WO2020061745A1 - 铜基催化剂及其制备方法和使用该催化剂制备乙二醇的方法 - Google Patents

铜基催化剂及其制备方法和使用该催化剂制备乙二醇的方法 Download PDF

Info

Publication number
WO2020061745A1
WO2020061745A1 PCT/CN2018/107328 CN2018107328W WO2020061745A1 WO 2020061745 A1 WO2020061745 A1 WO 2020061745A1 CN 2018107328 W CN2018107328 W CN 2018107328W WO 2020061745 A1 WO2020061745 A1 WO 2020061745A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
catalyst
ammonia
molecular sieve
hours
Prior art date
Application number
PCT/CN2018/107328
Other languages
English (en)
French (fr)
Inventor
袁兴东
王丹
柴剑宇
郝新宇
Original Assignee
高化学技术株式会社
袁兴东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高化学技术株式会社, 袁兴东 filed Critical 高化学技术株式会社
Priority to CN201880001759.8A priority Critical patent/CN111225742A/zh
Priority to PCT/CN2018/107328 priority patent/WO2020061745A1/zh
Publication of WO2020061745A1 publication Critical patent/WO2020061745A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a copper-based catalyst and a preparation method thereof, and also relates to a method for preparing ethylene glycol from dimethyl oxalate using the catalyst.
  • Ethylene glycol (EG) is an important organic chemical raw material. It is mainly used for the production of polyester fibers and antifreeze, and has a wide range of uses.
  • the process route for producing ethylene glycol from coal-based syngas has been industrialized.
  • the route for synthesizing ethylene glycol from synthesis gas is as follows: firstly, CO is used to synthesize dimethyl oxalate (DMO), and then dimethyl oxalate is hydrogenated to synthesize ethylene glycol under the action of a copper-based catalyst.
  • DMO dimethyl oxalate
  • dimethyl oxalate is hydrogenated to synthesize ethylene glycol under the action of a copper-based catalyst.
  • the scale of industrial gas plants for synthesizing ethylene glycol already completed or under construction has exceeded 15 million tons. Copper-based silicon (Cu / SiO 2 )catalyst.
  • EP0060787 reports a catalyst when the catalyst is used for the hydrogenation of dimethyl oxalate to ethylene glycol. With precise control of the reaction conditions, the mass fraction of the polyol by-product in the product is about 1%. However, Its disadvantages are that it requires the addition of highly toxic Cr elements and harsh reaction conditions, making it difficult to industrialize.
  • Li Meilan et al. (Journal of Qingdao University of Science and Technology, Vol. 35, No. 3, 283-286) reported that a series of dimethyl oxalate was prepared using silica sol, SBA-15, silica powder and ZSM-5 as carriers.
  • the Cu-based catalyst for the hydrogenation of esters to ethylene glycol is believed to have the best hydrogenation performance of copper-based catalysts with silica powder as the support.
  • the conversion rate of dimethyl oxalate is 100% and the EG selectivity is 84%.
  • the catalyst supported by ZSM-5 has strong acidity, which results in a high content of ethylene glycol monomethyl ether as a byproduct of hydrogenation.
  • the hydrogenation intermediate product MGA has high selectivity.
  • Li Zhuxia et al. (Journal of East China University of Science and Technology (Natural Science Edition), Vol. 31, No. 1, 2005-02, pages 27-30) prepared CS3 (silica) to CS2 (silica gel) by precipitation deposition method ⁇ CS1 (gaseous silica sol) three catalysts on silica with different properties.
  • the active component of the catalyst with silica sol as a carrier has good dispersion and shows high hydrogenation activity.
  • Increasing the content of Cu 2 O can increase the activity of the catalyst, and increasing the content of Cu 0 can improve the selectivity of EG.
  • a copper-based catalyst obtained by supporting a copper active ingredient on a microporous molecular sieve having a SiO 2 / Al 2 O 3 molar ratio ⁇ 3000 can control the selectivity of 1,2-BDO to be very low. Usually as low as 0.2%, while maintaining high DMO conversion and high EG selectivity.
  • an object of the present invention is to provide a copper-based catalyst, which can be used to control the selectivity of 1,2-BDO to be very low when it is used to produce EG from DMO hydrogenation, usually as low as 0.2%, At the same time, high DMO conversion and high EG selectivity are maintained.
  • Another object of the present invention is to provide a method for preparing a copper-based catalyst.
  • the copper-based catalyst prepared by this method can control the selectivity of 1,2-BDO to be very low when used for hydrogenation of DMO to EG, usually as low as 0.2%, while maintaining a high DMO conversion rate and High EG selectivity.
  • a final object of the present invention is to provide a method for preparing EG from DMO hydrogenation using the catalyst of the present invention. This method can control the selectivity of 1,2-BDO to be very low, usually as low as 0.2%, while maintaining high DMO conversion and high EG selectivity.
  • a copper-based catalyst comprising a support and a copper active ingredient supported on the support, wherein the support is a microporous molecular sieve having a SiO 2 / Al 2 O 3 molar ratio ⁇ 3000.
  • the molecular sieve is a molecular sieve selected from the group consisting of one or more SiO 2 / Al 2 O 3 molar ratios ⁇ 3000: Silicate-1, Beta molecular sieve, and ZSM- 5 molecular sieves.
  • a method for preparing a catalyst according to any one of items 1-4 comprising the following steps:
  • step (3) mixing the homogeneous mixture obtained in step (1) with the copper ammonia complex solution obtained in step (2), and then steaming ammonia to obtain a viscous material;
  • step (3) The viscous material obtained in step (3) is sequentially washed, dried and roasted.
  • step (1) The method according to item 5, wherein the pH adjusting agent for adjusting the pH value in step (1) is selected so that no metal ions other than copper are finally introduced into the catalyst, preferably ammonia, urea, or urea. Aqueous solution.
  • the copper salt in step (2) is a water-soluble copper salt, preferably one or more selected from the group consisting of copper nitrate, sulfuric acid
  • the hydrates of copper, copper acetate, copper oxalate, copper halides such as copper chloride and copper bromide, and the foregoing copper salts are more preferably copper nitrate and / or copper acetate or a hydrate thereof.
  • step (3) ammonia vaporization is performed at 50-130 ° C for 0.5-50 hours, preferably 60-120 ° C for 2-48 hours. It is more preferably performed at 90-110 ° C for 2-12 hours.
  • step (4) the firing is performed at 250-1000 ° C for 1-12 hours, preferably 300-800 ° C for 2-10 hours, more It is preferably performed at 350-700 ° C for 3-6 hours.
  • a method for preparing ethylene glycol comprising contacting dimethyl oxalate with hydrogen in the presence of a copper-based catalyst according to any one of items 1-4 under hydrogenation reaction conditions Hydrogenation to obtain ethylene glycol.
  • the hydrogenation reaction conditions are as follows: the liquid hourly space velocity of dimethyl oxalate is 0.01-10 g / g catalyst. H, the temperature of the hydrogenation reaction is 100-300 ° C, and the pressure of the hydrogenation reaction It is 0.1-15MPa, and the molar ratio of hydrogen to dimethyl oxalate is 10: 1-250: 1;
  • the hydrogenation reaction conditions include: the liquid hourly space velocity of dimethyl oxalate is 0.5-8g / g catalyst .h, the temperature of the hydrogenation reaction is 160-240 ° C, the pressure of the hydrogenation reaction is 1.5-8 MPa, and the molar ratio of hydrogen to dimethyl oxalate is 60: 1-200: 1.
