WO2020064003A1 - 电动汽车换电定位系统及方法 - Google Patents

电动汽车换电定位系统及方法 Download PDF

Info

Publication number
WO2020064003A1
WO2020064003A1 PCT/CN2019/109403 CN2019109403W WO2020064003A1 WO 2020064003 A1 WO2020064003 A1 WO 2020064003A1 CN 2019109403 W CN2019109403 W CN 2019109403W WO 2020064003 A1 WO2020064003 A1 WO 2020064003A1
Authority
WO
WIPO (PCT)
Prior art keywords
power exchange
electric vehicle
exchange device
image
positioning
Prior art date
Application number
PCT/CN2019/109403
Other languages
English (en)
French (fr)
Inventor
张建平
黄春华
Original Assignee
奥动新能源汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥动新能源汽车科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Publication of WO2020064003A1 publication Critical patent/WO2020064003A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention belongs to the field of electric vehicles, and particularly relates to an electric vehicle power exchange positioning system and method.
  • the emission of automobile exhaust is still an important factor in environmental pollution.
  • people have developed natural vehicles, hydrogen fuel vehicles, solar vehicles and electric vehicles to replace fuel-based vehicles.
  • electric vehicles are the most promising.
  • the current electric vehicles mainly include two types of direct charging and quick changing.
  • the electric replacement device When the battery of a quick-change type electric vehicle is replaced, the electric replacement device needs to walk under the vehicle to remove the original battery pack from the vehicle.
  • the existing electric replacement equipment often cannot be accurately positioned to the location of the battery pack.
  • the battery pack cannot be removed, which causes replacement of the battery pack and even damages the associated structure of the battery pack.
  • the technical problem to be solved by the present invention is to overcome the defect that the battery compartment often cannot be reliably positioned in the prior art, and provides a battery compartment positioning method and a positioning system.
  • the technical problem to be solved by the present invention is to overcome the defect that the existing power exchange equipment cannot accurately locate the position of the battery pack and cannot remove the battery pack, thereby causing the failure of battery pack replacement failure. method.
  • An electric vehicle power exchange positioning system includes: a control unit, a primary positioning unit, a secondary positioning unit, a driving unit, and a power exchange device.
  • the secondary positioning unit includes a card board, and The card board is disposed on a power exchange platform of the power exchange equipment;
  • the first-level positioning unit is configured to detect a relative position between the power exchange device and the electric vehicle, and send the relative position to the control unit;
  • the control unit is configured to determine whether the relative position is greater than a preset deviation threshold, and if so, send a driving signal to the driving unit;
  • the driving unit is configured to drive the power exchange device to move after receiving the driving signal so that the relative position between the power exchange device and the electric vehicle is not greater than the deviation threshold;
  • the control unit is further configured to send a power exchange signal to the power exchange device after a relative position between the power exchange device and the electric vehicle is not greater than the deviation threshold;
  • the power exchange device is configured to raise the power exchange platform after receiving the power exchange signal, so that the card board is engaged with a battery pack of an electric vehicle.
  • the deviation threshold includes an image deviation threshold
  • the first-level positioning unit includes a photographing device for taking an actual image and sending the actual image to the control unit;
  • the control unit is further configured to compare the actual image with a standard image, where the standard image is taken when the relative position between the power exchange device and the electric vehicle is not greater than the image deviation threshold Image;
  • the control unit is further configured to determine, through the comparison, whether an image deviation between the actual image and a standard image is greater than the image deviation threshold, and if so, send the driving signal to the driving unit.
  • the actual image and the standard image include the same reference object
  • the control unit determines the position by comparing the position of the reference object in the actual image with the position of the reference object in the standard image. The image deviation between the actual image and the standard image is described.
  • the deviation threshold includes a position deviation threshold
  • the first-level positioning unit includes a locator, which is configured to locate a spatial position of the electric vehicle and a spatial position of the power exchange device, and Sending the spatial position of the electric vehicle and the spatial position of the power exchange device to the control unit;
  • the control unit is further configured to compare the spatial position of the electric vehicle with the spatial position of the power exchange device, and determine whether a position deviation between the spatial position of the electric vehicle and the spatial position of the power exchange device is greater than The position deviation threshold, if yes, sending the driving signal to the driving unit.
  • the position deviation threshold includes a distance threshold
  • the locator includes a distance sensor
  • the distance sensor is configured to detect a horizontal distance between the electric vehicle and the power exchange device, and send the horizontal distance to The control unit;
  • the control unit is further configured to determine whether the horizontal distance is greater than the distance threshold, and if so, send the driving signal to the driving unit.
  • the electric vehicle is provided with a battery mounting seat, and the battery mounting seat is used for fixed installation of a battery pack.
  • the top end of the card plate has a guide portion, and the guide portion is in a width of the card plate and / Or it is inclined inward in the thickness direction.
  • the card board is inserted into the gap between the battery pack and the battery mounting seat.
  • the electric vehicle power exchange positioning system further includes a three-level positioning unit, the driving unit is configured to drive the power exchange equipment to move, and the three-level positioning unit is configured to determine whether the power exchange equipment is moved to Within a designated area and sending a positioning result to the control unit, the designated area is located below the electric vehicle;
  • the control unit is further configured to send a stop signal to the drive unit when the power exchange device moves into the designated area, and then start the first-level positioning unit;
  • the driving unit is further configured to stop driving the power exchange device to move after receiving the stop signal.
  • the three-level positioning unit includes a proximity switch, and the proximity switch is disposed at a boundary of the designated area, and the proximity switch is moved when the power exchange device moves into a sensing area of the proximity switch. Is triggered and sends a positioning result signal to the control unit;
  • the control unit is further configured to send the stop signal to the driving unit after receiving the positioning result signal, and then start the first-level positioning unit.
  • An electric vehicle power replacement positioning method includes: a first-level positioning step and a second-level positioning step;
  • the step of first-level positioning includes:
  • the step of performing the second-level positioning is performed, and the step of the second-level positioning includes:
  • the deviation threshold includes an image deviation threshold
  • Detecting the relative position between the power exchange device and the electric vehicle, and determining whether the relative position is greater than a preset deviation threshold including:
  • the standard image is an image taken when the relative position between the power exchange device and the electric vehicle is not greater than the image deviation threshold
  • the actual image and the standard image include the same reference object, and the actual image is determined by comparing the position of the reference object in the actual image with the position of the reference object in the standard image. Image deviation of the standard image.
  • the deviation threshold includes a position deviation threshold
  • Detecting the relative position between the power exchange device and the electric vehicle, and determining whether the relative position is greater than a preset deviation threshold including:
  • the position deviation threshold includes a distance threshold
  • Positioning the spatial position of the electric vehicle and the spatial position of the power exchange device; comparing the spatial position of the electric vehicle and the spatial position of the power exchange device to determine the spatial position of the electric vehicle and the power exchange Whether the position deviation between the spatial positions of the devices is greater than the position deviation threshold includes:
  • the electric vehicle power exchange positioning method further includes a step of three-level positioning
  • the step of three-level positioning includes:
  • the driving of the power exchange device is stopped from moving, and then the step of first-level positioning is performed.
  • the positive progress effect of the present invention is that the present invention can achieve accurate alignment between the power exchange device and the electric vehicle through the first-level positioning unit. On the basis of the alignment with the electric vehicle, the precise alignment of the card board and the battery pack when the battery pack is unloaded is further realized, so that the battery pack being caught can be smoothly removed, and the success rate of power exchange is guaranteed.
  • FIG. 1 is a schematic block diagram of an electric vehicle power exchange positioning system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic block diagram of an electric vehicle power exchange positioning system according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic block diagram of an electric vehicle power exchange positioning system according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic diagram of a three-dimensional structure of a card board according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic front structural view of a card board according to Embodiment 4 of the present invention, wherein the card board is engaged with the lock base.
  • FIG. 6 is a schematic side structural view of a card board according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic perspective structural diagram of a power exchange device according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic block diagram of an electric vehicle power exchange positioning system according to Embodiment 5 of the present invention.
  • FIG. 9 is a flowchart of an electric vehicle power exchange positioning method according to Embodiment 6 of the present invention.
  • FIG. 10 is a flowchart of an electric vehicle power exchange positioning method according to Embodiment 7 of the present invention.
