WO2019021560A1 - 構造物の表面被覆工法 - Google Patents

構造物の表面被覆工法 Download PDF

Info

Publication number
WO2019021560A1
WO2019021560A1 PCT/JP2018/016907 JP2018016907W WO2019021560A1 WO 2019021560 A1 WO2019021560 A1 WO 2019021560A1 JP 2018016907 W JP2018016907 W JP 2018016907W WO 2019021560 A1 WO2019021560 A1 WO 2019021560A1
Authority
WO
WIPO (PCT)
Prior art keywords
radically polymerizable
resin
compound
resin composition
mass
Prior art date
Application number
PCT/JP2018/016907
Other languages
English (en)
French (fr)
Inventor
陽一郎 坂口
広平 斉藤
三浦 賢治
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2019021560A1 publication Critical patent/WO2019021560A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/70Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/71Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being an organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Definitions

  • the present invention relates to a surface covering method of a structure that can be suitably applied to protection and repair of the surface of a building structure or a civil engineering structure, cross-sectional restoration, and the like.
  • the base material surface of the structure is primed in advance, and the base of the base material It is common to make adjustments.
  • the surface of a repair portion of the base material is subjected to polishing, lapping or the like, and then the portion is primed with a primer. Then, after the primer is cured and dried, a paint, mortar, various restorative materials, and the like are applied one on another to form a covering layer.
  • the substrate adjustment not only makes the substrate surface of the structure smooth and homogeneous, and can facilitate subsequent application, but also improves the adhesion between the substrate and the coating layer, and the structure is aged. It is also effective in making it hard and having excellent durability.
  • the surface coating method as described above is susceptible to the external environment such as temperature and humidity.
  • the external environment such as temperature and humidity.
  • the environment of wet environment such as high humidity closed space such as tunnel and water and sewage
  • sufficient adhesion between the substrate and the subbing layer, and subbing layer and the covering layer The strength can not be obtained, and the construction itself may be difficult.
  • the construction period is limited to a short period of time in a structure such as a public facility that is frequently used, such a problem may cause a great deal of damage.
  • Patent Document 1 applies a resin solution that penetrates from the surface of a crack generated in a structure, and is putty-like in which aggregate is mixed before the resin solution is cured.
  • a crack repair method is described that applies a one-part moisture curable adhesive to the outside of the crack opening in a buildup condition. According to this method, it is said that the work efficiency is improved because the aggregate is introduced into the crack as the build-up and coated adhesive penetrates using capillary tension.
  • Patent Document 1 since the adhesive described in Patent Document 1 is moisture-curable, when the base of the structure is in a wet state, the adhesive cures before penetrating into the cracks, resulting in sufficient adhesion. It can not express strength. Moreover, in the said patent document 2, the epoxy resin-type adhesive agent of a 2 liquid type is specifically used as a base
  • the surface coating method can simplify the process of substrate adjustment and shorten the construction period while maintaining sufficient adhesive strength of the coating layer to the base material of the structure without being influenced by humidity change. Is desired.
  • the present invention has been made to solve the above-mentioned problems, and a sufficient covering layer for the substrate of the structure is obtained without being affected by the humidity of the external environment of the structure even with a relatively short curing period.
  • An object of the present invention is to provide a surface covering method of a structure which can obtain adhesive strength.
  • the present invention is based on the finding that in order to improve the adhesion of a coating layer to a substrate of a structure, a substrate conditioner made of a predetermined material is effective even in a wet environment.
  • a surface coating method of a structure comprising at least one type of thiol compound (C) selected from a radically polymerizable compound (A), a metal soap (B), and a secondary thiol compound and a tertiary thiol compound.
  • the substrate controlling material is obtained by mixing the radical polymerizable compound (A) and the metal soap (B), and then adding and mixing the thiol compound (C) to obtain the radical polymerizable resin composition.
  • the surface coating method of the structure as described in said [1] which is prepared by adding and mixing a radical polymerization initiator (D) to (1).
  • the thiol compound (C) has one or more of the structures represented by the following formula (Q-1), and a mercapto group binding to a secondary or tertiary carbon atom in the molecule is The surface coating method of the structure according to the above [1] or [2], which is a compound having two or more mercapto groups in the structure represented by the formula (Q-1).
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms, provided that R 1 and Both of R 2 are not hydrogen atoms, * indicates that it is linked to any organic group, and a is an integer of 0 to 2.
  • the total content of the thiol compound (C) in the radically polymerizable resin composition (1) is 0.01 to 10 parts by mass with respect to 100 parts by mass of the radically polymerizable compound (A)
  • the surface coating method for the structure according to any one of the above [1] to [3].
  • the radically polymerizable compound (A) is a vinyl ester resin, an unsaturated polyester resin, a mixture of a vinyl ester resin and a radically polymerizable unsaturated monomer, and an unsaturated polyester resin and a radically polymerizable unsaturated monomer.
  • the resin-based mortar or resin-based lining material is prepared by adding and mixing a radical polymerization initiator (D) and a filler (E) to the radically polymerizable resin composition (2)
  • the total content of the filler (E) is 0.1 to 100 parts by mass of the radically polymerizable resin composition (2).
  • the surface coating method of the structure of the present invention sufficient adhesion strength of the coating layer to the substrate of the structure is obtained without being affected by the humidity of the external environment of the structure even in a relatively short curing period. Be Therefore, by using the surface coating method of the structure of the present invention, it is possible to shorten the construction period such as protection and repair of the surface of the building structure and the civil engineering structure, and cross-sectional repair.
  • a step (II) of applying or filling at least one of a resin-based mortar and a resin-based lining material as a covering material on the surface of the uncured coating film before forming the covering layer to form a covering layer
  • the said radically polymerizable resin composition (1) is a radically polymerizable compound (A), a metal soap (B), and one or more types of thiol compounds (C) chosen from a secondary thiol compound and a tertiary thiol compound.
  • a substrate conditioner By using such a substrate conditioner, a predetermined coating material is applied or filled before the substrate conditioner is cured to form a coating layer, so that even in a wet environment, a relatively short curing period, Sufficient adhesive strength of the coating layer to the substrate of the structure is obtained.
  • "before curing” means within the time (gelling time) until the base preparation material loses fluidity and gels, and the usable time or work of the base preparation material It means possible period.
  • step (I) is a substrate adjusting material applying step of applying a substrate adjusting material containing a radically polymerizable resin composition to the substrate surface of the structure. This step is a step performed prior to step (II) and may be called "discarded coating” or "priming".
  • the structure in the present invention is constructed using a structural material such as concrete, mortar, asphalt concrete, stone material, brick, ceramic, metal, wood, resin, etc. as a base material, for example, a building, a road, It refers to bridges, tunnels, water and sewage, waterways, dams and levees, quay etc.
  • a structural material such as concrete, mortar, asphalt concrete, stone material, brick, ceramic, metal, wood, resin, etc.
  • thermosetting resins such as phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, vinyl ester resin, alkyd resin, polyurethane, polyimide, etc .; polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyacetic acid
  • Thermoplastic resins such as vinyl, polyurethane, a fluorine resin, an ABS resin, AS resin, an acrylic resin, etc. are mentioned.
  • the method of the present invention can be suitably applied to such a substrate surface of a structure.
  • the present invention can be applied without being affected by the humidity of the external environment of the structure, and regardless of whether the substrate surface to which the substrate adjusting material is applied is in a dry state or a wet state.
  • the base material conditioner makes the base material surface of the structure smooth and homogeneous, facilitates the application for forming the coating layer thereon, and plays a role in improving the adhesion between the base material and the coating layer.
  • the base adjusting material is a liquid that does not contain solid matter such as filler, and has properties as a coating liquid that has a viscosity that is easy to apply and that is unlikely to drip from the application surface.
  • the present invention is characterized in that the base adjusting material contains a radically polymerizable resin composition (1).
  • the application method of the substrate adjusting material is not particularly limited, and known methods can be applied.
  • it can carry out using well-known application means, such as a brush, a roller, a spray gun, and a spatula.
  • the amount to be applied is appropriately set depending on the material of the substrate, the degree of unevenness or cracks on the substrate surface, the material of the coating layer, etc., but usually 20 to 800 g / m 2 is preferable, and more preferably It is 30 to 700 g / m 2 , more preferably 50 to 500 g / m 2 .
  • the radically polymerizable resin composition (1) contains a radically polymerizable compound (A), a metal soap (B), and at least one thiol compound (C) selected from a secondary thiol compound and a tertiary thiol compound. .
  • the radically polymerizable resin composition (1) has a property capable of being applied to the surface of the base material of a structure, and after application, is cured on the surface of the base material by a radical polymerization reaction.
  • the radically polymerizable resin composition (1) can be easily applied regardless of whether the surface of the substrate is in a dry state or in a wet state, and can be stably cured, so that it is suitably used as a substrate adjusting material Can.
  • the radically polymerizable resin composition (1) other than the radically polymerizable compound (A), the metal soap (B) and the thiol compound (C), for example, a polymerization inhibitor, curing delay, Agents, curing accelerators, polyisocyanate compounds, coupling agents, plasticizers, surfactants, wetting and dispersing agents, antifoaming agents, waxes, thixotropic agents, solvents and the like.
  • a polymerization inhibitor for example, a polymerization inhibitor, curing delay, Agents, curing accelerators, polyisocyanate compounds, coupling agents, plasticizers, surfactants, wetting and dispersing agents, antifoaming agents, waxes, thixotropic agents, solvents and the like.
  • a radically polymerizable compound (A) is a compound which has an ethylenically unsaturated hydrocarbon group in a molecule
  • content of the radically polymerizable compound (A) in radically polymerizable resin composition (1) is suitably set based on the performance calculated
  • the radically polymerizable compound (A) is not particularly limited, and examples thereof include vinyl ester resins such as epoxy (meth) acrylate resins, unsaturated polyester resins, polyester (meth) acrylate resins, urethane (meth) acrylate resins, Examples thereof include (meth) acrylate resins, radically polymerizable unsaturated monomers, and mixtures of the above resins with radically polymerizable unsaturated monomers.
  • vinyl ester resins, unsaturated polyester resins, and mixtures of these resins with radically polymerizable unsaturated monomers are preferred.
  • a (meth) acrylate means an acrylate or a methacrylate
  • a (meth) acryloyl group means an acryloyl group or a methacryloyl group.
  • the radically polymerizable unsaturated monomer suppresses the increase in viscosity of the radically polymerizable resin composition (1), and is suitably used from the viewpoint of improvement in hardness, strength, chemical resistance, water resistance, etc. Although it may be used alone, it is preferable to use as a mixture with at least one of vinyl ester resin and unsaturated polyester resin. When it is used as such a mixture, in view of the influence on the durability and the environment of the cured product of the radically polymerizable resin composition (1) accompanying the residual of the monomer, the radically polymerizable unsaturated monomer
  • the content of the radically polymerizable compound (A) is preferably 90% by mass or less. The content is more preferably 5 to 85% by mass, still more preferably 10 to 80% by mass.
  • the radically polymerizable unsaturated monomer is not particularly limited, but those having a vinyl group or a (meth) acryloyl group are preferable. This may be used alone or in combination of two or more.
  • Specific examples of the radically polymerizable unsaturated monomer having a vinyl group include styrene, p-chlorostyrene, vinyltoluene, ⁇ -methylstyrene, dichlorostyrene, divinylbenzene, tert-butylstyrene, vinyl acetate and diallyl phthalate , Triallyl phthalate, triallyl cyanurate, triallyl isocyanurate, allyl (meth) acrylate, diallyl fumarate, vinyl benzyl butyl ether, vinyl benzyl hexyl ether, vinyl benzyl octyl ether, vinyl benzyl (2-ethylhexyl) ether, vinyl benzy
  • the radically polymerizable unsaturated monomer having a (meth) acryloyl group include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylic acid iso -Butyl, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, stearyl (meth) acrylate ( (Meth) acrylate tridecyl acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyl oxyethyl (meth) acrylate, phenoxyethyl (meth) acryl
  • polyfunctional (meth) acrylate may be used, for example, ethylene glycol di (meth) acrylate, 1,2-propylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4- Butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, triethylene glycol (meth) ) Acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, polytetramethylene ether glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate , Glycerin di (meth) acrylate, pentaerythritol di (meth) acrylate
  • Metal soaps (B) are metal salts of long chain fatty acids or other organic acids. In addition, although a metal soap does not generally contain a sodium salt and a potassium salt, in this invention, these metal salts may be sufficient. These may be used alone or in combination of two or more.
  • the metal soap (B) functions as a curing accelerator in the radically polymerizable resin composition (1).
  • the content of the metal soap (B) in the radically polymerizable resin composition (1) is a radical polymerization from the viewpoint of the balance between the sufficient pot life until the radically polymerizable compound (A) cures and the curing accelerating ability.
  • Component is preferably 0.0001 to 5 parts by mass, more preferably 0.001 to 2 parts by mass, still more preferably, in terms of the amount of metal elements in the metal soap (B) relative to 100 parts by mass of the functional compound (A) Is from 0.005 to 1 part by mass.
  • the long chain fatty acid in the metal soap (B) may be either saturated fatty acid or unsaturated fatty acid.
  • the number of carbon atoms is not particularly limited, but is preferably 6 to 30, more preferably from the viewpoint of uniform dissolution and dispersion of the metal soap in the radically polymerizable resin composition (1). Is 6 to 20, more preferably 6 to 16.
  • octanoic acid such as heptanoic acid, caprylic acid and 2-ethylhexanoic acid, nonanoic acid, decanoic acid, neodecanoic acid, undecanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, eicosanoic acid, docosanoic acid And saturated fatty acids having a chain or cyclic structure such as tetracosanoic acid, hexacosanoic acid, octacosanoic acid, triactantanic acid, naphthenic acid, etc .;
  • Other examples include rosin acids derived from natural products, linseed oil-extracted fatty acids, soybean oil-extracted fatty acids, tall oil-extracted fatty acids, and the like. Among these, octanoic acid and naph
  • a weak acid having a carboxy group, a hydroxy group, an enol group or the like, which is soluble in an organic solvent is preferable.
  • weak acids having a carboxy group include carboxylic acids such as formic acid, acetic acid and oxalic acid; citric acid, bile acids, sugar acids, 12-hydroxystearic acid, hydroxycinnamic acids such as folic acid and the like; alanine and arginine And the like; and aromatic acids such as benzoic acid and phthalic acid.