  • the present invention provides a copper-based catalyst, the catalyst comprising a support and a copper active ingredient supported on the support, wherein the support is a microporous molecular sieve having a SiO 2 / Al 2 O 3 molar ratio ⁇ 3000.
  • the copper-based catalyst of the present invention is a supported catalyst, and its support is a microporous molecular sieve having a molar ratio of SiO 2 / Al 2 O 3 ⁇ 3000, which is also referred to as a high-silicon molecular sieve in the present invention.
  • Molecular sieves refer to a class of substances that have uniform pore channels and have a pore size that is comparable to that of ordinary molecules. Divided by pore size, molecular sieve with pore size less than 2nm, 2-50nm and more than 50nm are called micropore, mesopore and macropore molecular sieve, respectively.
  • the molecular sieve used is a microporous molecular sieve.
  • the high-silicon molecular sieve here may be the following molecular sieves with a SiO 2 / Al 2 O 3 molar ratio ⁇ 3000: ZSM-5, Beta and USY molecular sieves.
  • SiO 2 / Al 2 O 3 molar ratio of the high-silicon ZSM-5 molecular sieve is infinite, it is a typical pure silicon Silicalite-1 molecular sieve.
  • the topological structure of pure silicon Silicalite-1 molecular sieve is the same as ZSM-5, both of which are MFI structures.
  • the pure silicon Silicalite-1 molecular sieve and ordinary SiO 2 powder are both SiO 2 in composition, the former has a specific crystal structure and the latter is amorphous.
  • the microporous high-silicon molecular sieve can be synthesized by a conventional hydrothermal synthesis method, or can be obtained from the market.
  • the carrier is one or more molecular sieves selected from the group consisting of one or more SiO 2 / Al 2 O 3 molar ratios ⁇ 3000: ZSM-5 molecular sieves, Beta molecular sieves, and pure silicon Silicalite-1
  • the carrier is pure silicon Silicalite-1 molecular sieve.
  • the content of the support is usually 30 to 90% by weight, preferably 65 to 85% by weight, based on the total weight of the catalyst.
  • the inventors have discovered that by selecting a microporous molecular sieve having a SiO 2 / Al 2 O 3 molar ratio ⁇ 3000 as a support for a copper-based catalyst, the obtained catalyst can be used for the production of 1,2-BDO when used to produce EG from DMO hydrogenation.
  • the selectivity is controlled very low, usually as low as 0.2%, while still maintaining high DMO conversion and high EG selectivity.
  • the copper active ingredient is mainly distributed in the pores of the support.
  • the copper active ingredient can be any substance that has catalytic activity for hydrogenation of DMO to produce EG, or a substance that has catalytic activity for hydrogenation of DMO after reduction by hydrogen.
  • the copper active ingredient it may be one or more selected from the group consisting of Cu, CuO, Cu 2 O, and Cu-O-Si-.
  • the "Cu-O-Si-" mentioned here refers to a substance formed after the copper-ammonia complex reacts with Si-OH on the surface of the support and then removes NH4.
  • the content of the copper active ingredient is usually 10 to 45% by weight, preferably 15 to 35% by weight, based on the total weight of the catalyst.
  • the catalyst of the present invention may advantageously contain a binder to facilitate molding.
  • the selection of the binder is conventional, and any binder suitable for the preparation of a copper-based catalyst for the catalyst for DMO hydrogenation to EG can be used.
  • the adhesive graphite, tinsel powder, silica sol, cellulose, polyvinyl alcohol, and the like can be mentioned.
  • the specific surface area of the catalyst was 50-600m 2 / g, preferably 250-500m 2 / g, more preferably 280-450m 2 / g; pore volume of the catalyst 0.1-2.0 cm 3 / g, preferably 0.3-1.0 cm 3 / g, and more preferably 0.5-0.9 cm 3 / g.
  • a method for preparing the copper-based catalyst of the present invention includes the following steps:
  • step (3) mixing the homogeneous mixture obtained in step (1) with the copper ammonia complex solution obtained in step (2), and then steaming ammonia to obtain a viscous material;
  • step (3) The viscous material obtained in step (3) is sequentially washed, dried and roasted.
  • a microporous molecular sieve carrier material having a SiO 2 / Al 2 O 3 molar ratio ⁇ 3000 is added to deionized water, and the pH value is adjusted to 6.5-12 to obtain a homogeneous mixture.
  • Microporous molecular sieves with a SiO 2 / Al 2 O 3 molar ratio ⁇ 3000 are used here as support materials.
  • the inventors of the present invention have found that when a microporous molecular sieve with a SiO 2 / Al 2 O molar ratio ⁇ 3000 is used as the support material, the obtained catalyst can selectively control 1,2-BDO when it is used to produce EG from DMO hydrogenation. It is very low, usually as low as 0.2%, while maintaining high DMO conversion and high EG selectivity.
  • step (1) the manner of adding a microporous molecular sieve carrier material having a SiO 2 / Al 2 O 3 molar ratio ⁇ 3000 to deionized water is conventional.
  • the carrier material may be at a temperature of 5-45 ° C. (Preferably room temperature or normal temperature (25 ° C)) and added to deionized water under stirring conditions to form a homogeneous mixture.
  • the amount of deionized water in step (1) of the present invention is not particularly required.
  • the amount of deionized water is preferably 100-2000% by weight, and preferably 150-1500% by weight, both based on the total weight of the support material.
  • step (1) after the support material is added to the deionized water, the pH of the obtained mixture needs to be adjusted to 6.5-12, preferably 7-10.
  • the pH adjusting agent used for adjusting the pH value is not particularly limited, and any pH adjusting agent suitable for preparing a copper-based catalyst can be used. However, it is preferable that the selection of the pH adjusting agent for adjusting the pH value in step (1) should be based on not finally introducing any metal ion other than copper into the catalyst. For this purpose, it is advantageous to use ammonia, urea or an aqueous solution of urea as the pH adjusting agent in this step.
  • the concentration of the ammonia water may be 10-30% by weight, preferably 14-28% by weight.
  • Urea can be added directly or as an aqueous urea solution.
  • all materials in step (1) are added under stirring, such as mechanical stirring, to ensure stable and uniform charge distribution.
  • stirring such as mechanical stirring
  • the copper salt is dissolved in ammonia water to prepare a copper ammonia complex solution.
  • the copper ammonia solution can be prepared by any method of preparing a solution.
  • the copper salt is usually a water-soluble copper salt.
  • the water-soluble copper salt may be various water-soluble copper salts, for example, copper nitrate, copper sulfate, copper acetate, copper oxalate and / or copper halide, and hydrates of the foregoing copper salts, wherein the copper halide may be selected from chlorine Copper and copper bromide.
  • the water-soluble copper salt is copper nitrate and / or copper acetate or a hydrate thereof, such as copper nitrate trihydrate.
  • concentration of ammonia water used to prepare the copper ammonia solution is not particularly limited, and for example, 10-28% by weight of ammonia water can be used.
