WO2020063894A1 - 一种甜叶菊的工业化利用方法及其甜菊糖苷和绿原酸 - Google Patents

一种甜叶菊的工业化利用方法及其甜菊糖苷和绿原酸 Download PDF

Info

Publication number
WO2020063894A1
WO2020063894A1 PCT/CN2019/108619 CN2019108619W WO2020063894A1 WO 2020063894 A1 WO2020063894 A1 WO 2020063894A1 CN 2019108619 W CN2019108619 W CN 2019108619W WO 2020063894 A1 WO2020063894 A1 WO 2020063894A1
Authority
WO
WIPO (PCT)
Prior art keywords
extract
solution
extraction
chlorogenic acid
resin
Prior art date
Application number
PCT/CN2019/108619
Other languages
English (en)
French (fr)
Inventor
徐美利
连运河
田洪
高伟
徐亚超
Original Assignee
晨光生物科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晨光生物科技集团股份有限公司 filed Critical 晨光生物科技集团股份有限公司
Priority to KR1020217013205A priority Critical patent/KR102600268B1/ko
Publication of WO2020063894A1 publication Critical patent/WO2020063894A1/zh
Priority to US17/216,928 priority patent/US11891411B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/24Condensed ring systems having three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/56Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • C07H1/08Separation; Purification from natural products
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/732Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids of unsaturated hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/24Condensed ring systems having three or more rings
    • C07H15/256Polyterpene radicals
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • C13K13/007Separation of sugars provided for in subclass C13K
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the invention relates to the field of extraction of active ingredients in plants, and particularly to an industrialized method for comprehensive utilization of chlorogenic acid and stevioside in stevia.
  • Stevia rebaudiana is a perennial herb of the Asteraceae family. It is native to Paraguay and Brazil in South America. It is one of the currently known sweeter sugar plants and has become the third natural sugar after sucrose and beet sugar. source. At present, China is the world's largest producer and supplier of stevioside, accounting for more than 80% of the global total.
  • stevia also contains chlorogenic acid (HPLC) at a content of 3-6%, of which isochlorogenic acid accounts for nearly 80%, and isochlorogenic acid has important biological activities, such as anti-inflammatory and antiviral. , Antioxidant, lowering blood pressure, lowering blood lipids, etc., has been drinking sweet tea, medicinal tea for more than 100 years in its birthplace.
  • the traditional stevia industry uses water extraction, but the isochlorogenic acid is easily hydrolyzed during the water extraction process, the proportion of isochlorogenic acid in the water extraction solution is greatly reduced, and the proportion of monocaffeoquinic acid and caffeic acid is greatly increased.
  • isochlorogenic acid is antioxidant (J. Agric. Food Chem., 2004, 52 (15), 4893), anti-inflammatory (J. Nat. Prod., 1995, 58 (5), 639), antibacterial Anti-virus (JASHS, 2008, 133 (4), 492; Fitorick, 2012, 83, 1281; PLoS One, 2011, 6 (4), 18127; J. Ethnopharmacol, 2006, 106 (2), 187) and many more An important biological effect.
  • CN200710111313.4 and CN200710111314.9 patents use ethanol extraction, after concentration, use polyamide, AB-8 or HPD400 resins for adsorption, and obtain glycosides and flavonoid products by gradient analysis.
  • some low-polar impurities are also extracted at the same time, and impurities are not removed before the resin purification, which will cause rapid resin pollution, and the stevia alcohol extract contains some low-polarity Impurities, low-polar ethanol solution can only remove large polar impurities.
  • high-ethanol solution is analyzed, low-polar impurities enter the glycoside analysis solution, which affects the quality of glycoside products and fails to meet market requirements.
  • the patent cannot obtain stevia green. Ortho.
  • the object of the present invention is first to provide a method for industrialized utilization of stevia, including the following steps:
  • the present invention further includes a step of collecting and separating chlorogenic acid, the operation of which is to adjust the pH of the lower column solution obtained after the low-polarity impurity-free extraction solution passes through a stevioside resin to be acidic, and pass The resin was adsorbed to obtain a chlorogenic acid extract.
  • the invention uses a high concentration of short chain alcohol to extract stevia powder, which can fully extract steviol glycosides and chlorogenic acid in the stevia powder, and at the same time can avoid the damage caused by water extraction to isochlorogenic acid.
  • Steviol glycoside molecules contain different numbers of glycosyl fragments, which have poor fat solubility.
  • low-polar impurities in the extract can be removed without affecting the yield of steviol glycosides, which can effectively improve the resin's effect on steviol glycosides.
  • adjusting the pH of the extract to alkaline can convert chlorogenic acid into a salt, and it will not compete with stevioside during the adsorption process, which can effectively improve the purity and quality of stevioside.
  • the steviol glycoside adsorption resin used in the present application is a low-polar resin commonly used in the steviol glycoside separation process, preferably T28, ADS-750, 69M, DM30, 201-H;
  • the chlorogenic acid adsorption resin used in the present application is a resin commonly used in the chlorogenic acid separation process, preferably SP207, LX-17, LSA-12, 200B.
  • the T28, 69M, LX-17, LSA-12, and 200B resins according to the present invention were purchased from the Special Resin Factory of Xi'an Lanxiao Technology Co., Ltd., ADS-750 resin was purchased from Tulsion Company, and DM30 resin was purchased from Aimeike Jian (China ) Biopharmaceutical Co., Ltd., 201-H Jiangsu Suqing Water Treatment Engineering Group Co., Ltd., etc., SP207 resin was purchased from Mitsubishi Chemical Corporation of Japan.
  • the stevia powder according to the present invention is a stevia coarse powder prepared by a conventional drying and pulverizing step.
  • the short-chain alcohol in the high-concentration short-chain alcohol aqueous solution is one or more of methanol, ethanol, or propanol, and the volume fraction of the short-chain alcohol in the short-chain alcohol aqueous solution is 70. ⁇ 95%.
  • the organic solvent is a low-polarity organic solvent incompatible with water.
  • pentane n-hexane, octane, ether, or cyclohexane.
  • the above-mentioned extractant can effectively remove low-polar impurities in the feed liquid, improve the quality and purity of the steviol glycoside extract, and can prolong the steviol glycoside resin. Service life.
  • the pH of the low-polarity impurity-free extract is adjusted to 9-11, and under the above-mentioned pH conditions, the phenolic acids in the stevia can be sufficiently salty and polar. Increase, reduce the adsorption on the steviol glycoside resin, realize the separation from the steviol glycoside, and improve the quality of the steviol glycoside product. If the pH is too small, sufficient salt formation is not possible, and if the pH is too large, chlorogenic acid will be hydrolyzed.