  • a compound having a hydroxy group or an enol group for example, ascorbic acid, alpha acid, imidic acid, erythorbic acid, croconic acid, kojic acid, squaric acid, sulfinic acid, teic acid, dehydroacetic acid, delta acid, uric acid, Hydroxamic acid, humic acid, fulvic acid, phosphonic acid and the like can be mentioned.
  • the metal element constituting the metal salt is not particularly limited as long as it can be coordinated with a thiol compound (C) described later to form a complex compound.
  • a thiol compound (C) described later to form a complex compound.
  • vanadium, iron, copper, cobalt, manganese, titanium, tin, lead, bismuth, zirconium, calcium and the like can be mentioned, and from the viewpoint of storage stability of the radically polymerizable resin composition (1), vanadium, cobalt, manganese And zirconium are preferred.
  • metal soaps include cobalt 2-ethylhexanoate, manganese 2-ethylhexanoate, yttrium 2-ethylhexanoate, tin 2-ethylhexanoate, lead 2-ethylhexanoate, cobalt naphthenate, naphthene
  • metal soaps include lead acid, bismuth (III) naphthenate, yttrium naphthenate, calcium naphthenate and the like.
  • cobalt 2-ethylhexanoate, manganese 2-ethylhexanoate and cobalt naphthenate are preferably used.
  • the thiol compound (C) is a compound selected from a secondary thiol compound and a tertiary thiol compound. These may be used alone or in combination of two or more. These compounds function as a curing accelerator by being used in combination with the metal soap (B) functioning as a curing accelerator in the radical polymerizable resin composition (1). As described later, the thiol compound (C) is considered to be capable of preventing the deactivation of the metal soap by water and exhibiting a curing acceleration ability by coordinating to the metal element of the metal soap (B).
  • the secondary thiol compound is preferable to the tertiary thiol compound.
  • the compound is regarded as a secondary thiol compound.
  • the tertiary thiol compound also has a mercapto group attached to a primary or secondary carbon atom, the compound is considered a tertiary thiol compound.
  • the secondary thiol compound is preferably 0.1 to 100 moles, and more preferably 1 to 10 moles, per mole of the tertiary thiol compound.
  • the total content of the thiol compound (C) in the radically polymerizable resin composition (1) may be an amount capable of obtaining a sufficient curing accelerating ability for the radically polymerizable compound (A), and the radically polymerizable compound (A)
  • the amount is 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, and still more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass.
  • the total content of the thiol compound (C) is a metal in consideration of the easiness of coordination of the thiol compound (C) to the metal element of the metal soap (B), and the balance between cost and curing acceleration ability
  • the amount is preferably 0.1 to 15 moles, more preferably 0.3 to 10 moles, and still more preferably 0.5 to 5 moles relative to 1 mole of the soap (B).
  • the thiol compound (C) has two or more mercapto groups bonded to a secondary or tertiary carbon atom in the molecule from the viewpoint of the ability to accelerate curing under wet conditions and to suppress the deactivation of the metal soap (B) by water.
  • the polyfunctional thiol which is a compound which it has is preferable, and bifunctional thiol which is a compound which has two mercapto groups couple
  • numerator is especially preferable.
  • polyfunctional thiol as used herein means a thiol compound having two or more functional mercapto groups, and the term “bifunctional thiol” refers to two functional mercapto groups. Means a thiol compound that is
  • the thiol compound (C) has one or more ester structures represented by the following formula (Q-1), and has a mercapto group to be bonded to a secondary or tertiary carbon atom in the molecule as a compound represented by the following formula (Q It is preferable that it is a compound which has 2 or more including the mercapto group in the structure represented by -1).
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms. However, both of R 1 and R 2 are not hydrogen atoms. * Indicates that it is linked to any organic group. a is an integer of 0 to 2;
  • R 1 or R 2 in the formula (Q-1) is a hydrogen atom, and a compound having two or more mercapto groups bonded to secondary carbon atoms in the molecule. That is, the thiol compound (C) is preferably a secondary thiol compound in which the carbon atom to which the mercapto group in the formula (Q-1) is bonded is a secondary carbon atom.
  • the alkyl group having 1 to 10 carbon atoms in R 1 and R 2 may be linear or branched. Specifically, a methyl group, an ethyl group, various propyl groups, various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups and the like can be mentioned. "Various" means various isomers including n-, sec-, tert- and iso-. Among these alkyl groups, methyl and ethyl are preferable.
  • examples of the aromatic group having 6 to 18 carbon atoms in R 1 and R 2 include phenyl group, benzyl group, naphthyl group, anthryl group, phenanthryl group and the like. These aromatic groups may be substituted by a halogen atom, an amino group, a nitro group, a cyano group or the like.
  • a is preferably 1
  • R 1 or R 2 is preferably a hydrogen atom.
  • R 1 or R 2 is a hydrogen atom, that is, particularly when the secondary thiol compound has an ester structure represented by (Q-1)
  • the carbonyl oxygen and the mercapto group easily coordinate to the metal element M of the metal soap (B), and the metal element of the metal soap (B) is surrounded by the secondary thiol compound.
  • the base modifier is used under wet conditions, the coordination of the secondary thiol compound in this way suppresses the contact between the metal element and water, and can exhibit the curing acceleration ability stably.
  • R 1 and R 2 are both substituents that are bulkier than hydrogen, and steric hindrance in coordination of the mercapto group to the metal element It is considered that the secondary thiol compound is more likely to exhibit the ability to accelerate curing because However, even in the case of the tertiary thiol compound, when the carbonyl oxygen and the mercapto group can be stably coordinated to the metal element M of the metal soap (B), the contact of the metal element M with water is more effective than the secondary thiol compound. Is considered to be able to further suppress the inactivation of the metal soap (B) by water.
  • R 1 and R 2 are as defined in the above formula (Q-1), and M represents a metal element derived from metal soap (B).
  • the thiol compound (C) having an ester structure represented by the formula (Q-1) is preferably an ester compound of a mercapto group-containing carboxylic acid and a polyhydric alcohol represented by the following formula (S) .
  • Such a compound is obtained by an esterification reaction of a mercapto group-containing carboxylic acid and a polyhydric alcohol in a known manner.
  • the mercapto group-containing carboxylic acid represented by the above formula (S) is a derivative compound of a secondary thiol compound, specifically, 2-mercaptopropionic acid, 3-mercaptobutyric acid, 3-mercapto-3-phenylpropionate On acid etc. are mentioned. Further, when it is a compound derived from a tertiary thiol compound, specifically, 2-mercaptoisobutyric acid, 3-mercapto-3-methylbutyric acid and the like can be mentioned.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, neopentyl glycol, and 1,2-propanediol.
  • dihydric alcohols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol and the like from the viewpoint of exhibiting the curing accelerating ability even under easy availability and wet conditions
  • dihydric alcohols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol and the like from the viewpoint of exhibiting the curing accelerating ability even under easy availability and wet conditions
  • Glycerin trimethylolethane, trimethylolpropane, tris (2-hydroxyethyl) isocyanurate, pentaerythritol, dipentaerythritol, trivalent or higher trivalent compounds such as 2,2-bis (2,3-dihydroxypropyloxyphenyl) propane; Alcohol; polycarbonate diol, dimer acid polyester polyol is preferable, and from the viewpoint of functional group number and vapor pressure, 1,
  • secondary thiol compound examples include 1,4-bis (3-mercaptobutyryloxy) butane, 3-mercaptophthalic acid di (1-mercaptoethyl), phthalic acid di (2-mercaptopropyl), and phthalic acid.
  • tertiary thiol compound examples include di (2-mercaptoisobutyl) phthalate, ethylene glycol bis (2-mercaptoisobutyrate), propylene glycol bis (2-mercaptoisobutyrate), diethylene glycol bis (2- Mercaptoisobutyrate), butanediol bis (2-mercaptoisobutyrate), octanediol bis (2-mercaptoisobutyrate), trimethylolethane tris (2-mercaptoisobutyrate), trimethylolpropane tris (2- 2- Mercaptoisobutyrate), pentaerythritol tetrakis (2-mercaptoisobutyrate), dipentaerythritol hexakis (2-mercaptoisobutyrate), di (3-mercapto-3-methylbutyl) phthalate, ethyle Glycol bis (3-mercapto-3-methylbutyrate), propylene glycol
  • radically polymerizable resin composition (1) polymerization is carried out as other components, if necessary, based on the performance required of the base conditioner according to the base material and the coating layer of the structure to which the base conditioner is applied. Inhibitors, cure retarders, cure accelerators, polyisocyanate compounds, coupling agents, plasticizers, surfactants, wetting and dispersing agents, antifoaming agents, waxes, thixotropic agents, solvents and the like can be added. These may be used alone or in combination of two or more. When radically polymerizable resin composition (1) contains these other components, content of components other than a solvent can fully exhibit the performance of each component, without reducing the performance as a base conditioner.
  • each is preferably 0.0001 to 10 parts by mass, more preferably 0.001 to 10 parts by mass, still more preferably 0 based on 100 parts by mass of the radically polymerizable compound (A). It is .005 to 10 parts by mass.
  • the total content of each component other than the solvent is preferably 0.0001 to 10 parts by mass, more preferably 0.001 to 10 parts by mass, per 100 parts by mass of the radically polymerizable compound (A). More preferably, it is 0.005 to 10 parts by mass.
  • content of a solvent is not specifically limited so that it may mention later.
  • the polymerization inhibitor may be added from the viewpoint of suppression of excessive polymerization of the radically polymerizable compound (A) and control of the reaction rate.
  • the polymerization inhibitor include known ones such as hydroquinone, methylhydroquinone, phenothiazine, catechol, 4-tert-butyl catechol and the like.
  • the curing retarder may be added for the purpose of curing delay of the radically polymerizable compound (A), taking into consideration the operation time of the application of the substrate adjusting material, and the like.
  • the curing retarder for example, 2,2,6,6-tetramethylpiperidine 1-oxyl free radical (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (4H Free radical cure retarders of TEMPO derivatives such as -TEMPO), 4-oxo-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (4-Oxo-TEMPO).
  • TEMPO 2,2,6,6-tetramethylpiperidine 1-oxyl free radical
  • 4H Free radical cure retarders of TEMPO derivatives such as -TEMPO
  • 4-oxo-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (4-Oxo-TEMPO).
  • 4H-TEMPO is preferable from the viewpoint of handleability, cost and the like.
  • a curing accelerator other than the metal soap (B) and the thiol compound (C) may be added for the purpose of curing acceleration.
  • a curing accelerator include amines, and specifically, aniline, N, N-dimethylaniline, N, N-diethylaniline, p-toluidine, N, N-dimethyl-p- Toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2-hydroxypropyl) -p-toluidine, N-ethyl-m-toluidine, triethanolamine,
  • a polyisocyanate compound When the radically polymerizable compound (A) has a hydroxy group, a carboxy group or the like, a polyisocyanate compound may be added as a curing agent which brings about curability by the reaction of these groups with an isocyanato group.
  • the polyisocyanate compound contains two or more isocyanato groups in the molecule, and the isocyanato group may be blocked with a known blocking agent or the like from the viewpoint of adjusting the curing rate.
  • a known organic metal catalyst can be used as a curing reaction catalyst by isocyanato group such as dibutyltin di (2-ethylhexanoate), dibutyltin dilaurate, dibutyltin diacetate and the like.
  • Unblocked polyisocyanate compounds include, for example, linear aliphatic diisocyanates such as lysine diisocyanate and hexamethylene diisocyanate; cyclic compounds such as hydrogenated xylylene diisocyanate, isophorone diisocyanate, 4,4'-methylene bis (cyclohexyl isocyanate) and the like Aliphatic diisocyanates; Aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate and diphenylmethane diisocyanate; and triisocyanates such as lysine triisocyanate.
  • linear aliphatic diisocyanates such as lysine diisocyanate and hexamethylene diisocyanate
  • cyclic compounds such as hydrogenated xylylene diisocyanate, isophorone diisocyanate, 4,4'-methylene bis (cyclohexyl isocyanate) and the like
  • the coupling agent may be added from the viewpoint of, for example, the improvement of the coatability and the adhesion of the substrate adjusting material to the base material.
  • the coupling agent include known silane coupling agents, titanate coupling agents, aluminum coupling agents, etc.
  • vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxy examples thereof include silane coupling agents such as silane, 3-methacryloxypropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidyloxypropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane.
  • the plasticizer may be added from the viewpoint of, for example, the improvement of the coatability of the substrate adjusting material on the base material.
  • the plasticizer may be a known one such as an ester synthesized from an acid such as phthalic acid, adipic acid, phosphoric acid or trimetic acid and an alcohol such as octanol or nonanol or a higher mixed alcohol.
  • phthalic acid esters such as bis (2-ethylhexyl) phthalate, diisononyl phthalate, diisodecyl phthalate; and aliphatic dibasic esters such as bis (2-ethylhexyl) adipate, bis (2-ethylhexyl) sebacate, diethyl succinate and the like Phosphates such as tributyl phosphate and tricresyl phosphate; trimetates such as tris (2-ethylhexyl) trimellitate; and the like.
  • Epoxy plasticizers such as epoxidized soybean oil and benzyl epoxystearate are also included.
  • the surfactant is preferably added from the viewpoint of improving the miscibility of the radically polymerizable resin composition (1).
  • the surfactant may be an anionic, cationic or amphoteric ionic surfactant, or a nonionic surfactant.
  • anionic surfactants or nonionic surfactants are preferred.
  • anionic surfactants include sulfonates such as sodium dialkyl sulfosuccinate and the like
  • nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and the like. It can be mentioned.
  • the wetting and dispersing agent may be added from the viewpoint of, for example, the improvement of the coatability of the base adjusting material on the base material in a wet environment.
  • the wetting and dispersing agent known fluorine-based wetting and dispersing agents, silicone-based wetting and dispersing agents and the like can be used.
  • Megafac registered trademark
  • Megafac registered trademark
  • R-08 above, manufactured by Dainippon Ink and Chemicals, Inc.
  • PF-656 above, commercial products such as Omnova Solutions Co., Ltd., Troysol (registered trademark) S366 (made by Troy Chemical Co., Ltd.), Fluorad FC-430 (made by 3M Japan Co., Ltd.), etc.
  • the antifoaming agent may be added from the viewpoint of suppressing the generation of air bubbles at the time of stirring and mixing or application of the base preparation.
  • a well-known silicone type antifoamer can be used.
  • BYK-065 made by Big Chemie Japan KK
  • BYK-065 made by Big Chemie Japan KK
  • the wax may be added from the viewpoint of adjusting the viscosity of the substrate adjusting material, imparting water resistance, and the like.
  • the wax known paraffin waxes, polar waxes and the like can be used.
  • paraffin wax 125 ° F. manufactured by JXTX Energy Co., Ltd.
  • NPS registered trademark
  • NPS registered trademark
  • 9125 manufactured by Nippon Seiwa Co., Ltd.
  • a thixotropic agent may be added for the purpose of flowability adjustment or the like from the viewpoint of workability at the time of application to the vertical surface or ceiling surface of the base material adjustment material.
  • the thixotropic agent known inorganic or organic thixotropic agents can be used.
  • organic thixotropic agent hydrogenated castor oil type, amide type, polyethylene oxide type, vegetable oil polymerized oil type, surfactant type, and composite type using these in combination
  • Reosil examples include dry silica such as PM-20L (manufactured by Tokuyama Co., Ltd.) and an amide type such as DISPARLON (registered trademark) 6900-20X (Kushimoto Chemical Co., Ltd.).
  • the solvent is used as needed from the viewpoint of uniformly mixing the components contained in the radical polymerizable resin composition (1).
  • the content thereof is not particularly limited, and can be appropriately adjusted in accordance with the handleability and the like at the time of use.
