WO2020065729A1 - 車両制御方法及び車両制御装置 - Google Patents

車両制御方法及び車両制御装置 Download PDF

Info

Publication number
WO2020065729A1
WO2020065729A1 PCT/JP2018/035476 JP2018035476W WO2020065729A1 WO 2020065729 A1 WO2020065729 A1 WO 2020065729A1 JP 2018035476 W JP2018035476 W JP 2018035476W WO 2020065729 A1 WO2020065729 A1 WO 2020065729A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
vehicle
driving force
target
preceding vehicle
Prior art date
Application number
PCT/JP2018/035476
Other languages
English (en)
French (fr)
Inventor
寛志 有田
哲庸 森田
祐也 小暮
中村 祐輔
健 大埜
友洋 海野
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201880097973.8A priority Critical patent/CN112752690A/zh
Priority to PCT/JP2018/035476 priority patent/WO2020065729A1/ja
Priority to US17/278,775 priority patent/US20220041162A1/en
Priority to JP2020547639A priority patent/JP7103422B2/ja
Priority to EP18935229.7A priority patent/EP3858694A4/en
Priority to RU2021107911A priority patent/RU2767214C1/ru
Publication of WO2020065729A1 publication Critical patent/WO2020065729A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/162Speed limiting therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/17Control of distance between vehicles, e.g. keeping a distance to preceding vehicle with provision for special action when the preceding vehicle comes to a halt, e.g. stop and go
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Definitions