  • the amount of copper salt and ammonia water should generally be such that the molar ratio of ammonia to copper element is 10-300, preferably 50-200.
  • step (3) the homogeneous mixture obtained in step (1) is mixed with the copper ammonia complex solution obtained in step (2), and then ammonia is evaporated to obtain a viscous material.
  • the resulting mixture was then steamed with ammonia to remove ammonia water and leave copper salts in the micropores.
  • the conditions for steaming ammonia are not particularly limited.
  • the conditions for steaming ammonia include: the temperature of steaming ammonia is 50-130 ° C; and the time of steaming ammonia is 0.5-50 hours. It is further preferred that the temperature of steaming ammonia is 60-120 ° C; the time of steaming ammonia is 2-48 hours. It is particularly preferred that the ammonia steaming temperature is 90-110 ° C; the ammonia steaming time is 2-12 hours.
  • Steaming ammonia can be performed under stirring, such as mechanical stirring, and the stirring speed can be 300-600 rpm. After steaming ammonia, a viscous material was obtained.
  • step (4) is sequentially washing, drying and roasting the viscous material obtained in step (3).
  • the washing in step (4) there is no particular limitation on the washing in step (4).
  • deionized water is used to wash one or more times until the washing solution is neutral.
  • the drying conditions in step (4) are not particularly limited.
  • the drying conditions include: a drying temperature of 50-160 ° C; and a drying time of 3-48 hours. More preferably, the drying temperature is 60-150 ° C; the drying time is 6-24 hours. Particularly preferred drying temperature is 100-150 ° C; drying time is 6-20 hours.
  • the method for drying in step (4) is not particularly limited in the present invention, and for example, ordinary heat drying, microwave drying, and / or spray drying can be used.
  • the baking temperature in step (4) may be 250-1000 ° C, and the baking time may be 1-12 hours.
  • the baking temperature is 300-800 ° C, and the baking time is 2-10 hours. It is further preferred that the baking temperature is 350-700 ° C, and the baking time is 3-6 hours.
  • step (4) of the method of the present invention before baking, the material obtained by drying is optionally formed according to a conventional method.
  • the molding method may be, for example, tablet molding, rolling ball molding, or extrusion molding.
  • an adhesive may be optionally added to facilitate processing and molding.
  • the catalyst obtained in step (4) may be pulverized and further shaped, and processed into a desired shaped body.
  • an adhesive can be added according to the difficulty of the molding process and the strength required by the catalyst.
  • the catalyst obtained in step (4) is pulverized, mixed with an adhesive, ground, and then compressed to obtain a catalyst tablet. If catalyst particles are desired, the resulting catalyst tablets can also be crushed and sieved.
  • the present invention provides a method for preparing ethylene glycol, which method comprises contacting dimethyl oxalate with hydrogen in the presence of the copper-based catalyst of the present invention under hydrogenation reaction conditions to perform a hydrogenation reaction.
  • the hydrogenation reaction conditions may include: the liquid hourly space velocity of dimethyl oxalate is 0.01-10 g / g catalyst. H, the temperature of the hydrogenation reaction is 100-300 ° C, and the pressure of the hydrogenation reaction is 0.1 -15MPa, the molar ratio of hydrogen to dimethyl oxalate is 10: 1-250: 1.
  • the hydrogenation reaction conditions include: a liquid hourly space velocity of dimethyl oxalate of 0.5-8g / g catalyst.h , a temperature of the hydrogenation reaction of 160-240 ° C, a pressure of the hydrogenation reaction of 1.5-8MPa, hydrogen
  • the molar ratio to dimethyl oxalate is 60: 1-200: 1.
  • the copper-based catalyst of the present invention needs to be hydrogenated and reduced before being used to catalyze the hydrogenation of dimethyl oxalate to ethylene glycol.
  • Conditions for hydroreduction are conventional.
  • the reducing gas is hydrogen or a mixed gas containing hydrogen and a gas inert to the reduction reaction.
  • the reduction temperature is usually 200-350 ° C, preferably 220-300 ° C.
  • the reduction time is usually 2 to 48 hours, preferably 3 to 24 hours.
  • the hydrogenation of dimethyl oxalate to synthesize ethylene glycol in the present invention can be carried out in any reactor capable of realizing the above reaction conditions, for example, it can be carried out in a fixed bed reactor, a fluidized bed reactor, or a slurry bed reactor. This was carried out in a fixed bed reactor.
  • the selectivity of 1,2-BDO can be controlled to be very low, usually as low as 0.2%, while maintaining a high DMO conversion rate and a high EG selection Sex.
  • the very low 1,2-BDO selectivity means that the cost of separating 1,2-BDO from EG is greatly reduced.
  • each component in the system was analyzed by gas chromatography, and quantified by the calibration normalization method.
  • N 2 physical adsorption was analyzed using Micromeritics ASAP 2020 at 77K (liquid nitrogen temperature), and used to determine the specific surface area, pore volume, average pore size and other parameters of the catalyst.
  • the catalyst sample was evacuated to 70 mmHg at 573K, and pretreated under this condition for 6 hours to remove traces of water and impurities adsorbed on the catalyst surface. Then, the adsorption-desorption isotherm was measured by a static method.
  • the specific surface area of the catalyst was calculated from the BET (Bnmauer-Emmet-Teller) theory combined with the adsorption isotherm; the pore volume of the catalyst was obtained from the BJH (Barrett-Joyner-Halenda) theory and the desorption isotherm.
  • step (3) The carrier mixture obtained in step (1) and the copper ammonia solution obtained in step (2) are mixed with stirring at room temperature and stirred at a temperature of 30 ° C and a stirring speed of 600 rpm for 30 minutes; and then stirred at 95 ° C and 300 rpm.
  • the ammonia was evaporated for 2 hours to form a viscous material.
  • step (3) The viscous material obtained in step (3) is washed with deionized water until the washing solution is neutral, and then dried at 120 ° C for 12 hours, and then calcined at 450 ° C for 4 hours to obtain a catalyst Cu. / Silicate-1 powder, a total of 64g.
  • the obtained Cu / Silicalite-1 powder is compacted, crushed and sieved to obtain a granular catalyst with a particle diameter of 20-40 mesh, that is, Cu / Silicate-1 catalyst.
  • the specific surface area of the obtained catalyst was 302 m 2 / g
  • the pore volume was 0.51 cm 3 / g
  • the content of copper in the catalyst as copper element was 18% by weight.
  • the catalyst particles prepared above were placed in a riser-type fixed-bed reactor having an inner diameter of 10 mm and a height of 40 cm. Prior to reaction evaluation, the catalyst was reduced under the following conditions: 15 vol% H 2 and 85 vol% N 2 mixed gas, flowing through the catalyst bed from the top of the reactor at a flow rate of 120 ml / min, and from the bottom of the reactor It was discharged, the reduction temperature was 240 ° C, and the reduction time was 4 hours.