  • the type of solvent is appropriately selected within a range that does not affect the curing performance of the radically polymerizable resin composition (1) and the performance as a substrate adjusting material in consideration of the properties such as the solubility of the components contained.
  • aliphatic hydrocarbons such as cyclohexane, n-hexane, white spirit, odorless mineral spirits (OMS); aromatic hydrocarbons such as toluene and xylene; ketones such as methyl ethyl ketone and methyl isobutyl ketone; And esters of ethyl acetate, butyl acetate, amyl acetate, cellosolve acetate and the like.
  • These solvents may be contained in products of commercially available radically polymerizable compounds (A), metal soaps (B), thiol compounds (C) or other additive components.
  • radically polymerizable resin composition (1) does not contain water from a viewpoint of adjustment of a cure rate, it is radically polymerizable about the water in which it mix
  • the resin composition (1) may be contained in an amount of less than about 5% by mass.
  • the radical polymerization initiator (D) is added to and mixed with the radically polymerizable resin composition (1), and is applied before curing.
  • the radically polymerizable resin composition (1) is obtained by stirring and mixing according to a known method, and the above-described other components may be added as optional components.
  • the order of addition and mixing of each component is not limited, but from the viewpoint of more homogeneous dispersibility of the thiol compound (C), after mixing the radically polymerizable compound (A) and the metal soap (B), the thiol compound It is preferable to add and mix (C).
  • the radical polymerizable resin composition (1) is cured by the progress of the radical polymerization reaction by the addition of the radical polymerization initiator (D).
  • the addition amount of the radical polymerization initiator (D) is appropriately set according to the type of the radically polymerizable compound (A), the environmental conditions around the base of the structure to which the base adjusting material is applied, and the like. In general, the amount is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 8 parts by mass, and still more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the radically polymerizable compound (A). It is.
  • the radical polymerization reaction of a radically polymerizable compound (A) does not advance even if the radically polymerizable resin composition (1) contains, for example, a polymerization inhibitor etc. and coexists with a radical polymerization initiator
  • the radical polymerization initiator (D) is used as a radical polymerizable resin composition (1) when stored under It may be contained in advance.
  • radical polymerization initiator (D) is suitably selected according to the environmental condition of the base material periphery of the structure of the kind of radically polymerizable compound (A), the base material adjustment material, etc.
  • the surface coating method As long as the radical polymerization of the radically polymerizable compound (A) can be easily initiated at the construction site without giving special conditions, known thermal radical polymerization initiators, photo radical polymerization initiators, etc. Can be used. These may be used alone or in combination of two or more.
  • thermal radical polymerization initiators include diacyl peroxides such as benzoyl peroxide, peroxy esters such as tert-butylperoxybenzoate, cumene hydroperoxide, diisopropylbenzene hydroperoxide, tert-butyl hydroperoxide Hydroperoxides such as paramenthane hydroperoxide, dialkyl peroxides such as dicumyl peroxide, ketone peroxides such as methyl ethyl ketone peroxide, acetylacetone peroxide, peroxy ketals, alkyl peresters, percarbonates And other organic peroxides.
  • diacyl peroxides such as benzoyl peroxide, peroxy esters such as tert-butylperoxybenzoate, cumene hydroperoxide, diisopropylbenzene hydroperoxide, tert-butyl hydroperoxide Hydroperoxides such as paramenthane hydroperoxide,
  • photo radical polymerization initiators include benzoin ethers such as benzoin alkyl ether, benzophenones such as benzophenone, benzyl and methyl orthobenzoyl benzoate, benzyl dimethyl ketal, 2, 2-diethoxyacetophenone, 2-hydroxy-2- 2- Acetophenones such as methylpropiophenone, 4-isopropyl-2-hydroxy-2-methylpropiophenone and 1,1-dichloroacetophenone, and thioxanthone such as 2-chlorothioxanthone, 2-methylthioxanthone and 2-isopropylthioxanthone Can be mentioned.
  • benzoin ethers such as benzoin alkyl ether
  • benzophenones such as benzophenone, benzyl and methyl orthobenzoyl benzoate
  • benzyl dimethyl ketal 2, 2-diethoxyacetophenone
  • 2-hydroxy-2- 2- Acetophenones such as methylpropi
  • hydroperoxides and ketone peroxides are preferable from the viewpoint of promotion of oxidation reduction, and cumene hydroperoxide and diisopropylbenzene hydroperoxide among hydroperoxides from the viewpoint of storage stability. And paramenthane hydroperoxide are preferred.
  • step (II) at least one of a resin-based mortar and a resin-based lining material as a covering material is applied or filled on the surface of the uncured coating film before the substrate adjustment material applied in the step (I) is cured. It is a covering layer formation process which forms a covering layer.
  • step (II) in order to obtain sufficient initial adhesion during application of the covering material, the covering material to be the covering layer is applied to the surface of the uncured coating film before the green body adjusting material is cured. As described above, it is possible to shorten the application time by forming the coating layer without waiting for the primer coating film primed as in the conventional primer treatment or the like to cure.
  • a resin-based mortar or a resin-based lining material is used as the covering material.
  • One or more layers of these may be coated or filled to form a covering layer.
  • the coating method can apply the same method as the above-mentioned base material adjustment material.
  • a filling method in the case of forming a thicker coating layer it can carry out using a well-known filling means, for example, in mortar filling, such as a filling machine, a pouring machine, and a iron etc.
  • the amount of application is appropriately set according to the material of the substrate, the degree of unevenness or cracks on the surface of the substrate, the material of the covering material, etc., but the total amount of the covering material is preferably 100 to 100,000 g / m 2 in general. More preferably, it is 500 to 50000 g / m 2 , still more preferably 1000 to 40000 g / m 2 .
  • the thickness of the covering material is preferably 50 ⁇ m to 100 mm, and more preferably, when using a resin-based mortar as the covering material, from the viewpoint of obtaining a uniform covering layer free from cracking and warping with a sufficient thickness.
  • the thickness is preferably 500 ⁇ m to 50 mm, more preferably 2 to 40 mm.
  • the thickness is preferably 50 ⁇ m to 100 mm, more preferably 100 ⁇ m to 50 mm, and still more preferably 200 ⁇ m to 30 mm.
  • the "resin-based mortar” in the present invention means a mortar in which a synthetic resin is used as a binder, and the so-called inorganic mortar (cement mortar) in which the binder is mainly hydraulic cement and Are distinguished. Therefore, the resin-based mortar is not limited to the resin mortar containing the synthetic resin and the aggregate as the main component, and even if it is a polymer cement mortar in which a polymer dispersion or re-emulsifiable powder resin is mixed with the cement and the aggregate Good. Resin mortars are superior in adhesion, waterproofness, drying shrinkage, chemical resistance, etc. to mortars, and should be suitably used as a repair material for structures, particularly as a cross-section repair material for concrete or mortar Can.
  • the resin-based lining material is, for example, a coating material made of a synthetic resin for the purpose of protecting the surface of a substrate of a structure such as corrosion prevention, waterproofing, antifouling, and wear prevention.
  • the resin-based lining material in the present invention does not contain cement or aggregate as a filler, in order to distinguish it from a resin-based mortar.
  • composition of coating material A commercially available resin-based mortar or resin-based lining material can be used as the covering material. Moreover, in this invention, what was prepared by adding and mixing a radical polymerization initiator (D) and a filler (E) to a radically polymerizable resin composition (2) is used suitably.
  • the radical polymerizable resin composition (2) used here may have the same composition as or a different composition from the radical polymerizable resin composition (1) used for the above-mentioned base conditioner.
  • the adhesion of the coating material to the uncured coating film of the base adjusting material may be good because the composition is the same or the components are similar, but the coating material is a filler other than the radically polymerizable resin composition (2) Since components such as (E) and the like are included, the compositions may be different from each other in consideration of the performance and the like required for these components and the covering material.
  • the radical polymerization initiator (D) may also be the same as that used for the base conditioner, and the addition amount thereof may be equivalent to that of the base conditioner, and the radically polymerizable resin composition (2) It sets suitably according to the environmental conditions of a base material periphery of a composition, a structure, etc.
  • the filler (E) is added for the purpose of imparting desired properties to the coating layer formed by the coating material, and is generally solid.
  • a filler (E) an inorganic filler, a reinforced fiber, an elastomer etc. are mentioned, for example. These may be used alone or in combination of two or more. Among these, it is preferable to include one or more selected from inorganic fillers and reinforcing fibers.
  • the filler (E) is used in combination of two or more of the above, it is preferable to prepare a premix filler in which each component to be used is mixed in advance.
  • the inorganic thixotropic agent described above a coupling agent for the purpose of imparting fluidity, a coloring purpose, in an amount within the range that does not interfere with the desired effect of the filler (E) in the premix filler.
  • Additives such as coloring agents may be added.
  • the addition amount of the additive is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less in the filler (E).
  • the coating layer is preferably 0.1 to 700 parts by mass, more preferably 100 parts by mass of the radically polymerizable compound. Is from 1 to 650 parts by mass, more preferably from 10 to 600 parts by mass.
  • inorganic fillers include cement such as various portland cements; quick lime; river gravel, river sand, sea gravel, sea sand, mountain gravel, crushed stone, crushed sand, natural bone such as sand containing silica as silica sand, etc.
  • Materials, aggregates such as artificial aggregates such as ceramics and glass pieces; others, aluminum hydroxide, calcium carbonate, talc, zeolite, activated carbon, metal oxides, metal powders, metal foils, glass flakes, perlite, inorganic hollow fillers And known materials such as a glass balloon. Aggregates are used in resin-based mortars, and cement is generally used.
  • anions such as chloride ion, hydrotalcites, hydrocalumites etc. are mentioned, for example. These may be natural products or synthetic products, and may or may not be subjected to surface treatment or water of crystallization.
  • hydrotalcites and hydrocalumite such is nitrite ions in the corrosion inhibiting effect of the reinforcing bars (NO 2 -), also nitrate ions (NO 3 -), hydroxide ions (OH -), oxalic Anions such as acid ion (CH 3 COO ⁇ ), carbonate ion (CO 3 ⁇ ) or sulfate ion (SO 4 2 ⁇ ) may be supported.
  • hydrocalumites carrying a nitrite ion are preferred. These hydrotalcites and hydrocalumites may be added as they are as a filler (E), or they may be added, for example, mixed with cement paste.
  • hydrotalcites examples include basic carbonates represented by the following general formula (G).
  • G M x ⁇ Mg y ⁇ Al z CO 3 (OH) w ⁇ m H 2 O (G)
  • M represents an alkali metal or zinc
  • x represents a number of 0 to 6
  • y represents a number of 0 to 6
  • z represents a number of 0.1 to 4
  • w xr + 2y + 3z-2 R is the valence of M
  • m represents the number of water of crystallization from 0 to 100.
  • the reinforcing fibers include known reinforcing fibers such as glass fibers, carbon fibers, aramid fibers, boron fibers, metal fibers such as cellulose fibers and steel fibers, and ceramic fibers such as alumina fibers. These reinforcing fibers are effective in preventing peeling off in resin-based mortars, seismic reinforcement of structures, etc., and also in improving waterproofness, corrosion resistance, abrasion resistance and the like in resin-based lining materials.
  • elastomers such as isoprene rubber, butadiene rubber, chloroprene rubber, styrene-isoprene rubber, styrene-butadiene rubber and the like can also be added as a filler.
  • the filler (E) when using what to which the filler (E) was added to the radically polymerizable resin composition (2) as a coating material, in addition to a filler (E), other additions, such as a coloring agent for decorative purposes, for example An agent may be added in the range which does not reduce the adhesiveness of the coating layer to the base material of a structure.
  • the filler (E) contains a plurality of components, it should be prepared in advance so that it can be simultaneously added as a premix filler, as described above, from the viewpoint of efficiency of on-site work.
  • the timing of preparation of the base material adjustment material and the covering material may be appropriately adjusted depending on the structure to be constructed, and may be simultaneous, or the covering material may be prepared during or after the step (I). Good.
  • a curing accelerator etc. are added to radically polymerizable resin composition (1) and (2), and when the operation time of application
  • the radically polymerizable resin compositions (1) and (2) have the same composition, a part of the radically polymerizable resin composition (1) can be diverted to the coating material, and in this case as well, Simplification of coating material preparation can be achieved.
  • a curing period until a sufficient adhesive strength of the coating layer is obtained on the surface of the base material of the structure can be shortened, and the entire construction period can be shortened.
  • the mixture is cooled to 90 ° C., 1709 g of dicyclopentenyloxyethyl methacrylate ("FA-512MT", manufactured by Hitachi Chemical Co., Ltd.) as a radically polymerizable unsaturated monomer, 4-tert-butylcatechol 0.2 parts as a polymerization inhibitor. 6 g is added, and a radically polymerizable compound (A1), which is a mixture of 60% by mass of vinyl ester resin (solid content) and 40% by mass of radically polymerizable unsaturated monomer, has a viscosity (B-type viscometer (25 ° C.)) Obtained at 435 mPa ⁇ s.
  • A1 dicyclopentenyloxyethyl methacrylate
  • the base material adjustment materials used in the following Examples and Comparative Examples are as follows. ⁇ 1> A substrate adjusting material (I-1) prepared by the following Preparation Example 1 ⁇ 2> Two-component epoxy resin primer: "bond E810LS” manufactured by Konishi Co., Ltd. ⁇ 3> Moisture-curable modified acrylic resin: “Refill Treat”, manufactured by Sumitomo Osaka Cement Co., Ltd. ⁇ 4> Moisture-curable one-component Polyurethane resin: "Frone Primer US", East Japan Paint Co., Ltd. ⁇ 5> Acrylic resin emulsion: "Pacific effect A", manufactured by Pacific Materials Co., Ltd., solid content about 18 mass% aqueous emulsion
  • Cumene hydroperoxide (“Parkmill (registered trademark) H-80” as a radical polymerization initiator (D), as radical polymerization initiator (D), just before coating and using the substrate adjusting material, manufactured by NOF CORPORATION 3.) 3.1 parts by weight was added and mixed by stirring to obtain a substrate adjusting material (I-1).
  • Coating material which is resin system mortar prepared by the following preparation example 2 (II-1)
  • Epoxy resin mortar "bond P mortar” made by Konishi Co., Ltd.
  • Preparation Example 2 Preparation of Coating Material (II-1)
  • a radically polymerizable resin composition (2) was prepared using a radically polymerizable compound (A2) in place of the radically polymerizable compound (A1).
  • a radical polymerization initiator (D) (same as the above) was added with respect to 100 parts by mass of the radically polymerizable compound (A2), and mixed by stirring .
  • 395 parts by mass of the following premix filler containing a filler (E) having the composition shown below is added with 100 parts by mass of the radically polymerizable resin composition (2), stirred and mixed, and coated Material (II-1).
  • ⁇ Premix filler> The filler (E) and the thixotropic agent were previously mixed and prepared by the composition shown below. The amount of each component is shown as a total of 100% by mass.
  • ⁇ Perlite “Fyolight® FL 0”, manufactured by Sakai Perlite Co., Ltd .; 7.0% by mass
  • a coating material is uniformly coated with a iron with a thickness of 10 mm on the surface of the uncured coating film before the green body conditioning material is cured, and aged at a temperature of 23 ° C and a humidity of 50% RH for 1 day or 7 days. I got a body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Paints Or Removers (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