  • the present invention relates to vehicle control for automatically controlling at least acceleration and deceleration of a vehicle without depending on a driver's operation.
  • a vehicle control that automatically controls at least acceleration and deceleration of a vehicle without depending on a driver's operation.
  • conventional vehicle control when a preceding vehicle is detected by the camera, the vehicle is driven while maintaining a predetermined inter-vehicle distance from the preceding vehicle, and when the preceding vehicle stops, the own vehicle is stopped, and the preceding vehicle restarts. Then, the vehicle is restarted, so-called following travel is performed.
  • a camera has a performance limit. For example, there is a case where a preceding vehicle cannot be recognized in a backlight state. For this reason, in the conventional vehicle control, it may be determined that the host vehicle may be accelerated despite the presence of a preceding vehicle.
  • an object of the present invention is to provide a vehicle control for automatically controlling the acceleration and deceleration of a vehicle, which avoids a collision with a preceding vehicle or an obstacle when acceleration is started, and improves the acceleration.
  • a target acceleration is set based on a distance from a preceding vehicle or an obstacle, and the host vehicle is accelerated based on the target acceleration without operating by a driver. Then, at an acceleration at which the relative distance to the preceding vehicle or obstacle at the time when a preset acceleration limit time has elapsed from the start of acceleration is equal to or greater than the reference relative distance, and the relative vehicle speed to the preceding vehicle or obstacle is equal to or less than the reference relative vehicle speed.
  • a certain limit acceleration is calculated, and when the target acceleration exceeds the limit acceleration, the own vehicle is accelerated by the limit acceleration.
  • FIG. 1 is a configuration diagram of a vehicle control system.
  • FIG. 2 is a timing chart in the case where the vehicle running following does not recognize the preceding vehicle and starts accelerating.
  • FIG. 3 is a timing chart in the case where the vehicle running following does not recognize an obstacle and starts accelerating.
  • FIG. 4 is a diagram showing a control routine executed by the traveling control controller according to the present embodiment.
  • FIG. 5 is a flowchart showing the contents of the change rate limiting routine.
  • FIG. 6 is a diagram showing the contents of the control routine of the first modification.
  • FIG. 7 is a diagram showing the contents of the control routine of the second modification.
  • FIG. 8 is a diagram showing the contents of the control routine of the third modification.
  • FIG. 9 is a diagram showing the contents of the control routine of the fourth modification.
  • FIG. 10 is a diagram showing the contents of the control routine of the fifth modification.
  • FIG. 11 is a diagram showing the contents of the control routine of the sixth modification.
  • FIG. 12 is a diagram showing the contents of the control routine of the seventh modification.
  • FIG. 13 is a diagram showing the contents of the control routine of the eighth modification.
  • FIG. 14 is a diagram showing the contents of the control routine of the ninth modification.
  • FIG. 15 is a diagram showing the contents of the control routine of the tenth modification.
  • FIG. 16 is a diagram showing the contents of the control routine of the eleventh modification.
  • FIG. 1 is a configuration diagram of a vehicle control system according to the present embodiment.
  • the vehicle according to the present embodiment includes an internal combustion engine (hereinafter, referred to as an engine) as a drive source, and transmits a driving force generated by the engine to a transmission via a torque converter.
  • an engine an internal combustion engine
  • the automatic operation switch 1 is a switch for instructing start and end of an automatic operation mode in which acceleration / deceleration control is automatically performed without operation of a driver, and for instructing a change of a vehicle speed or an acceleration during execution of the automatic operation mode. It is.
  • the state of the automatic operation switch 1 is output to a traveling controller 5 described later.
  • the vehicle speed sensor 2 is a sensor that detects the vehicle speed of the own vehicle, and is configured by a pulse generator such as a rotary encoder that measures the wheel speed.
  • the wheel speed information detected by the vehicle speed sensor 2 is output to a traveling control controller 5 described later.
  • the external world recognition device 3 recognizes a preceding vehicle, a traffic signal, or the like existing in front of the own vehicle, and detects a state of the recognized preceding vehicle or the traffic signal. Information on the detected preceding vehicle or traffic signal is output to a travel control controller 5 described later.
  • the external world recognition device 3 includes, for example, a radar and a camera.
  • the accelerator pedal sensor 4A detects an operation amount of an accelerator pedal, which is an operation command for acceleration instruction operated by the driver.
  • the detected accelerator pedal operation amount is output to a traveling controller 5 described later.
  • the brake pedal sensor 4B detects the operation amount of a brake pedal, which is an operator for deceleration instruction operated by the driver.
  • the detected brake pedal operation amount is output to the traveling controller 5 described later.
  • the accelerator pedal and the brake pedal constitute a driving operator operated by the driver.
  • the accelerator pedal sensor 4A and the brake pedal sensor 4B may be referred to as driving operator operating state detecting means 4.
  • the traveling control controller 5 as a traveling control unit includes a state of the automatic driving switch 1, a vehicle speed of the own vehicle based on a signal from the vehicle speed sensor 2, information on the outside world acquired by the outside world recognition device 3, and a driving operator operation state.
  • the traveling control is performed based on the state of the detection means 4. That is, the traveling controller 5 performs the automatic operation when the automatic operation switch 1 is ON.
  • the travel control controller 5 sets a target vehicle speed for following the vehicle while maintaining an inter-vehicle distance with the preceding vehicle at a predetermined distance, and a target vehicle speed. Set the target acceleration / deceleration based on.
  • the travel controller 5 calculates a target driving force or a target braking force (hereinafter, collectively referred to as a target acceleration / deceleration control amount) for achieving the target acceleration / deceleration, and calculates the calculated target acceleration / deceleration control amount. Is output to the acceleration / deceleration control device 6.
  • the traveling control controller 5 sets, for example, a legal speed as a target vehicle speed, and sets a target acceleration according to the target vehicle speed.
  • the travel control controller 5 calculates a target acceleration / deceleration control amount for realizing the target acceleration / deceleration, and outputs the target acceleration / deceleration control amount to an acceleration / deceleration control device 6 described later.
  • the acceleration control during the following running in the present embodiment will be described later.
  • the traveling control controller 5 sets a shift command value based on the above information, and outputs the shift command value to the transmission controller 7.
  • the travel controller 5 is configured by a microcomputer including a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the travel control controller 5 can be composed of a plurality of microcomputers.
  • the acceleration / deceleration control device 6 includes an engine controller 6A as a driving force control unit and a brake controller 6B.
  • the engine controller 6A controls the throttle valve opening of the engine, which is the driving source, based on the acceleration / deceleration control amount input from the traveling control controller 5.
  • the brake controller 6B controls a braking force based on the acceleration / deceleration control amount input from the traveling control controller 5.
  • the braking force is controlled by controlling the hydraulic pressure of the hydraulic brake and the amount of regenerative electric power generated by the regenerative brake.
  • the traveling control controller 5 stops the own vehicle at a predetermined inter-vehicle distance for stopping when the preceding vehicle stops during the following traveling by the automatic driving, and starts the own vehicle when the preceding vehicle starts. When the distance between the host vehicle and the preceding vehicle increases, the host vehicle is accelerated. In the following description, starting and acceleration are collectively referred to as acceleration unless it is particularly necessary to distinguish them.
  • the camera as the external recognition device 3 determines whether there is a preceding vehicle and whether the preceding vehicle has started. However, when the performance limit is exceeded due to bad weather or when there is backlight, the camera may not be able to recognize the preceding vehicle. If the camera cannot recognize the preceding vehicle, there is a risk of starting acceleration in a situation where it should not be accelerated. Even when the acceleration is started in this way, if the driver recognizes the preceding vehicle and depresses the brake pedal, the following running is released, and the vehicle decelerates.
  • This situation can occur even when there is no preceding vehicle. For example, there is a case where the vehicle accelerates without being able to recognize an obstacle such as a person in front while performing automatic driving for automatically traveling to a target point, cruise control for traveling while maintaining the target vehicle speed, or the like.
  • the traveling control controller 5 performs the control described below so that the driver can perform a brake operation to avoid collision with the preceding vehicle. Execute.
  • FIG. 2 is a timing chart in the case where the vehicle is traveling at a constant speed while maintaining the inter-vehicle distance to the preceding vehicle at L1 due to the following traveling, and it becomes impossible to recognize the preceding vehicle and acceleration is started.
  • the solid line in the figure indicates a case where collision with the preceding vehicle can be avoided, and the broken line indicates a case where collision with the preceding vehicle cannot be avoided.
  • the driving force is the torque of the engine.
  • the driving force P1 is a driving force when the vehicle is traveling at a constant vehicle speed.
  • the traveling control controller 5 determines that acceleration is possible, and the driving force for acceleration is determined. Increase. As the vehicle accelerates, the relative vehicle speed with respect to the preceding vehicle starts to increase, and accordingly, the inter-vehicle distance with the preceding vehicle starts to decrease.
  • the driver recognizes that the own vehicle has started accelerating despite the presence of the preceding vehicle, the driver performs the brake operation, and when the braking is started along with this, the following running is released.
  • the actual braking force is generated by the time between when the driver recognizes the necessity of the brake operation and depresses the brake pedal, and the delay time from when the brake pedal is depressed until the braking force is generated. Is a timing (timing T1 in the figure) at which time has elapsed. After the timing T1, the following running is released and the accelerator pedal is not depressed, so that the driving force gradually decreases. Then, a braking force is generated.
  • the magnitude of the braking force and the inter-vehicle distance during follow-up running are values used for evaluation of, for example, ASIL (Automotive Safety Integrity Level), which is a safety standard defined by the ISO 26262 functional safety standard. The same applies to the time required from the start of acceleration to the time when the driver recognizes the need for braking and depresses the brake pedal, and the delay time from when the brake pedal is depressed until the braking force is generated.
  • ASIL Automotive Safety Integrity Level
  • the inter-vehicle distance is greater than zero at the timing T2 when the relative vehicle speed becomes zero. That is, collision with the preceding vehicle can be avoided.
  • the relative vehicle speed at the timing T1 is V3 higher than V2 and the inter-vehicle distance is L3 shorter than L2, the inter-vehicle distance becomes zero before the relative vehicle speed becomes zero. That is, collision with the preceding vehicle cannot be avoided.
  • the inter-vehicle distance (relative distance) and the relative vehicle speed at timing T1 are suppressed to a size that can avoid a collision.
  • the inter-vehicle distance (relative distance) with the preceding vehicle at the timing T1 becomes equal to or longer than the reference relative distance and the relative vehicle speed with the preceding vehicle becomes equal to or lower than the reference relative vehicle speed. It is necessary to set the acceleration of the own vehicle. Here, even if the reference relative distance decreases, a collision with the preceding vehicle can be avoided by reducing the reference relative vehicle speed.
  • the setting of the acceleration can be rephrased as the setting of the driving force.
  • FIG. 3 is a timing chart in the case of starting acceleration without being able to recognize an obstacle ahead in a camera during automatic driving. It is basically the same as FIG. 2 except that the relative vehicle speed at the start of acceleration (timing zero) becomes V1. This is because the obstacle is not moving.
  • the relative distance to the obstacle at the timing T1 is specifically determined so that the distance to the obstacle at the timing T1 (relative distance) and the relative vehicle speed to the obstacle are suppressed to a size capable of avoiding a collision. It is necessary to set the acceleration of the own vehicle from the start of acceleration to the timing T1 so that the distance becomes longer than the relative distance and the relative vehicle speed with respect to the obstacle becomes lower than the reference relative vehicle speed.
  • the period from the start of acceleration to the timing T1 is also referred to as an acceleration limit time.
  • FIG. 4 is a diagram showing the contents of a control routine programmed in the traveling controller 5.
  • a control routine programmed in the traveling controller 5.
  • the travel controller 5 reads the target driving force and the vehicle speed of the host vehicle at the start of acceleration.
  • the target driving force is a driving force set for accelerating to the target vehicle speed when the vehicle is accelerated irrespective of the driver's operation as in the following running.
  • the traveling controller 5 calculates the driving force at the start of acceleration (hereinafter, also referred to as R / L traveling resistance driving force) based on the read vehicle speed of the vehicle (B10).
  • the R / L running resistance driving force is a driving force required for running at a constant vehicle speed, and is calculated by a known method based on the vehicle weight of the own vehicle, the running resistance, and the like.
  • the traveling control controller 5 compares the target driving force with the R / L traveling resistance driving force (B11), and determines that the vehicle has started acceleration when the target driving force exceeds the R / L traveling resistance driving force.
  • the limited driving force (B12) in which the amount of change in the driving force is limited is set as the final target driving force. Otherwise, the target driving force is set as the final target driving force as it is (B13).
  • FIG. 5 is a diagram showing the contents of the routine for calculating the limited driving force. This routine is also programmed in the travel controller 5.
  • the traveling control controller 5 reads the target driving force, the vehicle speed of the own vehicle at the start of acceleration, the target driving force and the R / L traveling resistance driving force calculated in the previous routine.
  • the traveling control controller 5 compares the target driving force calculated in the previous routine with the R / L traveling resistance driving force (B121).
  • the traveling control controller 5 sets the final target driving force in the previous routine as the reference target driving force when the target driving force in the previous routine exceeds the R / L traveling resistance driving force in the previous routine, and otherwise,
  • the R / L running resistance driving force in the previous routine is set as the reference target driving force (B122).
  • the target driving force did not exceed the R / L running resistance driving force in the previous routine, but if the target driving force exceeds the R / L running resistance driving force in the current routine, the R / L running This is for calculating the limited driving force based on the resistance driving force.
  • the travel control controller 5 calculates the driving force restriction amount based on the read vehicle speed of the own vehicle (B123).
  • the driving force limit amount is a distance between the preceding vehicle and the preceding vehicle at the time when the acceleration limit time elapses from the start of acceleration during the following running while maintaining a predetermined inter-vehicle distance. If this occurs, the driving force is such that the relative vehicle speed with respect to the preceding vehicle becomes zero before the distance to the preceding vehicle becomes zero.
  • the driving force is such that the inter-vehicle distance (relative distance) to the preceding vehicle at the time when the acceleration limit time has elapsed from the start of acceleration is equal to or greater than the reference relative distance, and the relative vehicle speed to the preceding vehicle is equal to or less than the reference relative vehicle speed.
  • the following distance, the acceleration limit time, and the magnitude of the braking force during the following running are values used for evaluation of ASIL (Automotive Safety Integrity Level), which is a safety standard defined by the functional safety standard ISO 26262, for example.
  • ASIL Automotive Safety Integrity Level
  • the magnitude of the inter-vehicle distance during the following traveling is set based on the vehicle speed, and is set to be larger as the vehicle speed is higher.
  • the traveling controller 5 calculates the post-restriction target driving force by adding the driving force restriction amount to the reference target driving force (B124).
  • the traveling controller 5 compares the difference (B125) between the target driving force and the reference target driving force with the driving force restriction amount (B126).
