WO2020059890A1 - タイヤ用樹脂ゴム複合体及びタイヤ - Google Patents

タイヤ用樹脂ゴム複合体及びタイヤ Download PDF

Info

Publication number
WO2020059890A1
WO2020059890A1 PCT/JP2019/037345 JP2019037345W WO2020059890A1 WO 2020059890 A1 WO2020059890 A1 WO 2020059890A1 JP 2019037345 W JP2019037345 W JP 2019037345W WO 2020059890 A1 WO2020059890 A1 WO 2020059890A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
tire
rubber
adhesive
Prior art date
Application number
PCT/JP2019/037345
Other languages
English (en)
French (fr)
Inventor
鈴木 隆弘
福島 敦
壮一 京
彩華 西村
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2020059890A1 publication Critical patent/WO2020059890A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/01Inflatable pneumatic tyres or inner tubes without substantial cord reinforcement, e.g. cordless tyres, cast tyres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds

Definitions

  • the present disclosure relates to a resin-rubber composite for a tire and a tire.
  • Patent Literature 1 proposes a tire using a coated cord formed by coating a cord with a resin material for a bead core.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-207157
  • a resin layer containing a resin and a rubber layer containing rubber may be required from the viewpoint of tire durability.
  • a method of improving the adhesiveness for example, a method of bonding a resin layer and a rubber layer with an adhesive may be used.
  • the adhesiveness is improved, but the resin layer may be easily cracked due to repeated application of a load. Therefore, there is room for further improving the durability of the tire by suppressing cracks in the resin layer while improving the adhesiveness.
  • the tensile follow-up index is such that the adhesive is formed on the specific resin for test when a first test piece made of the specific resin for test is subjected to a tensile test at a speed of 100 mm / min and a breaking elongation is set to 100. It is an index showing the elongation at break when the second test piece provided with the layer is subjected to a tensile test at a speed of 100 mm / min.
  • Resin-rubber composite for tires are provided directly in contact with the resin layer and have a tensile follow-up index of 80 or more, and a rubber layer containing a rubber And in this order,
  • the tensile follow-up index is such that the adhesive is formed on the specific
  • FIG. 1 is a perspective view showing a cross section of a part of the tire according to the first embodiment.
  • FIG. 2 is a cross-sectional view along the tire width direction showing the configuration of the tire according to the first embodiment.
  • FIG. 3 is a cross-sectional view along the tire width direction showing the configuration of the tire according to the second embodiment.
  • FIG. 4 is a cross-sectional view along the tire width direction showing the configuration of the tire according to the third embodiment.
  • FIG. 5 is an enlarged sectional view of a bead portion of the tire according to the fourth embodiment.
  • FIG. 6 is an enlarged sectional view of a bead portion of the tire according to the fifth embodiment.
  • resin is a concept including a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin, and does not include a vulcanized rubber.
  • the same type means a resin having a skeleton common to the skeleton constituting the main chain of the resin, such as an ester type or a styrene type.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • step includes not only an independent step but also the term “step” as long as its purpose is achieved, even if it cannot be clearly distinguished from other steps. include.
  • the amount of each component in the composition is, when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified, the sum of a plurality of substances present in the composition. Means quantity.
  • the “main component” means a component having the largest content by mass in a mixture unless otherwise specified.
  • thermoplastic resin refers to a polymer compound in which a material softens and flows with an increase in temperature and becomes relatively hard and strong when cooled, but does not have rubber-like elasticity.
  • thermoplastic elastomer refers to a copolymer having a hard segment and a soft segment.
  • thermoplastic elastomer for example, a polymer that forms a hard segment having a high melting point or a hard segment having a high cohesive force and a polymer that forms an amorphous soft segment having a low glass transition temperature, Copolymer having the same.
  • thermoplastic elastomer for example, a material which softens and flows with a rise in temperature, becomes relatively hard and strong when cooled, and has rubber-like elasticity
  • the hard segment has, for example, a structure having a rigid group such as an aromatic group or an alicyclic group in the main skeleton, or a structure which enables intermolecular packing by intermolecular hydrogen bonding or ⁇ - ⁇ interaction.
  • the soft segment includes, for example, a segment having a long-chain group (for example, a long-chain alkylene group or the like) in the main chain, a high degree of freedom in molecular rotation, and an elastic structure.
  • a resin-rubber composite for a tire according to an embodiment of the present disclosure (hereinafter, also referred to as a “composite”) is a resin layer containing a resin and a cured layer of a composition containing an adhesive, which is provided in direct contact with the resin layer.
  • An adhesive layer having a tensile following index of 80 or more and a rubber layer containing rubber are provided in this order.
  • the tensile follow-up index is defined as the elongation at break of the second test piece provided with the adhesive layer on the specific test resin, when the elongation at break of the first test piece made of the specific resin for test is 100.
  • the elongation at break of the first test piece and the elongation at break of the second test piece are elongation at break when a tensile test is performed on each test piece at a speed of 100 mm / min.
  • the production of the first test piece and the second test piece is performed, for example, as follows.
  • the test specific resin for example, two resin pieces of a dumbbell type (JIS No. 3 size), a thickness of 2 mm, and made of a polyester thermoplastic elastomer (manufactured by Toray DuPont, product number: Hytrel 5557) are prepared.
  • An adhesive for forming an adhesive layer to be measured is applied to the center of one resin piece so as to have the same thickness as the average thickness of the adhesive layer of the composite. And pressurizing and heating for 20 minutes to obtain a "second test piece". That is, the second test piece is a test piece in which the adhesive layer to be measured is provided on the resin piece.
  • the adhesive layer provided on the second test piece is provided on the entire surface of one side of the resin piece so that the thickness is uniform within a range of ⁇ 10% throughout.
  • the resin to which the adhesive has not been applied is similarly pressed and heated at 160 ° C. and 2 MPa for 20 minutes to obtain a “first test piece”.
  • each of the first test piece and the second test piece was set on a tensile tester (for example, Autograph AG-X manufactured by Shimadzu Corporation), and the elongation at break was measured based on JIS K7161-1: 2014. %). Specifically, the test piece is pulled at a speed of 100 mm / min in a room temperature environment (23 ° C.), and the value of elongation at break is measured. Then, when the breaking elongation of the first test piece is set to 100, the index of the breaking elongation of the second test piece is referred to as “tensile follow-up index”.
  • the elongation at break (%) of the first test piece and the elongation at break (%) of the second test piece are the same value.
  • the elongation at break (%) of the second test piece is smaller than the elongation at break (%) of the first test piece.
  • the adhesive layer in contact with the resin layer has a tensile follow-up index of 80 or more to suppress cracking of the resin layer due to repeated application of the load.
  • the composite in which the resin layer and the rubber layer are bonded with an adhesive has improved adhesiveness between the resin layer and the rubber layer as compared with a composite in which the resin layer and the rubber layer are directly contacted without using an adhesive.
  • the resin layer may be easily cracked due to repeated application of a load.
  • a load is likely to be applied during running, and therefore it is required that a crack is not easily generated even when a load is repeatedly applied.
  • the cracks in the resin layer in the composite are considered to be due to cracks in the adhesive layer in contact with the resin layer. Specifically, first, when a load is applied to the composite, the rubber layer having rubber elasticity is easily deformed, while the resin layer is hardly deformed. It is considered that there is a large difference between Then, the adhesive layer provided between the rubber layer and the resin layer cannot withstand the difference in the degree of deformation, and after the adhesive layer is cracked, a further load is applied to the composite, so that the adhesive is It is presumed that the crack propagates to the resin layer as a result of propagation of the crack to the resin layer in contact with the layer.
  • the adhesive layer in contact with the resin layer has a tensile following index of 80 or more. Therefore, even if a load is applied to the composite and a large difference occurs between the degree of deformation of the rubber layer and the degree of deformation of the resin layer as compared with the case where the tensile follow-up index of the adhesive layer is less than 80, It is presumed that cracks are unlikely to occur, so that cracks in the resin layer due to cracks in the adhesive layer are unlikely to occur. From the above, it is presumed that the composite suppresses cracking of the resin layer due to repeated application of a load, and that the tire having the composite has excellent durability.
  • the composite only needs to have at least the resin layer, the adhesive layer in contact with the resin layer, and the rubber layer in this order, and may further have another layer.
  • Other layers include, for example, a rubber-side adhesive layer provided between the adhesive layer and the rubber layer so as to be in direct contact with the rubber layer, and another resin provided on the opposite side of the resin layer from the rubber layer. And other rubber layers provided on the side of the rubber layer opposite to the resin layer. That is, the composite may be in a form in which the adhesive layer directly contacts both the resin layer and the rubber layer, the adhesive layer contacts the resin layer and the rubber-side adhesive layer, and the rubber-side adhesive layer directly contacts the rubber layer. It may be in contact form.
  • the adhesive layer In a mode in which the adhesive layer is in contact with the resin layer and the rubber layer, the adhesive layer alone functions as an adhesive layer for bonding the resin layer and the rubber layer (hereinafter, also referred to as a “single-layer adhesive layer”).
  • an adhesive layer (hereinafter, referred to as a “two-layer adhesive layer”) that bonds the resin layer and the rubber layer with both the adhesive layer and the rubber-side adhesive layer. (Also called).
  • the adhesive layer in contact with the resin layer may have a tensile following index of 80 or more, and the composition and properties of the rubber-side adhesive layer are not particularly limited. .
  • each layer constituting the composite will be described.
  • the resin layer contains at least a resin, and may contain other components as necessary.
  • the resin layer preferably contains a resin as a main component. Specifically, the content of the resin with respect to the total amount of the resin layer is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 75% by mass or more.
