WO2020063530A1 - 封装结构、电子装置及封装方法 - Google Patents

封装结构、电子装置及封装方法 Download PDF

Info

Publication number
WO2020063530A1
WO2020063530A1 PCT/CN2019/107269 CN2019107269W WO2020063530A1 WO 2020063530 A1 WO2020063530 A1 WO 2020063530A1 CN 2019107269 W CN2019107269 W CN 2019107269W WO 2020063530 A1 WO2020063530 A1 WO 2020063530A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier dam
organic
base substrate
packaging
Prior art date
Application number
PCT/CN2019/107269
Other languages
English (en)
French (fr)
Inventor
钱玲芝
洪瑞
张嵩
谷朋浩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/652,712 priority Critical patent/US11805667B2/en
Publication of WO2020063530A1 publication Critical patent/WO2020063530A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • At least one embodiment of the present disclosure relates to a packaging structure, an electronic device, and a packaging method.
  • the current cutting-edge packaging technology is thin film packaging technology.
  • the packaging film may be formed by stacking multiple inorganic packaging layers on top of each other, or the packaging film may be formed by stacking inorganic packaging layers and organic packaging layers on top of each other.
  • At least one embodiment of the present disclosure provides a packaging structure including a base substrate, an electronic device placed on the base substrate, an organic packaging layer, and a barrier dam; the organic packaging layer covers the electronic device
  • the barrier dam is disposed outside the organic encapsulation layer; and the barrier dam includes an upper surface remote from the base substrate and a side surface facing the organic encapsulation layer, the upper surface and the side surface At least one of them includes a groove and a protrusion.
  • the grooves and protrusions are configured so that a surface roughness of the at least one of the upper surface and the side surface is Rz> 5 nm.
  • the packaging structure provided by an embodiment of the present disclosure further includes a first inorganic layer stacked with the organic packaging layer; the organic packaging layer and the barrier dam are both located away from the liner of the first inorganic layer.
  • One side of the base substrate is selected from the organic packaging layer.
  • an edge of the organic packaging layer is in contact with the side surface of the barrier dam; or an edge of the organic packaging layer is in contact with the upper surface of the barrier dam. Surface contact.
  • an edge of the organic packaging layer includes an inclined surface, and the inclined surface has an angle with a surface of the base substrate facing the organic packaging layer;
  • the inclined surface includes a first One end and second end, from the first end to the second end, the thickness of the organic encapsulation layer in the direction perpendicular to the base substrate gradually decreases; the slope is on the base substrate
  • the width of the orthographic projection in the direction from the orthographic projection of the first end on the base substrate to the orthographic projection of the second end on the base substrate is less than 2 mm.
  • the packaging structure provided by an embodiment of the present disclosure further includes a second inorganic layer stacked with the organic packaging layer; the second inorganic layer covers the organic packaging layer and the barrier dam, and the second The inorganic layer is in contact with the side surface of the barrier dam or is in contact with both the upper surface and the side surface of the barrier dam.
  • a space between the organic packaging layer and the barrier dam so that the organic packaging layer and the barrier dam do not contact each other.
  • the packaging structure provided by an embodiment of the present disclosure further includes a second inorganic layer stacked with the organic packaging layer, wherein the second inorganic layer covers the organic packaging layer and the barrier dam and the barrier layer. And the second inorganic layer is in contact with both the upper surface and the side surface of the barrier dam, and the second inorganic layer is in contact with the first inorganic layer at the interval.
  • the packaging structure provided by an embodiment of the present disclosure further includes a first inorganic layer stacked with the organic packaging layer; the organic packaging layer is disposed on the first inorganic layer away from the base substrate.
  • the packaging structure provided by an embodiment of the present disclosure further includes a second inorganic layer stacked with the organic packaging layer; the second inorganic layer covers the organic packaging layer and the first inorganic layer, and the The second inorganic layer is in contact with a surface of the first inorganic layer remote from the base substrate.
  • a height of the barrier dam in a direction perpendicular to the base substrate is smaller than a thickness of the organic packaging layer in a direction perpendicular to the base substrate.
  • a planar shape of the barrier dam when viewed from a direction perpendicular to the base substrate, is a closed ring shape or an unclosed ring shape.
  • a planar shape of the barrier dam when viewed from a direction perpendicular to the base substrate, includes a plurality of strips extending along edges of the organic packaging layer.
  • a planar pattern of the organic packaging layer when viewed from a direction perpendicular to the base substrate, includes corners, and a planar shape of the barrier dam includes surrounding the organic packaging layer. Bent part of the corner.
  • the number of the barrier dams is multiple, and the barrier dams are arranged at intervals in a direction away from the organic packaging layer.
  • the material of the barrier dam is a hydrophobic material.
  • the hydrophobic material is polyurethane or polydimethylsiloxane.
  • the electronic device is an organic light emitting diode device or an inorganic light emitting diode device.
  • At least one embodiment of the present disclosure further provides an electronic device including any one of the packaging structures provided by the embodiments of the present disclosure.
  • the electronic device further includes an electronic device, which is disposed on the base substrate and is covered by the organic encapsulation layer.
  • At least one embodiment of the present disclosure also provides a packaging method including: providing a base substrate; forming an electronic device on the base substrate; forming an organic packaging layer, wherein the organic packaging layer covers the electronics A device; forming a barrier dam, wherein the barrier dam includes an upper surface remote from the base substrate and a side surface facing the organic packaging layer, and at least one of the upper surface and the side surface includes a groove and A protrusion, wherein the organic encapsulation layer is formed after the barrier dam is formed, wherein the barrier dam is disposed outside the organic encapsulation layer.
  • FIG. 1 is a schematic diagram of a packaging structure
  • FIG. 2A is a schematic plan view of a packaging structure according to an embodiment of the present disclosure.
  • FIG. 2B is a schematic cross-sectional view taken along line A-A 'in FIG. 2A;
  • FIG. 2C is another schematic cross-sectional view taken along line A-A 'in FIG. 2A;
  • 2D is another schematic cross-sectional view of a packaging structure according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view of a barrier dam in the packaging structure shown in FIG. 2B;
  • FIG. 4A is an enlarged schematic diagram of an edge of the organic packaging layer shown in FIG. 2B;
  • 4B is a schematic diagram of a contact angle between a liquid organic material and a barrier dam having different surface roughness
  • 5A is another schematic plan view of a packaging structure provided by an embodiment of the present disclosure.
  • 5B is another schematic plan view of a packaging structure according to an embodiment of the present disclosure.
  • 5C is another schematic plan view of a packaging structure according to an embodiment of the present disclosure.
  • FIG. 6A is a schematic plan view of another packaging structure according to an embodiment of the present disclosure.
  • FIG. 6B is a schematic cross-sectional view taken along the line B-B 'in FIG. 6A;
  • 6C is a partially enlarged schematic diagram of the barrier dam and the first inorganic layer in the package structure shown in FIG. 6B;
  • FIG. 7A is a schematic plan view of another packaging structure according to an embodiment of the present disclosure.
  • FIG. 7B is a schematic cross-sectional view taken along the line C-C 'in FIG. 7A;
  • FIG. 7C is another schematic plan view of a packaging structure provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an electronic device according to an embodiment of the present disclosure.
  • FIGS. 9A-9H are schematic diagrams of a packaging method according to an embodiment of the present disclosure.
  • FIGS 10A-10G are schematic diagrams of another packaging method provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of an electronic device.
  • the electronic device includes a base substrate 101, a light emitting device 102 disposed on the base substrate 101, an inorganic packaging layer 40 and an organic packaging layer 50.
  • the organic encapsulation layer 50 is disposed on the inorganic encapsulation layer 40.
  • the base substrate 1 has an edge and a non-functional area D near the edge.
  • the electronic device is a display panel, and the non-functional area D is a non-display area.
  • the non-functional area D is provided with a device such as a driving circuit.
  • a liquid organic material is used to form the organic encapsulation layer 50; in the process of forming the organic encapsulation layer 50, the liquid organic material spreads to the non-functional region D, so that the liquid organic material easily exceeds the amount used to set the organic encapsulation layer 50.
  • Presetting the area and entering the non-functional area D of the substrate 101 affects the setting of the driving circuit and other devices in the non-functional area D, so it is necessary to reserve the non-functional area D with a larger area, which is not conducive to achieving a narrow frame structure.
  • the ductility of the inorganic encapsulation layer 40 is poor, and cracks easily occur.
  • the bonding strength of the inorganic packaging layer 40 and the organic packaging layer 50 is relatively low, and it is easy to separate from each other, and is not conducive to releasing stress during the bending process of the inorganic packaging layer 40. Therefore, the inorganic packaging layer 40 is prone to cracks. As a result, external moisture, oxygen, and the like come into contact with the light emitting device 102 through the crack, which will reduce the service life of the light emitting device 102.
  • At least one embodiment of the present disclosure provides a packaging structure including a base substrate, an organic packaging layer placed on the base substrate, and a barrier dam; the barrier dam is disposed outside the organic packaging layer; and the barrier dam includes a distance The upper surface of the base substrate and the side surface facing the organic packaging layer, at least one of the upper surface and the side surface includes a groove and a protrusion.
  • FIG. 2A is a schematic plan view of a package structure provided by an embodiment of the present disclosure
  • FIG. 2B is a schematic cross-sectional view taken along line AA ′ in FIG. 2A
  • FIG. 3 is a package shown in FIG. 2B
  • a schematic cross-sectional view of the barrier dam in the structure taking the left column of the two cylindrical sections of the barrier 301 shown in FIG. 2B as an example.
  • the packaging structure 10 includes a base substrate 1, an organic packaging layer 5 placed on the base substrate 1, and a barrier dam 3.
  • the barrier dam 3 is disposed outside the organic encapsulation layer 5.
  • the outer side of the organic encapsulation layer 5 refers to a side of the organic encapsulation layer 5 that faces the edge of the base substrate 1.
  • the barrier dam 3 is disposed around the organic encapsulation layer 5.
  • the barrier dam 3 is disposed around the entire organic encapsulation layer 5.
  • the organic packaging layer 5 is made of a liquid organic material. During the manufacturing process of the organic packaging layer 5, the barrier dam 3 has a blocking effect on the liquid organic material.
  • the barrier dam 3 includes an upper surface 301 remote from the base substrate 1 and a side surface 302 facing the organic packaging layer 5.
  • the upper surface 301 and the side surface 302 of the barrier dam 3 intersect each other, and at least one of the upper surface 301 and the side surface 302
  • One side includes a groove 30 and a protrusion 31.
  • the liquid organic material spreads toward the edge of the substrate 1, and it may contact the side surface 302 of the barrier dam 3 or both the side surface 302 and the upper surface 301 of the barrier dam 3.
  • the groove 30 and the protrusion 31 make the upper surface 301 and the side surface 302 have greater roughness.
  • the barrier dam 3 can effectively prevent the liquid organic material from excessively spreading to the edge of the substrate 1 to prevent the liquid
  • the organic material exceeds the predetermined region of the organic encapsulation layer 5 and enters the edge region of the base substrate 1.
  • the width reserved in the edge region of the base substrate 1 can be reduced, which is beneficial to achieve a narrow frame design.
  • the blocking dam 3 is disposed around the organic packaging layer 5 or along the side of the organic packaging layer 5, which is beneficial to improving the linearity of the edge of the organic packaging layer 5. It should be noted that the shapes of the outlines of the grooves 30 and the protrusions 31 are not necessarily the shapes shown in the drawings, and the shapes of the outlines may be irregular.
  • the barrier dam 3 is different from the frame sealant (dam glue) in the packaging process.
  • the barrier dam 3 can be located outside the barrier dam 3 (close to the edge of the substrate 1). Side) Setting frame sealant.
  • the groove 30 and the protrusion 31 are structures specially provided on the upper surface 301 and the side surface 302 of the barrier dam 3 as needed, which is different from an uneven state that cannot be avoided due to process accuracy.
  • the groove 30 refers to a structure that is recessed with respect to the surface on which the groove 30 is provided
  • the protrusion 31 refers to a structure that is projected on the surface on which the protrusion 31 is provided.
  • the barrier dam 3 is first formed, and then a groove 30 and a protrusion 31 are formed on at least one of the upper surface 301 and the side surface 302 of the barrier dam 3 as needed by a process such as etching.