  • FIG. 11 is a flowchart of an electric vehicle power exchange positioning method according to Embodiment 8 of the present invention.
  • FIG. 12 is a flowchart of an electric vehicle power exchange positioning method according to Embodiment 9 of the present invention.
  • FIG. 1 shows an electric vehicle power exchange positioning system in this embodiment.
  • the electric vehicle power exchange positioning system includes a control unit 11, a primary positioning unit 12, a secondary positioning unit 13, a driving unit 14, and a power exchange device 15.
  • the secondary positioning unit 13 includes a card board, and the card board is disposed on a power exchange platform of the power exchange device 15.
  • the primary positioning unit 12 is configured to detect a relative position between the power exchange device 15 and the electric vehicle, and send the relative position to the control unit 11.
  • the control unit 11 is configured to determine whether the relative position is greater than a preset deviation threshold, and if yes, send a driving signal to the driving unit 14.
  • the deviation threshold is determined according to a power exchange request, an alignment accuracy requirement of the power exchange device 15 and the electric vehicle, and the like.
  • the driving unit 14 is configured to drive the power exchange device 15 to move after receiving the driving signal so that the relative position between the power exchange device 15 and the electric vehicle is not greater than the deviation threshold.
  • the control unit 11 is further configured to send a power exchange signal to the power exchange device 15 after a relative position between the power exchange device 15 and the electric vehicle is not greater than the deviation threshold.
  • the power exchange device 15 is configured to raise the power exchange platform after receiving the power exchange signal, so that the card board is engaged with a battery pack of an electric vehicle. After being snapped on, the battery pack can be detached from the electric vehicle and stay on the power exchange platform. The power exchange device 15 descends the power exchange platform to complete the battery unloading operation. After the battery unloading operation is completed, the power exchange device 15 may further install a fully charged battery pack to the electric vehicle.
  • the electric vehicle power exchange positioning system uses the primary positioning unit 12 to achieve accurate alignment between the power exchange device 15 and the electric vehicle, but this precise alignment does not require all
  • the secondary positioning unit 13 can further implement the battery pack removal on the basis of the primary positioning unit 12.
  • the precise alignment of the card board and the battery pack uses the structure of the card board to increase the fault tolerance range, improve the reliability and safety of the power exchange, so that the battery pack that is stuck can be smoothly removed, and the success rate of power exchange is guaranteed.
  • This embodiment is a further improvement on Embodiment 1, mainly because the first-level positioning unit 12 in this embodiment uses image analysis technology to detect the relative position between the power exchange device 15 and the electric vehicle.
  • the deviation threshold includes an image deviation threshold
  • the first-level positioning unit 12 includes a photographing device 121.
  • the photographing device 121 may be installed on the power exchange device 15 or on the power exchange device 15.
  • the location other than the power exchange device 15 is, for example, a parking platform for an electric vehicle.
  • the photographing device 121 is configured to capture an actual image and send the actual image to the control unit 11.
  • the control unit 11 is further configured to compare the actual image with a standard image, where the standard image is the picture taken when the relative position between the power exchange device 15 and the electric vehicle is not greater than the image deviation threshold. An image captured by the device 121. The control unit 11 is further configured to determine whether the image deviation between the actual image and the standard image is greater than the image deviation threshold through the comparison, and if yes, send the driving signal to the driving unit 14.
  • the driving unit 14 After receiving the driving signal, the driving unit 14 drives the power exchange device 15 to move until the image deviation between the actual image captured again and the standard image is not greater than the image deviation threshold. After the image deviation between the actual image and the standard image is not greater than the image deviation threshold, the control unit 11 sends a power exchange signal to the power exchange device 15, and the power exchange device 15 receives the After the power exchange signal, the power exchange platform is raised so that the card board is engaged with the battery pack of the electric vehicle.
  • the actual image and the standard image include the same reference object, and the control unit 11 compares the position of the reference object in the actual image with that in the standard image.
  • the position of the reference object determines the image deviation between the actual image and the standard image.
  • the reference object may be a component on the electric vehicle or an object other than the electric vehicle (such as the environment).
  • This embodiment uses image analysis technology to realize the positioning of the power exchange device 15 and the electric vehicle, and ensures high positioning accuracy.
  • This embodiment is a further improvement on Embodiment 1, mainly because the primary positioning unit 12 in this embodiment uses the principle of spatial positioning to detect the relative position between the power exchange device 15 and the electric vehicle.
  • the deviation threshold includes a position deviation threshold
  • the first-level positioning unit 12 includes a locator 122, which is used to locate the spatial position of the electric vehicle and the power exchange.
  • the spatial position of the device 15 and sends the spatial position of the electric vehicle and the spatial position of the power exchange device 15 to the control unit 11.
  • the control unit 11 is further configured to compare the spatial position of the electric vehicle with the spatial position of the power exchange device 15 and determine a position between the spatial position of the electric vehicle and the spatial position of the power exchange device 15 Whether the deviation is greater than the position deviation threshold, and if so, sending the driving signal to the driving unit 14.
  • the position deviation threshold may specifically include a distance threshold
  • the locator 122 specifically includes a distance sensor, which is configured to detect a horizontal distance between the electric vehicle and the power exchange device 15, and The horizontal distance is sent to the control unit 11.
  • the control unit 11 is further configured to determine whether the horizontal distance is greater than the distance threshold, and if yes, send the driving signal to the driving unit 14.
  • the driving unit 14 drives the power exchange device 15 to move until the position deviation between the spatial position of the electric vehicle and the space position of the power exchange device 15 is not greater than the position deviation. Threshold. After the positional deviation between the spatial position of the electric vehicle and the spatial position of the power exchange device 15 is not greater than the positional deviation threshold, the control unit 11 sends a power exchange signal to the power exchange device 15, After receiving the power exchange signal, the power exchange device 15 raises the power exchange platform so that the card board is engaged with the battery pack of the electric vehicle.
  • the positioning of the power exchange device 15 and the electric vehicle is realized by using a spatial positioning principle, thereby ensuring high-precision positioning.
  • Embodiment 1 is a further improvement on Embodiment 1, mainly because the specific structure of the card plate is given.
  • the card plate structure of this embodiment can also be applied to any one of the electric vehicle replacements in Embodiments 2 and 3. Electric positioning system.
  • the card plate 131 has a recessed portion 1311 that is recessed downward from the upper side.
  • the top end of the card plate 131 has a guide portion 1312.
  • the guide portion 1312 faces in the width and / or thickness direction of the card plate 131. Inside beveled. The inward direction here refers to the inside of the card plate 131 itself.
  • the angle ⁇ at which the guide portion 1312 is beveled is preferably set to: 12.68 ° ⁇ ⁇ ⁇ 18.00 °.
  • the guide portion 1312 has a guiding effect on the lock base when the card plate 131 is engaged with the lock base on the battery pack, so that the lock base can be smoothly inserted into the card plate 131.
  • the beveled angle ⁇ is within the above range, so that the lock base can be more smoothly caught in the card plate 131.
  • the height h2 of the guide portion 1312 is preferably 20 mm.
  • the distance h1 in which the guide portion 1312 is inclined inward is preferably 4.5 to 6.5 mm according to the angle ⁇ .
  • the card board 131 is mounted on the power exchange device.
  • the size of the card plate 131 has a certain effect on the positioning accuracy of the power exchange equipment during the power exchange. To this effect, several sets of experiments have been performed. The experimental data are shown in Tables 1, 2, and 3 below.
  • Tables 1, 2, and 3 are tests of the influence of the height H of the groove portion 1311, the width W of the groove portion 1311, and the thickness T of the card plate 131 on the positioning accuracy of the card plate 131, respectively.
  • the positioning accuracy of the card plate 131 also changes continuously.
  • the thickness T of the clamping plate 131 is set to: 15 mm ⁇ T ⁇ 17.5 mm.
  • the positioning error is less than 1mm.
  • the height H of the groove portion 1311 and the width W of the card plate 131 are set as: 55 mm ⁇ H ⁇ 61 mm, and 56.5 mm ⁇ W ⁇ 58 mm.
  • the positioning error is less than 0.7mm.
  • the positioning error is less than 0.5mm.
  • the positioning error is small, which is basically less than 0.3 mm, that is, the positioning accuracy is high, and the influence of the size of the clamping plate 131 on the total height of the device is considered.
  • the card board 131 of this embodiment is suitable for a standard size lock base, that is, the height Sh of the lock base is 33 mm, and the width Sw is 56 mm.
  • a connecting portion 1313 is provided at a lower end of the card plate 131, and a plurality of mounting holes are provided in the connecting portion 1313.
  • the clamping plate 131 is screw-engaged with the power exchange device through a mounting hole.
  • FIG. 7 illustrates a power exchange device 15 according to this embodiment.
  • the power exchange device 15 includes: a power exchange platform; and a plurality of card boards 131A and 131B.
  • the card boards 131A and 131B are disposed on the power exchange platform.
  • the power exchange platform includes a fixed member 151 and a moving member 152.
  • the moving member 152 is provided above the fixed member 151 and is movable in a horizontal direction relative to the fixed member 151; a card 131A is provided on the fixed member 151, and a card 131B is provided on Moving member 152.
