WO2021253919A1 - 一种用于电池模组的多级液冷板 - Google Patents

一种用于电池模组的多级液冷板 Download PDF

Info

Publication number
WO2021253919A1
WO2021253919A1 PCT/CN2021/084108 CN2021084108W WO2021253919A1 WO 2021253919 A1 WO2021253919 A1 WO 2021253919A1 CN 2021084108 W CN2021084108 W CN 2021084108W WO 2021253919 A1 WO2021253919 A1 WO 2021253919A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cooling
module
outlet
inlet
Prior art date
Application number
PCT/CN2021/084108
Other languages
English (en)
French (fr)
Inventor
严强
刘剑
彭典明
Original Assignee
深圳市飞荣达科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市飞荣达科技股份有限公司 filed Critical 深圳市飞荣达科技股份有限公司
Publication of WO2021253919A1 publication Critical patent/WO2021253919A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of cooling, in particular to a multi-stage liquid cooling plate for battery modules.
  • a liquid cooling plate and a battery pack are disclosed, wherein the liquid cooling plate includes a liquid cooling plate body and multiple sets of fin assemblies.
  • the liquid-cooling plate body has a cooling liquid channel, and the liquid-cooling plate body has a heat exchange wall suitable for heat exchange with the battery module of the battery pack; the multiple sets of fin assemblies are arranged in the cooling liquid channel And arranged at intervals in the liquid flow direction in the cooling liquid channel, the contact heat exchange area of the multiple groups of the fin assembly and the liquid is increasing in the liquid flow direction, and each group of the fins The fin assembly is in contact with the heat exchange wall.
  • the general battery pack uses liquid cooling to dissipate heat; the flow channel design of the liquid cooling plate is different according to the size of the battery, and the flow channel forms are various. Due to the inconsistency of the flow channels, the design, development and manufacturing It will consume a lot of time and increase cost; and the designed flow channel has poor performance in temperature uniformity.
  • embodiments of the present invention are proposed to provide a multi-stage liquid cooling plate for battery modules that overcomes the above problems or at least partially solves the above problems.
  • the embodiment of the present invention discloses a multi-stage liquid cooling plate for a battery module, comprising a substrate provided with a groove and a cover plate adapted to the substrate, the substrate and the A cavity is formed in the cover plate and is integrally formed; the substrate includes a liquid inlet assembly, a liquid cooling module adapted to the battery module, and a liquid outlet assembly; the liquid inlet assembly and the liquid outlet assembly pass through the liquid cooling Module communication; the liquid inlet assembly, the liquid cooling module, and the liquid outlet assembly are integrally formed, the liquid cooling module is provided with at least one cooling flow channel; the liquid cooling module is sequentially provided with cooling liquid The first collecting area, the cooling channel and the second collecting area with multi-stage uniform flow; the liquid cooling module communicates with the liquid inlet assembly through the first collecting area; the liquid cooling module passes through the second collecting area The zone is in communication with the liquid outlet assembly.
  • the liquid inlet assembly includes a liquid inlet and a main liquid inlet pipe communicating with the liquid inlet; the main liquid inlet pipe is connected in parallel with the first collecting area.
  • the first collecting area includes a first orifice for controlling the flow of the cooling liquid and a liquid inlet collecting chamber, and the first orifice is connected to the liquid inlet collecting chamber;
  • the main liquid inlet pipe communicates with the liquid inlet collecting chamber through the first orifice.
  • the liquid outlet assembly includes a liquid outlet and a main liquid outlet pipe communicating with the liquid outlet;
  • the main liquid outlet pipe is connected in parallel with the second collecting area.
  • the second collecting area includes a second orifice and an outlet collecting chamber, and the second orifice is connected to the outlet collecting chamber;
  • the main liquid outlet pipe is in communication with the liquid outlet collecting chamber through the second orifice;
  • the first orifice and the second orifice are symmetrically arranged.
  • the cooling flow channel is a multi-flow channel configuration and connected in parallel;
  • One end of the cooling channel is connected to the inlet liquid collection chamber, and the other end is connected to the outlet liquid collection chamber.
  • the turning point of the cooling channel is an arc-shaped transition connection.
  • the liquid inlet further includes a liquid inlet connector, and the liquid inlet connector is detachably connected to the liquid inlet.
  • the liquid outlet further includes a liquid outlet connector, and the liquid outlet connector is detachably connected to the liquid outlet.
  • At least one liquid cooling module is provided.
  • the embodiment of the present invention provides a multi-stage liquid cooling plate for a battery module, including a substrate provided with a groove and a cover plate adapted to the substrate, and the substrate and the cover plate are formed in The cavity is integrally formed; the substrate includes a liquid inlet component, a liquid cooling module adapted to the battery module, and a liquid outlet component; the liquid inlet component and the liquid outlet component communicate with each other through the liquid cooling module;