  • the reducing gas was replaced with pure hydrogen, the pressure of the reaction system was increased to 3.0 MPa, the temperature of the catalyst bed was reduced to 180 ° C, and a 15% by weight methanol solution of DMO was started, in which hydrogen and dimethyl oxalate were entering the reaction. Mix in front of the reactor, and then enter the tubular reactor from the top of the reactor. After the reaction, the product is discharged from the bottom of the reactor.
  • the reaction conditions are as follows: the molar ratio of hydrogen to dimethyl oxalate (DMO) is 100: 1, the flow rate of hydrogen is 124328ml / h, the liquid hourly space velocity of dimethyl oxalate is 1.0g / ml.h, and the reaction temperature is 180 ° C The reaction pressure was 3.0 MPa. After a reaction time of 3 hours, samples were taken for analysis to determine the DMO conversion and product distribution. The results are shown in Table 1.
  • DMO dimethyl oxalate
  • Example 2 Basically the same as Example 1, except that the carrier Silicalite-1 was changed to a microporous ZSM-5 molecular sieve (commercially available from Tosoh Corporation, HSZ-890HOA) with a SiO 2 / Al 2 O 3 molar ratio of 3000. A Cu / ZSM-5-3000 catalyst was obtained.
  • a microporous ZSM-5 molecular sieve commercially available from Tosoh Corporation, HSZ-890HOA
  • the specific surface area of the catalyst was 326 m 2 / g, the pore volume was 0.57 cm 3 / g, and the content of copper in the catalyst as copper element was 18% by weight.
  • Example 2 Basically the same as Example 1, except that the carrier Silicalite-1 was changed to a microporous ZSM-5 molecular sieve (commercially available from Tosoh Corporation, HSZ-891HOA) with a SiO 2 / Al 2 O 3 molar ratio of 4000. A Cu / ZSM-5-4000 catalyst was obtained.
  • a microporous ZSM-5 molecular sieve commercially available from Tosoh Corporation, HSZ-891HOA
  • the specific surface area of the catalyst was 383 m 2 / g, the pore volume was 0.52 cm 3 / g, and the content of copper in the catalyst as copper element was 18% by weight.
  • Example 2 Basically the same as Example 1, except that the carrier Silicalite-1 was changed to a microporous ⁇ molecular sieve (commercially available from Tosoh Corporation, HSZ-990HOA) with a SiO 2 / Al 2 O 3 molar ratio of 3000, and finally Cu was obtained. / ⁇ -3000 catalyst.
  • a microporous ⁇ molecular sieve commercially available from Tosoh Corporation, HSZ-990HOA
  • the specific surface area of the catalyst was 366 m 2 / g, the pore volume was 0.68 cm 3 / g, and the content of copper in the catalyst as copper element was 18% by weight.
  • Example 2 Basically the same as Example 1, except that the carrier Silicalite-1 was changed to SiO 2 powder (commercially available from Changtai Micro-Nano Chemical Plant, Shouguang City, Shandong province, CT-380), and finally a Cu / SiO 2 catalyst was obtained.
  • SiO 2 powder commercially available from Changtai Micro-Nano Chemical Plant, Shouguang City, Shandong province, CT-380
  • the specific surface area of the catalyst was 349 m 2 / g, the pore volume was 0.53 cm 3 / g, and the content of copper in the catalyst as copper element was 18% by weight.
  • Example 2 Basically the same as Example 1, except that the carrier Silicalite-1 was changed to SBA-15 mesoporous molecular sieve (commercially available from Yicang Company), and finally a Cu / SBA-15 catalyst was obtained.
  • SBA-15 mesoporous molecular sieve commercially available from Yicang Company
  • the specific surface area of the catalyst was 484 m 2 / g, the pore volume was 0.67 cm 3 / g, and the content of copper in the catalyst as copper element was 18% by weight.
  • Example 2 Basically the same as Example 1, except that the carrier Silicalite-1 was changed to pure silicon mesoporous MCM-41 molecular sieve (commercially available from Yicang Company), and finally a Cu / MCM-41 catalyst was obtained.
  • the carrier Silicalite-1 was changed to pure silicon mesoporous MCM-41 molecular sieve (commercially available from Yicang Company), and finally a Cu / MCM-41 catalyst was obtained.
  • the specific surface area of the catalyst was 413 m 2 / g, the pore volume was 0.58 cm 3 / g, and the content of copper in the catalyst as copper element was 18% by weight.
  • Example 2 Basically the same as Example 1, except that the carrier Silicalite-1 was changed to a microporous ZSM-5 molecular sieve with a molar ratio of SiO 2 / Al 2 O 3 of 50 (commercially available from Tosoh Corporation, model number HSZ-840HOA) Finally, Cu / ZSM-5-50 catalyst was obtained.
  • the specific surface area of the catalyst was 319 m 2 / g, the pore volume was 0.43 cm 3 / g, and the content of copper in the catalyst as copper element was 18% by weight.
  • Example 2 Basically the same as Example 1, except that the support Silicalite-1 was changed to a microporous ZSM-5 molecular sieve with a SiO 2 / Al 2 O 3 molar ratio of 2000, and finally a Cu / ZSM-5-2000 catalyst was obtained.
  • the specific surface area of the catalyst was 371 m 2 / g, the pore volume was 0.48 cm 3 / g, and the content of copper in the catalyst as copper element was 18% by weight.
  • the solid is washed with deionized water until the pH value of the washing water is 8-9, and then the obtained solid is dried at 120 ° C for 12 hours and calcined at 550 ° C for 5 hours to obtain a silicon-aluminum mole 280 grams of Na-type ZSM-5 molecular sieve with a ratio of 2000.
  • Example 2 It is basically the same as Example 1, except that during the preparation of the catalyst, the amount of copper nitrate trihydrate is reduced to 24.44 g, and finally a Cu / Silicalite-1-10 catalyst is obtained.
  • the specific surface area of the catalyst was 317 m 2 / g, the pore volume was 0.61 cm 3 / g, and the content of copper in the catalyst as copper element was 10% by weight.
  • Example 2 It is basically the same as Example 1, except that during the preparation of the catalyst, the amount of copper nitrate trihydrate is reduced to 36.67 g, and a Cu / Silicalite-1-15 catalyst is finally obtained.
  • the specific surface area of the catalyst was 338 m 2 / g, the pore volume was 0.55 cm 3 / g, and the content of copper in the catalyst as copper element was 15% by weight.
  • Example 2 It is basically the same as Example 1, except that during the preparation of the catalyst, the amount of copper nitrate trihydrate is increased to 61.11 g, and finally a Cu / Silicalite-1-25 catalyst is obtained.
  • the specific surface area of the catalyst was 381 m 2 / g, the pore volume was 0.59 cm 3 / g, and the content of copper in the catalyst as copper element was 25% by weight.
  • Example 2 It is basically the same as Example 1, except that during the preparation of the catalyst, the amount of copper nitrate trihydrate is increased to 72.74 g, and finally a Cu / Silicalite-1-30 catalyst is obtained.
  • the specific surface area of the catalyst was 397 m 2 / g, the pore volume was 0.61 cm 3 / g, and the content of copper in the catalyst as copper element was 30% by weight.
  • Example 2 It is basically the same as Example 1, except that during the preparation of the catalyst, the amount of copper nitrate trihydrate is increased to 84.86 g, and finally a Cu / Silicalite-1-35 catalyst is obtained.
  • the specific surface area of the catalyst was 416 m 2 / g, the pore volume was 0.67 cm 3 / g, and the content of copper in the catalyst as a copper element was 35% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一种铜基催化剂,所述催化剂包含载体和负载在该载体上的铜活性成分,其中所述载体为SiO 2/Al 2O 3摩尔比≥3000的微孔分子筛。还提供所述催化剂的制备和使用该催化剂由DMO加氢制备EG的方法。通过选用前述微孔高硅分子筛作为催化剂的载体,当该催化剂用于催化DMO加氢制备EG时,可以将1,2-BDO的选择性控制得非常低,通常低至0.2%以内,同时还能保持高的DMO转化率和高的EG选择性。