  • the pH of the lower column solution obtained after the low-polarity impurity-free extract is passed through a stevioside resin is adjusted to 2 to 3.
  • chlorogenic acid can be in a free molecular state. More conducive to enrichment.
  • the material-liquid ratio in the extraction process is 1: 3.5 to 1: 6, and the extraction temperature is 20 to 80 ° C.
  • the number of extractions is 2 to 3 times, and the time for each extraction is 0.5 to 3 hours.
  • chlorogenic acid and steviol can be sufficiently extracted without causing damage to the active ingredients.
  • the extraction method is one of extraction, spraying, and continuous countercurrent extraction.
  • step 4) Mix the lower column liquid obtained in step 3) in the process of adsorption and elution, adjust the pH of the mixed liquid to be acidic, adsorb it with a chlorogenic acid adsorption resin, and wash the chlorogenic acid adsorption resin with water After desorption, the chlorogenic acid adsorption resin was analyzed with an alcohol solution, and the analysis solution was collected to obtain a chlorogenic acid extract.
  • the high-concentration short-chain alcohol is 70 to 86% ethanol
  • the organic solvent is n-hexane
  • the stevioside adsorption resin is T28
  • the chlorogenic acid adsorption resin is SP207.
  • the high-concentration short-chain alcohol is 80 to 96% methanol
  • the organic solvent is diethyl ether
  • the stevioside adsorption resin is 201-H
  • the chlorogenic acid adsorption resin is 200B.
  • the high-concentration short-chain alcohol is 70-80% propanol
  • the organic solvent is n-hexane
  • the stevioside adsorption resin is ADS-750
  • the chlorogenic acid adsorption resin is LSA-12.
  • the pH is adjusted to 9 to 11 in step 3), and the pH is adjusted to 2 to 3 in step 4).
  • step 4) Mix the lower column liquid obtained in step 3) in the process of adsorption and elution, adjust the pH of the mixed liquid to 2.4 to 2.6, and adsorb it with a chlorogenic acid adsorption resin, and use water to adsorb the chlorogenic acid adsorption resin. Elution was performed, and then the chlorogenic acid adsorption resin was analyzed with an alcohol solution, and the analysis solution was collected to obtain a chlorogenic acid extract.
  • the steviol glycoside adsorption resin is T28; and the chlorogenic acid adsorption resin is SP207.
  • the step 3) is specifically adjusting the pH of the extraction solution for removing low-polar impurities to be 9-11, adjusting the solid content thereof to be 5-10%, and adsorbing it through stevioside
  • the resin is adsorbed.
  • the flow rate of the liquid is controlled to be 0.2 to 0.3 BV / h, and then the T28 resin is eluted with 2BV of water.
  • the flow rate of the first BV is controlled to be 0.2 to 0.4 BV / h, and the flow rate of the second BV is controlled.
  • the flow rate was 0.8 to 1 BV / h, and then the steviol glycoside adsorption resin was analyzed with an alcohol solution, and the analysis solution was collected to obtain a steviol glycoside extract.
  • the specific operation for adsorbing chlorogenic acid is: collecting the bottom column liquid obtained in the adsorption and water washing steps in step 3), adjusting its pH to 2.0-3.0, and then adsorbing the chlorogenic acid through a chlorogenic acid adsorption resin, and adsorb During the process, the flow rate was controlled to 0.8 to 1.2 BV / h. After the adsorption was completed, the resin was washed with 2 BV, and the flow rate was 0.8 to 1.2 BV / h. Then, the chlorogenic acid adsorption resin was analyzed with an alcohol solution, and the analysis solution was collected to obtain a chlorogenic acid extract.
  • the specific operation of resolving the steviol glycoside and chlorogenic acid extract after elution is to analyze the resin with 2BV 70 to 75% ethanol aqueous solution, and control the flow rate of the ethanol solution during the analysis to 0.8. ⁇ 1.2BV / h.
  • Another object of the present invention is to protect the chlorogenic acid extract obtained by the method of the present invention.
  • the isochlorogenic acid content of the chlorogenic substance in the extract of the present invention is> 60%.
  • the last object of the present invention is to protect the stevioside extract obtained by the method of the present invention.
  • the total glycoside content in the extract is> 90%
  • the transmittance at 420nm is> 90
  • the steviol glycoside at a concentration of 1% has a specific absorption at 370nm of less than 0.015.
  • the extraction technology published by this patent can prevent the hydrolysis of isochlorogenic acid in stevia to ensure the content and efficacy of the effective components of stevia chlorogenic acid extract.
  • the simultaneous and effective extraction of stevioside and chlorogenic acid can be realized, and the extraction efficiency in industrial production can be improved.
  • Liquid-liquid extraction is performed after the extract is concentrated to remove impurities and remove low-polar impurities, which can prevent such components from entering the steviol glycoside adsorption resin, improve the use efficiency and life of the steviol glycoside adsorption resin, and improve the extraction of steviol glycosides. purity.
  • the present invention utilizes the acidity of chlorogenic acid, and in the process of extracting steviol glycosides, the extract is made alkaline to make the chlorogenic acid into a salt, the polarity is increased, and the glycoside adsorption process is realized with the glycoside.
  • Effective separation not only improves the quality of steviol glycoside products, but also realizes the effective separation of stevia chlorogenic acid and the comprehensive utilization of stevia resources.
  • the present invention realizes the separation of chlorogenic acids and glycosides through salt formation, and can also improve the purity of chlorogenic acid extracts.
  • this process greatly reduces the production water consumption, reduces the discharge of sewage and flocculent slag, is a high-efficiency green production process, and can greatly promote the progress of the industry.
  • the quality of steviol glycosides extracted by the present invention is high.
  • the total glucoside content in the extract is> 90%, the transmittance at 420nm is> 90, and the concentration of 1% steviol glycosides is less than 0.015 at 370nm.
  • the chlorogenic acid in the chlorogenic acid extract can be better protected, and the content of isochlorogenic acid is> 60%.
  • This embodiment relates to a method for industrializing the use of stevia, including the following steps:
  • the pH of the low-polarity impurity-free extract is adjusted to 10.0 and the solid content is adjusted to 10%, and then it is adsorbed by 1.5L of T28 resin to adjust the liquid flow rate during the adsorption process to 0.2 BV / h ;
  • the T28 resin is eluted with 2BV of water, the first BV controls the flow rate of 0.2BV / h, and the second BV controls the flow rate of 1BV / h.
  • the resin was analyzed using 2BV 70% ethanol aqueous solution, and the flow rate of the analysis solution was controlled during the analysis by 1BV / h.