  • the liquid cooling module is sequentially provided with a first collecting area, a cooling channel, and a second collecting area for multi-stage uniform splitting of the cooling liquid; the liquid cooling module communicates with the liquid inlet assembly through the first collecting area
  • the liquid cooling module communicates with the liquid outlet assembly through the second collecting area
  • the present invention adopts the liquid cooling modular design, so that the battery modules have a one-to-one corresponding liquid cooling module, and the liquid cooling module passes through the cooling channel Method setting; at the same time adopting multi-stage flow splitting technology and internal heat exchange technology of the runners to balance the flow distribution of the runners
  • FIG. 1 is a schematic structural diagram of an embodiment of a multi-stage liquid cooling plate for a battery module according to the present invention
  • FIG. 2 is a schematic diagram of the overall structure of an embodiment of a multi-stage liquid cooling plate device for battery modules of the present invention.
  • Liquid inlet component 1. Liquid inlet component; 11. Liquid inlet connector; 12. Liquid inlet; 13. Liquid inlet main pipe; 2. Liquid cooling module; 21. First orifice; 22. Liquid inlet manifold; 23. Cooling Flow channel; 24, liquid outlet collection chamber; 25, second orifice; 3. liquid component; 31, liquid outlet connector; 32, liquid outlet; 33, main liquid outlet pipe.
  • the multi-stage liquid cooling plate of the present application is not only applicable to the field of heat dissipation of battery modules, but also can be used in other fields of heat dissipation, such as motor cooling, etc., and is not limited to the fields described herein.
  • One of the core concepts of the embodiment of the present invention is to include A substrate provided with a groove and a cover plate adapted to the substrate, the substrate and the cover plate form a cavity and are integrally formed; the substrate includes a liquid inlet assembly 1 and is adapted to a battery module The liquid cooling module 2 and the liquid outlet assembly 3; the liquid inlet assembly 1 and the liquid outlet assembly 3 are in communication through the liquid cooling module 2; the liquid inlet assembly 1, the liquid cooling module 2 and the liquid outlet assembly 3 integrally formed, the liquid cooling module 2 is provided with at least one cooling flow channel 23; the liquid cooling module 2 is sequentially provided with a first collecting area for multi-stage and uniform distribution of cooling liquid, a cooling flow channel 23, and The second collecting area; the liquid cooling module 2 communicates with the liquid inlet assembly 1 through the first collecting area; the liquid cooling module 2 communicates with the liquid outlet assembly 3 through the second collecting
  • the liquid cooling module 2 is set through the cooling channel 23; at the same time, the multi-stage shunt technology and the internal heat exchange technology of the flow channel are used to balance The flow distribution of the runners of each module and the flow distribution of the cooling runners 23 in each cooling module.
  • the cooling liquid can be evenly distributed in the module to generate heat Area, so as to ensure that the battery modules have good temperature uniformity.
  • the integrally formed liquid-cooling plate can make the liquid-cooling plate not occupy external space and produce a better effect in cooling the battery module, and the integrally formed liquid-cooling plate makes the weight of the liquid-cooled plate lighter and can increase the energy density of the electric module.
  • the liquid-cooling plate body is formed with a liquid-inlet assembly 1, a liquid-cooling module 2 adapted to the battery module, and a liquid-outlet assembly 3; the liquid-inlet assembly 1 and the liquid-outlet assembly 3 pass through the liquid-cooling module 2 Connected.
  • the coolant first passes through the liquid inlet 11, enters the liquid inlet 12, flows through the main liquid inlet pipe 13, and performs the first split.
  • the coolant evenly enters the first orifice 21 and the first orifice 21 in the main pipe.
  • the size of the first orifice 21 is the same, and the flow into the liquid inlet collecting chamber 22 is adjusted by the size of the first orifice 21.
  • the first orifice 21 is connected in parallel, and the first orifice 21 and the second orifice are connected in parallel.
  • the holes 25 are arranged at diagonal angles, so that the fluid in each flow channel flows through the orifice at the same distance, and the flow rate of the cooling liquid is evenly distributed.
  • the cooling flow channel 23 After entering the liquid inlet collecting chamber 22 for secondary flow, it enters the cooling flow channel 23, and the cooling flow channel 23 is divided by Multiple runners are connected in reversing mode. The high temperature area of the previous runner is adjacent to the low temperature area of the next runner. Heat exchange can be carried out to realize the internal heat exchange of the cold plate and improve the temperature uniformity effect.
  • the chamber 24 flows through the second orifice 25, and the cooling liquid enters the liquid outlet joint 31 and finally the liquid outlet 32 and then the main liquid outlet pipe 33.
  • the liquid cooling module 2 is sequentially provided with a first collecting area for multi-stage uniform distribution of cooling liquid, a cooling channel 23, and a second collecting area; the liquid cooling module 2 passes through the first collecting area and the The liquid inlet assembly 1 is in communication; the liquid cooling module 2 is in communication with the liquid outlet assembly 3 through a second collecting area.