  • the traveling control controller 5 sets the post-restricted target driving force to the limited driving force in order to avoid a collision with the preceding vehicle, and otherwise does not. In this case, the collision with the preceding vehicle can be avoided without limiting the driving force, so the target driving force is set as the limited driving force (B127).
  • the target driving force is set so that the inter-vehicle distance at the timing T1 becomes a distance at which the relative acceleration with the preceding vehicle becomes zero before the distance to the preceding vehicle becomes zero if the braking force is generated from the timing T1. Is limited.
  • the traveling controller 5 transmits the final target driving force to the engine controller 6A, and the engine controller 6A controls the driving force based on this.
  • the vehicle can avoid collision with the preceding vehicle.
  • the vehicle control according to the present invention can be applied not only to the following running at a constant speed but also to the following running at a constant acceleration. In this case, if the target driving force is larger than the driving force required for constant acceleration traveling, the driving force change amount is limited.
  • the limited driving force is set as the final target driving force.
  • the driving force may be used.
  • the driver does not perform the brake operation.
  • the acceleration increases as shown by the alternate long and short dash line in FIGS.
  • FIG. 6 is a diagram showing the contents of the control routine of the first modification.
  • the travel control controller 5 reads the target acceleration.
  • the target acceleration is set in advance as the acceleration at the time of following travel or automatic driving.
  • the travel control controller 5 stores an acceleration as a threshold value used for determining whether or not the own vehicle has started acceleration (B20).
  • the threshold value here is, for example, zero G when the vehicle is following the vehicle at a constant vehicle speed, and the constant acceleration (for example, 0.1 G) when the vehicle is following the vehicle at a constant acceleration.
  • the travel control controller 5 compares the target acceleration with a threshold value of the acceleration (B21). If the target acceleration is equal to or greater than the threshold value, the limited acceleration (B22) in which the amount of change in acceleration is limited is set as the final target acceleration. Sets the target acceleration as the final target acceleration (B23). If the target acceleration is equal to or greater than the threshold, it can be determined that the vehicle has started accelerating.
  • the reason why the amount of change in the target acceleration is limited is to realize the acceleration for avoiding the collision described above.
  • the driving force is limited in order to control the acceleration of the vehicle, but in the control routine of FIG. 6, the acceleration is directly limited. That is, the content of the process of limiting the amount of change is obtained by replacing the driving force in FIG. 4 with the acceleration, and is substantially the same process. In order to achieve the post-restriction target acceleration, the driving force is controlled.
  • the final target acceleration is calculated, and the acceleration of the own vehicle is controlled based on the calculated target acceleration.
  • FIG. 7 is a diagram showing the contents of a control routine for calculating the final target driving force according to the present modified example. This routine is programmed in the travel controller 5.
  • the driving control controller 5 reads the target driving force and the vehicle speed, calculates the R / L driving resistance driving force based on the vehicle speed, and compares the target driving force with the R / L driving resistance driving force in FIG. This is the same as the control routine (B30, B31).
  • the process (B33) for limiting the amount of change in the target driving force is the same as the control routine in FIG.
  • the traveling control controller 5 determines that the vehicle has started accelerating, and starts counting by the timer (B32). That is, the timer starts counting when acceleration starts. The timer counts from the start of acceleration to timing T1. The travel control controller 5 starts limiting the amount of change in the target driving force to the above-described driving force limit amount (B33) at the same time as the timer starts counting, and continues this limit at least until the acceleration limit time elapses.
  • the reason why the change amount of the target driving force is limited is to realize the acceleration for avoiding the collision described above. If the target driving force does not exceed the R / L running resistance driving force, the target driving force is used as it is as the limited target driving force (B33).
  • FIG. 8 is a diagram showing the contents of the control routine of the third modification. This routine is programmed in the travel controller 5.
  • the driving force is limited in the second modification shown in FIG. 7, but the acceleration is directly limited.
  • the travel controller 5 reads the target acceleration, and stores the acceleration as a threshold used for determining whether or not the own vehicle has started acceleration (B40). When the target acceleration is equal to or greater than the threshold, the travel control controller 5 activates a timer (B42). If the target acceleration is equal to or greater than the threshold, it can be determined that the vehicle has started accelerating. That is, the timer starts counting when acceleration starts. The timer counts from the start of acceleration to timing T1. The travel control controller 5 starts limiting the amount of change in the target acceleration up to the acceleration limit amount (the above-described driving force limit amount is replaced with acceleration) at the same time that the timer starts counting. It continues until it passes (B23).
  • the acceleration limit amount the above-described driving force limit amount is replaced with acceleration
  • FIG. 9 is a diagram showing the contents of a control routine for calculating the post-restriction target driving force according to this modification. This routine is programmed in the travel controller 5.
  • the traveling controller 5 reads the target driving force and the vehicle speed, calculates the R / L traveling resistance driving force based on the vehicle speed (B50), and compares the target driving force with the R / L traveling resistance driving force (B51). Up to this point, it is the same as the control routine of FIG.
  • the safety change amount and the change amount A of the driving force are calculated (B52, B53).
  • the safety change amount is a change amount that can avoid a collision with the preceding vehicle when there is a preceding vehicle, and for example, depresses a brake pedal after recognizing the braking force and the necessity of braking specified in the functional safety standard ISO26262. , The delay time from when the brake pedal is depressed until the braking force is generated, and the relative distance / relative vehicle speed during the following running.
  • the change amount A is a change amount that is arbitrarily set to a change amount larger than the safety change amount, and is, for example, a change amount of the target driving force used when there is no preceding vehicle.
  • the travel controller 5 selects the safety change amount when the target driving force is equal to or greater than the R / L running resistance driving force, and otherwise selects the change amount A (B54). Then, the traveling control controller 5 limits the change amount of the target driving force with the selected change amount as an upper limit, and sets the change amount as the final target driving force (B55).
  • FIG. 10 is a diagram showing the contents of the control routine of the fifth modification. This routine is programmed in the travel controller 5.
  • the driving force is limited in the fourth modified example shown in FIG. 9, but the acceleration is directly limited.
  • the traveling control controller 5 reads the target acceleration and stores the acceleration as a threshold used for determining whether or not the own vehicle has started acceleration (B60). Then, the travel controller 5 compares the target acceleration with the threshold (B61). The traveling control controller 5 calculates the safety change amount and the change amount A of the acceleration (B62, B63). The travel control controller 5 selects the safety change amount when the target acceleration is equal to or greater than the threshold, and otherwise selects the change amount A (B64). Then, the travel control controller 5 limits the change amount of the target acceleration with the selected change amount as an upper limit, and sets the change amount as a final target acceleration (B65).
  • FIG. 11 is a diagram showing the contents of a control routine for calculating the post-restriction target driving force according to this modification. This routine is programmed in the travel controller 5.
  • the traveling controller 5 reads the target driving force and the gradient of the road surface during traveling.
  • the road gradient is calculated based on, for example, a detection value of an acceleration sensor (not shown).
  • the traveling control controller 5 estimates a driving force (hereinafter, also referred to as a constant traveling driving force) required to travel on a road surface of the gradient at a constant vehicle speed. (B70)
  • the constant traveling driving force is subtracted from the target driving force (B71). Note that the vehicle weight of the own vehicle is obtained by adding a detection value of a weight sensor provided on a seat or the like to a previously stored empty weight.
  • the traveling control controller 5 restricts the driving force of the magnitude obtained by subtracting the constant traveling driving force from the target driving force to the above-described driving force limit amount (B72), and adds the constant traveling driving force to the restricted driving force. Is the final target driving force (B73).
  • the above-described driving force limitation is to set the upper limit of the driving force by a function using the time t as a parameter, and to limit the target driving force so as not to exceed the upper limit.
  • FIG. 12 is a diagram showing the contents of the control routine of the seventh modification. This routine is programmed in the travel controller 5.
  • the driving force is limited in the sixth modification shown in FIG. 11, but the acceleration is directly limited.
  • the traveling control controller 5 estimates acceleration (gradient resistance equivalent acceleration) caused by the gradient based on the read gradient and the vehicle weight of the vehicle stored in advance (B80), and calculates the gradient resistance from the target acceleration.
  • the equivalent acceleration is subtracted (B81).
  • the travel control controller 5 limits the acceleration of the magnitude obtained by subtracting the gradient resistance equivalent acceleration from the target acceleration to the above-described acceleration limit (B82), and adds the acceleration after the limitation and the gradient resistance equivalent acceleration to the final target acceleration. (B83).
  • FIG. 13 is a diagram showing the contents of a control routine for calculating the post-restriction target driving force according to this modification. This routine is programmed in the travel controller 5.
  • the present modified example is different from the above-described modified examples in the method of determining whether or not the own vehicle has started acceleration.
  • the process (B91) of operating the timer after determining that the acceleration has started is the same as the control routine shown in FIG.
  • the process (B92) of limiting the target driving force is the same as the control routine shown in FIG.
  • the differences will be mainly described.
  • the travel control controller 5 makes an acceleration start determination based on the target driving force and information on whether or not the vehicle accelerates (B90).
  • Information on whether or not the vehicle accelerates is information on the result of the overtaking determination, information on whether the vehicle will pass through a tollgate, and whether it will join.
  • the overtaking determination for example, while driving at the target vehicle speed by automatic driving, the radar as the external world recognition device 3 detects the vehicle as it runs ahead, and the inter-vehicle distance to the vehicle continues to be reduced even if the vehicle speed of the own vehicle is reduced In this case, the traveling control controller 5 determines that the vehicle will pass. After passing through a tollgate or at a junction at a highway junction or the like, the traveling control controller 5 accelerates the own vehicle. Therefore, when the travel control controller 5 recognizes that the vehicle has passed the tollgate or that the vehicle will merge, based on the map information and the position information from the navigation system (not shown), it activates the timer (B91).
  • the acceleration start determination based on the target driving force is, for example, a determination that acceleration is started when the target driving force increases, or when the rate of change when the target driving force increases exceeds a preset threshold. is there.
  • the traveling control controller 5 determines that the acceleration has been started by any of the determination methods described above, the traveling control controller 5 activates the timer (B91).
  • FIG. 14 shows the contents of the control routine of the ninth modification. This routine is programmed in the travel controller 5.
  • the driving force is restricted in the eighth modification shown in FIG. 13, but the acceleration is directly restricted.
  • the traveling control controller 5 makes an acceleration start determination based on the target acceleration and information on whether or not the own vehicle is accelerated (B100), and activates a timer when it is determined that the acceleration has been started. (B101), the target acceleration is limited (B102). As a result, a collision with the preceding vehicle can be avoided and the acceleration performance can be improved as in the above-described embodiment and each of the modifications.
  • FIG. 15 shows the contents of the control routine of the tenth modification.
  • This routine is programmed in the travel controller 5.
  • This modification is the same as the eighth modification in that the timer (B111) is activated when it is determined that the acceleration has been started by the acceleration start determination (B110), and the target driving force is limited (B113).
  • the method of limiting the target driving force is different from the eighth modification.
  • the allowable acceleration profile is calculated based on the relative vehicle speed and the relative distance from the preceding vehicle detected by the radar (B112), and the upper limit of the target driving force is limited based on the allowable acceleration profile (B113).
  • the allowable acceleration profile is basically a driving force profile for realizing a collision avoidable acceleration profile, similarly to the safety change amount described in the fourth modification.
  • the relative vehicle speed and relative distance from the preceding vehicle at the start of acceleration used for calculating the amount of change in safety are, for example, values determined by the functional safety standard ISO26262, whereas the calculation of the allowable acceleration profile is detected by the radar.
  • the actual relative vehicle speed and relative distance obtained are used. Therefore, according to the present modification, the driving force can be more accurately limited.
  • FIG. 16 shows the contents of the control routine of the eleventh modification. This routine is programmed in the travel controller 5.
  • the driving force is restricted in the eighth modification shown in FIG. 13, but the acceleration is directly restricted.
  • the traveling control controller 5 makes an acceleration start determination based on the target acceleration and information on whether or not the vehicle is accelerating (B130), and activates the timer when it is determined that the acceleration has started (B131). .
  • the traveling control controller 5 generates an allowable acceleration profile based on the actual relative vehicle speed and the relative distance (B132).
  • the allowable acceleration profile in the present modification is a characteristic of a time change of the acceleration that can avoid a collision.
  • the traveling control controller 5 limits the target acceleration based on the allowable acceleration profile (B133). According to the present modification, the driving force can be more accurately limited.
  • the present invention can also be applied to a system having a function in which the traveling control controller 5 performs a brake operation when a preceding vehicle or an obstacle is detected by the radar after the acceleration starts. .
  • a vehicle control method in which a target acceleration is set based on a distance from a preceding vehicle or an obstacle, and the host vehicle is accelerated based on the target acceleration without operating the driver. Is done.
  • the vehicle is accelerated at a limited acceleration in which the target acceleration is suppressed until at least a preset acceleration limited time has elapsed from the start of acceleration.
  • the magnitude of the acceleration can be suppressed to such a level that a collision with the preceding vehicle can be avoided if the driver performs a brake operation after the start of acceleration.
  • the suppression of the target acceleration can be released after the acceleration limit time has elapsed. Therefore, it is possible to ensure both safety and acceleration performance.
  • the acceleration limit time is the sum of the time required to determine to apply the braking and the time required from when the braking operation is started to when the braking force is actually generated. It is inevitable that it takes time from the decision to apply braking to the generation of braking force, but by setting the acceleration limit time as described above, it is possible to avoid collision with the preceding vehicle .
  • the limited acceleration is a distance from the preceding vehicle or obstacle at the time when the acceleration limit time has elapsed from the start of acceleration, and the braking force is generated from the time when the acceleration limit time has elapsed until the preceding vehicle or the obstacle. Is the distance at which the relative acceleration with the preceding vehicle or obstacle becomes zero before the distance becomes zero. As a result, a collision with a preceding vehicle can be avoided without suppressing the target acceleration more than necessary.
  • the target acceleration may be suppressed by calculating the target driving force for realizing the target acceleration and suppressing the target driving force. Since the driving force is controlled to suppress the acceleration, the calculation load can be reduced by directly controlling the driving force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