  • the analytical solution was collected, and the analytical solution was concentrated, and then desalted, decolorized, refined, and dried to obtain 99 g of a stevioside product.
  • the product was a white powder with a total glycoside content of 94.5%, a 420 nm light transmittance of 91.8%, and a 1% concentration
  • the specific absorption of stevioside at 370nm is 0.013.
  • This embodiment relates to a method for industrializing the use of stevia, including the following steps:
  • the pH of the low-polarity impurity-free extract is adjusted to 9.5 and the solid content is adjusted to 8%, and it is adsorbed by 1.5L of 201-H resin, and the flow rate of the liquid in the adsorption process is adjusted to 0.25BV.
  • the 201-H resin is eluted with 2BV of water, the first BV controls the flow rate of 0.25BV / h, and the second BV controls the flow rate of 1BV / h.
  • the resin was analyzed with 2BV 70% ethanol aqueous solution, and the flow rate of the ethanol solution was controlled during the analysis by 1BV / h.
  • the analysis solution was collected, and the solution was concentrated, and then desalted, decolorized, refined, and dried to obtain 100.5 g of a steviol glycoside product.
  • the product was a white powder with a total glycoside content of 93.9%, a 420nm light transmittance of 90.8%, and 1%.
  • the specific absorption of steviol glycoside at 370 nm was 0.014.
  • This embodiment relates to a method for industrializing the use of stevia, including the following steps:
  • the pH of the low-polarity impurity-free extract is adjusted to 9.0 and the solid content is adjusted to 6%, and it is adsorbed by 1.5 L of ADS-750 resin, and the liquid flow rate during the adsorption process is adjusted to 0.3 BV / h; after the adsorption is completed, the ADS-750 resin is eluted with 2BV of water, the first BV controls the flow rate of 0.3BV / h, and the second BV controls the flow rate of 1BV / h. After the completion of the elution, the resin was analyzed with 2BV 70% ethanol aqueous solution, and the flow rate of the ethanol solution was controlled during the analysis by 1BV / h.
  • the analytical solution was collected, and the solution was concentrated, and then desalted, decolorized, refined, and dried to obtain 99.7 g of a stevioside product.
  • the product was a white powder with a total glycoside content of 93.4%, a 420nm light transmittance of 90.8%, and 1%.
  • the specific absorption of steviol glycosides at a concentration of 370 nm was 0.011.
  • This embodiment relates to a method for industrializing the use of stevia, including the following steps:
  • the analysis solution was collected, and the solution was concentrated, and then desalted, decolorized, refined, and dried to obtain 98.6 g of a stevioside product.
  • the product was a white powder with a total glycoside content of 94.7%, a 420nm light transmittance of 92.0%, and 1%.
  • the specific absorption of steviol glycosides at a concentration of 370 nm was 0.011.
  • This embodiment relates to a method for industrializing the use of stevia, including the following steps:
  • the pH of the low-polarity impurity-free extract is adjusted to 11.0, and the solid content is adjusted to 6%, and it is adsorbed by 1.5 L of 201-H resin, and the liquid flow rate during the adsorption process is adjusted to 0.3 BV / h; after the adsorption is completed, the T28 resin is eluted with 2BV of water, the first BV controls the flow rate of 0.3BV / h, and the second BV controls the flow rate of 1BV / h. After the completion of the elution, the resin was analyzed with 2BV 70% ethanol aqueous solution, and the flow rate of the ethanol solution was controlled during the analysis by 1BV / h.
  • the analysis solution was collected, and the solution was concentrated, and then desalted, decolorized, refined, and dried to obtain 98.2 g of a steviol glycoside product.
  • the product was a white powder with a total glycoside content of 95.0%, a 420nm light transmittance of 92.5%, and 1% The specific absorption of steviol glycoside at 370 nm was 0.010.
  • This example uses water extraction to extract stevia isochlorogenic acid and steviol glycosides from stevia.
  • the specific operation steps are the methods provided by Publication No. CN106236808B.
  • the substances obtained by the extract are analyzed by liquid chromatography.
  • Example 2 Compared with Example 1, the difference is that the extraction solution is 65% ethanol, and 103.5 g of stevioside product is obtained.
  • the product is a white powder with a total glycoside content of 90.1% and a light transmittance of 420nm of 80.2%.
  • the 1% concentration of steviol glycoside has a specific absorption of 0.033 at 370 nm.
  • 59.3 g of chlorogenic acid brown powder was obtained by extraction, in which the total chlorogenic acid in stevia was 74% and the content of isochlorogenic acid was 52.8%.
  • Example 1 Compared with Example 1, the difference is that liquid-liquid extraction is not performed in the step 2), and 107.2 g of stevioside product is obtained.
  • the product is a white powder with a total glycoside content of 87.3% and a light transmittance of 420 nm.
  • the specific absorption of steviol glycoside at 74% and 1% at 370nm is 0.045, and 61.7g of chlorogenic acid brown powder is obtained, in which the total chlorogenic acid of stevia is 71% and the content of isochlorogenic acid is 56.9%.
  • step 3 the column liquid pH was not adjusted, and 110.3 g of the steviol glycoside product was extracted.
  • the product was a white powder, the total glycoside content was 84.9%, and the light transmittance at 420 nm was The specific absorption of steviol glycosides at 70% and 1% at 370 nm is 0.053, and 12.5 g of chlorogenic acid brown powder is obtained, in which the total chlorogenic acid of stevia is 71% and the content of isochlorogenic acid is 54.3%.
  • the content of total glycosides in this application is determined by the GB 8270-2014 method.
  • the transmittance is the transmittance at 14% solids concentration at 420nm detected by UV.
  • the steviol glycoside at 1% concentration at 370nm adopts GB8270-1999 method.
  • the measurement was performed.
  • the content of total chlorogenic acid and the proportion of each component were measured by the T / CCCMHPIE 1.17-2016 method.
  • the invention provides an industrialized method for comprehensive utilization of stevia.
  • the method of the present invention mainly uses a high-concentration alcohol solution to extract stevia, and then uses an organic solvent to purify the extract. Furthermore, the present invention adjusts the pH of the extract to be alkaline according to the characteristics of chlorogenic acid being acidic, so that the chlorogenic Acids become salts, their polarity increases, and effective separation of glycoside components is achieved during adsorption.
  • the method of the invention can obtain high-quality steviol glycosides and chlorogenic acids, significantly improve the comprehensive utilization rate of stevia, reduce the waste of natural stevia resources, reduce the consumption of resources in the production process, and reduce waste emissions at the same time. It is a high-efficiency green
  • the production process can greatly promote the progress of the industry and has good economic value and application prospects.

