WO2020062768A1 - 一种高效的分流锥冷却结构 - Google Patents

一种高效的分流锥冷却结构 Download PDF

Info

Publication number
WO2020062768A1
WO2020062768A1 PCT/CN2019/075893 CN2019075893W WO2020062768A1 WO 2020062768 A1 WO2020062768 A1 WO 2020062768A1 CN 2019075893 W CN2019075893 W CN 2019075893W WO 2020062768 A1 WO2020062768 A1 WO 2020062768A1
Authority
WO
WIPO (PCT)
Prior art keywords
spiral
channel
spiral tower
shunt cone
tower
Prior art date
Application number
PCT/CN2019/075893
Other languages
English (en)
French (fr)
Inventor
梁富
何炽灵
周于铭
Original Assignee
广州市型腔模具制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市型腔模具制造有限公司 filed Critical 广州市型腔模具制造有限公司
Priority to DE212019000034.7U priority Critical patent/DE212019000034U1/de
Publication of WO2020062768A1 publication Critical patent/WO2020062768A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould

Definitions

  • the invention relates to the field of mold casting, in particular to an efficient shunt cone cooling structure.
  • the object of the present invention is to provide an efficient shunt cone cooling structure.
  • An efficient shunt cone cooling structure includes a shunt cone and a spiral tower inserted into the inside of the shunt cone.
  • the middle of the spiral tower is provided with a first channel.
  • the top of the spiral tower fits the shunt cone.
  • a spiral groove with a first channel as the center of rotation is provided on the top, a second channel is provided on the side of the spiral tower, and the second channel is connected to the edge of the spiral groove, and the first channel is connected as a water inlet.
  • a water pipe, and the second channel is used as a water outlet to connect the water pipe.
  • part of the side of the spiral tower fits the diverter cone, and the spiral tower is provided with a circle of water outlet grooves along the circumference on the side, and the water outlet groove communicates with the spiral groove through the recessed first slot on the side of the spiral tower.
  • the first slot is equivalent to the second channel, and the spiral groove is connected to the water outlet pipe through the water outlet groove.
  • the spiral tower is provided with a recessed second slot on the lower side of the outlet groove, and the first slot and the second slot are staggered at different angles. At this time, the spiral groove passes through the first slot.
  • the bit, the outlet groove and the second slot are connected to the outlet pipe.
  • two first slots are provided, which are symmetrically distributed on both sides of the spiral groove, respectively, and the second slot is located between the two first slots.
  • the spiral tower is provided with a third channel in a radial direction at a position below the water outlet groove, and the first channel is connected to the water inlet pipe through the third channel.
  • the shape of the spiral tower is cylindrical, and the lower end of the spiral tower is provided with a flange larger than the diameter of the spiral tower, and the flange and the shunt cone are fixed by screw connection.
  • the shunt cone is provided with a U-shaped channel around the spiral tower, one end of the U-shaped channel is connected to the water inlet pipe, and the other end is connected to the first channel.
  • the shunt cone is also provided with a Z-shaped channel around the spiral tower.
  • One end of the Z-shaped channel is connected to the water outlet pipe, and the other end is connected to the edge of the spiral groove.
  • the U-shaped channel and the Z-shaped channel jointly surround the spiral.
  • the tower is also provided with a Z-shaped channel around the spiral tower.
  • the beneficial effect of the present invention is that the spiral tower fully conforms to the diverter cone, which can well guide the cooling water flow after the cooling water is passed, and improve the heat exchange efficiency; further, the technical solution is on the top surface of the spiral tower, the side of the spiral tower, and The inside of the diverter cone is provided with a channel through which cooling water flows, and the diverter cone is radiated as a whole, which has a very high heat exchange efficiency.
  • Figure 1 is a bottom exploded view of the cooling structure of the shunt cone
  • 3 is a perspective view of one angle of the spiral tower
  • Figure 5 is a top perspective view of a shunt cone
  • Fig. 6 is a perspective view of a shunt cone.
  • the present invention is an efficient shunt cone cooling structure, which includes a shunt cone 1 and a spiral tower 2 inserted inside the shunt cone 1.
  • the shape of the spiral tower 2 is cylindrical, and the lower end of the spiral tower 2 is provided.
  • a flange 7 having a diameter larger than that of the spiral tower 2 is fixed between the flange 7 and the shunt cone 1 by screws.
  • the top and sides of the spiral tower 2 need to be in close contact with the shunt cone 1. For the parts that need to be used, it is only necessary to cut off some materials. At this time, the spiral tower 2 and the shunt cone 1 are required to form a cooling water flow channel together.
  • the middle of the spiral tower 2 is provided with a first channel 22, and the top of the spiral tower 2 is provided with a spiral groove 21 with the first channel 22 as the center of rotation. At this time, the spiral groove 21 and the shunt cone 1 together form a cooling water flow channel. .
