩基酸が好ましく、(メタ)アクリル酸がより好ましい。
 酸性化合物(C)の使用量は、第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の合計100質量部に対して、好ましくは0.5~25質量部、より好ましくは1~20質量部、さらに好ましくは5~15質量部である。酸性化合物(C)の使用量が0.5質量部以上であると、被着体に対して十分な接着力が得られる。25質量部以下であると、十分な効果強度が得られ、被着体への接着に悪影響を及ぼさない。
<第1ラジカル重合開始剤(D-1)>
 本実施形態の第1ラジカル重合開始剤(D-1)は、後述の本実施形態の第2ラジカル重合開始剤(D-2)に記載されているラジカル重合開始剤又はそれらの好ましい例を用いることができる。第1ラジカル重合開始剤(D-1)は、第2ラジカル重合開始剤(D-2)と同じ種類のラジカル重合開始剤を用いることが好ましく、第1ラジカル重合開始剤(D-1)は、第2ラジカル重合開始剤(D-2)と同じラジカル重合開始剤を用いることがより好ましい。
 第1ラジカル重合開始剤(D-1)は、第2ラジカル重合開始剤(D-2)と異なるラジカル重合開始剤を用いてもよい。
 第1ラジカル重合開始剤(D-1)の含有量は、前記第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の合計100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~5質量部、さらに好ましくは1~3質量部である。第1ラジカル重合開始剤(D-1)の含有量が0.1質量部以上であると、硬化物表面のタックが無く十分な硬化性が期待できる。第1ラジカル重合開始剤(D-1)の含有量が10質量部以下であると、硬化物の物性に悪影響を及ぼすこともない。
<第1金属含有化合物(E-1)>
 本実施形態の第1ラジカル重合性樹脂組成物は、必要に応じて硬化促進剤として第1金属含有化合物(E-1)を含有してもよい。第1金属含有化合物(E-1)は、後述の本実施形態の第2金属含有化合物(E-2)に記載されている金属含有化合物又はそれらの好ましい例を用いることができる。第1金属含有化合物(E-1)は、第2金属含有化合物(E-2)と同じ種類の金属含有化合物を用いることが好ましく、第1金属含有化合物(E-1)は、第2金属含有化合物(E-2)と同じラジカル重合開始剤を用いることがより好ましい。
 第1金属含有化合物(E-1)は、第2金属含有化合物(E-2)と異なる金属含有化合物を用いてもよい。
 第1金属含有化合物(E-1)の含有量は、前記第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の合計100質量部に対して、好ましくは0.0001~5質量部、より好ましくは0.001~3質量部、さらに好ましくは0.005~1質量部である。第1金属含有化合物(E-1)の含有量が0.0001質量部以上であると、速やかに硬化が進行する。第1金属含有化合物(E-1)の含有量が5質量部以下であると、硬化物の物性に悪影響を及ぼすこともない。
<第1チオール化合物(F-1)>
 本実施形態の第1ラジカル重合性樹脂組成物は、必要に応じて硬化促進剤として第1チオール化合物(F-1)を含有してもよい。また、前記第1金属含有化合物(E-1)と併用して用いることにより、第1チオール化合物(F-1)が前記第1金属含有化合物(E-1)の金属の近傍に配位し、水による金属の失活を防ぐ機能も期待できる。第1チオール化合物(F-1)は、後述の本実施形態の第2チオール化合物(F-2)に記載されているチオール化合物又はそれらの好ましい例を用いることができる。第1チオール化合物(F-1)は、第2チオール化合物(F-2)と同じ種類のチオール化合物を用いることが好ましく、第1チオール化合物(F-1)は、第2チオール化合物(F-2)と同じチオール化合物を用いることがより好ましい。
 第1チオール化合物(F-1)は、第2チオール化合物(F-2)と異なるチオール化合物を用いてもよい。
 第1チオール化合物(F-1)の含有量は、前記第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の合計100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.1~7質量部、さらに好ましくは0.1~5質量部である第1チオール化合物(F-1)の含有量が0.01質量部以上であると、速やかに硬化が進行する。第1チオール化合物(F-1)の含有量が10質量部以下であると、硬化物の物性に悪影響を及ぼすこともない。
<第1硬化促進剤(G-1)>
 本実施形態の第1ラジカル重合性樹脂組成物は、硬化性を向上させることを目的として、第1金属含有化合物(E-1)及び第1チオール化合物(F-1)以外の第1硬化促進剤(G-1)を含んでもよい。本実施形態の第1硬化促進剤(G-1)は、後述の本実施形態の第2硬化促進剤(G-2)に記載されている硬化促進剤又はそれらの好ましい例を用いることができる。第1硬化促進剤(G-1)は、第2硬化促進剤(G-2)と同じ種類の硬化促進剤を用いることが好ましく、第1硬化促進剤(G-1)は、第2硬化促進剤(G-2)と同じ硬化促進剤を用いることがより好ましい。
 第1硬化促進剤(G-1)は、第2硬化促進剤(G-2)と異なる硬化促進剤を用いてもよい。
 本実施形態の第1ラジカル重合性樹脂組成物が第1硬化促進剤(G-1)を含有する場合、その量は、第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の合計100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.05~5質量部、さらに好ましくは0.1~3質量部である。
<第1重合禁止剤(H-1)>
 本実施形態の第1ラジカル重合性樹脂組成物は、第1ラジカル重合性化合物(A-1)の過度の重合を抑える観点、反応速度をコントロールする観点から、重合禁止剤を含んでも良い。本実施形態の第1重合禁止剤(H-1)は、後述の本実施形態の第2重合禁止剤(H-2)に記載されている重合禁止剤又はそれらの好ましい例を用いることができる。第1重合禁止剤(H-1)は、第2重合禁止剤(H-2)と同じ種類の重合禁止剤を用いることが好ましく、第1重合禁止剤(H-1)は、第2重合禁止剤(H-2)と同じ重合禁止剤を用いることがより好ましい。
 第1重合禁止剤(H-1)は、第2重合禁止剤(H-2)と異なる重合禁止剤を用いてもよい。
 第1ラジカル重合性樹脂組成物が第1重合禁止剤(H-1)を含有する場合、その量は第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の合計100質量部に対して、好ましくは0.0001~10質量部、より好ましくは各々0.001~3質量部、さらに好ましくは各々0.01~1質量部である。
<第1硬化遅延剤(I-1)>
 本実施形態の第1ラジカル重合性樹脂組成物は、第1ラジカル重合性化合物(A-1)の硬化を遅らせる目的で、硬化遅延剤を含んでもよい。本実施形態の第1硬化遅延剤(I-1)は、後述の本実施形態の第2硬化遅延剤(I-2)に記載されている硬化遅延剤又はそれらの好ましい例を用いることができる。第1硬化遅延剤(I-1)は、第2硬化遅延剤(I-2)と同じ種類の硬化遅延剤を用いることが好ましく、第1硬化遅延剤(I-1)は、第2硬化遅延剤(I-2)と同じ硬化遅延剤を用いることがより好ましい。
 第1硬化遅延剤(I-1)は、第2硬化遅延剤(I-2)と異なる硬化遅延剤を用いてもよい。
 第1ラジカル重合性樹脂組成物が第1硬化遅延剤(I-1)を含有する場合、その量は第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の合計100質量部に対して、好ましくは0.0001~10質量部、より好ましくは各々0.001~5質量部、さらに好ましくは各々0.05~3質量部である。
<その他の成分>
 本実施形態の第1ラジカル重合性樹脂組成物は、硬化体の強度発現性や耐酸性状に特段の支障を及ぼさない限り、前記成分以外の成分を含有してもよい。含有可能な成分としては、例えば、硫酸カルシウムやポゾラン物質等の水硬性無機物質の他、例えば凝結調整、硬化促進、硬化遅延、増粘、保水、消泡、撥水、防水等の性状を付与できる混和剤、金属や高分子や炭素等の材質からなる繊維、顔料、増量材、発泡材、ゼオライト等の粘土鉱物等の混和材を挙げることができる。また、含有可能な成分としては、カップリング剤、可塑剤、陰イオン固定化成分、溶剤、ポリイソシアナト化合物、界面活性剤、湿潤分散剤、ワックス、揺変剤等が挙げられる。
 本実施形態の第1ラジカル重合性樹脂組成物に用いることができる上記その他成分は、後述の本実施形態の第2ラジカル重合性樹脂組成物に用いることができるその他成分として記載されているものやそれらの好ましい例を用いることができる。第1ラジカル重合性樹脂組成物及び第2ラジカル重合性樹脂組成物の双方で同様のその他成分を用いる場合には、同じ種類の化合物を用いることが好ましく、同じ化合物を用いることがより好ましい。
 第1ラジカル重合性樹脂組成物及び第2ラジカル重合性樹脂組成物の双方で同様のその他成分を用いる場合に異なる化合物を用いても良い。
 本実施形態の第1ラジカル重合性樹脂組成物に用いることができる。上記その他成分としては、第2ラジカル重合性樹脂組成物の項目に例示する化合物の他に、以下に例示するものも使用できる。また、添加目的が第2ラジカル重合性樹脂組成物と異なる成分についても以下に補足する。
〔カップリング剤〕
 カップリング剤としては、後述の第2ラジカル重合性樹脂組成物に含まれてもよいカップリング剤を用いることができる。カップリング剤の含有量としては、前記第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の合計100質量部に対して、好ましくは0.1~20質量部である。
〔陰イオン固定化成分〕
 陰イオン固定化成分としては、後述の第2ラジカル重合性樹脂組成物に含まれてもよい陰イオン固定化成分を用いることができる。特に凹部充填箇所に鉄筋等が露出している場合、これらの金属腐蝕、特に塩分による金属腐食の影響を低減することができる。
〔第1揺変剤〕
 本実施形態の第1ラジカル重合性樹脂組成物は、更に第1揺変剤を含んでも良い。本実施形態で用いられる第1揺変剤としては、公知のものが使用できる。また、本実施形態で用いられる第1揺変剤は、後述の第2ラジカル重合性樹脂組成物に含まれてもよい第2揺変剤を用いることができる。本実施形態で用いられる第1揺変剤としては例えば無機系ではシリカパウダー(アエロジルタイプ)、マイカパウダー、炭酸カルシウムパウダー、短繊維アスベストなどがあり、有機系では水素化ひまし油などがある。好ましくはシリカパウダー系揺変剤である。また、揺変助剤等を併用して使用しても良い。本実施形態で用いられる第1揺変剤の使用量は、前記第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の合計100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~15質量部である。第1揺変剤の使用量が0.1以上であれば十分な揺変性が得られ、20質量部以下であれば、第1ラジカル重合性樹脂組成物として十分な硬化性が得られ、被着体への接着力が向上する。
<第1ラジカル重合性樹脂組成物の製造方法>
 本実施形態の第1ラジカル重合性樹脂組成物の製造方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、第1ラジカル重合性樹脂組成物は、第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)に、必要に応じて第1金属含有化合物(E-1)を混合し、そして酸性化合物(C)を混合し、さらに第1ラジカル重合開始剤(D-1)を配合して混合することによって製造することができる。
 本実施形態の第1ラジカル重合性樹脂組成物の製造方法の一実施態様は、第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)に、必要に応じて第1金属含有化合物(E-1)を混合し、混合物(1-i)を得る工程(1-S1)と、前記混合物(1-i)に酸性化合物(C)を混合し、混合物(1-ii)を得る工程(1-S2)と、前記混合物(1-ii)に第1ラジカル重合開始剤(D-1)を混合する第1ラジカル重合性樹脂組成物(硬化性プライマー)を得る工程(1-S3)とを有する。
 前記混合物(i)を得る工程(1-S1)(単に「工程(1-S1)」とも言うことがある)において、第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)に、第1金属含有化合物(E-1)を混合する以外に、必要に応じて、さらに、第1チオール化合物(F-1)や、第1重合禁止剤(H-1)や、第1硬化遅延剤(I-1)や、第1揺変剤や、陰イオン固定化成分などを混合してもよい。
 第1ラジカル重合性樹脂組成物を得る工程(1-S3)(単に「工程(1-S3)」とも言うことがある)の後、得られた第1ラジカル重合性樹脂組成物に、必要に応じて、さらに、繊維などを混合してもよい。
(第2ラジカル重合性樹脂組成物)
 本実施形態の第2ラジカル重合性樹脂組成物は、第2ラジカル重合性化合物(A-2)と、第2ラジカル重合性不飽和単量体(B-2)と、第2ラジカル重合開始剤(D-2)と、膨張材(J)と、骨材(K)とを含有する。第2ラジカル重合性樹脂組成物が遊離水を含まないことは好ましい。本実施形態の第2ラジカル重合性樹脂組成物は、必要に応じて第2金属含有化合物(E-2)、第2チオール化合物(F-2)、第2重合禁止剤(H-2)、第2硬化遅延剤(I-2)、繊維(L)等を含有しても良い。
<第2ラジカル重合性化合物(A-2)>
 本実施形態の第2ラジカル重合性樹脂組成物は、第2ラジカル重合性化合物(A-2)を用いる。なお、本実施形態において、第2ラジカル重合性化合物(A-2)は、後述の第2ラジカル重合性不飽和単量体(B-2)を含まず、分子内にエチレン性不飽和基を1または複数個有し、ラジカルによって重合反応が進行する樹脂あるいは多量体化合物を指す。
 第2ラジカル重合性化合物(A-2)としては、ビニルエステル樹脂(エポキシ(メタ)アクリレート樹脂)、不飽和ポリエステル樹脂、ポリエステル(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂、(メタ)アクリレート樹脂等が挙げられる。中でもビニルエステル樹脂、不飽和ポリエステル樹脂から選ばれる1種以上が好ましく、ビニルエステル樹脂がより好ましい。なお、本明細書において、「(メタ)アクリレート」とは、「アクリレート又はメタクリレート」を意味する。
〔ビニルエステル樹脂〕
 ビニルエステル樹脂としては、エポキシ樹脂に対して不飽和一塩基酸を反応させて得られたものを用いることができる。
 前記エポキシ樹脂としては、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、アラルキルジフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂肪族型エポキシ樹脂等が挙げられる。これらは単独で用いても、複数種を組み合わせても良い。合成後のビニルエステル樹脂の粘度を低減させる観点からは、脂肪族型エポキシ樹脂のみを用いるか、ビスフェノール型エポキシ樹脂と脂肪族型エポキシ樹脂を組み合わせて用いることが好ましい。
 ビスフェノール型エポキシ樹脂としては、例えば、ビスフェノール類とエピクロルヒドリン及び/又はメチルエピクロルヒドリンとを反応させて得られるもの、ビスフェノールAのグリシジルエーテルと前記ビスフェノール類の縮合物とエピクロルヒドリン及び/又はメチルエピクロルヒドリンとを反応させて得られるもの等が挙げられる。ビスフェノール類としては、ビスフェノールA、ビスフェノールF、ビスフェノールS及びテトラブロモビスフェノールA等が挙げられる。
 ビフェニル型エポキシ樹脂としては、例えば、ビフェノールとエピクロルヒドリン及び/又はメチルエピクロルヒドリンとを反応させて得られるもの等が挙げられる。
 ノボラック型エポキシ樹脂としては、例えば、フェノールノボラック又はクレゾールノボラックとエピクロルヒドリン及び/又はメチルエピクロルヒドリンとを反応させて得られるもの等が挙げられる。
 トリスフェノールメタン型エポキシ樹脂としては、例えば、トリスフェノールメタン、トリスクレゾールメタンとエピクロルヒドリン及び/又はメチルエピクロルヒドリンとを反応させて得られるもの等が挙げられる。
 アラルキルジフェノール型エポキシ樹脂としては、例えば、アラルキルフェノールとエピクロルヒドリン及び/又はメチルエピクロルヒドリンとを反応させて得られるもの等が挙げられる。
 ナフタレン型エポキシ樹脂としては、例えば、ジヒドロキシナフタレンとエピクロルヒドリン及び/又はメチルエピクロルヒドリンとを反応させて得られるもの等が挙げられる。
 脂肪族型エポキシ樹脂としては、脂環式型エポキシ樹脂、脂環式ジオールジグリシジルエーテル型エポキシ樹脂、脂肪族ジオールジグリシジルエーテル型エポキシ樹脂、ポリ(オキシアルキレン)グリコールジグリシジルエーテル型エポキシ樹脂等が挙げられる。
 脂環式型エポキシ樹脂としては、例えば、アリサイクリックジエポキシアセタール、アリサイクリックジエポキシアジペート、アリサイクリックジエポキシカルボキシレート等が挙げられる。
 脂環式ジオールジグリシジルエーテルの具体例としては、例えば、シクロヘキサンジメタノールジグリシジルエーテル、ジシクロペンテニルジアルコールジグリシジルエーテル、水素化ビスフェノールAのジグリシジルエーテル、ジヒドロキシテルペンジグリシジルエーテルなどの炭素数3~20(好ましくは炭素数6~12、より好ましくは炭素数7~10)の脂環式ジオールのジグリシジルエーテルが挙げられる。これらのうち、シクロヘキサンジメタノールジグリシジルエーテルの市販品としては、ナガセケムテックス株式会社の「デナコールEX-216L」がある。
 脂肪族ジオールジグリシジルエーテルの具体例としては、例えば、1,6-ヘキサンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテルなどの炭素数2~20(好ましくは炭素数4~12、より好ましくは炭素数4~8、特に好ましくは炭素数4~6)の脂肪族ジオールのジグリシジルエーテルが挙げられる。これらのうち、1,6-ヘキサンジオールジグリシジルエーテルの市販品としては、ナガセケムテックス株式会社の「デナコールEX-212L」、阪本薬品工業株式会社の「SR-16H」や「SR-16HL」、四日市合成株式会社の「エポゴーセー(登録商標)HD」などがある。また、1,4-ブタンジオールジグリシジルエーテルの市販品としては、ナガセケムテックス株式会社の「デナコールEX-214L」がある。
 ポリ(オキシアルキレン)グリコールジグリシジルエーテルの具体例としては、例えば、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリ(テトラメチレン)グリコールジグリシジルエーテルなどが挙げられる。
 脂肪族型エポキシ樹脂の好ましい例としては、1,6-ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、ポリ(テトラメチレン)グリコールジグリシジルエーテル等が挙げられる。その中でも、数平均分子量が150~1000であるものがより好ましい。
 前記エポキシ樹脂は、ダイマー酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル等のジグリシジルエステルであってもよい。また、前記エポキシ樹脂としては、前記エポキシ樹脂とジイソシアネートとを反応して得られるオキサゾリドン環を有するエポキシ樹脂が挙げられる。オキサゾリドン環を有するエポキシ樹脂の具体例としては、旭化成エポキシ製アラルダイト(登録商標)AER4152等が挙げられる。
 前記不飽和一塩基酸は公知のものが使用でき、例えば(メタ)アクリル酸、クロトン酸、桂皮酸等を挙げることができる。また、1個のヒドロキシ基と1個以上の(メタ)アクリロイル基を有する化合物と多塩基酸無水物との反応物を使用してもよい。なお、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸及びメタクリル酸」の一方又は両方を意味し、また、「(メタ)アクリロイル基」とは、「アクリロイル基及びメタクリロイル基」の一方又は両方を意味する。
 前記多塩基酸は、前記エポキシ樹脂の分子量を増大させるために使用するものであり公知のものを使用できる。例えば、コハク酸、グルタル酸、アジピン酸、セバシン酸、フタル酸、フマル酸、マレイン酸、イタコン酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、ダイマー酸、エチレングリコール・2モル無水マレイン酸付加物、ポリエチレングリコール・2モル無水マレイン酸付加物、プロピレングリコール・2モル無水マレイン酸付加物、ポリプロピレングリコール・2モル無水マレイン酸付加物、ドデカン二酸、トリデカン二酸、オクタデカン二酸、1,16-(6-エチルヘキサデカン)ジカルボン酸、1,12-(6-エチルドデカン)ジカルボン酸、カルボキシル基末端ブタジエン・アクリロニトリル共重合体(商品名Hycar CTBN)等を挙げることができる。
〔不飽和ポリエステル樹脂〕
 不飽和ポリエステル樹脂としては、不飽和二塩基酸、及び必要に応じて飽和二塩基酸を含む二塩基酸成分と、多価アルコール成分とをエステル化反応させて得られたものを用いることができる。
 前記不飽和二塩基酸としては、例えば、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸等を挙げることができ、これらは単独でも、2種以上を組み合わせて用いてもよい。
 前記飽和二塩基酸としては、例えば、アジピン酸、ズベリン酸、アゼライン酸、セバシン酸、イソセバシン酸等の脂肪族二塩基酸、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、テトラクロロフタル酸、テトラクロロ無水フタル酸、ダイマー酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸無水物、4,4’-ビフェニルジカルボン酸、及びこれらのジアルキルエステル等の芳香族二塩基酸、ハロゲン化飽和二塩基酸等を挙げることができ、これらは単独でも、2種以上を組み合わせて用いてもよい。