  • the card plate 131A on the fixing member 151 is engaged with the vehicle and fixed relative to the vehicle, while the card plate 131B on the moving member 152 is engaged with the battery pack and drives the battery pack to move, thereby removing the battery pack from the vehicle. Remove or install the battery pack to the vehicle.
  • the electric vehicle is provided with a battery mount, and the battery mount is used for fixed installation of a battery pack.
  • the gap between the battery pack and the battery mount is S.
  • the card board is inserted into the battery pack.
  • r 1 mm.
  • the chassis of the vehicle has a recessed receiving space for accommodating the battery.
  • Quick-change brackets ie, battery mounts
  • the card plate on the fixed member moves upward and engages with the lock base of the vehicle.
  • the card plate on the moving member moves upward and engages with the stopper of the battery pack, driving the battery pack to move and lock
  • the parts and lock base are unlocked.
  • the thickness of the lock base substantially defines the gap between the quick-change bracket and the battery pack, and the card board moves upward through the gap to lock the lock base and the limiting block.
  • adjustable gaps r on both sides of the card board, the quick-change bracket, and the battery pack.
  • the adjustable gap r allows minor adjustments when multiple card boards enter the gap at the same time to avoid damage to the components caused by rigid insertion to achieve the battery Positioning of the card board in the lateral direction during the replacement process.
  • the gap between the guide portion and the battery mounting base enables all the card plates to be smoothly inserted into the gap at the same time, and more accurately locks the lock base and the limiting block through the gap of the battery mounting seat. It will not interfere with the battery pack or cause positioning errors.
  • the inside of the card guide portion facing the groove is provided with a bevel to facilitate the locking of the lock base and the limiting block, and the thickness direction of the card guide is provided with a bevel to facilitate insertion of the card into the gap.
  • Embodiment 1 is a further improvement on Embodiment 1, mainly because the electric vehicle power exchange positioning system of this embodiment further includes a three-level positioning unit 16, and the driving unit 14 is configured to drive the power exchange device 15 to move.
  • the three-level positioning unit 16 is configured to determine whether the power exchange device 15 moves into a designated area and sends a positioning result to the control unit 11, where the designated area is located below the electric vehicle.
  • the control unit 11 is further configured to send a stop signal to the driving unit 14 when the power exchange device 15 moves into the designated area, and then start the primary positioning unit 12.
  • the driving unit 14 is further configured to stop driving the power exchange device 15 after receiving the stop signal.
  • the three-level positioning unit 16 may specifically include a proximity switch, which is disposed at a boundary of the designated area, and the proximity switch is moved to the proximity switch by the power exchange device 15 It is triggered when the sensing area is inside, and sends a positioning result signal to the control unit 11.
  • the control unit 11 is further configured to send the stop signal to the driving unit 14 after receiving the positioning result signal, and then start the primary positioning unit 12.
  • the power exchange device 15 When the power exchange device 15 is parked in the designated area, the power exchange device 15 is basically located below the battery pack of the electric vehicle, and then the first-level positioning unit 12 Further adjustment can achieve accurate alignment of the power exchange device 15 and the electric vehicle.
  • the first-level positioning unit 12 in this embodiment can use any one of the first-level positioning units 12 in Embodiments 2 and 3. .
  • the fault tolerance range of the card board After the relative position between the power exchange device 15 and the electric vehicle is not greater than the deviation threshold, the fault tolerance range of the card board is further used to improve the reliability and safety of power exchange, so that the The battery pack can be removed smoothly to ensure the success rate of power replacement.
  • FIG. 9 shows an electric vehicle power exchange positioning method in this embodiment.
  • the electric vehicle power exchange positioning method includes a first-level positioning step 21 and a second-level positioning step 22.
  • the first-level positioning step 21 includes:
  • Step 211 Detect the relative position between the power exchange equipment and the electric vehicle
  • Step 212 Determine whether the relative position is greater than a preset deviation threshold, and if yes, perform step 213;
  • Step 213 Drive the power exchange device to move so that the relative position between the power exchange device and the electric vehicle is not greater than the deviation threshold
  • step 22 of the secondary positioning is performed.
  • the secondary positioning step 22 includes:
  • Step 221 Control the power exchange device to raise the power exchange platform of the power exchange device, so that a card board provided on the power exchange platform is engaged with a battery pack of the electric vehicle.
  • the card board may adopt the structure of the card board described in Embodiment 4.
  • the battery pack After being snapped on, the battery pack can be detached from the electric vehicle and stay on the power exchange platform.
  • the power exchange device 15 descends the power exchange platform to complete the battery unloading operation. After completing the battery unloading operation, the power exchange device may further install a fully charged battery pack to the electric vehicle.
  • the electric vehicle power exchange positioning method may be implemented by using the electric power exchange positioning system of Embodiment 1.
  • step 21 of the first-level positioning an accurate comparison between the power exchange equipment and the electric vehicle is achieved.
  • this precise alignment does not require the electrical replacement equipment and the electric vehicle to be completely aligned, but allows the deviation threshold to exist.
  • the step 22 of the secondary positioning can be performed at the primary level.
  • the card board and battery pack can be accurately aligned when the battery pack is unloaded.
  • the structure of the card board is used to increase the fault tolerance range, improve the reliability and safety of power exchange, and enable the battery pack to be snapped. It was successfully removed to ensure the success rate of power exchange.
  • This embodiment is a further improvement on Embodiment 6, mainly because the first-level positioning step in this embodiment uses image analysis technology to detect the relative position between the power exchange device and the electric vehicle.
  • the deviation threshold includes an image deviation threshold.
  • step 21 of the first-level positioning includes:
  • Step 211 ' shooting an actual image
  • Step 212 ' Compare the actual image with a standard image, where the standard image is an image captured when the relative position between the power exchange device and the electric vehicle is not greater than the image deviation threshold;
  • Step 213 ' It is determined whether the image deviation between the actual image and the standard image is greater than the image deviation threshold through the comparison, and if so, step 214' is performed;
  • Step 214 ' Drive the power exchange device to move so that the image deviation is not greater than the image deviation threshold.
  • step 22 of the secondary positioning is performed.
  • the actual image and the standard image include the same reference object, and the position of the reference object in the actual image is compared with the position of the reference object in the standard image to determine the The image deviation between the actual image and the standard image.
  • the reference object may be a component on the electric vehicle or an object other than the electric vehicle (such as the environment).
  • This embodiment uses image analysis technology to realize the positioning of the power exchange device and the electric vehicle, and ensures high-precision positioning.
  • This embodiment is a further improvement on Embodiment 6, mainly because the first-level positioning step in this embodiment uses the principle of spatial positioning to detect the relative position between the power exchange device 15 and the electric vehicle.
  • the deviation threshold includes a position deviation threshold; as shown in FIG. 11, step 21 of the first-level positioning includes:
  • Step 211 positioning the spatial position of the electric vehicle and the spatial position of the power exchange equipment
  • Step 212 comparing the spatial position of the electric vehicle with the spatial position of the power exchange device
  • Step 213 determining whether a position deviation between the spatial position of the electric vehicle and the spatial position of the power exchange device is greater than the position deviation threshold, and if yes, performing step 214";
  • Step 214 Drive the power exchange device to move so that the position deviation is not greater than the position deviation threshold.
  • step 22 of the secondary positioning is performed.
  • the position deviation threshold may specifically include a distance threshold
  • steps 211 "to 214" may specifically include:
  • This embodiment uses the spatial positioning principle to realize the positioning of the power exchange equipment and the electric vehicle, and ensures high positioning accuracy.
  • step 20 of the three-level positioning includes:
  • Step 201 Drive the power exchange device to move
  • Step 202 It is determined whether the power exchange device moves into a designated area, where the designated area is located below the electric vehicle;
  • Step 203 When the power exchange device moves into the designated area, stop driving the power exchange device from moving, and then perform step 21 of the first-level positioning.
  • the power exchange equipment When the power exchange equipment is parked in the designated area, the power exchange equipment is basically located below the battery pack of the electric vehicle, and then the power exchange equipment is further adjusted through step 21 of the first-level positioning. , The precise alignment of the power exchange equipment and the electric vehicle can be achieved, and the step 21 of the first-level positioning in this embodiment can adopt any one of the steps of the first-level positioning in embodiments 7 and 8.
  • the fault tolerance range of the card board is further used to improve the reliability and safety of power exchange, so that the battery being clipped The bag can be removed smoothly to ensure the success rate of power exchange.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电动汽车换电定位系统及方法。电动汽车换电定位系统包括:控制单元(11)、一级定位单元(12)、二级定位单元(13)、驱动单元(14)和换电设备(15),二级定位单元(13)包括卡板(131),卡板(131)设于换电设备(15)的换电平台上;一级定位单元(12)检测换电设备(15)与电动汽车之间的相对位置;控制单元(11)判断相对位置是否大于偏差阈值;驱动单元(14)驱动换电设备(15)移动以使得相对位置不大于偏差阈值;控制单元(11)还向换电设备(15)发送换电信号;换电设备(15)用于在接收到换电信号后,升起换电平台,以使得卡板(131)与电动汽车的电池包卡接。该系统能够通过一级定位单元(12)实现换电设备(15)与电动汽车之间的精准对位,通过二级定位单元(13)进一步实现卸电池包时卡板(131)与电池包的精准对位,使得被卡接的电池包能够被顺利取下。