  • the side of the spiral tower 2 is provided with a second channel, which is connected to the edge of the spiral groove 21, the first channel 22 is connected to the water inlet pipe 3 as a water inlet, and the second channel is connected to the water outlet pipe 4 as a water outlet.
  • the cooling water surges from the first channel 22, fills the spiral groove 21, and finally flows away.
  • the design mainly aims at cooling one top surface of the shunt cone 1.
  • the top surface of the shunt cone 1 is the thickest part of the whole shunt cone structure. If the drainage is properly performed, it can sufficiently cool this part, and accelerate the cooling and mold opening time of the material handle. As a result, the time of the entire die-casting cycle is reduced, and the production efficiency is improved; the spiral grooves on the side of the traditional spiral tower cannot achieve a good cooling effect.
  • the inside of the shunt cone 1 is made into a complete plane for fitting the spiral tower 2; when the top surface of the spiral tower 2 is formed by groove processing of spherical surface At this time, the inside of the shunt cone 1 should be made into a spherical surface to ensure that it fits the spiral tower 2.
  • the spiral tower 2 fits the shunt cone 1, so that it is convenient to guide the flow of cooling water, avoid turbulent cooling water, and improve heat exchange efficiency.
  • the second channel is equivalent to the combination of the first slot 23 and the inner wall of the shunt cone 1, and the principle of the combination of other slots is also the same.
  • part of the side of the spiral tower 2 fits the diverter cone 1.
  • the spiral tower 2 is provided with a circle of water outlet grooves 25 on the side along the circumference.
  • the water outlet groove 25 passes through the recessed first groove 23 on the side of the spiral tower 2.
  • Connected to the edge of the spiral groove 21, the spiral groove 21 is connected to the water outlet pipe 4 through the water outlet groove 25.
  • the first slot 23 is equivalent to flattening a part of the side surface of the spiral tower 2 until the first slot 23 can be connected to the edge of the spiral groove 21.
  • the cooling water fills the spiral groove 21 and then flows to the water outlet groove 25. Since the water outlet groove 25 is distributed on the side of the shunt cone 1, during the flow of the cooling water, the cooling water in turn takes away the heat on the side of the shunt cone 1.
  • the design is mainly aimed at the side cooling of the shunt cone 1.
  • the spiral tower 2 is provided with a recessed second slot 24 on the lower side of the outlet groove 25.
  • the first slot 23 and the second slot 24 are staggered at different angles.
  • the spiral groove 21 It is connected to the water outlet pipe 4 through the first slot 23, the water outlet groove 25 and the second slot 24.
  • the second slot 24 is also a part of the side of the spiral tower 2 flattened until the second slot 24 can communicate with the water outlet groove 25.
  • the area of the second slot 24 is relatively large, because not only the side of the diverter cone 1 needs to be cooled here, but also the water outlet pipe 4 needs to be matched, so a larger processing range is reserved.
  • two first slots 23 are provided, which are symmetrically distributed on both sides of the spiral groove 21 respectively, and the second slot 24 is located between the two first slots 23.
  • the specific flow process is that the cooling water flows downward from both sides of the spiral groove 21 to the water outlet groove 25, and then flows to the second groove 24 in a collective manner, and finally flows out of the shunt cone 1.
  • the spiral tower 2 is provided with a third channel 26 in a radial direction at a position below the water outlet groove 25, and the first channel 22 is connected to the water inlet pipe 3 through the third channel 26.
  • the shunt cone 1 is provided with a U-shaped channel 5 around the spiral tower 2. One end of the U-shaped channel 5 is connected to the water inlet pipe 3 and the other end is connected to the first channel 22. Then, the shunt cone 1 is also provided with a Z-shaped channel 6 around the spiral tower 2. One end of the Z-shaped channel 6 is connected to the water outlet pipe 4 and the other end is connected to the edge of the spiral groove 21. The U-shaped channel 5 and the Z-shaped channel 6 surround together. Around the spiral tower 2. The reason why the channel runs through the side of the shunt cone 1 is because these are necessary process holes in the processing process. After the U-shaped channel 5 and the Z-shaped channel 6 are processed, they can be plugged.
  • the spiral tower 2 fits the diverter cone 1 fully, and can guide the cooling water flow and improve the heat exchange efficiency after passing the cooling water. Further, the technical solution is on the top surface of the spiral tower 2, the side of the spiral tower 2, and the diverter cone.
  • the inside of 1 is provided with a channel through which cooling water flows, and the shunt cone 1 is radiated as a whole, which has very high heat exchange efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种分流锥冷却结构,包括分流锥(1)和插入到分流锥内部的螺旋塔(2)。螺旋塔全面贴合分流锥,螺旋塔的顶面和侧面开设出沟槽,在通入冷却水后能够很好地引导冷却水流动,提高换热效率;分流锥自身也在螺旋塔的顶面、螺旋塔的侧面和分流锥的内部均设置了便于冷却水流经的通道,这些通道依次和分流锥上形成的通道连通,从整体上对分流锥进行散热,具有高的换热效率。