 前記多価アルコールに特に制限はないが、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、2-メチル-1,3-プロパンジオール、2-メチル-1,4-ブタンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、ジエチレングリコ-ル、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,2-シクロヘキサングリコール、1,3-シクロヘキサングリコール、1,4-シクロヘキサングリコール、1,4-シクロヘキサンジメタノール、パラキシレングリコール、ビシクロヘキシル-4,4’-ジオール、2,6-デカリングリコール、2,7-デカリングリコール等の二価アルコール;
 水素化ビスフェノールA、シクロヘキサンジメタノール、ビスフェノールA、ビスフェノールF、ビスフェノールS、テトラブロモビスフェノールA等に代表される2価フェノールとプロピレンオキシド又はエチレンオキシドに代表されるアルキレンオキサイドとの付加物等の二価アルコール;
 1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の三価以上のアルコール等を挙げることができる。
 不飽和ポリエステルは、本実施形態の効果を損なわない範囲で、ジシクロペンタジエン系化合物により変性したものを用いてもよい。ジシクロペンタジエン系化合物による変性方法については、例えば、ジシクロペンタジエンとマレイン酸付加生成物(シデカノールモノマレート)を得た後、これを一塩基酸として用いてジシクロペンタジエン骨格を導入する方法等の公知の方法が挙げられる。
 本実施形態で使用するビニルエステル樹脂又は不飽和ポリエステル樹脂には、アリル基またはベンジル基などの酸化重合(空気硬化)基を導入することができる。導入方法に特に制限はないが、例えば、酸化重合基含有ポリマーの添加や、水酸基とアリルエーテル基とを有する化合物の縮合、アリルグリシジルエーテル、2,6-ジグリシジルフェニルアリルエーテルに水酸基とアリルエーテル基を有する化合物と酸無水物との反応物を付加させる方法等が挙げられる。
 なお、本実施形態での酸化重合(空気硬化)とは、例えばアリルエーテル基などに見られる、エーテル結合と二重結合との間にあるメチレン結合の酸化によるパーオキシドの生成と分解に伴う架橋を指す。
〔ポリエステル(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂、及び(メタ)アクリレート樹脂〕
 本実施形態におけるポリエステル(メタ)アクリレート樹脂としては、例えば、多価カルボン酸と多価アルコールとを反応させて得られるポリエステル、具体的には、ポリエチレンテレフタレート等の両末端の水酸基に対して、(メタ)アクリル酸を反応させて得られた樹脂を用いることができる。
 また、ウレタン(メタ)アクリレート樹脂としては、例えば、イソシアネートと多価アルコールとを反応させて得られるポリウレタンの両末端の水酸基又はイソシアナト基に対して、(メタ)アクリル酸を反応させて得られた樹脂を用いることができる。
 (メタ)アクリレート樹脂としては、例えば、水酸基、イソシアナト基、カルボキシ基及びエポキシ基から選ばれる1種以上の置換基を有するポリ(メタ)アクリル樹脂や、前記置換基を有する単量体と(メタ)アクリレートとの重合体の置換基に対して、水酸基を有する(メタ)アクリル酸エステル類を反応させて得られた樹脂を用いることができる。
 第2ラジカル重合性化合物(A-2)は、樹脂等を合成したときに使用した触媒や重合禁止剤が残留していてもよい。触媒としては、例えば、トリエチルアミン、ピリジン誘導体、イミダゾール誘導体等の3級窒素を含有する化合物;テトラメチルアンモニウムクロライド、トリエチルアミン等のアミン塩;トリメチルホスフィン、トリフェニルホスフィン等のリン化合物等が挙げられる。
 重合禁止剤としては、例えば、ハイドロキノン、メチルハイドロキノン、フェノチアジン等が挙げられる。
 第2ラジカル重合性化合物(A-2)に触媒又は重合禁止剤が残留する場合、その量は、それぞれ、好ましくは0.001~2質量%である。
〔第2ラジカル重合性不飽和単量体(B-2)〕
 前記第2ラジカル重合性不飽和単量体(B-2)は、ラジカル重合性不飽和基を有する単量体であれば、特に制限はないが、ビニル基、アリル基又は(メタ)アクリロイル基を有するものが好ましい。また、不飽和一塩基酸であってもよい。
 ビニル基を有する単量体の具体例としては、スチレン、p-クロロスチレン、ビニルトルエン、α-メチルスチレン、ジクロルスチレン、ジビニルベンゼン、tert-ブチルスチレン、酢酸ビニル、ジアリルフタレート、トリアリルイソシアヌレート等が挙げられる。
 (メタ)アクリロイル基を有する単量体の具体例としては、(メタ)アクリル酸エステル等が挙げられる。具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸iso-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸トリデシル、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、フェノキシエチルメタクリレート、2-ヒドロキシエチルメタクリレート、エチレングリコールモノメチルエーテル(メタ)アクリレート、エチレングリコールモノエチルエーテル(メタ)アクリレート、エチレングリコールモノブチルエーテル(メタ)アクリレート、エチレングリコールモノヘキシルエーテル(メタ)アクリレート、エチレングリコールモノ2-エチルヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノブチルエーテル(メタ)アクリレート、ジエチレングリコールモノヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノ2-エチルヘキシルエーテル(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、PTMGのジメタアクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジメタクリロキシプロパン、2,2-ビス〔4-(メタクリロイルエトキシ)フェニル〕プロパン、2,2-ビス〔4-(メタクリロキシ・ジエトキシ)フェニル〕プロパン、2,2-ビス〔4-(メタクリロキシ・ポリエトキシ)フェニル〕プロパン、テトラエチレングリコールジ(メタ)アクリレート、ビスフェノールAEO変性(n=2)ジ(メタ)アクリレート、イソシアヌル酸EO変性(n=3)ジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレートモノステアレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌル(メタ)アクリレート等を挙げることができる。
 更に、多官能の(メタ)アクリル酸エステルとしては、例えば、エチレングリコールジ(メタ)アクリレート、1,2-プロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等のアルカンジオールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリエチレングリコール(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート等のポリオキシアルキレングリコールジ(メタ)アクリレート;トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。
 更に、第2ラジカル重合性不飽和単量体(B-2)として、以下のような化合物を使用することもできる。具体的には、ジビニルベンゼン、ジアリルフタレート、トリアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、アリル(メタ)アクリレート、ジアリルフマレート、アリルメタクリレート、ビニルベンジルブチルエーテル、ビニルベンジルヘキシルエーテル、ビニルベンジルオクチルエーテル、ビニルベンジル(2-エチルヘキシル)エーテル、ビニルベンジル(β-メトキシメチル)エーテル、ビニルベンジル(n-ブトキシプロピル)エーテル、ビニルベンジルシクロヘキシルエーテル、ビニルベンジル(β-フェノキシエチル)エーテル、ビニルベンジルジシクロペンテニルエーテル、ビニルベンジルジシクロペンテニルオキシエチルエーテル、ビニルベンジルジシクロペンテニルメチルエーテル、ジビニルベンジルエーテル、(メタ)アクリル酸、を挙げることができる。
 これらは、単独でも、2種以上を組み合わせて用いてもよい。
 中でも、汎用性の観点からスチレンを用いることが好ましく、臭気低減や環境への負担軽減の観点からは、(メタ)アクリロイル基を有する単量体が好ましく、環式炭化水素基含有(メタ)アクリレートがより好ましく、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレートがさらに好ましい。
 第2ラジカル重合性不飽和単量体(B-2)は、本実施形態の第2ラジカル重合性樹脂組成物の粘度を下げ、硬度、強度、耐薬品性、及び耐水性等を向上させるために用いることができる。硬化物の劣化や環境汚染を防止する観点から、第2ラジカル重合性不飽和単量体(B-2)の含有量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の総量に対し、90質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることがさらに好ましい。
 本実施形態の第2ラジカル重合性樹脂組成物中の第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計の含有量は、好ましくは5~99.9質量%であり、より好ましくは10~80質量%、更に好ましくは15~60質量%、より更に好ましくは18~40質量%である。第2ラジカル重合性樹脂組成物中の第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計の含有量が前記範囲内であると、硬化物の硬度がより一層向上する。
<第2ラジカル重合開始剤(D-2)>
 本実施形態の第2ラジカル重合性樹脂組成物は、硬化剤として第2ラジカル重合開始剤(D-2)を含有する。第2ラジカル重合開始剤(D-2)としては、熱ラジカル重合開始剤(D-21)および光ラジカル重合開始剤(D-22)が挙げられる。中でも、熱ラジカル重合開始剤(D-21)が好ましい。
 熱ラジカル重合開始剤(D-21)としては、例えば、ベンゾイルパーオキサイド等のジアシルパーオキサイド系、tert-ブチルパーオキシベンゾエート等のパーオキシエステル系、クメンヒドロペルオキシド(CHP:Cumene Hydroperoxide)、ジイソプロピルベンゼンヒドロペルオキシド、tert-ブチルヒドロペルオキシド、パラメンタンヒドロペルオキシド等のヒドロペルオキシド系(RCOOH、Hydroperoxide)、ジクミルパーオキサイド等ジアルキルパーオキサイド系、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド等のケトンパーオキサイド系、パーオキシケタール系、アルキルパーエステル系、パーカーボネート系等の有機過酸化物が挙げられる。中でも、ヒドロペルオキシド系ラジカル重合開始剤(RCOOH)(単に、ヒドロペルオキシドともいう)が好ましく、日油株式会社製パークミル(登録商標)H-80等のクメンヒドロペルオキシド(CHP)、日油株式会社製パークミル(登録商標)P等のジイソプロピルベンゼンヒドロペルオキシドがより好ましい。
 光ラジカル重合開始剤(D-22)としては、ベンゾインアルキルエーテル等のベンゾインエーテル系、ベンゾフェノン、ベンジル、メチルオルソベンゾイルベンゾエート等のベンゾフェノン系、ベンジルジメチルケタール、2,2-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、4-イソプロピル-2-ヒドロキシ-2-メチルプロピオフェノン、1,1-ジクロロアセトフェノン等のアセトフェノン系、2-クロロチオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン等のチオキサントン系等が挙げられる。
 紫外光から可視光領域まで感光性を有する光ラジカル重合開始剤(D-22)としては、アセトフェノン系、ベンジルケタール系、(ビス)アシルホスフィンオキサイド系をはじめとする公知の開始剤が挙げられ、具体的には、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(商品名:Darocur1173、チバスペシャルティーケミカルズ(株)製)とビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド(チバスペシャルティーケミカルズ(株)製)を75%/25%の割合で混合された商品名イルガキュア-1700(チバスペシャルティーケミカルズ(株)製);1-ヒドロキシシクロヘキシル フェニル ケトン(商品名:イルガキュアー184、チバスペシャルティーケミカルズ(株)製)とビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド(チバスペシャルティーケミカルズ(株)製)を75%/25%の割合で混合された商品名イルガキュアー1800(チバスペシャルティーケミカルズ(株)製)、50%/50%の割合で混合された商品名イルガキュアー1850(チバスペシャルティーケミカルズ(株)製);ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド(商品名:イルガキュアー819、チバスペシャルティーケミカルズ(株)製);2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド(商品名Lucirin TPO、BASF(株)製);2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(商品名:Darocur1173、チバスペシャルティーケミカルズ(株)製)と2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド(商品名Lucirin TPO、BASF(株)製)を50%/50%の割合で混合された商品名Darocur4265などがある。
 可視光領域に感光性を有する光ラジカル重合開始剤(D-22)としては、カンファーキノン、ベンジルトリメチルベンゾイルジフェニルホスフィノキサイド、メチルチオキサントン、ジシクロペンタジエチルチタニウム-ジ(ペンタフルオロフェニル)等が挙げられる。
 これらの第2ラジカル重合開始剤(D-2)は、単独で用いても良く、2種以上を混合して用いても良い。熱硬化及び光硬化のうち主となる方の反応を補助する目的でもう一方の反応を取り入れても良く、熱ラジカル重合開始剤(D-21)と光ラジカル重合開始剤(D-22)を必要に応じて併用してもよい。
 また、成形条件に応じて、有機過酸化物/色素系、ジフェニルヨード塩/色素系、イミダゾール/ケト化合物、ヘキサアリルビイミダゾール化合物/水素供与性化合物、メルカプトベンゾチアゾール/チオピリリウム塩、金属アレーン/シアニン色素、ヘキサアリルビイミダゾール/ラジカル発生剤等の複合形態で用いることもできる。
 本実施形態の第2ラジカル重合性樹脂組成物が第2ラジカル重合開始剤(D-2)を含有する場合、その量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.2~8質量部、更に好ましくは0.3~6質量部であり、最も好ましくは0.5~5質量部である。
<第2金属含有化合物(E-2)>
 本実施形態の第2ラジカル重合性樹脂組成物は、硬化促進剤として金属石鹸(E-21)及びβ-ジケトン骨格を有する金属錯体(E-22)から選ばれる1種以上の第2金属含有化合物(E-2)を用いることができる。なお、本実施形態における金属石鹸(E-21)は、長鎖脂肪酸又は長鎖脂肪酸以外の有機酸と、カリウム及びナトリウム以外の金属元素との塩をいう。また、本実施形態におけるβ-ジケトン骨格を有する金属錯体(E-22)は、2つのカルボニル基の間に炭素原子が1つある構造を有する化合物が金属元素に対して配位した錯体をいう。
 第2ラジカル重合性樹脂組成物中の第2金属含有化合物(E-2)の金属成分換算による含有量は、前述する第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、好ましくは0.0001~5質量部であり、より好ましくは0.001~4質量部、更に好ましくは0.005~3質量部である。第2金属含有化合物(E-2)の金属成分換算による含有量が前記範囲内であると速やかに硬化が進行する。
〔金属石鹸(E-21)〕
 金属石鹸(E-21)における長鎖脂肪酸に特に制限はないが、例えば、炭素原子数6~30の脂肪酸が好ましい。具体的には、ヘプタン酸、2-エチルヘキサン酸等のオクタン酸、ノナン酸、デカン酸、ネオデカン酸、ウンデカン酸、ドデカン酸、テトラデカン酸、ヘキサデカン酸、オクタデカン酸、エイコサン酸、ドコサン酸、テトラコサン酸、ヘキサコサン酸、オクタコサン酸、トリアコンタン酸、ナフテン酸等の鎖状又は環状の飽和脂肪酸、オレイン酸、リノール酸、リノレン酸等の不飽和脂肪酸が好ましい。
 また、ロジン酸、亜麻仁油脂肪酸、大豆油脂酸、トール油酸等も挙げられる。
 また、金属石鹸(E-21)における長鎖脂肪酸以外の有機酸に特に制限はないが、カルボキシ基、ヒドロキシ基、エノール基を有する弱酸の化合物であって有機溶剤に溶けるものが好ましい。
 カルボキシ基を有する化合物としては、例えば、ギ酸、酢酸、シュウ酸等のカルボン酸;クエン酸、胆汁酸、糖酸、12-ヒドロキシステアリン酸、ヒドロキシケイ皮酸、及び葉酸等のヒドロキシ酸;アラニン、アルギニン等のアミノ酸;安息香酸、フタル酸等の芳香族酸等が挙げられる。
 また、ヒドロキシ基、エノール基を有する化合物としては、例えば、アスコルビン酸、α酸、イミド酸、エリソルビン酸、クロコン酸、コウジ酸、スクアリン酸、スルフィン酸、タイコ酸、デヒドロ酢酸、デルタ酸、尿酸、ヒドロキサム酸、フミン酸、フルボ酸、ホスホン酸等が挙げられる。
 これらの中でも、長鎖脂肪酸が好ましく、炭素原子数6~16の鎖状若しくは環状の飽和脂肪酸、又は炭素原子数6~16の不飽和脂肪酸がより好ましく、オクタン酸、2-エチルヘキサン酸、及びナフテン酸が更に好ましく、2-エチルヘキサン酸、及びナフテン酸がより更に好ましい。
 金属石鹸(E-21)を構成する金属元素としては、リチウム、マグネシウム、カルシウム、及びバリウム等の第1~2族の金属元素(但し、カリウム、ナトリウムは除く)、チタン、ジルコニウム、バナジウム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛等の第3~12族の金属元素、アルミニウム、インジウム、錫、鉛等の第13~14族の金属元素、ネオジム、セリウム等の希土類の金属元素、ビスマス等が挙げられる。
 本実施形態においては、第2~12族の金属元素が好ましく、ジルコニウム、バリウム、バナジウム、マンガン、鉄、コバルト、銅、チタン、ビスマス、カルシウム、鉛、錫及び亜鉛がより好ましく、ジルコニウム、マンガン、鉄、コバルト、銅、チタン、ビスマス、カルシウム、鉛、錫及び亜鉛が更に好ましく、ジルコニウム、マンガン、コバルト、ビスマス、及びカルシウムがより更に好ましい。
 具体的な金属石鹸(E-21)としては、オクチル酸ジルコニウム、オクチル酸マンガン、オクチル酸コバルト、オクチル酸ビスマス、オクチル酸カルシウム、オクチル酸亜鉛、オクチル酸バナジウム、オクチル酸鉛、オクチル酸錫、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸バリウム、ナフテン酸ビスマス、ナフテン酸カルシウム、ナフテン酸鉛、及びナフテン酸錫が好ましく、中でもオクチル酸ジルコニウム、オクチル酸マンガン、オクチル酸コバルト、オクチル酸ビスマス、オクチル酸カルシウム、オクチル酸鉛、オクチル酸錫、ナフテン酸ビスマス、ナフテン酸カルシウム、ナフテン酸鉛、及びナフテン酸錫がより好ましい。その中でも、オクチル酸マンガン、オクチル酸コバルトが特に好ましい。オクチル酸コバルトの具体例としては、東栄化工株式会社製ヘキソエートコバルト(製品全量中のコバルトの含有量8質量%、分子量345.34)が挙げられる。また、オクチル酸マンガンの具体例としては、東栄化工株式会社製、ヘキソエートマンガン(製品全量中のマンガンの含有量8質量%、分子量341.35)が挙げられる。
〔β-ジケトン骨格を有する金属錯体(E-22)〕
 β-ジケトン骨格を有する金属錯体(E-22)(以下、「金属錯体(E-22)」ともいう。金属錯体(E-22)としては、例えば、アセチルアセトン、アセト酢酸エチル、ベンゾイルアセトン等と金属とが錯形成したものが挙げられ、これらの金属錯体(E-22)も前記金属石鹸(E-21)と同様の機能を発現する。
 金属錯体(E-22)を構成する金属元素としては、前記金属石鹸(E-21)と同様の金属元素が挙げられる。
 具体的な金属錯体(E-22)としては、ジルコニウムアセチルアセトネート、バナジウムアセチルアセトネート、コバルトアセチルアセトネート、チタニウムアセチルアセトネート、チタンジブトキシビス(アセチルアセトネート)、鉄アセチルアセトネート、及びアセト酢酸エチルエステルコバルトが好ましく、中でもジルコニウムアセチルアセトネート、チタニウムアセチルアセトネート、チタンジブトキシビス(アセチルアセトネート)がより好ましい。
<第2チオール化合物(F-2)>
 本実施形態の第2ラジカル重合性樹脂組成物は、2級チオール化合物(F-21)及び3級チオール化合物(F-22)から選ばれる1種以上の第2チオール化合物(F-2)を含有してもよい。本実施形態において第2チオール化合物(F-2)は、硬化促進剤としての機能を有すると共に、第2金属含有化合物(E-2)の金属の近傍に配位し、水による金属の失活を防ぐ機能も有していると推測される。