比較的短い養生期間でも、構造物の外部環境の湿度の影響を受けることなく、該構造物の基材に対する被覆層の十分な接着強度を得ることができる、構造物の表面被覆工法を提供する。構造物の基材表面に、素地調整材としてラジカル重合性樹脂組成物を塗布する工程(I)と、塗布した前記素地調整材が硬化する前の未硬化塗布膜の表面に、被覆材として樹脂系モルタル及び樹脂系ライニング材の少なくともいずれか一方を塗布又は充填して被覆層を形成する工程(II)とを有する、構造物の表面被覆工法。

Description

構造物の表面被覆工法
 本発明は、建築構造物や土木構造物の表面の保護や補修、断面修復等に好適に適用することができる、構造物の表面被覆工法に関する。
 建築構造物や土木構造物の表面を塗装により保護したり、断面を充填物により補修したりする表面被覆工法の施工においては、予め構造物の基材表面に下塗りを行い、該基材の素地調整を行うことが一般的である。例えば、コンクリート構造物の基材の断面修復においては、基材の補修部分表面に研磨やハツリ等を施した後、当該部分にプライマーを下塗りする。そして、前記プライマーが硬化及び乾燥した後、塗料やモルタル、各種修復材等を塗り重ねて、被覆層を形成する。
 素地調整は、構造物の基材表面を平滑で均質な面とし、後の施工を容易にすることができるのみならず、基材と被覆層との接着性を向上させ、構造物を経年劣化しにくい、耐久性に優れたものとする上でも有効である。
 しかしながら、上記のような表面被覆工法は、温度や湿度等の外部環境の影響を受けやすい。例えば、梅雨の時期等の屋外施工、また、トンネルや上下水道等の高湿閉鎖空間等の湿潤環境の現場においては、基材と下塗り層、及び下塗り層と被覆層との間で十分な接着強度が得られず、施工自体が困難となる場合がある。
 特に、利用頻度の高い公共設備等の構造物において、施工期間が短期間に限定されるような場合、このような不具合は甚大な損害を招くこととなる。
 このような課題に対しては、例えば、特許文献1に、構造物に生じたクラックの表面から浸透する樹脂液を塗布し、この樹脂液が硬化する前に、骨材を混合したパテ状の一液性湿気硬化型接着剤を、クラック開口部の外側に肉盛り状態に塗着させるクラックの補修方法が記載されている。この方法によれば、肉盛りして塗着された接着剤が毛細管張力を利用して浸透するのに伴い、骨材がクラック内に導かれるため、作業効率が向上するとしている。
 また、特許文献2には、エポキシ樹脂系接着剤を塗布した後、該接着剤が硬化する前に、ポリマーセメントモルタルで補修するコンクリート水路の補修工法が記載されている。
特開2006-336188号公報 特開2007-197301号公報
 しかしながら、前記特許文献1に記載の接着剤は湿気硬化型であるため、構造物の基材が湿潤状態にある場合には、該接着剤は、クラックに浸透する前に硬化し、十分な接着強度を発現することができない。
 また、前記特許文献2では、具体的には二液型のエポキシ樹脂系接着剤が素地調整材として用いられており、作業効率の点で劣り、施工期間が長く必要となる場合もあった。
 したがって、湿度変化に左右されることなく、構造物の基材に対する被覆層の十分な接着強度を保持しつつ、素地調整の工程を簡素化し、施工期間の短縮化を図ることができる表面被覆工法が望まれている。
 本発明は、上記課題を解決するためになされたものであり、比較的短い養生期間でも、構造物の外部環境の湿度の影響を受けることなく、該構造物の基材に対する被覆層の十分な接着強度を得ることができる、構造物の表面被覆工法を提供することを目的とする。
 本発明は、構造物の基材に対する被覆層の接着性を向上させる上で、湿潤環境下においても、所定の材料による素地調整材が効果的であることを見出したことに基づくものである。
 すなわち、本発明は、以下の[1]~[9]を提供するものである。
[1]構造物の基材表面に、ラジカル重合性樹脂組成物(1)を含む素地調整材を塗布する工程(I)と、塗布した前記素地調整材が硬化する前の未硬化塗布膜の表面に、被覆材として樹脂系モルタル及び樹脂系ライニング材の少なくともいずれか一方を塗布又は充填して被覆層を形成する工程(II)とを有し、前記ラジカル重合性樹脂組成物(1)は、ラジカル重合性化合物(A)、金属石鹸(B)、並びに2級チオール化合物及び3級チオール化合物から選ばれる1種以上のチオール化合物(C)を含む、構造物の表面被覆工法。
[2]前記素地調整材は、前記ラジカル重合性化合物(A)及び前記金属石鹸(B)を混合した後、前記チオール化合物(C)を添加混合して得られた前記ラジカル重合性樹脂組成物(1)に、ラジカル重合開始剤(D)を添加混合することにより調製されたものである、上記[1]に記載の構造物の表面被覆工法。
[3]前記チオール化合物(C)が、下記式(Q-1)で表される構造を1個以上有し、かつ、分子中に2級又は3級炭素原子に結合するメルカプト基を、下記式(Q-1)で表される構造中のメルカプト基を含めて2個以上有する化合物である、上記[1]又は[2]に記載の構造物の表面被覆工法。
Figure JPOXMLDOC01-appb-C000002

(式(Q-1)中、R1及びR2は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、又は炭素数6~18の芳香族基である。ただし、R1及びR2の両方ともが水素原子ではない。*は任意の有機基に連結していることを示す。aは0~2の整数である。)
[4]前記ラジカル重合性樹脂組成物(1)中の前記チオール化合物(C)の合計含有量が、前記ラジカル重合性化合物(A)100質量部に対して0.01~10質量部である、上記[1]~[3]のいずれか1項に記載の構造物の表面被覆工法。
[5]前記ラジカル重合性樹脂組成物(1)中の前記チオール化合物(C)の合計含有量が、前記金属石鹸(B)1モルに対して0.1~15モルである、上記[1]~[4]のいずれか1項に記載の構造物の表面被覆工法。
[6]前記ラジカル重合性化合物(A)が、ビニルエステル樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂とラジカル重合性不飽和単量体との混合物、及び不飽和ポリエステル樹脂とラジカル重合性不飽和単量体との混合物のうちから選ばれる1種以上である、上記[1]~[5]のいずれか1項に記載の構造物の表面被覆工法。
[7]前記樹脂系モルタル又は前記樹脂系ライニング材が、ラジカル重合性樹脂組成物(2)に、ラジカル重合開始剤(D)及び充填材(E)を添加混合することにより調製されたものである、上記[1]~[6]のいずれか1項に記載の構造物の表面被覆工法。
[8]前記充填材(E)が、無機充填材及び強化繊維のうちから選ばれる1種以上を含む、上記[7]に記載の構造物の表面被覆工法。
[9]前記樹脂系モルタル又は前記樹脂系ライニング材のそれぞれにおいて、前記充填材(E)の合計含有量が、前記ラジカル重合性樹脂組成物(2)100質量部に対して、0.1~700質量部である、上記[7]又は[8]に記載の構造物の表面被覆工法。
 本発明の構造物の表面被覆工法によれば、比較的短い養生期間でも、構造物の外部環境の湿度の影響を受けることなく、該構造物の基材に対する被覆層の十分な接着強度が得られる。
 したがって、本発明の構造物の表面被覆工法を用いることにより、建築構造物や土木構造物の表面の保護や補修、断面修復等の施工期間の短縮化を図ることができる。
 以下、本発明の構造物の表面被覆工法について、詳細に説明する。
 本発明の構造物の表面被覆工法は、構造物の基材表面に、ラジカル重合性樹脂組成物(1)を含む素地調整材を塗布する工程(I)と、塗布した前記素地調整材が硬化する前の未硬化塗布膜の表面に、被覆材として樹脂系モルタル及び樹脂系ライニング材の少なくともいずれか一方を塗布又は充填して被覆層を形成する工程(II)とを有している。そして、前記ラジカル重合性樹脂組成物(1)は、ラジカル重合性化合物(A)、金属石鹸(B)、並びに2級チオール化合物及び3級チオール化合物から選ばれる1種以上のチオール化合物(C)を含むものである。
 このような素地調整材を用いて、該素地調整材が硬化する前に所定の被覆材を塗布又は充填して、被覆層を形成することにより、湿潤環境下でも、比較的短い養生期間で、構造物の基材に対する被覆層の十分な接着強度が得られる。
 なお、本発明において、「硬化する前」とは、素地調整材が流動性を失ってゲル化するまでの時間(ゲル化時間)以内のことを言い、該素地調整材の可使時間あるいは作業可能期間を意味する。
《工程(I)》
 工程(I)は、構造物の基材表面に、ラジカル重合性樹脂組成物を含む素地調整材を塗布する、素地調整材塗布工程である。この工程は、工程(II)よりも前に行われる工程であり、「捨て塗り」や「下塗り」と呼ばれる場合もある。
[構造物]
 本発明における構造物とは、基材として、コンクリートやモルタル、アスファルトコンクリート、石材、レンガ、セラミックス、金属、木材、樹脂等の構造材を用いて建設されたものであり、例えば、建物、道路、橋梁、トンネル、上下水道、水路、ダム及び堤防、岸壁等を指す。樹脂としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、アルキド樹脂、ポリウレタン、ポリイミド等の熱硬化性樹脂;ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、フッ素樹脂、ABS樹脂、AS樹脂、アクリル樹脂等の熱可塑性樹脂等が挙げられる。
 本発明の工法は、構造物のこのような基材表面に好適に適用することができる。構造物の外部環境の湿度の影響を受けることなく、また、素地調整材を塗布する基材表面が乾燥状態又は湿潤状態であるかを問わず、適用することができる。
[素地調整材]
 素地調整材は、構造物の基材表面を平滑で均質な面とし、その上に被覆層を形成するための施工を容易にし、また、基材と被覆層との接着性を向上させる役割を有する。このため、素地調整材は、充填材等の固形物は含まない液状物であり、塗布しやすく、かつ、塗布面から液垂れしにくい粘性を有する塗液としての性状を有するものである。
 本発明においては、素地調整材がラジカル重合性樹脂組成物(1)を含むことを特徴としている。
 素地調整材の塗布方法は、特に限定されるものではなく、公知の方法を適用することができる。例えば、刷毛、ローラー、スプレーガン、ヘラ等の公知の塗布手段を用いて行うことができる。塗布量は、基材の材質、基材表面の凹凸やクラックの程度、被覆層の材質等に応じて適宜設定されるが、通常、20~800g/m2であることが好ましく、より好ましくは30~700g/m2であり、さらに好ましくは50~500g/m2である。
(ラジカル重合性樹脂組成物(1))
 ラジカル重合性樹脂組成物(1)は、ラジカル重合性化合物(A)、金属石鹸(B)、並びに2級チオール化合物及び3級チオール化合物から選ばれる1種以上のチオール化合物(C)を含むものである。
 ラジカル重合性樹脂組成物(1)は、構造物の基材表面に塗布可能な性状を有するものであり、塗布後、ラジカル重合反応により基材表面で硬化する。また、ラジカル重合性樹脂組成物(1)は、基材表面が乾燥状態又は湿潤状態であるかを問わず、塗布しやすく、また、安定的に硬化するため、素地調整材として好適に用いることができる。
 ラジカル重合性樹脂組成物(1)中に、ラジカル重合性化合物(A)、金属石鹸(B)及びチオール化合物(C)以外に含まれ得るその他の成分としては、例えば、重合禁止剤、硬化遅延剤、硬化促進剤、ポリイソシアネート化合物、カップリング剤、可塑剤、界面活性剤、湿潤分散剤、消泡剤、ワックス、揺変剤、溶剤等が挙げられる。
<ラジカル重合性化合物(A)>
 ラジカル重合性化合物(A)は、分子内にエチレン性不飽和炭化水素基を有し、ラジカルによって重合反応が進行する化合物である。これらは、1種単独で用いても、2種以上を併用してもよい。
 ラジカル重合性樹脂組成物(1)中のラジカル重合性化合物(A)の含有量は、基材及び被覆層に応じて素地調整材に求められる性能に基づいて適宜設定されるが、構造物の基材に対して被覆層の接着性が良好となる素地調整材を得る観点から、50~99質量%、より好ましくは60~98質量%、さらに好ましくは70~98質量%である。
 ラジカル重合性化合物(A)は、特に限定されるものではなく、例えば、エポキシ(メタ)アクリレート樹脂等のビニルエステル樹脂、不飽和ポリエステル樹脂、ポリエステル(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂、(メタ)アクリレート樹脂、ラジカル重合性不飽和単量体、前記樹脂とラジカル重合性不飽和単量体との混合物等が挙げられる。これらのうち、ビニルエステル樹脂、不飽和ポリエステル樹脂、また、これらの各樹脂とラジカル重合性不飽和単量体との混合物が好ましい。
 なお、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味し、また、(メタ)アクリロイル基とは、アクリロイル基又はメタクリロイル基を意味する。
 ラジカル重合性不飽和単量体は、ラジカル重合性樹脂組成物(1)の粘度の上昇を抑制し、硬度や強度、耐薬品性、耐水性等の向上の観点から好適に用いられ、それのみを単独で用いてもよいが、ビニルエステル樹脂及び不飽和ポリエステル樹脂のうちの少なくとも1種との混合物として用いることが好ましい。このような混合物として用いられる場合、該単量体の残留に伴うラジカル重合性樹脂組成物(1)の硬化物の耐久性や環境への影響に鑑みて、ラジカル重合性不飽和単量体のラジカル重合性化合物(A)中の含有量は、90質量%以下であることが好ましい。前記含有量は、5~85質量%であることがより好ましく、さらに好ましくは10~80質量%である。
 前記ラジカル重合性不飽和単量体としては、特に限定されるものではないが、ビニル基又は(メタ)アクリロイル基を有するものが好ましい。これは、1種単独で用いても、2種以上を併用してもよい。
 ビニル基を有するラジカル重合性不飽和単量体の具体例としては、スチレン、p-クロロスチレン、ビニルトルエン、α-メチルスチレン、ジクロルスチレン、ジビニルベンゼン、tert-ブチルスチレン、酢酸ビニル、ジアリルフタレート、トリアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、アリル(メタ)アクリレート、ジアリルフマレート、ビニルベンジルブチルエーテル、ビニルベンジルヘキシルエーテル、ビニルベンジルオクチルエーテル、ビニルベンジル(2-エチルヘキシル)エーテル、ビニルベンジル(β-メトキシメチル)エーテル、ビニルベンジル(n-ブトキシプロピル)エーテル、ビニルベンジルシクロヘキシルエーテル、ビニルベンジル(β-フェノキシエチル)エーテル、ビニルベンジルジシクロペンテニルエーテル、ビニルベンジルジシクロペンテニルオキシエチルエーテル、ビニルベンジルジシクロペンテニルメチルエーテル、ジビニルベンジルエーテル等が挙げられる。
 (メタ)アクリロイル基を有するラジカル重合性不飽和単量体の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸iso-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸トリデシル、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、エチレングリコールモノメチルエーテル(メタ)アクリレート、エチレングリコールモノエチルエーテル(メタ)アクリレート、エチレングリコールモノブチルエーテル(メタ)アクリレート、エチレングリコールモノヘキシルエーテル(メタ)アクリレート、エチレングリコールモノ2-エチルヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノブチルエーテル(メタ)アクリレート、ジエチレングリコールモノヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノ2-エチルヘキシルエーテル(メタ)アクリレート等の(メタ)アクリレート等が挙げられる。また、多官能の(メタ)アクリレートでもよく、例えば、エチレングリコールジ(メタ)アクリレート、1,2-プロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリエチレングリコール(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリテトラメチレンエーテルグリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレートモノステアレート、グリセロール1,3-ジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロイルエトキシ)フェニル]プロパン、2,2-ビス[4-((メタ)アクリロキシジエトキシ)フェニル]プロパン、2,2-ビス[4-((メタ)アクリロキシポリエトキシ)フェニル]プロパン、エチレンオキシド変性ビスフェノールAジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジアクリレート、トリス(2-ヒドロキシエチル)イソシアヌル酸(メタ)アクリレート等が挙げられる。
<金属石鹸(B)>
 金属石鹸(B)は、長鎖脂肪酸又はその他の有機酸の金属塩である。なお、金属石鹸とは、一般的には、ナトリウム塩及びカリウム塩は含まないが、本発明においては、これらの金属塩であってもよい。これらは、1種単独で用いても、2種以上を併用してもよい。金属石鹸(B)は、ラジカル重合性樹脂組成物(1)中において硬化促進剤として機能する。
 ラジカル重合性樹脂組成物(1)中の金属石鹸(B)の含有量は、ラジカル重合性化合物(A)が硬化するまでの十分な可使時間及び硬化促進能のバランスの観点から、ラジカル重合性化合物(A)100質量部に対して、金属石鹸(B)中の金属元素量換算で0.0001~5質量部であることが好ましく、より好ましくは0.001~2質量部、さらに好ましくは0.005~1質量部である。
 金属石鹸(B)における長鎖脂肪酸は、飽和脂肪酸及び不飽和脂肪酸のいずれでもよい。また、炭素数は、特に限定されるものではないが、ラジカル重合性樹脂組成物(1)中での金属石鹸の均一な溶解分散性の観点から、6~30であることが好ましく、より好ましくは6~20、さらに好ましくは6~16である。具体的には、ヘプタン酸、カプリル酸及び2-エチルヘキサン酸等のオクタン酸、ノナン酸、デカン酸、ネオデカン酸、ウンデカン酸、ドデカン酸、テトラデカン酸、ヘキサデカン酸、オクタデカン酸、エイコサン酸、ドコサン酸、テトラコサン酸、ヘキサコサン酸、オクタコサン酸、トリアコンタン酸、ナフテン酸等の鎖状又は環状構造を有する飽和脂肪酸;オレイン酸、リノール酸、リノレン酸等の不飽和脂肪酸が挙げられる。また、その他の天然物由来のロジン酸、亜麻仁油抽出脂肪酸、大豆油抽出脂肪酸、トール油抽出脂肪酸等も挙げられる。これらのうち、オクタン酸、ナフテン酸が好ましく、より好ましくは2-エチルヘキサン酸、ナフテン酸である。
 その他の有機酸としては、例えば、カルボキシ基、ヒドロキシ基、エノール基等を有する弱酸であって、有機溶剤に溶解するものが好ましい。
 カルボキシ基を有する弱酸としては、例えば、ギ酸、酢酸、シュウ酸等のカルボン酸;クエン酸、胆汁酸、糖酸、12-ヒドロキシステアリン酸、ヒドロキシケイ皮酸、葉酸等のヒドロキシ酸;アラニン、アルギニン等のアミノ酸;安息香酸、フタル酸等の芳香族酸等が挙げられる。
 また、ヒドロキシ基又はエノール基を有する化合物としては、例えば、アスコルビン酸、α酸、イミド酸、エリソルビン酸、クロコン酸、コウジ酸、スクアリン酸、スルフィン酸、タイコ酸、デヒドロ酢酸、デルタ酸、尿酸、ヒドロキサム酸、フミン酸、フルボ酸、ホスホン酸等が挙げられる。
 金属塩を構成する金属元素としては、後述するチオール化合物(C)が配位し、錯体化合物を形成し得るものであれば、特に限定されるものではない。例えば、バナジウム、鉄、銅、コバルト、マンガン、チタン、錫、鉛、ビスマス、ジルコニウム、カルシウム等が挙げられ、ラジカル重合性樹脂組成物(1)の保存安定性の観点から、バナジウム、コバルト、マンガン、ジルコニウムが好ましい。
 金属石鹸としては、具体的には、2-エチルヘキサン酸コバルト、2-エチルヘキサン酸マンガン、2-エチルヘキサン酸イットリウム、2-エチルヘキサン酸錫、2-エチルヘキサン酸鉛、ナフテン酸コバルト、ナフテン酸鉛、ナフテン酸ビスマス(III)、ナフテン酸イットリウム、ナフテン酸カルシウム等が挙げられる。これらのうち、2-エチルヘキサン酸コバルト、2-エチルヘキサン酸マンガン、ナフテン酸コバルトが好適に用いられる。
<チオール化合物(C)>
 チオール化合物(C)は、2級チオール化合物及び3級チオール化合物のうちから選ばれる化合物である。これらは、1種単独で用いても、2種以上を併用してもよい。
 これらの化合物は、ラジカル重合性樹脂組成物(1)中において、硬化促進剤として機能する金属石鹸(B)と併用されることにより、硬化促進助剤として機能するものである。チオール化合物(C)は、後述するように、金属石鹸(B)の金属元素に配位することにより、金属石鹸の水による失活を防ぎ、硬化促進能を発揮するものと考えられる。
 なお、1級チオール化合物では、十分な硬化促進能が得られず、また、これを含有するラジカル重合性樹脂組成物(1)は、十分な保存安定性が得られない。このため、本発明においては、2級チオール化合物及び/又は3級チオール化合物を用いる。
 ラジカル重合性樹脂組成物(1)の保存安定性等の観点から、チオール化合物(C)としては、2級チオール化合物又は3級チオール化合物を用いることが好ましい。また、金属石鹸(B)の金属元素に対する配位のしやすさの観点から、2級チオール化合物の方が、3級チオール化合物よりも好ましい。
 なお、本発明では、2級チオール化合物が、1級炭素原子に結合するメルカプト基も有している場合、該化合物は2級チオール化合物とみなす。同様に、3級チオール化合物が、1級又は2級炭素原子に結合するメルカプト基も有する場合、該化合物は3級チオール化合物とみなす。
 2級チオール化合物及び3級チオール化合物を併用する場合には、金属石鹸(B)の金属元素に安定的に配位し、チオール化合物(C)同士の結合によるジスルフィド化合物の副生を抑制する観点から、2級チオール化合物は、3級チオール化合物1モルに対して、0.1~100モルであることが好ましく、より好ましくは1~10モルである。
 ラジカル重合性樹脂組成物(1)中のチオール化合物(C)の合計含有量は、ラジカル重合性化合物(A)に対する十分な硬化促進能を得られる量であればよく、ラジカル重合性化合物(A)100質量部に対して、0.01~10質量部であることが好ましく、より好ましくは0.05~5質量部、さらに好ましくは0.1~3質量部である。
 また、チオール化合物(C)の合計含有量は、金属石鹸(B)の金属元素へのチオール化合物(C)の配位のしやすさ、及びコストと硬化促進能のバランスを考慮して、金属石鹸(B)1モルに対して、0.1~15モルであることが好ましく、より好ましくは0.3~10モル、さらに好ましくは0.5~5モルである。
 チオール化合物(C)は、湿潤条件下での硬化促進能や金属石鹸(B)の水による失活抑制の観点から、分子中に2級又は3級炭素原子に結合するメルカプト基を2個以上有する化合物である多官能チオールが好ましく、中でも、分子中に2級又は3級炭素原子に結合するメルカプト基を2個有する化合物である2官能チオールが好ましい。
 なお、ここで言う「多官能チオール」とは、官能基であるメルカプト基が2個以上であるチオール化合物を意味し、また、「2官能チオール」とは、官能基であるメルカプト基が2個であるチオール化合物を意味する。
 チオール化合物(C)は、下記式(Q-1)で表されるエステル構造を1個以上有し、かつ、分子中に2級又は3級炭素原子に結合するメルカプト基を、下記式(Q-1)で表される構造中のメルカプト基を含めて2個以上有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(Q-1)中、R1及びR2は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、又は炭素数6~18の芳香族基である。ただし、R1及びR2の両方ともが水素原子ではない。*は任意の有機基に連結していることを示す。aは0~2の整数である。
 式(Q-1)中のR1又はR2が水素原子であり、分子中に2級炭素原子に結合するメルカプト基を2個以上有する化合物であることがより好ましい。すなわち、チオール化合物(C)は、式(Q-1)中のメルカプト基が結合する炭素原子が2級炭素原子である2級チオール化合物であることが好ましい。
 前記R1及びR2における炭素数1~10のアルキル基は、直鎖状であっても分岐状であってもよい。具体的には、メチル基、エチル基、各種プロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基等が挙げられる。なお、「各種」とは、n-、sec-、tert-、iso-を含む各種異性体を意味する。
 これらのアルキル基の中でも、メチル基、エチル基が好ましい。
 また、前記R1及びR2における炭素数6~18の芳香族基としては、例えば、フェニル基、ベンジル基、ナフチル基、アントリル基、フェナントリル基等が挙げられる。なお、これらの芳香族基は、ハロゲン原子、アミノ基、ニトロ基、シアノ基等で置換されていてもよい。
 式(Q-1)中のaは1であることが好ましく、また、R1又はR2が水素原子であることが好ましい。aが1であり、かつ、R1又はR2が水素原子である場合、すなわち、2級チオール化合物が(Q-1)で表されるエステル構造を有する場合は特に、下記式(T)で表すように、金属石鹸(B)の金属元素Mに、カルボニル酸素及びメルカプト基が配位しやすくなり、金属石鹸(B)の金属元素が2級チオール化合物に囲まれた形になると考えられる。素地調整材を湿潤条件下で用いる場合、このように2級チオール化合物が配位することにより、金属元素と水との接触が抑制され、安定的に硬化促進能を発揮することができる。
 3級チオール化合物が(Q-1)で表されるエステル構造を有する場合は、R1及びR2がともに水素よりもかさ高い置換基であり、メルカプト基の金属元素への配位における立体障害を生じやすいことから、2級チオール化合物の方が、硬化促進能をより発揮し得るものと考えられる。ただし、3級チオール化合物でも、金属石鹸(B)の金属元素Mに、カルボニル酸素とメルカプト基が安定的に配位され得る場合は、2級チオール化合物よりも、金属元素Mと水との接触が抑制され、金属石鹸(B)の水による失活を、より抑制し得るものと考えられる。
Figure JPOXMLDOC01-appb-C000004