Description

电动汽车换电定位系统及方法
本申请要求申请日为2018年9月30日的中国专利申请2018111605631的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明属于电动汽车领域,尤其涉及一种电动汽车换电定位系统及方法。
背景技术
目前,汽车尾气的排放仍然是环境污染问题的重要因素,为了治理汽车尾气,人们研制出了天然汽车、氢燃料汽车、太阳能汽车和电动汽车以替代燃油型汽车。而其中最具有应用前景的是电动汽车。目前的电动汽车主要包括直充式和快换式两种。
快换式的电动汽车在其电池进行更换时,需要换电设备行走至车辆的下方,以将车辆上原有的电池包取下,现有的换电设备常常由于无法准确定位到电池包的位置而不能取下电池包,从而造成电池包更换失败,甚至损坏电池包的关联结构。
发明内容
本发明要解决的技术问题是为了克服现有技术中电池仓经常不能可靠定位的缺陷,提供一种电池仓的定位方法及定位系统。
本发明要解决的技术问题是为了克服现有的换电设备无法准确定位到电池包的位置而不能取下电池包,从而造成电池包更换失败的缺陷,提供一种电动汽车换电定位系统及方法。
本发明是通过以下技术方案解决上述技术问题的:
一种电动汽车换电定位系统,所述电动汽车换电定位系统包括:控制单元、一级定位单元、二级定位单元、驱动单元和换电设备,所述二级定位单元包括卡板,所述卡板设于所述换电设备的换电平台上;
所述一级定位单元用于检测所述换电设备与所述电动汽车之间的相对位置,并将所述相对位置发送至所述控制单元;
所述控制单元用于判断所述相对位置是否大于预设的偏差阈值,若是,则向所述驱动单元发送驱动信号;
所述驱动单元用于在接收到所述驱动信号后驱动所述换电设备移动以使得所述换电 设备与所述电动汽车之间的相对位置不大于所述偏差阈值;
所述控制单元还用于在所述换电设备与所述电动汽车之间的相对位置不大于所述偏差阈值后,向所述换电设备发送换电信号;
所述换电设备用于在接收到所述换电信号后,升起所述换电平台,以使得所述卡板与电动汽车的电池包卡接。
较佳地,所述偏差阈值包括图像偏差阈值,所述一级定位单元包括拍照装置,所述拍照装置用于拍摄实际图像并将所述实际图像发送至所述控制单元;
所述控制单元还用于比对所述实际图像与标准图像,所述标准图像为所述换电设备与所述电动汽车之间的相对位置不大于所述图像偏差阈值时所述拍照装置拍摄的图像;
所述控制单元还用于通过所述比对,判断所述实际图像与标准图像的图像偏差是否大于所述图像偏差阈值,若是,则向所述驱动单元发送所述驱动信号。
较佳地,实际图像和所述标准图像中包括相同的参照物,所述控制单元通过比对所述实际图像中所述参照物的位置与所述标准图像中所述参照物的位置确定所述实际图像与标准图像的图像偏差。
较佳地,所述偏差阈值包括位置偏差阈值,所述一级定位单元包括定位仪,所述定位仪用于定位所述电动汽车的空间位置和所述换电设备的空间位置,并将所述电动汽车的空间位置和所述换电设备的空间位置发送至所述控制单元;
所述控制单元还用于比对所述电动汽车的空间位置和所述换电设备的空间位置,判断所述电动汽车的空间位置和所述换电设备的空间位置之间的位置偏差是否大于所述位置偏差阈值,若是,则向所述驱动单元发送所述驱动信号。
较佳地,所述位置偏差阈值包括距离阈值,所述定位仪包括距离传感器,所述距离传感器用于检测所述电动汽车与所述换电设备的水平距离,并将所述水平距离发送至所述控制单元;
所述控制单元还用于判断所述水平距离是否大于所述距离阈值,若是,则向所述驱动单元发送所述驱动信号。
较佳地,所述电动汽车设有电池安装座,所述电池安装座用于电池包的固定安装,所述卡板的顶端具有导向部,所述导向部在所述卡板的宽度和/或厚度方向上向内削斜,在更换电池时,所述卡板插入所述电池包与所述电池安装座之间的间隙。
较佳地,所述电动汽车换电定位系统还包括三级定位单元,所述驱动单元用于驱动所述换电设备移动,所述三级定位单元用于定位所述换电设备是否移动至指定区域内并将定位结果发送至所述控制单元,所述指定区域位于所述电动汽车的下方;
所述控制单元还用于在所述换电设备移动至所述指定区域内时,向所述驱动单元发送停止信号,然后启动所述一级定位单元;
所述驱动单元还用于在接收到所述停止信号后停止驱动所述换电设备移动。
较佳地,所述三级定位单元包括接近开关,所述接近开关设置于所述指定区域的边界处,所述接近开关在所述换电设备移动至所述接近开关的感测区域内时被触发,并向所述控制单元发送定位结果信号;
所述控制单元还用于在接收到所述定位结果信号后,向所述驱动单元发送所述停止信号,然后启动所述一级定位单元。
一种电动汽车换电定位方法,所述电动汽车换电定位方法包括:一级定位的步骤和二级定位的步骤;
所述一级定位的步骤包括:
检测换电设备与电动汽车之间的相对位置,判断所述相对位置是否大于预设的偏差阈值,若是,则驱动所述换电设备移动以使得所述换电设备与所述电动汽车之间的相对位置不大于所述偏差阈值;
在所述换电设备与所述电动汽车之间的相对位置不大于所述偏差阈值后,执行所述二级定位的步骤,所述二级定位的步骤包括:
控制所述换电设备升起所述换电设备的换电平台,以使得设于所述换电平台上的卡板与所述电动汽车的电池包卡接。
较佳地,所述偏差阈值包括图像偏差阈值;
检测所述换电设备与所述电动汽车之间的相对位置,判断所述相对位置是否大于预设的偏差阈值,包括:
拍摄实际图像;
比对所述实际图像与标准图像,所述标准图像为所述换电设备与所述电动汽车之间的相对位置不大于所述图像偏差阈值时拍摄的图像;
通过所述比对,判断所述实际图像与标准图像的图像偏差是否大于所述图像偏差阈值,若是,则驱动所述换电设备移动以使得所述图像偏差不大于所述图像偏差阈值。
较佳地,实际图像和所述标准图像中包括相同的参照物,通过比对所述实际图像中所述参照物的位置与所述标准图像中所述参照物的位置确定所述实际图像与标准图像的图像偏差。
较佳地,所述偏差阈值包括位置偏差阈值;
检测所述换电设备与所述电动汽车之间的相对位置,判断所述相对位置是否大于预 设的偏差阈值,包括:
定位所述电动汽车的空间位置和所述换电设备的空间位置;
比对所述电动汽车的空间位置和所述换电设备的空间位置,判断所述电动汽车的空间位置和所述换电设备的空间位置之间的位置偏差是否大于所述位置偏差阈值,若是,则驱动所述换电设备移动以使得所述位置偏差不大于所述位置偏差阈值。
较佳地,所述位置偏差阈值包括距离阈值;
定位所述电动汽车的空间位置和所述换电设备的空间位置;比对所述电动汽车的空间位置和所述换电设备的空间位置,判断所述电动汽车的空间位置和所述换电设备的空间位置之间的位置偏差是否大于所述位置偏差阈值,包括:
检测所述电动汽车与所述换电设备的水平距离;
判断所述水平距离是否大于所述距离阈值,若是,则驱动所述换电设备移动以使得所述水平距离不大于所述距离阈值。
较佳地,所述电动汽车换电定位方法还包括三级定位的步骤;
所述三级定位的步骤包括:
驱动所述换电设备移动;
定位所述换电设备是否移动至指定区域内,所述指定区域位于所述电动汽车的下方;
在所述换电设备移动至所述指定区域内时,停止驱动所述换电设备移动,然后执行所述一级定位的步骤。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:本发明能够通过所述一级定位单元实现所述换电设备与所述电动汽车之间的精准对位,通过所述二级定位单元在所述换电设备已经与电动汽车对位的基础上进一步实现卸电池包时卡板与电池包的精准对位,使得被卡接的电池包能够被顺利取下,保证换电成功率。
附图说明
图1为本发明实施例1的一种电动汽车换电定位系统的示意框图。
图2为本发明实施例2的一种电动汽车换电定位系统的示意框图。
图3为本发明实施例3的一种电动汽车换电定位系统的示意框图。
图4为本发明实施例4的卡板的立体结构示意图。
图5为本发明实施例4的卡板的前视结构示意图,其中,卡板卡合于锁基座。
图6为本发明实施例4的卡板的侧视结构示意图。
图7为本发明实施例4的换电设备的立体结构示意图。
图8为本发明实施例5的一种电动汽车换电定位系统的示意框图。
图9为本发明实施例6的一种电动汽车换电定位方法的流程图。
图10为本发明实施例7的一种电动汽车换电定位方法的流程图。
图11为本发明实施例8的一种电动汽车换电定位方法的流程图。
图12为本发明实施例9的一种电动汽车换电定位方法的流程图。
具体实施方式
下面通过实施例的方式并结合附图来更清楚完整地说明本发明,但并不因此将本发明限制在的实施例范围之中。
实施例1