Description

铜基催化剂及其制备方法和使用该催化剂制备乙二醇的方法 技术领域
本发明涉及一种铜基催化剂及其制备方法,还涉及使用该催化剂由草酸二甲酯制备乙二醇的方法。
背景技术
乙二醇(EG)是一种重要的有机化工原料,主要用于生产聚酯纤维和防冻剂等,用途十分广泛。目前,煤基合成气制乙二醇的工艺路线已经实现工业化。合成气制备乙二醇路线如下:先由CO偶联合成草酸二甲酯(DMO),再由草酸二甲酯在铜基催化剂作用下加氢合成乙二醇。经过近几年的发展,目前已经建成及在建的合成气制乙二醇工业装置的规模已超过1500万吨,草酸二甲酯加氢制乙二醇一般采用铜基硅(Cu/SiO 2)催化剂。
目前煤制乙二醇工业中,在Cu/SiO 2催化剂上DMO加氢制EG过程中,存在加氢副产物1,2-丁二醇(1,2-BDO)选择性高的问题。由于1,2-BDO与EG分离困难,为了生产聚酯级的乙二醇,必须使用多次精馏才能除去EG中的1,2-BDO,造成EG精制成本高。为了降低EG的生产成本,研究者对DMO加氢催化剂进行了各种改进,以保持高的DMO转化率和EG选择性,尽可能地降低1,2-BDO的生成。
上世纪70年代末,L.R.Jehner等人在日本专利5323011、5542971中首先提出草酸二甲酯气相加氢制备乙二醇的技术路线;1985年Haruhiko Miyazaki等在美国专利4551565中公开了CuMo kBa pO x催化剂,该催化剂在0.1MPa、177℃、氢酯比为200和液时空速约0.036g/g cat·h的反应条件下可将草酸二乙酯全部转化,乙二醇选择性为97.7%,该技术路线的缺点是反应氢酯比较高,可适用的液时空速较低(约0.036g/g cat·h)。
EP0060787报道了一种催化剂,当该催化剂用于由草酸二甲酯氢化制乙二醇时,在精确控制反应条件的情况下,多碳醇副产物在产物中的质量分数为1%左右,然而其缺点是,所用催化剂中需要添加剧毒的Cr元素且反应条件苛刻,难以工业化。
李美兰等人(青岛科技大学学报,第35卷,第3期,283-286)报道了分别以硅溶胶、SBA-15、二氧化硅粉末和ZSM-5为载体,制备了一系列草酸二甲酯加氢制乙二醇用的Cu基催化剂,认为以二氧化硅粉末为载体的铜基催化剂加氢性能最佳,其草酸二甲酯的转化率达100%,EG选择性为84%。以ZSM-5为载体的催化剂具有较强酸性,导致加氢副产物乙二醇单甲醚含量高,另外由于加氢性能弱,加氢中间产物MGA选择性高。
在载体方面,Tan等人[J].ACS Catalysis,2014,4:3675-3681提出将氧化锆(ZrO 2)添加到SiO 2中,表征发现Cu和ZrO 2的结合可以显著提升Cu/SiO 2催化剂的活性和稳定性。然而,为了获得该催化剂,需要高温焙烧,焙烧温度高达723℃。
李竹霞等人(华东理工大学学报(自然科学版),第31卷,第1期,2005-02,27-30页)采用沉淀沉积法制备了负载在CS3(二氧化硅)~CS2(硅胶)~CS1(气相硅溶胶)不同性质二氧化硅上的三种催化剂。其中以硅溶胶为载体的催化剂活性组分有良好的分散,表现出较高的加氢活性。提高Cu 2O的含量,可以提高催化剂的活性,提高Cu 0含量能够提高EG的选择性。
发明内容
鉴于上述现有技术状况,本发明的发明人在DMO加氢制EG用催化剂方面进行了广泛而又深入的研究,以期发现一种能够克服现有技术上述缺点的DMO加氢制EG用的催化剂。本发明人发现,将铜活性成分负载在一种SiO 2/Al 2O 3摩尔比≥3000的微孔分子筛上得到的铜基催化剂,可以将1,2-BDO的选择性控制得非常低,通常低至0.2%以内,同时还能保持高的DMO转化率和高的EG选择性。
因此,本发明的一个目的是提供一种铜基催化剂,该催化剂在用于由DMO加氢制EG时,能够将1,2-BDO的选择性控制得非常低,通常低至0.2%以内,同时还保持高的DMO转化率和高的EG选择性。
本发明的另一个目的是提供一种制备铜基催化剂的方法。该方法制得的铜基催化剂在用于由DMO加氢制EG时能够将1,2-BDO的选择性控制得非常低,通常低至0.2%以内,同时还能保持高的DMO转化率和高的 EG选择性。
本发明的最后一个目的是提供一种采用本发明催化剂由DMO加氢制备EG的方法。该方法能够将1,2-BDO的选择性控制得非常低,通常低至0.2%以内,同时还能保持高的DMO转化率和高的EG选择性。
实现本发明上述目的技术方案可概括如下:
1.一种铜基催化剂,该催化剂包含载体和负载在该载体上的铜活性成分,其中所述载体为SiO 2/Al 2O 3摩尔比≥3000的微孔分子筛。
2.如第1项所述的催化剂,其中所述分子筛为选自下组中的一种或多种SiO 2/Al 2O 3摩尔比≥3000的分子筛:Silicate-1、Beta分子筛和ZSM-5分子筛。
3.如第1或2项所述的催化剂,其中基于催化剂的总重量,铜活性成分的含量以铜元素计为10-45重量%,优选15-35重量%。
4.如第1-3项中任一项所述的催化剂,其中铜活性成分为选自下组中的一种或多种:Cu、CuO、Cu 2O和Cu-O-Si-。
5.一种制备如第1-4项中任一项的催化剂的方法,包括如下步骤:
(1)将SiO 2/Al 2O 3摩尔比≥3000的微孔分子筛载体材料加入到去离子水中,调pH值至6.5-12,得到均匀混合物;
(2)将铜盐溶解到氨水中,制得铜氨络合物溶液;
(3)将步骤(1)得到的均匀混合物与步骤(2)得到的铜氨络合物溶液混合,然后蒸氨,得到粘稠物料;以及
(4)将步骤(3)得到的粘稠物依次进行洗涤、干燥和焙烧。
6.如第5项所述的方法,其中步骤(1)中调节pH值的pH调节剂的选择应使得不向催化剂中最终引入除铜以外的任何金属离子,优选为氨水、尿素或尿素的水溶液。
7.如第5或6项所述的方法,其中步骤(1)中所述的pH调节至7-10。
8.如第5-7项中任一项所述的方法,其中步骤(2)中的铜盐为水溶性铜盐,优选为选自下组中的一种或多种:硝酸铜、硫酸铜、醋酸铜、草酸铜、卤化铜如氯化铜和溴化铜以及前述各铜盐的水合物,更优选为硝酸铜和/或醋酸铜或其水合物。
9.如第5-8项中任一项所述的方法,其中在将步骤(1)得到的均匀混合物与步骤(2)得到的铜氨络合物溶液混合之后并且在蒸氨之前,将所得混合物先在20-60℃下搅拌20-120min,优选将所得混合物先在30-40℃下搅拌30-60min。
10.如第5-9项任一项所述的方法,其中在步骤(3)中,蒸氨在50-130℃下进行0.5-50小时,优选在60-120℃下进行2-48小时,更优选在90-110℃下进行2-12小时。
11.根据第5-10项中任一项的方法,其中在步骤(4)中,焙烧在250-1000℃下进行1-12小时,优选在300-800℃下进行2-10小时,更优选在350-700℃下进行3-6小时。
12.一种制备乙二醇的方法,该方法包括在如第1-4项中任一项所述的铜基催化剂存在下,在加氢反应条件下,将草酸二甲酯与氢气接触进行氢化反应以得到乙二醇。
13.根据第12项的方法,其中所述加氢反应条件如下:草酸二甲酯的液时空速为0.01-10g/g 催化剂.h、氢化反应的温度为100-300℃、氢化反应的压力为0.1-15MPa、氢气与草酸二甲酯的摩尔比为10:1-250:1;优选的是,所述加氢反应条件包括:草酸二甲酯的液时空速为0.5-8g/g 催化剂.h、氢化反应的温度为160-240℃、氢化反应的压力为1.5-8MPa、氢气与草酸二甲酯的摩尔比为60:1-200:1。
具体实施方式
首先,本发明提供了一种铜基催化剂,该催化剂包含载体和负载在该载体上的铜活性成分,其中所述载体为SiO 2/Al 2O 3摩尔比≥3000的微孔分子筛。
本发明铜基催化剂为负载型催化剂,其载体是SiO 2/Al 2O 3摩尔比≥3000的微孔分子筛,在本发明中亦称作高硅分子筛。分子筛是指具有均匀的孔道且其孔径与一般分子大小相当的一类物质。按孔径大小划分,孔径尺寸小于2nm、2-50nm和大于50nm的分子筛分别称为微孔、介孔和大孔分子筛。在本发明中,所用分子筛为微孔分子筛。根据本发明有利的是,这里 的高硅分子筛可以是SiO 2/Al 2O 3摩尔比≥3000的如下分子筛:ZSM-5、Beta和USY分子筛。当高硅ZSM-5分子筛的SiO 2/Al 2O 3摩尔比为无穷大时,即为典型的纯硅Silicalite-1分子筛。纯硅Silicalite-1分子筛的拓扑结构与ZSM-5相同,均为MFI结构。纯硅Silicalite-1分子筛与普通SiO 2粉末尽管成分都是SiO 2,但是前者具有特定的晶体结构,后者为无定型的。