Abstract

一种甜叶菊综合利用的工业化方法,主要改进之处为利用高浓度的醇溶液对甜叶菊进行提取,然后采用有机溶剂对提取液进行纯化,根据绿原酸为酸性的特点,调整提取液的pH为碱性,使绿原酸成盐,极性增大,在吸附环节和糖苷成分实现有效的分离。该方法可得到高质量的甜菊糖苷和绿原酸,显著提高甜叶菊的综合利用率,减少自然甜菊资源浪费,降低生产过程资源消耗,同时减少废弃物排放,为一种高效益的绿色生产工艺。

Description

一种甜叶菊的工业化利用方法及其甜菊糖苷和绿原酸
交叉引用
本申请要求2018年9月30日提交的专利名称为“一种甜叶菊的工业化利用方法及其甜菊糖苷和绿原酸”的第201811159791.7号中国专利申请的优先权,其全部公开内容通过引用整体并入本文。
技术领域
本发明涉及植物中活性成分的提取领域,具体涉及甜叶菊中绿原酸和甜菊苷的综合利用的工业化方法。
背景技术
甜叶菊(Stevia rebaudiana)属菊科多年生草本植物,原产于南美巴拉圭和巴西,是目前已知甜度较高的糖料植物之一,已成为继蔗糖、甜菜糖之后的第三种天然糖源。目前,中国是世界最大的甜菊糖苷生产及供应国,占全球总量的80%以上。甜叶菊中除甜菊糖苷外还含有含量3-6%的绿原酸(HPLC),其中异绿原酸占比近80%,且异绿原酸具有重要的生物活性,如抗炎、抗病毒、抗氧化、降血压、降血脂等,在其发源地作为甜茶、药茶饮用已有一百多年的历史。
传统甜菊行业均采用水提取,但水提取过程中异绿原酸易发生水解,水提取液中异绿原酸占比大幅降低、单咖啡酰基奎宁酸及咖啡酸比例大幅升高。
研究表明,异绿原酸具有抗氧化(J.Agric.Food Chem.,2004,52(15),4893),抗炎(J.Nat.Prod.,1995,58(5),639),抗菌、抗病毒(JASHS,2008,133(4),492;Fitoterapia,2012,83,1281;PLoS One,2011,6(4),18127;J.Ethnopharmacol,2006,106(2),187)等多种重要的生物功效。
CN 200710111313.4和CN 200710111314.9专利,利用乙醇提取,浓缩后使用聚酰胺、AB-8或HPD400等树脂进行吸附,通过梯度解析得到 糖苷和黄酮产品。醇提液中除糖苷、黄酮外,一些低极性杂质也会同时被提取出,且树脂纯化前未进行除杂,会导致树脂的快速污染,且甜叶菊醇提物中含有一些低极性杂质,低度乙醇溶液解析过程只能去除大极性杂质,高度乙醇溶液解析时,低极性杂质进入糖苷解析液中,影响糖苷产品质量,无法达到市场要求,且该专利无法得到甜叶菊绿原酸。
发明内容
本发明的目的首先是提供一种甜叶菊的工业化利用方法,包括如下步骤:
1)采用高浓度的短链醇的水溶液对甜叶菊粉末进行提取,得提取液;
2)去除提取液中的短链醇,采用有机溶剂对提取液进行液液萃取,取水层,得去低极性杂质的提取液;
3)调节所述去低极性杂质的提取液的pH为碱性,将提取液通过甜菊糖苷吸附树脂,分离得到甜菊糖苷提取物。
优选的,本发明还包收集分离绿原酸的步骤,其操作为,将所述去低极性杂质的提取液通过甜菊糖苷树脂后所得的下柱液的pH调节为酸性,通过绿原酸吸附树脂,得绿原酸提取物。
本发明采用高浓度的短链醇对甜叶菊粉末进行提取,可将甜叶菊粉末中的甜菊糖苷和绿原酸进行充分的提取,同时可避免水提对异绿原酸造成的破坏。甜菊糖苷分子中含有不同数量的糖基片段,脂溶性差,通过液液萃取,在不影响甜菊糖苷得率的前提下,去除提取液中的低极性杂质,可有效地提高树脂对甜菊糖苷的吸附效率,而且,将提取液的pH调节为碱性,可使绿原酸转变成盐,在吸附的过程中不会与甜菊糖苷形成竞争,可有效地提高甜菊糖苷的纯度和质量。
优选的,本申请所使用的甜菊糖苷吸附树脂为甜菊糖苷分离过程中常用的低极性树脂,优选为T28、ADS-750、69M、DM30、201-H;
优选的,本申请所使用的绿原酸吸附树脂为绿原酸分离过程中常用的树脂,优选为SP207、LX-17、LSA-12、200B。
本发明所述的T28、69M、LX-17、LSA-12、200B树脂购自西安蓝晓科技有限公司特种树脂工厂、ADS-750树脂购自tulsion公司、DM30树脂购自艾美科健(中国)生物医药有限公司、201-H江苏苏青水处理工程集团有限公司等、SP207树脂购自日本三菱化学公司。
本发明所述的甜叶菊粉末为采用常规的干燥、粉碎步骤制备得到的甜叶菊粗粉。
优选的,所述高浓度的短链醇的水溶液中短链醇为甲醇、乙醇或丙醇中的一种或几种任意组合,所述短链醇的水溶液中短链醇的体积分数为70~95%。选择上述提取液,既可对甜叶菊中的有效成分甜菊糖苷和绿原酸进行充分地提取,还可对异绿原酸进行保护,保证异绿原酸不会因提取而发生水解。
进一步优选为体积分数70-85%的乙醇溶液,体积分数80-95%的甲醇溶液或体积分数70-75%的丙醇溶液。
优选的,所述有机溶剂为与水不相溶的低极性有机溶剂。
进一步优选戊烷、正己烷、辛烷、乙醚或环己烷,上述萃取剂可有效地去除料液中的低极性杂质,提高甜菊糖苷提取物的质量和纯度,而且可延长甜菊糖苷树脂的使用寿命。
优选的,所述步骤3)中,调节所述去低极性杂质的提取液的pH为9~11,在上述pH条件下,可使甜叶菊中的酚酸类物质充分呈盐、极性增大,减少在甜菊糖苷吸附树脂上的吸附,实现和甜菊糖苷的分离,同时提高甜菊糖苷产品质量。若pH过小,无法充分成盐,若pH过大,会引起绿原酸的水解。
优选的,将所述去低极性杂质的提取液通过甜菊糖苷树脂后的所得的下柱液的pH调节为2~3,在上述pH条件下,可使绿原酸呈自由的分子状态,更有利于富集。
优选的,提取过程中的料液比为1:3.5~1:6,提取温度为20~80℃。
优选的,提取次数为2~3次,每次提取的时间为0.5~3h。
在上述条件下,可对绿原酸和甜菊酚类物质进行充分地提取,还不会对有效成分造成破坏。
优选的,提取的方式为浸提、喷淋、连续逆流提取中的一种。
作为优选的操作方式,包括如下步骤:
1)采用高浓度的短链醇的水溶液对甜叶菊粉末进行提取,得提取液;
2)真空浓缩去除提取液中的短链醇,采用有机溶剂对去除短链醇的提取液进行液液萃取,取水层,得去低极性杂质的提取液;
3)调节所述去低极性杂质的提取液的pH为碱性,将其通过甜菊糖苷吸附树脂进行吸附,用水对所述甜菊糖苷吸附树脂进行洗脱,然后用醇溶液对树脂进行解析,收集解析液,得甜菊糖苷提取物;
4)将步骤3)在吸附和洗脱过程中所得的下柱液混合,调节混合液的pH为酸性,将其通过绿原酸吸附树脂进行吸附,用水对所述绿原酸吸附树脂进行洗脱,然后用醇溶液对所述绿原酸吸附树脂进行解析,收集解析液,得绿原酸提取物。
优选的,上述操作中,高浓度的短链醇为70~86%的乙醇,有机溶剂为正己烷,甜菊糖苷吸附树脂为T28,绿原酸吸附树脂为SP207。
或,上述操作中,高浓度的短链醇为80~96%的甲醇,有机溶剂为乙醚,甜菊糖苷吸附树脂为201-H,绿原酸吸附树脂为200B。
或,上述操作中,高浓度的短链醇为70~80%的丙醇,有机溶剂为正己烷,甜菊糖苷吸附树脂为ADS-750,绿原酸吸附树脂为LSA-12。
优选的,上述方案中,步骤3)中将pH调整为9~11,步骤4)中,将pH调整为2~3。
作为优选的方案,包括如下步骤:
1)采用体积分数为84~86%的乙醇的水溶液对甜叶菊粉末进行提取,得提取液;
2)真空浓缩去除提取液中的短链醇,采正己烷对去除短链醇的提取液进行液液萃取,取水层,得去低极性杂质的提取液;