图1示出了本实施例的一种电动汽车换电定位系统。所述电动汽车换电定位系统包括:控制单元11、一级定位单元12、二级定位单元13、驱动单元14和换电设备15。所述二级定位单元13包括卡板,所述卡板设于所述换电设备15的换电平台上。
所述一级定位单元12用于检测所述换电设备15与所述电动汽车之间的相对位置,并将所述相对位置发送至所述控制单元11。
所述控制单元11用于判断所述相对位置是否大于预设的偏差阈值,若是,则向所述驱动单元14发送驱动信号。其中,所述偏差阈值根据换电要求、换电设备15与电动汽车的对位精度要求等而定。
所述驱动单元14用于在接收到所述驱动信号后驱动所述换电设备15移动以使得所述换电设备15与所述电动汽车之间的相对位置不大于所述偏差阈值。
所述控制单元11还用于在所述换电设备15与所述电动汽车之间的相对位置不大于所述偏差阈值后,向所述换电设备15发送换电信号。
所述换电设备15用于在接收到所述换电信号后,升起所述换电平台,以使得所述卡板与电动汽车的电池包卡接。卡接后,所述电池包可以脱离所述电动汽车,停留在所述换电平台上,所述换电设备15下降所述换电平台,完成卸电池操作。在完成所述卸电池操作之后,所述换电设备15可以进一步将满电的电池包安装至所述电动汽车。
本实施例中,所述电动汽车换电定位系统通过所述一级定位单元12实现所述换电设备15与所述电动汽车之间的精准对位,但是这一精准对位并不要求所述换电设备15和所述电动汽车完全对准,而是允许存在所述偏差阈值的,通过所述二级定位单元13可以 在所述一级定位单元12的基础上进一步实现卸电池包时卡板与电池包的精准对位,利用卡板的结构增加容错范围,提高换电的可靠性、安全性,使得被卡接的电池包能够被顺利取下,保证换电成功率。
实施例2
本实施例是在实施例1上的进一步改进,主要在于,本实施例中所述一级定位单元12利用图像分析技术实现所述换电设备15与所述电动汽车之间相对位置的检测。
具体地,如图2所示,所述偏差阈值包括图像偏差阈值,所述一级定位单元12包括拍照装置121,所述拍照装置121可以安装于所述换电设备15上,也可以安装于所述换电设备15以外的位置,如电动汽车的停泊平台上。所述拍照装置121用于拍摄实际图像并将所述实际图像发送至所述控制单元11。
所述控制单元11还用于比对所述实际图像与标准图像,所述标准图像为所述换电设备15与所述电动汽车之间的相对位置不大于所述图像偏差阈值时所述拍照装置121拍摄的图像。所述控制单元11还用于通过所述比对,判断所述实际图像与标准图像的图像偏差是否大于所述图像偏差阈值,若是,则向所述驱动单元14发送所述驱动信号。
所述驱动单元14在接收到所述驱动信号后驱动所述换电设备15移动直至再次拍摄的实际图像与所述标准图像的图像偏差不大于所述图像偏差阈值。在所述实际图像与所述标准图像的图像偏差不大于所述图像偏差阈值后,所述控制单元11向所述换电设备15发送换电信号,所述换电设备15在接收到所述换电信号后,升起所述换电平台,以使得所述卡板与电动汽车的电池包卡接。
为了方便图像的比对,所述实际图像和所述标准图像中包括相同的参照物,所述控制单元11通过比对所述实际图像中所述参照物的位置与所述标准图像中所述参照物的位置确定所述实际图像与标准图像的图像偏差。其中,所述参考物可以选择所述电动汽车上的某一部件或是所述电动汽车以外的(如环境)中的某一物体均可。
本实施例利用图像分析技术实现了所述换电设备15与所述电动汽车的定位,保证了定位的高精度。
实施例3
本实施例是在实施例1上的进一步改进,主要在于,本实施例中所述一级定位单元12利用空间定位原理实现所述换电设备15与所述电动汽车之间相对位置的检测。
具体地,如图3所示,所述偏差阈值包括位置偏差阈值,所述一级定位单元12包括定位仪122,所述定位仪122用于定位所述电动汽车的空间位置和所述换电设备15的空间位置,并将所述电动汽车的空间位置和所述换电设备15的空间位置发送至所述控制单 元11。
所述控制单元11还用于比对所述电动汽车的空间位置和所述换电设备15的空间位置,判断所述电动汽车的空间位置和所述换电设备15的空间位置之间的位置偏差是否大于所述位置偏差阈值,若是,则向所述驱动单元14发送所述驱动信号。
本实施例中,所述位置偏差阈值可以具体包括距离阈值,所述定位仪122具体包括距离传感器,所述距离传感器用于检测所述电动汽车与所述换电设备15的水平距离,并将所述水平距离发送至所述控制单元11。所述控制单元11还用于判断所述水平距离是否大于所述距离阈值,若是,则向所述驱动单元14发送所述驱动信号。
所述驱动单元14在接收到所述驱动信号后驱动所述换电设备15移动直至所述电动汽车的空间位置和所述换电设备15的空间位置之间的位置偏差不大于所述位置偏差阈值。在所述电动汽车的空间位置和所述换电设备15的空间位置之间的位置偏差不大于所述位置偏差阈值后,所述控制单元11向所述换电设备15发送换电信号,所述换电设备15在接收到所述换电信号后,升起所述换电平台,以使得所述卡板与电动汽车的电池包卡接。
本实施例利用空间定位原理实现了所述换电设备15与所述电动汽车的定位,保证了定位的高精度。
实施例4
本实施例是在实施例1上的进一步改进,主要在于,给出了卡板的具体结构,当然本实施例的卡板结构同样可以应用于实施例2、3中的任何一种电动汽车换电定位系统。
如图4-6所示,卡板131具有从上侧向下凹陷的凹槽部1311,卡板131的顶端具有导向部1312,导向部1312在卡板131的宽度和/或厚度方向上向内削斜。这里的向内指的是朝向卡板131自身的内部。
导向部1312削斜的角度α优选被设置为:12.68°≤α≤18.00°。
导向部1312在卡板131与电池包上的锁基座卡合时,对锁基座具有导向作用,可以使得锁基座较为顺利地卡入卡板131中。削斜的角度α在上述范围内,可以使得锁基座更为顺畅地卡入卡板131中。
导向部1312的高度h2优选为20mm。导向部1312向内削斜的距离h1根据上述角度α优选为4.5-6.5mm。
卡板131安装于所述换电设备。卡板131的尺寸对于换电设备在换电时的定位精度具有一定影响,针对这种影响,进行了若干组实验,实验数据参见下表1、2、3。
表1
Figure PCTCN2019109403-appb-000001
表2
Figure PCTCN2019109403-appb-000002
Figure PCTCN2019109403-appb-000003
表3
Figure PCTCN2019109403-appb-000004
Figure PCTCN2019109403-appb-000005
表1、表2、表3分别是凹槽部1311的高度H、凹槽部1311的宽度W、卡板131的厚度T对卡板131的定位精度的影响的试验。随着凹槽部1311的高度H、凹槽部1311的宽度W、卡板131的厚度T的变化,卡板131的定位精度也在不断变化。
优选地,卡板131的厚度T被设置成:15mm≤T<17.5mm。
此时,定位误差小于1mm。
更优选地,凹槽部1311的高度H,卡板131的宽度W被设置为:55mm≤H≤61mm,56.5mm<W≤58mm。
此时,定位误差小于0.7mm。
更优选地,凹槽部1311的高度H,凹槽部1311的宽度W,卡板131的厚度T被设置成:57mm≤H≤61mm,W=57mm,16mm≤T≤16.5mm。
此时,定位误差小于0.5mm。
最优选地,凹槽部1311的高度H,凹槽部1311的宽度W,卡板131的厚度T被设置成:H=57mm,W=57mm,T=16mm。
此时,定位误差较小,基本小于0.3mm,即定位精度较高,而且考虑了卡板131的尺寸对设备总高的影响。
本实施例的卡板131适用于标准尺寸的锁基座,即锁基座的高度Sh为33mm,宽度Sw为56mm。
卡板131的下端设有一连接部1313,连接部1313中设有多个安装孔。卡板131通过安装孔与换电设备螺纹接合。
图7根据本实施例示意了一种换电设备15。所述换电设备15包括:换电平台;和多个卡板131A、131B,卡板131A、131B设于换电平台上。
换电平台包括固定构件151和移动构件152,移动构件152设于固定构件151的上方并相对于固定构件151在水平方向上可移动;卡板131A设于固定构件151上,卡板131B设于移动构件152上。
在使用时,固定构件151上的卡板131A与车辆卡接并相对于车辆固定,而移动构件152上的卡板131B与电池包卡接,并带动电池包移动,从而将电池包从车辆上拆下或将电池包安装到车辆上。