微孔高硅分子筛可以采用常规的水热合成法合成,也可以通过市购获得。在本发明的一个优选实施方案中,载体为选自下组中的一种或多种SiO 2/Al 2O 3摩尔比≥3000的分子筛:ZSM-5分子筛、Beta分子筛和纯硅Silicalite-1,优选载体为纯硅Silicalite-1分子筛。基于催化剂的总重量,载体的含量通常为30-90重量%,优选65-85重量%。
本发明人发现,通过选择SiO 2/Al 2O 3摩尔比≥3000的微孔分子筛作为铜基催化剂的载体,所得催化剂在用于由DMO加氢制EG时,能够将1,2-BDO的选择性控制得非常低,通常低至0.2%以内,同时还保持高的DMO转化率和高的EG选择性。
在本发明的催化剂中,铜活性成分主要分布在载体的孔道内。作为铜活性成分,它可以是任何对DMO加氢制备EG具有催化活性的物质,或者是经氢气还原后对DMO加氢制备EG具有催化活性的物质。作为铜活性成分,它可以是选自下组中的一种或多种:Cu、CuO、Cu 2O和Cu-O-Si-。这里述及的“Cu-O-Si-”指的是铜氨络合物与载体表面的Si-OH反应后,再脱出NH4后形成的物质。基于催化剂的总重量,铜活性成分的含量以铜元素计通常为10-45重量%,优选15-35重量%。
本发明的催化剂除了载体和活性成分以外,还可有利地包含粘接剂,以利于成型。粘接剂的选择是常规的,任何适合制备DMO加氢制EG用催化剂的铜基催化剂的粘接剂都可使用。作为粘接剂的实例,可以提及石墨、田青粉、硅溶胶、纤维素、聚乙烯醇等。
在本发明催化剂的另一个实施方案中,该催化剂的比表面积为50-600m 2/g,优选为250-500m 2/g,进一步优选为280-450m 2/g;所述催化剂的孔容为0.1-2.0cm 3/g,优选为0.3-1.0cm 3/g,进一步优选为0.5-0.9cm 3/g。
根据本发明的第二个方面,提供了一种制备本发明铜基催化剂的方法, 其包括如下步骤:
(1)将SiO 2/Al 2O 3摩尔比≥3000的微孔分子筛载体材料加入到去离子水中,调pH值至6.5-12,得到均匀混合物;
(2)将铜盐溶解到氨水中,制得铜氨络合物溶液;
(3)将步骤(1)得到的均匀混合物与步骤(2)得到的铜氨络合物溶液混合,然后蒸氨,得到粘稠物料;以及
(4)将步骤(3)得到的粘稠物依次进行洗涤、干燥和焙烧。
在本发明方法的步骤(1)中,将SiO 2/Al 2O 3摩尔比≥3000的微孔分子筛载体材料加入到去离子水中,调pH值至6.5-12,得到均匀混合物。SiO 2/Al 2O 3摩尔比≥3000的微孔分子筛在这里用作载体材料。本发明的发明人发现,载体材料选用SiO 2/Al 2O摩尔比≥3000的微孔分子筛时,所得催化剂在用于由DMO加氢制EG时,能够将1,2-BDO的选择性控制得非常低,通常低至0.2%以内,同时还能保持高的DMO转化率和高的EG选择性。
根据本发明,在步骤(1)中,将SiO 2/Al 2O 3摩尔比≥3000的微孔分子筛载体材料加入到去离子水中的方式是常规的,例如可以将载体材料在5-45℃(优选室温或常温(25℃))和搅拌条件下加入到去离子水中,以形成均匀混合物。本发明步骤(1)中去离子水的用量没有特别要求,优选去离子水的用量为100-2000重量%,优选为150-1500重量%,均基于载体材料的总重量。
在步骤(1)中,载体材料加入到去离子水中之后,需要将所得混合物的pH值调节至6.5-12,优选调节至7-10。调节pH值使用的pH调节剂没有特别的限制,任何适于制备铜基催化剂的pH调节剂都可使用。然而,优选的是,步骤(1)中调节pH值的pH调节剂的选择,应以最终不向催化剂中引入铜以外的任何金属离子为基准。对此有利的是,使用氨水、尿素或尿素的水溶液作为该步骤的pH调节剂。例如,当使用氨水作为pH调节剂时,氨水的浓度可以为10-30重量%,优选为14-28重量%。尿素可以直接加入也可以以尿素的水溶液加入。为了使pH调节后的混合物更加均匀,优选步骤(1)中所有物料的加入均在搅拌如机械搅拌下进行,以确保电 荷分布稳定和均匀。通常而言,在调节pH之后,将反应混合物继续搅拌5-120分钟,搅拌转速为50-600rpm,以使得到的混合物充分稳定。
根据本发明,步骤(2)是将铜盐溶解到氨水中,制得铜氨络合物溶液。对此,铜氨溶液可以采用任何配制溶液的方法配制。铜盐通常采用水溶性铜盐。所述水溶性铜盐可以为各种水溶性铜盐,例如可以为硝酸铜、硫酸铜、醋酸铜、草酸铜和/或卤化铜以及前述各铜盐的水合物,其中卤化铜可以选自氯化铜、溴化铜。优选水溶性铜盐为硝酸铜和/或醋酸铜或其水合物,例如三水硝酸铜。配制铜氨溶液采用的氨水的浓度没有特别的限制,例如可以使用10-28重量%的氨水。铜盐与氨水的用量通常应使得氨与铜元素的摩尔比为10-300,优选为50-200。
根据本发明,步骤(3)是将步骤(1)得到的均匀混合物与步骤(2)得到的铜氨络合物溶液混合,然后蒸氨,得到粘稠物料。为了使得铜更充分地、更均匀地分布于载体的微孔内,通常有利的是,在将步骤(1)得到的均匀混合物与步骤(2)得到的铜氨络合物溶液混合之后并且在蒸氨之前,将所得混合物先在20-60℃下搅拌20-120min。更有利的是,在将步骤(1)得到的均匀混合物与步骤(2)得到的铜氨络合物溶液混合之后并且在蒸氨之前,将所得混合物先在30-40℃下搅拌30-60min。然后,将所得混合物蒸氨,以除去氨水,并在微孔内留下铜盐。蒸氨的条件没有特别限制,优选所述蒸氨的条件包括:蒸氨温度为50-130℃;蒸氨时间为0.5-50小时。进一步优选蒸氨温度为60-120℃;蒸氨时间为2-48小时。特别优选蒸氨温度为90-110℃;蒸氨时间为2-12小时。蒸氨可以在搅拌如机械搅拌下进行,搅拌的速度可以为300-600rpm。经过蒸氨,得到粘稠物料。
根据本发明,步骤(4)是将步骤(3)得到的粘稠物料依次进行洗涤、干燥和焙烧。本发明对于步骤(4)中的洗涤没有特别的限制,通常采用去离子水洗涤一次或多次,直到洗液呈中性。
本发明对于步骤(4)中的干燥条件没有特别限制,优选所述干燥条件包括:干燥的温度为50-160℃;干燥的时间为3-48小时。进一步优选干燥的温度为60-150℃;干燥的时间为6-24小时。特别优选干燥的温度为100-150℃;干燥的时间为6-20小时。本发明对于步骤(4)中的干燥的方法 没有特别限制,例如可以采用普通加热干燥、微波干燥和/或喷雾干燥。
步骤(4)的焙烧的温度可以为250-1000℃,焙烧的时间可以为1-12小时。优选的是,焙烧的温度为300-800℃,焙烧的时间为2-10小时。进一步优选的是,焙烧的温度为350-700℃,焙烧的时间为3-6小时。
在本发明方法的步骤(4)中,在焙烧之前,任选地将干燥得到的物料按照常规的方法进行成型。成型的方法例如可以为压片成型、滚球成型或挤出成型,此时可任选地加入粘接剂,以利于加工成型。
在本发明的一个实施方案中,也可将步骤(4)得到的催化剂粉碎后进一步成型,加工成所需成型体。在成型过程中,根据成型加工的难易程度、催化剂所需的强度,可以加入粘接剂。通常而言,将步骤(4)得到的催化剂粉碎后与粘接剂混合、研磨、然后压片,得到催化剂片剂。如果想要获得催化剂颗粒,还可将所得催化剂片剂破碎和筛分。
最后,本发明提供了一种制备乙二醇的方法,该方法包括在本发明铜基催化剂存在下,在加氢反应条件下,将草酸二甲酯与氢气接触进行氢化反应。根据本发明的制备方法,所述加氢反应条件可以包括:草酸二甲酯的液时空速为0.01-10g/g 催化剂.h、氢化反应的温度为100-300℃、氢化反应的压力为0.1-15MPa、氢气与草酸二甲酯的摩尔比为10:1-250:1。优选的是,所述加氢反应条件包括:草酸二甲酯的液时空速为0.5-8g/g 催化剂.h、氢化反应的温度为160-240℃、氢化反应的压力为1.5-8MPa、氢气与草酸二甲酯的摩尔比为60:1-200:1。
如果本发明的铜基催化剂尚未活化,需要在用于催化草酸二甲酯加氢制乙二醇之前将其加氢还原。氢化还原的条件是常规的。通常而言,还原气体使用氢气或包含氢气和对该还原反应呈惰性的气体的混合气。还原温度通常为200-350℃,优选220-300℃。还原时间通常为2-48小时,优选3-24小时。
本发明的草酸二甲酯加氢合成乙二醇可以在任何能够实现上述反应条件的反应器中进行,例如可以在固定床反应器、流化床反应器或浆态床反应器中进行,优选在固定床反应器中进行。
通过使用本发明催化剂来催化DMO加氢合成乙二醇,能够将 1,2-BDO的选择性控制得非常低,通常低至0.2%以内,同时还保持高的DMO转化率和高的EG选择性。而非常低的1,2-BDO选择性,意味着从EG中分离1,2-BDO的成本大大降低。