  • the resin layer, as the resin may include any of a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin, but preferably includes at least one selected from the group consisting of a thermoplastic resin and a thermoplastic elastomer, More preferably, it contains a thermoplastic elastomer.
  • thermoplastic resin examples include a polyester-based thermoplastic resin, a polyamide-based thermoplastic resin, a polystyrene-based thermoplastic resin, a polyurethane-based thermoplastic resin, a polyolefin-based thermoplastic resin, and a vinyl chloride-based thermoplastic resin.
  • thermoplastic elastomer examples include, for example, polyester thermoplastic elastomer (TPC), polyamide thermoplastic elastomer (TPA), polystyrene thermoplastic elastomer (TPS), polyurethane thermoplastic elastomer (TPU) specified in JIS K6418, Examples include a polyolefin-based thermoplastic elastomer (TPO), a crosslinked thermoplastic rubber (TPV), or another thermoplastic elastomer (TPZ).
  • TPC polyester thermoplastic elastomer
  • TPA polyamide thermoplastic elastomer
  • TPS polystyrene thermoplastic elastomer
  • TPU polyurethane thermoplastic elastomer
  • TPO polyolefin-based thermoplastic elastomer
  • TPV crosslinked thermoplastic rubber
  • TPZ thermoplastic elastomer
  • thermosetting resin examples include a phenol-based thermosetting resin, a urea-based thermosetting resin, a melamine-based thermosetting resin, and an epoxy-based thermosetting resin.
  • the resin layer may contain these resins alone or may contain two or more resins in combination.
  • the resin polyester-based thermoplastic elastomer, polyester-based thermoplastic resin, polyamide-based thermoplastic elastomer, polyamide-based thermoplastic resin, polystyrene-based thermoplastic elastomer, polystyrene-based thermoplastic resin, polyurethane-based thermoplastic elastomer, Polyurethane-based thermoplastic resins, polyolefin-based thermoplastic elastomers, or polyolefin-based thermoplastic resins are preferred.
  • the resin layer preferably contains at least one selected from the group consisting of a polyester-based thermoplastic elastomer, a polyester-based thermoplastic resin, a polyamide-based thermoplastic elastomer, and a polyamide-based thermoplastic resin.
  • the polyester-based thermoplastic elastomer and polyester More preferably, it contains at least one member selected from the group consisting of thermoplastic resins.
  • polyester thermoplastic elastomer- (Polyester thermoplastic elastomer)
  • polyester-based thermoplastic elastomer for example, at least polyester forms a hard segment having a crystalline and high melting point and another polymer (eg, polyester or polyether) has an amorphous and soft segment having a low glass transition temperature. The material being formed is mentioned.
  • an aromatic polyester can be used as the polyester forming the hard segment.
  • the aromatic polyester can be formed, for example, from an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol.
  • the aromatic polyester is preferably polybutylene terephthalate derived from at least one selected from the group consisting of terephthalic acid and dimethyl terephthalate, and 1,4-butanediol.
  • aromatic polyesters include, for example, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, A dicarboxylic acid component such as sulfoisophthalic acid or an ester-forming derivative thereof, and a diol having a molecular weight of 300 or less (eg, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, etc.) Aliphatic diols; alicyclic diols such as 1,4-cyclohexanedimethanol and tricyclodecanedimethylol; xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2- Bi [
  • polyester forming the hard segment examples include polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like, with polybutylene terephthalate being preferred.
  • Examples of the polymer that forms the soft segment include aliphatic polyester and aliphatic polyether.
  • Examples of the aliphatic polyether include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, a copolymer of ethylene oxide and propylene oxide, and poly (propylene oxide).
  • Ethylene oxide addition polymers of glycols and copolymers of ethylene oxide and tetrahydrofuran examples of the aliphatic polyester include poly ( ⁇ -caprolactone), polyenantholactone, polycaprylolactone, polybutylene adipate, polyethylene adipate and the like.
  • polymers forming soft segments include poly (tetramethylene oxide) glycol and poly (propylene oxide) glycol.
  • Preferred are ethylene oxide adducts, poly ( ⁇ -caprolactone), polybutylene adipate, polyethylene adipate and the like.
  • the number average molecular weight of the polymer forming the soft segment is preferably from 300 to 6000 from the viewpoint of toughness and low-temperature flexibility.
  • the mass ratio (x: y) of the hard segment (x) to the soft segment (y) is preferably from 99: 1 to 20:80, more preferably from 98: 2 to 30:70 from the viewpoint of moldability. .
  • each combination of the above-mentioned hard segment and soft segment can be given.
  • a combination in which the hard segment is polybutylene terephthalate and the soft segment is an aliphatic polyether is preferable, and the hard segment is polybutylene terephthalate, and the soft segment is Are more preferably poly (ethylene oxide) glycols.
  • polyester-based thermoplastic elastomers include, for example, "Hytrel” series (for example, 3046, 5557, 6347, 4047N, and 4767N) manufactured by Du Pont-Toray Co., Ltd., and "Perprene” series manufactured by Toyobo Co., Ltd. (For example, P30B, P40B, P40H, P55B, P70B, P150B, P280B, E450B, P150M, S1001, S2001, S5001, S6001, S9001, etc.) can be used.
  • Hytrel for example, 3046, 5557, 6347, 4047N, and 4767N
  • Perprene manufactured by Toyobo Co., Ltd.
  • the polyester-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • Polyamide thermoplastic elastomer is a thermoplastic resin material composed of a copolymer having a polymer which forms a hard segment having a high melting point which is crystalline and a polymer which forms an amorphous soft segment having a low glass transition temperature.
  • a polymer having an amide bond (—CONH—) in the main chain of a polymer forming a hard segment is meant.
  • the polyamide-based thermoplastic elastomer for example, at least a polyamide forms a hard segment having a crystalline and high melting point, and another polymer (for example, polyester, polyether, etc.) has an amorphous and a soft segment having a low glass transition temperature.
  • the polyamide-based thermoplastic elastomer may be formed by using a chain extender such as dicarboxylic acid in addition to the hard segment and the soft segment.
  • a chain extender such as dicarboxylic acid
  • Specific examples of the polyamide-based thermoplastic elastomer include an amide-based thermoplastic elastomer (TPA) specified in JIS K6418: 2007, and a polyamide-based elastomer described in JP-A-2004-346273. it can.
  • examples of the polyamide forming the hard segment include a polyamide formed by a monomer represented by the following general formula (1) or (2).
  • R 1 represents a molecular chain of a hydrocarbon having 2 to 20 carbon atoms (for example, an alkylene group having 2 to 20 carbon atoms).
  • R 2 represents a molecular chain of a hydrocarbon having 3 to 20 carbon atoms (for example, an alkylene group having 3 to 20 carbon atoms).
  • R 1 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms, and a molecular chain of a hydrocarbon having 4 to 15 carbon atoms, for example, carbon atom.
  • An alkylene group having 4 to 15 carbon atoms is more preferable, and a hydrocarbon chain having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • R 2 a molecular chain of a hydrocarbon having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms is preferable, and a molecular chain of a hydrocarbon having 4 to 15 carbon atoms;
  • an alkylene group having 4 to 15 carbon atoms is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • the monomer represented by the general formula (1) or (2) include ⁇ -aminocarboxylic acid or lactam.
  • the polyamide forming the hard segment include polycondensates of these ⁇ -aminocarboxylic acids or lactams, and copolycondensates of diamines and dicarboxylic acids.
  • Examples of the ⁇ -aminocarboxylic acid include those having 5 to 20 carbon atoms such as 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid and 12-aminododecanoic acid. Examples thereof include aliphatic ⁇ -aminocarboxylic acids.
  • Examples of the lactam include aliphatic lactams having 5 to 20 carbon atoms, such as lauryl lactam, ⁇ -caprolactam, udecan lactam, ⁇ -enantholactam, and 2-pyrrolidone.
  • Examples of the diamine include an aliphatic diamine having 2 to 20 carbon atoms and an aromatic diamine having 6 to 20 carbon atoms.
  • Examples of the aliphatic diamine having 2 to 20 carbon atoms and the aromatic diamine having 6 to 20 carbon atoms include ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, and the like. Decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, metaxylenediamine and the like.
  • the dicarboxylic acid can be represented by HOOC- (R 3 ) m —COOH (R 3 : a molecular chain of a hydrocarbon having 3 to 20 carbon atoms, m: 0 or 1).
  • R 3 a molecular chain of a hydrocarbon having 3 to 20 carbon atoms, m: 0 or 1.
  • oxalic acid, succinic acid And aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecane diacid.
  • a polyamide obtained by ring-opening polycondensation of lauryl lactam, ⁇ -caprolactam, or udecan lactam can be preferably used.
  • polymer forming the soft segment examples include polyester and polyether, and specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and ABA-type triblock polyether. These can be used alone or in combination of two or more. Further, a polyether diamine or the like obtained by reacting ammonia or the like with the terminal of the polyether can also be used.
  • ABA-type triblock polyether means a polyether represented by the following general formula (3).
  • x and z represent an integer of 1 to 20.
  • y represents an integer of 4 to 50.
  • x and z are each preferably an integer of 1 to 18, more preferably an integer of 1 to 16, further preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12.
  • y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, further preferably an integer of 7 to 35, and particularly preferably an integer of 8 to 30.