  • the liquid inlet assembly 1 includes a liquid inlet 12 and a main liquid inlet pipe 13 communicating with the liquid inlet 12.
  • the main liquid inlet pipe 13 is connected in parallel with the first collecting area, and the main liquid inlet pipe 13 is specifically
  • the first orifice 21 is connected in parallel, so that the cooling liquid in each liquid cooling module 2 can be connected, and the temperature is equalized in the liquid cooling module 2, and the high temperature and low temperature are exchanged when the cooling runners 23 circulate, so as to realize the internal exchange of the cold plate. Heat, improve the temperature uniformity effect, and because the uniform temperature uniformity of the battery module is improved, thereby prolonging the service life of the battery.
  • a substrate provided with a groove and a substrate corresponding to the substrate
  • a suitable cover plate, the base plate and the cover plate form a cavity and are integrally formed
  • the base plate includes a liquid inlet assembly 1, a liquid cooling module 2 adapted to the battery module, and a liquid outlet assembly 3
  • the liquid inlet assembly 1 and the liquid outlet assembly 3 are in communication with each other through the liquid cooling module 2
  • the liquid cooling module 2 is sequentially provided with a first collecting area for multi-stage uniform distribution of cooling liquid, a cooling channel 23, and The second collecting area; the liquid cooling module 2 communicates with the liquid inlet assembly 1 through the first collecting area; the liquid cooling module 2 communicates with the liquid outlet assembly 3 through the second collecting area.
  • the first collecting area includes a first orifice 21 for controlling the flow of the cooling liquid and an inlet collecting chamber 22, and the first orifice 21 is connected to the inlet collecting chamber 22; a first collecting area Divide the flow so that the flow rate of the cooling liquid entering the cooling channel 23 is the same, so that the flow is equalized.
  • the main liquid inlet pipe 13 communicates with the liquid inlet collecting chamber 22 through the first orifice 21, and the liquid inlet collecting chamber 22 can assist the resistance of the cooling liquid to divide the flow, making the cooling liquid more fluid.
  • the cooling liquid of the entire liquid cooling plate is in a connected state.
  • the liquid cooling module 2 can also be changed to multiple split liquid cooling plates, which can also enter the multi-stage shunt by way of pipeline connection, and change the main pipeline to an external pipeline.
  • the modular design of liquid cooling module 2 can reduce design time and manufacturing mold opening time, and project design can be quickly finalized, reducing the difficulty of production and processing and reducing costs.
  • the liquid outlet assembly 3 includes a liquid outlet 32 and a main liquid outlet pipe 33 communicating with the liquid outlet 32, and the main liquid outlet pipe 33 is connected in parallel with the second collecting area.
  • the second collecting area includes a second orifice 25 and an outlet collecting chamber 24.
  • the second orifice 25 is connected to the outlet collecting chamber 24; the outlet main pipe 33 passes through the The second orifice 25 is in communication with the outlet collecting chamber 24, and the outlet collecting chamber 24 can assist the resistance of the cooling liquid to divide the flow, making the cooling liquid more fluid, and the cooling liquid of the entire liquid cooling plate is in a connected state .
  • the cooling runners 23 are arranged in a loop shape and connected in parallel, and a plurality of runners are arranged in a rotating pattern and are adjacent to each other, so that heat exchange can also be carried out between the individual runners, so as to realize the temperature equalization treatment, and the uniform temperature can extend the battery The service life of the module.
  • the cooling channel 23 is connected to the liquid inlet collecting chamber 22, and the other end is connected to the liquid outlet collecting chamber 24.
  • the cooling liquid cools the battery modules in the cooling channel 23 to realize heat exchange.
  • the cooling liquid is evenly distributed in the cooling flow channel 23, and each parallel flow channel divides the heat source into a plurality of small areas, thereby reducing heat concentration.
  • An arc-shaped smooth transitional connection is formed at the turning points of the cooling runner 23, and the flow rate of the cooling liquid is uniform at the turning points, so that the uniform temperature of the cooling liquid is better.
  • the liquid inlet 12 further includes a liquid inlet connector 11, which is detachably connected to the liquid inlet 12, and the liquid outlet 32 further includes a liquid outlet connector 31, and the liquid outlet connector 31 is detachable
  • the liquid outlet 32 is connected, and the main body of the liquid cooling plate is connected with the liquid inlet connector 11 and the liquid outlet connector 31 to form a complete liquid cooling plate.
  • the liquid cooling module 2 can set the number of liquid cooling modules 2 according to the number of battery modules for matching.
  • the parallel mode is adopted between the liquid cooling modules 2 so that the cooling liquid is in the liquid cooling module 2. To be connected, not independent of each other, the temperature of the entire liquid cooling plate can be more uniform, and the temperature uniformity effect is better.
  • the description is relatively simple, and for related parts, please refer to the part of the description of the method embodiment.