Description

一种高效的分流锥冷却结构
技术领域
本发明涉及模具铸造领域,特别是涉及一种高效的分流锥冷却结构。
背景技术
随着汽车产业的蓬勃发展,铸造行业工艺水平不断提升,铝车轮业水冷模具铸造技术日益成熟。众所周知,铝轮毂的低压铸造需满足顺序指向凝固要求。一方面,当生产节拍加速,保压时间缩短,中心区域冷却开启时间需相应推后,这就要求分流锥及底模中心冷却在收冒口时必须具有一定的冷却及时性。如果分流锥自身的冷却不到位,分流锥容易被腐蚀,而在开模时料柄容易炸裂,会降低生产效率。分流锥的冷却至关重要。
发明内容
本发明的目的在于提供一种高效的分流锥冷却结构。
本发明所采取的技术方案是:
一种高效的分流锥冷却结构,包括分流锥和插入到分流锥内部的螺旋塔,所述螺旋塔的中间设有第一通道,所述螺旋塔的顶部贴合分流锥,所述螺旋塔的顶部设有以第一通道为旋转中心的螺旋沟槽,所述螺旋塔的侧面设有第二通道,所述第二通道连通到螺旋沟槽的边缘,所述第一通道作为进水口连接进水管道,所述第二通道作为出水口连接出水管道。
作为上述方案的改进,螺旋塔的部分侧面贴合分流锥,螺旋塔在侧面沿圆周设置一圈出水沟槽,所述出水沟槽通过螺旋塔侧面的凹陷的第一槽位连通到螺旋沟槽的边缘,这里第一槽位等同于第二通道,所述螺旋沟槽通过出水沟槽连接出水管道。
作为上述方案的改进,螺旋塔在出水沟槽的下侧设有凹陷的第二槽位,所述第一槽位和第二槽位错开处于不同的角度,此时螺旋沟槽通过第一槽位、出水沟槽和第二槽位连接到出水管道。
作为上述方案的改进,第一槽位设置两个,分别对称地分布在螺旋沟槽的两侧边缘,第二槽位处于两个第一槽位之间的位置。
作为上述方案的改进,螺旋塔在出水沟槽的下方位置沿径向方向设有第三通道,第一通道通过第三通道连接进水管道。
作为上述方案的改进,螺旋塔的造型为圆柱状,所述螺旋塔的下端设有直径大于螺旋塔的法兰盘,该法兰盘与分流锥之间通过螺钉连接固定。
作为上述方案的改进,分流锥在螺旋塔的四周设有U形通道,所述U形通道的一端连接进水管道,另一端连接第一通道。
作为上述方案的改进,分流锥在螺旋塔的四周还设有Z形通道,所述Z形通道一端连接出水管道,另一端连接螺旋沟槽的边缘,U形通道和Z形通道共同围绕在螺旋塔的四周。
本发明的有益效果:螺旋塔全面贴合分流锥,在通入冷却水后能够很好地引导冷却水流动,提高换热效率;进一步,技术方案在螺旋塔的顶面、螺旋塔的侧面和分流锥的内部均设置了便于冷却水流经的通道,从整体上对分流锥进行散热,具有非常高的换热效率。
附图说明
下面结合附图对本发明作进一步说明:
图1是分流锥冷却结构的仰视爆炸图;
图2是分流锥冷却结构的俯视爆炸图;
图3是螺旋塔的其中一个角度的立体图;
图4是螺旋塔的另一个角度的立体图;
图5是分流锥的俯视透视图;
图6是分流锥的立体图。
具体实施方式
参照图1~图6,本发明为一种高效的分流锥冷却结构,包括分流锥1和插入到分流锥1内部的螺旋塔2,螺旋塔2的造型为圆柱状,螺旋塔2的下端设有直径大于螺旋塔2的法兰盘7,该法兰盘7与分流锥1之间通过螺钉连接固定。螺旋塔2的顶部和侧面都需要紧贴分流锥1,对于需要使用的部分,削掉部分材料即可,此时需要螺旋塔2和分流锥1共同组成冷却水流动的通道。