  • the combination of a hard segment and a soft segment includes a combination of lauryl lactam ring-opening polycondensate / polyethylene glycol, a combination of lauryl lactam ring-opening polycondensate / polypropylene glycol, and a ring-opening polycondensation of lauryl lactam
  • the combination of isomer / polytetramethylene ether glycol or the combination of ring-opening polycondensate of lauryl lactam / ABA-type triblock polyether is preferable, and the combination of ring-opening polycondensate of lauryl lactam / ABA-type triblock polyether is more preferable. preferable.
  • the number average molecular weight of the polymer (polyamide) forming the hard segment is preferably from 300 to 15,000 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably from 200 to 6000 from the viewpoint of toughness and flexibility at low temperature.
  • the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably from 50:50 to 90:10, and more preferably from 50:50 to 80:20 from the viewpoint of moldability. .
  • the polyamide-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • polyamide-based thermoplastic elastomers include, for example, Ube Industries, Ltd.'s "UBESTA @ XPA” series (eg, XPA9068X1, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2XPA9044), and Daicel Eponik. "Vestamide” series (eg, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2, etc.) can be used.
  • polystyrene-based thermoplastic elastomer As the polystyrene-based thermoplastic elastomer, for example, at least polystyrene forms a hard segment, and another polymer (eg, polybutadiene, polyisoprene, polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene, etc.) is amorphous and has a glass transition temperature. Low soft segment.
  • the polystyrene forming the hard segment for example, those obtained by a known radical polymerization method, ionic polymerization method, or the like are preferably used, and specific examples include polystyrene having anion living polymerization. Examples of the polymer forming the soft segment include polybutadiene, polyisoprene, and poly (2,3-dimethyl-butadiene).
  • the combination of the hard segment and the soft segment is preferably a combination of polystyrene / polybutadiene or a combination of polystyrene / polyisoprene. Further, in order to suppress an unintended crosslinking reaction of the thermoplastic elastomer, the soft segment is preferably hydrogenated.
  • the number average molecular weight of the polymer (polystyrene) forming the hard segment is preferably from 5,000 to 500,000, more preferably from 10,000 to 200,000.
  • the number average molecular weight of the polymer forming the soft segment is preferably from 5,000 to 1,000,000, more preferably from 10,000 to 800,000, even more preferably from 30,000 to 500,000.
  • the volume ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably from 5:95 to 80:20, more preferably from 10:90 to 70:30 from the viewpoint of moldability. .
  • the polystyrene-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • the polystyrene-based thermoplastic elastomer include styrene-butadiene-based copolymer [SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], styrene-isoprene Copolymer (polystyrene-polyisoprene block-polystyrene), styrene-propylene-based copolymer [SEP (polystyrene- (ethylene / propylene) block], SEPS (polystyrene-poly (ethylene / propylene) block-
  • polystyrene-based thermoplastic elastomers include, for example, "ToughTech” series manufactured by Asahi Kasei Corporation (for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.).
  • "SEBS” series (8007, 8076, etc.) and “SEPS” series (2002, 2063, etc.) manufactured by Kuraray Co., Ltd. can be used.
  • Polyurethane-based thermoplastic elastomer As a polyurethane-based thermoplastic elastomer, for example, at least polyurethane forms a hard segment in which pseudo-crosslinking is formed by physical aggregation, and another polymer forms a soft segment having an amorphous and low glass transition temperature. Materials. Specific examples of the polyurethane-based thermoplastic elastomer include a polyurethane-based thermoplastic elastomer (TPU) specified in JIS K6418: 2007. The polyurethane-based thermoplastic elastomer can be represented as a copolymer including a soft segment containing a unit structure represented by the following formula A and a hard segment containing a unit structure represented by the following formula B.
  • P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester.
  • R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P ' represents a short-chain aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P is derived from a diol compound containing a long-chain aliphatic polyether represented by P and a long-chain aliphatic polyester.
  • Examples of such a diol compound include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, poly (butylene adipate) diol, poly- ⁇ -caprolactone diol, and poly (hexamethylene carbonate) having a molecular weight within the above range.
  • Diols and ABA-type triblock polyethers These can be used alone or in combination of two or more.
  • R is a partial structure introduced using a diisocyanate compound containing an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon represented by R.
  • the aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate, and 1,6-hexamethylene diisocyanate.
  • Examples of the diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate.
  • the aromatic diisocyanate compound containing an aromatic hydrocarbon represented by R include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate. These can be used alone or in combination of two or more.
  • P ′ As the short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P ′, for example, those having a molecular weight of less than 500 can be used.
  • P ′ is derived from a diol compound containing a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P ′.
  • Examples of the aliphatic diol compound containing a short-chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol, and specifically, ethylene glycol, propylene glycol, trimethylene glycol, 1,4 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10- Decanediol and the like.
  • Examples of the alicyclic diol compound containing an alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, Cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol and the like can be mentioned.
  • examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P ′ include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4′- Dihydroxybiphenyl, 4,4'-dihydroxydiphenylether, 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxybenzophenone, 4,4'-dihydroxydiphenylmethane, bisphenol A, 1, Examples thereof include 1-di (4-hydroxyphenyl) cyclohexane, 1,2-bis (4-hydroxyphenoxy) ethane, 1,4-dihydroxynaphthalene, and 2,6-dihydroxynaphthalene. These can be used alone or in combination of two or more.
  • the number average molecular weight of the polymer (polyurethane) forming the hard segment is preferably from 300 to 1500 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably from 500 to 20,000, more preferably from 500 to 5,000, particularly preferably from 500 to 3,000, from the viewpoint of the flexibility and thermal stability of the polyurethane thermoplastic elastomer.
  • the mass ratio (x: y) of the hard segment (x) to the soft segment (y) is preferably from 15:85 to 90:10, and more preferably from 30:70 to 90:10 from the viewpoint of moldability. .
  • the polyurethane-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • the polyurethane-based thermoplastic elastomer for example, the thermoplastic polyurethane described in JP-A-5-331256 can be used.
  • thermoplastic elastomer specifically, a combination of a hard segment composed of an aromatic diol and an aromatic diisocyanate and a soft segment composed of a polycarbonate is preferable. More specifically, tolylene diisocyanate ( TDI) / polyester-based polyol copolymer, TDI / polyether-based polyol copolymer, TDI / caprolactone-based polyol copolymer, TDI / polycarbonate-based polyol copolymer, 4,4′-diphenylmethane diisocyanate (MDI) / polyester -Based polyol copolymer, MDI / polyether-based polyol copolymer, MDI / caprolactone-based polyol copolymer, MDI / polycarbonate-based polyol copolymer, and MDI + hydroquinone / polyhexamethyl At least one selected from the group consisting of carbonate copoly
  • thermoplastic elastomers examples include, for example, “Elastolane” series manufactured by BASF (eg, ET680, ET880, ET690, ET890, etc.) and “Kuramilon U” series manufactured by Kuraray Co., Ltd. , 2000s, 3000s, 8000s, 9000s, etc.), "Milactran” series manufactured by Nippon Miractran Co., Ltd. (for example, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E490, E590, P890, etc.) Etc. can be used.
  • polyolefin thermoplastic elastomer As a polyolefin-based thermoplastic elastomer, for example, at least polyolefin forms a hard segment having a high melting point which is crystalline, and another polymer (eg, polyolefin, other polyolefin, polyvinyl compound, etc.) is amorphous and has a glass transition temperature. Materials that form a low soft segment are included. Examples of the polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, and polybutene.
  • polyolefin-based thermoplastic elastomer examples include an olefin- ⁇ -olefin random copolymer, an olefin block copolymer and the like.
  • polyolefin-based thermoplastic elastomers include propylene block copolymers, ethylene-propylene copolymers, propylene-1-hexene copolymers, propylene-4-methyl-1-pentene copolymers, and propylene-1-propylene.
  • Butene copolymer ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer , Ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer , A propylene-methyl methacrylate copolymer, Propylene-ethyl methacrylate copolymer, propylene-butyl methacrylate copolymer, propylene-methyl acrylate copolymer, propylene-ethyl acrylate copolymer, propylene-butyl acrylate copolymer,
  • olefin resins such as ethylene and propylene may be used in combination.
  • the olefin resin content in the polyolefin-based thermoplastic elastomer is preferably from 50% by mass to 100% by mass.
  • the number average molecular weight of the polyolefin-based thermoplastic elastomer is preferably from 5,000 to 100,000,000. When the number average molecular weight of the polyolefin-based thermoplastic elastomer is 5,000 to 100,000,000, the mechanical properties of the thermoplastic resin material are sufficient and the workability is excellent. From the same viewpoint, the number average molecular weight of the polyolefin-based thermoplastic elastomer is more preferably from 7,000 to 1,000,000, and particularly preferably from 10,000 to 1,000,000. Thereby, the mechanical properties and workability of the thermoplastic resin material can be further improved.
  • the number average molecular weight of the polymer forming the soft segment is preferably from 200 to 6000 from the viewpoint of toughness and flexibility at low temperature.
  • the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably from 50:50 to 95:15, more preferably from 50:50 to 90:10 from the viewpoint of moldability.
  • the polyolefin-based thermoplastic elastomer can be synthesized by copolymerization according to a known method.
  • polyolefin-based thermoplastic elastomer an elastomer obtained by acid-modifying a polyolefin-based thermoplastic elastomer may be used.
  • the term "obtained by acid-modifying a polyolefin-based thermoplastic elastomer” refers to a product obtained by bonding an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group to a polyolefin-based thermoplastic elastomer.
  • Polyolefin-based thermoplastic elastomer carboxylic acid group, sulfuric acid group, as to bond an unsaturated compound having an acidic group such as a phosphoric acid group, for example, to a polyolefin-based thermoplastic elastomer, as an unsaturated compound having an acidic group, Bonding (for example, graft polymerization) the unsaturated bond site of an unsaturated carboxylic acid (generally maleic anhydride).