Abstract

一种用于电池模组的多级液冷板,包括设有凹槽的基板以及与所述基板相适配的盖板,所述基板与所述盖板内形成空腔且一体成型;所述基板包括进液组件(1)、与电池模组相适配的液冷模块(2)以及出液组件(3);所述进液组件(1)与所述出液组件(3)通过所述液冷模块(2)连通;所述进液组件(1)、所述液冷模块(2)以及所述出液组件(3)一体成型;所述液冷模块(2)内依次设有供冷却液多级均匀分流的第一集流区、冷却流道(23)以及第二集流区。通过液冷模块化设计,使得电池模组均有对应的液冷模块(2),液冷模块(2)通过冷却流道(23)方式设置;通过进液主管道(13)和冷却流道(23)多级的流量分配,使冷却液能均匀分布在模组发热区域,从而保证电池各模组具有良好的均温性。

Description

一种用于电池模组的多级液冷板 技术领域
本发明涉及冷却技术领域,特别是涉及一种用于电池模组的多级液冷板。
背景技术
随着社会经济的日益发展,能源需求进一步提高,新能源技术的呼声越来越高,发展电动汽车已是大势所趋。电池作为电动汽车的核心部分,电池的性能和使用寿命直接决定了电动汽车的性能和成本。锂离子动力电池因寿命长、自放电率低、比功率高、能量密度大和无污染等优点,成为电动车辆主要使用的动力电池。电动汽车发展至今,电池技术的突破已经成为限制电动汽车大规模上市的重要原因之一,电池的容量和安全性尚待突破。续航里程越高要求的电池容量也越高,其工作时的发热功率也越大。
现有技术中,公开一种液冷板和电池包,其中液冷板包括:液冷板本体和多组翅片组件。所述液冷板本体内具有冷却液通道,所述液冷板本体具有适于与电池包的电池模组换热的换热壁;所述多组翅片组件设置在所述冷却液通道内且在所述冷却液通道内的液体流动方向上间隔开布置,多组所述翅片组件与所述液体的接触换热面积在所述液体流动方向上呈递增趋势,并且每组所述翅片组件与所述换热壁接触。
但在现有技术中,一般电池包均采用液冷方式进行散热;液冷板的流道设计根据电池的大小设计方式各不一样,流道形式五花八门,由于流道的不一致,在设计开发制造时会耗费大量时间,并增加成本;而且设计出的流道在均温性上表现较差。
技术问题
鉴于上述问题,提出了本发明实施例以便提供一种克服上述问题或者至少部分地解决上述问题的一种用于电池模组的多级液冷板。
技术解决方案
为了解决上述问题,本发明实施例公开了一种用于电池模组的多级液冷板,包括设有凹槽的基板以及与所述基板相适配的盖板,所述基板与所述盖板内形成空腔且一体成型;所述基板包括进液组件、与电池模组相适配的液冷模块以及出液组件;所述进液组件与所述出液组件通过所述液冷模块连通;所述进液组件、所述液冷模块以及所述出液组件一体成型,所述液冷模块至少设有一个所述冷却流道;所述液冷模块内依次设有供冷却液多级均匀分流的第一集流区、冷却流道以及第二集流区;所述液冷模块通过第一集流区与所述进液组件连通;所述液冷模块通过第二集流区与所述出液组件连通。
优选的,所述进液组件包括进液口以及与所述进液口连通的进液主管道;所述进液主管道并联所述第一集流区。
优选的,所述第一集流区包括控制冷却液流量的第一节流孔以及进液集流室,所述第一节流孔连接所述进液集流室;
所述进液主管道通过所述第一节流孔与所述进液集流室连通。
优选的,所述出液组件包括出液口以及与所述出液口连通的出液主管道;
所述出液主管道并联所述第二集流区。
优选的,所述第二集流区包括第二节流孔以及出液集流室,所述第二节流孔连接所述出液集流室;
所述出液主管道通过所述第二节流孔与所述出液集流室连通;
所述第一节流孔和所述第二节流孔对称设置。
优选的,所述冷却流道为多流道回型设置且并联连接;
所述冷却流道一端连接所述进液集流室,另一端连接所述出液集流室。
优选的,所述冷却流道回折处为弧形过渡连接。
优选的,所述进液口还包括进液接头,所述进液接头可拆卸连接所述进液口。
优选的,所述出液口还包括出液接头,所述出液接头可拆卸连接所述出液口。
优选的,所述液冷模块至少设置一个。
有益效果
本发明实施例提供了一种用于电池模组的多级液冷板,包括包括设有凹槽的基板以及与所述基板相适配的盖板,所述基板与所述盖板内形成空腔且一体成型;所述基板包括进液组件、与电池模组相适配的液冷模块以及出液组件;所述进液组件与所述出液组件通过所述液冷模块连通;所述液冷模块内依次设有供冷却液多级均匀分流的第一集流区、冷却流道以及第二集流区;所述液冷模块通过第一集流区与所述进液组件连通;所述液冷模块通过第二集流区与所述出液组件连通,本发明通过液冷模块化设计,使得电池模组均有一一对应的液冷模块,液冷模块通过冷却流道方式设置;同时采用多级分流技术和流道内部换热技术,均衡各模组的流道流量分配以及各冷却模块内各冷却流道的流量分配,通过进液主管道和冷却流道的两级的流量分配,使冷却液能均匀分布在模组发热区域,从而保证电池各模组具有良好的均温性。
附图说明
图1是本发明的一种用于电池模组的多级液冷板实施例的结构示意图;