螺旋塔2的中间设有第一通道22,螺旋塔2的顶部设有以第一通道22为旋转中心的螺旋沟槽21,此时螺旋沟槽21与分流锥1共同组成冷却水流动的通道。螺旋塔2的侧面设有第二通道,第二通道连通到螺旋沟槽21的边缘,第一通道22作为进水口连接进水管道3,第二通道作为出水口连接出水管道4。冷却水从第一通道22往上涌,充满螺旋沟槽21,最后流走。该设计主要针对分流锥1的一个顶面进行冷却,分流锥1的顶面是整个分流锥结构中最厚的部位,如果引流得当能充分冷却这个部位,加快料柄的冷却和开模时间,从而降低整个压铸循环的时间,提高生产效率;传统的螺旋塔的侧面设置螺旋沟槽无法起到良好的冷却效果。当螺旋塔2的顶面由平面加工出沟槽而成时,分流锥1的内部做成完整的平面用于贴合螺旋塔2;当螺旋塔2的顶面由球面加工出沟槽而成时,分流锥1的内部要做成球面,保证贴合螺旋塔2。本实施例中,螺旋塔2贴合分流锥1,这样便于引导冷却水流动,避免冷却水湍流,提高换热效率。
本实施例中,不需要在螺旋塔2中设置独立的通道,第二通道等同于第一槽位23与分流锥1内壁的组合,其他槽位的组合原理也相同。作为优选的实施方式,螺旋塔2的部分侧面贴合分流锥1,螺旋塔2在侧面沿圆周设置一圈出水沟槽25,出水沟槽25通过螺旋塔2侧面的凹陷的第一槽位23连通到螺旋沟槽21的边缘,螺旋沟槽21通过出水沟槽25连接出水管道4。第一槽位23相当于把螺旋塔2的部分侧面削平至第一槽位23能够连接到螺旋沟槽21的边缘为止。冷却水充满螺旋沟槽21后流到出水沟槽25,由于出水沟槽25分布在分流锥1的侧面,在冷却水流动的过程中,冷却水顺便带走了分流锥1侧面的热量;该设计主要针对分流锥1的侧面冷却。
作为优选的实施方式,螺旋塔2在出水沟槽25的下侧设有凹陷的第二槽位24,第一槽位23和第二槽位24错开处于不同的角度,此时螺旋沟槽21通过第一槽位23、出水沟槽25和第二槽位24连接到出水管道4。第二槽位24也是削平螺旋塔2的部分侧面,直至第二槽位24能够连通出水沟槽25。参照图4,第二槽位24的面积偏大,因为这里不仅需要冷却分流锥1的侧面,还需要配合出水管道4,所以预留较大的加工范围。
从数量上来说,第一槽位23设置两个,分别对称地分布在螺旋沟槽21的两侧边缘,第二槽位24处于两个第一槽位23之间的位置。具体的流动过程为,冷却水从螺旋沟槽21的两侧往下流到出水沟槽25,然后再汇总流到第二槽位24,最终流出分流锥1。
作为优选的实施方式,螺旋塔2在出水沟槽25的下方位置沿径向方向设有第三通道26,第一通道22通过第三通道26连接进水管道3。
为了进一步全面地让冷却水流经分流锥1而不仅仅集中冷却螺旋塔2附近的位置,所以分流锥1内也需要设置通道。具体参照图5,图5中的虚线表示通道。首先,分流锥1在螺旋塔2的四周设有U形通道5,U形通道5的一端连接进水管道3,另一端连接第一通道22。然后,分流锥1在螺旋塔2的四周还设有Z形通道6,Z形通道6一端连接出水管道4,另一端连接螺旋沟槽21的边缘,U形通道5和Z形通道6共同围绕在螺旋塔2的四周。通道之所以贯穿分流锥1的侧面,是因为这些是加工过程中必须的工艺孔,在完成U形通道5和Z形通道6加工之后,封堵上即可。
螺旋塔2全面贴合分流锥1,在通入冷却水后能够很好地引导冷却水流动,提高换热效率;进一步,技术方案在螺旋塔2的顶面、螺旋塔2的侧面和分流锥1的内部均设置了便于冷却水流经的通道,从整体上对分流锥1进行散热,具有非常高的换热效率。
当然,本设计创造并不局限于上述实施方式,上述各实施例不同特征的组合,也可以达到良好的效果。熟悉本领域的技术人员在不违背本发明精神的前提下还可作出等同变形或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (8)