实施例
下面借助实施例和对比例详细描述本发明,但本发明的范围并不限于这些实施例。
以下实施例和对比例中,采用气相色谱法进行体系中各组成的分析,通过校正归一法进行定量。
N 2物理吸附采用Micromeritics ASAP 2020在77K(液氮温度)下进行分析,用于测定催化剂的比表面积、孔容、平均孔径等参数。首先,将催化剂样品于573K下抽真空至70mmHg,在此条件下预处理6h用以除去吸附在催化剂表面上的微量的水和杂质。然后,采用静态法测量吸附一脱附等温线。催化剂的比表面积由BET(Bnmauer-Emmet—Teller)理论结合吸附等温线计算得到;催化剂的孔容由BJH(Barrett—Joyner-Halenda)理论和脱附等温线求得。
实施例1
一、催化剂的制备:
(1)称取纯硅Silicalite-1分子筛(由山东大齐化工科技有限公司市购,S-1全硅分子筛)50g,溶解在600mL去离子水中,用25重量%氨水调节pH值到10.0,在室温(即25℃,下同)和搅拌速度150rpm下搅拌120分钟,得到载体混合物。
(2)室温下,将三水硝酸铜44g溶解到25重量%氨水中配制铜氨溶液1125mL,溶液中氨与铜的摩尔比为90,pH值为14,在搅拌速度150rpm下搅拌15分钟,得到铜氨溶液。
(3)室温和搅拌下将步骤(1)得到的载体混合物和步骤(2)得到的铜氨溶液混合,在温度30℃和搅拌速度为600rpm下搅拌30分钟;然后在95℃下和300rpm搅拌下蒸氨2小时,形成粘稠物料。
(4)将步骤(3)得到的粘稠物料用去离子水洗涤,直到洗液呈中性,然后在120℃下进行干燥12小时,之后再在450℃下焙烧4小时,即得到催化剂Cu/Silicate-1粉末,共64g。将得到的Cu/Silicalite-1粉末压片成型,破碎和筛分,得到粒径为20-40目的颗粒催化剂,即Cu/Silicate-1催化剂。
经测定,所得催化剂的比表面积为302m 2/g,孔容为0.51cm 3/g,铜以铜元素计在催化剂中的含量为18重量%。
二、催化剂的评价:
将上面制备的催化剂颗粒1.5ml,放入内径为10毫米且高40厘米的立管式固定床反应器内。反应评价前,将该催化剂还原,还原条件为:15体积%的H 2和85体积%的N 2混合气体,以120ml/min的流速从反应器顶部流过催化剂床层,从反应器的底部排出,还原温度为240℃,还原时间为4小时。还原结束后,用纯氢置换还原气体,升高反应系统压力达到3.0MPa,催化剂床层温度降低到180℃,开始通入DMO的15重量%甲醇溶液,其中氢气和草酸二甲酯在进入反应器前混合,然后从反应器的顶部进入管式反应器中,经反应后,产物从反应器的底部排出。反应条件如下:氢气与草酸二甲酯(DMO)的摩尔比为100:1,氢气的流速为124328ml/h,草酸二甲酯的液时空速为1.0g/ml.h,反应温度为180℃,反应压力为3.0MPa。经3小时的反应时间后取样分析,确定DMO的转化率与产物分布。反应结果见表1。
实施例2
与实施例1基本相同,不同的是:将载体Silicalite-1改为SiO 2/Al 2O 3摩尔比为3000的微孔ZSM-5分子筛(由东曹公司市购,HSZ-890HOA),最终得到Cu/ZSM-5-3000催化剂。
该催化剂的比表面积为326m 2/g,孔容为0.57cm 3/g,铜以铜元素计在催化剂中的含量为18重量%。
实施例3
与实施例1基本相同,不同的是:将载体Silicalite-1改为SiO 2/Al 2O 3 摩尔比为4000的微孔ZSM-5分子筛(由东曹公司市购,HSZ-891HOA),最终得到Cu/ZSM-5-4000催化剂。
该催化剂的比表面积为383m 2/g,孔容为0.52cm 3/g,铜以铜元素计在催化剂中的含量为18重量%。
实施例4
与实施例1基本相同,不同的是:将载体Silicalite-1改为SiO 2/Al 2O 3摩尔比为3000的微孔β分子筛(由东曹公司市购,HSZ-990HOA),最终得到Cu/β-3000催化剂。
该催化剂的比表面积为366m 2/g,孔容为0.68cm 3/g,铜以铜元素计在催化剂中的含量为18重量%。
对比例1
与实施例1基本相同,不同的是:将载体Silicalite-1改为SiO 2粉末(由山东省寿光市昌泰微纳化工厂市购,CT-380),最终得到Cu/SiO 2催化剂。
该催化剂的比表面积为349m 2/g,孔容为0.53cm 3/g,铜以铜元素计在催化剂中的含量为18重量%。
对比例2
与实施例1基本相同,不同的是:将载体Silicalite-1改为SBA-15介孔分子筛(由吉仓公司市购),最终得到Cu/SBA-15催化剂。
该催化剂的比表面积为484m 2/g,孔容为0.67cm 3/g,铜以铜元素计在催化剂中的含量为18重量%。
对比例3
与实施例1基本相同,不同的是:将载体Silicalite-1改为纯硅介孔MCM-41分子筛(由吉仓公司市购),最终得到Cu/MCM-41催化剂。
该催化剂的比表面积为413m 2/g,孔容为0.58cm 3/g,铜以铜元素计在催化剂中的含量为18重量%。
对比例4
与实施例1基本相同,不同的是:将载体Silicalite-1改为SiO 2/Al 2O 3摩尔比为50的微孔ZSM-5分子筛(由东曹公司市购,型号是HSZ-840HOA),最终得到Cu/ZSM-5-50催化剂。
该催化剂的比表面积为319m 2/g,孔容为0.43cm 3/g,铜以铜元素计在催化剂中的含量为18重量%。
对比例5
与实施例1基本相同,不同的是:将载体Silicalite-1改为SiO 2/Al 2O 3摩尔比为2000的微孔ZSM-5分子筛,最终得到Cu/ZSM-5-2000催化剂。
该催化剂的比表面积为371m 2/g,孔容为0.48cm 3/g,铜以铜元素计在催化剂中的含量为18重量%。
上述SiO 2/Al 2O 3摩尔比为2000的微孔ZSM-5分子筛的制备参见中国专利申请号201310462721.X。具体制备如下:
在3L带聚四氟乙烯衬里的不锈钢反应釜中,取28g四丙基溴化铵溶于40g去离子水中,加入0.395g纯度为99.8重量%的NaAlO 2,然后加入720g硅溶胶(SiO 2含量为40重量%)在剧烈搅拌下充分混合,加入13.0g含量为98重量%的浓硫酸,搅拌形成均匀的凝胶。然后将前述凝胶转移到带聚四氟乙烯衬里的不锈钢高压釜中,在150℃下晶化72小时。晶化完成后,过滤,得到固体,用去离子水洗涤固体直至洗涤水的pH值为8-9,然后将所得固体在120℃下干燥12小时,550℃下焙烧5小时,得到硅铝摩尔比为2000的Na型ZSM-5分子筛280克。
将200克所得Na型ZSM-5分子筛用500mL 1mol/L的NH 4NO 3溶液在25℃下交换240分钟,然后过滤,并用去离子水洗3次,在120℃下干燥3小时,然后在550℃下焙烧5小时,重复交换和焙烧过程3次,得到硅铝摩尔比为2000的H型ZSM-5分子筛。
实施例5
与实施例1基本相同,不同的是:在催化剂的制备过程中,将三水硝酸铜的用量降至24.44g,最终得到Cu/Silicalite-1-10的催化剂。
该催化剂的比表面积为317m 2/g,孔容为0.61cm 3/g,铜以铜元素计在催化剂中的含量为10重量%。
实施例6
与实施例1基本相同,不同的是:在催化剂的制备过程中,将三水硝酸铜的用量降至36.67g,最终得到Cu/Silicalite-1-15的催化剂。
该催化剂的比表面积为338m 2/g,孔容为0.55cm 3/g,铜以铜元素计在催化剂中的含量为15重量%。
实施例7
与实施例1基本相同,不同的是:在催化剂的制备过程中,将三水硝酸铜的用量增至61.11g,最终得到Cu/Silicalite-1-25的催化剂。
该催化剂的比表面积为381m 2/g,孔容为0.59cm 3/g,铜以铜元素计在催化剂中的含量为25重量%。
实施例8
与实施例1基本相同,不同的是:在催化剂的制备过程中,将三水硝酸铜的用量增至72.74g,最终得到Cu/Silicalite-1-30的催化剂。
该催化剂的比表面积为397m 2/g,孔容为0.61cm 3/g,铜以铜元素计在催化剂中的含量为30重量%。
实施例9
与实施例1基本相同,不同的是:在催化剂的制备过程中,将三水硝酸铜的用量增至84.86g,最终得到Cu/Silicalite-1-35的催化剂。
该催化剂的比表面积为416m 2/g,孔容为0.67cm 3/g,铜以铜元素计在催化剂中的含量为35重量%。
表1
Figure PCTCN2018107328-appb-000001