3)调节所述去低极性杂质的提取液的pH为9.8~10.2,将其通过甜菊糖苷吸附树脂进行吸附,用水对所述甜菊糖苷吸附树脂进行洗脱,然后用醇溶液对树脂进行解析,收集解析液,得甜菊糖苷提取物;
4)将步骤3)在吸附和洗脱过程中所得的下柱液混合,调节混合液的pH为2.4~2.6,将其通过绿原酸吸附树脂进行吸附,用水对所述绿原酸吸附树脂进行洗脱,然后用醇溶液对所述绿原酸吸附树脂进行解析,收集解析液,得绿原酸提取物。
优选的,上述操作中,甜菊糖苷吸附树脂为T28;,绿原酸吸附树脂为SP207。
作为优选的操作方式,所述步骤3)具体为,调节将所述去除低极性杂质的提取液的pH为9~11,调节其中的固含量为5~10%,将其通过甜菊糖苷吸附树脂进行吸附,吸附过程中控制液体的流速为0.2~0.3BV/h,然后用2BV的水对所述T28树脂进行洗脱,第1BV控制水的流速0.2~0.4BV/h,第2BV控制水的流速0.8~1BV/h,然后用醇溶液对甜菊糖苷吸附树脂进行解析,收集解析液,得甜菊糖苷提取物。
作为优选的操作方式,吸附绿原酸的具体操作为:收集步骤3)在吸附和水洗环节所得的下柱液,调节其pH为2.0~3.0后将其通过绿原酸吸附树脂进行吸附,吸附过程中控制流速0.8~1.2BV/h,吸附结束后,用2BV对树脂进行水洗,水洗流速0.8~1.2BV/h。然后用醇溶液对绿原酸吸附树脂进行解析,收集解析液,得绿原酸提取物。
作为优选的操作方式,甜菊糖苷和绿原酸提取物在洗脱完成后解析的具体操作为,用2BV 70~75%的乙醇水溶液对所述树脂进行解析,解析过程中控乙醇溶液的流速0.8~1.2BV/h。
本发明的另一目的是保护本发明的方法提取得到的绿原酸提取物;
优选的,本发明的绿原到提取物中异绿原酸含量>60%。
本发明的最后一个目的是保护本发明的方法提取得到的甜菊糖苷提取物;
优选的,提取物中的总苷含量>90%,在420nm透光度为>90,浓度1%的甜菊糖苷在370nm比吸光小于0.015。
本发明具有如下有益效果:
(1)较传统的水提取工艺,该专利公布的提取技术可防止甜叶菊中异绿原酸的水解,以保证甜叶菊绿原酸提取物的有效成分含量及功效,同时在上述的提取条件下,可实现甜菊糖苷和绿原酸的同时有效提取,提高工业化生产中的提取效率。
(2)提取液浓缩后进行了液液萃取除杂,将低极性杂质去除,可防止该类成分进入甜菊糖苷吸附树脂,提高甜菊糖吸附树脂使用效率及寿命,提高提取得到的甜菊糖苷的纯度。
(3)同时本发明利用绿原酸的酸性,在提取甜菊糖苷的过程中,将提取液调成碱性,使绿原酸成盐,极性增大,在糖苷的吸附环节实现和糖苷的有效的分离,既提高了甜菊糖苷产品质量,同时还实现了甜叶菊绿原酸的有效分离,实现了甜菊资源的综合利用。
(4)本发明通过成盐实现绿原酸类物质和糖苷类物质的分离,还可提高绿原酸类提取物的纯度。
(5)和传统的水提取工艺相比,该工艺大幅降低了生产水耗,减少污水及絮凝渣的排放,为一种高效益的绿色生产工艺,可大幅度推进行业进步。
(6)本发明提取得到的甜菊糖苷的质量高,其提取物中的总苷含量>90%,在420nm透光度为>90,浓度1%的甜菊糖苷在370nm比吸光小于0.015,提取得到的绿原酸提取物中绿原酸可得到较好的保护,其中异绿原酸含量>60%。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例涉及一种甜叶菊的工业化利用方法,包括如下步骤:
(1)称取甜叶菊粉末1kg,以85%的乙醇水溶液作为提取液,在50℃的条件下对所述甜叶菊的粉末重复提取3次,3次提取过程中的料液比分别为1:5/3.5/3.5,第1次提取时间为1.5h,第2次和第3次的提取时间均为1h,合并滤液作为提取液;
(2)将所述提取液在水浴60℃、真空-0.08MPa条件下浓缩至原体积的1/10,在浓缩液中加等体积的正己烷进行液液萃取3次,取水层,得去低极性杂质的提取液;
(3)将所述去低极性杂质的提取液的pH调节至10.0、固含量调节至10%,然后将其通过1.5L的T28树脂进行吸附,调整吸附过程中液体的流速0.2BV/h;吸附完成后用2BV的水对所述T28树脂进行洗脱,第1BV控制水的流速0.2BV/h,第2BV控制水的流速1BV/h。洗脱完成后使用2BV 70%的乙醇水溶液对所述树脂进行解析,解析过程中控制解析液的流速1BV/h。收集解析液,对所述解析液浓缩后进行脱盐、脱色、精脱和干燥,得99g甜菊糖苷产品,产品为白色粉末,总苷含量为94.5%,420nm透光度为91.8%,1%浓度的甜菊糖苷在370nm比吸光为0.013。
(4)收集吸附和水洗环节所得的下柱液,调节其pH为2.5后将其通过极性sp207树脂进行吸附,树脂用量为800mL,吸附过程中控制流速1BV/h,吸附结束后,用2BV的水对树脂进行洗脱,洗脱过程中控制水的流速为1BV/h。水洗完成后使用2BV 70%的乙醇水溶液对树脂进行解析,解析过程中控制乙醇溶液流速1BV/h。收集解析液,对所述解析液进行浓缩、干燥,得到57g棕色粉末,甜叶菊总绿原酸为81%,异绿原酸含量为68.49%。
实施例2
本实施例涉及一种甜叶菊的工业化利用方法,包括如下步骤:
(1)称取甜叶菊粉末1kg,以95%的甲醇水溶液作为提取液,在50℃的条件下对所述甜叶菊的粉末重复提取2次,2次提取过程中的料液比分别为1:6/4.5,第1次提取时间为1.5h,第2次的提取时间均为1h,合并 滤液作为提取液;
(2)将所述提取液在水浴60℃、真空-0.08MPa条件下浓缩至原体积的1/10,在浓缩液中加等体积的乙醚进行液液萃取3次,取水层,得去低极性杂质的提取液;
(3)将所述去低极性杂质的提取液的pH调节至9.5、固含量调节至8%,将其通过1.5L的201-H的树脂进行吸附,调整吸附过程中液体的流速0.25BV/h;吸附完成后用2BV的水对所述201-H树脂进行洗脱,第1BV控制水的流速0.25BV/h,第2BV控制水的流速1BV/h。洗脱完成后使用2BV 70%的乙醇水溶液对所述树脂进行解析,解析过程中控制乙醇溶液的流速1BV/h。收集解析液,对所述解析液浓缩后进行脱盐、脱色、精脱和干燥,得100.5g甜菊糖苷产品,产品为白色粉末,总苷含量为93.9%,420nm透光度为90.8%,1%浓度的甜菊糖苷在370nm比吸光为0.014。
(4)收集吸附和水洗环节所得的下柱液,调节其pH为3.0后将其通过极性200B树脂进行吸附,树脂用量为800mL,吸附过程中控制流速1BV/h,吸附结束后,用2BV对树脂进行水洗,控制水的流速1BV/h。水洗完成后使用2BV 70%的乙醇水溶液对树脂进行解析,控制乙醇的水溶液的流速1BV/h。收集解析液,对所述解析液进行浓缩、干燥,得到54g棕色粉末,甜叶菊总绿原酸含量为85.5%,异绿原酸含量为68.9%。
实施例3
本实施例涉及一种甜叶菊的工业化利用方法,包括如下步骤:
(1)称取甜叶菊粉末1kg,以75%的丙醇水溶液作为提取液,在50℃的条件下对所述甜叶菊的粉末重复提取2次,2次提取过程中的料液比分别为1:6/4.5,第1次提取时间为1.5h,第2次的提取时间均为1h,合并滤液作为提取液;
(2)将所述提取液在水浴60℃、真空-0.08MPa条件下浓缩至原体积的1/10,在浓缩液中加等体积的环己烷进行液液萃取3次,取水层,得去低极性杂质的提取液;