(式(T)中、R1及びR2は、前記式(Q-1)におけるこれらと同義であり、Mは、金属石鹸(B)に由来する金属元素を示す。)
 さらに、式(Q-1)で表されるエステル構造を有するチオール化合物(C)は、下記式(S)で表されるメルカプト基含有カルボン酸と多価アルコールとのエステル化合物であることが好ましい。このような化合物は、メルカプト基含有カルボン酸と多価アルコールとの公知の方法でのエステル化反応により得られる。
Figure JPOXMLDOC01-appb-C000005

(式(S)中、R1、R2及びaは、前記式(Q-1)におけるこれらと同義である。)
 前記式(S)で表されるメルカプト基含有カルボン酸は、2級チオール化合物の由来化合物である場合、具体的には、2-メルカプトプロピオン酸、3-メルカプト酪酸、3-メルカプト-3-フェニルプロピオン酸等が挙げられる。
 また、3級チオール化合物の由来化合物である場合は、具体的には、2-メルカプトイソ酪酸、3-メルカプト-3-メチル酪酸等が挙げられる。
 前記多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,2-ペンタンジオール、1,3-ペンタンジオール、2,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、トリシクロデカンジメタノール、2,2-ビス(2-ヒドロキシエトキシフェニル)プロパン、ビスフェノールAアルキレンオキシド付加物、ビスフェノールFアルキレンオキシド付加物、ビスフェノールSアルキレンオキシド付加物、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,2-ヘキサンジオール、1,3-ヘキサンジオール、2,3-ヘキサンジオール、1,4-ヘキサンジオール、2,4-ヘキサンジオール、3,4-ヘキサンジオール、1,5-ヘキサンジオール、2,5-ヘキサンジオール、1,6-ヘキサンジオール、9,9-ビス[4-(2-ヒドロキシエチル)フェニル]フルオレン等の2価のアルコール;グリセリン、ジグリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、トリス(2-ヒドロキシエチル)イソシアヌレート、ヘキサントリオール、ソルビトール、ペンタエリスリトール、ジペンタエリスリトール、ショ糖、2,2-ビス(2,3-ジヒドロキシプロピルオキシフェニル)プロパン等の3価以上のアルコール;その他、ポリカーボネートジオール、ダイマー酸ポリエステルポリオール等が挙げられる。
 これらのうち、入手容易性や湿潤条件下でも硬化促進能を発揮させる観点から、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール等の2価のアルコール;グリセリン、トリメチロールエタン、トリメチロールプロパン、トリス(2-ヒドロキシエチル)イソシアヌレート、ペンタエリスリトール、ジペンタエリスリトール、2,2-ビス(2,3-ジヒドロキシプロピルオキシフェニル)プロパン等の3価以上のアルコール;ポリカーボネートジオール、ダイマー酸ポリエステルポリオールが好ましく、官能基数及び蒸気圧の観点から、1,4-ブタンジオール、トリメチロールエタン、トリメチロールプロパン、トリス(2-ヒドロキシエチル)イソシアヌレート、ペンタエリスリトール、ポリカーボネートジオール、ダイマー酸ポリエステルポリオールがより好ましい。
 前記2級チオール化合物の具体例としては、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、3-メルカプトフタル酸ジ(1-メルカプトエチル)、フタル酸ジ(2-メルカプトプロピル)、フタル酸ジ(3-メルカプトブチル)、エチレングリコールビス(3-メルカプトブチレート)、プロピレングリコールビス(3-メルカプトブチレート)、ジエチレングリコールビス(3-メルカプトブチレート)、ブタンジオールビス(3-メルカプトブチレート)、オクタンジオールビス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、エチレングリコールビス(2-メルカプトプロピオネート)、プロピレングリコールビス(2-メルカプトプロピオネート)、ジエチレングリコールビス(2-メルカプトプロピオネート)、ブタンジオールビス(2-メルカプトプロピオネート)、オクタンジオールビス(2-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(2-メルカプトプロピオネート)、エチレングリコールビス(4-メルカプトバレレート)、ジエチレングリコールビス(4-メルカプトバレレート)、ブタンジオールビス(4-メルカプトバレレート)、オクタンジオールビス(4-メルカプトバレレート)、トリメチロールプロパントリス(4-メルカプトバレレート)、ペンタエリスリトールテトラキス(4-メルカプトバレレート)、ジペンタエリスリトールヘキサキス(4-メルカプトバレレート)、エチレングリコールビス(3-メルカプトバレレート)、プロピレングリコールビス(3-メルカプトバレレート)、ジエチレングリコールビス(3-メルカプトバレレート)、ブタンジオールビス(3-メルカプトバレレート)、オクタンジオールビス(3-メルカプトバレレート)、トリメチロールプロパントリス(3-メルカプトバレレート)、ペンタエリスリトールテトラキス(3-メルカプトバレレート)、ジペンタエリスリトールヘキサキス(3-メルカプトバレレート)、水素化ビスフェノールAビス(3-メルカプトブチレート)、ビスフェノールAジヒドロキシエチルエーテル-3-メルカプトブチレート、4,4’-(9-フルオレニリデン)ビス(2-フェノキシエチル(3―メルカプトブチレート))、エチレングリコールビス(3-メルカプト-3-フェニルプロピオネート)、プロピレングリコールビス(3-メルカプト-3-フェニルプロピオネート)、ジエチレングリコールビス(3-メルカプト-3-フェニルプロピオネート)、ブタンジオールビス(3-メルカプト-3-フェニルプロピオネート)、オクタンジオールビス(3-メルカプト-3-フェニルプロピオネート)、トリメチロールプロパントリス(3-メルカプト-3-フェニルプロピオネート)、トリス-2-(3-メルカプト-3-フェニルプロピオネート)エチルイソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプト-3-フェニルプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプト-3-フェニルプロピオネート)、1,3,5-トリス[2-(3-メルカプトブチリルオキシエチル)]-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン等が挙げられる。
 前記2級チオール化合物のうち、分子中に2級炭素原子に結合するメルカプト基を2個以上有する化合物としては、1,4-ビス(3-メルカプトブチリルオキシ)ブタン(昭和電工株式会社製「カレンズMT(登録商標)BD1」)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工株式会社製「カレンズMT(登録商標)PE1」)、1,3,5-トリス[2-(3-メルカプトブチリルオキシエチル)]-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(昭和電工株式会社製「カレンズMT(登録商標)NR1」)、トリメチロールエタントリス(3-メルカプトブチレート)(昭和電工株式会社製「TEMB」)、トリメチロールプロパントリス(3-メルカプトブチレート)(昭和電工株式会社製「TPMB」)等の市販品を好適に用いることができる。
 前記3級チオール化合物の具体例としては、フタル酸ジ(2-メルカプトイソブチル)、エチレングリコールビス(2-メルカプトイソブチレート)、プロピレングリコールビス(2-メルカプトイソブチレート)、ジエチレングリコールビス(2-メルカプトイソブチレート)、ブタンジオールビス(2-メルカプトイソブチレート)、オクタンジオールビス(2-メルカプトイソブチレート)、トリメチロールエタントリス(2-メルカプトイソブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、ペンタエリスリトールテトラキス(2-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(2-メルカプトイソブチレート)、フタル酸ジ(3-メルカプト-3-メチルブチル)、エチレングリコールビス(3-メルカプト-3-メチルブチレート)、プロピレングリコールビス(3-メルカプト-3-メチルブチレート)、ジエチレングリコールビス(3-メルカプト-3-メチルブチレート)、ブタンジオールビス(3-メルカプト-3-メチルブチレート)、オクタンジオールビス(3-メルカプト-3-メチルブチレート)、トリメチロールエタントリス(3-メルカプト-3-メチルブチレート)、トリメチロールプロパントリス(3-メルカプト-3-メチルブチレート)、ペンタエリスリトールテトラキス(3-メルカプト-3-メチルブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプト-3-メチルブチレート)等が挙げられる。
<その他の成分>
 ラジカル重合性樹脂組成物(1)中には、素地調整材を塗布する構造物の基材及び被覆層に応じて素地調整材に求められる性能に基づいて、必要により、その他の成分として、重合禁止剤、硬化遅延剤、硬化促進剤、ポリイソシアネート化合物、カップリング剤、可塑剤、界面活性剤、湿潤分散剤、消泡剤、ワックス、揺変剤、溶剤等を添加することができる。これらは、1種単独で使用しても、2種以上を併用してもよい。
 ラジカル重合性樹脂組成物(1)がこれらのその他の成分を含む場合、溶剤以外の成分の含有量は、素地調整材としての性能を低下させることなく、各成分の性能を十分に発揮し得る量とする観点から、ラジカル重合性化合物(A)100質量部に対して、それぞれ、0.0001~10質量部であることが好ましく、より好ましくは0.001~10質量部、さらに好ましくは0.005~10質量部である。また、溶剤以外の各成分の合計含有量は、ラジカル重合性化合物(A)100質量部に対して、0.0001~10質量部であることが好ましく、より好ましくは0.001~10質量部、さらに好ましくは0.005~10質量部である。
 なお、溶剤の含有量は、後述するように、特に限定されるものではない。
〔重合禁止剤〕
 重合禁止剤は、ラジカル重合性化合物(A)の過度の重合の抑制及び反応速度の制御の観点から、添加されていてもよい。重合禁止剤としては、例えば、ハイドロキノン、メチルハイドロキノン、フェノチアジン、カテコール、4-tert-ブチルカテコール等の公知のものが挙げられる。
〔硬化遅延剤〕
 硬化遅延剤は、素地調整材の塗布の作業時間等を考慮して、ラジカル重合性化合物(A)の硬化遅延の目的で、添加されていてもよい。硬化遅延剤としては、例えば、2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(TEMPO)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(4H-TEMPO)、4-オキソ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(4-Oxo-TEMPO)等のTEMPO誘導体のフリーラジカル系硬化遅延剤が挙げられる。これらの中でも、取扱い性、コスト等の観点から、4H-TEMPOが好ましい。
〔硬化促進剤〕
 ラジカル重合性化合物(A)の種類等によっては、硬化促進の目的で、金属石鹸(B)及びチオール化合物(C)以外の硬化促進剤が添加されていてもよい。このような硬化促進剤としては、例えば、アミン類が挙げられ、具体的には、アニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、p-トルイジン、N,N-ジメチル-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、4-(N,N-ジメチルアミノ)ベンズアルデヒド、4-[N,N-ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4-(N-メチル-N-ヒドロキシエチルアミノ)ベンズアルデヒド、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニリモルホリン、ピペリジン、N,N-ビス(ヒドロキシエチル)アニリン、ジエタノールアニリン等のN,N-置換アニリン、N,N-置換-p-トルイジン、4-(N,N-置換アミノ)ベンズアルデヒド等のアミン類等が挙げられる。
〔ポリイソシアネート化合物〕
 ポリイソシアネート化合物は、ラジカル重合性化合物(A)がヒドロキシ基やカルボキシ基等を有する場合、これらの基とイソシアナト基との反応により硬化性をもたらす硬化剤として、添加されていてもよい。前記ポリイソシアネート化合物は、分子中にイソシアナト基を2個以上含有するものであり、該イソシアナト基は、硬化速度を調整する観点から、公知のブロック化剤等でブロック化されていてもよい。また、硬化触媒として、ジブチル錫ジ(2-エチルヘキサノエート)、ジブチル錫ジラウレート、ジブチル錫ジアセテート等のイソシアナト基による硬化反応触媒として公知の有機金属触媒を用いることができる。
 ブロック化されていないポリイソシアネート化合物としては、例えば、リジンジイソシアネート、ヘキサメチレンジイソシアネート等の鎖状脂肪族ジイソシアネート類;水添キシリレンジイソシアネート、イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)等の環状脂肪族ジイソシアネート類;トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族ジイソシアネート類;リジントリイソシアネート等のトリイソシアネート類等が挙げられる。また、これらと多価アルコール、低分子ポリエステル樹脂若しくは水等との付加反応物、上記したジイソシアネート類同士の環化重合体(例えば、イソシアヌレート)やビウレット型付加物等も挙げられる。中でも、ヘキサメチレンジイソシアネートのイソシアヌレートが好ましい。
〔カップリング剤〕
 カップリング剤は、素地調整材の基材への塗工性及び接着性の向上等の観点から、添加されていてもよい。カップリング剤としては、例えば、公知のシラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられ、具体的には、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等のシランカップリング剤等が挙げられる。
〔可塑剤〕