  • an unsaturated compound having a carboxylic acid group which is a weak acid group is preferable from the viewpoint of suppressing deterioration of the polyolefin-based thermoplastic elastomer.
  • the unsaturated compound having a carboxylic acid group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, and maleic acid.
  • thermoplastic elastomers include, for example, "Tuffmer” series manufactured by Mitsui Chemicals, Inc. (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010).
  • polyester-based thermoplastic resin examples include polyesters forming hard segments of the above-mentioned polyester-based thermoplastic elastomers.
  • Specific examples of the polyester-based thermoplastic resin include polylactic acid, polyhydroxy-3-butylbutyric acid, polyhydroxy-3-hexylbutyric acid, poly ( ⁇ -caprolactone), polyenantholactone, polycaprylolactone, and polybutylene.
  • examples thereof include aliphatic polyesters such as adipate and polyethylene adipate, and aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate.
  • polybutylene terephthalate is preferred as the polyester-based thermoplastic resin from the viewpoint of heat resistance and processability.
  • polyester-based thermoplastic resins include, for example, “Duranex” series (for example, 2000 and 2002) manufactured by Polyplastics Co., Ltd., and “Novaduran” series (for example, 5010R5) manufactured by Mitsubishi Engineering-Plastics Corporation. , 5010R3-2, etc.) and “Toraycon” series manufactured by Toray Industries (eg, 1401X06, 1401X31, etc.).
  • polyamide-based thermoplastic resin examples include polyamides forming hard segments of the above-described polyamide-based thermoplastic elastomer.
  • Specific examples of the polyamide-based thermoplastic resin include polyamide (amide 6) obtained by ring-opening polycondensation of ⁇ -caprolactam, polyamide (amide 11) obtained by ring-opening polycondensation of undecane lactam, and ring-opening polycondensation of lauryl lactam.
  • examples thereof include polyamide (amide 12), polyamide (amide 66) obtained by polycondensation of diamine and dibasic acid, and polyamide (amide MX) having metaxylenediamine as a constituent unit.
  • Amide 6 can be represented, for example, by ⁇ CO— (CH 2 ) 5 —NH ⁇ n .
  • the amide 11 can be represented, for example, by ⁇ CO— (CH 2 ) 10 —NH ⁇ n .
  • the amide 12 can be represented, for example, by ⁇ CO— (CH 2 ) 11 —NH ⁇ n .
  • the amide 66 can be represented, for example, by ⁇ CO (CH 2 ) 4 CONH (CH 2 ) 6 NH ⁇ n .
  • Amide MX can be represented, for example, by the following structural formula (A-1). Here, n represents the number of repeating units.
  • amide 6 As a commercially available product of amide 6, for example, the "UBE nylon” series (for example, 1022B, 1011FB, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available amide 11, for example, "Rilsan @ B” series manufactured by Arkema Corporation can be used. As a commercially available product of the amide 12, for example, the "UBE nylon” series (for example, 3024U, 3020U, 3014U, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available amide 66, for example, the "Leona” series (for example, 1300S, 1700S, etc.) manufactured by Asahi Kasei Corporation can be used. As a commercially available amide MX, for example, "MX Nylon” series (for example, S6001, S6021, S6011, etc.) manufactured by Mitsubishi Gas Chemical Co., Ltd. can be used.
  • amide MX for example, "MX Nylon” series
  • the polyamide-based thermoplastic resin may be a homopolymer formed of only the above-mentioned constituent units, or a copolymer of the above-mentioned constituent units and another monomer.
  • the content of the above structural unit in each polyamide-based thermoplastic resin is preferably 40% by mass or more.
  • polyolefin thermoplastic resin examples include polyolefins that form the hard segments of the aforementioned polyolefin-based thermoplastic elastomer.
  • Specific examples of the polyolefin-based thermoplastic resin include a polyethylene-based thermoplastic resin, a polypropylene-based thermoplastic resin, and a polybutadiene-based thermoplastic resin. Among them, a polypropylene-based thermoplastic resin is preferable as the polyolefin-based thermoplastic resin from the viewpoint of heat resistance and workability.
  • polypropylene-based thermoplastic resin examples include a propylene homopolymer, a propylene- ⁇ -olefin random copolymer, and a propylene- ⁇ -olefin block copolymer.
  • ⁇ -olefin examples include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, ⁇ -olefins having about 3 to 20 carbon atoms, such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosene.
  • the resin layer may contain, besides the resin, other components such as additives as long as the effect is not impaired.
  • Other components include, for example, rubber, various fillers (eg, silica, calcium carbonate, clay, etc.), antioxidants, oils, plasticizers, coloring agents, weathering agents, and the like.
  • the adhesive layer is a cured layer of a composition containing an adhesive, and is not particularly limited as long as the tensile follow index is 80 or more.
  • the tensile follow-up index of the adhesive layer is preferably 80 or more and 120 or less, more preferably 85 or more and 120 or less, and even more preferably 90 or more and 120 or less.
  • the tensile follow-up index of the adhesive layer is a value that depends at least on the composition, physical properties, and thickness of the adhesive layer.
  • the adhesive contained in the composition examples include, for example, a solution-based adhesive, a hot melt adhesive, and the like.
  • the adhesive may be used alone or in combination of two or more.
  • the adhesive used for forming the adhesive layer is a non-reactive adhesive
  • the adhesive layer contains the non-reactive adhesive
  • the adhesive used for forming the adhesive layer is a reactive adhesive. If an adhesive, the adhesive layer contains the reaction product of the reactive adhesive.
  • an epoxy resin adhesive containing an epoxy resin as a main component an isocyanate adhesive containing an isocyanate compound, a phenol resin adhesive containing a phenol resin as a main component, and an olefin resin are mainly used.
  • an RFL adhesive containing resorcinol and formalin as main raw materials
  • a rubber adhesive containing a synthetic rubber as a main component.
  • hot melt adhesive examples include modified olefin resins (modified polyethylene resins, modified polypropylene resins, etc.), polyamide resins, polyurethane resins, polyester resins, modified polyester resins, and ethylene-ethyl acrylate copolymers.
  • a resin containing one or two or more kinds of thermoplastic resins as a main component (main agent) such as a coalesced product and an ethylene-vinyl acetate copolymer is exemplified.
  • the adhesive is not particularly limited as long as an adhesive layer having a tensile follow-up index of 80 or more can be obtained, and a commercial product may be used. From the viewpoint of obtaining an adhesive layer having a tensile follow-up index of 80 or more, it is preferable to use at least one selected from the group consisting of an epoxy resin-based adhesive, an isocyanate-based adhesive, and a phenol resin-based adhesive as the adhesive. It is more preferable to use at least one selected from the group consisting of an epoxy resin-based adhesive and an isocyanate-based adhesive. Further, among these, an isocyanate-based adhesive is preferably used as the adhesive used for the adhesive layer which is a single-layered adhesive layer. As the adhesive used for the adhesive layer which is a two-layer adhesive layer, an epoxy adhesive is preferably exemplified.
  • epoxy resin-based adhesives from which an adhesive layer having a tensile follow-up index of 80 or more can be obtained include, for example, Metalok N-20 (manufactured by Toyo Chemical Research Laboratories) and Metalok N-23 (manufactured by Toyo Chemical Laboratories) And METALOK PH-37 (manufactured by Toyo Chemical Laboratory).
  • Commercially available isocyanate-based adhesives that can provide an adhesive layer having a tensile follow-up index of 80 or more include, for example, Metalok F-112 (manufactured by Toyo Chemical Laboratories), Chemlock 233X (manufactured by LORD), Chemlock 6125 (manufactured by LORD). LORD).
  • a commercially available phenolic resin adhesive from which an adhesive layer having a tensile follow-up index of 80 or more can be obtained for example, PH-56 (manufactured by Toyo Chemical Laboratory) and the like can be mentioned.
  • the composition including the adhesive may include components other than the adhesive.
  • Other components include, for example, radical scavengers, rubbers, elastomers, thermoplastic resins, various fillers (eg, silica, calcium carbonate, clay, etc.), anti-aging agents, oils, plasticizers, coloring agents, weathering agents, etc. Is mentioned.
  • the proportion of the component derived from the adhesive is preferably 50% by mass or more, more preferably 60% by mass or more, and preferably 75% by mass or more based on the whole adhesive layer. Is more preferable.
  • the formation of the adhesive layer is performed by applying a composition containing the adhesive to a layer (for example, a resin layer) directly contacting the adhesive layer and curing the composition.
  • a composition containing the adhesive for example, a resin layer
  • the method for applying the composition containing the adhesive include an immersion method, a bar coating method, a kneader coating method, a curtain coating method, a roller coating method, a spin coating method, a brush coating method, and a spray method.
  • Examples of a method of curing the composition containing the adhesive include a method of heating, a method of heating and pressurizing, and the like.
  • the average thickness of the adhesive layer is preferably 0.5 ⁇ m or more and 80 ⁇ m or less, more preferably 0.5 ⁇ m or more and 70 ⁇ m or less, still more preferably 0.5 ⁇ m or more and 60 ⁇ m or less, particularly preferably 0.5 ⁇ m or more and 40 ⁇ m or less, and 0.5 ⁇ m or less.
  • the thickness is more preferably 30 ⁇ m or less.
  • the composite may be provided with a rubber-side adhesive layer between the adhesive layer and the rubber layer, if necessary.
  • the rubber-side adhesive layer include a cured layer of a composition containing an adhesive for the rubber-side adhesive layer, as in the case of the adhesive layer.