所述电动汽车设有电池安装座,所述电池安装座用于电池包的固定安装,所述电池包与所述电池安装座之间间隙为S,在更换电池时,所述卡板插入所述电池包与所述电池安装座之间的间隙。所述卡板的厚度T与间隙S的关系是:S=T+2×r,其中0mm<r< 3mm。优选地,r=1mm。
在一个实施例中,车辆底盘具有上凹的用于容纳电池的容纳空间,容纳空间两侧设置用于将电池包固定在车辆上的快换支架(即电池安装座),快换支架上设有配合电池包两侧锁件的多个锁基座,电池包两侧还设有限位块。更换电池解锁过程中,固定构件上的卡板向上移动并与车辆的锁基座卡接,移动构件上的卡板向上移动并与电池包的限位块卡接,带动电池包移动而使锁件和锁基座处于解锁状态。其中,锁基座的厚度大致地限定出快换支架与电池包之间的间隙,卡板即通过该间隙向上移动以卡接锁基座与限位块。卡板插入后卡板两侧与快换支架、电池包存在可调缝隙r,可调缝隙r允许多个卡板同时进入该间隙时的微量调整,避免刚性插入造成的部件损伤,以实现电池更换过程中卡板侧向方向上的定位。
根据上述关系式设定卡板的厚度、导向部和电池安装座的间隙能够使得所有卡板同时顺利插入该间隙,并较为精准地通过电池安装座的间隙卡住锁基座和限位块,而不会与电池包产生干涉或者产生定位误差。较佳地,卡板导向部面对凹槽的内侧设置削斜以便于卡接锁基座和限位块,卡板导向部的厚度方向设置削斜以便于卡板插入该间隙。
实施例5
本实施例是在实施例1上的进一步改进,主要在于,本实施例的电动汽车换电定位系统还包括三级定位单元16,所述驱动单元14用于驱动所述换电设备15移动,所述三级定位单元16用于定位所述换电设备15是否移动至指定区域内并将定位结果发送至所述控制单元11,所述指定区域位于所述电动汽车的下方。所述控制单元11还用于在所述换电设备15移动至所述指定区域内时,向所述驱动单元14发送停止信号,然后启动所述一级定位单元12。所述驱动单元14还用于在接收到所述停止信号后停止驱动所述换电设备15移动。
本实施例中,所述三级定位单元16可以具体包括接近开关,所述接近开关设置于所述指定区域的边界处,所述接近开关在所述换电设备15移动至所述接近开关的感测区域内时被触发,并向所述控制单元11发送定位结果信号。所述控制单元11还用于在接收到所述定位结果信号后,向所述驱动单元14发送所述停止信号,然后启动所述一级定位单元12。
当所述换电设备15停泊于所述指定区域时,所述换电设备15基本位于所述电动汽车的电池包的下方,再通过所述一级定位单元12对所述换电设备15的进一步调整,可以实现所述换电设备15与所述电动汽车的精准对位,本实施例中的所述一级定位单元12可以采用实施例2、3中的任何一种一级定位单元12。在所述换电设备15与所述电动汽 车之间的相对位置不大于所述偏差阈值后,进一步利用所述卡板的容错范围,提高换电的可靠性、安全性,使得被卡接的电池包能够被顺利取下,保证换电成功率。
实施例6
图9示出了本实施例的一种电动汽车换电定位方法。所述电动汽车换电定位方法包括:一级定位的步骤21和二级定位的步骤22。
所述一级定位的步骤21包括:
步骤211、检测换电设备与电动汽车之间的相对位置;
步骤212、判断所述相对位置是否大于预设的偏差阈值,若是,则执行步骤213;
步骤213、驱动所述换电设备移动以使得所述换电设备与所述电动汽车之间的相对位置不大于所述偏差阈值;
在所述换电设备与所述电动汽车之间的相对位置不大于所述偏差阈值后(包括步骤212中判断所述相对位置不大于所述偏差阈值的情况,以及步骤213所述换电设备移动后所述换电设备与所述电动汽车之间的相对位置不大于所述偏差阈值的情况),执行所述二级定位的步骤22。
所述二级定位的步骤22包括:
步骤221、控制所述换电设备升起所述换电设备的换电平台,以使得设于所述换电平台上的卡板与所述电动汽车的电池包卡接。其中,所述卡板可以采用实施例4中所述的卡板的结构。
卡接后,所述电池包可以脱离所述电动汽车,停留在所述换电平台上,所述换电设备15下降所述换电平台,完成卸电池操作。在完成所述卸电池操作之后,所述换电设备可以进一步将满电的电池包安装至所述电动汽车。
本实施例中,所述电动汽车换电定位方法可以采用实施例1的换电定位系统实现,通过所述一级定位的步骤21实现所述换电设备与所述电动汽车之间的精准对位,但是这一精准对位并不要求所述换电设备和所述电动汽车完全对准,而是允许存在所述偏差阈值的,通过所述二级定位的步骤22可以在所述一级定位的步骤21的基础上进一步实现卸电池包时卡板与电池包的精准对位,利用卡板的结构增加容错范围,提高换电的可靠性、安全性,使得被卡接的电池包能够被顺利取下,保证换电成功率。
实施例7
本实施例是在实施例6上的进一步改进,主要在于,本实施例中所述一级定位步骤利用图像分析技术实现所述换电设备与所述电动汽车之间相对位置的检测。
具体地,所述偏差阈值包括图像偏差阈值;如图10所示,所述一级定位的步骤21包 括:
步骤211’、拍摄实际图像;
步骤212’、比对所述实际图像与标准图像,所述标准图像为所述换电设备与所述电动汽车之间的相对位置不大于所述图像偏差阈值时拍摄的图像;
步骤213’、通过所述比对,判断所述实际图像与标准图像的图像偏差是否大于所述图像偏差阈值,若是,则执行步骤214’;
步骤214’、驱动所述换电设备移动以使得所述图像偏差不大于所述图像偏差阈值。
在所述实际图像与标准图像的图像偏差不大于所述图像偏差阈值后(包括步骤213’中判断出所述图像偏差不大于所述偏差阈值的情况,以及步骤214’所述换电设备移动后再次拍摄的实际图像与所述标准图像的图像偏差不大于所述图像偏差阈值的情况),执行所述二级定位的步骤22。
为了方便图像的比对,实际图像和所述标准图像中包括相同的参照物,通过比对所述实际图像中所述参照物的位置与所述标准图像中所述参照物的位置确定所述实际图像与标准图像的图像偏差。其中,所述参考物可以选择所述电动汽车上的某一部件或是所述电动汽车以外的(如环境)中的某一物体均可。
本实施例利用图像分析技术实现了所述换电设备与所述电动汽车的定位,保证了定位的高精度。
实施例8
本实施例是在实施例6上的进一步改进,主要在于,本实施例中所述一级定位步骤利用空间定位原理实现所述换电设备15与所述电动汽车之间相对位置的检测。
具体地,所述偏差阈值包括位置偏差阈值;如图11所示,所述一级定位的步骤21包括:
步骤211”、定位所述电动汽车的空间位置和所述换电设备的空间位置;
步骤212”、比对所述电动汽车的空间位置和所述换电设备的空间位置;
步骤213”、判断所述电动汽车的空间位置和所述换电设备的空间位置之间的位置偏差是否大于所述位置偏差阈值,若是,则执行步骤214”;
步骤214”、驱动所述换电设备移动以使得所述位置偏差不大于所述位置偏差阈值。
在所述位置偏差不大于所述位置偏差阈值后(包括步骤213”中判断出所述位置偏差不大于所述位置偏差阈值的情况,以及步骤214”所述换电设备移动后所述电动汽车的空间位置和所述换电设备的空间位置之间的位置偏差不大于所述位置偏差阈值的情况),执行所述二级定位的步骤22。
本实施例中,所述位置偏差阈值可以具体包括距离阈值,步骤211”至步骤214”可以具体包括:
检测所述电动汽车与所述换电设备的水平距离;
判断所述水平距离是否大于所述距离阈值,若是,则驱动所述换电设备移动以使得所述水平距离不大于所述距离阈值。
本实施例利用空间定位原理实现了所述换电设备与所述电动汽车的定位,保证了定位的高精度。
实施例9
本实施例是在实施例1上的进一步改进,主要在于,所述电动汽车换电定位方法还包括三级定位的步骤20。如图12所示,所述三级定位的步骤20包括:
步骤201、驱动所述换电设备移动;
步骤202、定位所述换电设备是否移动至指定区域内,所述指定区域位于所述电动汽车的下方;
步骤203、在所述换电设备移动至所述指定区域内时,停止驱动所述换电设备移动,然后执行所述一级定位的步骤21。
当所述换电设备停泊于所述指定区域时,所述换电设备基本位于所述电动汽车的电池包的下方,再通过所述一级定位的步骤21对所述换电设备的进一步调整,可以实现所述换电设备与所述电动汽车的精准对位,本实施例中的所述一级定位的步骤21可以采用实施例7、8中的任何一种一级定位的步骤。在所述换电设备与所述电动汽车之间的相对位置不大于所述偏差阈值后,进一步利用所述卡板的容错范围,提高换电的可靠性、安全性,使得被卡接的电池包能够被顺利取下,保证换电成功率。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (14)