 本実施形態に用いる第2チオール化合物(F-2)は、分子中に2級又は3級炭素原子に結合するメルカプト基(以下、それぞれを「2級メルカプト基」、「3級メルカプト基」と称することもある)を1個以上有する化合物であれば特に制限はないが、分子中に2級又は3級メルカプト基を2個以上有する化合物である多官能チオールが好ましく、中でも、分子中に2級又は3級メルカプト基を2個有する化合物である2官能チオールが好ましい。また、2級チオール化合物(F-21)の方が、3級チオール化合物(F-22)よりも好ましい。
 なお、ここでいう「多官能チオール」とは、官能基であるメルカプト基が2個以上であるチオール化合物を意味し、また、「2官能チオール」とは、官能基であるメルカプト基が2個であるチオール化合物を意味する。
 分子中に2級又は3級メルカプト基を2個以上有する化合物に特に制限はないが、例えば、下記式(Q)で表される構造を少なくとも1個有し、下記式(Q)で表される構造中のメルカプト基を含めて、分子中に2級又は3級メルカプト基を2個以上有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
(式(Q)中、Rは水素原子、炭素原子数1~10のアルキル基、又は炭素原子数6~18の芳香族基であり、Rは炭素数1~10のアルキル基又は炭素数6~18の芳香族基であり、*は任意の有機基に連結していることを示す。aは0~2の整数である。)
〔2級チオール化合物(F-21)〕
 前記式(Q)で表される構造を有する第2チオール化合物(F-2)が、2級チオール化合物(F-21)である場合、その具体例としては、3-メルカプト酪酸、3-メルカプトフタル酸ジ(1-メルカプトエチル)、フタル酸ジ(2-メルカプトプロピル)、フタル酸ジ(3-メルカプトブチル)、エチレングリコールビス(3-メルカプトブチレート)、プロピレングリコールビス(3-メルカプトブチレート)、ジエチレングリコールビス(3-メルカプトブチレート)、ブタンジオールビス(3-メルカプトブチレート)、オクタンジオールビス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、エチレングリコールビス(2-メルカプトプロピオネート)、プロピレングリコールビス(2-メルカプトプロピオネート)、ジエチレングリコールビス(2-メルカプトプロピオネート)、ブタンジオールビス(2-メルカプトプロピオネート)、オクタンジオールビス(2-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(2-メルカプトプロピオネート)、エチレングリコールビス(4-メルカプトバレレート)、ジエチレングリコールビス(4-メルカプトバレレート)、ブタンジオールビス(4-メルカプトバレレート)、オクタンジオールビス(4-メルカプトバレレート)、トリメチロールプロパントリス(4-メルカプトバレレート)、ペンタエリスリトールテトラキス(4-メルカプトバレレート)、ジペンタエリスリトールヘキサキス(4-メルカプトバレレート)、エチレングリコールビス(3-メルカプトバレレート)、プロピレングリコールビス(3-メルカプトバレレート)、ジエチレングリコールビス(3-メルカプトバレレート)、ブタンジオールビス(3-メルカプトバレレート)、オクタンジオールビス(3-メルカプトバレレート)、トリメチロールプロパントリス(3-メルカプトバレレート)、ペンタエリスリトールテトラキス(3-メルカプトバレレート)、ジペンタエリスリトールヘキサキス(3-メルカプトバレレート)、水素化ビスフェノールAビス(3-メルカプトブチレート)、ビスフェノールAジヒドロキシエチルエーテル-3-メルカプトブチレート、4,4’-(9-フルオレニリデン)ビス(2-フェノキシエチル(3―メルカプトブチレート))、エチレングリコールビス(3-メルカプト-3-フェニルプロピオネート)、プロピレングリコールビス(3-メルカプト-3-フェニルプロピオネート)、ジエチレングリコールビス(3-メルカプト-3-フェニルプロピオネート)、ブタンジオールビス(3-メルカプト-3-フェニルプロピオネート)、オクタンジオールビス(3-メルカプト-3-フェニルプロピオネート)、トリメチロールプロパントリス(3-メルカプト-3-フェニルプロピオネート)、トリス-2-(3-メルカプト-3-フェニルプロピオネート)エチルイソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプト-3-フェニルプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプト-3-フェニルプロピオネート)等が挙げられる。
 2級チオール化合物(F-21)のうち、分子中に2級メルカプト基を2個以上有する化合物の市販品としては、1,4-ビス(3-メルカプトブチリルオキシ)ブタン(昭和電工株式会社製、カレンズMT(登録商標)BD1)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工株式会社製、カレンズMT(登録商標)PE1)、1,3,5-トリス[2-(3-メルカプトブチリルオキシエチル)]-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(昭和電工株式会社製、カレンズMT(登録商標)NR1)、トリメチロールエタントリス(3-メルカプトブチレート)(昭和電工株式会社製、TEMB)、トリメチロールプロパントリス(3-メルカプトブチレート)(昭和電工株式会社製、TPMB)等が挙げられ、これらの1種以上を用いることが好ましい。中でも、1,4-ビス(3-メルカプトブチリルオキシ)ブタン(昭和電工株式会社製、カレンズMT(登録商標)BD1)が好ましい。
〔3級チオール化合物(F-22)〕
 前記式(Q)で表される構造を有する第2チオール化合物(F-2)が、3級チオール化合物(F-22)である場合、その具体例としては、フタル酸ジ(2-メルカプトイソブチル)、エチレングリコールビス(2-メルカプトイソブチレート)、プロピレングリコールビス(2-メルカプトイソブチレート)、ジエチレングリコールビス(2-メルカプトイソブチレート)、ブタンジオールビス(2-メルカプトイソブチレート)、オクタンジオールビス(2-メルカプトイソブチレート)、トリメチロールエタントリス(2-メルカプトイソブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、ペンタエリスリトールテトラキス(2-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(2-メルカプトイソブチレート)、フタル酸ジ(3-メルカプト-3-メチルブチル)、エチレングリコールビス(3-メルカプト-3-メチルブチレート)、プロピレングリコールビス(3-メルカプト-3-メチルブチレート)、ジエチレングリコールビス(3-メルカプト-3-メチルブチレート)、ブタンジオールビス(3-メルカプト-3-メチルブチレート)、オクタンジオールビス(3-メルカプト-3-メチルブチレート)、トリメチロールエタントリス(3-メルカプト-3-メチルブチレート)、トリメチロールプロパントリス(3-メルカプト-3-メチルブチレート)、ペンタエリスリトールテトラキス(3-メルカプト-3-メチルブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプト-3-メチルブチレート)等が挙げられる。
 本実施形態の第2ラジカル重合性樹脂組成物中の第2チオール化合物(F-2)の合計量は、前述する第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.1~7質量部、更に好ましくは0.1~5質量部、より更に好ましくは0.2~4質量部である。第2チオール化合物(F-2)の量が0.01質量部以上であると硬化機能を十分に得ることができ、10質量部以下であると速やかに硬化が進行する。
 また、第2金属含有化合物(E-2)の金属成分に対する第2チオール化合物(F-2)の合計モル比[(F-2)/(E-2)]は、0.1~15が好ましく、0.5~15がより好ましく、1~12がさらに好ましく、1.5~10がより更に好ましく、3~9がより更に好ましい。モル比[(F-2)/(E-2)]が0.1以上であると、第2金属含有化合物(E-2)の金属の近傍に第2チオール化合物(F-2)を十分に配位させることができ、また、モル比を15以下とすることで、製造コストと効果とのバランスが向上する。
 第2チオール化合物(F-2)は、1種を単独で用いてもよく、2種以上を併用してもよい。2級チオール化合物(F-21)と3級チオール化合物(F-22)を併用する場合には、両者のモル比[(F-21)/(F-22)]は、0.001~1000が好ましく、1~10がより好ましい。モル比[(F-21)/(F-22)]が前記範囲内であると、第2ラジカル重合性樹脂組成物中で、第2金属含有化合物(E-2)と第2チオール化合物(F-2)が安定し、副生成物として第2チオール化合物(F-2)同士の結合によるジスルフィド化合物が発生することもない。第2金属含有化合物(E-2)と第2チオール化合物(F-2)とを安定した状態で、該第2ラジカル重合性樹脂組成物を保存する観点からは、2級チオール化合物(F-21)又は3級チオール化合物(F-22)を単独で用いることが好ましい。
<第2硬化促進剤(G-2)>
 本実施形態の第2ラジカル重合性樹脂組成物は、硬化性を向上させることを目的として、第2金属含有化合物(E-2)及び第2チオール化合物(F-2)以外の第2硬化促進剤(G-2)を含んでもよい。
 第2金属含有化合物(E-2)及び第2チオール化合物(F-2)以外の第2硬化促進剤(G-2)としては、アミン類が挙げられ、具体的には、アニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、p-トルイジン、N,N-ジメチル-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、4-(N,N-ジメチルアミノ)ベンズアルデヒド、4-[N,N-ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4-(N-メチル-N-ヒドロキシエチルアミノ)ベンズアルデヒド、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニリモルホリン、ピペリジン、N,N-ビス(ヒドロキシエチル)アニリン、ジエタノールアニリン等のN,N-置換アニリン、N,N-置換-p-トルイジン、4-(N,N-置換アミノ)ベンズアルデヒド等のアミン類等を使用できる。
 本実施形態の第2ラジカル重合性樹脂組成物が第2硬化促進剤(G-2)を含有する場合、その量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、0.01~10質量部が好ましく、0.05~5質量部がより好ましく、0.1~3質量部が更に好ましい。
<第2重合禁止剤(H-2)>
 本実施形態の第2ラジカル重合性樹脂組成物は、第2ラジカル重合性化合物(A-2)の過度の重合を抑える観点、反応速度をコントロールする観点から、第2重合禁止剤(H-2)を含んでもよい。
 第2重合禁止剤(H-2)としては、ハイドロキノン、メチルハイドロキノン、フェノチアジン、カテコール、4-tert-ブチルカテコール等の公知のものが挙げられる。 第2ラジカル重合性樹脂組成物が第2重合禁止剤(H-2)を含有する場合、その量は第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、好ましくは0.0001~10質量部であり、より好ましくは各々0.001~3質量部であり、さらに好ましくは0.01~1質量部である。
<第2硬化遅延剤(I-2)>
 本実施形態の第2ラジカル重合性樹脂組成物は、第2ラジカル重合性化合物(A-2)の硬化を遅らせる目的で、第2硬化遅延剤(I-2)を含んでもよい。第2硬化遅延剤(I-2)としては、フリーラジカル系硬化遅延剤が挙げられ、例えば、2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(TEMPO)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(4H-TEMPO)、4-オキソ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(4-Oxo-TEMPO)等のTEMPO誘導体が挙げられる。これらの中でも、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(4H-TEMPO)がコスト面、扱いやすさの点から好ましい。
 第2ラジカル重合性樹脂組成物が第2硬化遅延剤(I-2)を含有する場合、その量は第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、好ましくは0.0001~10質量部であり、より好ましくは各々0.001~5質量部であり、さらに好ましくは0.05~3質量部である。
<膨張材(J)>
 本実施形態に用いられる膨張材(J)は、コンクリート用膨張材として一般に使用されている日本工業規格JIS A 6202「コンクリート用膨張材」の規格を満足する膨張材であれば、何れの膨張材を用いてもよい。具体的には水和反応により、水酸化カルシウムやエトリンガイトを生成するものであればよい。例えば、生石灰及びカルシウムサルフォアルミネートからなる群から選択される少なくとも1種を含む膨張材(J)が好ましい。より好ましい膨張材としては、(1)生石灰を有効成分とする膨張材(生石灰系膨張材)、(2)カルシウムサルフォアルミネートを有効成分とする膨張材(エトリンガイト系膨張材)、(3)生石灰-エトリンガイト複合系膨張材などが挙げられる。
 生石灰系膨張材の具体例としては、例えば、太平洋マテリアル製の太平洋ハイパーエクスパン-K、太平洋ハイパーエクスパン-M、太平洋エクスパン-K、太平洋エクスパン-M、N-EXなどが挙げられる。
 エトリンガイト系膨張材の具体例としては、デンカ製のデンカCSA #10、デンカCSA #20などが挙げられる。
 生石灰-エトリンガイト複合系膨張材の具体例としては、デンカ製のデンカパワーCSA タイプS、デンカパワーCSA タイプR、デンカパワーCSA タイプTなどが挙げられる。
 本実施形態の膨張材(J)の含有量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、好ましくは0.3~30質量部、より好ましくは0.5~25質量部、更に好ましくは1~20質量部、最も好ましくは1~16質量部である。膨張材(J)の含有量が30質量部以下であれば、第2ラジカル重合性樹脂組成物を硬化させた際に、膨張率が樹脂の伸び量を超えてしまうことがない。逆に0.3質量部以上であれば、第2ラジカル重合性化合物(A-2)に対する膨張性能が発現しない、ということがない。また、これらの膨張材(J)は、単独で用いても良く、2種以上を混合して用いても良い。
<セメント>
 本実施形態の第2ラジカル重合性樹脂組成物はセメントを実質的に含まないことが好ましい。「実質的に含まない」の意味は、第2ラジカル重合性樹脂組成物に対して、3質量%以下、好ましくは2質量%以下、より好ましくは1質量%以下、更に好ましくは0.5質量%以下含む意味である。
 ここで、セメントとしては、ポルトランドセメント、その他の混合セメント、超速硬系セメント等が挙げられる。ポルトランドセメントとしては、低熱、中庸熱、普通、早強、超早強、耐硫酸塩等の各種ポルトランドセメントが挙げられる。また、混合セメントとしては、高炉セメント、フライアッシュセメント、シリカセメント等が挙げられる。
<骨材(K)>
 本実施形態の第2ラジカル重合性樹脂組成物は、骨材(K)を含む。該骨材(K)が結合水を含む場合、骨材(K)の結合水の水含有率は、特に限定されないが、例えば、0.10質量%以上であることが好ましく、0.20質量%以上であることがより好ましく、0.30質量%以上であることが更に好ましく、0.40質量%以上であることが最も好ましい。また、骨材(K)の結合水の水含有率は、5.0質量%以下であることが好ましく、2.5質量%以下であることがより好ましく、1.5質量%以下であることが更に好ましく、1.0質量%以下であることが最も好ましい。骨材(K)の結合水の水含有量は、特に限定されないが、例えば、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、0.2質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、1.0質量部以上であることが更に好ましく、1.5質量部以上であることが最も好ましい。また、骨材(K)の結合水の水含有量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、7質量部以下であることが好ましく、5質量部以下であることがより好ましく、2.5質量部以下であることが更に好ましく、2.0質量部以下であることが最も好ましい。
 骨材(K)としては、特に限定されず、モルタルやコンクリートで使用されるものを用いることができる。骨材としては、特に限定されないが、例えば、炭酸カルシウム、砕石、砂岩、寒水石、大理石、石英、石灰石、硅砂、硅石、川砂などが挙げられる。また、軽量化の観点から、焼結頁岩、珪酸系バルーン、非珪酸系バルーンパーライトなどの軽量骨材も用いることができる。
 炭酸カルシウムは、塗膜中にあって透明で被塗面 (基板表面)を隠さない体質顔料として機能し、凹部の充填性、塗料コストの低減などの働きを有している。この炭酸カルシウムとして、上市されているものとしては、例えば、TM-2(有恒鉱業(株)製)があげられる。
 炭酸カルシウムは、特定の粒度分布を有し、分散性に優れ、多孔質でもあるため、骨材自体の比重を低下させてダレにくくさせたり、成膜性を向上させることができる。
 珪酸系バルーンとしては、シラスバルーン、パーライト、ガラス(シリカ)パル一ン、フライアッシュバルーン等が挙げられる。非珪酸系バルーンとして、アルミナバルーン、ジルコニアバルーン、カーボンバルーン等が挙げられる。
 本実施形態の組成物における骨材(K)の含有量は、特に限定されないが、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、好ましくは200質量部~900質量部、より好ましくは250質量部~800質量部、さらに好ましくは300~500質量部である。特に、骨材の含有量が200質量部以上であれば、実用的な流動性を確保することができる。また、骨材の含有量が900質量部以下であれば、コテ付着量が少なくなり、作業性の低下を防止することができる。
<繊維(L)>
 本実施形態のラジカル重合性組成物は、必要に応じ、繊維を含有してもよい。本実施形態で用いうる繊維の具体例としては、ガラス繊維、炭素繊維、ビニロン繊維、ナイロン繊維、アラミド繊維、ポリオレフィン繊維、アクリル繊維、ポリエチレンテレフタレート繊維などのポリエステル繊維、セルロース繊維、スチール繊維等の金属繊維、アルミナ繊維等のセラミック繊維等が挙げられる。中でも例えば、揺変剤としてポリオレフィン繊維を用いることができる。揺変剤(チクソトロピー性付与剤)とは、揺変性を付与する目的で配合されるものである。
 ポリオレフィン繊維として現在市販されているものとしては、ポリエチレン系としてケミベスト(登録商標)FDSS-2(平均繊維長0.6mm)、ケミベスト(登録商標)FDSS-5(平均繊維長0.1mm)、ケミベスト(登録商標)FDSS-25(平均繊維長0.6mm、親水性化品)、ケミベスト(登録商標)FDSS-50(平均繊維長0.1mm、親水性化品)等の商標名の製品(何れも三井石油化学工業(株)製)がある。
 炭素繊維は特に限定されず、既知の炭素繊維のいずれのものでも使用することができる。その例として、ポリアクリロニトリル系(PAN系)炭素繊維、レーヨン系炭素繊維、ピッチ系炭素繊維等を挙げることができる。炭素繊維は、それぞれ単独でまたは2種以上を混合して使用してよい。安価なコストと良好な機械的特性の観点から、PAN系炭素繊維を使用することが好ましい。そのような炭素繊維は、市販品として入手可能である。炭素繊維として、炭素繊維強化プラスチック(CFRP)を使用してもよい。
 炭素繊維の直径は、好ましくは3~15μm、より好ましくは5~10μmである。炭素繊維の長さは、通常5~100mmである。本実施形態では、炭素繊維を、10.0mm~100.0mm、更には12.5mm~50.0mmにカットして使用してよい。
 これらの繊維は、例えば、平織り、朱子織り、不織布、マット、ロービング、チョップ、編み物、組み物、およびこれらの複合構造物等から選ばれる繊維構造体、二軸メッシュ、三軸メッシュの形態で使用することが好ましい。例えば、前記繊維構造体にラジカル重合性組成物を含浸し、場合によっては予備重合してプリプレグ化して使用できる。
 メッシュとしては、例えば、二軸メッシュ、三軸メッシュが使用される。二軸メッシュの正方形の一辺の長さ(目合)及び三軸メッシュの正三角形の一辺の長さ(目合)は、それぞれ5mm以上が好ましく、10~20mmがより好ましい。二軸メッシュ又は三軸メッシュを使用することにより軽量で経済性、施工性、耐久性に優れたコンクリート剥落防止用硬化性材料を得ることができる。
 これらの繊維は、コンクリート剥落防止性、FRP防水性などの塗膜性能を補強したり、FRP成形品を製造したりする場合に使用することが好ましい。
 コンクリート剥落防止等の用途では、繊維の中でも透明性に優れるガラス繊維やセルロース繊維等が、下地の劣化状態を外側から目視で検査できるという点から好ましい。
 このような繊維の含有量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、0.3~200質量部であることが好ましく、0.5~100質量部であることがより好ましく、1.0~50質量部であることが更に好ましい。
<減水剤(M)>
 本実施形態の第2ラジカル重合性樹脂組成物は、必要に応じて、減水性状を付与できる使用可能な減水剤(M)を含んでも良い。減水剤としては、液体状又は粉末状の減水剤、AE減水剤、高性能減水剤、高性能AE減水剤等のコンクリートに用いられる減水剤として公知のものを制限なく適用できる。
 