Claims (13)

  1. 一种铜基催化剂,该催化剂包含载体和负载在该载体上的铜活性成分,其中所述载体为SiO 2/Al 2O 3摩尔比≥3000的微孔分子筛。
  2. 如权利要求1所述的催化剂,其中所述分子筛为选自下组中的一种或多种SiO 2/Al 2O 3摩尔比≥3000的分子筛:Silicate-1、Beta分子筛和ZSM-5分子筛。
  3. 如权利要求1或2所述的催化剂,其中基于催化剂的总重量,铜活性成分的含量以铜元素计为10-45重量%,优选15-35重量%。
  4. 如权利要求1-3中任一项所述的催化剂,其中铜活性成分为选自下组中的一种或多种:Cu、CuO、Cu 2O和Cu-O-Si-。
  5. 一种制备如权利要求1-4中任一项的催化剂的方法,包括如下步骤:
    (1)将SiO 2/Al 2O 3摩尔比≥3000的微孔分子筛载体材料加入到去离子水中,调pH值至6.5-12,得到均匀混合物;
    (2)将铜盐溶解到氨水中,制得铜氨络合物溶液;
    (3)将步骤(1)得到的均匀混合物与步骤(2)得到的铜氨络合物溶液混合,然后蒸氨,得到粘稠物料;以及
    (4)将步骤(3)得到的粘稠物依次进行洗涤、干燥和焙烧。
  6. 如权利要求5所述的方法,其中步骤(1)中调节pH值的pH调节剂的选择应使得不向催化剂中最终引入除铜以外的任何金属离子,优选为氨水、尿素或尿素的水溶液。
  7. 如权利要求5或6所述的方法,其中步骤(1)中所述的pH调节至7-10。
  8. 如权利要求5-7中任一项所述的方法,其中步骤(2)中的铜盐为水溶性铜盐,优选为选自下组中的一种或多种:硝酸铜、硫酸铜、醋酸铜、草酸铜、卤化铜如氯化铜和溴化铜以及前述各铜盐的水合物,更优选为硝酸铜和/或醋酸铜或其水合物。
  9. 如权利要求5-8中任一项所述的方法,其中在将步骤(1)得到的均匀混合物与步骤(2)得到的铜氨络合物溶液混合之后并且在蒸氨之前,将所得混合物先在20-60℃下搅拌20-120min,优选将所得混合物先在30-40℃下 搅拌30-60min。
  10. 如权利要求5-9任一项所述的方法,其中在步骤(3)中,蒸氨在50-130℃下进行0.5-50小时,优选在60-120℃下进行2-48小时,更优选在90-110℃下进行2-12小时。
  11. 根据权利要求5-10中任一项的方法,其中在步骤(4)中,焙烧在250-1000℃下进行1-12小时,优选在300-800℃下进行2-10小时,更优选在350-700℃下进行3-6小时。
  12. 一种制备乙二醇的方法,该方法包括在如权利要求1-4中任一项所述的铜基催化剂存在下,在加氢反应条件下,将草酸二甲酯与氢气接触进行氢化反应以得到乙二醇。
  13. 根据权利要求12的方法,其中所述加氢反应条件如下:草酸二甲酯的液时空速为0.01-10g/g 催化剂.h、氢化反应的温度为100-300℃、氢化反应的压力为0.1-15MPa、氢气与草酸二甲酯的摩尔比为10:1-250:1;优选的是,所述加氢反应条件包括:草酸二甲酯的液时空速为0.5-8g/g 催化剂.h、氢化反应的温度为160-240℃、氢化反应的压力为1.5-8MPa、氢气与草酸二甲酯的摩尔比为60:1-200:1。
PCT/CN2018/107328 2018-09-25 2018-09-25 铜基催化剂及其制备方法和使用该催化剂制备乙二醇的方法 WO2020061745A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880001759.8A CN111225742A (zh) 2018-09-25 2018-09-25 铜基催化剂及其制备方法和使用该催化剂制备乙二醇的方法
PCT/CN2018/107328 WO2020061745A1 (zh) 2018-09-25 2018-09-25 铜基催化剂及其制备方法和使用该催化剂制备乙二醇的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107328 WO2020061745A1 (zh) 2018-09-25 2018-09-25 铜基催化剂及其制备方法和使用该催化剂制备乙二醇的方法

Publications (1)

Publication Number Publication Date
WO2020061745A1 true WO2020061745A1 (zh) 2020-04-02

Family

ID=69950280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107328 WO2020061745A1 (zh) 2018-09-25 2018-09-25 铜基催化剂及其制备方法和使用该催化剂制备乙二醇的方法

Country Status (2)

Country Link
CN (1) CN111225742A (zh)
WO (1) WO2020061745A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112275317B (zh) * 2020-11-04 2023-05-26 淮阴工学院 应用于二氧化碳转化的高分散度高稳定性金属负载分子筛催化剂的制备
CN113332989B (zh) * 2021-05-28 2023-01-10 浙江工业大学 氧化铝负载型铜-稀土金属氧化物催化剂及其制备方法和应用
CN115869903B (zh) * 2022-09-26 2024-07-23 南京工业大学 一种铜基沸石分子筛杂化材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0060787A1 (en) * 1981-03-12 1982-09-22 Union Carbide Corporation Process for the preparation of ethylene glycol
CN105777494A (zh) * 2014-12-24 2016-07-20 高化学株式会社 乙二醇的制备方法
CN106185949A (zh) * 2016-08-02 2016-12-07 浙江迅鼎半导体材料科技有限公司 一种乙硅烷的制造方法
CN108452823A (zh) * 2018-04-16 2018-08-28 中国科学院福建物质结构研究所 钛改性铜基介孔分子筛催化剂及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993346A (zh) * 2009-08-31 2011-03-30 中国石油化工股份有限公司 草酸酯氢化为乙二醇的方法
CN102029178B (zh) * 2010-10-18 2012-05-23 清华大学 铜基分子筛催化剂及其制备方法
US10086364B2 (en) * 2014-06-26 2018-10-02 University Of Wyoming Methods of catalytic hydrogenation for ethylene glycol formation
CN105771989B (zh) * 2014-12-24 2018-07-20 高化学技术株式会社 铜基催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0060787A1 (en) * 1981-03-12 1982-09-22 Union Carbide Corporation Process for the preparation of ethylene glycol
CN105777494A (zh) * 2014-12-24 2016-07-20 高化学株式会社 乙二醇的制备方法
CN106185949A (zh) * 2016-08-02 2016-12-07 浙江迅鼎半导体材料科技有限公司 一种乙硅烷的制造方法
CN108452823A (zh) * 2018-04-16 2018-08-28 中国科学院福建物质结构研究所 钛改性铜基介孔分子筛催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN111225742A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2020061745A1 (zh) 铜基催化剂及其制备方法和使用该催化剂制备乙二醇的方法
US20110237430A1 (en) Process for preparing catalyst comprising palladium supported on carrier with high dispersion
CN105102374B (zh) 脱水-水解方法及其催化剂
WO2022206673A1 (zh) 低温羰基化分子筛催化剂及其用途
Tangale et al. Hierarchical K/LTL zeolite as solid base for aqueous phase hydrogenation of xylose to xylitol
WO2022253171A1 (zh) 银-钌双金属/SiO 2-ZrO 2复合载体催化剂及其制备方法和应用
CN111298818B (zh) 钯、铂催化剂及其制备和在糠醛制呋喃反应中的应用
CN113751080B (zh) 一种改性氧化铝载体及其制备方法和应用
CN109399660B (zh) 多级孔Beta分子筛、多级孔Beta分子筛Ca-Ni型催化剂及制备方法
CN104646073B (zh) 一种加氢催化剂载体
CN116003262A (zh) 一种n,n-二甲基苯胺的合成方法
WO2021129760A1 (zh) 一种dlm-1分子筛及其制造方法和应用
US9708229B2 (en) Catalyst for preparing isobutene by dissociation of methyl tert-butyl ether, preparation method and use thereof
CN114713278A (zh) 一种全结晶zsm-35分子筛的制备方法及其在烯烃异构反应中的应用
CN108568310B (zh) 嵌入式微孔-介孔复合分子筛甲烷化催化剂及应用
CN112517017B (zh) 一种醋酸甲酯加氢的掺杂型硅酸铜纳米管催化剂及其制备方法与应用
KR101504673B1 (ko) 3차원의 열린 기공 구조를 갖는 산성 산화물 나노 입자, 그 제조방법 및 상기 나노 입자를 이용하여 글리세롤로부터 아크롤레인 또는 아크릴산을 제조하는 방법
CN113830778A (zh) ZSM-5/β核壳型分子筛及其合成方法和应用
CN111068692A (zh) 一种用于合成n,n-二乙基丙炔胺的催化剂及其制备方法
CN111250153B (zh) 一种Al2O3-多级孔分子筛负载Mo型催化材料的制备方法及其在歧化制丙烯中的应用
WO2024083048A1 (zh) 用于由二甲醚和/或甲醇羰基化制备乙酸甲酯的催化剂及其用途
CN112536062B (zh) 一种临氢降凝催化剂及其制备方法和应用
CN113893857B (zh) 一种用于二氧化碳甲烷重整的钴基催化剂及其制备方法和应用
CN116371416B (zh) 一种镍-铌/凹凸棒石基有序介孔催化剂及其制备方法和应用
KR20190123153A (ko) 중형기공성 코발트-구리-알루미나 제로젤 촉매, 그 제조 방법 및 상기 촉매를 이용한 합성가스로부터 고급알코올(c2+ oh)을 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935224

Country of ref document: EP

Kind code of ref document: A1