  1. 一种高效的分流锥冷却结构,包括分流锥(1)和插入到分流锥(1)内部的螺旋塔(2),其特征在于:所述螺旋塔(2)的中间设有第一通道(22),所述螺旋塔(2)的顶部贴合分流锥(1),所述螺旋塔(2)的顶部设有以第一通道(22)为旋转中心的螺旋沟槽(21),所述螺旋塔(2)的侧面设有第二通道,所述第二通道连通到螺旋沟槽(21)的边缘,所述第一通道(22)作为进水口连接进水管道(3),所述第二通道作为出水口连接出水管道(4)。
  2. 根据权利要求1所述的高效的分流锥冷却结构,其特征在于:所述螺旋塔(2)的部分侧面贴合分流锥(1),所述螺旋塔(2)在侧面沿圆周设置一圈出水沟槽(25),所述出水沟槽(25)通过螺旋塔(2)侧面的凹陷的第一槽位(23)连通到螺旋沟槽(21)的边缘,这里第一槽位(23)等同于第二通道,所述螺旋沟槽(21)通过出水沟槽(25)连接出水管道(4)。
  3. 根据权利要求2所述的高效的分流锥冷却结构,其特征在于:所述螺旋塔(2)在出水沟槽(25)的下侧设有凹陷的第二槽位(24),所述第一槽位(23)和第二槽位(24)错开处于不同的角度,此时螺旋沟槽(21)通过第一槽位(23)、出水沟槽(25)和第二槽位(24)连接到出水管道(4)。
  4. 根据权利要求3所述的高效的分流锥冷却结构,其特征在于:第一槽位(23)设置两个,分别对称地分布在螺旋沟槽(21)的两侧边缘,第二槽位(24)处于两个第一槽位(23)之间的位置。
  5. 根据权利要求4所述的高效的分流锥冷却结构,其特征在于:所述螺旋塔(2)在出水沟槽(25)的下方位置沿径向方向设有第三通道(26),第一通道(22)通过第三通道(26)连接进水管道(3)。
  6. 根据权利要求1所述的高效的分流锥冷却结构,其特征在于:所述螺旋塔(2)的造型为圆柱状,所述螺旋塔(2)的下端设有直径大于螺旋塔(2)的法兰盘(7),该法兰盘(7)与分流锥(1)之间通过螺钉连接固定。
  7. 根据权利要求1至6中任一项所述的高效的分流锥冷却结构,其特征在于:所述分流锥(1)在螺旋塔(2)的四周设有U形通道(5),所述U形通道(5)的一端连接进水管道(3),另一端连接第一通道(22)。
  8. 根据权利要求7所述的高效的分流锥冷却结构,其特征在于:所述分流锥(1)在螺旋塔(2)的四周还设有Z形通道(6),所述Z形通道(6)一端连接出水管道(4),另一端连接螺旋沟槽(21)的边缘,U形通道(5)和Z形通道(6)共同围绕在螺旋塔(2)的四周。
PCT/CN2019/075893 2018-09-30 2019-02-22 一种高效的分流锥冷却结构 WO2020062768A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212019000034.7U DE212019000034U1 (de) 2018-09-30 2019-02-22 Effiziente Angusskegel-Kühlstruktur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811159654.3A CN109014131B (zh) 2018-09-30 2018-09-30 一种高效的分流锥冷却结构
CN201811159654.3 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020062768A1 true WO2020062768A1 (zh) 2020-04-02