 可塑剤は、素地調整材の基材への塗工性の向上等の観点から、添加されていてもよい。可塑剤としては、フタル酸やアジピン酸、リン酸、トリメット酸等の酸と、オクタノールやノナノール、高級混合アルコール等のアルコールとから合成されるエステル等の公知のものを用いることができる。例えば、ビス(2-エチルヘキシル)フタレート、ジイソノニルフタレート、ジイソデシルフタレート等のフタル酸エステル類;ビス(2-エチルヘキシル)アジペート、ビス(2-エチルヘキシル)セバケート、ジエチルサクシネート等の脂肪族二塩基酸エステル類;トリブチルホスフェート、トリクレジルホスフェート等のリン酸エステル類;トリメリット酸トリス(2-エチルヘキシル)等のトリメット酸エステル類等が挙げられる。エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ系可塑剤類等も挙げられる。
〔界面活性剤〕
 界面活性剤は、ラジカル重合性樹脂組成物(1)の混和性を良好なものとする観点から、添加されていることが好ましい。界面活性剤は、陰イオン性、陽イオン性又は両性のイオン性界面活性剤であっても、非イオン性界面活性剤でもよい。中でも、陰イオン性界面活性剤又は非イオン性界面活性剤が好ましい。例えば、陰イオン性界面活性剤としては、ジアルキルスルホコハク酸ナトリウム等のスルホン酸塩等が挙げられ、また、非イオン性界面活性剤としては、ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル等が挙げられる。
〔湿潤分散剤〕
 湿潤分散剤は、湿潤環境下での素地調整材の基材への塗工性の向上等の観点から、添加されていてもよい。湿潤分散剤としては、公知のフッ素系湿潤分散剤、シリコーン系湿潤分散剤等を用いることができる。例えば、フッ素系湿潤分散剤としては、メガファック(登録商標)F-176、メガファック(登録商標)R-08(以上、大日本インキ化学工業株式会社製)、PF-656、PF-6320(以上、オムノバソリューションズ社製)、トロイゾル(登録商標)S366(トロイケミカル株式会社製)、フルオラドFC-430(スリーエム ジャパン株式会社製)等の市販品が挙げられ、また、シリコーン系湿潤分散剤としては、BYK(登録商標)-322、BYK(登録商標)-377、BYK(登録商標)-UV3570、BYK(登録商標)-330、BYK(登録商標)-302、BYK(登録商標)-UV3500、BYK-306(以上、ビックケミー・ジャパン株式会社製)、KP-341(信越化学工業株式会社製)等の市販品が挙げられる。
〔消泡剤〕
 消泡剤は、素地調整材の撹拌混合や塗布の際に気泡が生じるのを抑制する観点から、添加されていてもよい。消泡剤としては、公知のシリコーン系消泡剤を用いることができる。例えば、BYK-065(ビックケミー・ジャパン株式会社製)等が挙げられる。
〔ワックス〕
 ワックスは、素地調整材の粘度調整や耐水性付与等の観点から、添加されていてもよい。ワックスとしては、公知のパラフィンワックス類、極性ワックス類等を用いることができる。例えば、パラフィンワックス125°F(JXTXエネルギー株式会社製)、NPS(登録商標)-8070、NPS(登録商標)-9125(以上、日本精蝋株式会社製)等が挙げられる。
〔揺変剤〕
 揺変剤は、素地調整材の垂直面や天井面への塗布時の作業性の観点から、流動性調整等を目的として、添加されていてもよい。揺変剤としては、公知の無機系又は有機系揺変剤を用いることができる。例えば、有機系揺変剤としては、水素添加ひまし油系、アマイド系、酸化ポリエチレン系、植物油重合油系、界面活性剤系、及びこれらを併用した複合系が挙げられ、具体的には、レオロシール(登録商標)PM-20L(株式会社トクヤマ製)等の乾式シリカや、DISPARLON(登録商標)6900-20X(楠本化成株式会社)等のアマイド系等が挙げられる。
〔溶剤〕
 溶剤は、ラジカル重合性樹脂組成物(1)中の各含有成分を均一に混合する観点から、必要に応じて用いられるものである。その含有量は、特に限定されるものではなく、使用時の取り扱い性等に応じて適宜調整することができる。溶剤の種類は、含有成分の溶解性等の特性を考慮し、ラジカル重合性樹脂組成物(1)の硬化性能や素地調整材としての性能に影響を及ぼさない範囲内で適宜選択されるものであり、例えば、シクロヘキサン、n-ヘキサン、ホワイトスピリット、無臭ミネラルスピリット(OMS:Odorless Mineral Spirits)等の脂肪族炭化水素;トルエン、キシレン等の芳香族炭化水素;メチルエチルケトン、メチルイソブチルケトン等のケトン;酢酸エチル、酢酸ブチル、酢酸アミル、酢酸セロソルブ等のエステル等が挙げられる。
 これらの溶剤は、市販のラジカル重合性化合物(A)、金属石鹸(B)、チオール化合物(C)又は他の添加成分の製品中に含まれている場合もある。
 なお、ラジカル重合性樹脂組成物(1)は硬化速度の調整の観点から、水を含まないことが好ましいが、大気中の湿気や使用環境等によって意図せず混入した水については、ラジカル重合性樹脂組成物(1)中に5質量%未満程度含まれていてもよい。
[素地調整材の調製]
 素地調整材は、塗布する際に、ラジカル重合性樹脂組成物(1)に、ラジカル重合開始剤(D)を添加混合し、硬化しないうちに塗布する。
 ラジカル重合性樹脂組成物(1)は、公知の方法で撹拌混合することにより得られ、さらに、任意の成分として上述したその他の成分等を添加してもよい。各成分の添加混合順序は限定されるものではないが、チオール化合物(C)のより均質な分散性の観点から、ラジカル重合性化合物(A)及び金属石鹸(B)を混合した後、チオール化合物(C)を添加混合することが好ましい。
(ラジカル重合開始剤(D))
 ラジカル重合性樹脂組成物(1)は、ラジカル重合開始剤(D)が添加されることにより、ラジカル重合反応が進行して硬化する。
 ラジカル重合開始剤(D)の添加量は、ラジカル重合性化合物(A)の種類や素地調整材を塗布する構造物の基材周辺の環境条件等に応じて適宜設定される。通常、ラジカル重合性化合物(A)100質量部に対して、0.1~10質量部であることが好ましく、より好ましくは0.5~8質量部、さらに好ましくは0.5~5質量部である。
 なお、ラジカル重合性樹脂組成物(1)が、例えば、重合禁止剤等を含んでおり、ラジカル重合開始剤と併存していても、ラジカル重合性化合物(A)のラジカル重合反応が進行しない条件下で保存され、素地調整材の使用時の条件においてラジカル重合反応が進行するような場合には、作業効率等の観点から、ラジカル重合開始剤(D)をラジカル重合性樹脂組成物(1)中に予め含有させておいてもよい。
 ラジカル重合開始剤(D)の種類は、ラジカル重合性化合物(A)の種類や素地調整材を塗布する構造物の基材周辺の環境条件等に応じて適宜選択されるが、表面被覆工法の施工現場において、特殊な条件を付与することなく、容易にラジカル重合性化合物(A)のラジカル重合を開始させることができるものであれば、公知の熱ラジカル重合開始剤、光ラジカル重合開始剤等を用いることができる。これらは、1種単独で用いても、2種以上を併用してもよい。
 熱ラジカル重合開始剤としては、例えば、ベンゾイルパーオキサイド等のジアシルパーオキサイド系、tert-ブチルパーオキシベンゾエート等のパーオキシエステル系、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、tert-ブチルハイドロパーオキサイド、パラメンタンハイドロパーオキサイド等のハイドロパーオキサイド系、ジクミルパーオキサイド等ジアルキルパーオキサイド系、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド等のケトンパーオキサイド系、パーオキシケタール系、アルキルパーエステル系、パーカーボネート系等の有機過酸化物が挙げられる。
 光ラジカル重合開始剤としては、例えば、ベンゾインアルキルエーテル等のベンゾインエーテル系、ベンゾフェノン、ベンジル、メチルオルソベンゾイルベンゾエート等のベンゾフェノン系、ベンジルジメチルケタール、2,2-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、4-イソプロピル-2-ヒドロキシ-2-メチルプロピオフェノン、1,1-ジクロロアセトフェノン等のアセトフェノン系、2-クロロチオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン等のチオキサントン系等が挙げられる。
 これらのうち、酸化還元の促進の観点から、ハイドロパーオキサイド系やケトンパーオキサイド系が好ましく、さらに、保存安定性の観点から、ハイドロパーオキサイド系のうちのクメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイドが好ましい。
《工程(II)》
 工程(II)は、工程(I)で塗布した素地調整材が硬化する前の未硬化塗布膜の表面に、被覆材として樹脂系モルタル及び樹脂系ライニング材の少なくともいずれか一方を塗布又は充填して被覆層を形成する、被覆層形成工程である。
 工程(II)においては、被覆材の塗布時の初期接着性を十分に得るために、素地調整材が硬化する前の未硬化塗布膜の表面に被覆層となる被覆材を塗布する。このように、従来のプライマー処理等のように下塗りしたプライマー塗布膜が硬化するのを待たずに、被覆層を形成することにより、施工時間の短縮化を図ることもできる。
[被覆材]
 本発明においては、被覆材として樹脂系モルタル又は樹脂系ライニング材を用いる。これらは、一方のみを1層又は複数層、塗布又は充填して被覆層を形成してもよい。あるいはまた、樹脂系モルタルによる被覆層及び樹脂系ライニング材による被覆層が積層された複数層からなる被覆層を形成してもよい。この場合の積層の順序は問わない。
 被覆材の塗布方法は、上記の素地調整材と同様の方法を適用することができる。また、より厚みのある被覆層を形成する場合の充填方法としては、例えば、充填機、注入機、コテ等のモルタル充填等において公知の充填手段を用いて行うことができる。塗布量は、基材の材質、基材表面の凹凸やクラックの程度、被覆材の材質等に応じて適宜設定されるが、通常、被覆材全量で100~100000g/m2であることが好ましく、より好ましくは500~50000g/m2、さらに好ましくは1000~40000g/m2である。
 被覆材の厚みは、ひび割れや反り等のない均一な被覆層を十分な厚さで得る観点から、被覆材として樹脂系モルタルを用いる場合は、50μm~100mmであることが好ましく、より好ましくは、500μm~50mm、さらに好ましくは2~40mmである。また、樹脂系ライニング材を用いる場合は、50μm~100mmであることが好ましく、より好ましくは、100μm~50mm、さらに好ましくは200μm~30mmである。
(樹脂系モルタル)
 本発明で言う「樹脂系モルタル」とは、結合材として合成樹脂が用いられているモルタルを意味するものであり、結合材が主として水硬性セメントである、無機系のいわゆるモルタル(セメントモルタル)とは区別されるものである。したがって、樹脂系モルタルは、合成樹脂と骨材を主な構成成分とする樹脂モルタルに限らず、セメント及び骨材に、ポリマーディスパージョン又は再乳化形粉末樹脂を混合したポリマーセメントモルタルであってもよい。
 樹脂系モルタルは、モルタルに比べて、接着性、防水性、乾燥収縮性、耐薬品性等に優れており、構造物の補修材として、特に、コンクリートやモルタルの断面修復材として好適に用いることができる。
(樹脂系ライニング材)
 樹脂系ライニング材とは、例えば、防食や防水、防汚、摩耗防止等の構造物の基材の表面保護を目的とした合成樹脂による被覆材である。本発明における樹脂系ライニング材は、樹脂系モルタルと区別する観点から、充填材としてセメントや骨材を含まないものとする。
(被覆材の組成)
 被覆材として用いられる樹脂系モルタル又は樹脂系ライニング材は、市販のものを用いることができる。
 また、本発明では、ラジカル重合性樹脂組成物(2)に、ラジカル重合開始剤(D)及び充填材(E)を添加混合することにより調製されたものが好適に用いられる。ここで用いられるラジカル重合性樹脂組成物(2)は、前記素地調整材に用いられるラジカル重合性樹脂組成物(1)と組成が同一であっても、異なっていてもよい。組成が同一又は成分が近似していることにより、素地調整材の未硬化塗膜に対する被覆材の接着性が良好となり得るが、被覆材は、ラジカル重合性樹脂組成物(2)以外に充填材(E)等の成分を含むものであることから、これらの成分や被覆材に求められる性能等を考慮して異なる組成としてもよい。
 ラジカル重合開始剤(D)も、前記素地調整材に用いられるものと同様のものを用いることができ、その添加量も、前記素地調整材と同等でよく、ラジカル重合性樹脂組成物(2)の組成や構造物の基材周辺の環境条件等に応じて適宜設定される。
<充填材(E)>
 充填材(E)は、被覆材により形成される被覆層に所望の特性を付与する目的で添加されるものであり、一般的には固体である。充填材(E)としては、例えば、無機充填材、強化繊維、エラストマー等が挙げられる。これらは、1種単独で用いても、2種以上を併用してもよい。これらのうち、無機充填材及び強化繊維のうちから選ばれる1種以上を含んでいることが好ましい。
 充填材(E)は、上記のうちの2種以上を併用する場合、使用される各成分を予め混合したプレミックス充填材を調製しておくことが好ましい。この場合、プレミックス充填材中に、充填材(E)による所望の作用効果を妨げない範囲内の量で、上述した無機系揺変剤や、流動性の付与目的のカップリング剤、色付け目的の着色剤等の添加剤を添加してもよい。該添加剤の添加量は、充填材(E)中、10質量%以下であることが好ましく、より好ましくは5質量%以下、さらに好ましくは3質量%以下である。
 被覆材として、ラジカル重合性樹脂組成物(2)に充填材(E)が添加されたものを用いる場合、その添加量は、構造物の基材に対する被覆層の接着強度を十分に確保でき、かつ、被覆層が充填材(E)による所望の特性を発揮し得る量とする観点から、ラジカル重合性化合物100質量部に対して、0.1~700質量部であることが好ましく、より好ましくは1~650質量部であり、さらに好ましくは10~600質量部である。
 無機系充填材としては、例えば、各種ポルトランドセメント等のセメント;生石灰;川砂利、川砂、海砂利、海砂、山砂利、砕石、砕砂、珪砂等のシリカを主成分とする砂等の天然骨材や、セラミックス、ガラス片等の人工骨材等の骨材;その他、水酸化アルミニウム、炭酸カルシウム、タルク、ゼオライト、活性炭、金属酸化物、金属粉、金属箔、ガラスフレーク、パーライト、無機中空フィラー、ガラスバルーン等の公知の材料が挙げられる。
 樹脂系モルタルにおいては、骨材が用いられ、一般的にはセメントも用いられる。