图2是本发明的一种用于电池模组的多级液冷板装置实施例的整体结构示意图。
1、进液组件;11、进液接头;12、进液口;13、进液主管道;2、液冷模块;21、第一节流孔;22、进液集流室;23、冷却流道;24、出液集流室;25、第二节流孔;3、出液组件;31、出液接头;32、出液口;33、出液主管道。
本发明的实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。本申请的多级液冷板不仅适用电池模组的散热领域,还可以用在其他散热领域,如电机冷却等领域,不局限于本文所述领域。
参照图1至图2,示出了本发明的一种用于电池模组的多级液冷板实施例的结构示意图,具体可以包括如下结构:本发明实施例的核心构思之一在于,包括设有凹槽的基板以及与所述基板相适配的盖板,所述基板和所述盖板内形成空腔且一体成型;所述基板包括进液组件1、与电池模组相适配的液冷模块2以及出液组件3;所述进液组件1与所述出液组件3通过所述液冷模块2连通;所述进液组件1、液冷模块2以及所述出液组件3一体成型,所述液冷模块2至少设有一个所述冷却流道23;所述液冷模块2内依次设有供冷却液多级均匀分流的第一集流区、冷却流道23以及第二集流区;所述液冷模块2通过第一集流区与所述进液组件1连通;所述液冷模块2通过第二集流区与所述出液组件3连通,本发明通过液冷模块2化设计,使得电池模组均有一一对应的液冷模块2,液冷模块2通过冷却流道23方式设置;同时采用多级分流技术和流道内部换热技术,均衡各模组的流道流量分配以及各冷却模块内各冷却流道23的流量分配,通过进液主管道13和冷却流道23的两级的流量分配,使冷却液能均匀分布在模组发热区域,从而保证电池各模组具有良好的均温性。
一体成型的液冷板,可以使得液冷板不占用外部空间,在给电池模组降温产生更好的效果,并且一体成型使得液冷板的重量轻,能提高电模组能量密度,所述液冷板本体内形成有进液组件1、与电池模组相适配的液冷模块2以及出液组件3;所述进液组件1与所述出液组件3通过所述液冷模块2连通。
冷却液先通过进液接头11,进入进液口12,在流经进液主管道13,进行第一次分流,冷却液在主管道内均匀进入第一节流孔21,第一节流孔21的大小都一致,,并且通过第一节流孔21的大小来调节进入进液集流室22的流量,第一节流孔21采用并联连接,并且第一节流孔21和第二节流孔25采用对斜角布置,使得各流道流体流经节流孔距离一致,冷却液的流量分配均匀,进入进液集流室22二次分流后进入冷却流道23,冷却流道23由多个流道回转型连接,上一个流道的高温区域与下一个流道的低温区域相邻,可以进行热交换,实现冷板内部换热,提高均温效果,然后在进入出液集流室24并流经第二节流孔25,冷却液进入出液接头31最后出液口32接着出液主管道33。
所述液冷模块2内依次设有供冷却液多级均匀分流的第一集流区、冷却流道23以及第二集流区;所述液冷模块2通过第一集流区与所述进液组件1连通;所述液冷模块2通过第二集流区与所述出液组件3连通。
所述进液组件1包括进液口12以及与所述进液口12连通的进液主管道13,所述进液主管道13并联所述第一集流区,进液主管道13具体为并联第一节流孔21,使得各个液冷模块2中的冷却液得以连通,在液冷模块2中进行均温,流通各个冷却流道23时高温和低温进行热交换,实现冷板内部换热,提高均温效果,并且因为提高了电池模组均温一致性,从而延长电池使用寿命。
参照图2,示出了本发明的一种用于电池模组的多级液冷板装置实施例的整体结构示意图,具体可以包括如下结构:包括设有凹槽的基板以及与所述基板相适配的盖板,所述基板和所述盖板内形成空腔且一体成型;所述基板包括进液组件1、与电池模组相适配的液冷模块2以及出液组件3;所述进液组件1与所述出液组件3通过所述液冷模块2连通;所述液冷模块2内依次设有供冷却液多级均匀分流的第一集流区、冷却流道23以及第二集流区;所述液冷模块2通过第一集流区与所述进液组件1连通;所述液冷模块2通过第二集流区与所述出液组件3连通。
所述第一集流区包括控制冷却液流量的第一节流孔21以及进液集流室22,所述第一节流孔21连接所述进液集流室22;第一集流区进行分流,使得进入冷却流道23的冷却液流量相同,做到均流处理。所述进液主管道13通过所述第一节流孔21与所述进液集流室22连通,进液集流室22可以辅助冷却液的阻力进行分流,使得冷却液流动性更强,整个液冷板的冷却液处于连通状态。
液冷模块2也可以做改为多块分体液冷板,通过管路连接的方式,同样进入多级分流,将主管道改为外置管道。
同时液冷模块2的模块化设计,可以减少设计时间和制造开模时间,项目设计可以快速定型,降低生产加工难度减少成本。
所述出液组件3包括出液口32以及与所述出液口32连通的出液主管道33,所述出液主管道33并联所述第二集流区。
所述第二集流区包括第二节流孔25以及出液集流室24,所述第二节流孔25连接所述出液集流室24;所述出液主管道33通过所述第二节流孔25与所述出液集流室24连通,出液集流室24可以辅助冷却液的阻力进行分流,使得冷却液流动性更强,整个液冷板的冷却液处于连通状态。