 ポリカルボン酸系の減水剤は、前述した膨潤性を有するアルミノシリケートの添加に伴うコンクリートの流動性の低下を抑制することができ、流動性を良好に維持して作業性を向上させる観点からも好適である。
 ナフタレンスルホン酸系の減水剤は、分散能が高く、減水効果が高いため、作業性を向上させる観点から好適である。
 減水剤は、第2ラジカル重合性樹脂組成物中、0.1~3.0質量%含まれると好ましい。
<その他の成分>
 本実施形態の第2ラジカル重合性樹脂組成物は、硬化体の強度発現性や耐酸性状に特段の支障を及ぼさない限り、前記成分以外の成分を含有してもよい。含有可能な成分としては、例えば、硫酸カルシウムやポゾラン物質等の水硬性無機物質の他、例えば凝結調整、硬化促進、硬化遅延、増粘、保水、消泡、撥水、防水等の性状を付与できるモルタル又はコンクリートに使用可能な混和剤、金属や高分子や炭素等の材質からなる繊維、顔料、増量材、発泡材、ゼオライト等の粘土鉱物等のモルタル又はコンクリートに使用可能な混和材を挙げることができる。また、含有可能な成分としては、カップリング剤、可塑剤、陰イオン固定化成分、溶剤、ポリイソシアナト化合物、界面活性剤、湿潤分散剤、ワックス、揺変剤等が挙げられる。
〔カップリング剤〕
 本実施形態の第2ラジカル重合性樹脂組成物は、加工性を向上させることを目的として、また基材への密着性を向上させること等を目的として、カップリング剤を使用してもよい。カップリング剤としては、公知のシラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられる。
 このようなカップリング剤としては、例えば、R-Si(ORで表される第2シランカップリング剤を挙げることができる。なお、Rとしては、例えば、アミノプロピル基、グリシジルオキシ基、メタクリルオキシ基、N-フェニルアミノプロピル基、メルカプト基、ビニル基等が挙げられ、Rとしては、例えば、メチル基、エチル基等が挙げられる。
 第2ラジカル重合性樹脂組成物がカップリング剤を含有する場合、その量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、好ましくは0.001~10質量部である。
〔可塑剤〕
 本実施形態の第2ラジカル重合性樹脂組成物は、必要に応じて可塑剤を配合することができる。可塑剤としては特に限定されないが、物性の調整、性状の調節等の目的により、例えば、ジブチルフタレート、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ブチルベンジルフタレート等のフタル酸エステル類;ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸イソデシル等の非芳香族二塩基酸エステル類;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;ポリスチレン、ポリ-α-メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン;塩素化パラフィン類;アルキルジフェニル、部分水添ターフェニル等の炭化水素系油;プロセスオイル類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールとこれらポリエーテルポリオールの水酸基をエステル基、エーテル基等に変換した誘導体等のポリエーテル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸と、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤類;アクリル系可塑剤を始めとするビニル系モノマーを種々の方法で重合して得られるビニル系重合体類等が挙げられる。
 中でも、該ラジカル重合性組成物の粘度及び該組成物を硬化して得られる硬化物の引張り強度、伸び等の機械特性が調整できることから、数平均分子量500~15000の重合体である高分子可塑剤を添加することが好ましい。また、当該高分子可塑剤は、重合体成分を分子中に含まない可塑剤である低分子可塑剤を使用した場合に比較して、初期の物性を長期にわたり維持できるため好適である。なお、限定はされないがこの高分子可塑剤は、官能基を有しても有しなくても構わない。
 上記高分子可塑剤の数平均分子量は、より好ましくは800~10000であり、さらに好ましくは1000~8000である。数平均分子量が500以上であると熱や降雨および水の影響による可塑剤の継時的な流出を抑制し、初期物性を長期にわたり維持することができる。また、数平均分子量が15000以下であれば粘度上昇を抑制して十分な作業性を確保することができる。
〔陰イオン固定化成分〕
 また、塩化物イオンなどの陰イオンを固定化するために、ハイドロタルサイト類、あるいはハイドロカルマイト類を用いることもできる。
 これらのハイドロタルサイト類としては、天然物でも合成品でもよく、表面処理の有無や結晶水の有無によらず用いることができる。例えば、下記一般式(R)
 M・Mg・AlCO(OH)xr+2y+3z-2・mHO    (R)
(式中、Mはアルカリ金属または亜鉛を、xは0~6の数を、yは0~6の数、zは0.1~4の数を、rはMの価数を、mは0~100の結晶水の数である)で表される塩基性炭酸塩を挙げることができる。
 また、ハイドロカルマイト類としては、天然物でも合成品でもよく、表面処理の有無や結晶水の有無によらず用いることができる。例えば、下記一般式(S)、(T)
3CaO・Al・CaX・kHO    (S)
(Xは1価の陰イオン,k≦20)
3CaO・Al・CaY・kHO    (T)
(Yは2価の陰イオン,k≦20)
で表されるものを挙げることができる。
 また、このカルマイト類には、製造段階で鉄筋の腐食抑制の効果があるとされる亜硝酸イオン(NO )を担持させているが、担持できる陰イオンの例として、硝酸イオン(NO )、水酸化物イオン(OH)、シュウ酸イオン(CHCOO)、炭酸イオン(CO )、硫酸イオン(SO 2-)などがある。
 これらのハイドロタルサイト類、あるいはハイドロカルマイト類は、単体で使用しても良いが、ペースト内に混ぜ込むことで使用することができる。
 ペーストに混合させた場合は、水和反応時に共存する水酸化物イオン(OH)がカルマイトの特徴である陰イオン交換反応に様々な影響を与えることが想定される。目的とした塩化物イオンとの交換反応を保持する観点において、亜硝酸イオンを担持させたハイドロカルマイト類が良い。
〔溶剤〕
 本実施形態の第2ラジカル重合性樹脂組成物には、必要に応じて溶剤を配合することができる。配合できる溶剤としては、例えばトルエン、キシレン等の芳香族炭化水素系溶剤;酢酸エチル、酢酸ブチル、酢酸アミル、酢酸セロソルブ等のエステル系溶剤;メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン系溶剤等が挙げられる。これらの溶剤は重合体の製造時に用いてもよい。
〔ポリイソシアナト化合物〕
 本実施形態の第2ラジカル重合性樹脂組成物はポリイソシアナト化合物を含んでもよい。ポリイソシアナト化合物は第2ラジカル重合性化合物(A-2)の水酸基と反応して硬化塗膜を形成する。
 前記ポリイソシアナト化合物は、分子中にイソシアナト基を2個以上含有するものであって、該イソシアナト基はブロック剤等でブロック化されていてもよい。
 ブロック剤でブロック化されていないポリイソシアナト化合物としては、例えば、リジンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサンジイソシアネート等の脂肪族ジイソシアネート類;水素添加キシリレンジイソシアネート、イソホロンジイソシアネート、メチルシクロヘキサン-2,4(又は2,6)-ジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、1,3-(イソシアナトメチル)シクロヘキサン等の環状脂肪族ジイソシアネート類;トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族ジイソシアネート類;リジントリイソシアネート等の3価以上のポリイソシアネート等のポリイソシアネート、及びこれらの各ポリイソシアネートと多価アルコール、低分子量ポリエステル樹脂若しくは水等との付加物、上記したジイソシアネート同士の環化重合体(例えば、イソシアヌレート)、ビウレット型付加物等が挙げられる。中でも、ヘキサメチレンジイソシアネートのイソシアヌレートが好ましい。
 これらのポリイソシアナト化合物は、単独でも、2種以上を組み合わせて用いてもよい。
 第2ラジカル重合性樹脂組成物がポリイソシアナト化合物を含有する場合、その量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、好ましくは0.1質量部~50質量部、より好ましくは1~30質量部、更に好ましくは2~20質量部である。
 ブロック化ポリイソシアナト化合物は、上記ポリイソシアナト化合物のイソシアナト基をブロック化剤でブロック化したものである。
 ブロック化剤としては、例えばフェノール、クレゾール、キシレノール等のフェノール系;ε-カプロラクタム;δ-バレロラクタム、γ-ブチロラクタム、β-プロピオラクタム等ラクタム系;メタノール、エタノール、n-又はiso-プロピルアルコール、n-、iso-又はtert-ブチルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ベンジルアルコール等のアルコール系;ホルムアミドキシム、アセトアルドキシム、アセトキシム、メチルエチルケトキシム、ジアセチルモノオキシム、ベンゾフェノンオキシム、シクロヘキサンオキシム等オキシム系;マロン酸ジメチル、マロン酸ジエチル、アセト酢酸エチル、アセト酢酸メチル、アセチルアセトン等の活性メチレン系等のブロック化剤が挙げられる。前記ポリイソシアネートと前記ブロック化剤とを混合することによって容易にポリイソシアネートのイソシアナト基をブロック化することができる。
 ポリイソシアナト化合物がブロック化されていないポリイソシアナト化合物である場合、本実施形態の第2ラジカル重合性樹脂組成物中の第2ラジカル重合性化合物(A-2)とポリイソシアナト化合物とを混合すると両者の反応が起こるため、使用前までは第2ラジカル重合性化合物(A-2)とポリイソシアナト化合物とを分離しておき、使用時に両者を混合することが好ましい。
 なお、第2ラジカル重合性化合物(A-2)とポリイソシアナト化合物を反応させるため、硬化触媒を用いることができる。好適な硬化触媒として、例えば、オクチル酸錫、ジブチル錫ジ(2-エチルヘキサノエート)、ジオクチル錫ジ(2-エチルヘキサノエート)、ジオクチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫オキサイド、ジオクチル錫オキサイド、2-エチルヘキサン酸鉛等の有機金属触媒等を挙げることができる。
 第2ラジカル重合性樹脂組成物が前記硬化触媒量を含有する場合、その量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、好ましくは0.01質量部~5質量部、より好ましくは0.05~4質量部である。
〔界面活性剤〕
 本実施形態の第2ラジカル重合性樹脂組成物は、界面活性剤を含有しても良い。
 界面活性剤としては、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤、及び両性界面活性剤が挙げられる。これらの界面活性剤は、単独でも、2種以上を組み合わせて用いてもよい。
 これらの界面活性剤の中でも陰イオン性界面活性剤、及び非イオン性界面活性剤から選ばれる1種以上が好ましい。
 陰イオン性界面活性剤としては、例えば、ラウリル硫酸ナトリウム、ラウリル硫酸トリエタノールアミン等のアルキル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等のポリオキシエチレンアルキルエーテル硫酸エステル塩;ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルフォン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム等のスルホン酸塩;ステアリン酸ソーダ石鹸、オレイン酸カリ石鹸、ヒマシ油カリ石鹸等の脂肪酸塩;ナフタレンスルフォン酸ホルマリン縮合物、特殊高分子系等が挙げられる。
 非イオン性界面活性剤として、例えば、ポリオキシラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール等のポリオキシエチレン誘導体;ポリオキシアルキレンアルキルエーテル、ソルビタンモノラウリレート、ソルビタンモノパルミテート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート等のポリオキシエチレンソルビタン脂肪酸エステル;テトラオレイン酸ポリオキシエチレンソルビット等のポリオキシエチレンソルビトール脂肪酸エステル;グリセリンモノステアレート、グリセリンモノオレエート等のグリセリン脂肪酸エステルが挙げられる。
 これらの中では、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、及びポリオキシエチレンアルキルエーテルが好ましい。また、非イオン性界面活性剤のHLB(Hydrophile-Lipophil Balance)は、5~15が好ましく、6~12より好ましい。
 第2ラジカル重合性樹脂組成物が界面活性剤を含有する場合、その量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.05~7質量部、更に好ましくは0.1~5質量部である。
〔湿潤分散剤〕
 本実施形態の第2ラジカル重合性樹脂組成物は、例えば、湿潤又は水没した被修復箇所に対する浸透性を向上させるために湿潤分散剤を含んでいてもよい。
 湿潤分散剤としては、フッ素系湿潤分散剤及びシリコーン系湿潤分散剤が挙げられ、これらは、単独でも、2種以上を組み合わせて用いてもよい。
 フッ素系の湿潤分散剤の市販品としては、メガファック(登録商標)F176、メガファック(登録商標)R08(大日本インキ化学工業株式会社製)、PF656、PF6320(OMNOVA社製)、トロイゾルS-366(トロイケミカル株式会社製)、フロラードFC430(スリーエム ジャパン株式会社製)、ポリシロキサンポリマーKP-341(信越化学工業株式会社製)等が挙げられる。
 シリコーン系湿潤分散剤の市販品としては、BYK(登録商標)-322、BYK(登録商標)-377、BYK(登録商標)-UV3570、BYK(登録商標)-330、BYK(登録商標)-302、BYK(登録商標)-UV3500,BYK-306(ビックケミー・ジャパン株式会社製)、ポリシロキサンポリマーKP-341(信越化学工業株式会社製)等が挙げられる。
 また、シリコーン系湿潤分散剤は、下記式(U)で表される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは、それぞれ独立に、炭素原子数が1~12の芳香環を含んでもよい炭化水素基、又は-(CHO(CO)(CHCH(CH)O)R’を示し、nは1~200の整数、R’は炭素原子数が1~12のアルキル基を示し、p及びqはそれぞれ整数であり、かつ、q/p=0~10を満たす。)
 なお、前記式(U)で表される化合物を含むシリコーン系湿潤分散剤の市販品としては、BYK(登録商標)-302及びBYK(登録商標)-322(ビックケミー・ジャパン株式会社製)が挙げられる。
 本実施形態の第2ラジカル重合性樹脂組成物が湿潤分散剤を含有する場合、その量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対し、好ましくは0.001~5質量部、より好ましくは0.01~2質量部である。
〔ワックス〕
 本実施形態の第2ラジカル重合性樹脂組成物は、ワックスを含んでいてもよい。
 ワックスとしては、パラフィンワックス類、及び極性ワックス類が挙げられ、これらは、単独でも、2種以上を組み合わせて用いてもよい。
 パラフィンワックス類としては、各種融点を有する公知のものを使用することができる。また、極性ワックス類としては、構造中に極性基及び非極性基を合わせ持つものを用いることができ、具体的には、NPS(登録商標)-8070、NPS(登録商標)-9125(日本精蝋株式会社製)、エマノーン(登録商標)3199、エマノーン(登録商標)3299(花王株式会社製)等が挙げられる。
 本実施形態の第2ラジカル重合性樹脂組成物がワックスを含有する場合、その量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、好ましくは0.05~4質量部、より好ましくは0.1~2.0質量部である。
〔第2揺変剤〕
 本実施形態の第2ラジカル重合性樹脂組成物は、垂直面や天井面での作業性確保のための粘度調整等を目的として第2揺変剤を使用してもよい。