Family

ID=64615519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075893 WO2020062768A1 (zh) 2018-09-30 2019-02-22 一种高效的分流锥冷却结构

Country Status (2)

Country Link
CN (1) CN109014131B (zh)
WO (1) WO2020062768A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109014131B (zh) * 2018-09-30 2024-06-04 广州市型腔模具制造有限公司 一种高效的分流锥冷却结构
CN114713791A (zh) * 2022-05-11 2022-07-08 浙江华朔科技股份有限公司 一种用于制造汽车减震塔的模具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU925533A1 (ru) * 1980-07-03 1982-05-07 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Железнодорожного Транспорта Устройство дл непрерывного лить слитков
CN201423446Y (zh) * 2009-02-24 2010-03-17 宁波市北仑辉旺铸模实业有限公司 分流咀冷却结构
CN105436466A (zh) * 2015-12-25 2016-03-30 宁波辉旺机械有限公司 一种压铸模分流锥螺旋充分冷却结构
CN205309260U (zh) * 2015-12-25 2016-06-15 宁波辉旺机械有限公司 一种压铸模分流锥螺旋充分冷却结构
CN206083779U (zh) * 2016-08-31 2017-04-12 天津立中集团股份有限公司 一种能够快速均匀冷却的分流锥
CN206241224U (zh) * 2016-12-02 2017-06-13 浙江永峰模具制造有限公司 一种轮毂模具用的分流锥
CN206253618U (zh) * 2016-09-30 2017-06-16 苏州广型模具有限公司 模具冷却用螺旋式分流锥
CN109014131A (zh) * 2018-09-30 2018-12-18 广州市型腔模具制造有限公司 一种高效的分流锥冷却结构