先行車または障害物との距離に基づいて目標加速度を設定し、運転者の操作によらずに目標加速度に基づいて自車を加速させる車両制御方法であって、加速開始から予め設定した加速制限時間が経過した時点における先行車または障害物との相対距離が基準相対距離以上となり、先行車または障害物との相対車速が基準相対車速以下となる加速度である制限加速度を算出し、目標加速度が制限加速度を超える場合には制限加速度で自車を加速させる。

Description

車両制御方法及び車両制御装置
 本発明は、少なくとも車両の加減速を運転者の操作によらずに自動で制御する車両制御に関する。
 従来、少なくとも車両の加減速を運転者の操作によらずに自動で制御する車両制御が知られている。従来の車両制御では、カメラにより先行車を検知した場合には、先行車と所定の車間距離を維持しつつ自車を走行させ、先行車が停車したら自車を停車させ、先行車が再発進したら自車を再発進させる、いわゆる追従走行を行なう。ところで、カメラには性能限界があり、例えば逆光の状態では先行車を認知できない場合もある。このため、従来の車両制御では先行車がいるにもかかわらず自車を加速させてもよいと判断する可能性がある。この判断に基づいて加速を開始した場合でも、運転者がブレーキ操作を行なえば、追従走行は解除されて減速することができる。そして、減速開始時点で先行車との車間距離が十分にあれば、先行車との衝突を回避できる。そこでJP2015-93645Aに記載の技術では、追従走行中の加速度を抑制し、抑制した加速度で目標車速まで加速させている。これによれば、先行車がいるにも拘らず加速を開始した場合でも、運転者がブレーキ操作することにより先行車との衝突を回避できる。
 ところで、近年は、上記の追従制御を含む走行支援制御及び自動運転制御の性能向上の観点から、加速度の向上が求められており、必要以上に加速度を抑制すると、加速度の向上という要求を満たすことができない。
 そこで本発明は、車両の加減速を自動で制御する車両制御において、加速を開始した場合における先行車または障害物との衝突の回避と、加速度の向上を両立することを目的とする。
 本発明のある態様による車両制御方法は、先行車または障害物との距離に基づいて目標加速度を設定し、運転者の操作によらずに目標加速度に基づいて自車を加速させる。そして、加速開始から予め設定した加速制限時間が経過した時点における先行車または障害物との相対距離が基準相対距離以上となり、先行車または障害物との相対車速が基準相対車速以下となる加速度である制限加速度を算出し、目標加速度が制限加速度を超える場合には制限加速度で自車を加速させる。
図1は、車両の制御システムの構成図である。 図2は、追従走行中の車両が先行車を認知できずに加速開始した場合のタイミングチャートである。 図3は、追従走行中の車両が障害物を認知できずに加速開始した場合のタイミングチャートである。 図4は、本実施形態に係る走行制御コントローラが実行する制御ルーチンを示す図である。 図5は、変化率制限のルーチンの内容を示すフローチャートである。 図6は、第1変形例の制御ルーチンの内容を示す図である。 図7は、第2変形例の制御ルーチンの内容を示す図である。 図8は、第3変形例の制御ルーチンの内容を示す図である。 図9は、第4変形例の制御ルーチンの内容を示す図である。 図10は、第5変形例の制御ルーチンの内容を示す図である。 図11は、第6変形例の制御ルーチンの内容を示す図である。 図12は、第7変形例の制御ルーチンの内容を示す図である。 図13は、第8変形例の制御ルーチンの内容を示す図である。 図14は、第9変形例の制御ルーチンの内容を示す図である。 図15は、第10変形例の制御ルーチンの内容を示す図である。 図16は、第11変形例の制御ルーチンの内容を示す図である。
 以下、図面等を参照して、本発明の実施形態について説明する。
 図1は、本実施形態に係る車両の制御システムの構成図である。
 本実施形態に係る車両は、駆動源として内燃機関(以下、エンジンという)を備え、エンジンで発生した駆動力を、トルクコンバータを介して変速機に伝達する。
 自動運転スイッチ1は、運転者の操作によらずに加減速制御を自動で行う自動運転モードの開始指示及び終了指示や、自動運転モード実行中の車速や加速度等の変更指示を行なうためのスイッチである。この自動運転スイッチ1の状態は後述する走行制御コントローラ5に出力される。
 車速センサ2は、自車の車速を検出するセンサであり、例えば車輪速を計測するロータリエンコーダ等のパルス発生器で構成される。車速センサ2が検出した車輪速情報は、後述する走行制御コントローラ5に出力される。
 外界認知装置3は、自車の前方に存在する先行車や信号機等を認知し、認知した先行車や信号機の状態を検出する。検出した先行車や信号機についての情報は後述する走行制御コントローラ5に出力される。外界認知装置3は、例えばレーダ及びカメラによって構成される。
 アクセルペダルセンサ4Aは、運転者が操作する加速指示用の操作子であるアクセルペダルの操作量を検出する。検出されたアクセルペダル操作量は後述する走行制御コントローラ5に出力される。
 ブレーキペダルセンサ4Bは、運転者が操作する減速指示用の操作子であるブレーキペダルの操作量を検出する。検出されたブレーキペダル操作量は後述する走行制御コントローラ5に出力される。
 ここで、アクセルペダル及びブレーキペダルは、運転者が操作する運転操作子を構成する。また、アクセルペダルセンサ4A及びブレーキペダルセンサ4Bを、運転操作子作動状態検出手段4と称することもある。
 走行制御部としての走行制御コントローラ5は、自動運転スイッチ1の状態と、車速センサ2からの信号に基づく自車の車速と、外界認知装置3で取得した外界に関する情報と、運転操作子作動状態検出手段4の状態とに基づいて、走行制御を行なう。すなわち、走行制御コントローラ5は、自動運転スイッチ1がONであれば自動運転を行なう。自動運転を行なう場合に自車の前方に先行車が存在するときには、走行制御コントローラ5は先行車との車間距離を予め設定した所定距離に維持して追従走行するための目標車速と、目標車速に基づく目標加減速度を設定する。そして、走行制御コントローラ5は、目標加減速度を実現するための目標駆動力または目標制動力(以下、これらを総称して目標加減速制御量ともいう)を算出し、算出した目標加減速制御量を加減速制御装置6に出力する。また、自動運転を行なう場合に先行車が存在しないときには、走行制御コントローラ5は、例えば法定速度を目標車速として設定し、目標車速に応じた目標加速度を設定する。そして、走行制御コントローラ5は、目標加減速度を実現するための目標加減速制御量を算出して、その目標加減速制御量を後述する加減速制御装置6に出力する。なお、本実施形態における追従走行中の加速制御については後述する。
 また、走行制御コントローラ5は、自動運転を行なう場合には上記の各情報に基づいて変速指令値を設定し、この変速指令値を変速機コントローラ7に出力する。
 なお、走行制御コントローラ5は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。走行制御コントローラ5を複数のマイクロコンピュータで構成することも可能である。
 加減速制御装置6は、駆動力制御部としてのエンジンコントローラ6Aと、ブレーキコントローラ6Bとを備える。エンジンコントローラ6Aは、走行制御コントローラ5から入力された加減速制御量に基づいて、駆動源であるエンジンのスロットルバルブ開度を制御する。ブレーキコントローラ6Bは、走行制御コントローラ5から入力された加減速制御量に基づいて、制動力を制御する。制動力の制御は、油圧ブレーキの液圧や回生ブレーキによる回生電力量を制御することにより行なう。
 次に、走行制御コントローラ5が実行する追従走行中の加速制御について説明する。
 走行制御コントローラ5は、自動運転による追従走行中に先行車が停止したら、予め設定した停止時用の車間距離を空けて自車を停止させ、先行車が発進したら自車を発進させる。また、先行車との車間距離が広がった場合には自車を加速させる。以下の説明では、特に区別する必要がない場合には、発進及び加速をまとめて加速という。
 このとき、先行車の有無及び先行車が発進したか否かを、外界認知装置3としてのカメラが判断する。しかし、悪天候等により性能限界を超えた場合や逆光の場合等には、カメラが先行車を認知できない場合がある。カメラが先行車を認知できないと、本来であれば加速すべきではない場面で加速を開始するおそれがある。このように加速を開始した場合でも、運転者が先行車を認知してブレーキペダルを踏み込めば追従走行は解除され、車両は減速する。ただし、実際に車両が減速を開始するまでには、加速開始から運転者が先行車を認知してブレーキペダルを踏み込むまでの時間及びブレーキペダルが踏み込まれてから制動力が発生するまでの時間を要する。したがって、制動力が発生する時点で先行車との距離が十分に確保されておらず、先行車との相対車速が十分に低下していないと、先行車と衝突する可能性がある。
 このような状況は、先行車がいない状態でも生じ得る。例えば、目標地点まで自動で走行する自動運転や、目標車速を維持して走行するクルーズコントロール等の実行中に、前方の人等の障害物を認知できずに加速する場合である。
 そこで走行制御コントローラ5は、カメラが先行車を認知できずに自車が加速した場合でも、運転者がブレーキ操作をすれば先行車等との衝突を回避できるように、以下に説明する制御を実行する。
 図2は、追従走行により先行車との車間距離をL1に維持して一定速度で走行している状態から、先行車を認知できなくなって加速を開始した場合のタイミングチャートである。図中の実線は先行車との衝突を回避できる場合を示し、破線は先行車との衝突を回避できない場合を示している。駆動力とは、エンジンのトルクである。駆動力P1は、一定車速で走行している状態での駆動力である。
 一定速度で追従走行中のタイミングゼロにおいて、実際には先行車がいるにもかかわらずカメラが先行車を認知しなくなると、走行制御コントローラ5は加速可能と判断して、加速のために駆動力を増大させる。自車が加速することにより、先行車との相対車速は増大し始め、これに伴い先行車との車間距離は縮まり始める。
 運転者は、先行車がいるにもかかわらず自車が加速を開始したことを認知したらブレーキ操作を行ない、これに伴い制動が開始されると追従走行が解除される。ただし、実際に制動力が発生するのは、運転者がブレーキ操作の必要性を認知してブレーキペダルを踏み込むまでの時間と、ブレーキペダルが踏み込まれてから制動力が発生するまでの遅れ時間とが経過したタイミング(図中のタイミングT1)である。タイミングT1以降は、追従走行が解除され、かつアクセルペダルが踏み込まれていないので、駆動力は徐々に低下する。そして制動力が発生する。これらにより、先行車との相対車速及び車間距離は徐々に減少する。なお、制動力の大きさ及び追従走行中の車間距離は、例えば機能安全規格ISO26262で規定された安全基準であるASIL(Automotive Safety Integrity Level)の評価に用いられる値とする。加速開始から運転者が制動の必要性を認知してブレーキペダルを踏み込むまでに要する時間、及びブレーキペダルが踏み込まれてから制動力が発生するまでの遅れ時間についても同様である。
 ここで、タイミングT1における相対車速がV2で、かつ車間距離がL2であれば、相対車速がゼロになるタイミングT2において、車間距離はゼロより大きい。つまり、先行車との衝突を回避できる。一方、タイミングT1における相対車速がV2より高いV3で、かつ車間距離がL2より短いL3の場合には、相対車速がゼロになる前に車間距離がゼロになる。つまり先行車との衝突を回避できない。