  • At least one of the upper surface 301 and the side surface 302 includes the groove 30 and the protrusion 31 including the following three cases: (1) only the upper surface 301 includes the groove 30 and the protrusion 31; (2) only the side surface 302 includes a concave The groove 30 and the protrusion 31; (3) Both the upper surface 301 and the side surface 302 include the groove 30 and the protrusion 31.
  • the organic material used to form the organic encapsulation layer 5 may be a resin material, such as an epoxy resin or an acrylic resin.
  • the organic material used to form the organic encapsulation layer 5 is not limited to the above.
  • At least one of the upper surface 301 and the side surface 302 includes a groove 30 and a protrusion 31, and the groove 30 and the protrusion 31 are configured so that the surface roughness of the at least one is Rz> 5nm to achieve a better resistance to liquid Diffuse effect of organic materials.
  • Rz is the maximum height of the contour, that is, the distance between the contour peak and the contour valley (that is, the distance between the highest point and the lowest point) within the sampling length.
  • the above surface 301 is taken as an example.
  • the average value of the heights of the highest points P of the five protrusions 31 in the direction perpendicular to the substrate 1 and the lowest values of the five grooves 30 The difference between the average values of the heights of the points V in the direction perpendicular to the base substrate 1 is greater than 5 nm. Further, for example, 5 nm ⁇ Rz ⁇ 1000 nm, and roughness within this range is easy to produce.
  • the packaging structure 10 further includes a first inorganic layer 401.
  • the first inorganic layer 401 and the organic encapsulation layer 5 are stacked.
  • the organic encapsulation layer 5 and the barrier dam 3 are both located on a side of the first inorganic layer 401 away from the base substrate 1.
  • the first inorganic layer 401 is disposed on the base substrate 1 and covers the electronic device 2 and at least a part of the base substrate 1 to achieve the sealing of the electronic device 2.
  • the electronic device 2 is also covered by the organic encapsulation layer 5, that is, the orthographic projection of the electronic device 2 on the surface of the base substrate 1 facing the organic encapsulation layer 5 is located on the organic encapsulation layer 5 on the base substrate 1 facing the organic encapsulation layer 5. Inside the orthographic projection.
  • the electronic device 2 may be an organic light emitting diode (OLED) device, an inorganic light emitting diode, or other electronic components that need to be sealed.
  • the base substrate 1 may be, for example, a glass substrate, a quartz substrate, or the like.
  • the base substrate 1 may be a flexible substrate.
  • the material of the base substrate 1 is polyimide.
  • the type and material of the base substrate 1 are not limited to the above-listed types, which are not limited in the embodiments of the present disclosure.
  • the edge 6 of the organic encapsulation layer 5 is in contact with the side surface 302 and the upper surface 301 of the barrier dam 3, and the surface of the organic encapsulation layer 5 that is in contact with the barrier dam 3 is in contact with the barrier dam 3.
  • the side surface 302 and the upper surface 301 of the barrier dam 3 both have grooves 30 and protrusions 31, so that the side surface 302 and the upper surface 301 of the barrier dam 3 can effectively prevent the liquid organic material from excessively reaching the substrate
  • the edges of 1 are diffuse.
  • the edge 6 of the organic packaging layer 5 refers to a portion of the organic packaging layer 5 near the barrier dam 3.
  • FIG. 4A is an enlarged schematic diagram of the edge 6 of the organic encapsulation layer shown in FIG. 2B, and the left column in the two column cross sections of the barrier dam 301 shown in FIG. 2B is taken as an example.
  • 4B is a schematic diagram of a contact angle between a liquid organic material and a barrier dam having different surface roughness.
  • the edge of the organic packaging layer 5 includes an inclined surface 501, and the inclined surface 501 and the surface of the base substrate 1 facing the organic packaging layer 5 have an included angle.
  • the inclined surface 501 includes a first end A and a second end B.
  • the thickness of the organic encapsulation layer 5 in a direction perpendicular to the substrate 1 gradually decreases.
  • the side surface 302 and the upper surface 301 of the barrier dam 3 that are in contact with the liquid organic material are unchanged without changing the material forming the barrier dam 3.
  • the contact angle is ⁇ 1 ;
  • the contact angle is ⁇ 2 .
  • ⁇ 1 ⁇ 2 the liquid organic material 502 forming a large contact angle ⁇ 2 has a low degree of wetting on the surface of the barrier dam 3, and the contact area in contact with the surface of the barrier dam 3 is small. Therefore, in FIG. 4A, the grooves 30 and the protrusions 31 can increase the roughness of the side surface 302 and the upper surface 301 of the barrier dam 3, thereby facilitating the increase of the liquid organic material and barrier used to form the organic encapsulation layer 5.
  • the contact angle of the upper surface 301 of the dam 3 reduces the width L, which is beneficial to realize a narrow frame product, such as a narrow frame display device.
  • the width L is less than 2 mm, which can better meet the needs of narrow-frame products.
  • Fig. 2C is another schematic cross-sectional view taken along line A-A 'in Fig. 2A.
  • the edge 6 of the organic encapsulation layer 5 is in contact with the side surface 302 of the barrier dam 3.
  • the side surface 302 of the barrier dam 3 includes a groove 30 and a protrusion 31.
  • the side surface 302 can effectively prevent the liquid The organic material further spreads toward the edge of the base substrate 1.
  • the organic encapsulation layer 5 may not contact the upper surface 301 of the barrier dam 3.
  • only the side surface 302 of the barrier dam 3 includes a groove 30 and a protrusion 31.
  • FIG. 2D is another schematic cross-sectional view of a packaging structure according to an embodiment of the present disclosure.
  • the liquid organic material spreads to the edge of the substrate 1 to a small extent, there is a space between the organic packaging layer 5 and the barrier dam 3, and the organic packaging layer 5 is not in contact with barrier dam 3.
  • the packaging structure 10 further includes a second inorganic layer 402 that is stacked with the organic packaging layer 5.
  • the second inorganic layer 402 covers the organic encapsulation layer 5 and the barrier dam 3, and the second inorganic layer 402 is in contact with the upper surface 301 of the barrier dam 3.
  • the grooves 30 and protrusions 31 on the upper surface 301 of the barrier dam 3 make it have a larger roughness, which can increase the contact area between the second inorganic layer 402 and the barrier dam 3, which is beneficial to enhancing the second inorganic layer 402 and the barrier dam. 3 bonding strength, so as to obtain a better sealing effect.
  • the second inorganic layer 402 is in contact with both the upper surface 301 and the side surface 302 of the barrier dam 3.
  • the upper surface 301 and the side surface 302 of the barrier dam 3 both include the grooves 30 and the protrusions 31, and both have a larger roughness, so that the contact area between the second inorganic layer 402 and the barrier dam 3 can be further increased. It is more beneficial to enhance the bonding strength between the second inorganic layer 402 and the barrier dam 3, so as to obtain a better sealing effect.
  • the second inorganic layer 402 covers the space between the organic encapsulation layer 5 and the barrier dam 3 and the space between the organic encapsulation layer 5 and the barrier dam 3. Both the surface 301 and the side surface 302 are in contact, and the second inorganic layer 402 is in contact with the first inorganic layer 401 at intervals. Therefore, in addition to enhancing the bonding strength between the second inorganic layer 402 and the barrier dam 3, the bonding strength between the second inorganic layer 402 and the first inorganic layer 401 is also enhanced, and the sealing effect at the interval is improved.
  • the height of the barrier dam 3 in a direction perpendicular to the base substrate 1 is smaller than the thickness of the organic packaging layer 5 in a direction perpendicular to the base substrate 1.
  • the lower height of the barrier dam 3 is beneficial to the stability of the barrier dam 3 and does not increase the thickness of the packaging structure 10. It is also beneficial to reduce the thickness of the packaging structure 10, so that light and thin products can be obtained.
  • the packaging structure 10 is suitable for light and thin Display device.
  • FIG. 5A is another schematic plan view of a packaging structure provided by an embodiment of the present disclosure
  • FIG. 5B is another schematic plan view of a packaging structure provided by an embodiment of the present disclosure
  • FIG. 5C is a packaging structure provided by an embodiment of the present disclosure
  • the planar shape of the barrier dam 3 may be a closed ring shape, as shown in FIG. 2A.
  • the planar shape of the barrier dam 3 may also be an open loop, as shown in FIG. 5A.
  • the planar shape of the barrier dam 3 includes a plurality of strips extending along the edge of the organic packaging layer 5, as shown in FIG. 5B.
  • the planar pattern of the organic encapsulation layer 5 includes a plurality of sides, and each of the plurality of sides corresponds to a bar-shaped barrier dam 3 extending along the side.
  • the organic encapsulation layer 5 includes corners, that is, the planar pattern of the organic encapsulation layer 5 includes corners, and the planar pattern of the barrier dam 3 includes a plurality of strip-shaped portions 32 extending along the edge of the organic encapsulation layer 5.
  • the planar pattern of the organic encapsulation layer 5 includes a plurality of corners
  • the planar pattern of the barrier dam 3 includes a plurality of bent portions 33 surrounding each of the plurality of corners.
  • the material of the barrier dam 3 is a hydrophobic material.
  • the material of the barrier dam 3 is a hydrophobic organic material, such as polyurethane, polydimethylsiloxane, or the like.
  • the material of the barrier dam 3 may also be other organic materials, such as polyimide (PI).
  • the material of the barrier dam 3 may be an inorganic material, such as silicon oxide, silicon nitride, or silicon oxynitride. It should be noted that the material of the barrier dam 3 is not limited to the types listed above.
  • FIG. 6A is a schematic plan view of another package structure according to an embodiment of the present disclosure
  • FIG. 6B is a schematic cross-sectional view taken along line B-B 'in FIG. 6A.
  • the organic packaging layer 5 is disposed on a side of the first inorganic layer 401 remote from the substrate 1.
  • the first inorganic layer 401 covers the barrier dam 3, and the first inorganic layer 401 covers the barrier dam 3.
  • the layer 401 is in contact with the upper surface 301 and the side surface 302 of the barrier dam 3.
  • the grooves 30 and protrusions 31 on the upper surface 301 and the side surface 302 of the barrier dam 3 make the upper surface 301 and the side surface 302 have a larger roughness, which can increase the first inorganic layer 401 and the barrier dam 3.
  • the contact area is beneficial to enhance the bonding strength between the first inorganic layer 401 and the barrier dam 3, so as to obtain a better sealing effect.
  • FIG. 6C is a partially enlarged schematic diagram of the barrier dam and the first inorganic layer in the package structure shown in FIG. 6B.
  • the left column in the two column sections of the barrier 301 shown in FIG. 6B is example.
  • a portion of the first inorganic layer 401 that is remote from the surface 4011 of the base substrate 1 and covers the blocking dam 3 has a groove 41 and a protrusion 42.
  • the surface The portion of 4011 covering the barrier dam 3 has a similar profile to the upper surface 301 and the side surface 302 of the barrier dam 3, that is, due to the existence of the grooves 30 and protrusions 31 on the upper surface 301 and the side surface 302 of the barrier dam 3
  • the grooves 41 and the protrusions 42 are formed on the surface 4011 of the first inorganic layer 401, and the shapes of the grooves 41 and the protrusions 42 are similar to those of the grooves 30 and the protrusions 31, respectively.
  • the groove 41 and the protrusion 42 make the portion of the surface 4011 of the first inorganic layer 401 covering the barrier dam 3 also have a relatively high roughness, for example, the roughness is Rz> 5
  • the organic encapsulation layer 5 is in contact with the surface 4011 of the first inorganic layer 401 remote from the base substrate 1.
  • the grooves 41 and protrusions 42 on the surface 4011 of the first inorganic layer 401 make the portion of the surface 4011 covering the barrier dam 3 have a greater roughness, so that the portion of the surface 4011 covering the barrier dam 3 can effectively prevent the formation of an organic package.
  • the liquid organic material of the layer 5 excessively spreads to the edge of the base substrate 1 to prevent the liquid organic material from exceeding the predetermined area of the organic encapsulation layer 5 and entering the edge area of the base substrate 1.
  • the width L of the edge of the organic encapsulation layer 5 can also be reduced. In this way, the width reserved in the edge region of the base substrate 1 can be reduced, which is beneficial to achieve a narrow frame design.
  • the packaging structure 10 shown in FIG. 6B further includes a second inorganic layer 402 stacked with the organic packaging layer 5, the second inorganic layer 402 covers the organic packaging layer 5 and the first inorganic layer 401, and the second inorganic layer 402 and The surface 4011 of the first inorganic layer 401 remote from the base substrate 1 is in contact.
  • the grooves 41 and protrusions 42 on the surface 4011 make the portion of the surface 4011 covering the barrier dam 3 have a larger roughness, which can increase the contact area between the second inorganic layer 402 and the first inorganic layer 401, which is beneficial to enhancing the second
  • the bonding strength between the inorganic layer 402 and the first inorganic layer 401 is used to obtain a better sealing effect.
  • FIG. 7A is a schematic plan view of another package structure according to an embodiment of the present disclosure
  • FIG. 7B is a schematic cross-sectional view taken along a line C-C 'in FIG. 7A.
  • the difference between the packaging structure 10 shown in FIGS. 7A and 7B and the packaging structure shown in FIG. 6B is that the number of the barrier dams 3 is multiple, and the barrier dams 3 are arranged at intervals in a direction away from the organic packaging layer 5. .