 また、無機充填材としては、塩化物イオン等の陰イオンを固定化する観点から、例えば、ハイドロタルサイト類、ハイドロカルマイト類等も挙げられる。これらは、天然物でも合成品でもよく、また、表面処理の有無や結晶水の有無は問わない。また、これらのハイドロタルサイト類及びハイドロカルマイト類は、鉄筋の腐食抑制効果がある亜硝酸イオン(NO2 -)、また、硝酸イオン(NO3 -)、水酸化イオン(OH-)、シュウ酸イオン(CH3COO-)、炭酸イオン(CO3 -)又は硫酸イオン(SO4 2-)等の陰イオンが担持されていてもよい。塩化物イオンの固定化の観点からは、亜硝酸イオンを担持させたハイドロカルマイト類が好ましい。
 これらのハイドロタルサイト類及びハイドロカルマイト類は、そのままで充填材(E)として添加されてもよく、また、例えば、セメントペーストと混合して添加することもできる。
 前記ハイドロタルサイト類としては、例えば、下記一般式(G)で表される塩基性炭酸塩が挙げられる。
  Mx・Mgy・AlzCO3(OH)w・mH2O   (G)
(式(G)中、Mはアルカリ金属又は亜鉛を表す。xは0~6の数、yは0~6の数、zは0.1~4の数を表し、w=xr+2y+3z-2である。rはMの価数であり、mは0~100の結晶水の数を表す。)
 また、前記ハイドロカルマイト類としては、例えば、下記一般式(H)又は(J)で表されるものが挙げられる。
  3CaO・Al23・CaX2・kH2O   (H)
  3CaO・Al23・CaY・kH2O   (J)
(式(H)及び(J)中、Xは1価の陰イオン、Yは2価の陰イオンを表す。kは0~20の結晶水の数を表す。)
 強化繊維としては、例えば、ガラス繊維、カーボン繊維、アラミド繊維、ボロン繊維、セルロース繊維、スチール繊維等の金属繊維、アルミナ繊維等のセラミックス繊維等の公知の強化繊維が挙げられる。
 これらの強化繊維は、樹脂系モルタルにおける剥落防止や構造物の耐震補強等に有効であり、また、樹脂系ライニング材における防水性や防食性、耐摩耗性等の向上において有効である。
 また、被覆材に伸縮性を持たせる目的で、例えば、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレン-イソプレンゴム、スチレン-ブタジエンゴム等の公知のエラストマーも充填材として添加することもできる。
 また、被覆材として、ラジカル重合性樹脂組成物(2)に充填材(E)が添加されたものを用いる場合、充填材(E)以外に、例えば、装飾目的の着色剤等のその他の添加剤が、構造物の基材に対する被覆層の接着性を低下させない範囲内において添加されてもよい。
[施工方法]
 被覆材として、ラジカル重合性樹脂組成物(2)に充填材(E)が添加されたものを用いる場合は、例えば、素地調整材のラジカル重合性樹脂組成物(1)、及び被覆材のラジカル重合性樹脂組成物(2)の各プレミックスを準備しておき、構造物の表面被覆を行う施工現場において、ラジカル重合性樹脂組成物(1)及び(2)に、それぞれ、ラジカル重合開始剤(D)を添加し、さらに、ラジカル重合性樹脂組成物(2)には充填材(E)を添加して、ラジカル重合性樹脂組成物(1)及び(2)のそれぞれが硬化しないうちに施工する。なお、充填材(E)は、複数の成分を含む場合、現場作業の効率化の観点から、上述したように、プレミックス充填材として、一括して添加できるように、予め調製しておくことが好ましい。
 素地調整材及び被覆材の調製のタイミングは、施工対象の構造物に応じて適宜調整し、同時であってもよく、工程(I)の途中又は完了後に、被覆材を調製するようにしてもよい。
 なお、ラジカル重合性樹脂組成物(1)及び(2)に、硬化促進剤等が添加されており、未硬化の状態で塗布又は充填の作業時間を十分に確保できる場合には、現場作業の簡略化の観点から、ラジカル重合開始剤(D)を含むプレミックスを用いることもできる。
 また、ラジカル重合性樹脂組成物(1)及び(2)が同一の組成である場合は、ラジカル重合性樹脂組成物(1)の一部を被覆材に流用することができ、この場合も、被覆材調製の簡略化を図ることができる。
 なお、被覆材として、市販の樹脂系モルタル又は樹脂系ライニング材を用いる場合は、製品の仕様書に従って調製し、塗布又は充填する。
 被覆材を塗布又は充填した後、1~7日間程度養生することにより、硬化した被覆層が得られる。本発明の工法によれば、構造物の基材表面に対して、被覆層の十分な接着強度が得られるまでの養生期間が短縮され、施工期間全体の短縮化を図ることが可能となる。
 以下、本発明を実施例により詳細に説明するが、本発明はこれにより限定されるものではない。
 まず、下記実施例及び比較例における素地調整材及び被覆材に用いられるラジカル重合性化合物を合成した。これらの合成例を以下に示す。
(合成例1)ラジカル重合性化合物(A1)の合成
 撹拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、ビスフェノールA型エポキシ樹脂(「エポミック(登録商標)R140P」、三井化学株式会社製;エポキシ当量188)752g、1,6-ヘキサンジオールジグリシジルエーテル(「SR-16H」、阪本薬品工業株式会社製)942g、メチルハイドロキノン1.27g、2,4,6-トリス(ジメチルアミノメチル)フェノール7.67gを入れて110℃まで加熱し、メタクリル酸860gを約30分かけて滴下した後、約4時間反応させて、ビニルエステル樹脂を合成した。
 これを90℃まで冷却し、ラジカル重合性不飽和単量体としてジシクロペンテニルオキシエチルメタクリレート(「FA-512MT」、日立化成株式会社製)1709g、重合禁止剤として4-tert-ブチルカテコール0.6gを添加し、ビニルエステル樹脂(固形分)60質量%及びラジカル重合性不飽和単量体40質量%の混合物であるラジカル重合性化合物(A1)を粘度(B型粘度計(25℃))435mPa・sで得た。
(合成例2)ラジカル重合性化合物(A2)の合成
 撹拌機、還流冷却管、気体導入管及び温度計を備えた5L4つ口セパラブルフラスコに、ビスフェノールA型エポキシ樹脂(「エポミック(登録商標)R140P」、三井化学株式会社製;エポキシ当量188)1203g、1,6-ヘキサンジオールジグリシジルエーテル(「SR-16H」、阪本薬品工業株式会社製)251.2g、メチルハイドロキノン1.07g、2,4,6-トリス(ジメチルアミノメチル)フェノール6.8gを入れて110℃まで加熱し、メタクリル酸688gを約30分かけて滴下した後、約4時間反応させて、ビニルエステル樹脂を合成した。
 これを90℃まで冷却し、ラジカル重合性不飽和単量体としてジシクロペンテニルオキシエチルメタクリレート(「FA-512MT」、日立化成株式会社製)2052.1g及びシクロヘキシルメタクリレート(「ブレンマー(登録商標)CHMA」、日油株式会社製)684.1g、重合禁止剤として4-tert-ブチルカテコール0.54g、パラフィンワックス125°F(JXTXエネルギー株式会社製)9.7gを添加し、ビニルエステル樹脂(固形分)44質量%及びラジカル重合性不飽和単量体56質量%の混合物であるラジカル重合性化合物(A2)を粘度(B型粘度計(25℃))160mPa・sで得た。
[素地調整材]
 下記実施例及び比較例で用いた素地調整材は、以下のとおりである。
<1>下記調製例1により調製した素地調整材(I-1)
<2>二液型エポキシ樹脂系プライマー:「ボンドE810LS」、コニシ株式会社製
<3>湿気硬化型変性アクリル樹脂:「リフレトリート」、住友大阪セメント株式会社製
<4>湿気硬化型一液型ポリウレタン樹脂:「フローンプライマーUS」、東日本塗料株式会社
<5>アクリル樹脂エマルション:「太平洋エフェクトA」、太平洋マテリアル株式会社製、固形分約18質量%水系エマルション
(調製例1)素地調整材(I-1)の調製
 ラジカル重合性化合物(A1)100質量部に対して、金属石鹸(B)として2-エチルヘキシル酸マンガン(「ヘキソエートマンガン6%」、東栄化工株式会社製、マンガン含有量6質量%、溶媒:ミネラルスピリット、分子量341.35)を1質量部添加し、次いでチオール化合物(C)として1,4-ビス(3-メルカプトブチリルオキシ)ブタン(「カレンズMT(登録商標) BD1」、昭和電工株式会社製;2官能2級チオール化合物、分子量299.43)を0.5質量部添加した。
 さらに、硬化遅延剤として4-ヒドロキシ-2,2,6,6-テトラメチルピリジン1-オキシル フリーラジカル(「ポリストップ7200P」、伯東株式会社製)0.1質量部、消泡剤としてシリコーン系消泡剤(「BYK(登録商標)-065」、ビッグケミー・ジャパン株式会社製)0.1質量部、湿潤分散剤としてシリコーン系湿潤分散剤(「BYK(登録商標)-322」、ビックケミー・ジャパン株式会社製)0.5質量部、及び界面活性剤としてナトリウムジオクチルスルホサクシネート(「ペレックスOT-P」、花王株式会社製)を2.0質量部添加して撹拌混合し、ラジカル重合性樹脂組成物(1)を得た。
 素地調整材を塗布使用する直前に、ラジカル重合性樹脂組成物(1)に、ラジカル重合開始剤(D)としてクメンハイドロパーオキサイド(「パークミル(登録商標)H-80」、日油株式会社製)3.1重量部を添加して撹拌混合し、素地調整材(I-1)とした。
[被覆材]
 下記実施例及び比較例で用いた被覆材は、以下のとおりである。
<1>下記調製例2により調製した樹脂系モルタルである被覆材(II-1)
<2>エポキシ樹脂モルタル「ボンドPモルタル」(コニシ株式会社製)
<3>短繊維プレミックスポリマーセメントモルタル「リフレモルセットM」(住友大阪セメント株式会社製)100質量部、及び水16質量部を混合したもの
<4>ウレタン系ポリマーセメントモルタル「TMモルタル600・パウダー」(太平洋マテリアル株式会社製)100質量部、及び「TMモルタル混和液」(太平洋マテリアル株式会社製)15質量部を混合したもの
(調製例2)被覆材(II-1)の調製
 ラジカル重合性化合物(A1)に代えて、ラジカル重合性化合物(A2)を用いてラジカル重合性樹脂組成物(2)を調製した。
 ラジカル重合性樹脂組成物(2)に、ラジカル重合開始剤(D)(前記と同じ)を、ラジカル重合性化合物(A2)100質量部に対して2.1質量部添加して、撹拌混合した。
 さらに、下記に示す組成からなる充填材(E)を含む下記プレミックス充填材を、ラジカル重合性樹脂組成物(2)の100質量部に対して、395質量部添加して撹拌混合し、被覆材(II-1)とした。
<プレミックス充填材>
 以下に示す配合組成で、充填材(E)及び揺変剤を予め混合して調製した。合計100質量%として、各成分量を示す。
〔充填材(E)〕
・早強ポルトランドセメント:宇部三菱セメント株式会社製;12.0質量%
・炭酸カルシウム:「#100」、三共製粉株式会社製;7.0質量%
・パーライト:「フヨーライト(登録商標)FL0号」、芙蓉パーライト株式会社製;7.0質量%
・無機中空フィラー:「ハードライトB-04」、昭和化学工業株式会社製;2.0質量%
・珪砂:「遠州珪砂5.5号」、東海サンド株式会社製;10.0質量%
・珪砂:「N50号」、日瓢礦業株式会社製;54.0質量%
・珪砂:「N40号」、日瓢礦業株式会社製;7.0質量%
〔揺変剤〕
・「レオロシール(登録商標)PM-20L」、株式会社トクヤマ製;1.0質量%
[接着強度試験]
 上記において調製した各素地調整材及び各被覆材を下記表1の実施例1~4及び比較例1~16に示すような組み合わせで用いて、乾燥状態又は湿潤状態の試験用基板を表面被覆した各試験体を作製し、被覆層の接着強度を測定した。
 各試験体の作製方法及び接着強度の測定方法は、以下のとおりである。
(乾燥状態の試験体の作製)
 JIS A 5371:2010で規定されたコンクリート普通平板(300mm×300mm、厚み60mm)の表面の脆弱物や粉化物を十分に取り除いた後、柔らかい清浄な布で拭き、これを試験用基板とした。
 この基板を温度23℃、湿度50%RHにて7日間以上乾燥させた後、基板表面に、素地調整材を刷毛で塗布量300g/m2(ただし、素地調整材5のみ塗布量150g/m2)で薄塗りした。素地調整材が硬化する前の未硬化塗布膜の表面に、被覆材をコテで厚み10mmで一様に塗り付けて、温度23℃、湿度50%RHで1日間又は7日間養生し、各試験体を得た。
(湿潤状態の試験体の作製)
 上記の乾燥状態の試験体と同様の試験用基板を、温度23℃、7日間以上水没させた。十分に含水させた基板を、JIS A 6909:2014の「7.10 付着強さ試験」の図8を参考にして、試験用基板の上面側から5mmが水面に出るように水槽内に設置した。
 表面に浮き水がなくなる程度に乾いた布で拭いた基板表面に、上記の乾燥状態の試験体の作製と同様にして、素地調整材及び被覆材を塗布して、温度23℃、湿度50%RHで1日間又は7日間養生し、各試験体を作製した。
(接着強度の測定)
 上記で作製した各試験体に、40mm×40mmの正方形状に、基板に達するまで切込みを入れ、当該部分に鋼製のアタッチメント(40mm×40mm)をエポキシ樹脂系接着剤(「クイックメンダー」、コニシ株式会社製)で接着した。
 測定は、建研式接着力試験器(サンコーテクノ株式会社製「テクノテスター R-10000ND」;日本建築仕上学会認定引張試験器)を用いて、各試験体についてランダムに選択した5か所で行い、5か所の測定値の平均値を接着強度[N/mm2]として下記表1に示した。
 なお、表1の「-」の表記は、被覆層が未硬化であり、未測定であることを示している。
[温冷繰返し試験]
 上記で作製した各試験体を用いて、土木学会規準のJSCE-K 561-2013の「5.8 付着強度 c)」の表-3に記載の温冷繰返し条件の環境条件に従って試験を行った。具体的には、試験体を20±1℃の水中に18時間浸漬した後、直ちに-20±3℃の恒温器中で3時間冷却し、次いで50±3℃の別の恒温器中で3時間加温する操作を1サイクルとし、10サイクル後、温度23℃、湿度50%RHで24時間静置し、前記接着強度試験と同様にして、接着強度を測定した。この試験結果も下記表1に併せて示す。
 なお、表1の「-」の表記は、被覆層が未硬化であり、接着強度は未測定であることを示している。また、「×」の表記は、試験途中で、被覆層が約30%以上の面積で剥離したことを示している。
Figure JPOXMLDOC01-appb-T000006
 表1に示した結果から分かるように、素地調整材にラジカル重合性樹脂組成物(1)を用いた場合(実施例1~4)は、乾燥状態及び湿潤状態のいずれにおいても、養生期間1日間でも、被覆層に基材に対する接着強度が十分であることが認められた。特に、被覆材としてラジカル重合性樹脂組成物(2)を用いた樹脂モルタルを適用した場合(実施例1)、接着強度試験後の試験体は基材破壊が生じており、被覆層の接着性に優れていることが確認された。
 一方、比較例1~16では、養生期間1日間では、接着強度測定を行うことができた場合であっても、接着強度試験後の試験体は、被覆層と基材との界面破壊又は被覆層の破壊が生じていた。
 また、実施例1~4は、温冷繰返し試験でも、被覆層が剥離しないことが確認された。