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110133181A (ko) * 2010-06-04 2011-12-12 삼성전자주식회사 사출 금형의 스프루 부시
WO2013049882A1 (en) * 2011-10-03 2013-04-11 Modi Consulting And Investments Pty Ltd Conformal cooling tool with rapid heat cycle performance
CN203764941U (zh) * 2014-03-25 2014-08-13 宁波市北仑华盛模具厂 一种压铸模具的螺旋冷却结构
CN104550846B (zh) * 2015-01-22 2017-06-20 昆山众异特机械工业有限公司 一种低压轮毂模具
JP6002271B1 (ja) * 2015-04-01 2016-10-05 株式会社スグロ鉄工 金型分流子およびそれを備えた鋳造用金型
CN205310606U (zh) * 2015-12-30 2016-06-15 广州市型腔模具制造有限公司 一种区域控制式多点运水结构
KR101802991B1 (ko) * 2016-03-31 2017-11-29 김진홍 다이캐스팅 금형의 금형냉각기
CN206425528U (zh) * 2017-01-12 2017-08-22 广东文灿模具有限公司 双螺旋冷却机构及压铸模具
CN107020363A (zh) * 2017-05-05 2017-08-08 广东鸿图武汉压铸有限公司 一种整体式压铸模具浇口套
CN107825667A (zh) * 2017-11-27 2018-03-23 杭州先临快速成型技术有限公司 一种浇口套快速冷却水路及其设计方法
CN209021217U (zh) * 2018-09-30 2019-06-25 广州市型腔模具制造有限公司 一种高效的分流锥冷却结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU925533A1 (ru) * 1980-07-03 1982-05-07 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Железнодорожного Транспорта Устройство дл непрерывного лить слитков
CN201423446Y (zh) * 2009-02-24 2010-03-17 宁波市北仑辉旺铸模实业有限公司 分流咀冷却结构
CN105436466A (zh) * 2015-12-25 2016-03-30 宁波辉旺机械有限公司 一种压铸模分流锥螺旋充分冷却结构
CN205309260U (zh) * 2015-12-25 2016-06-15 宁波辉旺机械有限公司 一种压铸模分流锥螺旋充分冷却结构
CN206083779U (zh) * 2016-08-31 2017-04-12 天津立中集团股份有限公司 一种能够快速均匀冷却的分流锥
CN206253618U (zh) * 2016-09-30 2017-06-16 苏州广型模具有限公司 模具冷却用螺旋式分流锥
CN206241224U (zh) * 2016-12-02 2017-06-13 浙江永峰模具制造有限公司 一种轮毂模具用的分流锥
CN109014131A (zh) * 2018-09-30 2018-12-18 广州市型腔模具制造有限公司 一种高效的分流锥冷却结构

Also Published As

Publication number Publication date
CN109014131A (zh) 2018-12-18
CN109014131B (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
WO2020062768A1 (zh) 一种高效的分流锥冷却结构
WO2021253919A1 (zh) 一种用于电池模组的多级液冷板
WO2021043047A1 (zh) 一种复合齿散热器及通讯基站
WO2021077965A1 (zh) 用于cpu散热器热交换的冷却装置
CN101249551B (zh) 用于镁合金垂直连铸的方坯结晶器机构
CN107787160A (zh) 一种电机控制器水冷散热结构
WO2017219746A1 (zh) 换热器、色轮散热模组和投影装置
JP2839470B2 (ja) 光ディスク基盤射出成形金型用冷却装置
CN213860467U (zh) 一种led灯具加工用注塑模具
CN106735010B (zh) 一种适用于非晶宽带制备的冷却辊
CN208044532U (zh) 一种新型计算机复合散热装置
CN209249644U (zh) 一种水冷板机构
CN206515776U (zh) 一种新型电脑水冷循环泵
CN213755477U (zh) 液冷散热器
CN209021217U (zh) 一种高效的分流锥冷却结构
WO2018201717A1 (zh) 一种pecvd设备炉口进气结构
CN211719742U (zh) 液冷系统及动力电池系统
CN207853162U (zh) 超高功率光纤耦合器冷却模块结构
CN202282940U (zh) 一种用于功率放大器空气流散热结构
CN218728563U (zh) 一种投影仪散热结构及投影仪
CN218053967U (zh) 一种吹膜机用高效冷却风环
TW202120876A (zh) 具有複合式流道的液冷裝置
CN206351270U (zh) 一种深孔钻主轴旋转接头
CN206757519U (zh) 一种新型cpu水冷头
CN217088463U (zh) 新型分流均流液冷板结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865037

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19865037

Country of ref document: EP

Kind code of ref document: A1