 すなわち、衝突するか否かはタイミングT1における車間距離(相対距離)、及び相対車速により決まる。タイミングT1までは制動力が発生せず追従走行の解除も行なわれないので、タイミングT1における車間距離(相対距離)、及び相対車速を衝突回避可能な大きさに抑えるように、具体的には、タイミングT1における先行車との車間距離(相対距離)が基準相対距離以上となり、先行車との相対車速が基準相対車速以下となるように、加速開始からタイミングT1までの(つまり、追従走行で加速する際の)自車の加速度を設定する必要がある。ここで、基準相対距離が小さくなっても基準相対車速を小さくすれば先行車との衝突を回避できる。なお、加速度の設定は、駆動力の設定と言い換えることもできる。
 図3は、自動運転中に前方の障害物をカメラで認知できずに加速を開始する場合のタイミングチャートである。基本的には図2と同様であるが、加速開始時(タイミングゼロ)における相対車速がV1になる点が図2と異なる。これは、障害物は動いていない為である。
 この場合でも、図2の場合と同様に、障害物に衝突するか否かは、タイミングT1における障害物までの距離(相対距離)、及び障害物との相対車速により決まる。すなわち、タイミングT1における障害物までの距離(相対距離)、及び障害物との相対車速を衝突回避可能な大きさに抑えるように、具体的には、タイミングT1における障害物との相対距離が基準相対距離以上となり、障害物との相対車速が基準相対車速以下となるように、加速開始からタイミングT1までの自車の加速度を設定する必要がある。以下の説明において、加速開始からタイミングT1までを加速制限時間ともいう。
 次に、衝突回避可能な加速度の設定方法について説明する。
 図4は、走行制御コントローラ5にプログラムされた制御ルーチンの内容を示す図である。以下の説明では先行車がいる場合について説明するが、先行車ではなく障害物がある場合も同様である。
 走行制御コントローラ5は、目標駆動力と加速開始時における自車の車速とを読み込む。目標駆動力は、追従走行のように運転者の操作によらず加速する場合に、目標車速まで加速させるために設定する駆動力である。
 走行制御コントローラ5は、読み込んだ自車の車速に基づいて、加速開始時の駆動力(以下、これをR/L走行抵抗駆動力ともいう)を算出する(B10)。R/L走行抵抗駆動力は、一定車速走行に必要な駆動力であり、自車の車重や走行抵抗等に基づいて公知の手法により算出される。
 走行制御コントローラ5は、目標駆動力とR/L走行抵抗駆動力とを比較し(B11)、目標駆動力がR/L走行抵抗駆動力を超える場合には車両が加速開始したと判断して駆動力変化量を制限した制限駆動力(B12)を最終目標駆動力とし、そうでない場合には目標駆動力をそのまま最終目標駆動力とする(B13)。
 ここで、制限駆動力の具体的内容について説明する。
 図5は、制限駆動力算出のルーチンの内容を示す図である。本ルーチンも走行制御コントローラ5にプログラムされている。
 走行制御コントローラ5は、目標駆動力と、加速開始時における自車の車速と、前回ルーチンで算出された目標駆動力及びR/L走行抵抗駆動力を読み込む。走行制御コントローラ5は、前回ルーチンで算出された目標駆動力とR/L走行抵抗駆動力とを比較する(B121)。走行制御コントローラ5は、前回ルーチンでの目標駆動力が前回ルーチンでのR/L走行抵抗駆動力を超える場合には前回ルーチンでの最終目標駆動力を基準目標駆動力とし、そうでない場合には前回ルーチンでのR/L走行抵抗駆動力を基準目標駆動力とする(B122)。これは、前回ルーチンでは目標駆動力がR/L走行抵抗駆動力を超えなかったが、今回ルーチンで目標駆動力がR/L走行抵抗駆動力を超える場合には、前回ルーチンのR/L走行抵抗駆動力を基準にして制限駆動力を演算するためである。
 次に、走行制御コントローラ5は、読み込んだ自車の車速に基づいて、駆動力制限量を算出する(B123)。駆動力制限量は、先行車と所定の車間距離を維持した追従走行中において、加速開始から加速制限時間が経過した時点における先行車との距離が、加速制限時間が経過した時点から制動力が発生すれば先行車までの距離がゼロになる前に先行車との相対車速がゼロになる距離となる駆動力である。具体的には、加速開始から加速制限時間が経過した時点における先行車との車間距離(相対距離)が基準相対距離以上となり、先行車との相対車速が基準相対車速以下となる駆動力である。なお、追従走行中における先行車との車間距離、加速制限時間、制動力の大きさは、例えば機能安全規格ISO26262で規定された安全基準であるASIL(Automotive Safety Integrity Level)の評価に用いられる値とする。また、追従走行中における車間距離の大きさは車速に基づいて設定され、車速が高いほど大きく設定される。
 次に、走行制御コントローラ5は、基準目標駆動力に駆動力制限量を加算して制限後目標駆動力を算出する(B124)。
 そして、走行制御コントローラ5は、目標駆動力と基準目標駆動力との差分(B125)と駆動力制限量とを比較する(B126)。走行制御コントローラ5は、目標駆動力と基準目標駆動力との差分が駆動力制限量を超える場合には先行車との衝突を回避するために制限後目標駆動力を制限駆動力とし、そうでない場合には駆動力を制限しなくても先行車との衝突は回避できるので目標駆動力を制限駆動力とする(B127)。
 以上のルーチンにより、タイミングT1における車間距離がタイミングT1から制動力が発生すれば先行車までの距離がゼロになる前に先行車との相対加速度がゼロになる距離となるように、目標駆動力の変化量が制限される。
 そして、走行制御コントローラ5は、最終目標駆動力をエンジンコントローラ6Aに送信し、エンジンコントローラ6Aはこれに基づいて駆動力を制御する。これにより、車両は先行車との衝突を回避できる。
 このように、一定速度で追従走行中において、実際には先行車がいるにもかかわらずカメラが先行車を認知できずに自車が加速した場合でも、運転者がブレーキ操作をすれば先行車等との衝突を回避できる範囲で駆動力を制限するので、必要以上に駆動力を抑制することがなく加速性能も向上する。
 なお、本発明による車両制御は、一定速度での追従走行だけでなく、一定加速度での追従走行にも適用できる。この場合、一定加速度走行に必要な駆動力に対して目標駆動力の方が大きい場合には駆動力変化量を制限させる。
 また、上記ルーチンでは目標駆動力がR/L走行抵抗駆動力を超える場合に制限駆動力を最終目標駆動力としたが、目標駆動力と制限駆動力とを比較して、小さい方を最終目標駆動力としてもよい。
 ところで、自車が加速開始した後に先行車も加速したり、先行車が車線変更等によりいなくなることで衝突の可能性がなくなったりした場合には、運転者はブレーキ操作を行なわない。この場合、タイミングT1以降は図2、図3に一点鎖線で示したように加速度が増大する。
 次に、本実施形態の変形例について説明する。なお、以下に説明する各変形例も本実施形態の範囲に含まれる。
 (第1変形例)
 図6は第1変形例の制御ルーチンの内容を示す図である。本変形例では、走行制御コントローラ5は目標加速度を読み込む。目標加速度は、追従走行や自動運転の際の加速度として予め設定されたものである。また、走行制御コントローラ5は、自車が加速を開始したか否かの判定に用いる閾値としての加速度を記憶している(B20)。ここでの閾値は、例えば、一定車速で追従走行している場合はゼロG、一定加速度で追従走行している場合は当該一定加速度(例えば0.1G)とする。
 走行制御コントローラ5は、目標加速度と加速度の閾値とを比較し(B21)、目標加速度が閾値以上の場合には加速度変化量を制限した制限加速度(B22)を最終目標加速度とし、そうでない場合には目標加速度をそのまま最終目標加速度とする(B23)。目標加速度が閾値以上の場合には、車両が加速開始したと判断できる。
 目標加速度の変化量を制限するのは、上述した衝突回避のための加速度を実現するためである。
 図4の制御ルーチンでは自車の加速度を制御するために駆動力を制限したが、図6の制御ルーチンでは加速度を直接的に制限する。すなわち、変化量制限の処理内容は、図4の駆動力を加速度に置き換えたものであり、実質的には同様の処理である。なお、制限後目標加速度を実現するためには、駆動力を制御することとなる。
 本変形例では最終目標加速度が算出され、これに基づいて自車の加速度が制御される。これにより、図4の処理と同様に先行車との衝突を回避でき、かつ加速性能を向上させることができる。
 (第2変形例)
 本変形例は、最終目標駆動力を算出するための制御ルーチンが上記実施形態との相違点である。以下、相違点を中心に説明する。
 図7は、本変形例に係る最終目標駆動力を算出するための制御ルーチンの内容を示す図である。本ルーチンは走行制御コントローラ5にプログラムされている。
 走行制御コントローラ5が目標駆動力と車速とを読み込み、車速に基づいてR/L走行抵抗駆動力を算出し、目標駆動力とR/L走行抵抗駆動力とを比較するところまでは図4の制御ルーチンと同様である(B30、B31)。また、目標駆動力の変化量を制限する処理(B33)も図4の制御ルーチンと同様である。
 本変形例では、走行制御コントローラ5は目標駆動力がR/L走行抵抗駆動力を超える場合には、車両が加速開始したと判断してタイマによるカウントを開始する(B32)。つまり、タイマは加速を開始したらカウントを開始する。タイマは加速開始からタイミングT1までをカウントする。走行制御コントローラ5は、タイマのカウント開始とともに、上述した駆動力制限量まで目標駆動力の変化量を制限(B33)することを開始し、この制限を少なくとも加速制限時間が経過するまで継続する。目標駆動力の変化量を制限するのは、上述した衝突回避のための加速度を実現するためである。目標駆動力がR/L走行抵抗駆動力を超えない場合には目標駆動力をそのまま制限後目標駆動力とする(B33)。
 したがって、本変形例では加速制限時間が経過するまでの駆動力が制限されることとなる。そして、図4の処理と同様に先行車との衝突を回避でき、かつ加速性能を向上させることができる。
 (第3変形例)
 図8は第3変形例の制御ルーチンの内容を示す図である。本ルーチンは走行制御コントローラ5にプログラムされている。本変形例は、図4の制御ルーチンに対する第1変形例と同様に、図7に示す第2変形例では駆動力を制限していたのに対し、加速度を直接的に制限するものである。
 すなわち、走行制御コントローラ5は目標加速度を読み込み、また、自車が加速を開始したか否かの判定に用いる閾値としての加速度を記憶している(B40)。走行制御コントローラ5は目標加速度が閾値以上の場合にはタイマを作動させる(B42)。目標加速度が閾値以上の場合には、車両が加速開始したと判断できる。つまり、タイマは加速を開始したらカウントを開始する。タイマは加速開始からタイミングT1までをカウントする。走行制御コントローラ5は、タイマのカウント開始とともに、加速度制限量(上述した駆動力制限量を加速度に置き換えたもの)まで目標加速度の変化量を制限することを開始し、これを少なくとも加速制限時間が経過するまで継続する(B23)。
 これにより、図4の処理と同様に先行車との衝突を回避でき、かつ加速性能を向上させることができる。
 (第4変形例)
 本変形例は、制限後目標駆動力を算出するための制御ルーチンが上記実施形態との相違点である。以下、相違点を中心に説明する。
 図9は、本変形例に係る制限後目標駆動力を算出するための制御ルーチンの内容を示す図である。本ルーチンは走行制御コントローラ5にプログラムされている。
 走行制御コントローラ5が目標駆動力と車速とを読み込み、車速に基づいてR/L走行抵抗駆動力を算出し(B50)、目標駆動力とR/L走行抵抗駆動力とを比較する(B51)ところまでは図4の制御ルーチンと同様である。