  1. 一种电动汽车换电定位系统,其特征在于,所述电动汽车换电定位系统包括:控制单元、一级定位单元、二级定位单元、驱动单元和换电设备,所述二级定位单元包括卡板,所述卡板设于所述换电设备的换电平台上;
    所述一级定位单元用于检测所述换电设备与所述电动汽车之间的相对位置,并将所述相对位置发送至所述控制单元;
    所述控制单元用于判断所述相对位置是否大于预设的偏差阈值,若是,则向所述驱动单元发送驱动信号;
    所述驱动单元用于在接收到所述驱动信号后驱动所述换电设备移动以使得所述换电设备与所述电动汽车之间的相对位置不大于所述偏差阈值;
    所述控制单元还用于在所述换电设备与所述电动汽车之间的相对位置不大于所述偏差阈值后,向所述换电设备发送换电信号;
    所述换电设备用于在接收到所述换电信号后,升起所述换电平台,以使得所述卡板与电动汽车的电池包卡接。
  2. 如权利要求1所述的电动汽车换电定位系统,其特征在于,所述偏差阈值包括图像偏差阈值,所述一级定位单元包括拍照装置,所述拍照装置用于拍摄实际图像并将所述实际图像发送至所述控制单元;
    所述控制单元还用于比对所述实际图像与标准图像,所述标准图像为所述换电设备与所述电动汽车之间的相对位置不大于所述图像偏差阈值时所述拍照装置拍摄的图像;
    所述控制单元还用于通过所述比对,判断所述实际图像与标准图像的图像偏差是否大于所述图像偏差阈值,若是,则向所述驱动单元发送所述驱动信号。
  3. 如权利要求2所述的电动汽车换电定位系统,其特征在于,实际图像和所述标准图像中包括相同的参照物,所述控制单元通过比对所述实际图像中所述参照物的位置与所述标准图像中所述参照物的位置确定所述实际图像与标准图像的图像偏差。
  4. 如权利要求1-3中至少一项所述的电动汽车换电定位系统,其特征在于,所述偏差阈值包括位置偏差阈值,所述一级定位单元包括定位仪,所述定位仪用于定位所述电动汽车的空间位置和所述换电设备的空间位置,并将所述电动汽车的空间位置和所述换电设备的空间位置发送至所述控制单元;
    所述控制单元还用于比对所述电动汽车的空间位置和所述换电设备的空间位置,判断所述电动汽车的空间位置和所述换电设备的空间位置之间的位置偏差是否大于所述位 置偏差阈值,若是,则向所述驱动单元发送所述驱动信号。
  5. 如权利要求4所述的电动汽车换电定位系统,其特征在于,所述位置偏差阈值包括距离阈值,所述定位仪包括距离传感器,所述距离传感器用于检测所述电动汽车与所述换电设备的水平距离,并将所述水平距离发送至所述控制单元;
    所述控制单元还用于判断所述水平距离是否大于所述距离阈值,若是,则向所述驱动单元发送所述驱动信号。
  6. 如权利要求1-5中至少一项所述的电动汽车换电定位系统,其特征在于,所述电动汽车设有电池安装座,所述电池安装座用于电池包的固定安装,所述卡板的顶端具有导向部,所述导向部在所述卡板的宽度和/或厚度方向上向内削斜,在更换电池时,所述卡板插入所述电池包与所述电池安装座之间的间隙。
  7. 如权利要求1-6中至少一项所述的电动汽车换电定位系统,其特征在于,所述电动汽车换电定位系统还包括三级定位单元,所述驱动单元用于驱动所述换电设备移动,所述三级定位单元用于定位所述换电设备是否移动至指定区域内并将定位结果发送至所述控制单元,所述指定区域位于所述电动汽车的下方;
    所述控制单元还用于在所述换电设备移动至所述指定区域内时,向所述驱动单元发送停止信号,然后启动所述一级定位单元;
    所述驱动单元还用于在接收到所述停止信号后停止驱动所述换电设备移动。
  8. 如权利要求7所述的电动汽车换电定位系统,其特征在于,所述三级定位单元包括接近开关,所述接近开关设置于所述指定区域的边界处,所述接近开关在所述换电设备移动至所述接近开关的感测区域内时被触发,并向所述控制单元发送定位结果信号;
    所述控制单元还用于在接收到所述定位结果信号后,向所述驱动单元发送所述停止信号,然后启动所述一级定位单元。
  9. 一种电动汽车换电定位方法,其特征在于,所述电动汽车换电定位方法包括:一级定位的步骤和二级定位的步骤;
    所述一级定位的步骤包括:
    检测换电设备与电动汽车之间的相对位置,判断所述相对位置是否大于预设的偏差阈值,若是,则驱动所述换电设备移动以使得所述换电设备与所述电动汽车之间的相对位置不大于所述偏差阈值;
    在所述换电设备与所述电动汽车之间的相对位置不大于所述偏差阈值后,执行所述二级定位的步骤,所述二级定位的步骤包括:
    控制所述换电设备升起所述换电设备的换电平台,以使得设于所述换电平台上的卡 板与所述电动汽车的电池包卡接。
  10. 如权利要求9所述的电动汽车换电定位方法,其特征在于,所述偏差阈值包括图像偏差阈值;
    检测所述换电设备与所述电动汽车之间的相对位置,判断所述相对位置是否大于预设的偏差阈值,包括:
    拍摄实际图像;
    比对所述实际图像与标准图像,所述标准图像为所述换电设备与所述电动汽车之间的相对位置不大于所述图像偏差阈值时拍摄的图像;
    通过所述比对,判断所述实际图像与标准图像的图像偏差是否大于所述图像偏差阈值,若是,则驱动所述换电设备移动以使得所述图像偏差不大于所述图像偏差阈值。
  11. 如权利要求10所述的电动汽车换电定位方法,其特征在于,实际图像和所述标准图像中包括相同的参照物,通过比对所述实际图像中所述参照物的位置与所述标准图像中所述参照物的位置确定所述实际图像与标准图像的图像偏差。
  12. 如权利要求9-11中至少一项所述的电动汽车换电定位方法,其特征在于,所述偏差阈值包括位置偏差阈值;
    检测所述换电设备与所述电动汽车之间的相对位置,判断所述相对位置是否大于预设的偏差阈值,包括:
    定位所述电动汽车的空间位置和所述换电设备的空间位置;
    比对所述电动汽车的空间位置和所述换电设备的空间位置,判断所述电动汽车的空间位置和所述换电设备的空间位置之间的位置偏差是否大于所述位置偏差阈值,若是,则驱动所述换电设备移动以使得所述位置偏差不大于所述位置偏差阈值。
  13. 如权利要求12所述的电动汽车换电定位方法,其特征在于,所述位置偏差阈值包括距离阈值;
    定位所述电动汽车的空间位置和所述换电设备的空间位置;比对所述电动汽车的空间位置和所述换电设备的空间位置,判断所述电动汽车的空间位置和所述换电设备的空间位置之间的位置偏差是否大于所述位置偏差阈值,包括:
    检测所述电动汽车与所述换电设备的水平距离;
    判断所述水平距离是否大于所述距离阈值,若是,则驱动所述换电设备移动以使得所述水平距离不大于所述距离阈值。
  14. 如权利要求9-13中至少一项所述的电动汽车换电定位方法,其特征在于,所述电动汽车换电定位方法还包括三级定位的步骤;
    所述三级定位的步骤包括:
    驱动所述换电设备移动;
    定位所述换电设备是否移动至指定区域内,所述指定区域位于所述电动汽车的下方;
    在所述换电设备移动至所述指定区域内时,停止驱动所述换电设备移动,然后执行所述一级定位的步骤。
PCT/CN2019/109403 2018-09-30 2019-09-30 电动汽车换电定位系统及方法 WO2020064003A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811160563.1 2018-09-30
CN201811160563.1A CN110962809B (zh) 2018-09-30 2018-09-30 电动汽车换电定位系统及方法