  • the adhesive included in the composition used for the rubber-side adhesive layer may be the same as the adhesive included in the composition used for the adhesive layer.
  • the adhesive for the rubber-side adhesive layer is selected according to the composition of the adhesive layer. For example, when the adhesive layer is a cured layer of a composition containing an epoxy adhesive, an isocyanate adhesive is preferably used as the adhesive for the rubber-side adhesive layer.
  • the other components that can be included in the composition used for the rubber-side adhesive layer and the method for forming the rubber-side adhesive layer are the same as in the case of the adhesive layer.
  • the tension following index of the rubber-side adhesive layer is not particularly limited, and may be, for example, 80 to 120, preferably 85 to 120, more preferably 90 to 120.
  • the tensile following index of the rubber-side adhesive layer is measured in the same manner as the tensile following index of the adhesive layer.
  • the average thickness of the rubber-side adhesive layer is, for example, 0.5 ⁇ m or more and 80 ⁇ m or less, preferably 0.5 ⁇ m or more and 70 ⁇ m or less, more preferably 0.5 ⁇ m or more and 60 ⁇ m or less, and particularly preferably 0.5 ⁇ m or more and 30 ⁇ m or less. , 0.5 ⁇ m to 20 ⁇ m is very preferable.
  • the average thickness of the rubber-side adhesive layer is determined in the same manner as the average thickness of the adhesive layer.
  • the rubber layer contains at least rubber, and may contain other components as needed.
  • the rubber layer preferably contains rubber as a main component.
  • the rubber content relative to the total amount of the rubber layer is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 75% by mass or more.
  • the rubber is not particularly limited.
  • natural rubber NR
  • polyisoprene synthetic rubber IR
  • polybutadiene rubber BR
  • styrene-butadiene copolymer rubber SBR
  • acrylonitrile butadiene rubber NBR
  • chloroprene Conjugated diene-based synthetic rubbers such as rubber (CR) and butyl rubber (IIR)
  • EPM ethylene-propylene-diene copolymer rubber
  • EPDM ethylene-propylene-diene copolymer rubber
  • rubbers such as polysiloxane rubber.
  • the rubber may be unvulcanized rubber or vulcanized rubber.
  • the rubber layer is preferably obtained by kneading a composition containing rubber by a general method and then vulcanizing the composition.
  • Other components include, for example, reinforcing materials such as carbon black, fillers, vulcanizing agents, vulcanization accelerators, fatty acids or salts thereof, metal oxides, process oils, antioxidants and the like.
  • vulcanizing agent known vulcanizing agents, for example, sulfur, organic peroxides, resin vulcanizing agents and the like are used. Among them, it is preferable that sulfur is used as a vulcanizing agent.
  • vulcanization accelerator known vulcanization accelerators such as aldehydes, ammonias, amines, guanidines, thioureas, thiazoles, sulfenamides, thiurams, dithiocarbamates, xanthates and the like are used.
  • Can be Fatty acids include stearic acid, palmitic acid, myristic acid, lauric acid, and the like, and these may be added in the form of a salt, such as zinc stearate. Among these, stearic acid is preferred.
  • the metal oxide include zinc white (ZnO), iron oxide, and magnesium oxide. Among them, zinc white is preferable.
  • the process oil may be any of an aromatic type, a naphthene type, and a paraffin type.
  • the anti-aging agent include amine-ketone type, imidazole type, amine type, phenol type, sulfur type and phosphorus type.
  • Examples of the combination of the resin layer and the rubber layer in the composite include the following combinations.
  • a tire according to an embodiment of the present disclosure has at least the composite described above.
  • embodiments of a tire having the above-described composite will be described with reference to the drawings, but the tire of the present disclosure is not limited to these examples.
  • the size of the members in each drawing is conceptual, and the relative relationship between the sizes of the members is not limited to this. Members having substantially the same function are denoted by the same reference numerals throughout the drawings, and overlapping description may be omitted.
  • an annular tire skeleton member including a resin, a belt layer provided outside the tire skeleton member in the tire radial direction and including a plurality of reinforcing cords and a coating resin covering the reinforcing cords, A rubber member provided on the outer surface in the tire radial direction, and an adhesive layer which is a single-layer adhesive layer is provided between the belt layer and the rubber member. That is, in the first embodiment, there is provided a composite having, in this order, a coating resin for the belt layer corresponding to the resin layer, an adhesive layer, and a rubber member corresponding to the rubber layer. Note that a two-layer adhesive layer may be provided instead of the adhesive layer that is a single-layer adhesive layer. That is, a composite may be provided that includes, in this order, a coating resin for the belt layer corresponding to the resin layer, an adhesive layer, a rubber-side adhesive layer, and a rubber member corresponding to the rubber layer.
  • arrow W indicates a direction parallel to the tire rotation axis (hereinafter, may be referred to as “tire width direction”)
  • arrow S indicates a direction passing through the rotation axis of the tire and orthogonal to the tire width direction ( Hereinafter, it may be referred to as “tire radial direction”).
  • a chain line CL indicates a center line of the tire (hereinafter also referred to as “tire equatorial plane”).
  • FIG. 1 is a perspective view showing a partial cross section of the tire according to the first embodiment
  • FIG. 2 is a cross sectional view along the tire width direction showing the configuration of the tire according to the first embodiment.
  • the tire 10 according to the first embodiment includes a tire case 17 which is an annular tire skeleton member made of a resin material containing a resin, and a tire case 17 having a radially outer portion.
  • the provided belt layer 12 is provided on a region where the belt layer 12 is not provided among the tire radial outer surface of the tire case 17 and on the tire radial outer surface and the tire width outer surface of the belt layer 12.
  • a tread 30 which is an example of a rubber member provided on the outer surface of the adhesive layer 11 in the tire radial direction.
  • the belt layer 12 includes a plurality of reinforcing cords 24 coated with a coating resin 26.
  • the tire case 17 is formed using, for example, a thermoplastic elastomer which is an example of a resin material, and is formed in an annular shape in the tire circumferential direction.
  • the tire case 17 includes a pair of bead portions 14 arranged at intervals in the tire width direction, a pair of side portions 16 extending outward from the pair of bead portions 14 in the tire radial direction, and a pair of side portions. And a crown portion 18 connecting the two.
  • the bead part 14 is a part which contacts a rim (not shown).
  • the side portion 16 forms a side portion of the tire 10 and is gently curved so as to protrude outward from the bead portion 14 toward the crown portion 18 in the tire width direction.
  • the crown portion 18 is a portion that connects the tire radially outer end of one side portion 16 and the tire radially outer end of the other side portion 16 and supports a tread 30 disposed radially outward. .
  • the crown portion 18 has a substantially constant thickness.
  • the outer peripheral surface 18A of the crown portion 18 of the tire case 17 may be formed flat in a cross section in the tire width direction, or may have a curved shape bulging outward in the tire radial direction.
  • the outer peripheral surface 18A of the crown portion 18 of the present embodiment is the outer periphery of the tire case 17 on which the belt layer 12 is provided.
  • the tire case 17 forms a pair of annular tire halves 17H having one bead portion 14, one side portion 16, and a half-width crown portion 18, and these tire halves 17H face each other.
  • the ends of each half-width crown 18 are joined together at the tire equatorial plane CL. These ends are joined together using, for example, a welding resin material 17A.
  • the annular bead core 20 extending along the tire circumferential direction is embedded in the bead portion 14.
  • the bead core 20 is formed of a bead code (not shown).
  • the bead cord is made of a metal cord such as a steel cord, an organic fiber cord, a resin-coated organic fiber cord, a hard resin, or the like. If the rigidity of the bead portion 14 can be sufficiently secured, the bead core 20 itself may be omitted.
  • the tire case 17 may be formed as an integrally molded product, or the tire case 17 may be manufactured by dividing it into three or more resin members, and these may be joined and formed.
  • the tire case 17 may be manufactured separately for each portion (for example, the bead portion 14, the side portion 16, and the crown portion 18), and may be formed by joining them.
  • each part (for example, bead part 14, side part 16, and crown part 18) of tire case 17 may be formed of a resin material having different characteristics.
  • a reinforcing material (a polymer material or a metal fiber, cord, nonwoven fabric, woven fabric, or the like) may be embedded in the tire case 17.
  • a coating layer 21 for improving airtightness between the rim (not shown) and the rim (not shown) on the surface of the bead portion 14 may be formed.
  • a material of the coating layer 21 for example, a material such as rubber which is softer than the tire case 17 and has higher weather resistance can be used.
  • the coating layer 21 is folded from the inner surface of the bead portion 14 on the inner side in the tire width direction to the outer side in the tire width direction, and extends through the outer surface of the side portion 16 to the vicinity of the outer end of the belt layer 12 in the tire width direction. It may be provided as follows. Further, the extending end of the coating layer may be covered by a tread 30 described later.
  • the covering layer 21 may not be provided.
  • the covering layer 21 is a rubber member containing rubber, by providing an adhesive layer similar to the adhesive layer 11 between the tire case 17 and the covering layer 21, the tire case 17 and the adhesive layer A composite having the coating layer 21 in this order may be used.
  • the belt layer 12 will be described.
  • the resin-coated cord 28 is spirally wound around the outer periphery of the tire case 17 in the tire circumferential direction and joined to the tire case 17, and portions of the resin-coated cord 28 adjacent to each other in the tire width direction are connected to each other. It is configured by being joined.
  • the resin-coated cord 28 is configured by covering the reinforcing cord 24 with the coating resin 26.
  • the reinforcing cord 24 is formed of a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (twisted wire) obtained by twisting these fibers, and the coating resin 26 is formed of, for example, a thermoplastic elastomer.