所述第一节流孔21和所述第二节流孔25对称设置,用于冷却液流经所述冷却流道23的距离相同,对称设置使得冷却液流各流道流体流经与第一节流孔21到第二节流孔25的距离一致,温度更均匀,同时也可以采用斜对角设置或者是沿着冷却流道23的横轴线呈对称设置。
所述冷却流道23为回型设置且并联连接,多个流道采用回转型设置,并且相邻,使得各单独流道之间还可以进行热交换,实现均温处理,均温可以延长电池模组的使用寿命。
所述冷却流道23一端连接所述进液集流室22,另一端连接所述出液集流室24,冷却液在冷却流道23中对电池模组分别进行冷却处理,实现热交换,使得冷却液均匀分布在所述冷却流道23中,各个并联的流道将热源分割为多个小块区域,降低热量集中。
在冷却流道23回折处均形成弧形平滑过渡连接,回折处也均匀冷却液的流量,使得冷却液均匀温度效果更好。
所述进液口12还包括进液接头11,所述进液接头11可拆卸连接所述进液口12,所述出液口32还包括出液接头31,所述出液接头31可拆卸连接所述出液口32,液冷板主体与进液接头11以及出液接头31连接,组成为完整的液冷板。
液冷模块2至少设置一个,液冷模块2可以根据电池模组的多少来设置液冷模块2的多少,进行匹配,液冷模块2之间采用并联模式,使得冷却液在液冷模块2中得以连通,并不是相互独立,可以取得整个液冷板的温度更加均匀,均温效果更好。
工业实用性
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本发明所提供的一种用于电池模组的多级液冷板,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 在一种用于电池模组的多级液冷板,其特征在于,包括设有凹槽的基板以及与所述基板相适配的盖板,所述基板与所述盖板内形成空腔且一体成型;
    所述基板包括进液组件、与电池模组相适配的液冷模块以及出液组件;所述进液组件与所述出液组件通过所述液冷模块连通;
    所述进液组件、所述液冷模块以及所述出液组件一体成型;
    所述进液组件包括进液口以及与所述进液口连通的进液主管道,其中,所述进液主管道用于冷却液的流量分配;所述出液组件包括出液口以及与所述出液口连通的出液主管道;
    所述液冷模块内依次设有供冷却液多级均匀分流的第一集流区、冷却流道以及第二集流区,所述液冷模块至少设有一个所述冷却流道;
    所述液冷模块通过第一集流区与所述进液组件连通;
    所述液冷模块通过第二集流区与所述出液组件连通。
  2. 根据权利要求1所述的用于电池模组的多级液冷板,其特征在于,所述进液组件包括进液口以及与所述进液口连通的进液主管道;
    所述进液主管道并联所述第一集流区。
  3. 根据权利要求2所述的用于电池模组的多级液冷板,其特征在于,所述第一集流区包括控制冷却液流量的第一节流孔以及进液集流室,所述第一节流孔连接所述进液集流室;
    所述进液主管道通过所述第一节流孔与所述进液集流室连通。
  4. 根据权利要求3所述的用于电池模组的多级液冷板,其特征在于,所述出液组件包括出液口以及与所述出液口连通的出液主管道;
    所述出液主管道并联所述第二集流区。
  5. 根据权利要求4所述的用于电池模组的多级液冷板,其特征在于,所述第二集流区包括第二节流孔以及出液集流室,所述第二节流孔连接所述出液集流室;
    所述出液主管道通过所述第二节流孔与所述出液集流室连通;
    所述第一节流孔和所述第二节流孔对称设置。
  6. 根据权利要求5所述的用于电池模组的多级液冷板,其特征在于,所述冷却流道为多流道回型设置且并联连接;
    所述冷却流道一端连接所述进液集流室,另一端连接所述出液集流室。
  7. 根据权利要求6所述的用于电池模组的多级液冷板,其特征在于,所述冷却流道回折处为弧形过渡连接。
  8. 根据权利要求4-7任一项所述的用于电池模组的多级液冷板,其特征在于,所述进液口还包括进液接头,所述进液接头可拆卸连接所述进液口。
  9. 根据权利要求4-7任一项所述的用于电池模组的多级液冷板,其特征在于,所述出液口还包括出液接头,所述出液接头可拆卸连接所述出液口。
  10. 根据权利要求4-7任一项所述的用于电池模组的多级液冷板,其特征在于,所述液冷模块至少设置一个。
PCT/CN2021/084108 2020-06-19 2021-03-30 一种用于电池模组的多级液冷板 WO2021253919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010565508.1 2020-06-19
CN202010565508.1A CN111668574A (zh) 2020-06-19 2020-06-19 一种用于电池模组的多级液冷板