 本変形例では、駆動力の安全性変化量及び変化量Aを算出する(B52、B53)。安全性変化量は、先行車がいる場合に先行車との衝突を回避可能な変化量であり、例えば機能安全規格ISO26262に規定された制動力、制動の必要性を認知してブレーキペダルを踏み込むまでの時間、ブレーキペダルが踏み込まれてから制動力が発生するまでの遅れ時間及び追従走行時の相対距離・相対車速を用いて算出するものである。変化量Aは安全性変化量より大きい変化量を任意に設定したものであり、例えば先行車がいない場合に用いる目標駆動力の変化量とする。
 走行制御コントローラ5は、目標駆動力がR/L走行抵抗駆動力以上の場合には安全性変化量を選択し、そうでない場合は変化量Aを選択する(B54)。そして、走行制御コントローラ5は、選択した変化量を上限として目標駆動力の変化量を制限し、これを最終目標駆動力とする(B55)。
 本変形例でも、図4の処理と同様に先行車との衝突を回避でき、かつ加速性能を向上させることができる。
 (第5変形例)
 図10は第5変形例の制御ルーチンの内容を示す図である。本ルーチンは走行制御コントローラ5にプログラムされている。本変形例は、図4の制御ルーチンに対する第1変形例と同様に、図9に示す第4変形例では駆動力を制限していたのに対し、加速度を直接的に制限するものである。
 すなわち、走行制御コントローラ5は目標加速度を読み込み、また、自車が加速を開始したか否かの判定に用いる閾値としての加速度を記憶している(B60)。そして、走行制御コントローラ5は目標加速度と閾値とを比較する(B61)。走行制御コントローラ5は加速度の安全性変化量及び変化量Aを算出する(B62、B63)。走行制御コントローラ5は、目標加速度が閾値以上の場合には安全性変化量を選択し、そうでない場合は変化量Aを選択する(B64)。そして、走行制御コントローラ5は、選択した変化量を上限として目標加速度の変化量を制限し、これを最終目標加速度とする(B65)。
 本変形例によっても先行車との衝突を回避でき、かつ加速性能を向上させることができる。
 (第6変形例)
 本変形例は、制限後目標駆動力を算出するための制御ルーチンが上記実施形態との相違点である。以下、相違点を中心に説明する。
 図11は、本変形例に係る制限後目標駆動力を算出するための制御ルーチンの内容を示す図である。本ルーチンは走行制御コントローラ5にプログラムされている。
 走行制御コントローラ5は、目標駆動力と、走行中の路面の勾配を読み込む。道路勾配は、例えば図示しない加速度センサの検出値に基づいて算出する。
 走行制御コントローラ5は、読み込んだ勾配と、自車の車重とに基づいて、当該勾配の路面を一定車速で走行するために必要な駆動力(以下、一定走行駆動力ともいう)を推定し(B70)、目標駆動力から一定走行駆動力を減算する(B71)。なお、自車の車重は、予め記憶しておいた空車時の重量に、シート等に設けた重量センサの検出値を加算したものである。
 走行制御コントローラ5は、目標駆動力から一定走行駆動力を減算した大きさの駆動力を上述した駆動力制限量まで制限し(B72)、制限後の駆動力に一定走行駆動力を加算したものを最終目標駆動力とする(B73)。
 上記の駆動力の制限は、駆動力の上限を、時間tをパラメータとする関数で設定し、この上限を超えないように目標駆動力を制限するものである。時間tをパラメータとする関数は、例えば図2に実線で示したタイミングゼロからタイミングT1までの駆動力の変化特性のように、駆動力=at+bで表される関数とする。係数aが小さくなるほど、そして初期値bが小さくなるほど、駆動力の上限は低くなる。
 上記のように本変形例では、目標駆動力から一定車速で走行するための駆動力を除外したもののみを制限する。本変形例によっても先行車との衝突を回避でき、かつ加速性能を向上させることができる。
 (第7変形例)
 図12は第7変形例の制御ルーチンの内容を示す図である。本ルーチンは走行制御コントローラ5にプログラムされている。本変形例は、図4の制御ルーチンに対する第1変形例と同様に、図11に示す第6変形例では駆動力を制限していたのに対し、加速度を直接的に制限するものである。
 すなわち、走行制御コントローラ5は、読み込んだ勾配と、予め記憶しておいた自車の車重に基づいて、勾配により生じる加速度(勾配抵抗相当加速度)を推定し(B80)、目標加速度から勾配抵抗相当加速度を減算する(B81)。走行制御コントローラ5は、目標加速度から勾配抵抗相当加速度を減算した大きさの加速度を上述した加速度制限量まで制限し(B82)、制限後の加速度に勾配抵抗相当加速度を加算したものを最終目標加速度とする(B83)。
 本変形例では、目標加速度から勾配抵抗により相殺される加速度を除外したもののみを制限する。本変形例によっても先行車との衝突を回避でき、かつ加速性能を向上させることができる。
 (第8変形例)
 図13は、本変形例に係る制限後目標駆動力を算出するための制御ルーチンの内容を示す図である。本ルーチンは走行制御コントローラ5にプログラムされている。
 本変形例は、自車が加速を開始したか否かの判定方法が上記の各変形例との相違点である。加速を開始したと判定した後にタイマを作動させる処理(B91)は図7に示す制御ルーチンと同様である。目標駆動力を制限する処理(B92)は図11に示す制御ルーチンと同様である。以下、相違点を中心に説明する。
 本変形例では、走行制御コントローラ5は目標駆動力と、自車が加速するか否かに関する情報と、に基づいて加速開始判定を行なう(B90)。
 自車が加速するか否かに関する情報とは、追い越し判定の判定結果や、料金所を通過するか、合流するか、等の情報である。追い越し判定は、例えば自動運転により目標車速で走行中に、外界認知装置3としてのレーダが前方を走るに車両を検知し、自車の車速を低下させても当該車両との車間距離が縮まり続けた場合に、当該車両を追い越すと走行制御コントローラ5が判定するものである。料金所を通過した後や、高速道路のジャンクション等での合流時には、走行制御コントローラ5は自車を加速させる。そこで、走行制御コントローラ5は、図示しないナビゲーションシステムからの地図情報及び位置情報により、料金所を通過したこと、または合流を行なうことを認知した場合に、タイマを作動させる(B91)。
 目標駆動力による加速開始判定は、例えば、目標駆動力が増大した場合や、目標駆動力が増大する際の変化率が予め設定した閾値を超えた場合等に、加速を開始すると判定するものである。
 走行制御コントローラ5は、上記のいずれかの判定方法により加速を開始したと判定した場合にタイマを作動させる(B91)。
 本変形例のように加速開始を判定しても、上記実施形態や各変形例と同様に先行車との衝突を回避でき、かつ加速性能を向上させることができる。
 (第9変形例)
 図14は第9変形例の制御ルーチンの内容を示す図である。本ルーチンは走行制御コントローラ5にプログラムされている。本変形例は、図4の制御ルーチンに対する第1変形例と同様に、図13に示す第8変形例では駆動力を制限していたのに対し、加速度を直接的に制限するものである。
 すなわち、走行制御コントローラ5は目標加速度と、自車が加速するか否かに関する情報と、に基づいて加速開始判定を行な(B100)、加速を開始したと判定した場合にタイマを作動させて(B101)、目標加速度を制限する(B102)。これにより、上記実施形態や各変形例と同様に先行車との衝突を回避でき、かつ加速性能を向上させることができる。
 (第10変形例)
 図15は第10変形例の制御ルーチンの内容を示す図である。本ルーチンは走行制御コントローラ5にプログラムされている。本変形例は、加速開始判定(B110)により加速を開始したと判定された場合にタイマ(B111)を作動させ、かつ目標駆動力を制限する点(B113)は第8変形例と同様であるが、目標駆動力の制限方法が第8変形例との相違点である。
 本変形例では、レーダで検出した先行車との相対車速及び相対距離に基づいて許容加速プロフィールを算出し(B112)、許容加速プロフィールに基づいて目標駆動力の上限を制限する(B113)。許容加速プロフィールとは、基本的には第4変形例で説明した安全性変化量と同様に、衝突回避可能な加速度プロフィールを実現するための、駆動力のプロフィールである。ただし、安全性変化量の算出に用いる加速開始時の先行車との相対車速及び相対距離は、例えば機能安全規格ISO26262で定められた値であるのに対し、許容加速プロフィールの算出ではレーダにより検出した実際の相対車速及び相対距離を用いる。したがって、本変形例によれば、より精度の高い駆動力の制限を行なうことができる。
 (第11変形例)
 図16は第11変形例の制御ルーチンの内容を示す図である。本ルーチンは走行制御コントローラ5にプログラムされている。本変形例は、図4の制御ルーチンに対する第1変形例と同様に、図13に示す第8変形例では駆動力を制限していたのに対し、加速度を直接的に制限するものである。
 すなわち、走行制御コントローラ5は目標加速度と、自車が加速するか否かに関する情報杜に基づいて加速開始判定を行ない(B130)、加速を開始したと判定した場合にタイマを作動させる(B131)。また、走行制御コントローラ5は、加速を開始したと判定した場合に実際の相対車速及び相対距離に基づいて許容加速プロフィールを産出する(B132)。本変形例における許容加速プロフィールは、衝突回避可能な、加速度の時間変化の特性である。そして、走行制御コントローラ5は、許容加速プロフィールに基づいて目標加速度を制限する(B133)。本変形例によっても、より精度の高い駆動力の制限を行なうことができる。
 なお、上記実施形態及び各変形例では、自動運転により追従走行する場合について説明したが、いわゆるクルーズコントロール等の運転支援制御により追従走行する場合でも同様である。また、上記実施形態及び各変形例では、加速開始後に運転者がブレーキペダルを踏み込む場合について説明したが、これに限られるわけではない。例えば、カメラが先行車等を認知できなくなった場合のバックアップとして、加速開始後にレーダにより先行車または障害物が検知されたら走行制御コントローラ5がブレーキ操作を行なう機能を有するシステムにも適用可能である。
 以上説明した本実施形態によれば、先行車または障害物との距離に基づいて目標加速度を設定し、運転者の操作によらずに目標加速度に基づいて自車を加速させる車両制御方法が提供される。この車両制御方法では、加速開始から少なくも予め設定した加速制限時間が経過するまでは、目標加速度を抑制した制限加速度で自車を加速させる。これにより、加速度の大きさを加速開始後に運転者がブレーキ操作をすれば先行車との衝突を回避可能な大きさに抑制できる。また、例えば先行車も加速している等の理由により運転者がブレーキ操作をしない場合も想定し得るが、本実施形態等によれば加速制限時間が経過した後は目標加速度の抑制を解除できるので、安全性の確保と加速性能とを両立することができる。
 本実施形態において、加速制限時間は制動をかけることを決定するまでの時間と、制動動作を開始してから実際に制動力が発生するまでの時間との和である。制動をかけることを決定してから制動力が発生するまでに時間を要することは避けられないが、上記のように加速制限時間を設定することで、先行車との衝突を回避することができる。
 本実施形態において、制限加速度は、加速開始から加速制限時間が経過した時点における先行車または障害物との距離が、加速制限時間が経過した時点から制動力が発生すれば先行車または障害物までの距離がゼロになる前に先行車または障害物との相対加速度がゼロになる距離となる加速度である。これにより、必要以上に目標加速度を抑制することなく、先行車との衝突を回避できる。
 本実施形態で説明したように、目標加速度を実現するための目標駆動力を算出し、目標駆動力を抑制することによって目標加速度を抑制してもよい。加速度を抑制するためには駆動力を制御することになるので、駆動力を直接的に制御することで演算負荷を軽減できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (7)