  • the reinforcing cord 24 include a monofilament (single wire) made of one metal cord, and a multifilament (twisted wire) obtained by twisting a plurality of metal cords. From the viewpoint of further improving the durability of the tire. For this reason, a multifilament is preferred.
  • the number of the plurality of metal cords is, for example, two to ten, and preferably five to nine.
  • the thickness of the reinforcing cord 24 is preferably from 0.2 mm to 2 mm, more preferably from 0.8 mm to 1.6 mm, from the viewpoint of achieving both the internal pressure resistance and the weight reduction of the tire.
  • the resin-coated cord 28 is a single layer, and the reinforcing cords 24 are arranged in a line in the tire width direction.
  • the belt layer 12 may be a belt layer having a laminated structure in which the resin-coated cord 28 is spirally wound in the tire circumferential direction to form a layer, and then the resin-coated cord 28 is further wound on the outer peripheral surface of the layer. Good.
  • the belt layer 12 shown in FIGS. 1 and 2 is formed by spirally winding and joining the resin-coated cord 28 to the outer peripheral surface of the tire case 17, but is not limited thereto.
  • a belt layer formed by winding a plurality of reinforcing cords 24 and a covering resin 26 integrated in a sheet shape around the outer peripheral surface of the tire case 17 may be used.
  • a tread 30 which is an example of the rubber member will be described.
  • a tread 30 is disposed outside the belt layer 12 in the tire radial direction.
  • the tread 30 is, for example, laminated on the belt layer 12 on the tire case 17 in an unvulcanized state via a composition to be the adhesive layer 11, and then vulcanized and bonded.
  • a drain groove 30A extending in the tire circumferential direction is formed on the outer peripheral surface of the tread 30 in the tire radial direction.
  • two grooves 30A are formed, but not limited to this, and more grooves 30A may be formed.
  • the tread pattern a known tread pattern can be used.
  • the tread 30 is formed of a single-layer rubber member, but is not limited thereto.
  • the tread 30 may be a rubber member in which a cushion rubber layer and a tread layer are laminated. Is also good.
  • a pair of tire halves 17H including the bead core 20 is formed by injection molding using a thermoplastic material.
  • the pair of tire halves 17H face each other, the ends of the crown portion 18 are butted against each other, and the welding resin material 17A in a molten state is attached to the butted portion to join the pair of tire halves 17H. I do.
  • an annular tire case 17 is formed.
  • the layer of the resin-coated cord 28 is formed on the outer periphery of the tire case 17, specifically, on the outer periphery of the crown portion 18, and becomes the belt layer 12.
  • an adhesive layer may be provided between the tire case 17 and the belt layer 12 as necessary.
  • the adhesive layer 11 and the tread 30 are formed on the outer peripheral surface of the belt layer 12. Specifically, first, a composition to be the adhesive layer 11 is applied to the outer peripheral surface of the belt layer 12 and dried as necessary to form a composition layer. Next, the tread before vulcanization is wound around the outer peripheral surface of the composition layer. The application of the composition and the winding of the tread before vulcanization may be performed while rotating the tire case 17 provided with the belt layer 12. Then, the tire case 17 (that is, the raw tire) on which the belt layer 12, the composition layer, and the tread before vulcanization are laminated is vulcanized.
  • the composition layer is cured to form the adhesive layer 11, and the tread before vulcanization is vulcanized.
  • the tread 30 is formed.
  • the vulcanization temperature is, for example, 160 ° C. to 220 ° C.
  • the vulcanization time is, for example, 1 minute to 20 minutes.
  • an annular tire skeleton member containing rubber, a belt layer provided on the tire radial outside of the tire skeleton member and including a plurality of reinforcing cords and a coating resin covering the reinforcing cords, A rubber member provided on the outer surface in the tire radial direction, and an adhesive layer which is a single-layer adhesive layer is provided between the belt layer and the rubber member.
  • the second embodiment is the same as the first embodiment except that the tire frame member includes rubber, and includes a belt layer corresponding to the resin layer, an adhesive layer, and a rubber member corresponding to the rubber layer. In this order.
  • a two-layer adhesive layer may be provided instead of the adhesive layer as a single-layer adhesive layer. That is, a composite having a belt layer corresponding to the resin layer, an adhesive layer, a rubber-side adhesive layer, and a rubber member corresponding to the rubber layer in this order may be provided.
  • FIG. 3 is a cross-sectional view along the tire width direction showing the configuration of the tire according to the second embodiment.
  • the tire 80 according to the second embodiment includes a tire case 94, which is an example of an annular tire frame member including a rubber material containing rubber, a belt layer 12, and an adhesive. It has a layer 11 and a tread 30 which is an example of a rubber member. Since the belt layer 12, the adhesive layer 11, and the tread 30 are the same as those in the first embodiment, the description is omitted.
  • the tire 80 of the present embodiment is, for example, a so-called radial tire, and includes a pair of bead portions 14 in which a bead core 20 is embedded.
  • a carcass 86 composed of one carcass ply 82 extends between them.
  • FIG. 3 shows the shape of the tire 80 in a natural state before air filling.
  • the carcass ply 82 is formed, for example, by coating a plurality of cords (not shown) extending in the radial direction of the pneumatic tire 80 with a coating rubber (not shown).
  • the material of the cord of the carcass ply 82 is, for example, PET, but may be another conventionally known material.
  • the end portion of the carcass ply 82 in the tire width direction is folded back outward in the tire radial direction at the bead core 20.
  • a portion extending from one bead core 20 to the other bead core 20 is referred to as a main body portion 82A
  • a portion folded from the bead core 20 is referred to as a folded portion 82B.
  • Bead filler 88 whose thickness gradually decreases from the bead core 20 outward in the tire radial direction is disposed between the main body portion 82A and the folded portion 82B of the carcass ply 82. Note that, in the tire 80, a portion of the bead filler 88 from the outer end 88A in the tire radial direction to the inner side in the tire radial direction is the bead portion 14.
  • An inner liner 90 made of rubber is arranged inside the tire of the carcass 86, and a side rubber layer 92 made of a rubber material containing rubber is arranged outside the carcass 86 in the tire width direction.
  • the tire case 94 is constituted by the bead core 20, the carcass 86, the bead filler 88, the inner liner 90, and the side rubber layer 92.
  • the belt layer 12 is disposed outside the crown portion of the carcass 86, in other words, outside the carcass 86 in the tire radial direction via the adhesive layer 11, and the belt layer 12 is in close contact with the outer peripheral surface of the carcass 86. .
  • a tread 30 made of a rubber material containing rubber is arranged outside the belt layer 12 in the tire radial direction via an adhesive layer 11.
  • a groove 30 ⁇ / b> A for drainage is formed in the tread 30.
  • an inner liner 90 made of a rubber material, a bead core 20, a bead filler 88 made of a rubber material, a carcass ply 82 in which a cord is covered with a rubber material, and a side rubber layer 92 are provided on the outer periphery of a known tire forming drum (not shown).
  • An unvulcanized tire case 94 is formed.
  • the belt layer 12 is formed as follows. Specifically, the resin-coated cord 28 is sent out toward the outer peripheral surface of a belt forming drum (not shown). The resin-coated cord 28 is pressed against the outer peripheral surface of the belt forming drum while being heated and melted by hot air, and then cooled. In this manner, the resin-coated cord 28 is spirally wound around the outer peripheral surface of the belt forming drum and pressed against the outer peripheral surface, whereby a layer of the resin-coated cord 28 is formed on the outer peripheral surface of the belt forming drum.
  • the belt layer 12 in which the resin coating cord 28 is cooled and the coating resin 26 is solidified is removed from the belt forming drum. Then, after the composition to be the adhesive layer 11 is applied to the inner peripheral surface of the removed belt layer 12 to form a composition layer, the uncured tire case 94 in the tire forming drum is radially outside. The above-mentioned belt layer 12 is arranged. Thereafter, the tire case 94 is expanded, and the outer peripheral surface of the tire case 94, in other words, the outer peripheral surface of the carcass 86, is pressed against the inner peripheral surface of the belt layer 12.
  • a composition to form the adhesive layer 11 is applied to the outer peripheral surface of the belt layer 12 to form a composition layer, and an unvulcanized tread is attached to complete the green tire.
  • the green tire thus manufactured is vulcanized and molded by a vulcanization molding mold, and the tire 80 is completed.
  • a belt layer including a resin-containing annular tire skeleton member, a plurality of reinforcing cords provided on the tire radial outside of the tire skeleton member, and a coating resin covering the reinforcing cords, A first rubber member provided on the outer surface in the tire radial direction, and a second rubber member provided on the outer side in the tire width direction of the tire frame member; and a tire frame member and a second rubber member.
  • An adhesive layer which is a single-layer adhesive layer, is provided therebetween. That is, in the third embodiment, there is provided a composite having a tire frame member corresponding to the resin layer, an adhesive layer, and a second rubber member corresponding to the rubber layer in this order.
  • a two-layer adhesive layer may be provided instead of the adhesive layer that is a single-layer adhesive layer. That is, a composite having a tire skeleton member corresponding to the resin layer, an adhesive layer, a rubber-side adhesive layer, and a rubber member corresponding to the rubber layer in this order may be provided. Further, similarly to the first embodiment, an adhesive layer which is a single-layer adhesive layer may be provided between the belt layer and the first rubber layer, and two adhesive layers may be provided between the belt layer and the first rubber layer. A layer-based adhesive layer may be provided.
  • FIG. 4 is a cross-sectional view along the tire width direction showing the configuration of the tire according to the third embodiment.