  • the plurality of barrier dams 3 can further prevent the organic encapsulation layer 5 from epitaxial, and ensure that the liquid organic material used to form the organic encapsulation layer 5 does not exceed the preset area;
  • the sealing effect of the first inorganic layer 401 and the second inorganic layer 402 on the electronic device 2 can be further improved.
  • Other features of the package structure shown in FIG. 7A and FIG. 7B are the same as those in FIG. 6B, please refer to the previous description.
  • the structure of the plurality of barrier dams 3 shown in FIG. 7B can also be used in FIG. 2B.
  • FIG. 7C is another schematic plan view of a packaging structure according to an embodiment of the present disclosure.
  • the planar shape of each of the plurality of barrier dams 3 may be a closed ring shape, as shown in FIG. 7A.
  • the planar pattern of each barrier dam 3 includes a bent portion extending along an edge of the organic packaging layer 5, and the bent portion surrounds a corner of the organic packaging layer.
  • the plurality of bent portions are partially overlapped in a direction perpendicular to the edge of the base substrate 1 so that each bent portion includes an inner strip portion 34 and an outer strip portion 35.
  • the inner stripe portion 34 and the outer stripe portion 35 partially overlap, so that a plurality of bent portions collectively surround the entire organic encapsulation layer 5 so as to face the organic encapsulation layer 5 at various positions on the outer side of the organic encapsulation layer 5. Block it.
  • a plurality of bar-shaped barrier dams 3 are arranged at intervals.
  • the inner stripe portion 34 is spaced from the outer stripe portion 35.
  • the inner side refers to an edge away from the base substrate 1
  • the outer side refers to an edge near the base substrate 1.
  • At least one embodiment of the present disclosure further provides an electronic device including any one of the packaging structures provided by the embodiments of the present disclosure.
  • the electronic device further includes an electronic device 2, which is disposed on the base substrate 1 and covered with an organic encapsulation layer 5, as shown in FIG. 2B.
  • FIG. 8 is a schematic diagram of an electronic device according to an embodiment of the present disclosure.
  • the electronic device 100 includes any packaging structure 10 provided by an embodiment of the present disclosure.
  • the electronic device 100 has a narrower frame.
  • the electronic devices of the electronic device 100 have better sealing performance and can achieve a longer service life.
  • the electronic device may include any device having a sealing requirement on the electronic device such as a light emitting device.
  • the electronic device 100 may be a display device (such as an OLED display device).
  • the electronic device 100 may be a product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital camera, a navigator, and the like.
  • the electronic device 100 may be a lighting device (such as an OLED lighting device), such as a decorative lantern, a flexible lighting device, or the like.
  • the electronic device 100 may be a backlight.
  • the embodiment of the present disclosure does not limit the kind of the electronic device.
  • FIG. 8 is only a schematic diagram of an electronic device including any one of the packaging structures provided by the embodiments of the present disclosure, and other structures not shown of the electronic device. Those skilled in the art may refer to conventional technologies. Not limited.
  • At least one embodiment of the present disclosure also provides a packaging method including: providing a base substrate; forming an electronic device on the base substrate; forming an organic packaging layer, wherein the organic packaging layer covers the electronics A device; forming a barrier dam, wherein the barrier dam includes an upper surface remote from the base substrate and a side surface facing the organic packaging layer, and at least one of the upper surface and the side surface includes a groove and A protrusion, wherein the organic encapsulation layer is formed after the barrier dam is formed, wherein the barrier dam is disposed outside the organic encapsulation layer.
  • FIGS. 9A-9H are schematic diagrams of a packaging method provided by an embodiment of the present disclosure.
  • the method further includes: forming a first inorganic layer stacked with an organic packaging layer, where the organic packaging layer and the barrier dam are both located on the first inorganic layer. A side far from the base substrate; and forming a second inorganic layer stacked with the organic encapsulation layer, the second inorganic layer covers the organic encapsulation layer and the barrier dam, and the second inorganic layer is in contact with an upper surface or a side surface of the barrier dam.
  • the specific process of the packaging method is as follows.
  • a base substrate 1 is provided, and an electronic device 2 is formed on the base substrate 1.
  • the electronic device 2 is an OLED device.
  • the OLED device may be formed by a semiconductor process.
  • the base substrate 1 may be, for example, a glass substrate, a quartz substrate, or the like.
  • the base substrate 1 may be a flexible substrate.
  • the material of the base substrate 1 is polyimide.
  • the electronic device 2 is not limited to being an OLED device, and may be any device that needs to be packaged; the type and material of the substrate 1 are not limited to the types listed above, which are not limited in the embodiments of the present disclosure.
  • a first inorganic layer 401 is formed.
  • the first inorganic layer 401 is formed by a plasma enhanced chemical vapor deposition or atomic deposition method.
  • the material of the first inorganic layer 401 is an inorganic material, for example, it includes silicon oxide, silicon nitride, or silicon oxynitride.
  • a barrier dam 3 is formed.
  • the barrier dam 3 is located outside the electronic device 2.
  • the space inside the barrier dam 3 (the side far from the edge of the substrate 1) is used for subsequent formation of the organic packaging layer.
  • the barrier dam 3 includes an upper surface 301 remote from the base substrate 1 and a side surface 302 facing the organic packaging layer to be formed later.
  • the barrier dam 3 may be formed by an inkjet printing or coating process in combination with a patterning process such as photolithography. Please refer to the description of the previous embodiment for the planar pattern of the barrier dam 3, and details are not described herein again.
  • the upper surface 301 or / and the side surface 302 of the barrier dam 3 are processed so that at least one of the upper surface 301 and the side surface 302 includes a groove and a protrusion.
  • the upper surface 301 and the side surface 302 each include a groove and a protrusion.
  • the process may include plasma etching, laser etching, and the like.
  • an organic encapsulation layer 5 is formed on the side of the first inorganic layer 401 remote from the substrate 1 and inside the barrier dam 3, so that the barrier dam 3 is located outside the organic encapsulation layer 5 and the organic encapsulation layer 5 Covering electronic device 2.
  • Forming the organic encapsulation layer 5 includes forming an organic material layer using a liquid organic material by a coating method and curing the organic material layer to obtain the organic encapsulation layer 5. Prior to curing, the liquid organic material will spread toward the edges of the substrate 1 when the liquid organic material contacts the side surface 302 of the barrier dam 3 (as shown in FIG.
  • the barrier dam 3 can effectively prevent the liquid organic material from excessively spreading to the edge of the substrate 1, and prevent the liquid organic material from exceeding the predetermined area of the organic encapsulation layer 5 and entering the edge region of the substrate 1. In this way, the width reserved in the edge region of the base substrate 1 can be reduced, which is beneficial to achieve a narrow frame design.
  • the grooves and protrusions are formed by the above-mentioned process so that the surface roughness of at least one of the upper surface 301 and the side surface 302 is Rz> 5 nm, so as to achieve a better effect of preventing the spread of the liquid organic material. Further, for example, 5 nm ⁇ Rz ⁇ 1000 nm, the upper surface 301 or the side surface 302 having a roughness within the range is easy to fabricate, and is more easily obtained by the etching process.
  • a second inorganic layer 402 stacked with the organic encapsulation layer 5 is formed on the basis of the structure shown in FIG. 9E.
  • the second inorganic layer 402 covers the organic encapsulation layer 5 and the barrier dam 3.
  • the layer 402 is in contact with the upper surface 301 of the barrier dam 3, thereby obtaining a package structure as shown in FIG. 9G.
  • the second inorganic layer 402 may be formed by a deposition method such as chemical vapor deposition or atomic deposition.
  • the grooves 30 and protrusions 31 provided on at least one of the upper surface 301 and the side surface 302 of the barrier dam 3 have a larger roughness, which can increase the contact area between the second inorganic layer 402 and the barrier dam 3, which is conducive to enhancing The bonding strength between the second inorganic layer 402 and the barrier dam 3 is obtained, so as to obtain a better sealing effect.
  • the second inorganic layer 402 is formed on the basis of the structure shown in FIG. 9F, and the second inorganic layer 402 is in contact with both the upper surface 301 and the side surface 302 of the barrier dam 3, thereby obtaining 9H package structure.
  • the upper surface 301 and the side surface 302 of the barrier dam 3 each include the grooves 30 and the protrusions 31, and the upper surface 301 and the side surface 302 of the barrier dam 3 both have a larger roughness, so that the second surface can be further increased.
  • the contact area between the inorganic layer 402 and the barrier dam 3 is more conducive to enhancing the bonding strength between the second inorganic layer 402 and the barrier dam 3, so as to obtain a better sealing effect.
  • FIGS. 10A-10G are schematic diagrams of another packaging method provided by an embodiment of the present disclosure.
  • the method further includes: forming a first inorganic layer stacked with an organic packaging layer, and the organic packaging layer is disposed away from the first inorganic layer.
  • the first inorganic layer covers the barrier dam, and the first inorganic layer is in contact with the upper surface and the side surface of the barrier dam; the portion of the first inorganic layer that is away from the surface of the substrate and covers the barrier dam has a recess.
  • the specific process of the packaging method is as follows.
  • a base substrate 1 is provided, and an electronic device 2 is formed on the base substrate 1.
  • an electronic device 2 is formed on the base substrate 1.
  • a barrier dam 3 is formed on the base substrate 1.
  • the blocking dam 3 is located on the outer side of the electronic device 2, and the space on the inner side of the blocking dam 3 (the side far from the edge of the substrate 1) is used for subsequent formation of the organic packaging layer.
  • the barrier dam 3 includes an upper surface 301 remote from the base substrate 1 and a side surface 302 facing the organic packaging layer to be formed later.
  • the barrier dam 3 may be formed by an inkjet printing or coating process in combination with a patterning process such as photolithography. Please refer to the description of the previous embodiment for the planar pattern of the barrier dam 3, and details are not described herein again.
  • a plurality of barrier dams 3 may be formed, and a plurality of barrier dams 3 are arranged at intervals in a direction away from the organic encapsulation layer 5, as shown in FIG. 10C.
  • the process shown in FIG. 10D is performed.
  • the upper surface 301 or / and the side surface 302 of the barrier dam 3 are processed so that at least one of the upper surface 301 and the side surface 302 includes a groove and a protrusion.
  • This method is the same as in the previous embodiment, please refer to the previous description.
  • a first inorganic layer 401 is formed, the first inorganic layer 401 covers the barrier dam 3, and the first inorganic layer 401 is in contact with the upper surface 301 and the side surface 302 of the barrier dam 3;
  • the portion of the surface 4011 of the base substrate 1 covering the barrier dam 3 has a groove and a protrusion.
  • the first inorganic layer 401 may be formed by a deposition method such as chemical vapor deposition or atomic deposition.
  • an organic encapsulation layer 5 is formed on the side of the first inorganic layer 401 remote from the substrate 1 and inside the barrier dam 3, so that the barrier dam 3 is located outside the organic encapsulation layer 5 and the organic encapsulation layer 5 It is stacked with the first inorganic layer 401 and covers the electronic device 2.
  • the specific method of forming the organic encapsulation layer 5 is the same as before, please refer to the previous description.
  • the liquid organic material will spread toward the edge of the substrate 1.
  • the covering of the surface 4011 will block
  • the grooves and protrusions on the part of the dam make the part of the surface 4011 covering the blocking dam have a greater roughness.
  • the part of the surface 4011 covering the blocking dam can effectively prevent the liquid organic material from excessively reaching the substrate
  • the edge of 1 is diffused to prevent the liquid organic material from entering the edge region of the substrate substrate 1 beyond the predetermined area of the organic encapsulation layer 5. In this way, the width reserved in the edge region of the base substrate 1 can be reduced, which is beneficial to achieve a narrow frame design.
  • a second inorganic layer 402 that is stacked with the organic encapsulation layer 5 is formed.
  • the second inorganic layer 402 covers the organic encapsulation layer 5 and the first inorganic layer 401, and the second inorganic layer 402 and the first inorganic layer 401 Contact the surface of the substrate 1 far from the substrate.
  • the grooves and protrusions on the surface 4011 of the first inorganic layer 401 make the portion of the surface 4011 covering the barrier dam 3 have a larger roughness, which can increase the contact area between the second inorganic layer 402 and the first inorganic layer 401. It is beneficial to enhance the bonding strength between the second inorganic layer 402 and the first inorganic layer 401, thereby obtaining a better sealing effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种封装结构、电子装置以及封装方法。该封装结构包括:衬底基板、置于所述衬底基板上的有机封装层和阻隔坝;所述阻隔坝设置在所述有机封装层的外侧;并且所述阻隔坝包括远离所述衬底基板的上表面和面向所述有机封装层的侧表面,所述上表面和所述侧表面中的至少一方包括凹槽和突起。该封装结构具有较窄的边框和较好的密封性。