(3)将所述去低极性杂质的提取液的pH调节至9.0、固含量调节至6%,将其通过1.5L的ADS-750树脂进行吸附,调整吸附过程中液体的流速0.3BV/h;吸附完成后用2BV的水对所述ADS-750树脂进行洗脱,第1BV控制水的流速0.3BV/h,第2BV控制水的流速1BV/h。洗脱完成后使用2BV 70%的乙醇水溶液对所述树脂进行解析,解析过程中控制乙醇溶液的流速1BV/h。收集解析液,对所述解析液浓缩后进行脱盐、脱色、精脱和干燥,得99.7g甜菊糖苷产品,产品为白色粉末,总苷含量为93.4%,420nm透光度为90.8%,1%浓度的甜菊糖苷在370nm比吸光为0.011。
(4)收集吸附和水洗环节所得的下柱液,调节其pH为2.0后将其通过极性LSA-12树脂进行吸附,树脂用量为800mL,吸附过程中控制流速1BV/h,吸附结束后,用2BV对树脂进行水洗,水洗流速1BV/h。水洗完成后使用2BV 70%的乙醇水溶液对树脂进行解析,控制流速为1BV/h。收集解析液,对所述解析液进行浓缩、干燥,得到53g棕色粉末,甜叶菊总绿原酸含量为85.1%,异绿原酸含量为69.2%。
实施例4
本实施例涉及一种甜叶菊的工业化利用方法,包括如下步骤:
(1)称取甜叶菊粉末1kg,以70%的乙醇水溶液作为提取液,在60℃的条件下对所述甜叶菊的粉末重复提取3次,3次提取过程中的料液比分别为1:5/3.5/3.5,第1次提取时间为1.5h,第2次和第3次的提取时间均为1h,合并滤液作为提取液;
(2)将所述提取液在水浴60℃、真空-0.08MPa条件下浓缩至原体积的1/10,在浓缩液中加等体积的戊烷进行液液萃取3次,取水层,得去低极性杂质的提取液;
(3)将所述去低极性杂质的提取液的pH调节至10.5、固含量调节至6%,将其通过1.5L的T28树脂进行吸附,调整吸附过程中液体的流速0.3BV/h;吸附完成后用2BV的水对所述T28树脂进行洗脱,第1BV 控制水的流速0.3BV/h,第2BV控制水的流速1BV/h。洗脱完成后使用2BV 70%的乙醇水溶液对所述树脂进行解析,解析过程中控制乙醇溶液的流速1BV/h。收集解析液,对所述解析液浓缩后进行脱盐、脱色、精脱和干燥,得98.6g甜菊糖苷产品,产品为白色粉末,总苷含量为94.7%,420nm透光度为92.0%,1%浓度的甜菊糖苷在370nm比吸光为0.011。
(4)收集吸附和水洗环节所得的下柱液,调节其pH为2.0后将其通过HZ841树脂进行吸附,树脂用量为800mL,吸附过程中控制流速1BV/h,吸附结束后,用2BV对树脂进行水洗,水洗流速1BV/h。水洗完成后使用2BV 70%的乙醇水溶液对树脂进行解析,控制流速为1BV/h。收集解析液,对所述解析液进行浓缩、干燥,得到55g棕色粉末,甜叶菊总绿原酸含量为81.1%,异绿原酸含量为65.58%。
实施例5
本实施例涉及一种甜叶菊的工业化利用方法,包括如下步骤:
(1)称取甜叶菊粉末1kg,以80%的甲醇水溶液作为提取液,在55℃的条件下对所述甜叶菊的粉末重复提取3次,3次提取过程中的料液比分别为1:6/4.5,第1次提取时间为1.5h,第2次的提取时间均为1h,合并滤液作为提取液;
(2)将所述提取液在水浴60℃、真空-0.08MPa条件下浓缩至原体积的1/10,在浓缩液中加等体积的戊烷进行液液萃取3次,取水层,得去低极性杂质的提取液;
(3)将所述去低极性杂质的提取液的pH调节至11.0、固含量调节至6%,将其通过1.5L的201-H树脂进行吸附,调整吸附过程中液体的流速0.3BV/h;吸附完成后用2BV的水对所述T28树脂进行洗脱,第1BV控制水的流速0.3BV/h,第2BV控制水的流速1BV/h。洗脱完成后使用2BV 70%的乙醇水溶液对所述树脂进行解析,解析过程中控制乙醇溶液的流速1BV/h。收集解析液,对所述解析液浓缩后进行脱盐、脱色、精脱和干燥,得98.2g甜菊糖苷产品,产品为白色粉末,总苷含量为95.0%,420nm 透光度为92.5%,1%浓度的甜菊糖苷在370nm比吸光为0.010。
(4)收集吸附和水洗环节所得的下柱液,调节其pH为2.0后将其通过AB-8树脂进行吸附,树脂用量为800mL,吸附过程中控制流速1BV/h,吸附结束后,用2BV对树脂进行水洗,水洗流速1BV/h。水洗完成后使用2BV 70%的乙醇水溶液对树脂进行解析,控制流速为1BV/h。收集解析液,对所述解析液进行浓缩、干燥,得到56g棕色粉末,甜叶菊总绿原酸含量为80.1%,异绿原酸含量为64.58%。
对比例1
本实例采用水提法对甜叶菊中的甜叶菊异绿原酸和甜菊糖苷进行提取,其具体操作步骤为公开号CN106236808B所提供的方法进行操作,对提取物得到的物质进行液相色谱分析。
对甜叶菊原料(甘肃种子苗)中的甜叶菊绿原酸和实施例1中的绿原酸进行液相色谱分析,并与对比例1中的结构进行对比,结果如表1:
表1
甜叶菊异绿原酸及相关成分 原料 水提液提取物 实施例1中的提取物
单咖啡酰基取代绿原酸/% 20.23 38.73 13.84
咖啡酸/% 0.44 14.83 0.27
异绿原酸/% 79.33 45.07 85.89
由表1数据可知,和原料中绿原酸谱图相比,对比例1所得产品中异绿原酸占比由79.33%降低至45.07%,咖啡酸(异绿原酸完全水解产物)占比由0.44%增加至14.83%,单咖啡酰基取代绿原酸(异绿原酸部分不完全水解产生)的比例增加,说明提取过程中异绿原酸发生降解,而实施例1所得产品中各成分占比和原料接近,生产的异绿原酸成分稳定。
对比例2
与实施例1相比,其区别在于,所述的提取液为浓度65%的乙醇,提取得到103.5g甜菊糖苷产品,产品为白色粉末,总苷含量为90.1%,420nm透光度为80.2%,1%浓度的甜菊糖苷在370nm比吸光为0.033。提取得到59.3g绿原酸棕色粉末,其中甜叶菊总绿原酸为74%,异绿原酸含量为 52.8%。
对比例3
与实施例1相比,其区别在于,所述步骤2)中未进行液液萃取除杂,提取得到107.2g甜菊糖苷产品,产品为白色粉末,总苷含量为87.3%,420nm透光度为74%,1%浓度的甜菊糖苷在370nm比吸光为0.045,得到61.7g绿原酸棕色粉末,其中甜叶菊总绿原酸为71%,异绿原酸含量为56.9%。
对比例4
与实施例1相比,其区别在于,所述步骤3)中,未调整上柱液pH,提取得到110.3g甜菊糖苷产品,产品为白色粉末,总苷含量为84.9%,420nm透光度为70%,1%浓度的甜菊糖苷在370nm比吸光为0.053,得到12.5g绿原酸棕色粉末,其中甜叶菊总绿原酸为71%,异绿原酸含量为54.3%。
由对比例2~4可知,不采用本申请的方法,提取得到的甜菊糖苷的总苷含量较低,透光度和比吸光的测量值也明显增大,证明所得产品的纯度和质量与本申请相比大大降低。
本申请中总苷含量采用GB 8270-2014方法进行测定,透光度为UV检测的14%固形物浓度420nm下的透光度,1%浓度的甜菊糖苷在370nm比吸光采用GB 8270-1999方法进行测定,总绿原酸的含量及各成分比例采用T/CCCMHPIE 1.17-2016方法进行测定。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
工业实用性
本发明提供一种甜叶菊综合利用的工业化方法。本发明方法主要利用高浓度的醇溶液对甜叶菊进行提取,然后采用有机溶剂对提取液进行纯 化,进而本发明根据绿原酸为酸性的特点,调整提取液的pH为碱性,使绿原酸成盐,极性增大,在吸附环节和糖苷成分实现有效的分离。本发明的方法可得到高质量的甜菊糖苷和绿原酸,显著提高甜叶菊的综合利用率,减少自然甜菊资源浪费,降低生产过程资源消耗,同时减少废弃物排放,为一种高效益的绿色生产工艺,可大幅度推进行业进步,具有较好的经济价值和应用前景。

Claims (10)

  1. 一种甜叶菊的工业化利用方法,其特征在于,包括如下步骤:
    1)采用高浓度的短链醇的水溶液对甜叶菊粉末进行提取,得提取液;
    2)去除所述提取液中的短链醇,采用有机溶剂对所述提取液进行液液萃取,取水层,得去低极性杂质的提取液;
    3)将所述去低极性杂质的提取液的pH调节为碱性,将提取液通过甜菊糖苷吸附树脂,分离得到甜菊糖苷提取物。
  2. 根据权利要求1所述的方法,其特征在于,将所述去低极性杂质的提取液通过甜菊糖苷树脂后所得的下柱液的pH调节为酸性,通过绿原酸吸附树脂,得绿原酸提取物。
  3. 根据权利要求1或2所述的方法,其特征在于,所述高浓度的短链醇的水溶液中短链醇为甲醇、乙醇或丙醇中的一种或几种任意组合,所述短链醇的水溶液中短链醇的体积分数为70~95%。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述有机溶剂为与水不相溶的低极性有机溶剂,优选戊烷、正己烷、辛烷、乙醚或环己烷中的一种。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述步骤3)中,调节所述去低极性杂质的提取液的pH为9~11。
  6. 根据权利要求2~5任一项所述的方法,其特征在于,将所述去低极性杂质的提取液通过甜菊糖苷树脂后的所得的下柱液的pH调节为2~3。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,提取过程中的料液比为1:3.5~1:6,提取温度为20~80℃;和/或,提取次数为2~3次,每次提取的时间为0.5~3h。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,包括如下步骤:
    1)采用高浓度的短链醇的水溶液对甜叶菊粉末进行提取,得提取液;
    2)真空浓缩去除所述提取液中的短链醇,采用有机溶剂对去除短链醇的提取液进行液液萃取,取水层,得去低极性杂质的提取液;
    3)调节所述去低极性杂质的提取液的pH为碱性,将其通过甜菊糖苷吸附树脂进行吸附,用水对所述甜菊糖苷吸附树脂进行洗脱,然后用醇溶液对树脂进行解析,收集解析液,得甜菊糖苷提取物;
    4)将步骤3)在吸附和洗脱过程中所得的下柱液混合,调节混合液的pH为酸性,将其通过绿原酸吸附树脂进行吸附,用水对所述绿原酸吸附树脂进行洗脱,然后用醇溶液对所述绿原酸吸附树脂进行解析,收集解析液,得绿原酸提取物。
  9. 权利要求1~8任一项方法提取得到的甜叶菊绿原酸提取物,其中,所述提取物中异绿原酸含量>60%。
  10. 权利要求1~8任一项方法提取得到的甜菊糖苷提取物,其中,所述提取物中的总苷含量>90%,在420nm透光度为>90,浓度1%的甜菊糖苷在370nm比吸光小于0.015。
PCT/CN2019/108619 2018-09-30 2019-09-27 一种甜叶菊的工业化利用方法及其甜菊糖苷和绿原酸 WO2020063894A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217013205A KR102600268B1 (ko) 2018-09-30 2019-09-27 스테비아 레바우디아나의 산업화 이용 방법 및 이의 스테비오사이드와 클로로겐산
US17/216,928 US11891411B2 (en) 2018-09-30 2021-03-30 Industrial utilization method for Stevia rebaudiana and stevioside and chlorogenic acid of Stevia rebaudiana

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811159791.7 2018-09-30
CN201811159791.7A CN109293712B (zh) 2018-09-30 2018-09-30 一种甜叶菊的工业化利用方法及其甜菊糖苷和绿原酸

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/216,928 Continuation US11891411B2 (en) 2018-09-30 2021-03-30 Industrial utilization method for Stevia rebaudiana and stevioside and chlorogenic acid of Stevia rebaudiana

Publications (1)

Publication Number Publication Date
WO2020063894A1 true WO2020063894A1 (zh) 2020-04-02

Family

ID=65161610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108619 WO2020063894A1 (zh) 2018-09-30 2019-09-27 一种甜叶菊的工业化利用方法及其甜菊糖苷和绿原酸

Country Status (4)

Country Link
US (1) US11891411B2 (zh)
KR (1) KR102600268B1 (zh)
CN (1) CN109293712B (zh)
WO (1) WO2020063894A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109293712B (zh) 2018-09-30 2022-05-27 晨光生物科技集团股份有限公司 一种甜叶菊的工业化利用方法及其甜菊糖苷和绿原酸
WO2020210161A1 (en) 2019-04-06 2020-10-15 Cargill, Incorporated Methods for making botanical extract composition
CN109809998A (zh) * 2019-04-11 2019-05-28 高密市瑞普生物科技有限公司 一种从甜叶菊干叶或甜叶菊废渣提取绿原酸的生产方法
CN113875901A (zh) * 2021-09-28 2022-01-04 晨光生物科技集团股份有限公司 一种含异绿原酸的组合物在改善蛋禽输卵管炎症中的应用
CN113880894A (zh) * 2021-11-22 2022-01-04 榆林合力生物科技有限公司 一种甜菊糖苷的提取方法
CN114031499B (zh) * 2021-12-10 2024-02-20 桂林莱茵生物科技股份有限公司 一种从甜叶菊中获取高纯度异绿原酸的方法及应用
CN115385794B (zh) * 2022-09-30 2023-06-02 上海理工大学 一种利用罗望子多糖吸附作用分离提取多依果汁中绿原酸的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008122990A1 (en) * 2007-04-04 2008-10-16 Almet Corporation Limited Compacting upflow extractor and method of using it
CN101798329A (zh) * 2010-03-19 2010-08-11 赣州菊隆高科技实业有限公司 一种超声波提取甜菊糖甙的方法
CN102617667A (zh) * 2012-03-05 2012-08-01 南京师范大学 一种以甜叶菊为原料同时制备总咖啡酰奎尼酸和甜菊糖的方法
CN105001281A (zh) * 2015-06-18 2015-10-28 晨光生物科技集团股份有限公司 一种同步生产甜菊糖苷、黄酮和绿原酸的工业化生产方法
CN106674307A (zh) * 2016-11-03 2017-05-17 明光市大全甜叶菊专业合作社 一种从甜叶菊中提取甜菊糖苷的方法
CN109293712A (zh) * 2018-09-30 2019-02-01 晨光生物科技集团股份有限公司 一种甜叶菊的工业化利用方法及其甜菊糖苷和绿原酸

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395254C (zh) * 2006-07-12 2008-06-18 哈尔滨绿叶科技开发有限责任公司 药用甜叶菊糖苷的制备方法
CN101062078B (zh) 2007-06-18 2011-04-06 石任兵 甜叶菊甜菊苷类和黄酮类提取物及其制备方法
CN101062077B (zh) 2007-06-18 2011-04-06 石任兵 一种同时制备甜叶菊总甜菊苷和甜叶菊总黄酮的方法
CN102295668B (zh) * 2010-12-03 2014-04-02 恩施清江生物工程有限公司 一种从甜叶菊中制备高纯度甜菊糖苷的方法
CN102391119A (zh) * 2011-11-14 2012-03-28 肖文辉 高纯度绿原酸制剂的制备及临床应用
CN103385903A (zh) * 2013-08-02 2013-11-13 石任兵 一种甜叶菊酚类提取物及其在制备降脂制品中的应用
CN103695462B (zh) * 2013-11-15 2018-11-09 江西农业大学 一种甜叶菊毛状根诱导和培养生产绿原酸和二咖啡酰奎宁酸的方法
CN106046075A (zh) * 2016-06-17 2016-10-26 蚌埠市华东生物科技有限公司 一种甜叶菊叶中甜菊糖苷的提取方法
CN106236808B (zh) 2016-08-29 2017-09-05 晨光生物科技集团股份有限公司 一种甜叶菊酚类提取物及其在抗炎制品中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008122990A1 (en) * 2007-04-04 2008-10-16 Almet Corporation Limited Compacting upflow extractor and method of using it
CN101798329A (zh) * 2010-03-19 2010-08-11 赣州菊隆高科技实业有限公司 一种超声波提取甜菊糖甙的方法
CN102617667A (zh) * 2012-03-05 2012-08-01 南京师范大学 一种以甜叶菊为原料同时制备总咖啡酰奎尼酸和甜菊糖的方法
CN105001281A (zh) * 2015-06-18 2015-10-28 晨光生物科技集团股份有限公司 一种同步生产甜菊糖苷、黄酮和绿原酸的工业化生产方法
CN106674307A (zh) * 2016-11-03 2017-05-17 明光市大全甜叶菊专业合作社 一种从甜叶菊中提取甜菊糖苷的方法
CN109293712A (zh) * 2018-09-30 2019-02-01 晨光生物科技集团股份有限公司 一种甜叶菊的工业化利用方法及其甜菊糖苷和绿原酸

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG LI'NA ET AL.: "Research on extraction and purification of stevioside from stevia leaves", CHINA CONDIMENT, 31 January 2008 (2008-01-31), pages 58 - 59 *

Also Published As

Publication number Publication date
KR102600268B1 (ko) 2023-11-10
CN109293712B (zh) 2022-05-27
CN109293712A (zh) 2019-02-01
US11891411B2 (en) 2024-02-06
KR20210076030A (ko) 2021-06-23
US20210230204A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2020063894A1 (zh) 一种甜叶菊的工业化利用方法及其甜菊糖苷和绿原酸
CN109265346B (zh) 一种甜叶菊的工业化利用方法及其绿原酸和甜菊糖苷
KR102580703B1 (ko) 스테비아 레바우디아나 클로로겐산 및 스테비오사이드를 동시에 제조하는 산업화 방법
CN103980121B (zh) 一种以杜仲鲜叶生产绿原酸的方法
CN109053821B (zh) 从罗汉果叶中提取茶多酚、总氨基酸、黄酮化合物的方法
CN106349324B (zh) 从油橄榄叶中提取分离山楂酸的方法
CN104262446B (zh) 从罗汉果中提取罗汉果甜甙ⅴ的方法
CN101348474A (zh) 一种从丹参茎叶中制备丹酚酸b和丹参素的方法
CN105713053B (zh) 一种硫代葡萄糖苷提取分离方法
CN109021046B (zh) 一种从罗汉果茎叶中同时提取槲皮苷和山萘苷的方法
CN104292366A (zh) 从落叶松中同时提取阿拉伯半乳聚糖和二氢槲皮素的方法
CN108117571B (zh) 一种龙胆苦苷单体的制备方法
US10968470B2 (en) Method for preparing rubusoside
CN113398157A (zh) 从罗汉果花中连续提取分离多种天然活性成分的方法
CN108997359B (zh) 一种从甜菊糖生产废渣中提取叶绿素的方法
CN107213180B (zh) 一种三七黄酮的分离提取方法
CN102670935B (zh) 一种从藠头中提取总皂苷的方法
CN104189073A (zh) 丹参总酚酸的制备方法
CN109553654B (zh) 从甘草中提取甘草甜素、甘草黄酮及甘草多糖的方法
CN111153944A (zh) 一种采用模拟移动床色谱提取甜菊糖苷的方法
CN104606264A (zh) 一种苹婆多酚的提取方法
NL2026582B1 (en) Treatment method for improving saponin from aerial part of panax notoginseng
CN115624576B (zh) 一种甘草提取液的制备及脱色方法
CN113621006B (zh) 一种同时制备苯乙醇苷与松果菊苷的方法
CN110526892B (zh) 一种从蓝锭果中提取花青素的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217013205

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19867106

Country of ref document: EP

Kind code of ref document: A1