  • the tire 110 according to the third embodiment is provided on a tire case 17 which is an annular tire frame member made of a resin material containing a resin, and on a tire radial outside of the tire case 17.
  • a belt layer 12 an adhesive layer 11 provided on the outer surface of the belt layer 12 in the tire radial direction, an outer surface of the tire case 17 in the tire radial direction and an outer surface in the tire width direction, and an outer surface of the adhesive layer 11 in the tire radial direction.
  • a side rubber layer 13 as an example of a second rubber member provided on the outer surface of the adhesive layer 11 in the tire width direction. ing. Since the tire case 17, the belt layer 12, the adhesive layer 11, and the tread 30 are the same as in the first embodiment, the description is omitted. As the side rubber layer 13, the same as the side rubber layer 92 in the second embodiment is used.
  • the side rubber layer 13 is provided outside the tire case 17 in the tire width direction via the adhesive layer 11 as the second rubber member, but the adhesive is provided inside the tire case 17 in the tire width direction.
  • An inner rubber layer may be provided via a layer.
  • the fourth embodiment is an example of an embodiment in which the above-described composite is provided in a bead portion of an annular tire frame member containing rubber.
  • a bead core in which a bead wire is coated with a coating resin
  • a carcass having a body portion located between the bead cores and a folded portion folded from inside to outside around the bead core, a bead core and the body portion
  • a tire frame member is configured.
  • a composite having a bead core coating resin and a bead filler corresponding to the resin layer, an adhesive layer, and a rubber member corresponding to the rubber layer in this order there is provided a composite having a bead core coating resin and a bead filler corresponding to the resin layer, an adhesive layer, and a rubber member corresponding to the rubber layer in this order.
  • a two-layer adhesive layer may be provided instead of the adhesive layer that is a single-layer adhesive layer. That is, it may have a composite having a bead core coating resin and a bead filler corresponding to the resin layer, an adhesive layer, a rubber-side adhesive layer, and a rubber member corresponding to the rubber layer in this order.
  • FIG. 5 is an enlarged sectional view of a bead portion of the tire according to the fourth embodiment.
  • the bead portion 14 of the tire according to the fourth embodiment includes a rubber member 91, a resin bead filler 89, a bead core 20, and an adhesive layer surrounding the bead filler 89 and the bead core 20. 11 and a carcass 86.
  • the bead portion 14 shown in FIG. 1 includes a rubber member 91, a resin bead filler 89, a bead core 20, and an adhesive layer surrounding the bead filler 89 and the bead core 20. 11 and a carcass 86.
  • the bead core 20 and the bead filler 89 are embedded in a rubber member 91, and the bead core 20 and the bead filler 89 constitute a core filler member 50 integrally formed.
  • An adhesive layer 11 is provided around the periphery.
  • the bead core 20 and the bead filler 89 may be separate bodies.
  • each of the bead cores 20 includes a bead wire bundle 62 and a coating layer 65 that surrounds the bead wire bundle 62 and is made of a resin material when viewed in a cross section in the tire width direction.
  • the bead filler 89 is made of the same resin material as the coating layer 65 integrally with the coating layer 65 of the bead core 20.
  • the resin material constituting the bead filler 89 may be different from the coating layer 65 of the bead core 20.
  • the resin material constituting the bead filler 89 may be different for each part of the bead filler 89.
  • the bead wire bundle 62 of the bead core 20 merely indicates a configuration in which a plurality of cross sections of the bead wire forming the bead core 20 appear when the cross section in the tire width direction is viewed.
  • the actual number of bead wires may be one or more. That is, the bead wire bundle 62 may be configured by winding one bead wire a plurality of times in the tire circumferential direction, or a plurality of bead wires may be wound once or a plurality of times in the tire circumferential direction, respectively. And may be configured by being wound over.
  • the bead wire any known material can be used, for example, a steel cord can be used.
  • the steel cord may, for example, consist of a steel monofilament or stranded wire. Further, an organic fiber, a carbon fiber, or the like can be used as the bead wire.
  • the coating layer 65 of the bead core 20 extends continuously along the tire circumferential direction, and at least in a part of the tire circumferential direction, when the cross section in the tire width direction is viewed, the bead wire bundle 62 of the bead core 20 is formed. Is formed in a ring shape so as to surround the entire circumference.
  • the coating layer 65 does not have to be annular when viewed in a cross section in the tire width direction at a part in the tire circumferential direction, and may be, for example, a C-shape or the like.
  • each bead wire is covered with the covering resin 63 made of a resin material inside the ring shape formed by the covering layer 65.
  • the gap region between the coating layer 65 and each bead wire is filled with the coating resin 63.
  • the resin material forming the coating resin 63 is different from the resin material forming the coating layer 65.
  • the resin material forming the coating resin 63 may be the same as the resin material forming the coating layer 65.
  • the present invention is not limited to this, and when looking at the cross section in the tire width direction, each bead wire may be covered with a covering rubber made of rubber instead of the covering resin 63 inside the annular shape formed by the covering layer 65. Good.
  • the gap region between the coating layer 65 and each bead wire may be filled with the coating rubber.
  • the tire of the present embodiment is manufactured in the same manner as the tire of the second embodiment.
  • the core filler member 50 obtained by integrally forming the bead filler 89 and the bead core 20 is used.
  • an unvulcanized rubber member 91 is attached, and the unvulcanized Form a tire case.
  • a tire is obtained by vulcanizing and molding a green tire obtained by providing a belt layer and an unvulcanized tread as necessary.
  • the method for manufacturing the core filler member 50 includes, for example, an annular body forming step, an injection molding step, and a cooling step.
  • a strip member formed by coating one or more bead wires with the coating resin 63 is wound to form an annular body.
  • a strip member formed by coating three bead wires with the coating resin 63 is spirally wound and stacked in three layers.
  • the strip member is formed by coating the outer periphery of the bead wire with the coating resin 63 in a molten state and solidifying it by cooling.
  • the annular body can be formed by winding and stripping the strip members, and joining the steps can be performed, for example, by winding the strip members while melting the coating resin 63 by hot plate welding or the like. This can be performed by solidifying the molten coating resin 63.
  • the steps can be joined by bonding the steps with an adhesive or the like.
  • the annular body formed in the annular body forming step is coated with a resin material to form the covering layer 65 and the bead filler 89 integrated with the covering layer 65.
  • the coating layer 65 and the bead filler 89 are solidified by cooling.
  • the bead core 20 in the core filler member 50 has a configuration in which the periphery of the annular body is covered with the solidified coating layer 65.
  • a bead filler 89 is formed integrally with the coating layer 65 outside the coating layer 65 in the tire radial direction.
  • the fifth embodiment is another example in which the above-described composite is provided in a bead portion of an annular tire frame member containing rubber.
  • a bead core in which a bead wire is coated with a coating resin, a carcass having a body portion located between the bead cores and a folded portion folded from inside to outside around the bead core, a bead core and the body portion
  • a rubber bead filler provided between the bead core and the folded portion, an adhesive layer as a single-layer adhesive layer provided around the bead core, and a rubber layer provided around the bead filler and the adhesive layer
  • a tire frame member is configured.
  • a composite having a bead core coating resin corresponding to the resin layer, an adhesive layer, a bead filler and a rubber member corresponding to the rubber layer in this order.
  • a two-layer adhesive layer may be provided instead of the adhesive layer that is a single-layer adhesive layer.
  • a composite may be provided having a bead core coating resin corresponding to the resin layer, an adhesive layer, a rubber-side adhesive layer, and a bead filler and a rubber member corresponding to the rubber layer in this order.
  • FIG. 6 is an enlarged sectional view of a bead portion of the tire according to the fifth embodiment.
  • the same reference numerals are given to members common to the other drawings, and description thereof will be omitted.
  • the bead portion 14 of the tire according to the fifth embodiment includes a rubber member 91, a rubber bead filler 88, a bead core 20, an adhesive layer 11 surrounding the bead core 20, and a carcass. 86.
  • the bead portion 14 shown in FIG. 6 is different from the bead core 88 and the bead filler 88 because the bead filler 88 is made of rubber, except that the adhesive layer 11 is provided only around the bead core 20.
  • the method for manufacturing the tire of the present embodiment also differs from the method in which the bead filler 88 and the bead core 20 are separately manufactured, and the composition to be the adhesive layer 11 is applied only around the bead core 20 to form the composition layer. Is the same as the method for manufacturing a tire according to the fifth embodiment described above.
  • an embodiment of the present disclosure includes the following aspects. ⁇ 1> A resin layer containing a resin and a cured layer of a composition containing an adhesive, which are provided directly in contact with the resin layer and have a tensile follow-up index of 80 or more, and a rubber layer containing a rubber And in this order, The tensile follow-up index is such that the adhesive is formed on the specific resin for test when a first test piece made of the specific resin for test is subjected to a tensile test at a speed of 100 mm / min and a breaking elongation is set to 100.
  • Resin-rubber composite for tires ⁇ 2> The resin-rubber composite for a tire according to ⁇ 1>, wherein the adhesive layer has an average thickness of 0.5 ⁇ m or more and 80 ⁇ m or less. ⁇ 3> The tire resin according to ⁇ 1> or ⁇ 2>, wherein the adhesive includes at least one selected from the group consisting of an epoxy resin adhesive, an isocyanate adhesive, and a phenol resin adhesive. Rubber composite.
  • a rubber-side adhesive layer provided between the adhesive layer and the rubber layer so as to be in direct contact with the rubber layer, and is a cured layer of a composition containing an isocyanate-based adhesive.