 第2揺変剤としては、無機系揺変剤及び有機系揺変剤を挙げることができ、有機系揺変剤としては、水素添加ひまし油系、アマイド系、酸化ポリエチレン系、植物油重合油系、界面活性剤系、及びこれらを併用した複合系が挙げられ、具体的には、DISPARLON(登録商標)6900-20X(楠本化成株式会社)等が挙げられる。
 また、無機系揺変剤としては、シリカやベントナイト系が挙げられ、疎水性のものとして、レオロシール(登録商標)PM-20L(株式会社トクヤマ製の気相法シリカ)、アエロジル(登録商標)AEROSIL R-106(日本アエロジル株式会社)等が挙げられ、親水性のものとして、アエロジル(登録商標)AEROSIL-200(日本アエロジル株式会社)等が挙げられる。揺変性をより向上させる観点から、親水性の焼成シリカに、揺変性改質剤であるBYK(登録商標)-R605やBYK(登録商標)-R606(ビックケミー・ジャパン株式会社製)を添加したものも好適に用いることができる。本実施形態の第2ラジカル重合性樹脂組成物が、第2揺変剤を含有する場合、その量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、好ましくは、0.01~10質量部、より好ましくは0.1~5質量部が好ましい。
<水>
 本実施形態の第2ラジカル重合性樹脂組成物は、実用レベルの強度が得られる観点から、水を実質的に含まない。すなわち、第2ラジカル重合性樹脂組成物を調製する際に、水を組成物の構成成分として添加しない。例えば、第2ラジカル重合性樹脂組成物の含水量は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、0.25質量部未満であることが好ましく、0.20質量部以下であることがより好ましく、0.15質量部以下であることがさらに好ましく、0.10質量部以下であることが最も好ましい。
<第2ラジカル重合性樹脂組成物の製造方法>
 本実施形態の第2ラジカル重合性樹脂組成物の製造方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、第2ラジカル重合性樹脂組成物は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)に、必要に応じて第2金属含有化合物(E-2)を混合し、さらに第2ラジカル重合開始剤(D-2)、骨材(K)、及び膨張材(J)を配合して混合することによって製造することができる。第2ラジカル重合性樹脂組成物の製造方法において、水を添加する工程を含まないことが好ましい。水を添加すると、第2ラジカル重合性樹脂組成物に遊離水を含むようになり、第2ラジカル重合性樹脂組成物の硬化物の圧縮強度が悪化される。ただし、骨材(K)等の原材料に含まれている結合水は、添加された遊離水と違って、硬化物の圧縮強度に影響することが少ない。
 本実施形態の第2ラジカル重合性樹脂組成物の製造方法の一実施態様は、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)に、必要に応じて第2金属含有化合物(E-2)を混合し、混合物(2-i)を得る工程(2-S1)と、得られた混合物(2-i)に第2ラジカル重合開始剤(D-2)を混合し、混合物(2-ii)を得る工程(2-S2)と、得られた混合物(2-ii)に骨材(K)及び膨張材(J)を混合し、第2ラジカル重合性樹脂組成物を得る工程(2-S3)とを有する。
 前記混合物(2-i)を得る工程(2-S1)(単に「工程(2-S1)」とも言うことがある)において、第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)に、第2金属含有化合物(E-2)を混合する以外に、必要に応じて、さらに、第2重合禁止剤(H-2)や、第2硬化遅延剤(I-2)や、第2チオール化合物(F-2)などを混合してもよい。
 第2ラジカル重合性樹脂組成物を得る工程(2-S3)(単に「工程(2-S3)」とも言うことがある)において、混合物(2-ii)を得る工程(2-S2)(単に「工程(2-S2)」とも言うことがある)で得られた混合物(2-ii)に、膨張材(J)及び骨材(K)を混合する以外に、必要に応じて、さらに、繊維(L)や、減水剤(M)などを混合してもよい。骨材(K)の具体例としては、例えば、9号珪砂、炭酸カルシウムTM-2、パーライトFL-0号、ハードライトB-04、遠州5.5号珪砂、N50珪砂、N40珪砂、N90珪砂、などを用いることができる。
 このようにして製造される第2ラジカル重合性樹脂組成物は、常温硬化が可能であり、作業性、早期強度発現性及び硬化性に優れている。膨張材(J)を有するので、硬化時の収縮率が小さく、条件によっては硬化物の膨張率を0より大きくすることができる。
[凹部充填材キットの硬化物]
 本実施形態の凹部充填材キットの硬化物は、前記第1ラジカル重合性樹脂組成物の硬化物である第1硬化物と前記第2ラジカル重合性樹脂組成物の硬化物である第2硬化物とを有する。凹部の表面に前記第1硬化物が形成され、前記第1硬化物の表面に前記第2硬化物が形成されるように、前記凹部に凹部充填材キットの硬化物が形成される。
<第1ラジカル重合性樹脂組成物の硬化物>
 本実施形態の第1ラジカル重合性樹脂組成物の硬化物は、上記の第1ラジカル重合性樹脂組成物を硬化することによって得られる。
「第1ラジカル重合性樹脂組成物の硬化方法」
 例えば、第1ラジカル重合性樹脂組成物が熱ラジカル重合開始剤を含有する場合、後述の第2ラジカル重合性樹脂組成物の硬化方法と同じ方法も用いることができる。
<第2ラジカル重合性樹脂組成物の硬化物>
 本実施形態の第2ラジカル重合性樹脂組成物の硬化物は、上記の第2ラジカル重合性樹脂組成物を硬化することによって得られる。
「第2ラジカル重合性樹脂組成物の硬化方法」
 本実施形態の第2ラジカル重合性樹脂組成物が熱ラジカル重合開始剤(D-21)を含有する場合には、本実施形態の第2ラジカル重合性樹脂組成物の硬化方法の一例としては、本実施形態の第2ラジカル重合性樹脂組成物を基材の表面に塗布し、室温で硬化させる硬化方法が挙げられる。例えば、本実施形態の第2ラジカル重合性樹脂組成物を、無機構造物の凹部充填材として用いる。本実施形態の第2ラジカル重合性樹脂組成物が膨張材(J)を含むことより、得られた硬化物は、一定の時間を経過しても、従来のように大きく収縮しない。
 基材の材料としては、コンクリート、アスファルトコンクリート、モルタル、レンガ、木材、金属の他、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、アルキド樹脂、ポリウレタン、ポリイミド等の熱硬化性樹脂;ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、テフロン(登録商標)、ABS樹脂、AS樹脂、アクリル樹脂等の熱可塑性樹脂等が挙げられる。
 本実施形態の第2ラジカル重合性樹脂組成物が光ラジカル重合開始剤(D-22)を含有する場合には、光硬化のタイミングとしては、第2ラジカル重合性樹脂組成物を基材に塗布した後に光硬化させる方法や、第2ラジカル重合性樹脂組成物を予め予備重合(Bステージ化あるいはプリプレグ化ともいう)したシートを作製し、そのシートを基材に張り付けてから光硬化させる方法などがある。
 光源としては、光ラジカル重合開始剤(D-22)の感光波長域に分光分布を有する光源であれば良く、例えば、太陽光、紫外線ランプ、近赤外ランプ、ナトリウムランプ、ハロゲンランプ、蛍光灯、メタルハライドランプ、LEDなどを使用することができる。また、2種以上の光ラジカル重合開始剤(D-22)を併用し、光源に波長カットフィルターを使用したり、LEDの特定波長を利用したりして、予備重合と本重合に必要な波長を使い分けることもできる。予備重合に使用する波長は、エネルギーレベルの低い長波長が望ましく、特に近赤外光を使用すると重合度を制御しやすい。本実施形態においては、紫外光(紫外線)とは280~380nm、可視光(可視線)とは380~780nm、近赤外光(近赤外線)とは780~1200nmの波長領域の光線を指す。予備重合に必要なランプの照射時間は、光源の有効波長域、出力、照射距離、組成物の厚さ等が影響するため一概に規定できないが、例えば0.01時間以上、好ましくは0.05時間以上照射すれば良い。
[凹部充填法(凹部へのモルタル充填工法)]
 本実施形態の凹部充填法、あるいは凹部へのモルタル充填工法は、充填が必要とされる土木工事、建築工事において広く用いることができる。また、凹部を構成する素材としては、コンクリート製部材と、金属製部材と、樹脂製部材のいずれか1つ以上を含む構造物であればよい。また、凹部は、材料の収縮を考えた際、10cm角の立方体が最も適当であるため、例示しているにすぎず、その形状は、立方体であっても、直方体であっても、球状であっても、円錐体であっても良い。
 本実施形態に係る凹部が発生する構造物として、材質を問わなく、例えば、トンネル、マンホール、水路、管路、ガードレール、標識、アンカーボルト、ロックボルト、鉄筋構造物などが挙げられる。あるいは、過去に補修した部分における再補修箇所で、セメントコンクリートでの補修箇所、ポリマーセメントモルタルでの補修箇所、エポキシ樹脂モルタルやウレタン樹脂での補修箇所、鉄板補強部などが挙げられる。
 本実施形態の凹部充填法、あるいは凹部へのモルタル充填工法のその他の一実施形態は、凹部の表面に第1ラジカル重合性樹脂組成物を塗布し、下地層を形成する下地層形成工程と、前記凹部の表面に形成された前記下地層の表面に、第2ラジカル重合性樹脂組成物を充填する充填工程とを有する。
 本実施形態の凹部充填法、あるいは凹部へのモルタル充填工法のその他の一実施形態は、凹部の表面に第1ラジカル重合性樹脂組成物を一部あるいは全部に塗布する工程と、第2ラジカル重合性樹脂組成物を充填する工程と、第1ラジカル重合性樹脂組成物及び第2ラジカル重合性樹脂組成物を硬化する工程と、を有する。
 本実施形態の凹部充填法、あるいは凹部へのモルタル充填工法の一実施形態は、凹部の表面に第1ラジカル重合性樹脂組成物を一部あるいは全部に塗布する工程と、第1ラジカル重合性樹脂組成物を硬化し、凹部の表面に第1ラジカル重合性樹脂組成物の硬化物層を形成する工程と、第1ラジカル重合性樹脂組成物の硬化物層を有する凹部に、第2ラジカル重合性樹脂組成物を充填する工程と、第2ラジカル重合性樹脂組成物を硬化する工程と、を有してもよい。
 また、本実施形態の凹部充填法、あるいは凹部へのモルタル充填工法のその他の一実施形態は、凹部の表面に第1ラジカル重合性樹脂組成物を一部あるいは全部に塗布する工程と、第1ラジカル重合性樹脂組成物を乾燥若しくは半硬化し、凹部の表面に第1ラジカル重合性樹脂組成物層若しくは半硬化層を形成する工程と、第1ラジカル重合性樹脂組成物層若しくは半硬化層を有する凹部に、第2ラジカル重合性樹脂組成物を充填する工程と、第1ラジカル重合性樹脂組成物及び第2ラジカル重合性樹脂組成物を硬化する工程と、を有してもよい。
 また、本実施形態の凹部充填法、あるいは凹部へのモルタル充填工法のその他の一実施形態は、凹部の表面に第1ラジカル重合性樹脂組成物を一部あるいは全部に塗布する工程と、第2ラジカル重合性樹脂組成物を充填する工程と、第1ラジカル重合性樹脂組成物及び第2ラジカル重合性樹脂組成物を硬化する工程と、を有してもよい。
 前記凹部が、例えば、ボルトボックスである場合、上記凹部充填法でボルトボックス充填を行ることができる。
 例えば、ボルトボックス充填法は、ボルトボックスの表面に前記第1ラジカル重合性樹脂組成物を塗布し、下地層を形成する下地層形成工程と、前記ボルトボックスの表面に形成された前記下地層の表面に、前記第2ラジカル重合性樹脂組成物を充填する充填工程とを有してもよい。
 以下、実施例により本発明をさらに詳細に説明するが、本発明は実施例によって何ら限定されるものではない。
 実施例及び比較例における各第1ラジカル重合性樹脂組成物及び第2ラジカル重合性樹脂組成物の製造に用いた原料は以下のとおりである。
<第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)>
(合成例1)
[ラジカル重合性化合物(A-i)の合成及び第1ラジカル重合性不飽和単量体(B-1)との混合]
 撹拌機、還流冷却管、気体導入管及び温度計を備えた容量1Lの4つ口セパラブルフラスコに、SR-16H(阪本薬品工業社製 1,6-ヘキサンジオールジグリシジルエーテル;エポキシ当量157)386.3g、メチルハイドロキノン0.30g、2,4,6-トリス(ジメチルアミノメチル)フェノール(「セイクオールTDMP」、精工化学株式会社製)を1.80g入れて110℃まで昇温した。メタクリル酸211.6gを約30分かけて滴下した後、130℃に昇温し、酸価が20mg/KOHgとなるまで、約4時間反応させて、ラジカル重合性化合物(A-i)であるビニルエステル樹脂を合成した。
 次いで、第1ラジカル重合性不飽和単量体(B-1)としてジシクロペンテニルオキシエチルメタクリレート(「FA-512MT」、日立化成株式会社製)400.0gを加えることで、25℃での粘度が250mPa・s、ラジカル重合性化合物(A-i)成分比率が60質量%のノンスチレン型の混合物1000.0gを得た。
[ラジカル重合性化合物(A-ii)]
 ビニルエステル樹脂として、リポキシ(登録商標)R-806(昭和電工株式会社製、第1ラジカル重合性不飽和単量体(B-1)としてスチレン含有量45質量%)を用いた。
<第1ラジカル重合開始剤(D-1)>
 熱ラジカル重合開始剤(D-i)として、パークミル(登録商標)H-80(クメンヒドロペルオキシド(CHP)、日油株式会社製)を用いた。
 熱ラジカル重合開始剤(D-ii)として、パーメック(登録商標)N(メチルエチルケトンパーオキサイド、日油株式会社製)を用いた。
 熱ラジカル重合開始剤(D-iii)として、パークミル(登録商標)P(ジイソプロピルベンゼンハイドロパーオキサイド、日油株式会社製)を用いた。
<第1金属含有化合物(E-1)>
 金属石鹸(E-i)としてオクチル酸マンガン(東栄化工株式会社製、ヘキソエートマンガン、製品全量中のマンガンの含有量6質量%、分子量341.35)を用いた。
 金属石鹸(E-ii)としてオクチル酸コバルト(東栄化工株式会社製、ヘキソエートコバルト、製品全量中のコバルトの含有量8質量%、分子量345.34)を用いた。
<第1チオール化合物(F-1)>
 2級チオール化合物(F-i)として、2官能2級チオールである、昭和電工株式会社製、カレンズMT(登録商標)BD1(1,4-ビス(3-メルカプトブチリルオキシ)ブタン、分子量299.43)を用いた。
<第1重合禁止剤H-1>
 重合禁止剤(H-i)として、ターシャリーブチルカテコール(東京化成工業株式会社製)を用いた。
<第1硬化遅延剤(I-1)>
 第1硬化遅延剤(I-i)として、4-H-TEMPO(伯東株式会社製、ポリストップ7300P、4-ヒドロキシ-2,2,6,6-テトラメチルピぺリジン-1-オキシル フリーラジカル)を用いた。
<第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)>
(合成例2)
[ラジカル重合性化合物(A-iii)の合成及び第2ラジカル重合性不飽和単量体(B-2)との混合]
 撹拌機、還流冷却管、気体導入管及び温度計のついた容量1Lの四つ口セパラブルフラスコに、ビスフェノールA型エポキシ樹脂(「エポミック(登録商標)R140P」、三井化学株式会社製;エポキシ当量188)179.0g、デナコールEX-212(ナガセケムテックス株式会社製 1,6-ヘキサンジオールジグリシジルエーテル;エポキシ当量150)214.2g、メチルハイドロキノンを0.30g、DMP-30(東京化成工業社製:2,4,6-トリス(ジメチルアミノメチル)フェノール)1.80gを添加し、110℃まで昇温した。110℃まで昇温後、メタクリル酸(三菱レイヨン株式会社製)204.7gを約30分かけて滴下後、130℃に昇温し、酸価が14mg/KOHgとなるまで、約4時間反応させて、ラジカル重合性化合物(A-iii)であるビニルエステル樹脂を合成した。
 次いで、第2ラジカル重合性不飽和単量体(B-2)として、ジシクロペンテニルオキシエチルメタクリレ-ト(日立化成株式会社製、FA-512MT)を300.0g、ジシクロペンタニルメタクリレート(日立化成株式会社製、FA-513M)を100.0g加えることで、25℃での粘度が280mPa・s、ラジカル重合性化合物(A-iii)成分比率が60質量%のノンスチレン型の混合物1000.0gを得た。
[ラジカル重合性化合物(A-iv)]
 不飽和ポリエステル樹脂として、リゴラック(登録商標)SR-110N(昭和電工株式会社、第2ラジカル重合性不飽和単量体(B-2)としてスチレン含有量40質量%)を用いた。
(合成例3)
[ラジカル重合性化合物(A-v)の合成及び第2ラジカル重合性不飽和単量体(B-2)との混合]