  1.  先行車または障害物との距離に基づいて目標加速度を設定し、
     運転者の操作によらずに前記目標加速度に基づいて自車を加速させる車両制御方法において、
     加速開始から予め設定した加速制限時間が経過した時点における前記先行車または前記障害物との相対距離が基準相対距離以上となり、前記先行車または前記障害物との相対車速が基準相対車速以下となる加速度である制限加速度を算出し、前記目標加速度が前記制限加速度を超える場合には前記制限加速度で自車を加速させる、車両制御方法。
  2.  請求項1に記載の車両制御方法において、
     前記基準相対距離が小さいほど前記基準相対車速が小さくなる、車両制御方法。
  3.  請求項1または2に記載の車両制御方法において、
     前記加速制限時間は、加速開始後に運転者がブレーキペダルを踏み込むまでに要する時間と、ブレーキペダルが踏み込まれてから制動力が発生するまでの遅れ時間と、の和である車両制御方法。
  4.  請求項1から3のいずれかに記載の車両制御方法において、
     前記制限加速度は、加速開始から前記加速制限時間が経過した時点における前記先行車または前記障害物との相対距離が、前記加速制限時間が経過した時点から制動力が発生すれば前記先行車または前記障害物までの相対距離がゼロになる前に前記先行車または前記障害物との相対車速がゼロになる相対距離となる加速度である、車両制御方法。
  5.  請求項1から4のいずれかに記載の車両制御方法において、
     前記制限加速度は、加速開始から前記加速制限時間が経過した時点における前記先行車または前記障害物との相対車速が、前記加速制限時間が経過した時点から制動力が発生すれば前記先行車または前記障害物までの相対距離がゼロになる前に前記先行車または前記障害物との相対車速がゼロになる相対車速となる加速度である、車両制御方法。
  6.  請求項1から5のいずれかに記載の車両制御方法において、
     前記目標加速度及び前記制限加速度を実現するための目標駆動力を算出する、車両制御方法。
  7.  先行車または障害物との距離に基づいて目標加速度を設定して運転者の操作によらずに前記目標加速度に基づいて自車を加速させる走行制御部を備える車両制御装置において、
     前記走行制御部は、
     加速開始から予め設定した加速制限時間が経過した時点における前記先行車または前記障害物との相対距離が基準相対距離以上となり、前記先行車または前記障害物との相対車速が基準相対車速以下となる加速度である制限加速度を算出し、前記目標加速度が前記制限加速度を超える場合には前記制限加速度で自車を加速させるようプログラムされた、車両制御装置。
PCT/JP2018/035476 2018-09-25 2018-09-25 車両制御方法及び車両制御装置 WO2020065729A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880097973.8A CN112752690A (zh) 2018-09-25 2018-09-25 车辆控制方法以及车辆控制装置
PCT/JP2018/035476 WO2020065729A1 (ja) 2018-09-25 2018-09-25 車両制御方法及び車両制御装置
US17/278,775 US20220041162A1 (en) 2018-09-25 2018-09-25 Vehicle control method and vehicle control device
JP2020547639A JP7103422B2 (ja) 2018-09-25 2018-09-25 車両制御方法及び車両制御装置
EP18935229.7A EP3858694A4 (en) 2018-09-25 2018-09-25 VEHICLE CONTROL METHOD AND VEHICLE CONTROL DEVICE
RU2021107911A RU2767214C1 (ru) 2018-09-25 2018-09-25 Способ управления транспортным средством и устройство управления транспортным средством