Claims (9)

  1.  構造物の基材表面に、ラジカル重合性樹脂組成物(1)を含む素地調整材を塗布する工程(I)と、塗布した前記素地調整材が硬化する前の未硬化塗布膜の表面に、被覆材として樹脂系モルタル及び樹脂系ライニング材の少なくともいずれか一方を塗布又は充填して被覆層を形成する工程(II)とを有し、
     前記ラジカル重合性樹脂組成物(1)は、ラジカル重合性化合物(A)、金属石鹸(B)、並びに2級チオール化合物及び3級チオール化合物から選ばれる1種以上のチオール化合物(C)を含む、構造物の表面被覆工法。
  2.  前記素地調整材は、前記ラジカル重合性化合物(A)及び前記金属石鹸(B)を混合した後、前記チオール化合物(C)を添加混合して得られた前記ラジカル重合性樹脂組成物(1)に、ラジカル重合開始剤(D)を添加混合することにより調製されたものである、請求項1に記載の構造物の表面被覆工法。
  3.  前記チオール化合物(C)が、下記式(Q-1)で表される構造を1個以上有し、かつ、分子中に2級又は3級炭素原子に結合するメルカプト基を、下記式(Q-1)で表される構造中のメルカプト基を含めて2個以上有する化合物である、請求項1又は2に記載の構造物の表面被覆工法。
    Figure JPOXMLDOC01-appb-C000001

    (式(Q-1)中、R1及びR2は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、又は炭素数6~18の芳香族基である。ただし、R1及びR2の両方ともが水素原子ではない。*は任意の有機基に連結していることを示す。aは0~2の整数である。)
  4.  前記ラジカル重合性樹脂組成物(1)中の前記チオール化合物(C)の合計含有量が、前記ラジカル重合性化合物(A)100質量部に対して0.01~10質量部である、請求項1~3のいずれか1項に記載の構造物の表面被覆工法。
  5.  前記ラジカル重合性樹脂組成物(1)中の前記チオール化合物(C)の合計含有量が、前記金属石鹸(B)1モルに対して0.1~15モルである、請求項1~4のいずれか1項に記載の構造物の表面被覆工法。
  6.  前記ラジカル重合性化合物(A)が、ビニルエステル樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂とラジカル重合性不飽和単量体との混合物、及び不飽和ポリエステル樹脂とラジカル重合性不飽和単量体との混合物のうちから選ばれる1種以上である、請求項1~5のいずれか1項に記載の構造物の表面被覆工法。
  7.  前記樹脂系モルタル又は前記樹脂系ライニング材が、ラジカル重合性樹脂組成物(2)に、ラジカル重合開始剤(D)及び充填材(E)を添加混合することにより調製されたものである、請求項1~6のいずれか1項に記載の構造物の表面被覆工法。
  8.  前記充填材(E)が、無機充填材及び強化繊維のうちから選ばれる1種以上を含む、請求項7に記載の構造物の表面被覆工法。
  9.  前記樹脂系モルタル又は前記樹脂系ライニング材のそれぞれにおいて、前記充填材(E)の合計含有量が、前記ラジカル重合性樹脂組成物(2)100質量部に対して、0.1~700質量部である、請求項7又は8に記載の構造物の表面被覆工法。
PCT/JP2018/016907 2017-07-27 2018-04-26 構造物の表面被覆工法 WO2019021560A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-145652 2017-07-27
JP2017145652A JP2020169437A (ja) 2017-07-27 2017-07-27 構造物の表面被覆工法

Publications (1)

Publication Number Publication Date
WO2019021560A1 true WO2019021560A1 (ja) 2019-01-31

Family

ID=65041163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016907 WO2019021560A1 (ja) 2017-07-27 2018-04-26 構造物の表面被覆工法

Country Status (3)

Country Link
JP (1) JP2020169437A (ja)
TW (1) TW201910295A (ja)
WO (1) WO2019021560A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132140A1 (ja) * 2019-12-26 2021-07-01 昭和電工株式会社 ラジカル重合性樹脂組成物及びその硬化物
WO2022224988A1 (ja) * 2021-04-23 2022-10-27 昭和電工株式会社 凹部充填材キット、その硬化物及び凹部充填法
WO2024142769A1 (ja) * 2022-12-26 2024-07-04 株式会社レゾナック 樹脂組成物、複合材料、及びそれらの硬化物
EP4174127A4 (en) * 2020-06-25 2024-07-24 Dainippon Ink & Chemicals RADICALLY CURABLE RESIN COMPOSITION, FIBER-REINFORCED MOLDING MATERIAL AND MOLDED ARTICLES THEREOF

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022224989A1 (ja) * 2021-04-23 2022-10-27

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114980A (ja) * 1990-09-03 1992-04-15 Nippon Hume Pipe Co Ltd 樹脂ライニングコンクリート管
JP2006282690A (ja) * 2005-03-31 2006-10-19 Dainippon Ink & Chem Inc ラジカル重合性樹脂組成物及び繊維強化成形品
WO2016171151A1 (ja) * 2015-04-21 2016-10-27 昭和電工株式会社 ラジカル重合性樹脂組成物、その硬化方法、その製造方法、ラジカル重合性樹脂組成物の用途、及びその使用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114980A (ja) * 1990-09-03 1992-04-15 Nippon Hume Pipe Co Ltd 樹脂ライニングコンクリート管
JP2006282690A (ja) * 2005-03-31 2006-10-19 Dainippon Ink & Chem Inc ラジカル重合性樹脂組成物及び繊維強化成形品
WO2016171151A1 (ja) * 2015-04-21 2016-10-27 昭和電工株式会社 ラジカル重合性樹脂組成物、その硬化方法、その製造方法、ラジカル重合性樹脂組成物の用途、及びその使用方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132140A1 (ja) * 2019-12-26 2021-07-01 昭和電工株式会社 ラジカル重合性樹脂組成物及びその硬化物
CN114846032A (zh) * 2019-12-26 2022-08-02 昭和电工株式会社 自由基聚合性树脂组合物及其固化物
EP4174127A4 (en) * 2020-06-25 2024-07-24 Dainippon Ink & Chemicals RADICALLY CURABLE RESIN COMPOSITION, FIBER-REINFORCED MOLDING MATERIAL AND MOLDED ARTICLES THEREOF
WO2022224988A1 (ja) * 2021-04-23 2022-10-27 昭和電工株式会社 凹部充填材キット、その硬化物及び凹部充填法
JPWO2022224988A1 (ja) * 2021-04-23 2022-10-27
JP7439991B2 (ja) 2021-04-23 2024-02-28 株式会社レゾナック 凹部充填材キット、その硬化物及び凹部充填法
WO2024142769A1 (ja) * 2022-12-26 2024-07-04 株式会社レゾナック 樹脂組成物、複合材料、及びそれらの硬化物

Also Published As

Publication number Publication date
JP2020169437A (ja) 2020-10-15
TW201910295A (zh) 2019-03-16

Similar Documents

Publication Publication Date Title
JP6255139B2 (ja) ラジカル重合性樹脂組成物、その硬化方法、その製造方法、ラジカル重合性樹脂組成物の用途、及びその使用方法
WO2019021560A1 (ja) 構造物の表面被覆工法
JP7111430B2 (ja) ラジカル重合性樹脂組成物
US10252290B2 (en) Room temperature fast cure composition for low odor floor coating formulations
JP6690638B2 (ja) ラジカル重合性含水樹脂組成物、その硬化方法、及びラジカル重合性含水樹脂組成物の製造方法
KR100225155B1 (ko) 함침 조성물 및 수지 콘크리이트용 프라이머 조성물, 이의 코팅 방법 및 이를 사용한 복합체
WO2019004125A1 (ja) ラジカル重合性樹脂組成物及び構造物修復材
JP4973914B2 (ja) 硬化性樹脂組成物及び防水材組成物
JP2002020440A (ja) 樹脂組成物、土木建築用被覆材組成物及びその施工方法
JP2017214441A (ja) 樹脂組成物、ひび割れ注入材およびひび割れ修復方法
JPWO2020066363A1 (ja) 構造物の補修方法
JPH0570266A (ja) ポリエステル皮膜のためのコンクリートプライマー
JPH09295880A (ja) 含浸用組成物、並びに、レジンコンクリート用プライマー組成物、その塗布方法及びそれを使用した複合躯体
JP2006160943A (ja) 硬化性樹脂組成物、土木建築材および土木建築物
JP6066027B1 (ja) ラジカル重合性樹脂組成物及び土木建築用プライマー
WO2022224989A1 (ja) 凹部充填材キット、その硬化物及び凹部充填法
WO2022224988A1 (ja) 凹部充填材キット、その硬化物及び凹部充填法
JP2005146205A (ja) 被覆材料、土木建築用被覆材及び木工用塗料
JP2022102951A (ja) 無機構造物補修材、修復方法、及び無機構造物
JP2024092601A (ja) ラジカル重合性樹脂組成物、接着剤及び接着方法
JP2005162815A (ja) 接着剤用樹脂組成物、接着剤及びこの応用
JPH02137784A (ja) コンクリート保護材料,コンクリートの表面処理法および表面処理されたコンクリート
JP2024082896A (ja) ラジカル重合性樹脂組成物、接着剤及び接着方法
JPH02142808A (ja) 樹脂組成物
JP2006257198A (ja) 硬化性樹脂組成物、土木建築材及び土木建築物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP