WO2016171034A1 - ラジカル重合性樹脂組成物及び土木建築用プライマー - Google Patents

ラジカル重合性樹脂組成物及び土木建築用プライマー Download PDF

Info

Publication number
WO2016171034A1
WO2016171034A1 PCT/JP2016/061792 JP2016061792W WO2016171034A1 WO 2016171034 A1 WO2016171034 A1 WO 2016171034A1 JP 2016061792 W JP2016061792 W JP 2016061792W WO 2016171034 A1 WO2016171034 A1 WO 2016171034A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
radical polymerizable
polymerizable resin
cyclodextrin
mass
Prior art date
Application number
PCT/JP2016/061792
Other languages
English (en)
French (fr)
Inventor
博美 入江
松本 高志
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201680022903.7A priority Critical patent/CN107531856B/zh
Priority to JP2016559370A priority patent/JP6066027B1/ja
Publication of WO2016171034A1 publication Critical patent/WO2016171034A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters

Definitions

  • the present invention relates to a radically polymerizable resin composition having excellent surface drying properties and adhesion to wet surfaces.
  • a floor slab waterproof structure for example, a floor slab waterproof structure in which a floor slab layer, a urethane waterproof material layer, a urethane adhesive layer, and an asphalt pavement layer are sequentially laminated is disclosed (for example, Patent Documents). 1).
  • the urethane resin used for the adhesive layer is low in cost, and thus is highly popular in Japan, but its surface dryness is slow and shortening of the construction period is desired.
  • the problem to be solved by the present invention is to provide a radically polymerizable resin composition having excellent surface drying properties and adhesion to wet surfaces.
  • the present invention relates to a radically polymerizable resin composition
  • a radically polymerizable resin composition comprising an air-drying unsaturated resin (A), a radically polymerizable monomer (B), and cyclodextrin and / or a derivative thereof (C). Is to provide.
  • the present invention also provides a civil engineering primer comprising the radical polymerizable resin composition.
  • the radical polymerizable resin composition of the present invention is excellent in surface drying property and adhesion to a wet surface (hereinafter abbreviated as “wet surface adhesion”). Therefore, the radically polymerizable resin composition of the present invention is used for flooring materials such as factories, warehouses, and clean rooms; paving materials, waterproofing materials, paints, primers, wall coating materials, road marking materials, injection materials, sealing materials, and cast products. It can be suitably used for the production of civil engineering and building materials such as laminates, adhesives, lining materials and corrugated plates, and can be particularly suitably used as a primer for civil engineering and construction.
  • the radical polymerizable resin composition of the present invention contains air-drying unsaturated resin (A), radical polymerizable monomer (B), and cyclodextrin and / or its derivative (C) as essential components. It is.
  • the air drying component of the air drying unsaturated resin (A) is responsible for oxygen in the atmosphere. Oxidation polymerization is used to prevent radical polymerization from being inhibited and poor curing of the coating is suppressed, and the cyclodextrin and / or its derivative (C) easily settles under the coating and is wet. It is thought that the interaction by the adhesion surface and strong intermolecular force works.
  • the air-drying unsaturated resin (A) is obtained using a compound having an air-drying imparting group as a raw material.
  • a compound having an air-drying imparting group for example, the air-drying unsaturated polyester, air-drying unsaturated polyester (meth) acrylate, air-drying Epoxy (meth) acrylate, air-drying urethane (meth) acrylate, and the like can be used. These resins may be used alone or in combination of two or more.
  • Examples of the compound having an air drying property-imparting group include a compound containing a cyclic unsaturated aliphatic polybasic acid and a derivative thereof, a compound containing an allyl ether group having an ⁇ -position hydrogen, and an ester of a polyhydric alcohol and a drying oil.
  • An alcoholysis compound obtained by an exchange reaction, a compound containing a dicyclopentadienyl group having a hydroxyl group, or the like can be used. These compounds may be used alone or in combination of two or more.
  • an air-drying property-imparting component can be introduced into the resin skeleton.
  • Examples of the compound containing the cyclic unsaturated aliphatic polybasic acid and derivatives thereof include, for example, tetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, ⁇ -terhinene / maleic anhydride adduct, trans- Piperylene / maleic anhydride adducts can be used. These compounds may be used alone or in combination of two or more.
  • Examples of the compound containing an allyl ether group having an ⁇ -position hydrogen include ethylene glycol monoallyl ether, diethylene glycol monoallyl ether, triethylene glycol monoallyl ether, polyethylene glycol monoallyl ether, propylene glycol monoallyl ether, and dipropylene glycol.
  • Monoallyl ether, tripropylene glycol monoallyl ether, polypropylene glycol monoallyl ether, 1,2-butylene glycol monoallyl ether, 1,3-butylene glycol monoallyl ether, trimethylolpropane monoallyl ether, trimethylolpropane diallyl ether, Glycerol monoallyl ether, glyceryl diallyl ether, pentaerythritol monoallyl ether And the like can be used allyl ether compound having an oxirane ring, such as allyl glycidyl ether; Le, pentaerythritol diallyl ether, polyvalent allyl ether compound of alcohols such as pentaerythritol triallyl ether. These compounds may be used alone or in combination of two or more.
  • Examples of the polyhydric alcohol used in producing the alcoholysis compound include trivalent alcohols such as glycerin, trimethylolethane, trimethylolpropane, and trishydroxymethylaminomethane, and tetravalent alcohols such as pentaerythritol. Can be used. These alcohols may be used alone or in combination of two or more.
  • drying oil used when producing the alcoholysis compound for example, linseed oil, soybean oil, cottonseed oil, peanut oil, coconut oil and the like can be used. These drying oils may be used alone or in combination of two or more.
  • dicyclopentenyloxymethanol dicyclopentenyloxyethanol
  • dicyclopentenyloxypropanol dicyclopentenyloxypropanol
  • the air-drying unsaturated resin (A) has excellent compatibility with the later-described component (C), lowers the viscosity of the radical polymerizable resin composition, and can further improve the coating workability. It is preferable to use an air-drying unsaturated polyester, and it is more preferable to use an unsaturated polyester having a dicyclopentadienyl group.
  • the air-drying unsaturated polyester can be obtained, for example, by esterifying the compound having the air-drying group, a dibasic acid containing an ⁇ , ⁇ -unsaturated dibasic acid, and a polyhydric alcohol. Things can be used.
  • ⁇ , ⁇ -unsaturated dibasic acid for example, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride and the like can be used. These dibasic acids may be used alone or in combination of two or more.
  • a saturated dibasic acid can be used.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, and 2-methyl-1.
  • the number average molecular weight of the air-drying unsaturated resin (A) is more preferably in the range of 500 to 5,000 from the viewpoint of obtaining good mechanical strength and surface dryness.
  • the number average molecular weight of the said air-drying unsaturated resin (A) shows the value measured on condition of the following by the gel permeation chromatography (GPC) method.
  • Measuring device High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were connected in series. "TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000” (7.8 mm ID x 30 cm) x 1 "TSKgel G3000” (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID ⁇ 30 cm) ⁇ 1 detector: RI (differential refractometer) Column temperature: 40 ° C Eluent: Tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection amount: 100 ⁇ L (tetrahydrofuran solution with a sample concentration of 0.4 mass%) Standard sample: A calibration curve was prepared using the following standard polystyrene.
  • the content of the air-drying unsaturated resin (A) is in the range of 10 to 60% by mass in the radical polymerizable resin composition from the viewpoint that the surface drying property and the wet surface adhesiveness can be maintained at a high level. Is preferable, and the range of 15 to 50% by mass is more preferable.
  • radical polymerizable monomer (B) examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and hexyl.
  • dicyclopentenyloxyethyl (meth) acrylate such as dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, phenoxyethyl (meth) acrylate, and the like can be used.
  • These monomers may be used alone or in combination of two or more.
  • the content of the radical polymerizable monomer (B) is preferably in the range of 10 to 80% by mass in the radical polymerizable resin composition from the viewpoint of obtaining good mechanical strength of the coating film. More preferably, it is in the range of 70% by mass.
  • Examples of the cyclodextrin and / or its derivative (C) include, for example, cyclodextrin; the hydrogen atom of the hydroxyl group of the glucose unit of cyclodextrin such as alkylated cyclodextrin, acetylated cyclodextrin, and hydroxyalkylated cyclodextrin. Those substituted with a group can be used.
  • the cyclodextrin skeleton in cyclodextrin and cyclodextrin derivatives includes ⁇ -cyclodextrin consisting of 6 glucose units, ⁇ -cyclodextrin consisting of 7 glucose units, and ⁇ -cyclodextrin consisting of 8 glucose units.
  • any of these can be used. These compounds may be used alone or in combination of two or more. Among these, it is preferable to use a cyclodextrin derivative, and it is more preferable to use an alkylated cyclodextrin from the point which can further improve compatibility with the said (A) and (B) component.
  • the degree of substitution of other functional groups in the cyclodextrin derivative is preferably in the range of 0.3 to 14 / glucose from the viewpoint of compatibility with the components (A) and (B). A range of 5 to 8 / glucose is more preferable.
  • alkylated cyclodextrin for example, methyl- ⁇ -cyclodextrin, methyl- ⁇ -cyclodextrin, methyl- ⁇ -cyclodextrin and the like can be used. These compounds may be used alone or in combination of two or more.
  • acetylated cyclodextrin for example, monoacetyl- ⁇ -cyclodextrin, monoacetyl- ⁇ -cyclodextrin, monoacetyl- ⁇ -cyclodextrin and the like can be used. These compounds may be used alone or in combination of two or more.
  • hydroxyalkylated cyclodextrin for example, hydroxypropyl- ⁇ -cyclodextrin, hydroxypropyl- ⁇ -cyclodextrin, hydroxypropyl- ⁇ -cyclodextrin and the like can be used. These compounds may be used alone or in combination of two or more.
  • the content of the cyclodextrin and / or derivative (C) is preferably in the range of 0.1 to 20% by mass in the radical polymerizable resin composition from the viewpoint of obtaining good wet surface adhesion.
  • the range of 0.3 to 10% by mass is more preferable.
  • the radical polymerizable resin composition of the present invention comprises the air-drying unsaturated resin (A), the radical polymerizable monomer (B), and the cyclodextrin and / or derivative (C) as essential components. Although it contains, you may contain other additives as needed.
  • Examples of the other additives include radical polymerizable resins, curing agents, curing accelerators, polymerization inhibitors, pigments, thixotropic agents, antioxidants, solvents, fillers, reinforcing materials, aggregates, and flame retardants.
  • One or more petroleum waxes can be used.
  • the radical polymerizable resin can be used for the purpose of adjusting the mechanical strength of the coating film.
  • unsaturated polyester, polyester (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, or the like is used. Can do.
  • the amount of the radical polymerizable resin used is preferably in the range of 0.1 to 30% by mass in the radical polymerizable resin composition.
  • an organic peroxide is preferably used from the viewpoint of surface dryness at room temperature.
  • a compound, a peroxyketal compound, an alkyl perester compound, a carbonate compound, or the like can be used.
  • These curing agents may be used alone or in combination of two or more.
  • the amount of the curing agent used is preferably in the range of 0.01 to 10% by mass in the radical polymerizable resin composition.
  • the curing accelerator is a substance having an action of decomposing an organic peroxide of the curing agent by a redox reaction and facilitating generation of active radicals.
  • a cobalt organic acid such as cobalt naphthenate and cobalt octylate is used.
  • salts metal soaps such as zinc octylate, vanadium octylate, copper naphthenate, barium naphthenate, metal chelates such as vanadium acetyl acetate, cobalt acetyl acetate, iron acetylacetonate; aniline, N, N-dimethylaniline, N, N-diethylaniline, p-toluidine, N, N-dimethyl-p-toluidine, N, N-dimethyl-p-toluidine ethylene oxide adduct, N, N-bis (2-hydroxyethyl) -p-toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bi (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2-hydroxypropyl)
  • a petroleum wax having a melting point of 30 to 80 ° C. is preferably used, for example, a paraffin wax, a microcrystalline wax, a petrolactam, etc. Can be used. These petroleum waxes may be used alone or in combination of two or more. When the petroleum wax is used, the amount used is preferably in the range of 0.01 to 5% by mass in the radical polymerizable resin composition.
  • the viscosity of the radical polymerizable resin composition of the present invention is preferably in the range of 10 to 100 mPa ⁇ s, for example. Further, when an unsaturated polyester having a dicyclopentadienyl group is used as the air-drying unsaturated resin (A), a further reduction in viscosity can be achieved, for example, in the range of 1 to 50 mPa ⁇ s. It is.
  • the viscosity of the radical polymerizable resin composition is a value measured according to JIS K 6901: 2008 “5.5.1 When using Brookfield viscometer method”.
  • the radical polymerizable resin composition of the present invention is excellent in surface drying property and wet surface adhesion. Therefore, the radically polymerizable resin composition of the present invention is used for flooring materials such as factories, warehouses, and clean rooms; paving materials, waterproofing materials, paints, primers, wall coating materials, road marking materials, injection materials, sealing materials, and cast products. It can be suitably used for the production of civil engineering and building materials such as laminates, adhesives, lining materials and corrugated plates, and can be particularly suitably used as a primer for civil engineering and construction.
  • Example 1 Preparation of Radical Polymerizable Resin Composition 30 parts by mass of DCPD-UPE (A-1) obtained in Synthesis Example 1 and 5 parts by mass of epoxy methacrylate (1) obtained in Synthesis Example 2 29 parts by mass of methyl methacrylate, 36 parts by mass of dicyclopentenyloxyethyl methacrylate, and 4 parts by mass of “methyl- ⁇ -cyclodextrin” manufactured by Junsei Kagaku Co., Ltd. were mixed and stirred to obtain a radical polymerizable resin composition.
  • DCPD-UPE A-1
  • epoxy methacrylate (1) obtained in Synthesis Example 2
  • Tables 1 and 2 show the amount of the air-drying unsaturated resin (A) used, the type and / or amount of the radical polymerizable resin, the amount of the radical polymerizable monomer, and the amount of the cyclodextrin (C).
  • a radical polymerizable resin composition was obtained in the same manner as in Example 1 except for changing to.
  • test piece obtained in the evaluation of [Surface drying property evaluation method] was used.
  • the test piece was spread with a brush in an amount of 0.2 kg / m 2 on a paving board which had been immersed in water for one day and then taken out and wiped off water droplets. After curing the coating film for 1 day, it was pulled vertically using a Kenken tensile tester (“Technostar RT-3000LD” manufactured by Sanko Techno Co., Ltd.), and the peel strength was measured.
  • Kenken tensile tester (“Technostar RT-3000LD” manufactured by Sanko Techno Co., Ltd.
  • Examples 1 to 5 which are radical polymerizable resin compositions of the present invention, were excellent in surface drying property and wet surface adhesiveness and had a low viscosity.
  • Comparative Examples 1 and 2 were embodiments that did not contain the air drying unsaturated resin (A), but the surface drying property was poor. Also, the viscosity showed a high value.
  • Comparative Examples 3 to 4 are embodiments that do not contain cyclodextrin and / or its derivative (C), but the wet surface adhesion was not sufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)

Abstract

空気乾燥性不飽和樹脂(A)、ラジカル重合性単量体(B)、並びに、シクロデキストリン及び/又はその誘導体(C)を含有することを特徴とするラジカル重合性樹脂組成物を提供する。本発明のラジカル重合性樹脂組成物は、工場、倉庫、クリーンルーム等の床材;舗装材、防水材、塗料、プライマー、壁面コーティング材、道路マーキング材、注入材、シール材、注型品、積層品、接着剤、ライニング材、波平板等の土木建築材料の製造に好適に使用することができ、土木建築用プライマーとして特に好適に使用することができる。

Description

ラジカル重合性樹脂組成物及び土木建築用プライマー
 本発明は、表面乾燥性及び湿潤面に対する接着性に優れるラジカル重合性樹脂組成物に関する。
 昨今、増加する交通荷重や凍結防止剤の散布によって、高速道路をはじめとする道路橋床版の早期劣化が顕著となってきている。この早期劣化のメカニズムとしては、アスファルト舗装と鉄筋コンクリート床版に生じたひび割れを通じて、雨水、凍結防止剤などが構造物に侵入し鉄筋を腐食させ、構造物の耐久性を低下させていることが考えられている。
 これら道路橋床版の耐久性を向上する手法としては、床版層、防水材層、及び、アスファルト舗装層が順次積層された床版防水構造体が各種検討されている。
 前記床版防水構造体としては、例えば、床版層、ウレタン防水材層、ウレタン接着剤層、及び、アスファルト舗装層が順次積層された床版防水構造体が開示されている(例えば、特許文献1を参照。)。前記接着剤層に使用されるウレタン樹脂はコストが安価であることから日本における普及度は高いものの、表面乾燥性が遅く工期の短縮化が望まれている。また、施工時に防水材層が雨で濡れる場合や多湿な環境で使用された場合に、所望の接着性が得られないとの問題もあった。
特開2012-117368号公報
 本発明が解決しようとする課題は、表面乾燥性及び湿潤面に対する接着性に優れるラジカル重合性樹脂組成物を提供することである。
 本発明は、空気乾燥性不飽和樹脂(A)、ラジカル重合性単量体(B)、並びに、シクロデキストリン及び/又はその誘導体(C)を含有することを特徴とするラジカル重合性樹脂組成物を提供するものである。
 また、本発明は、前記ラジカル重合性樹脂組成物からなる土木建築用プライマーを提供するものである。
 本発明のラジカル重合性樹脂組成物は、表面乾燥性及び湿潤面に対する接着性(以下、「湿潤面接着性」と略記する。)に優れるものである。従って、本発明のラジカル重合性樹脂組成物は、工場、倉庫、クリーンルーム等の床材;舗装材、防水材、塗料、プライマー、壁面コーティング材、道路マーキング材、注入材、シール材、注型品、積層品、接着剤、ライニング材、波平板等の土木建築材料の製造に好適に使用することができ、土木建築用プライマーとして特に好適に使用することができる。
 本発明のラジカル重合性樹脂組成物は、空気乾燥性不飽和樹脂(A)、ラジカル重合性単量体(B)、並びに、シクロデキストリン及び/又はその誘導体(C)を必須成分として含有するものである。
 本発明のラジカル重合性樹脂組成物が優れた表面乾燥性及び湿潤面接着性を両立する機序としては、前記空気乾燥性不飽和樹脂(A)が有する空気乾燥性成分が大気中の酸素を利用して酸化重合を起こすため、ラジカル重合を阻害せず塗膜の硬化不良が抑制されること、及び、前記シクロデキストリン及び/又はその誘導体(C)が塗膜下部に沈降しやすく、湿潤した被着面と強力な分子間力による相互作用が働くことが考えられる。
 前記空気乾燥性不飽和樹脂(A)は、空気乾燥性付与基を有する化合物を原料として得られたものであり、例えば、空気乾燥性不飽和ポリエステル、空気乾燥性ポリエステル(メタ)アクリレート、空気乾燥性エポキシ(メタ)アクリレート、空気乾燥性ウレタン(メタ)アクリレート等を用いることができる。これらの樹脂は単独で用いても2種以上を併用してもよい。
 前記空気乾燥性付与基を有する化合物としては、例えば、環状不飽和脂肪族多塩基酸及びその誘導体を含む化合物、α位水素を有するアリルエーテル基を含む化合物、多価アルコールと乾性油とのエステル交換反応で得られるアルコリシス化合物、水酸基を有するジシクロペンタジエニル基を含む化合物等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。これらの化合物を前記空気乾燥性不飽和樹脂(A)の製造時にエステル化反応及び/又はウレタン化反応させることにより、樹脂骨格に空気乾燥性付与成分を導入することができる。
 前記環状不飽和脂肪族多塩基酸及びその誘導体を含む化合物としては、例えば、テトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、α-テルヒネン・無水マレイン酸付加物、トランス-ピペリレン・無水マレイン酸付加物等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。
 前記α位水素を有するアリルエーテル基を含む化合物としては、例えば、エチレングリコールモノアリルエーテル、ジエチレングリコールモノアリルエーテル、トリエチレングリコールモノアリルエーテル、ポリエチレングリコールモノアリルエーテル、プロピレングリコールモノアリルエーテル、ジプロピレングリコールモノアリルエーテル、トリプロピレングリコールモノアリルエーテル、ポリプロピレングリコールモノアリルエーテル、1,2-ブチレングリコールモノアリルエーテル、1,3-ブチレングリコールモノアリルエーテル、トリメチロールプロパンモノアリルエーテル、トリメチロールプロパンジアリルエーテル、グリセリンモノアリルエーテル、グリセリンジアリルエーテル、ペンタエリスリトールモノアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテル等の多価アルコールのアリルエーテル化合物;アリルグリシジルエーテル等のオキシラン環を有するアリルエーテル化合物などを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。
 前記アルコリシス化合物を製造する際に用いる前記多価アルコールとしては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリスヒドロキシメチルアミノメタン等の3価のアルコールや、ペンタエリスリトール等の4価のアルコールなどを用いることができる。これらのアルコールは単独で用いても2種以上を併用してもよい。
 また、前記アルコリシス化合物を製造する際に用いる前記乾性油としては、例えば、アマニ油、大豆油、綿実油、落花生油、やし油等を用いることができる。これらの乾性油は単独で用いても2種以上を併用してもよい。
 前記水酸基を有するジシクロペンタジエニル基を含む化合物としては、例えば、ジシクロぺンテニルオキシメタノール、ジシクロペンテニルオキシエタノール、ジシクロペンテニルオキシプロパノール等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。
 前記空気乾燥性不飽和樹脂(A)としては、後述する(C)成分との優れた相溶性を示し、ラジカル重合性樹脂組成物を低粘度化させ、塗工作業性を一層向上できる点から、空気乾燥性不飽和ポリエステルを用いることが好ましく、ジシクロペンタジエニル基を有する不飽和ポリエステルを用いることがより好ましい。 
 前記空気乾燥性不飽和ポリエステルとしては、例えば、前記空気乾燥性付与基を有する化合物、α,β-不飽和二塩基酸を含む二塩基酸、及び、多価アルコールをエステル化反応させて得られるものを用いることができる。
 前記α,β-不飽和二塩基酸としては、例えば、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸等を用いることができる。これらの二塩基酸は単独で用いても2種以上を併用してもよい。
 前記α,β-不飽和二塩基酸以外に用いることができる二塩基酸としては、飽和二塩基酸を用いることができ、例えば、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、1,12-ドデカン2酸,2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸無水物、4,4’-ビフェニルジカルボン酸、またこれらのジアルキルエステル等を用いることができる。これらの二塩基酸は単独で用いても2種以上を併用してもよい。
 前記多価アルコールとしては、例えば、エチレングリコ-ル、ジエチレングリコ-ル、トリエチレングリコ-ル、ポリエチレングリコ-ル、プロピレングリコ-ル、ジプロピレングリコ-ル、ポリプロピレングリコ-ル、2-メチル-1,3-プロパンジオ-ル、1,3-ブタンジオ-ル、ネオペンチルグリコ-ル、水素化ビスフェノ-ルA、1,4-ブタンジオ-ル、ビスフェノ-ルAのアルキレンオキサイド付加物、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロ-ルプロパン、1,3-プロパンジオ-ル、1,2-シクロヘキサングリコ-ル、1,3-シクロヘキサングリコ-ル、1,4-シクロヘキサングリコ-ル、1,4-シクロヘキサンジメタノ-ル、パラキシレングリコ-ル、ビシクロヘキシル-4,4’-ジオ-ル、2,6-デカリングリコ-ル、2,7-デカリングリコ-ル等を用いることができる。これらの多価アルコールは単独で用いても2種以上を併用してもよい。
 前記空気乾燥性不飽和樹脂(A)の数平均分子量としては、良好な機械的強度、及び、表面乾燥性が得られる点から、500~5,000の範囲であることがより好ましい。なお、前記空気乾燥性不飽和樹脂(A)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により、下記の条件で測定した値を示す。
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
 前記空気乾燥性不飽和樹脂(A)の含有量としては、表面乾燥性及び湿潤面接着性を高いレベルで維持できる点から、ラジカル重合性樹脂組成物中10~60質量%の範囲であることが好ましく、15~50質量%の範囲であることがより好ましい。
 前記ラジカル重合性単量体(B)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、デシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、β-エトキシエチル(メタ)アクリレート、2-シアノエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ポリカプロラクトン(メタ)アクリレート、ジエチレングリコールモノメチルエーテルモノ(メタ)アクリレート、ジプロピレングリコールモノメチルエーテルモノ(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌル(メタ)アクリレート等の(メタ)アクリル単量体;ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の沸点が100℃以上の(メタ)アクリル単量体等を用いることできる。これらの単量体は単独で用いても2種以上を併用してもよい。
 ラジカル重合性単量体(B)の含有量としては、塗膜の良好な機械的強度が得られる点で、ラジカル重合性樹脂組成物中10~80質量%の範囲であることが好ましく、30~70質量%の範囲であることがより好ましい。
 前記シクロデキストリン及び/又はその誘導体(C)としては、例えば、シクロデキストリン;アルキル化シクロデキストリン、アセチル化シクロデキストリン、ヒドロキシアルキル化シクロデキストリン等のシクロデキストリンのグルコース単位の水酸基の水素原子を他の官能基で置換したものなどを用いることができる。また、シクロデキストリン及びシクロデキストリン誘導体におけるシクロデキストリン骨格としては、6個のグルコース単位からなるα-シクロデキストリン、7個のグルコース単位からなるβ-シクロデキストリン、8個のグルコース単位からなるγ-シクロデキストリンのいずれも用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。これらの中でも、前記(A)及び(B)成分との相溶性をより一層向上できる点から、シクロデキストリン誘導体を用いることが好ましく、アルキル化シクロデキストリンを用いることがより好ましい。
 前記シクロデキストリン誘導体における他の官能基の置換度としては、前記(A)及び(B)成分との相溶性の点から、0.3~14個/グルコースの範囲であることが好ましく、0.5~8個/グルコースの範囲であることがより好ましい。
 前記アルキル化シクロデキストリンとしては、例えば、メチル-α-シクロデキストリン、メチル-β-シクロデキストリン、メチル-γ-シクロデキストリン等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。
 前記アセチル化シクロデキストリンとしては、例えば、モノアセチル-α-シクロデキストリン、モノアセチル-β-シクロデキストリン、モノアセチル-γ-シクロデキストリン等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。
 前記ヒドロキシアルキル化シクロデキストリンとしては、例えば、ヒドロキシプロピル-α-シクロデキストリン、ヒドロキシプロピル-β-シクロデキストリン、ヒドロキシプロピル-γ-シクロデキストリン等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。
 前記シクロデキストリン及び/又はその誘導体(C)の含有量としては、良好な湿潤面接着性が得られる点から、ラジカル重合性樹脂組成物中0.1~20質量%の範囲であることが好ましく、0.3~10質量%の範囲であることがより好ましい。
 本発明のラジカル重合性樹脂組成物は、前記空気乾燥性不飽和樹脂(A)、前記ラジカル重合性単量体(B)、並びに、前記シクロデキストリン及び/又はその誘導体(C)を必須成分として含有するが、必要に応じてその他の添加剤を含有してもよい。
 前記その他の添加剤としては、例えば、ラジカル重合性樹脂、硬化剤、硬化促進剤、重合禁止剤、顔料、チキソ性付与剤、酸化防止剤、溶剤、充填剤、補強材、骨材、難燃剤、石油ワックス等を1種以上用いることができる。
 前記ラジカル重合性樹脂は、塗膜の機械的強度の調整する目的で用いることができ、例えば、不飽和ポリエステル、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等を用いることができる。前記ラジカル重合性樹脂を用いる場合の使用量としては、ラジカル重合性樹脂組成物中0.1~30質量%の範囲であることが好ましい。
 前記硬化剤としては、常温での表面乾燥性の点から有機過酸化物を用いることが好ましく、例えば、ジアシルパーオキサイド化合物、パーオキシエステル化合物、ハイドロパーオキサイド化合物、ジアルキルパーオキサイド化合物、ケトンパーオキサイド化合物、パーオキシケタール化合物、アルキルパーエステル化合物、パーカーボネート化合物等を用いることができる。これらの硬化剤は単独で用いても2種以上を併用してもよい。前記硬化剤を用いる場合の使用量としては、ラジカル重合性樹脂組成物中0.01~10質量%の範囲であることが好ましい。
 前記硬化促進剤は、前記硬化剤の有機過酸化物をレドックス反応によって分解し、活性ラジカルの発生を容易にする作用のある物質であり、例えば、ナフテン酸コバルト、オクチル酸コバルト等のコバルト有機酸塩、オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸銅、ナフテン酸バリウム等の金属石鹸、バナジウムアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等の金属キレート;アニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、p-トルイジン、N,N-ジメチル-p-トルイジン、N,N-ジメチル-p-トルイジンのエチレンオキサイド付加物、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、4-(N,N-ジメチルアミノ)ベンズアルデヒド、4-[N,N-ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4-(N-メチル-N-ヒドロキシエチルアミノ)ベンズアルデヒド、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニリモルホリン、ピペリジン、N,N-ビス(ヒドロキシエチル)アニリン、ジエタノールアニリン等のN,N-置換アニリン;N,N-置換-p-トルイジン、4-(N,N-置換アミノ)ベンズアルデヒド等のアミン化合物などを用いることができる。これらの硬化促進剤は単独で用いても2種以上を併用してもよい。前記硬化促進剤を用いる場合の使用量としては、ラジカル重合性樹脂組成物中0.01~5質量%の範囲であることが好ましい。
 前記石油ワックスとしては、酸素による硬化阻害を防止するものであり、例えば、融点が30~80℃の石油ワックスを用いることが好ましく、具体的には、パラフィンワックス、マイクロクリスタリンワックス、ペトロラクタム等を用いることができる。これらの石油ワックスは単独で用いても2種以上を併用してもよい。前記石油ワックスを用いる場合の使用量としては、ラジカル重合性樹脂組成物中0.01~5質量%の範囲であることが好ましい。
 本発明のラジカル重合性樹脂組成物の粘度としては、例えば、10~100mPa・sの範囲であることが好ましい。また、前記空気乾燥性不飽和樹脂(A)として、ジシクロペンタジエニル基を有する不飽和ポリエステルを用いた場合には、一層の低粘度化が達成でき、例えば、1~50mPa・sの範囲である。なお、前記ラジカル重合性樹脂組成物の粘度は、JISK6901:2008の「5.5.1ブルックフィールド形粘度計法を用いる場合」に準拠して測定した値を示す。
 以上、本発明のラジカル重合性樹脂組成物は、表面乾燥性及び湿潤面接着性に優れるものである。従って、本発明のラジカル重合性樹脂組成物は、工場、倉庫、クリーンルーム等の床材;舗装材、防水材、塗料、プライマー、壁面コーティング材、道路マーキング材、注入材、シール材、注型品、積層品、接着剤、ライニング材、波平板等の土木建築材料の製造に好適に使用することができ、土木建築用プライマーとして特に好適に使用することができる。
 以下、実施例を用いて、本発明をより詳細に説明する。
[合成例1]ジシクロペンタジエニル基を有する不飽和ポリエステル(A-1)の合成
 温度計、攪拌機、不活性ガス導入口、空気導入口及び還流冷却器を備えた四ツ口フラスコに、水を270質量部、ジシクロペンタジエンを1,980質量部、ハイドロキノンを0.5質量部、エチレングリコールを450質量部仕込み、窒素気流下80℃で4時間反応させた。酸価が210mgKOH/gとなった時点で無水マレイン酸を1,370質量部仕込み、200℃で6時間反応させ、酸価が8mgKOH/gのジシクロペンタジエニル基を有する不飽和ポリエステル(A-1)(以下、「DCPD-UPE(A-1)」と略記する。)を得た。
[合成例2]エポキシメタクリレート(1)の合成
 温度計、攪拌機、不活性ガス導入口、空気導入口及び還流冷却器を備えた四ツ口フラスコに、エポキシ化合物(DIC株式会社製「エピクロン850」)を1,850質量部、メタクリル酸を860質量部、ハイドロキノンを1.36質量部、トリエチルアミンを10.8質量部を仕込み、120℃まで昇温させ、同次官で10時間反応させ、ラジカル重合性樹脂(19として酸価が3.5mgKOH/gのエポキシメタクリレート(1)を得た。
[合成例3]ウレタンメタクリレート(2)の合成
 温度計、攪拌機、不活性ガス導入口、空気導入口及び還流冷却器を備えた四ツ口フラスコに、数平均分子量1,200のポリブタジエンジオールを500質量部、トリレンジイソシアネートを114質量部仕込み、窒素気流下80℃で2時間反応させた。イソシアネート基当量が500とほぼ理論値となったのを確認して、50℃まで冷却した。次いで、空気気流下でハイドロキノン0.07質量部、2-ヒドロキシエチルメタクリレートを89質量部を加え、90℃で10時間反応させた。イソシアネート%が0.1%以下となった時点でターシャリーブチルカテコールを0.07質量部加え、ラジカル重合性樹脂(2)として数平均分子量;2,067のウレタンメタクリレート(2)を得た。
[合成例4]ウレタンメタクリレート(3)の合成
 温度計、攪拌機、不活性ガス導入口、空気導入口及び還流冷却器を備えた四つ口フラスコに、数平均分子量1,000のポリカーボネートジオールを500質量部、トリレンジイソシアネートを172質量部仕込み、窒素気流下80℃で2時間反応させた。イソシアネート基当量が600とほぼ理論値となったのを確認して、50℃まで冷却した。次いで、空気気流下でハイドロキノン0.07質量部、2-ヒドロキシエチルメタクリレートを135質量部を加え、90℃で4時間反応させた。イソシアネート%が0.1%以下となった時点でターシャリーブチルカテコールを0.07質量部加え、ラジカル重合性樹脂(3)として数平均分子量;1,582のウレタンメタクリレート(3)を得た。
[実施例1]ラジカル重合性樹脂組成物の調製
 合成例1で得られたDCPD-UPE(A-1)を30質量部、合成例2で得られたエポキシメタクリレート(1)を5質量部、メチルメタクリレートを29質量部、ジシクロペンテニルオキシエチルメタクリレートを36質量部、純正化学株式会社製「メチル-β-シクロデキストリン」を4質量部混合、撹拌してラジカル重合性樹脂組成物を得た。
[実施例2~5、比較例1~4]
 用いる空気乾燥性不飽和樹脂(A)の量、ラジカル重合性樹脂の種類及び/又は量、ラジカル重合性単量体の量、並びに、シクロデキストリン(C)の量を表1~2に示す通りに変更した以外は、実施例1と同様にしてラジカル重合性樹脂組成物を得た。
[表面乾燥性の評価方法]
 実施例及び比較例で得られたラジカル重合性樹脂組成物50質量部に、8質量%オクチル酸コバルトを0.25質量部、トルイジン化合物イソプロパノール溶液(ディーエイチ・マテリアル株式会社製「RP-191」)を0.5質量部、40質量%ベンゾイルパーオキサイド溶液を1質量部添加・混合し試験片とした。この試験片をスレート板上に1kg/mの量で刷毛にて塗り広げた。これを基点とし、指触にてタックフリーとなる時間(分)を測定した。
[湿潤面接着性の評価方法]
 前記[表面乾燥性の評価方法]の評価において得られた試験片を使用した。1日水浸し、その後取出して水滴を拭き取った舗装板の上に、前記試験片を0.2kg/mの量で刷毛にて塗り広げた。その塗膜を1日養生した後、建研式引張試験機(サンコーテクノ株式会社製「テクノスターRT-3000LD」)を使用して、垂直に引張り、剥離強度を測定した。
[粘度の測定方法]
 実施例及び比較例で得られたラジカル重合性樹脂組成物を、JISK6901:2008の「5.5.1ブルックフィールド形粘度計法を用いる場合」に準拠して、表7のタイプi、BM粘度計により粘度を測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明のラジカル重合性樹脂組成物である実施例1~5は、表面乾燥性及び湿潤面接着性に優れ、かつ低粘度であることが分かった。
 一方、比較例1~2は空気乾燥性不飽和樹脂(A)を含有しない態様であるが、表面乾燥性が不良であった。また、粘度も高い値を示した。
 比較例3~4はシクロデキストリン及び/又はその誘導体(C)を含有しない態様であるが、湿潤面接着性が十分でなかった。

Claims (5)

  1. 空気乾燥性不飽和樹脂(A)、ラジカル重合性単量体(B)、並びに、シクロデキストリン及び/又はその誘導体(C)を含有することを特徴とするラジカル重合性樹脂組成物。
  2. 前記シクロデキストリン及び/又はその誘導体(C)の含有量が、ラジカル重合性樹脂組成物中0.1~20質量%の範囲である請求項1記載のラジカル重合性樹脂組成物。
  3. 前記シクロデキストリン及び/又はその誘導体(C)が、アルキル化シクロデキストリンである請求項1記載のラジカル重合性樹脂組成物。
  4. 前記空気乾燥性不飽和樹脂(A)が、ジシクロペンタジエニル基を有する不飽和ポリエステルである請求項1記載のラジカル重合性樹脂組成物。
  5. 請求項1~4のいずれか1項記載のラジカル重合性樹脂組成物からなる土木建築用プライマー。
PCT/JP2016/061792 2015-04-22 2016-04-12 ラジカル重合性樹脂組成物及び土木建築用プライマー WO2016171034A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680022903.7A CN107531856B (zh) 2015-04-22 2016-04-12 自由基聚合性树脂组合物和土木建筑用底漆
JP2016559370A JP6066027B1 (ja) 2015-04-22 2016-04-12 ラジカル重合性樹脂組成物及び土木建築用プライマー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-087559 2015-04-22
JP2015087559 2015-04-22

Publications (1)

Publication Number Publication Date
WO2016171034A1 true WO2016171034A1 (ja) 2016-10-27

Family

ID=57144439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061792 WO2016171034A1 (ja) 2015-04-22 2016-04-12 ラジカル重合性樹脂組成物及び土木建築用プライマー

Country Status (3)

Country Link
JP (1) JP6066027B1 (ja)
CN (1) CN107531856B (ja)
WO (1) WO2016171034A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736498B (zh) * 2022-05-26 2023-07-25 泉州永悦新材料有限公司 一种触变型不饱和树脂的合成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124941A (ja) * 1974-03-22 1975-10-01
JPS6268869A (ja) * 1985-09-20 1987-03-28 Nichiban Co Ltd 水中粘接着剤組成物
WO2010146912A1 (ja) * 2009-06-18 2010-12-23 Dic株式会社 空気乾燥性ポリエステル(メタ)アクリレート樹脂組成物、構造体及びその施工方法
JP2014118451A (ja) * 2012-12-14 2014-06-30 Dic Corp ラジカル重合性樹脂組成物、プライマー及び床版防水構造体
WO2015064191A1 (ja) * 2013-10-30 2015-05-07 Dic株式会社 コンクリート補修材
WO2015186433A1 (ja) * 2014-06-04 2015-12-10 Dic株式会社 ラジカル重合性組成物、コンクリート補修材及び道路用プライマー
WO2015194239A1 (ja) * 2014-06-17 2015-12-23 Dic株式会社 土木建築材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4861603B2 (ja) * 2003-11-27 2012-01-25 Dic株式会社 パテ組成物
JPWO2006115211A1 (ja) * 2005-04-25 2008-12-18 株式会社カネカ シクロデキストリン含有ポリエステル系重合体及びその製造方法
JP6281217B2 (ja) * 2013-09-09 2018-02-21 Dic株式会社 ラジカル重合性樹脂組成物及び土木建築材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124941A (ja) * 1974-03-22 1975-10-01
JPS6268869A (ja) * 1985-09-20 1987-03-28 Nichiban Co Ltd 水中粘接着剤組成物
WO2010146912A1 (ja) * 2009-06-18 2010-12-23 Dic株式会社 空気乾燥性ポリエステル(メタ)アクリレート樹脂組成物、構造体及びその施工方法
JP2014118451A (ja) * 2012-12-14 2014-06-30 Dic Corp ラジカル重合性樹脂組成物、プライマー及び床版防水構造体
WO2015064191A1 (ja) * 2013-10-30 2015-05-07 Dic株式会社 コンクリート補修材
WO2015186433A1 (ja) * 2014-06-04 2015-12-10 Dic株式会社 ラジカル重合性組成物、コンクリート補修材及び道路用プライマー
WO2015194239A1 (ja) * 2014-06-17 2015-12-23 Dic株式会社 土木建築材料

Also Published As

Publication number Publication date
JP6066027B1 (ja) 2017-01-25
CN107531856A (zh) 2018-01-02
CN107531856B (zh) 2021-03-23
JPWO2016171034A1 (ja) 2017-05-18

Similar Documents

Publication Publication Date Title
JP5003854B2 (ja) ラジカル硬化性樹脂組成物、それを用いた被覆材、土木建築構造体及びその施工方法
WO2019004125A1 (ja) ラジカル重合性樹脂組成物及び構造物修復材
JP4716150B2 (ja) 空気乾燥性ポリエステル(メタ)アクリレート樹脂組成物、構造体及びその施工方法
JP4623242B1 (ja) ポリエステル(メタ)アクリレート樹脂組成物、塗布構造体及びその施工方法
JP6057123B2 (ja) ラジカル重合性樹脂組成物、プライマー及び床版防水構造体
JP2008106169A (ja) 硬化性樹脂組成物
KR102163353B1 (ko) 라디칼 중합성 수지 조성물 및 토목 건축 재료
JP6394077B2 (ja) ラジカル重合性組成物、コンクリート補修材及び道路用プライマー
JP6066027B1 (ja) ラジカル重合性樹脂組成物及び土木建築用プライマー
JP5527036B2 (ja) モルタル組成物、コンクリート構造体及び補修方法
JPWO2015064191A1 (ja) コンクリート補修材
JP6252019B2 (ja) ラジカル重合性樹脂組成物及び土木建築材料
CN112789259A (zh) 结构物的修补方法
JP2015048459A (ja) ラジカル重合性樹脂組成物及び土木建築材料
JP3244077B2 (ja) ビニルエステル樹脂組成物
JP5953732B2 (ja) 複合被覆構造体
JP3019412B2 (ja) ビニルエステル樹脂組成物
JP5927892B2 (ja) 複合被覆構造体
JP2013141764A (ja) 複合被覆構造体
JP5845935B2 (ja) ラジカル重合性樹脂組成物
JP5288180B2 (ja) ポリエステル(メタ)アクリレート樹脂組成物、塗布構造体及びその施工方法
JP2024005579A (ja) ラジカル重合性組成物
JP6212892B2 (ja) ラジカル硬化性組成物及び土木建築材
JP4710365B2 (ja) 硬化性樹脂組成物、土木建築材及び土木建築物
JP2004323860A (ja) 樹脂組成物、土木建築材料及び被覆材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016559370

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783055

Country of ref document: EP

Kind code of ref document: A1