Publications (1)

Publication Number Publication Date
WO2020064003A1 true WO2020064003A1 (zh) 2020-04-02

Family

ID=69951034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109403 WO2020064003A1 (zh) 2018-09-30 2019-09-30 电动汽车换电定位系统及方法

Country Status (2)

Country Link
CN (2) CN114683952A (zh)
WO (1) WO2020064003A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113525159A (zh) * 2021-05-28 2021-10-22 蓝谷智慧(北京)能源科技有限公司 换电移动装置的防撞机构以及换电移动装置的防撞方法
CN113733970A (zh) * 2021-09-14 2021-12-03 合众新能源汽车有限公司 一种车辆更换电池包的控制方法和系统
CN115509270A (zh) * 2022-11-21 2022-12-23 江苏智慧优视电子科技有限公司 基于换电机器人协同工作的电池箱定位管理系统及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132212A (zh) * 2020-09-03 2022-03-04 奥动新能源汽车科技有限公司 换电控制方法
CN217994385U (zh) * 2022-06-23 2022-12-09 比亚迪股份有限公司 自动换电装置及agv车辆
CN115339422A (zh) * 2022-09-14 2022-11-15 蔚来汽车科技(安徽)有限公司 换电控制方法及系统、计算机设备、计算机可读存储介质
CN116691433B (zh) * 2023-08-07 2023-12-29 北京玖行智研交通科技有限公司 一种新能源车辆换电方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998963A (en) * 1998-06-11 1999-12-07 Aarseth; Einar Electric vehicle service center and method for exchanging and charging vehicle batteries
CN202743217U (zh) * 2012-08-16 2013-02-20 王俊 用于电动汽车换电的车辆自动对中机构
CN105480209A (zh) * 2015-12-24 2016-04-13 上海电巴新能源科技有限公司 一种乘用车的电池快换装置
TW201718295A (zh) * 2015-11-30 2017-06-01 鴻海精密工業股份有限公司 電動車電池更換系統及其使用方法
CN206383942U (zh) * 2016-12-30 2017-08-08 上海电巴新能源科技有限公司 电池托盘、换电移动平台和快换系统
CN108128285A (zh) * 2017-04-01 2018-06-08 上海电巴新能源科技有限公司 充电电池的转运控制系统、换电控制系统及其方法
CN108313029A (zh) * 2018-04-08 2018-07-24 王伟波 一种新能源汽车电池箱快速更换方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102152776B (zh) * 2011-03-07 2013-10-09 国电南瑞科技股份有限公司 电动汽车电池更换站的电池更换系统及其更换方法
CN102267437B (zh) * 2011-04-28 2013-04-03 北京邮电大学 电动汽车电池箱的快速换电站及其电池箱更换方法
CN103407283A (zh) * 2013-08-21 2013-11-27 日东电子科技(深圳)有限公司 锡膏印刷机及其视觉对位方法
CN104917232B (zh) * 2015-05-28 2017-11-07 深圳市华宝新能源股份有限公司 电动汽车移动充电控制方法和系统
CN105625783B (zh) * 2016-01-25 2018-07-06 梁崇彦 一种停车设备车辆位置纠偏的装置
CN206812968U (zh) * 2017-05-15 2017-12-29 上海蔚来汽车有限公司 自动导引型换电机器人及充换电站
CN207328410U (zh) * 2017-09-12 2018-05-08 上海蔚来汽车有限公司 电动汽车的自动换电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998963A (en) * 1998-06-11 1999-12-07 Aarseth; Einar Electric vehicle service center and method for exchanging and charging vehicle batteries
CN202743217U (zh) * 2012-08-16 2013-02-20 王俊 用于电动汽车换电的车辆自动对中机构
TW201718295A (zh) * 2015-11-30 2017-06-01 鴻海精密工業股份有限公司 電動車電池更換系統及其使用方法
CN105480209A (zh) * 2015-12-24 2016-04-13 上海电巴新能源科技有限公司 一种乘用车的电池快换装置
CN206383942U (zh) * 2016-12-30 2017-08-08 上海电巴新能源科技有限公司 电池托盘、换电移动平台和快换系统
CN108128285A (zh) * 2017-04-01 2018-06-08 上海电巴新能源科技有限公司 充电电池的转运控制系统、换电控制系统及其方法
CN108313029A (zh) * 2018-04-08 2018-07-24 王伟波 一种新能源汽车电池箱快速更换方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113525159A (zh) * 2021-05-28 2021-10-22 蓝谷智慧(北京)能源科技有限公司 换电移动装置的防撞机构以及换电移动装置的防撞方法
CN113733970A (zh) * 2021-09-14 2021-12-03 合众新能源汽车有限公司 一种车辆更换电池包的控制方法和系统
CN115509270A (zh) * 2022-11-21 2022-12-23 江苏智慧优视电子科技有限公司 基于换电机器人协同工作的电池箱定位管理系统及方法

Also Published As

Publication number Publication date
CN114683952A (zh) 2022-07-01
CN110962809A (zh) 2020-04-07
CN110962809B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2020064003A1 (zh) 电动汽车换电定位系统及方法
CN108128286B (zh) 换电小车、换电控制系统及其控制方法
CN107719331B (zh) 浮动对接装置、换电机器人、对接方法和复位方法
WO2019101028A1 (zh) 浮动对接装置、换电机器人以及加锁、解锁和加解锁方法
KR102213820B1 (ko) 배터리 추진식 차량의 배터리를 교체하는 방법과 이를 위한 디바이스 및 배터리 수납 장치
US20110113609A1 (en) Method and device for exchanging a battery in a vehicle
WO2020052567A1 (zh) 电池仓的定位方法及定位系统
WO2022048607A1 (zh) 换电控制方法
WO2021136552A1 (zh) 换电设备的视觉定位方法及系统
WO2020200313A1 (zh) 安装平台、换电设备及其控制方法
US20240083394A1 (en) Battery swapping control method and system, electronic device, and computer readable storage medium
CN111923777A (zh) 换电站的换电控制方法
CN218343311U (zh) 电池托盘及换电设备
KR20120124252A (ko) 전기 자동차용 배터리의 자동교환 시스템
WO2019090989A1 (zh) 用于电池包的安装结构、电池包以及汽车
WO2022048626A1 (zh) 底部换电方法
CN113697009A (zh) 一种智能化动力总成合装系统及方法
WO2022067872A1 (zh) 新能源汽车电池故障检测系统
WO2020020372A1 (zh) 应用于车辆换电的视觉分析系统及方法
WO2020052560A1 (zh) 电池取放方法及系统
CN110422146B (zh) 卡板、换电设备和定位系统
TWM570241U (zh) 儲能單元的可調節安裝元件
CN113176278B (zh) 一种面板缺陷检测设备及面板缺陷检测方法
CN219295317U (zh) 车辆
CN217623373U (zh) 一种便于安装的车载行车数据终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19866108

Country of ref document: EP

Kind code of ref document: A1