Publications (1)

Publication Number Publication Date
WO2021253919A1 true WO2021253919A1 (zh) 2021-12-23

Family

ID=72388669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084108 WO2021253919A1 (zh) 2020-06-19 2021-03-30 一种用于电池模组的多级液冷板

Country Status (2)

Country Link
CN (1) CN111668574A (zh)
WO (1) WO2021253919A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374020A (zh) * 2021-12-31 2022-04-19 中国第一汽车股份有限公司 电池包及具有其的车辆
CN114824568A (zh) * 2022-05-17 2022-07-29 江苏大学 一种用于锂离子电池组的仿生流道结构液冷板
CN114845517A (zh) * 2022-03-25 2022-08-02 中国电子科技集团公司第二十九研究所 一种多路液体均匀分流方法及装置
CN115472986A (zh) * 2022-09-22 2022-12-13 清安储能技术(重庆)有限公司 一种电池箱体及电池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668574A (zh) * 2020-06-19 2020-09-15 深圳市飞荣达科技股份有限公司 一种用于电池模组的多级液冷板
CN113363617B (zh) * 2021-06-18 2022-07-08 中国第一汽车股份有限公司 一种电池液冷板组件、动力电池总成及电动车辆
CN113745690A (zh) * 2021-07-30 2021-12-03 东风汽车集团股份有限公司 一种集成冷却电池箱体、电池包以及车辆
CN113594590B (zh) * 2021-08-10 2022-08-16 广州小鹏汽车科技有限公司 电池箱体及电池包