 撹拌機、還流冷却管、気体導入管及び温度計のついた容量1Lの四つ口セパラブルフラスコに、ジフェニルメタンジイソシアネート(ミリオネートMT 東ソー株式会社製)170.44g、アデカポリエーテルP-400(ポリエーテルジオール 株式会社ADEKA製)136.35g、重合禁止剤としてジブチルヒドロキシトルエン(BHT 東京化成工業株式会社製):0.11g、ジブチル錫ジラウレート(共同薬品株式会社製 KS-1260):0.02g添加し、60℃で3時間反応させた。次いで、その反応物に2-ヒドロキシエチルメタクリレート(2-HEMA 日本触媒株式会社製)93.08gを30分かけて滴下しながら撹拌し、滴下終了後約3時間反応させて、ラジカル重合性化合物(A-v)であるウレタンメタクリレート樹脂を合成した。
 次いで、第2ラジカル重合性不飽和単量体(B-2)として、ジシクロペンテニルオキシエチルメタクリレ-ト(日立化成株式会社製、FA-512MT):600.0gを加えることで、25℃での粘度が420mPa・sのラジカル重合性化合物(A-v)成分比率が40質量%のノンスチレン型の混合物1000.0gを得た。
(合成例4)
[ラジカル重合性化合物(A-vi)の合成及び第2ラジカル重合性不飽和単量体(B-2)との混合]
 撹拌機、還流冷却管、気体導入管及び温度計のついた容量1Lの四つ口セパラブルフラスコに、ジフェニルメタンジイソシアネート(ミリオネートMT 東ソー株式会社製)140.95g、アクトコールD-1000(ポリプロピレングリコール 三井化学株式会社製)281.91g、重合禁止剤としてジブチルヒドロキシトルエン(BHT 東京化成工業株式会社製):0.15g、ジオクチル錫ジラウレート(日東化成株式会社製 ネオスタンU-810):0.03g添加し、70℃で2時間反応させた。次いで、その反応物に2-ヒドロキシエチルメタクリレート(2-HEMA 日本触媒株式会社製)76.96gを30分間かけて滴下しながら撹拌し、滴下終了後約3時間反応させて、ラジカル重合性化合物(A-vi)であるウレタンメタクリレート樹脂を合成した。
 次いで、第2ラジカル重合性不飽和単量体(B-2)として、フェノキシエチルメタクリレート(ライトエステルPO 共栄社化学株式会社製):150.0g、ジシクロペンテニルオキシエチルメタクリレ-ト(FA-512MT、日立化成株式会社製):350.0gを加えることで、25℃での粘度が570mPa・sのラジカル重合性化合物(A-vi)成分比率が50質量%のノンスチレン型の混合物1000.0gを得た。
(合成例5)
[ラジカル重合性化合物(A-vii)及び第2ラジカル重合性不飽和単量体(B-2)との混合]
 撹拌機、還流冷却管、気体導入管及び温度計のついた容量1Lの四つ口セパラブルフラスコに、ジフェニルメタンジイソシアネート(ミリオネートMT 東ソー株式会社製)135.72g、アデカポリエーテルP-400(ポリエーテルジオール 株式会社ADEKA製)54.28g、アクトコールD-1000(ポリプロピレングリコール 三井化学株式会社製)135.72g、重合禁止剤としてジブチルヒドロキシトルエン(BHT 東京化成工業株式会社製):0.15g、ジオクチル錫ジラウレート(日東化成株式会社製 ネオスタンU-810):0.03g添加し、70℃で2時間反応させた。次いで、その反応物に2-ヒドロキシエチルメタクリレート(2-HEMA 日本触媒株式会社製)74.10gを30分間かけて滴下しながら撹拌し、滴下終了後約3時間反応させて、ラジカル重合性化合物(A-vii)であるウレタンメタクリレート樹脂を合成した。
 次いで、第2ラジカル重合性不飽和単量体(B-2)として、ラウリルメタクリレート(ライトエステルL 共栄社化学株式会社製):150.0g、ジシクロペンテニルオキシエチルメタクリレ-ト(FA-512MT、日立化成株式会社製):450.0gを加えることで、25℃での粘度が320mPa・sのラジカル重合性化合物(A-vii)成分比率が40質量%のノンスチレン型の混合物1000.0gを得た。
<第2ラジカル重合開始剤(D-2)>
 熱ラジカル重合開始剤(D-i)として、パークミル(登録商標)H-80(クメンヒドロペルオキシド(CHP)、日油株式会社製)を用いた。
 熱ラジカル重合開始剤(D-ii)として、パーメック(登録商標)N(メチルエチルケトンパーオキサイド、日油株式会社製)を用いた。
 熱ラジカル重合開始剤(D-iii)として、パークミル(登録商標)P(ジイソプロピルベンゼンハイドロパーオキサイド、日油株式会社製)を用いた。
<第2金属含有化合物(E-2)>
 金属石鹸(E-i)としてオクチル酸マンガン(東栄化工株式会社製、ヘキソエートマンガン、製品全量中のマンガンの含有量6質量%、分子量341.35)を用いた。
 金属石鹸(E-ii)としてオクチル酸コバルト(東栄化工株式会社製、ヘキソエートコバルト、製品全量中のコバルトの含有量8質量%、分子量345.34)を用いた。
<第2チオール化合物(F-2)>
 2級チオール化合物(F-i)として、2官能2級チオールである、昭和電工株式会社製、カレンズMT(登録商標)BD1(1,4-ビス(3-メルカプトブチリルオキシ)ブタン、分子量299.43)を用いた。
<第2重合禁止剤(H-2)>
 重合禁止剤(H-i)として、ターシャリーブチルカテコール(東京化成工業株式会社製)を用いた。
 重合禁止剤(H-ii)として、2,6-ジ-tert-ブチル-4-メチルフェノール(東京化成工業株式会社製)を用いた。
<第2硬化遅延剤(I-2)>
 第2硬化遅延剤(I-i)として、4-H-TEMPO(伯東株式会社製、ポリストップ7300P、4-ヒドロキシ-2,2,6,6-テトラメチルピぺリジン-1-オキシル フリーラジカル)を用いた。
<膨張材(J)>
 膨張材(J-i)として、デンカパワーCSA タイプS(生石灰-エトリンガイト複合系膨張材、デンカ製)を用いた。
 膨張材(J-ii)として、N-EX(生石灰系膨張材、太平洋マテリアル株式会社製)を用いた。
<骨材(K)>
  9号珪砂
  炭酸カルシウム TM-2
  パーライト FL-0号
  ハードライト B-04
  遠州5.5号珪砂
  N50 珪砂
  N40 珪砂
<繊維(L)>
 ケミベスト(登録商標)FDSS-5(三井化学ファイン(株)製、ポリオレフィン製の多分岐繊維)
(実施例1~6、比較例1~2)
「第1ラジカル重合性樹脂組成物の調整」
(1)樹脂調整工程(1-S1):
 第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の混合物に、表1に示した配合量において、第1金属含有化合物(E-1)、第1チオール化合物(F-1)、第1重合禁止剤(H-1)、第1硬化遅延剤(I-1)をよく混合し、混合物(1-i)を調製した。
(2)酸性化合物混合工程(1-S2):
 工程(1-S1)で得られた混合物(1-i)に、表1に示した配合量において、酸性化合物(C)を混合することでを混合し、混合物(1-ii)を調製した。
(3)硬化剤混合工程(1-S3):
 工程(1-S2)で得られた混合物(1-ii)に、表1に示した配合量において、第1ラジカル重合開始剤(D-1)を混合し、第1ラジカル重合性樹脂組成物(硬化性プライマー)を調製した。
 表1に示す実施例1~6、比較例1~2の各原料の配合量で、上記方法で得られた第1ラジカル重合性樹脂組成物PC-1~PC-6、cPC-1~cPC-2では、下記方法にしたがって各種評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
「第2ラジカル重合性樹脂組成物の調整」
(1)樹脂調整工程(2-S1):
 第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)に、表1に示した配合量において、第2金属含有化合物(E-2)、第2チオール化合物(F-2)、第2重合禁止剤(H-2)、第2硬化遅延剤(I-2)をよく混合し、混合物(2-i)を調製した。
(2)硬化剤混合工程(2-S2):
 工程(2-S1)で得られた混合物(2-i)に、表1に示した配合量において、第2ラジカル重合開始剤(D-2)を混合し、混合物(2-ii)を調製した。
(3)骨材混合工程(2-S3):
 工程(2-S2)で得られた混合物(2-ii)に、表1に示した各成分及び配合量において、膨張材(J)、骨材(K)、繊維(L)をよく混合し、本実施例の第2ラジカル重合性樹脂組成物を得た。
 各工程での混合条件は以下のとおりである。
  攪拌機:HOMOGENIZING DISPER Model 2.5(プライミクス社製)
  攪拌回転速度:1000~5000rpm
  温度:25℃
 表2に示す実施例7~16、比較例3~4の各原料の配合量で、上記方法で得られた第2ラジカル重合性樹脂組成物RC-1~RC-10、cRC-1~cRC-2では、下記方法にしたがって各種評価を行った。結果を表2に示す。 
Figure JPOXMLDOC01-appb-T000004
<硬化性試験(ゲル化時間、硬化時間、及び硬化温度の測定)>
 表1に記載された実施例1~6、および比較例1~2の第1ラジカル重合性樹脂組成物PC-1~PC-6、cPC-1~cPC-2を25℃の条件下で試験管(外径18mm、長さ165mm)に底から100mmまで入れ、熱電対を用いて温度を測定した。
 ラジカル重合性樹脂組成物の温度が25℃から30℃になるまでにかかった時間をゲル化時間とした。また、25℃からラジカル重合性樹脂組成物が最高発熱温度に到達するまでの時間を硬化時間、最高発熱温度を硬化温度と定義し、JIS K 6901:2008に準じて測定した。
 なお、ラジカル重合性樹脂組成物は、測定前の段階で予め25℃に調整されている。結果を表1に示す。
<付着強さ試験>
 300mm×300mm×5mmのステンレス板(SUS304)の上面に、実施例1~6と比較例1~2で得られた第1ラジカル重合性樹脂組成物(硬化性プライマー)を刷毛で150g/m塗布し、温度25℃、湿度50%にて1日間養生し、その後付着強さ試験を行った。付着強さ試験は、Elcometer社製106プルオフ式付着性試験機を用いて各試験体の付着強さ試験を行い、3つの試験体の平均値を結果として示した。付着強さ試験は、躯体への接着性の観点から、付着強度1.0N/mm以上を「〇」、付着強度1.0N/mm未満を「×」と評価した。結果を表1に示す。
<粘度測定>
 樹脂粘度はE型粘度計 RE85U(東機産業株式会社製)、コーンプレート1°34’×R24(標準)を用いて25℃、50rpmにて測定した。結果を表1に示す。
<圧縮強度試験>
 表2に記載された実施例7~16、および比較例3~4の第2ラジカル重合性樹脂組成物(樹脂モルタル組成物)RC-1~RC-10、cRC-1~cRC-2それぞれについて、下記方法にしたがって圧縮強度値の評価を行った。結果を表2に示す。
 圧縮強度試験用の供試体は、JIS A 1132:2020に準拠して作製した。 また、供試体の寸法は直径50mmで、高さ100mmとし、供試体作製用に用いた型は鋼鉄製の型を用いた。試験の装置は島津コンクリート圧縮強度試験機「CCM-1000kNI」(島津製作所製)を用いて、各供試体を作製してから、養生6時間、1日、3日、7日に試験を実施した。
<硬化収縮の測定方法> 
 本実施形態の第2ラジカル重合性樹脂組成物の硬化物に対して、硬化後の収縮・膨張率(変化率:負数が収縮率、正数が膨張率である)を、日本規格JIS A 1129-3(ダイヤルゲージ法)に準拠して測定した。成形体(硬化物)の作製方法は、日本規格JIS A 1129の付属書Aを参照にして成形を行った。型枠は日本規格JIS R 5201に規定する40×40×160mmの供試体用の型枠を使用した。硬化物の供試体は、JIS R 5201の10に規定する強さ試験用の供試体の作り方によって成形し、成形後は型枠のまま、温度23℃±2℃、湿度50%の室内で静置(養生)し、成形後約24時間で脱型した。そして、JIS A 1129-3の3に示された器具を用いて、JIS A 1129-3の4.3に示された条件で測定をスタートした(時間を0とする)。
 変化量(負数:収縮量、正数:膨張量)=経過時の長辺長さ ― スタート時(0時)の長辺長さ(160mm)   (1)
 変化率(負数:収縮率、正数:膨張率)=変化量/スタート時(0時)の長辺長さ(160mm)  (2)
 結果を表2に示す。
<第1ラジカル重合性化合物と第2ラジカル重合性組成物の組合せ>
 以下、第1ラジカル重合性化合物と第2ラジカル重合性組成物の組み合わせた試験方法と結果について記載する。
(実施例17~23、比較例5~6)
<5面拘束試験について>
 5面拘束試験に使用するコンクリート製の型は、近江化学商事株式会社(アールデ)のゼロキューブL(10cm×10cm×高さ9cm)を用いた。なお、園芸用の植木鉢に使用する鉢なので、底面に直径2cm程度の穴があいている。
 下記に示す単純な5面拘束試験を実施する場合は、適当なコンクリートの板を使って、底の穴をふさいでから使用する。
 得られた第1ラジカル重合性樹脂組成物(プライマー組成物)PC-1、PC-2、PC-4、PC-6、cPC-1と、第2ラジカル重合性樹脂組成物(樹脂モルタル組成物)RC-1、RC-2,RC-7,RC-8,RC-9,RC-10,cRC-1を用いた。まず、上記コンクリート製の方の内壁に第1ラジカル重合性樹脂組成物を塗布量0.3kg/mで塗布した。次いで、第2ラジカル重合性樹脂組成物を隙間なく詰めて、25℃、24時間養生し、試験体を作製した。下記評価基準に従って、試験体を評価した。次に、乾湿繰り返し試験として、乾燥条件(温度15℃、湿度60%を4日間)と湿潤条件(温度60℃、湿度90%を3日間)を1サイクルとして、30サイクル繰り返した後の試験体を、下記評価基準に従って、評価した。同様にして、温冷繰り返し試験として、水没条件(温度25℃、水中養生を18時間)と冷却条件(温度-20℃を3時間)と加熱条件(温度50℃を3時間)を1サイクルとして、30サイクル繰り返した後の試験体を、下記評価基準に従って、評価した。
 表3に示す各実施例17~23及び比較例5~6の組み合わせについて、上記方法にしたがって、5面拘束試験の評価を行った。評価基準を以下に示す。
 なお、ひび割れと剥がれは目視で確認し、浮きは打音検査を実施し、音の高低で判断する。(浮いている場合、打音時に高音になる。)
  ○:樹脂モルタルが密着した5面に対して接着した状態が続き、コンクリート製構造物側にひび割れ、浮きがないこと。また、樹脂モルタルとプライマーの側に剥がれが見られないこと
  △:樹脂モルタルが密着した5面に対して接着した状態が続いているが、コンクリート製構造物側の1面にひび割れや浮きが見られること
  ×:5面拘束(接着)のうち、2面以上でひび割れ、浮きが見られること。また、1面以上で剥がれが見られること
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
(鉄筋引抜き試験)
「供試体の作製方法」
 図1に示すように、JSTM C 2101T(引抜き試験による鉄筋とコンクリートとの付着強度試験方法)に準じて、一辺が10cmの型枠(2)を準備した。前記第1ラジカル重合性の組成物(硬化性プライマー)(3a)を塗布した異形鉄筋(1)D16を型枠(2)内に配置した。その状態で、前記第2ラジカル重合性組成物(4a)を型枠(2)内に隙間なく詰めた。
 養生24時間後に型枠(2)を除去し、供試体を得た。得られた供試体について、下記の評価方法、評価基準に従って鉄筋引き抜き試験を行った。同様にして、乾湿繰り返し試験として、乾燥条件(温度15℃、湿度60%を4日間)と湿潤条件(温度60℃、湿度90%を3日間)を1サイクルとして、30サイクル繰り返した後の供試体についても、鉄筋引き抜き試験を行った。また、温冷繰り返し試験として、水没条件(温度25℃、水中養生を18時間)と冷却条件(温度-20℃を3時間)と加熱条件(温度50℃を3時間)を1サイクルとして、30サイクル繰り返した後の供試体についても、鉄筋引き抜き試験を行った。
「試験装置」
 株式会社前川試験機製作所のアムスラー万能試験機(MRタイプ)を用いて測定を実施した。
「試験方法」
 JSTM C 2101Tにより引張荷重を測定し、付着応力度を以下の式(3)により算定した。なお、付着応力度の算定に用いる引張荷重は、自由端のすべり量が0.002D(Dは鉄筋径)の時の測定値を採用した。
  γ=P/(4πD)×α   (3)
  γ:付着応力度(N/mm
  P:引張荷重(N)
  D:鉄筋の直径(公称直径;D16の場合、16mm)
  α:コンクリートの圧縮強度に対する補正計数(30/σc)
  σc:同時に作製した円柱供試体の圧縮強度(N/mm
「試験結果の評価方法」
 JSTM C 2101Tの合格値とされている鉄筋のすべり量0.002D(=0.032mm)の際の付着応力度 2.0N/mm以上を〇とした。2.0N/mm未満は×とした。また、最大付着応力度は数値で示した。結果を表3に示す。
 なお、上記穴埋め工法では、ボルトボックスの穴埋め材として記述したが、応用として、ボックスカルバートや水路などのコンクリート構造物等の欠損部の補修用工法にも適用できる。
1…鉄筋
2…型枠
3a…第1ラジカル重合性組成物
3b…第1ラジカル重合性組成物の硬化物
4a…第2ラジカル重合性組成物
4b…第2ラジカル重合性組成物の硬化物
5…容器