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035476 WO2020065729A1 (ja) 2018-09-25 2018-09-25 車両制御方法及び車両制御装置

Publications (1)

Publication Number Publication Date
WO2020065729A1 true WO2020065729A1 (ja) 2020-04-02

Family

ID=69952966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035476 WO2020065729A1 (ja) 2018-09-25 2018-09-25 車両制御方法及び車両制御装置

Country Status (6)

Country Link
US (1) US20220041162A1 (ja)
EP (1) EP3858694A4 (ja)
JP (1) JP7103422B2 (ja)
CN (1) CN112752690A (ja)
RU (1) RU2767214C1 (ja)
WO (1) WO2020065729A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112498353A (zh) * 2020-11-30 2021-03-16 浙江吉利控股集团有限公司 一种用于防止电池包异常移动的方法、装置、车辆及介质
CN113071486A (zh) * 2021-02-24 2021-07-06 中移智行网络科技有限公司 一种车辆控制方法、装置及汽车

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11433915B2 (en) * 2020-08-28 2022-09-06 Toyota Research Institute, Inc. Determining an action to be performed by a vehicle in response to conflicting input signals
JP7472830B2 (ja) * 2021-03-15 2024-04-23 トヨタ自動車株式会社 運転支援装置
EP4180293A1 (en) * 2021-11-11 2023-05-17 Volvo Car Corporation Method and control system for limiting a driver acceleration request
CN114475626B (zh) * 2022-03-25 2024-05-24 东风汽车有限公司东风日产乘用车公司 轻微碰撞的识别方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029283A (ja) * 2000-07-14 2002-01-29 Nissan Motor Co Ltd 車両用追従走行制御装置
JP2015093645A (ja) 2013-11-14 2015-05-18 株式会社デンソー 車両走行制御装置及びプログラム
JP2018039435A (ja) * 2016-09-09 2018-03-15 日産自動車株式会社 車間距離制御方法と車間距離制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936586B4 (de) * 1998-08-04 2015-04-09 Denso Corporation Vorrichtung und Verfahren zum Steuern eines Soll-Abstands und eines Warnabstands zwischen zwei sich bewegenden Fahrzeugen und Datenträger zum Speichern des Steuerverfahrens
DE19958150A1 (de) * 1999-12-03 2001-06-07 Volkswagen Ag Verfahren und Vorrichtung zum Verhindern eines Auffahrunfalles zwischen einem Fahrzeug und einem vorausfahrenden Fahrzeug
JP3873858B2 (ja) * 2002-09-27 2007-01-31 日産自動車株式会社 追従走行制御装置
DE102004047177A1 (de) * 2004-09-29 2006-04-13 Robert Bosch Gmbh Anfahrassistent für Kraftfahrzeuge
JP2007255382A (ja) * 2006-03-24 2007-10-04 Toyota Motor Corp 車両走行制御装置および車両走行制御方法
DE102012002695A1 (de) * 2012-02-14 2013-08-14 Wabco Gmbh Verfahren zur Ermittlung einer Notbremssituation eines Fahrzeuges
JP5842740B2 (ja) * 2012-06-13 2016-01-13 株式会社アドヴィックス 車両の走行支援装置
KR101619599B1 (ko) * 2014-08-08 2016-05-10 현대자동차주식회사 융합 레이더 센서 기반 저전력 차량 충돌 방지 방법 및 장치
JP6086107B2 (ja) * 2014-10-17 2017-03-01 トヨタ自動車株式会社 車両用制駆動力制御装置
JP2016215745A (ja) * 2015-05-18 2016-12-22 トヨタ自動車株式会社 車両の制御装置
CN108136935B (zh) * 2015-10-26 2021-06-25 三菱电机株式会社 车速控制装置
DE102015122050A1 (de) * 2015-12-17 2017-06-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Beschleunigung eines Kraftfahrzeugs
JP6455456B2 (ja) * 2016-02-16 2019-01-23 トヨタ自動車株式会社 車両制御装置
US20170267234A1 (en) * 2016-03-18 2017-09-21 Soterea, Inc. Systems and methods for providing collision avoidance or mitigation
JP6550663B2 (ja) * 2016-11-04 2019-07-31 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
JP6706196B2 (ja) * 2016-12-26 2020-06-03 株式会社デンソー 走行制御装置
JP6834853B2 (ja) * 2017-08-31 2021-02-24 トヨタ自動車株式会社 車両制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029283A (ja) * 2000-07-14 2002-01-29 Nissan Motor Co Ltd 車両用追従走行制御装置
JP2015093645A (ja) 2013-11-14 2015-05-18 株式会社デンソー 車両走行制御装置及びプログラム
JP2018039435A (ja) * 2016-09-09 2018-03-15 日産自動車株式会社 車間距離制御方法と車間距離制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3858694A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112498353A (zh) * 2020-11-30 2021-03-16 浙江吉利控股集团有限公司 一种用于防止电池包异常移动的方法、装置、车辆及介质
CN112498353B (zh) * 2020-11-30 2022-05-10 浙江吉利控股集团有限公司 一种用于防止电池包异常移动的方法、装置、车辆及介质
CN113071486A (zh) * 2021-02-24 2021-07-06 中移智行网络科技有限公司 一种车辆控制方法、装置及汽车
CN113071486B (zh) * 2021-02-24 2022-04-26 中移智行网络科技有限公司 一种车辆控制方法、装置及汽车

Also Published As

Publication number Publication date
EP3858694A4 (en) 2021-10-06
RU2767214C1 (ru) 2022-03-16
EP3858694A1 (en) 2021-08-04
US20220041162A1 (en) 2022-02-10
JPWO2020065729A1 (ja) 2021-09-16
JP7103422B2 (ja) 2022-07-20
CN112752690A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
JP7103422B2 (ja) 車両制御方法及び車両制御装置
JP4880011B2 (ja) 車両用追従走行制御装置
US6769504B2 (en) Adaptive cruise control system for vehicle
KR101939441B1 (ko) 차량의 브레이크 제어 장치
CN111565991B (zh) 车辆控制方法及车辆控制系统
KR102401518B1 (ko) 충돌 회피 지원 장치
JP2012121534A (ja) 車両の自動制動装置
JP7180077B2 (ja) 車両の制御装置
JP4885368B2 (ja) 車両の適応的な距離制御及び/又は走行速度制御方法及びその装置
US11479248B2 (en) Vehicle control apparatus
US8954250B2 (en) Vehicular control apparatus and vehicular control method
CN111542464B (zh) 车辆控制方法及车辆控制装置
US20230141328A1 (en) Driving support device for vehicle, driving support method for vehicle, and a non-transitory computer-readable storage medium storing a program for causing a computer
JP3375270B2 (ja) 車間距離制御装置
CN114368384A (zh) 驾驶辅助装置
WO2022196205A1 (ja) 車両制御装置および車両制御方法
US20230145836A1 (en) Vehicle driving assist apparatus, vehicle driving assist method, vehicle driving assist program, and vehicle comprising vehicle driving assist apparatus
US20230311874A1 (en) Deceleration support device
JP7494830B2 (ja) 車両運転支援装置、車両運転支援方法、車両運転支援プログラム及び車両運転支援装置を備えた車両
US20230234567A1 (en) Deceleration support device, deceleration support method, deceleration support program, and vehicle
US20240067079A1 (en) Vehicle including electric motor and method of controlling brake lamp for the same
JP2015110931A (ja) エンジン制御装置
JP2018188042A (ja) 車両の制御装置
KR20060014185A (ko) 차량의 커브길 주행속도 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021107911

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2018935229

Country of ref document: EP

Effective date: 20210426