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102762075A (zh) * 2011-04-25 2012-10-31 北汽福田汽车股份有限公司 均衡散热液冷装置
CN107452699A (zh) * 2017-07-06 2017-12-08 华南理工大学 一种基于液流槽并联的igbt模块液冷板及其制造方法
CN208284602U (zh) * 2018-05-14 2018-12-25 扬州三丰新能源科技有限公司 平板式多流道电池液冷板
CN111668574A (zh) * 2020-06-19 2020-09-15 深圳市飞荣达科技股份有限公司 一种用于电池模组的多级液冷板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206379394U (zh) * 2016-12-16 2017-08-04 宝沃汽车(中国)有限公司 电池包冷却装置、电池包组件及电动汽车
CN206878141U (zh) * 2017-05-15 2018-01-12 苏州方林科技股份有限公司 一种新能源汽车多流道液冷散热器
CN206893766U (zh) * 2017-06-30 2018-01-16 东莞市沃泰通新能源有限公司 一种电池箱散热盖板
CN208608327U (zh) * 2018-06-21 2019-03-15 桑顿新能源科技有限公司 一种液冷板及动力电池的散热模组
CN110379962B (zh) * 2019-01-09 2020-10-23 比亚迪股份有限公司 动力电池包、储能装置以及电动车

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102762075A (zh) * 2011-04-25 2012-10-31 北汽福田汽车股份有限公司 均衡散热液冷装置
CN107452699A (zh) * 2017-07-06 2017-12-08 华南理工大学 一种基于液流槽并联的igbt模块液冷板及其制造方法
CN208284602U (zh) * 2018-05-14 2018-12-25 扬州三丰新能源科技有限公司 平板式多流道电池液冷板
CN111668574A (zh) * 2020-06-19 2020-09-15 深圳市飞荣达科技股份有限公司 一种用于电池模组的多级液冷板

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374020A (zh) * 2021-12-31 2022-04-19 中国第一汽车股份有限公司 电池包及具有其的车辆
CN114845517A (zh) * 2022-03-25 2022-08-02 中国电子科技集团公司第二十九研究所 一种多路液体均匀分流方法及装置
CN114845517B (zh) * 2022-03-25 2023-10-24 中国电子科技集团公司第二十九研究所 一种多路液体均匀分流方法
CN114824568A (zh) * 2022-05-17 2022-07-29 江苏大学 一种用于锂离子电池组的仿生流道结构液冷板
CN115472986A (zh) * 2022-09-22 2022-12-13 清安储能技术(重庆)有限公司 一种电池箱体及电池

Also Published As

Publication number Publication date
CN111668574A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2021253919A1 (zh) 一种用于电池模组的多级液冷板
CN105990621A (zh) 一种应用于电动汽车的水冷板结构
WO2023134198A1 (zh) 一种动力电池包的冷却系统、方法及电动车辆
CN111490313B (zh) 用于动力电池组的逆流式冷却系统及动力电池组
CN110534843A (zh) 一种用于电池热管理的散热模组
CN106025437A (zh) 一种柱状锂离子电池组高效水冷散热装置
WO2024002201A1 (zh) 直冷板、换热器、动力电池包及车辆
CN209786138U (zh) 一种电池包液冷装置
CN115117514B (zh) 一种交错逆流式一体化冷却系统及电动车
CN214378603U (zh) 一种用于电动汽车锂离子电池的热管理装置
CN111653849A (zh) 一种用于电池模组的多层液冷板
CN210380667U (zh) 全桥和半桥功率模块混联的换流阀塔配水系统
CN219892239U (zh) 一种换热板、热管理组件及电池
CN205960155U (zh) 电池冷却换热器
CN218498188U (zh) 一种电池包
CN206076433U (zh) 用于动力电池的热交换装置
CN219759725U (zh) 换热组件、换热系统及电池模组
CN219892241U (zh) 一种用于锂离子电池均衡散热的仿生液冷装置
CN220209066U (zh) 三层式冷却系统
CN215810329U (zh) 可实现高温冷却液和低温冷却液通过的换热芯体及汽车
CN220420692U (zh) 一种冷却板、电池模组及电池包
CN217641544U (zh) 一种液冷板及电池
CN216488235U (zh) 一种液体冷却动力电池箱
CN218648025U (zh) 冷却装置、箱体及电池包
CN218241978U (zh) 换热器、电池包和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21825679

Country of ref document: EP

Kind code of ref document: A1