Claims (14)

  1.  第1ラジカル重合性樹脂組成物と第2ラジカル重合性樹脂組成物とからなる凹部充填材キットであって、
     前記第1ラジカル重合性樹脂組成物は、第1ラジカル重合性化合物(A-1)と、第1ラジカル重合性不飽和単量体(B-1)と、酸性化合物(C)と、第1ラジカル重合開始剤(D-1)とを含有し、
     前記第2ラジカル重合性樹脂組成物は、第2ラジカル重合性化合物(A-2)と、第2ラジカル重合性不飽和単量体(B-2)と、第2ラジカル重合開始剤(D-2)と、膨張材(J)と、骨材(K)とを含有することを特徴とする凹部充填材キット。
  2.  前記骨材(K)の含有量は、前記第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、200質量部~900質量部である請求項1に記載の凹部充填材キット。
  3.  前記第1ラジカル重合性化合物(A-1)及び前記第2ラジカル重合性化合物(A-2)が、それぞれ独立して、ビニルエステル樹脂を含む請求項1又は2に記載の凹部充填材キット。
  4.  前記膨張材(J)が生石灰及びカルシウムサルフォアルミネートからなる群から選択される少なくとも1種を含む請求項1~3のいずれか1項に記載の凹部充填材キット。
  5.  前記第1ラジカル重合開始剤(D-1)及び前記第2ラジカル重合開始剤(D-2)が、それぞれ独立して、ヒドロペルオキシドである請求項1~4のいずれか1項に記載の凹部充填材キット。
  6.  前記第1ラジカル重合性樹脂組成物が、更に第1金属含有化合物(E-1)と第1チオール化合物(F-1)とを含有し、
     前記第2ラジカル重合性樹脂組成物が、更に第2金属含有化合物(E-2)と第2チオール化合物(F-2)とを含有する請求項1~5のいずれか1項に記載の凹部充填材キット。
  7.  前記第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、前記膨張材(J)が0.3質量部~30質量部である請求項1~6のいずれか1項に記載の凹部充填材キット。
  8.  前記第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の合計100質量部に対して、前記第1ラジカル重合開始剤(D-1)が0.1質量部~10質量部であり、
     前記第2ラジカル重合性化合物(A-2)及び第2ラジカル重合性不飽和単量体(B-2)の合計100質量部に対して、前記第2ラジカル重合開始剤(D-2)が0.1質量部~10質量部である請求項1~7のいずれか1項に記載の凹部充填材キット。
  9.  前記第1ラジカル重合性樹脂組成物において、第1ラジカル重合性化合物(A-1)及び第1ラジカル重合性不飽和単量体(B-1)の合計100質量部に対して、前記酸性化合物(C)が1~20質量部である請求項1~8のいずれか1項に記載の凹部充填材キット。
  10.  前記酸性化合物(C)が不飽和一塩基酸である請求項1~9のいずれか1項に記載の凹部充填材キット。
  11.  前記第1ラジカル重合開始剤(D-1)が紫外光から可視光領域まで感光性を有する光ラジカル重合開始剤である請求項1~10のいずれか1項に記載の凹部充填材キット。
  12.  請求項1~11のいずれか1項に記載の凹部充填材キットの硬化物であって、
     凹部の表面に、前記第1ラジカル重合性樹脂組成物の硬化物である第1硬化物が形成され、前記第1硬化物の表面に前記第2ラジカル重合性樹脂組成物の第2硬化物が形成されていることを特徴とする凹部充填材の硬化物。
  13.  請求項1~11のいずれか1項に記載の凹部充填材キットを用いて、凹部を充填する凹部充填法であって、
     凹部の表面に前記第1ラジカル重合性樹脂組成物を塗布し、下地層を形成する下地層形成工程と、
     前記凹部の表面に形成された前記下地層の表面に、前記第2ラジカル重合性樹脂組成物を充填する充填工程と含むことを特徴とする凹部充填法。
  14.  前記凹部がボルトボックスである請求項13に記載の凹部充填法。
PCT/JP2022/018284 2021-04-23 2022-04-20 凹部充填材キット、その硬化物及び凹部充填法 WO2022224988A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22791759.8A EP4328206A1 (en) 2021-04-23 2022-04-20 Recess filling material kit, cured product of same, and recess filling method
CN202280015663.3A CN116917249A (zh) 2021-04-23 2022-04-20 凹部填充材料套件、其固化物及凹部填充法
JP2023515496A JP7439991B2 (ja) 2021-04-23 2022-04-20 凹部充填材キット、その硬化物及び凹部充填法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-073533 2021-04-23
JP2021073533 2021-04-23