Description

封装结构、电子装置及封装方法
本申请要求于2018年9月28日递交的中国专利申请第201811142808.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一实施例涉及一种封装结构、电子装置以及封装方法。
背景技术
有些电子器件(例如OLED器件)对抗水汽和氧气的能力较差,如果暴露在水汽或氧气中,这些电子器件的寿命会减小。对于电子器件的封装,目前较为前沿的封装技术是薄膜封装技术。例如,可以采用多个无机封装层相互叠加的方式形成封装薄膜,也可以采用无机封装层和有机封装层相互叠加的方式形成封装薄膜。随着显示行业的发展,超窄边框显示器越来越受到人们的青睐,在实现好的封装效果的同时实现更窄的边框具有重要意义。
发明内容
本公开至少一实施例提供一种封装结构,该封装结构包括:衬底基板、置于所述衬底基板上的电子器件、有机封装层和阻隔坝;所述有机封装层覆盖所述电子器件;所述阻隔坝设置在所述有机封装层的外侧;并且所述阻隔坝包括远离所述衬底基板的上表面和面向所述有机封装层的侧表面,所述上表面和所述侧表面中的至少一方包括凹槽和突起。
例如,本公开一实施例提供的封装结构中,所述凹槽和突起配置为使所述上表面和所述侧表面中的所述至少一方的表面粗糙度为Rz>5nm。
例如,本公开一实施例提供的封装结构还包括与所述有机封装层堆叠设置的第一无机层;所述有机封装层和所述阻隔坝均位于所述第一无机层的远离所述衬底基板的一侧。
例如,本公开一实施例提供的封装结构中,所述有机封装层的边缘与所述阻隔坝的所述侧表面接触;或者,所述有机封装层的边缘与所述阻隔坝的所述上表面接触。
例如,本公开一实施例提供的封装结构中,所述有机封装层的边缘包括斜面,所述斜面与所述衬底基板的面向所述有机封装层的面具有夹角;所述斜面包括第一端和第二端,由所述第一端到所述第二端,所述有机封装层在垂直于所述衬底基板方向上的厚度逐渐减小;所述斜面在所述衬底基板上的正投影的在由所述第一端在所述衬底基板上的正投影到所述第二端在所述衬底基板上的正投影的方向上的宽度小于2mm。
例如,本公开一实施例提供的封装结构还包括与所述有机封装层堆叠设置的第二无机层;所述第二无机层覆盖所述有机封装层和所述阻隔坝,且所述第二无机层与所述阻隔坝的侧表面接触或者与所述阻隔坝的上表面和侧表面二者接触。
例如,本公开一实施例提供的封装结构中,所述有机封装层与所述阻隔坝之间具有间隔以使所述有机封装层与所述阻隔坝彼此不接触。
例如,本公开一实施例提供的封装结构还包括:与所述有机封装层堆叠设置的第二无机层,其中,所述第二无机层覆盖所述有机封装层和所述阻隔坝以及所述间隔,且所述第二无机层与所述阻隔坝的上表面和侧表面均接触,所述第二无机层在所述间隔处与所述第一无机层接触。
例如,本公开一实施例提供的封装结构中,还包括与所述有机封装层堆叠设置的第一无机层;所述有机封装层设置于所述第一无机层的远离所述衬底基板的一侧;所述第一无机层覆盖所述阻隔坝,且所述第一无机层与所述阻隔坝的上表面和侧表面接触;第一无机层的远离衬底基板的表面的覆盖所述阻隔坝的部分具有凹槽和突起。
例如,本公开一实施例提供的封装结构还包括与所述有机封装层堆叠设置的第二无机层;所述第二无机层覆盖所述有机封装层和所述第一无机层,且所述第二无机层与所述第一无机层的远离所述衬底基板的表面接触。
例如,本公开一实施例提供的封装结构中,所述阻隔坝在垂直于所述衬底基板的方向上的高度小于所述有机封装层在垂直于所述衬底基板的方向上 的厚度。
例如,本公开一实施例提供的封装结构中,从垂直于所述衬底基板的方向观察,所述阻隔坝的平面形状为封闭的环形或不封闭的环形。
例如,本公开一实施例提供的封装结构中,从垂直于所述衬底基板的方向观察,所述阻隔坝的平面形状包括沿所述有机封装层的边缘延伸的多个条形。
例如,本公开一实施例提供的封装结构中,从垂直于所述衬底基板的方向观察,所述有机封装层的平面图形包括拐角,所述阻隔坝的平面形状包括围绕所述有机封装层的拐角的弯折部分。
例如,本公开一实施例提供的封装结构中,所述阻隔坝的个数为多个,在远离所述有机封装层的方向上,多个所述阻隔坝间隔排列。
例如,本公开一实施例提供的封装结构中,所述阻隔坝的材料为疏水性材料。
例如,本公开一实施例提供的封装结构中,所述疏水性材料为聚氨酯或聚二甲基硅氧烷。
例如,本公开一实施例提供的封装结构中,所述电子器件为有机发光二极管器件或无机发光二极管器件。
本公开至少一实施例还提供一种电子装置,该电子装置包括本公开实施例提供的任意一种封装结构。所述电子装置还包括电子器件,该电子器件设置在所述衬底基板上并被所述有机封装层覆盖。
本公开至少一实施例还提供一种封装方法,该封装方法包括:提供衬底基板;在所述衬底基板上形成电子器件;形成有机封装层,其中,所述有机封装层覆盖所述电子器件;形成阻隔坝,其中,所述阻隔坝包括远离所述衬底基板的上表面和面向所述有机封装层的侧表面,所述上表面和所述侧表面中的至少一方包括凹槽和突起,其中,在形成所述阻隔坝之后形成所述有机封装层,其中,所述阻隔坝设置在所述有机封装层的外侧。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种封装结构的示意图;
图2A为本公开一实施例提供的一种封装结构的平面示意图;
图2B为沿图2A中的A-A’线的一种剖面示意图;
图2C为沿图2A中的A-A’线的另一种剖面示意图;
图2D为本公开一实施例提供的封装结构的另一种剖面示意图;
图3为图2B所示的封装结构中的阻隔坝的截面示意图;
图4A为图2B所示的有机封装层的边缘的放大示意图;
图4B为液态的有机材料与具有不同表面粗糙度的阻隔坝的接触角示意图;
图5A为本公开一实施例提供的封装结构的另一种平面示意图;
图5B为本公开一实施例提供的封装结构的又一种平面示意图;
图5C为本公开一实施例提供的封装结构的再一种平面示意图;
图6A为本公开一实施例提供的另一种封装结构的平面示意图;
图6B为沿图6A中的B-B’线的剖面示意图;
图6C为图6B所示的封装结构中的阻隔坝和第一无机层的局部放大示意图;
图7A为本公开一实施例提供的又一种封装结构的平面示意图;
图7B为沿图7A中的C-C’线的剖面示意图;
图7C为本公开一实施例提供的封装结构的另一种平面示意图;
图8为本公开一实施例提供的一种电子装置示意图;
图9A-9H为本公开一实施例提供的一种封装方法示意图;
图10A-10G为本公开一实施例提供的另一种封装方法示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。以下所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描 述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现在该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开所使用的附图并不是严格按实际比例绘制,各个结构的具体地尺寸和数量可根据实际需要进行确定。本公开中所描述的附图仅是结构示意图。
图1为一种电子装置的示意图。如图1所示,该电子装置包括衬底基板101、设置于衬底基板101上的发光器件102、无机封装层40和有机封装层50。有机封装层50设置于无机封装层40上。该电子装置中,衬底基板1具有边缘以及靠近边缘的非功能区D,例如,该电子装置为显示面板,非功能区D为非显示区。例如,非功能区D中设置有驱动电路等器件。例如,利用液态的有机材料形成有机封装层50;形成该有机封装层50的过程中,液态的有机材料会向非功能区D漫延,从而液态的有机材料容易超出用于设置有机封装层50的预设区域而进入衬底基板101的非功能区D,影响在非功能区D中驱动电路等器件的设置,从而需要预留更大面积的非功能区D,不利于实现窄边框结构。另外,在该电子装置中,无机封装层40的延展性较差,容易产生裂隙。并且,无机封装层40与有机封装层50的结合强度较低,容易相互分离,并且不利于无机封装层40在弯曲过程中释放应力,因此无机封装层40容易产生裂隙。从而,导致外界的湿气、氧气等通过裂隙接触到发光器件102,会减少发光器件102的使用寿命。
本公开至少一实施例提供一种封装结构,该封装结构包括:衬底基板、置于衬底基板上的有机封装层和阻隔坝;阻隔坝设置在有机封装层的外侧; 并且阻隔坝包括远离衬底基板的上表面和面向有机封装层的侧表面,该上表面和该侧表面中的至少一方包括凹槽和突起。
示范性地,图2A为本公开一实施例提供的一种封装结构的平面示意图,图2B为沿图2A中的A-A’线的一种剖面示意图,图3为图2B所示的封装结构中的阻隔坝的截面示意图,以图2B中所示的阻隔坝301的两个柱形截面中的左侧的柱形为例。如图2A、图2B和图3所示,封装结构10包括:衬底基板1、置于衬底基板1上的有机封装层5和阻隔坝3。阻隔坝3设置在有机封装层5的外侧。本公开中,有机封装层5的外侧是指有机封装层5的朝向衬底基板1的边缘的一侧。例如,如图2A所示,阻隔坝3围绕有机封装层5设置,例如,阻隔坝3围绕整个有机封装层5。例如,利用液态的有机材料制作有机封装层5,在有机封装层5的制作过程中,阻隔坝3对液态的有机材料具有阻挡作用。阻隔坝3包括远离衬底基板1的上表面301和面向有机封装层5的侧表面302,例如,阻隔坝3的上表面301和侧表面302彼此相交,上表面301和侧表面302中的至少一方包括凹槽30和突起31。在形成有机封装层5的过程中,液态的有机材料向衬底基板1的边缘漫延,其有可能会接触到阻隔坝3的侧表面302或者阻隔坝3的侧表面302和上表面301二者,凹槽30和突起31使得上表面301和侧表面302具有较大的粗糙度,这种情况下,阻隔坝3能够有效阻止液态的有机材料过度地向衬底基板1的边缘漫延,防止液态的有机材料超出有机封装层5的预设区域而进入衬底基板1的边缘区域。如此,可以减小在衬底基板1的边缘区域预留的宽度,有利于实现窄边框设计。另外,阻隔坝3围绕有机封装层5设置或沿有机封装层5的边设置,有利于提高有机封装层5边缘的直线性。需要说明的是,凹槽30和突起31的轮廓的形状不一定为图中所示形状,其轮廓的形状可以是不规则的。
需要说明的是,阻隔坝3不同于封装过程中的封框胶(坝胶),例如在需要采用封框胶的情况下,可以在阻隔坝3的外侧(靠近衬底基板1的边缘的一侧)设置封框胶。
例如,凹槽30和突起31是根据需要在阻隔坝3的上表面301和侧表面302上专门设置的结构,区别于由于工艺精度而避免不了的不平整状态。凹 槽30是指相对于设置所述凹槽30的表面凹陷的结构,突起31是指相对于设置所述突起31的表面突起的结构。例如,首先形成阻隔坝3,然后通过例如刻蚀等工艺在阻隔坝3的上表面301和侧表面302中的至少一方上根据需要形成凹槽30和突起31。
例如,上表面301和侧表面302中的至少一方包括凹槽30和突起31包括下面三种情形:(1)仅上表面301包括凹槽30和突起31;(2)仅侧表面302包括凹槽30和突起31;(3)上表面301和侧表面302二者均包括凹槽30和突起31。
例如,用于形成有机封装层5的有机材料可以为树脂材料,例如环氧树脂或丙烯酸树脂等。当然,用于形成有机封装层5的有机材料不限于上述种类。
例如,上表面301和侧表面302中的至少一方包括凹槽30和突起31,凹槽30和突起31配置为使该至少一方的表面粗糙度为Rz>5nm,以达到较好的阻止液态的有机材料漫延的效果。Rz为轮廓最大高度,即在取样长度内,轮廓峰与轮廓谷的距离(即,最高点与最低点间的距离)。例如,在图3中,以上表面301为例,在取样长度内,例如,五个突起31的最高点P在垂直于衬底基板1方向上的高度的平均值与五个凹槽30的最低点V在垂直于衬底基板1方向上的高度的平均值之差大于5nm。进一步地,例如,5nm<Rz<1000nm,在该范围内的粗糙度易于制作。
例如,封装结构10还包括第一无机层401。例如,在图2B所示的实施例中,第一无机层401与有机封装层5堆叠设置。有机封装层5和阻隔坝3均位于第一无机层401的远离衬底基板1的一侧。例如,第一无机层401设置于衬底基板1上并覆盖电子器件2和至少部分衬底基板1,以实现对电子器件2的密封。例如,电子器件2还被有机封装层5覆盖,即电子器件2在衬底基板1的面向有机封装层5的面上的正投影位于有机封装层5在衬底基板1的面向有机封装层5的面上的正投影内。
例如,电子器件2可以为有机发光二极管(OLED)器件、无机发光二极管或其他需要密封的电子元件等。衬底基板1例如可以为玻璃基板、石英基板等。例如,衬底基板1也可以为柔性基板,此时,例如衬底基板1的材 料为聚酰亚胺。当然,衬底基板1的类型和材料不限于上述列举种类,本公开实施例对此不作限定。
例如,在图2B所示的实施例中,有机封装层5的边缘6与阻隔坝3的侧表面302和上表面301接触,且有机封装层5的与阻隔坝3接触的表面与阻隔坝3之间不存在其他结构。此时,例如,阻隔坝3的侧表面302和上表面301均具有凹槽30和突起31,从而阻隔坝3的侧表面302和上表面301均能够有效阻止液态的有机材料过度向衬底基板1的边缘漫延。
需要说明的是,结合图2B,有机封装层5的边缘6是指有机封装层5的靠近阻隔坝3的部分。
例如,图4A为图2B所示的有机封装层的边缘6的放大示意图,以图2B中所示的阻隔坝301的两个柱形截面中的左侧的柱形为例。图4B为液态的有机材料与具有不同表面粗糙度的阻隔坝的接触角示意图。如图4A所示,有机封装层5的边缘包括斜面501,斜面501与衬底基板1的面向有机封装层5的面具有夹角。斜面501包括第一端A和第二端B,由第一端A到第二端B,有机封装层5在垂直于衬底基板1方向上的厚度逐渐减小。斜面501在衬底基板1上的正投影的在由第一端A在衬底基板1上的正投影到第二端B在衬底基板1上的正投影的方向上的宽度L越小,有机封装层5越不容易超出预设区域。在用于形成有机封装层5的液态的有机材料漫延的过程中,在形成阻隔坝3的材料不改变的情况下,与液态的有机材料接触的阻隔坝3的侧表面302和上表面301的粗糙度越大,液态的有机材料与阻隔坝3的接触角越大。如图4B所示,当液态的有机材料502与表面粗糙度较小的阻隔坝3的表面接触时,接触角为θ 1;当液态的有机材料502与表面粗糙度较大的阻隔坝3的表面接触时,接触角为θ 2。θ 12,并且,形成较大的接触角θ 2的液态的有机材料502对阻隔坝3的表面的浸润程度较低,与阻隔坝3的表面接触的接触面积较小。因此,在图4A中,凹槽30和突起31能够增大阻隔坝3的侧表面302和上表面301的粗糙度,从而有利于增大用于形成有机封装层5的液态的有机材料与阻隔坝3的上表面301的接触角,从而减小宽度L,利于实现窄边框产品,例如窄边框显示装置。例如,本公开实施例中,宽度L小于2mm,能够较好地满足窄边框产品的需求。
图2C为沿图2A中的A-A’线的另一种剖面示意图。在本公开的另一个实施例中,如图2C所示,例如,有机封装层5的边缘6与阻隔坝3的侧表面302接触。例如,阻隔坝3的侧表面302包括凹槽30和突起31,当用于形成有机封装层5的液态的有机材料漫延至阻隔坝3的侧表面302时,该侧表面302可以有效阻止该液态的有机材料进一步向衬底基板1的边缘漫延,这种情况下,有机封装层5可不与阻隔坝3的上表面301接触。例如,在图2C中,仅阻隔坝3的侧表面302包括凹槽30和突起31。
图2D为本公开一实施例提供的封装结构的另一种剖面示意图。又例如,在本公开另一个实施例中,如图2D所示,液态的有机材料向衬底基板1的边缘漫延程度较小,有机封装层5与阻隔坝3之间具有间隔,有机封装层5与阻隔坝3不接触。
例如,如图2B所示,封装结构10还包括与有机封装层5堆叠设置的第二无机层402。第二无机层402覆盖有机封装层5和阻隔坝3,且第二无机层402与阻隔坝3的上表面301接触。阻隔坝3的上表面301的凹槽30和突起31使得其具有较大的粗糙度,能够增大第二无机层402与阻隔坝3的接触面积,有利于增强第二无机层402与阻隔坝3之间的结合强度,从而获得更好的密封效果。
例如,在图2C和2D所示的实施例中,第二无机层402与阻隔坝3的上表面301和侧表面302均接触。如此,阻隔坝3的上表面301和侧表面302均包括所述凹槽30和突起31,都具有较大的粗糙度,从而能够进一步增大第二无机层402与阻隔坝3的接触面积,更加有利于增强第二无机层402与阻隔坝3之间的结合强度,从而获得更好的密封效果。
在图2D所示的实施例中,第二无机层402覆盖有机封装层5和阻隔坝3以及有机封装层5和阻隔坝3之间的间隔,且第二无机层402与阻隔坝3的上表面301和侧表面302均接触,第二无机层402在间隔处与第一无机层401接触。从而,在增强第二无机层402与阻隔坝3之间的结合强度的基础上,还增强了第二无机层402与第一无机层401的结合强度,提高了在间隔处的密封效果。
例如,如图2B-2D所示,阻隔坝3在垂直于衬底基板1的方向上的高度 小于有机封装层5在垂直于衬底基板1的方向上的厚度。阻隔坝3的高度较低,利于阻隔坝3固定的稳定性,并且不会额外增加封装结构10的厚度,利于封装结构10的减薄,从而能够获得轻薄产品,例如封装结构10适用于轻薄的显示装置。
需要说明的是,图2C和图2D所示的封装结构的未提及的其他特征均与图2B所示的封装结构的相同,请参考之前的描述,在此不赘述。
图5A为本公开一实施例提供的封装结构的另一种平面示意图,图5B为本公开一实施例提供的封装结构的又一种平面示意图,图5C为本公开一实施例提供的封装结构的再一种平面示意图。例如,从垂直于衬底基板1的方向观察,阻隔坝3的平面形状可以为封闭的环形,如图2A所示。例如,阻隔坝3的平面形状也可以为不封闭的环形,如图5A所示。又例如,从垂直于衬底基板1的方向观察,阻隔坝3的平面形状包括多个沿有机封装层5的边缘延伸的条形,如图5B所示。例如,在图5B所示的示例中,有机封装层5的平面图形包括多条边,该多条边中的每条对应一个沿该边延伸的条形的阻隔坝3。再例如,如图5C所示,有机封装层5包括棱角,即有机封装层5的平面图形包括拐角,阻隔坝3的平面图形包括沿有机封装层5的边缘延伸的多个条形部分32和围绕有机封装层5的拐角的弯折部分33。例如,有机封装层5的平面图形包括多个拐角,阻隔坝3的平面图形包括围绕多个拐角的每个的多个弯折部分33。
例如,阻隔坝3的材料为疏水性材料。在阻隔坝3的上表面301和侧表面302的表面粗糙度不变的情况下,阻隔坝3的材料的疏水性越强,其上表面301和侧表面302与有机封装层5的接触角越大,而接触角增大有利于减小上述斜面501的所述宽度L,从而实现窄边框。例如,阻隔坝3的材料为疏水性有机材料,例如聚氨酯、聚二甲基硅氧烷等。当然,在本公开的一实施例中,阻隔坝3的材料也可以为其他的有机材料,例如聚酰亚胺(PI)等。或者,阻隔坝3的材料也可以为无机材料,例如包括氧化硅、氮化硅或氮氧化硅等。需要说明的是,阻隔坝3的材料不限于上述列举种类。
图6A为本公开一实施例提供的另一种封装结构的平面示意图,图6B为沿图6A中的B-B’线的剖面示意图。在如图6A和图6B所示的封装结构10 中,有机封装层5设置于第一无机层401的远离衬底基板1的一侧,第一无机层401覆盖阻隔坝3,且第一无机层401与阻隔坝3的上表面301和侧表面302接触。这种情况下,阻隔坝3的上表面301和侧表面302的凹槽30和突起31使得上表面301和侧表面302具有较大的粗糙度,能够增大第一无机层401与阻隔坝3的接触面积,有利于增强第一无机层401与阻隔坝3之间的结合强度,从而获得更好的密封效果。
例如,图6C为图6B所示的封装结构中的阻隔坝和第一无机层的局部放大示意图,以图6B中所示的阻隔坝301的两个柱形截面中的左侧的柱形为例。如图6C所示,第一无机层401的远离衬底基板1的表面4011的覆盖阻隔坝3的部分具有凹槽41和突起42。例如,通过沉积方法在阻隔坝3的上表面301和侧表面302上形成第一无机层401时,由于阻隔坝3的上表面301和侧表面302上的凹槽30和突起31的存在,表面4011的覆盖阻隔坝3的部分具有阻隔坝3的上表面301和侧表面302相似的轮廓,也就是说,由于阻隔坝3的上表面301和侧表面302上的凹槽30和突起31的存在,第一无机层401的表面4011相应地形成了凹槽41和突起42,并且凹槽41和突起42分别与上述凹槽30和上述突起31的形状相似。例如,凹槽41和突起42使得第一无机层401的表面4011的覆盖阻隔坝3的部分也具有较高的粗糙度,例如,该粗糙度为Rz>5nm。
在图6B中,有机封装层5与第一无机层401的远离衬底基板1的表面4011接触。第一无机层401的表面4011的凹槽41和突起42使得表面4011的覆盖阻隔坝3的部分具有较大的粗糙度,从而表面4011的覆盖阻隔坝3的部分能够有效阻止用于形成有机封装层5的液态的有机材料过度向衬底基板1的边缘漫延,防止液态的有机材料超出有机封装层5的预设区域而进入衬底基板1的边缘区域。同理,也可以减小有机封装层5的边缘的上述宽度L。如此,可以减小在衬底基板1的边缘区域预留的宽度,有利于实现窄边框设计。
例如,图6B所示的封装结构10还包括与有机封装层5堆叠设置的第二无机层402,第二无机层402覆盖有机封装层5和第一无机层401,且第二无机层402与第一无机层401的远离衬底基板1的表面4011接触。表面4011 上的凹槽41和突起42使得表面4011的覆盖阻隔坝3的部分具有较大的粗糙度,能够增大第二无机层402与第一无机层401的接触面积,有利于增强第二无机层402与第一无机层401之间的结合强度,从而获得更好的密封效果。
需要说明的是,图6B所示的封装结构的未提及的其他特征均匀图2B所示的封装结构的相同,请参考之前的描述,在此不赘述。
图7A为本公开一实施例提供的又一种封装结构的平面示意图,图7B为沿图7A中的C-C’线的剖面示意图。图7A和图7B所示的封装结构10与图6B所示的封装结构的区别在于,阻隔坝3的个数为多个,在远离有机封装层5的方向上,多个阻隔坝3间隔排列。如此,一方面,多个阻隔坝3能够进一步阻止有机封装层5外延,保证用于形成有机封装层5的液体的有机材料不超出预设区域;另一方面,多个间隔排列的阻隔坝3能够进一步提高第一无机层401和第二无机层402的对电子器件2的密封效果。图7A和图7B所示的封装结构的其他特征均与图6B中的相同,请参考之前的描述。例如,图7B所示的多个阻隔坝3的结构也可用于图2B。
图7C为本公开一实施例提供的封装结构的另一种平面示意图。例如,多个阻隔坝3的每个的平面形状可以为封闭的环形,如图7A所示。又例如,如图7C所示,每个阻隔坝3的平面图形包括沿有机封装层5的边缘延伸的弯折部分,弯折部分围绕有机封装层的拐角处。多个弯折部分在垂直于衬底基板1的边缘的方向上部分重叠,从而每个弯折部分包括内侧的条形部分34和外侧的条形部分35。例如,内侧的条形部分34与外侧的条形部分35部分重叠,,如此,多个弯折部分共同围绕整个有机封装层5,以在有机封装层5的外侧的各个位置对有机封装层5进行阻挡。例如,在与衬底基板1的边缘垂直的方向上,多个条形的阻隔坝3间隔排列。例如,内侧的条形部分34与外侧的条形部分35间隔排列。所述内侧指远离衬底基板1的边缘,所述外侧指靠近衬底基板1的边缘。
本公开至少一实施例还提供一种电子装置,该电子装置包括本公开实施例提供的任意一种封装结构。电子装置还包括电子器件2,该电子器件2设置在衬底基板1上并被有机封装层5覆盖,如图2B所示。
示范性地,图8为本公开一实施例提供的一种电子装置示意图。如图8 所示,该电子装置100包括本公开实施例提供的任意一种封装结构10。该电子装置100具有较窄的边框,该电子装置100的电子器件具有较好的密封性,能够实现较长的使用寿命。
例如,电子装置可以包括发光装置等任何对电子器件具有密封要求的装置。电子装置100可以为显示装置(例如OLED显示装置),例如100可以是手机、平板电脑、电视机、显示器、笔记本电脑、数码相机、导航仪等具有显示功能的产品或部件。例如,电子装置100也可以是照明装置(例如OLED照明装置),例如,装饰性彩灯、柔性照明装置等。例如,电子装置100也可以为背光源。本公开实施例对电子装置的种类没有限定。
需要说明的是,图8只是包括本公开实施例提供的任意一种封装结构的电子装置的示意图,电子装置的未示出的其他结构,本领域技术人员可参考常规技术,本实施例对此不作限定。
本公开至少一实施例还提供一种封装方法,该封装方法包括:提供衬底基板;在所述衬底基板上形成电子器件;形成有机封装层,其中,所述有机封装层覆盖所述电子器件;形成阻隔坝,其中,所述阻隔坝包括远离所述衬底基板的上表面和面向所述有机封装层的侧表面,所述上表面和所述侧表面中的至少一方包括凹槽和突起,其中,在形成所述阻隔坝之后形成所述有机封装层,其中,所述阻隔坝设置在所述有机封装层的外侧。
图9A-图9H为本公开一实施例提供的一种封装方法示意图,该方法还包括:形成与有机封装层堆叠设置的第一无机层,有机封装层和阻隔坝均位于第一无机层的远离衬底基板的一侧;以及形成与有机封装层堆叠设置的第二无机层,第二无机层覆盖有机封装层和阻隔坝,且第二无机层与阻隔坝的上表面或侧表面接触。封装方法的具体的工艺如下。
如图9A所示,提供衬底基板1,在衬底基板1上形成电子器件2,例如该电子器件2为OLED器件。例如,该OLED器件可以通过半导体工艺形成。衬底基板1例如可以为玻璃基板、石英基板等。例如,衬底基板1也可以为柔性基板,此时,例如衬底基板1的材料为聚酰亚胺。当然,电子器件2不限于是OLED器件,其可以是任何需要被封装的器件;衬底基板1的类型和材料也不限于上述列举种类,本公开实施例对此不作限定。
如图9B所示,形成第一无机层401。例如,采用等离子体增强化学气相沉积或原子沉积的方法形成第一无机层401。第一无机层401的材料为无机材料,例如包括氧化硅或氮化硅或氮氧化硅。
如图9C所示,形成阻隔坝3,阻隔坝3位于电子器件2的外侧,阻隔坝3的内侧(远离衬底基板1的边缘的一侧)的空间用于后续形成有机封装层。阻隔坝3包括远离衬底基板1的上表面301和面向后续将形成的有机封装层的侧表面302。例如,可通过喷墨打印或涂覆工序结合构图工艺(例如光刻)形成阻隔坝3。阻隔坝3的平面图形请参考之前的实施例中的描述,在此不再赘述。
如图9D所示,对阻隔坝3的上表面301或/和侧表面302进行处理,以使上表面301和侧表面302中的至少一方包括凹槽和突起。例如,上表面301和侧表面302均包括凹槽和突起。该凹槽和突起的具体特征请参考之前的实施例中的描述。例如,该处理可以包括等离子体刻蚀、激光刻蚀等。
如图9E所示,在第一无机层401的远离衬底基板1的一侧、阻隔坝3的内侧形成有机封装层5,以使得阻隔坝3位于有机封装层5的外侧,有机封装层5覆盖电子器件2。形成有机封装层5包括通过涂覆法利用液体的有机材料形成有机材料层以及对该有机材料层进行固化,以得到有机封装层5。在固化之前,该液体的有机材料会向衬底基板1的边缘漫延,当该液体的有机材料接触到阻隔坝3的侧表面302时(如图9E所示),或者当该液体的有机材料接触到阻隔坝3的侧表面302和上表面301时(如图9F所示),由于侧表面302和上表面301上的凹槽和突起使得上表面301和侧表面302具有较大的粗糙度,这种情况下,阻隔坝3能够有效阻止液态的有机材料过度向衬底基板1的边缘漫延,防止液态的有机材料超出有机封装层5的预设区域而进入衬底基板1的边缘区域。如此,可以减小在衬底基板1的边缘区域预留的宽度,有利于实现窄边框设计。
例如,通过上述处理形成所述凹槽和突起以使得上表面301和侧表面302中的至少一方的表面粗糙度为Rz>5nm,以达到较好的阻止液态的有机材料漫延的效果。进一步地,例如,5nm<Rz<1000nm,粗糙度在该范围内的上表面301或侧表面302容易制作,通过所述刻蚀工艺更容易获得。
在一个实施例中,在图9E所示的结构的基础上形成与有机封装层5堆叠设置的第二无机层402,第二无机层402覆盖有机封装层5和阻隔坝3,且第二无机层402与阻隔坝3的上表面301接触,从而得到如图9G所示的封装结构。例如,可通过沉积方法(例如化学气相沉积或原子沉积)形成第二无机层402。阻隔坝3的上表面301和侧表面302的至少一方上设置的凹槽30和突起31使得具有较大的粗糙度,能够增大第二无机层402与阻隔坝3的接触面积,有利于增强第二无机层402与阻隔坝3之间的结合强度,从而获得更好的密封效果。
在另一个实施例中,在图9F所示的结构的基础上形成所述第二无机层402,第二无机层402与阻隔坝3的上表面301和侧表面302均接触,从而得到如图9H所示的封装结构。例如,阻隔坝3的上表面301和侧表面302均包括所述凹槽30和突起31,阻隔坝3的上表面301和侧表面302都具有较大的粗糙度,从而能够进一步增大第二无机层402与阻隔坝3的接触面积,更加有利于增强第二无机层402与阻隔坝3之间的结合强度,从而获得更好的密封效果。
图10A-10G为本公开一实施例提供的另一种封装方法示意图,该方法还包括:形成与有机封装层堆叠设置的第一无机层,有机封装层设置于第一无机层的远离所述衬底基板的一侧,第一无机层覆盖阻隔坝,且第一无机层与阻隔坝的上表面和侧表面接触;第一无机层的远离衬底基板的表面的覆盖阻隔坝的部分具有凹槽和突起;以及形成与有机封装层堆叠设置的第二无机层,第二无机层覆盖有机封装层和第一无机层,且第二无机层与第一无机层的远离衬底基板的表面接触。封装方法的具体的工艺如下。
如图10A所示,提供衬底基板1,在衬底基板1上形成电子器件2。具体请参考对图9A的描述。
如图10B所示,在衬底基板1上形成阻隔坝3,例如阻隔坝3与衬底基板1之间没有其他的层。阻隔坝3位于电子器件2的外侧,阻隔坝3的内侧(远离衬底基板1的边缘的一侧)的空间用于后续形成有机封装层。阻隔坝3包括远离衬底基板1的上表面301和面向后续将形成的有机封装层的侧表面302。例如,可通过喷墨打印或涂覆工序结合构图工艺(例如光刻)形成 阻隔坝3。阻隔坝3的平面图形请参考之前的实施例中的描述,在此不再赘述。
例如,可以形成多个阻隔坝3,在远离有机封装层5的方向上,多个阻隔坝3间隔排列,如图10C所示。
以图10B所示的结构为例,形成阻隔坝3之后,执行图10D所示工序。对阻隔坝3的上表面301或/和侧表面302进行处理,以使上表面301和侧表面302中的至少一方包括凹槽和突起。该方法与之前的实施例中的相同,请参考之前的描述。
如图10E所示,形成第一无机层401,第一无机层401覆盖阻隔坝3,且第一无机层401与阻隔坝3的上表面301和侧表面302接触;第一无机层401的远离衬底基板1的表面4011的覆盖阻隔坝3的部分具有凹槽和突起。该凹槽和突起的具体特征请参考之前的实施例中的描述。例如,可通过沉积方法(例如化学气相沉积或原子沉积)形成第一无机层401。
如图10F所示,在第一无机层401的远离衬底基板1的一侧、阻隔坝3的内侧形成有机封装层5,以使得阻隔坝3位于有机封装层5的外侧,有机封装层5与第一无机层401堆叠并覆盖电子器件2。形成有机封装层5的具体方法与之前的相同,请参考之前的描述。液体的有机材料会向衬底基板1的边缘漫延,当该液体的有机材料接触到第一无机层401的远离衬底基板1的表面4011的覆盖阻隔坝的部分时,由于表面4011的覆盖阻隔坝的部分上的凹槽和突起使得表面4011的覆盖阻隔坝的部分具有较大的粗糙度,这种情况下,表面4011的覆盖阻隔坝的部分能够有效阻止液态的有机材料过度向衬底基板1的边缘漫延,防止液态的有机材料超出有机封装层5的预设区域而进入衬底基板1的边缘区域。如此,可以减小在衬底基板1的边缘区域预留的宽度,有利于实现窄边框设计。
如图10G所示,形成与有机封装层5堆叠设置的第二无机层402,第二无机层402覆盖有机封装层5和第一无机层401,且第二无机层402与第一无机层401的远离衬底基板1的表面接触。第一无机层401的表面4011上的凹槽和突起使得表面4011的覆盖阻隔坝3的部分具有较大的粗糙度,能够增大第二无机层402与第一无机层401的接触面积,有利于增强第二无机层402 与第一无机层401之间的结合强度,从而获得更好的密封效果。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围根据权利要求书所界定的范围确定。

Claims (20)

  1. 一种封装结构,包括:衬底基板、设置于所述衬底基板上的电子器件、有机封装层和阻隔坝;其中,
    所述有机封装层覆盖所述电子器件;
    所述阻隔坝设置在所述有机封装层的外侧;并且
    所述阻隔坝包括远离所述衬底基板的上表面和面向所述有机封装层的侧表面,所述上表面和所述侧表面中的至少一方包括凹槽和突起。
  2. 根据权利要求1所述的封装结构,其中,所述凹槽和突起配置为使所述上表面和所述侧表面中的所述至少一方的表面粗糙度为Rz>5nm。
  3. 根据权利要求1或2所述的封装结构,还包括与所述有机封装层堆叠设置的第一无机层;其中,
    所述有机封装层和所述阻隔坝均位于所述第一无机层的远离所述衬底基板的一侧。
  4. 根据权利要求1-3任一所述的封装结构,其中,
    所述有机封装层的边缘与所述阻隔坝的所述侧表面接触;或者,
    所述有机封装层的边缘与所述阻隔坝的所述上表面接触。
  5. 根据权利要求4所述的封装结构,其中,所述有机封装层的边缘包括斜面,所述斜面与所述衬底基板的面向所述有机封装层的面具有夹角;
    所述斜面包括第一端和第二端,由所述第一端到所述第二端,所述有机封装层在垂直于所述衬底基板方向上的厚度逐渐减小;
    所述斜面在所述衬底基板上的正投影的在由所述第一端在所述衬底基板上的正投影到所述第二端在所述衬底基板上的正投影的方向上的宽度小于2mm。
  6. 根据权利要求3-5任一所述的封装结构,还包括与所述有机封装层堆叠设置的第二无机层;其中,
    所述第二无机层覆盖所述有机封装层和所述阻隔坝,且所述第二无机层与所述阻隔坝的侧表面接触或者与所述阻隔坝的上表面和侧表面二者均接触。
  7. 根据权利要求3-5任一所述的封装结构,其中,所述有机封装层与所述阻隔坝之间具有间隔以使所述有机封装层与所述阻隔坝彼此不接触。
  8. 根据权利要求7所述的封装结构,还包括与所述有机封装层堆叠设置的第二无机层,其中,所述第二无机层覆盖所述有机封装层和所述阻隔坝以及所述间隔,且所述第二无机层与所述阻隔坝的上表面和侧表面均接触,所述第二无机层在所述间隔处与所述第一无机层接触。
  9. 根据权利要求1或2所述的封装结构,还包括与所述有机封装层堆叠设置的第一无机层;其中,
    所述有机封装层设置于所述第一无机层的远离所述衬底基板的一侧;
    所述第一无机层覆盖所述阻隔坝,且所述第一无机层与所述阻隔坝的上表面和侧表面接触;
    第一无机层的远离衬底基板的表面的覆盖所述阻隔坝的部分具有凹槽和突起。
  10. 根据权利要求9所述的封装结构,还包括与所述有机封装层堆叠设置的第二无机层;其中,
    所述第二无机层覆盖所述有机封装层和所述第一无机层,且所述第二无机层与所述第一无机层的远离所述衬底基板的表面接触。
  11. 根据权利要求1-10任一所述的封装结构,其中,所述阻隔坝在垂直于所述衬底基板的方向上的高度小于所述有机封装层在垂直于所述衬底基板的方向上的厚度。
  12. 根据权利要求1-11任一所述的封装结构,其中,从垂直于所述衬底基板的方向观察,所述阻隔坝的平面形状为封闭的环形或不封闭的环形。
  13. 根据权利要求1-12任一所述的封装结构,其中,从垂直于所述衬底基板的方向观察,所述阻隔坝的平面形状包括沿所述有机封装层的边缘延伸的多个条形。
  14. 根据权利要求1-13任一所述的封装结构,其中,从垂直于所述衬底基板的方向观察,所述有机封装层的平面图形包括拐角,所述阻隔坝的平面形状包括围绕所述有机封装层的拐角的弯折部分。
  15. 根据权利要求1-14任一所述的封装结构,其中,所述阻隔坝的个数 为多个,在远离所述有机封装层的方向上,多个所述阻隔坝间隔排列。
  16. 根据权利要求1-15任一所述的封装结构,其中,所述阻隔坝的材料为疏水性材料。
  17. 根据权利要求16所述的封装结构,其中,所述疏水性材料为聚氨酯或聚二甲基硅氧烷。
  18. 一种根据权利要求1-17任一所述的封装结构,其中,所述电子器件为有机发光二极管器件或无机发光二极管器件。
  19. 一种电子装置,包括权利要求1-18任一所述的封装结构。
  20. 一种封装方法,包括:
    提供衬底基板;
    在所述衬底基板上形成电子器件;
    形成有机封装层,其中,所述有机封装层覆盖所述电子器件;
    形成阻隔坝,其中,所述阻隔坝包括远离所述衬底基板的上表面和面向所述有机封装层的侧表面,所述上表面和所述侧表面中的至少一方包括凹槽和突起,其中,
    在形成所述阻隔坝之后形成所述有机封装层,其中,所述阻隔坝设置在所述有机封装层的外侧。
PCT/CN2019/107269 2018-09-28 2019-09-23 封装结构、电子装置及封装方法 WO2020063530A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/652,712 US11805667B2 (en) 2018-09-28 2019-09-23 Encapsulation structure, electronic apparatus and encapsulation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811142808.8A CN109301084B (zh) 2018-09-28 2018-09-28 封装结构、电子装置及封装方法
CN201811142808.8 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020063530A1 true WO2020063530A1 (zh) 2020-04-02

Family

ID=65164899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107269 WO2020063530A1 (zh) 2018-09-28 2019-09-23 封装结构、电子装置及封装方法

Country Status (3)

Country Link
US (1) US11805667B2 (zh)
CN (1) CN109301084B (zh)
WO (1) WO2020063530A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301084B (zh) * 2018-09-28 2020-06-16 京东方科技集团股份有限公司 封装结构、电子装置及封装方法
CN109888125B (zh) * 2019-02-28 2021-06-22 武汉华星光电半导体显示技术有限公司 一种显示面板及其制作方法
CN110265579A (zh) * 2019-06-27 2019-09-20 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN110429201B (zh) 2019-07-05 2020-08-11 武汉华星光电半导体显示技术有限公司 Oled显示面板及其封装方法
CN110416434B (zh) * 2019-08-06 2022-01-28 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
WO2021081791A1 (zh) * 2019-10-30 2021-05-06 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
KR20210052782A (ko) * 2019-10-31 2021-05-11 삼성디스플레이 주식회사 표시 패널
CN110752318B (zh) * 2019-11-28 2022-12-06 昆山国显光电有限公司 显示面板
CN110970574B (zh) * 2019-12-17 2022-12-20 合肥维信诺科技有限公司 显示面板及其制备方法、显示装置
KR20220051065A (ko) * 2020-10-16 2022-04-26 삼성디스플레이 주식회사 표시 장치
KR20220106261A (ko) * 2021-01-21 2022-07-29 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN114613921B (zh) * 2022-03-01 2024-05-28 深圳市华星光电半导体显示技术有限公司 显示面板及移动终端
CN117581653A (zh) * 2022-05-26 2024-02-20 京东方科技集团股份有限公司 显示面板及显示装置
WO2023230877A1 (zh) * 2022-05-31 2023-12-07 京东方科技集团股份有限公司 显示面板及显示装置
CN116864498B (zh) * 2023-09-05 2024-04-19 青岛泰睿思微电子有限公司 光传感器封装结构
CN117279222A (zh) * 2023-11-10 2023-12-22 荣耀终端有限公司 电路板制备方法、电路板及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004567A1 (ja) * 2009-07-07 2011-01-13 パナソニック株式会社 有機エレクトロルミネッセンス表示装置及びその製造方法
US20170069873A1 (en) * 2015-09-07 2017-03-09 Samsung Display Co., Ltd. Display apparatus
CN107204404A (zh) * 2017-04-11 2017-09-26 上海天马微电子有限公司 有机电致发光装置
CN107359273A (zh) * 2017-06-20 2017-11-17 合肥市惠科精密模具有限公司 一种高强度amoled封装结构
CN107808930A (zh) * 2016-08-31 2018-03-16 乐金显示有限公司 显示装置及其测试方法
US20180151833A1 (en) * 2016-11-28 2018-05-31 Osram Oled Gmbh Optoelectronic component and method for producing an optoelectronic component
CN109301084A (zh) * 2018-09-28 2019-02-01 京东方科技集团股份有限公司 封装结构、电子装置及封装方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI276365B (en) * 2002-07-12 2007-03-11 Nippon Sheet Glass Co Ltd Sealing plate for electroluminescent device, manufacturing method thereof, and multiple paring mother glass plates thereof
JP3992001B2 (ja) * 2004-03-01 2007-10-17 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置及び電子機器
TWI421607B (zh) * 2006-08-24 2014-01-01 Creator Technology Bv 可撓性裝置上的滲透阻障
KR101130199B1 (ko) * 2006-11-06 2012-04-23 에이전시 포 사이언스, 테크놀로지 앤드 리서치 나노입자 캡슐 배리어 스택
KR101368725B1 (ko) * 2007-03-26 2014-03-04 삼성디스플레이 주식회사 유기 전계 발광 표시장치 및 그 제조방법
KR100857690B1 (ko) * 2007-05-30 2008-09-08 삼성에스디아이 주식회사 유기 전계 발광표시장치
US9048404B2 (en) * 2009-07-06 2015-06-02 Zhuo Sun Thin flat solid state light source module
CN103855105B (zh) * 2012-12-06 2017-04-26 财团法人工业技术研究院 环境敏感电子元件封装体及其制作方法
KR102034253B1 (ko) * 2013-04-12 2019-10-21 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
TWI545746B (zh) * 2014-01-21 2016-08-11 群創光電股份有限公司 有機發光二極體顯示裝置
JP6307384B2 (ja) * 2014-08-11 2018-04-04 株式会社ジャパンディスプレイ 有機el表示装置
TWI757234B (zh) * 2015-05-21 2022-03-11 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置、及照明裝置
EP3709374B1 (en) * 2015-05-29 2022-08-03 Nichia Corporation Light emitting device
US10886250B2 (en) * 2015-07-10 2021-01-05 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
KR102555323B1 (ko) * 2016-09-28 2023-07-13 삼성디스플레이 주식회사 표시 장치
US10748973B2 (en) * 2016-11-25 2020-08-18 Samsung Display Co., Ltd. Display device with film groove having inclined and stepped side surface
CN106784386A (zh) * 2017-01-13 2017-05-31 纳晶科技股份有限公司 封装结构、封装方法与电致发光器件
US10559772B2 (en) * 2017-03-31 2020-02-11 Sharp Kabushiki Kaisha Display device and production method thereof
CN107170902B (zh) * 2017-05-26 2019-04-02 深圳市华星光电半导体显示技术有限公司 封装薄膜及其制作方法与oled面板的封装方法
US10756298B2 (en) * 2017-11-03 2020-08-25 OLEDWorks LLC Solder hermetic sealing for OLEDs
US10692950B2 (en) * 2018-08-31 2020-06-23 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED display panel having a first barrier closed ring and a second barrier closed ring

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004567A1 (ja) * 2009-07-07 2011-01-13 パナソニック株式会社 有機エレクトロルミネッセンス表示装置及びその製造方法
US20170069873A1 (en) * 2015-09-07 2017-03-09 Samsung Display Co., Ltd. Display apparatus
CN107808930A (zh) * 2016-08-31 2018-03-16 乐金显示有限公司 显示装置及其测试方法
US20180151833A1 (en) * 2016-11-28 2018-05-31 Osram Oled Gmbh Optoelectronic component and method for producing an optoelectronic component
CN107204404A (zh) * 2017-04-11 2017-09-26 上海天马微电子有限公司 有机电致发光装置
CN107359273A (zh) * 2017-06-20 2017-11-17 合肥市惠科精密模具有限公司 一种高强度amoled封装结构
CN109301084A (zh) * 2018-09-28 2019-02-01 京东方科技集团股份有限公司 封装结构、电子装置及封装方法

Also Published As

Publication number Publication date
US11805667B2 (en) 2023-10-31
US20210226162A1 (en) 2021-07-22
CN109301084B (zh) 2020-06-16
CN109301084A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
WO2020063530A1 (zh) 封装结构、电子装置及封装方法
JP7321193B2 (ja) 表示パネル、表示装置及びその製造方法
JP6935879B2 (ja) 表示基板、表示パネル及び表示装置
CN109103346B (zh) 一种封装结构及显示面板
WO2016188248A1 (zh) 显示基板及其制作方法、显示装置
TWI389271B (zh) 環境敏感電子元件之封裝體及其封裝方法
US20170040392A1 (en) Flexible display device and method for packaging the same
WO2015143843A1 (zh) 一种显示面板及其封装方法、显示装置
CN108091675B (zh) 显示基板及其制作方法
US10872941B2 (en) Display panel, manufacture method thereof and display device
CN108336118B (zh) 显示基板及其制造方法、显示装置
CN109904336B (zh) 电子装置基板及制造方法/显示装置
CN110137375B (zh) 一种有机发光显示面板、装置及方法
CN107768402B (zh) 具有阻挡装置的显示面板
WO2020077839A1 (zh) 有机自发光二极管显示面板及其制作方法
US11747930B2 (en) Display device with recesses
US10248163B2 (en) Flexible display apparatus
US10367170B2 (en) Light emitting device with irregularities located on a first light transmissive substrate and a second light transmissive substrate
US20190341580A1 (en) Flexible display device and method for manufacturing the flexible display device
US10312316B2 (en) Display apparatus and method of manufacturing the same, package cover plate
TWI574399B (zh) 有機發光顯示裝置及製造有機發光顯示裝置之方法
CN110824785A (zh) 显示面板及显示装置
WO2021217806A1 (zh) 一种显示面板
WO2019227930A1 (zh) 电致发光显示面板、其制作方法及显示装置
WO2020252944A1 (zh) 发光面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864628

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19864628

Country of ref document: EP

Kind code of ref document: A1