Publications (1)

Publication Number Publication Date
WO2022224988A1 true WO2022224988A1 (ja) 2022-10-27

Family

ID=83722326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018284 WO2022224988A1 (ja) 2021-04-23 2022-04-20 凹部充填材キット、その硬化物及び凹部充填法

Country Status (4)

Country Link
EP (1) EP4328206A1 (ja)
JP (1) JP7439991B2 (ja)
CN (1) CN116917249A (ja)
WO (1) WO2022224988A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222282A (ja) 1992-02-12 1993-08-31 Nippon Oil & Fats Co Ltd 低収縮性不飽和ポリエステル樹脂組成物
JP2700609B2 (ja) 1993-11-25 1998-01-21 鹿島建設株式会社 プレキャストコンクリート部材の接合凹部へのモルタル充填工法
JP2794802B2 (ja) 1989-07-04 1998-09-10 日本油脂株式会社 低収縮性不飽和ポリエステル樹脂組成物
JPH11315198A (ja) 1998-03-02 1999-11-16 Hitachi Chem Co Ltd 低収縮性不飽和ポリエステル樹脂組成物の製造法
JP2001270765A (ja) 2000-03-29 2001-10-02 Fujikawa Kenzai Kogyo Kk ボルトボックス穴埋め工法用無収縮短繊維混入中軽量セメントモルタル、及び無収縮短繊維混入中軽量セメントモルタルを用いたボルトボックス穴埋め工法
JP3479819B2 (ja) 1995-10-12 2003-12-15 株式会社ブリヂストン Rcセグメントボルトボックス閉塞構造物
WO2019021560A1 (ja) * 2017-07-27 2019-01-31 昭和電工株式会社 構造物の表面被覆工法
JP2019026789A (ja) * 2017-08-02 2019-02-21 旭化成株式会社 建築構造物用固着剤
JP2019052203A (ja) 2017-09-13 2019-04-04 日米レジン株式会社 エポキシ樹脂モルタル及びエポキシ樹脂の混合方法
WO2020066363A1 (ja) * 2018-09-27 2020-04-02 昭和電工株式会社 構造物の補修方法
JP2020094192A (ja) 2018-12-10 2020-06-18 Dic株式会社 エポキシ樹脂用硬化剤これを含む樹脂組成物、及びエポキシ樹脂モルタル
JP2021073533A (ja) 2012-10-17 2021-05-13 ブリエン ホールデン ビジョン インスティテュートBrien Holden Vision Institute 屈折異常用のレンズ、デバイス、方法、及びシステム
WO2021132139A1 (ja) * 2019-12-26 2021-07-01 昭和電工株式会社 ラジカル重合性樹脂組成物及びその硬化物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171150A1 (ja) * 2015-04-21 2016-10-27 昭和電工株式会社 ラジカル重合性含水樹脂組成物、その硬化方法、及びラジカル重合性含水樹脂組成物の製造方法
CN107428855B (zh) * 2015-04-21 2019-03-15 昭和电工株式会社 自由基聚合性树脂组合物、其固化方法、其制造方法、自由基聚合性树脂组合物的用途及其使用方法
CN109863179B (zh) * 2016-10-26 2021-11-16 昭和电工株式会社 自由基聚合性树脂组合物

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794802B2 (ja) 1989-07-04 1998-09-10 日本油脂株式会社 低収縮性不飽和ポリエステル樹脂組成物
JPH05222282A (ja) 1992-02-12 1993-08-31 Nippon Oil & Fats Co Ltd 低収縮性不飽和ポリエステル樹脂組成物
JP2700609B2 (ja) 1993-11-25 1998-01-21 鹿島建設株式会社 プレキャストコンクリート部材の接合凹部へのモルタル充填工法
JP3479819B2 (ja) 1995-10-12 2003-12-15 株式会社ブリヂストン Rcセグメントボルトボックス閉塞構造物
JPH11315198A (ja) 1998-03-02 1999-11-16 Hitachi Chem Co Ltd 低収縮性不飽和ポリエステル樹脂組成物の製造法
JP2001270765A (ja) 2000-03-29 2001-10-02 Fujikawa Kenzai Kogyo Kk ボルトボックス穴埋め工法用無収縮短繊維混入中軽量セメントモルタル、及び無収縮短繊維混入中軽量セメントモルタルを用いたボルトボックス穴埋め工法
JP2021073533A (ja) 2012-10-17 2021-05-13 ブリエン ホールデン ビジョン インスティテュートBrien Holden Vision Institute 屈折異常用のレンズ、デバイス、方法、及びシステム
WO2019021560A1 (ja) * 2017-07-27 2019-01-31 昭和電工株式会社 構造物の表面被覆工法
JP2019026789A (ja) * 2017-08-02 2019-02-21 旭化成株式会社 建築構造物用固着剤
JP2019052203A (ja) 2017-09-13 2019-04-04 日米レジン株式会社 エポキシ樹脂モルタル及びエポキシ樹脂の混合方法
WO2020066363A1 (ja) * 2018-09-27 2020-04-02 昭和電工株式会社 構造物の補修方法
JP2020094192A (ja) 2018-12-10 2020-06-18 Dic株式会社 エポキシ樹脂用硬化剤これを含む樹脂組成物、及びエポキシ樹脂モルタル
WO2021132139A1 (ja) * 2019-12-26 2021-07-01 昭和電工株式会社 ラジカル重合性樹脂組成物及びその硬化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKESHI ENDO: "Possibility to Avoid Shrinkage during Polymerization", KOBUNSHI, vol. 27, 1978, pages 108 - 111

Also Published As

Publication number Publication date
JP7439991B2 (ja) 2024-02-28
EP4328206A1 (en) 2024-02-28
CN116917249A (zh) 2023-10-20
JPWO2022224988A1 (ja) 2022-10-27

Similar Documents

Publication Publication Date Title
US9969836B2 (en) Radical-polymerizable resin composition, curing method thereof, method of producing same, use of radical-polymerizable resin composition, and use method of thereof
CN109863179B (zh) 自由基聚合性树脂组合物
JP7164522B2 (ja) ラジカル重合性樹脂組成物及び構造物修復材
JP6690638B2 (ja) ラジカル重合性含水樹脂組成物、その硬化方法、及びラジカル重合性含水樹脂組成物の製造方法
JP6372922B2 (ja) 樹脂組成物、それを用いた被覆工法およびその方法により被覆された被覆構造体
JP2016029125A (ja) 2液硬化型樹脂組成物、被覆材、被覆工法及び被覆構造体
WO2022224988A1 (ja) 凹部充填材キット、その硬化物及び凹部充填法
WO2022224989A1 (ja) 凹部充填材キット、その硬化物及び凹部充填法
JPWO2020066363A1 (ja) 構造物の補修方法
WO2021132139A1 (ja) ラジカル重合性樹脂組成物及びその硬化物
JP5179696B2 (ja) 低臭気樹脂組成物およびそれを含む被覆材およびそれを用いた被覆工法
JP4314838B2 (ja) 硬化性接着剤及びそれを用いた接着方法
WO2021132140A1 (ja) ラジカル重合性樹脂組成物及びその硬化物
JP2007084601A (ja) 被覆用樹脂組成物
JP4392591B2 (ja) 注型成形用樹脂組成物及び注型成形品
CN113045714B (zh) 低臭气树脂组合物
JP2018072082A (ja) 放射能汚染水の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023515496

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280015663.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022791759

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022791759

Country of ref document: EP

Effective date: 20231123