  • the resin layer contains at least one selected from the group consisting of a polyester-based thermoplastic elastomer, a polyester-based thermoplastic resin, a polyamide-based thermoplastic elastomer, and a polyamide-based thermoplastic resin.
  • ⁇ 1> to ⁇ 4 > The resin-rubber composite for a tire according to any one of the above items.
  • ⁇ 6> A tire having the resin-rubber composite for a tire according to any one of ⁇ 1> to ⁇ 5>.
  • Examples A1 to A4, Comparative Example A1 ⁇ Production of coated resin cord> An adhesive (maleic anhydride-modified polyester) modified by heating and melting a multifilament having an average diameter of 1.15 mm (a stranded wire obtained by twisting 7 monofilaments of ⁇ 0.35 mm (steel, strong: 280 N, elongation: 3%)). (Based thermoplastic elastomer). Next, a coating resin (polyester-based thermoplastic elastomer) extruded by an extruder is adhered to the outer periphery thereof to cover and cool the resin.
  • the extrusion conditions are as follows: the temperature of the metal member is 200 ° C., the temperature of the coating resin is 240 ° C., and the extrusion speed is 30 m / min.
  • the coated resin cord is manufactured as described above.
  • SBR Styrene-butadiene copolymer rubber
  • # 1500 emulsion polymerization SBR
  • antioxidant Antigen 6C
  • 1 part by mass Sumitomo Chemical Co., Ltd .: 1 part by mass
  • vulcanization accelerator Noxeller CZ (Ouchi Shinko Chemical Co., Ltd.), Noxeller DM (Ouchi Shinko Chemical Co., Ltd.), Noxeller D (Ouchi Shinko Chemical Co., Ltd.): 2 parts by mass in total
  • sulfur 1.5 parts by mass
  • an unvulcanized tire case and a belt layer are manufactured. After sequentially applying the adhesive for the adhesive layer and the adhesive for the rubber-side adhesive layer shown in Table 1 to the inner peripheral surface of the belt layer, the adhesive is applied to the inner peripheral surface according to the second embodiment described above. The obtained belt layer is placed on the outer peripheral surface of the uncured tire case. Further, the adhesive for the adhesive layer and the adhesive for the rubber-side adhesive layer shown in Table 1 are sequentially applied to the outer periphery of the belt layer, and then the unvulcanized tread (rubber member) obtained by the above-described method. To obtain a raw tire. Then, the obtained green tire is vulcanized by heating at 160 ° C.
  • the amounts of the adhesive for the adhesive layer and the adhesive for the rubber-side adhesive layer are such that the average thickness of the adhesive layer and the rubber-side adhesive layer in the obtained tire is a value shown in Table 1.
  • a composite having a coating resin for the belt layer corresponding to the resin layer, an adhesive layer, a rubber-side adhesive layer, and a tread (rubber member) corresponding to the rubber layer in this order ie, A tire having a composite having a two-layer adhesive layer
  • the tensile follow-up index of the adhesive layer and the rubber-side adhesive layer is determined by the method described above.
  • Adhesive A1 Metalok N-20 (Toyo Chemical Laboratory)
  • Adhesive A2 Metalok N-23 (Toyo Chemical Laboratory)
  • Adhesive A3 Metalloc F-112 (Toyo Chemical Laboratory)
  • Examples A1 and A2 are data obtained by actually performing measurements
  • Examples A3, Comparative Examples A1 and Example A4 is prediction data obtained by simulation.
  • the numerical values and evaluation results of the tensile follow-up index of the rubber-side adhesive layer shown in the above table are all prediction data by simulation.
  • Examples B1 to B4 A tire is manufactured in the same manner as in Example A1, except that a single-layer adhesive layer is used instead of the two-layer adhesive layer. Specifically, an unvulcanized tire case and a belt layer were formed in the same manner as in Example A1, and an adhesive for an adhesive layer shown in Table 2 was applied to the inner peripheral surface of the belt layer. A belt layer having a peripheral surface coated with an adhesive is placed on the outer peripheral surface of an unvulcanized tire case. Furthermore, after applying an adhesive for the adhesive layer shown in Table 2 to the outer periphery of the belt layer, an unvulcanized tread (rubber member) is wound thereon to obtain a green tire. Then, the obtained green tire is vulcanized by heating at 160 ° C.
  • the amount of the adhesive applied for the adhesive layer is such that the average thickness of the adhesive layer in the obtained tire is a value shown in Table 2.
  • a composite having a belt layer coating resin corresponding to a resin layer, an adhesive layer, and a tread (rubber member) corresponding to a rubber layer in this order that is, having a single-layer adhesive layer (Composite).
  • the method for measuring the tensile follow-up index in the adhesive layer and the method for evaluating tire running are the same as those in Example A1.
  • Adhesive A4 Chemlock 233X (LORD)
  • Example B2 is data obtained by actually performing measurement
  • Example B1 Comparative Example B3
  • Example B4 is prediction data obtained by simulation.
  • Examples C1 to C3, Comparative Example C1 A tire according to the third embodiment is manufactured. Specifically, first, a coated resin cord and an unvulcanized tread (first rubber member) are manufactured in the same manner as in Example A1. In addition, an unvulcanized side rubber layer (second rubber member) is prepared in the same manner as the unvulcanized tread (first rubber member). Next, a tire skeleton member made of a resin material made of a polyester-based thermoplastic elastomer is manufactured. Further, according to the first embodiment, the resin-coated cord obtained by the above-described method is wound around the outer periphery of the tire frame member to form a belt layer.
  • the unvulcanized tread (first rubber member) and the uncured tread (first rubber member) are applied.
  • a vulcanized side rubber layer (second rubber member) is wound around to obtain a green tire.
  • the obtained green tire is vulcanized by heating at 160 ° C. for 20 minutes to obtain a tire.
  • the amounts of the adhesive for the adhesive layer and the adhesive for the rubber-side adhesive layer are such that the average thickness of the adhesive layer and the rubber-side adhesive layer in the obtained tire is a value shown in Table 3.
  • a composite having the tire frame member corresponding to the resin layer, the adhesive layer, the rubber-side adhesive layer, and the side rubber (second rubber member) corresponding to the rubber layer in this order (that is, a composite) , A composite having a two-layer adhesive layer).
  • the method of measuring the tensile follow-up index in the adhesive layer and the rubber-side adhesive layer and the method of evaluating tire running are the same as those in Example A1.
  • the presence / absence of a crack a cut surface in the tire width direction after running is visually observed, and the presence / absence of a crack in a side portion of the tire frame member is confirmed.
  • Adhesive A1 Metalok N-20 (Toyo Chemical Laboratory)
  • Adhesive A2 Metalok N-23 (Toyo Chemical Laboratory)
  • Adhesive A3 Metalloc F-112 (Toyo Chemical Laboratory)
  • Examples D1 to D4 A tire is manufactured in the same manner as in Example C1, except that a single-layer adhesive layer is used instead of the two-layer adhesive layer. Specifically, a tire frame member and a belt layer were formed in the same manner as in Example C1, and an adhesive for an adhesive layer shown in Table 4 was applied to the outer periphery of the tire frame member and the belt layer. A vulcanized tread (first rubber member) and an unvulcanized side rubber layer (second rubber member) are wound around to obtain a green tire. Then, the obtained green tire is vulcanized by heating at 160 ° C. for 20 minutes to obtain a tire.
  • the amount of the adhesive applied to the adhesive layer is set to an amount such that the average thickness of the adhesive layer in the obtained tire becomes a value shown in Table 4.
  • a composite having a tire frame member corresponding to the resin layer, an adhesive layer, and a side rubber (second rubber member) corresponding to the rubber layer in this order that is, a single-layer adhesive layer is Having a composite.
  • the method for measuring the tensile follow-up index in the adhesive layer and the method for evaluating tire running are the same as those in Example C1.
  • Adhesive A4 Chemlock 233X (LORD)
  • LORD Chemlock 233X

Abstract

樹脂を含む樹脂層と、接着剤を含む組成物の硬化層であり、前記樹脂層に直接接して設けられ、引張追従指数が80以上である接着剤層と、ゴムを含むゴム層と、をこの順に有し、前記引張追従指数は、試験用特定樹脂からなる第1の試験片を100mm/minの速度で引っ張り試験を行ったときの破断伸びを100とした場合における、前記試験用特定樹脂上に前記接着剤層が設けられた第2の試験片を100mm/minの速度で引っ張り試験を行ったときの破断伸びを表す指数である、タイヤ用樹脂ゴム複合体。

Description

タイヤ用樹脂ゴム複合体及びタイヤ
 本開示は、タイヤ用樹脂ゴム複合体及びタイヤに関する。
 従来から、一対のビード部と、ビード部からタイヤ径方向外側へ延びる一対のタイヤサイド部と、一方のタイヤサイド部から他方のタイヤサイド部へ延びるトレッド部と、を有する空気入りタイヤが用いられている。中でも、空気入りタイヤとして、ゴム、有機繊維材料、及びスチール部材で形成されているタイヤが知られている。
 一方、近年、軽量化及びリサイクルのし易さ等の観点から、タイヤの一部に樹脂を用いることが求められている。例えば特許文献1には、コードを樹脂材料で被覆してなる被覆コードをビードコアに用いたタイヤが提案されている。
  特許文献1:特開2011-207157号公報
 上記のように、タイヤの一部に樹脂を用いる場合、タイヤ耐久性の観点から、樹脂を含む樹脂層とゴムを含むゴム層との接着性が求められることがある。
 上記接着性を向上させる方法としては、例えば、樹脂層とゴム層とを接着剤により接着させる方法が挙げられる。しかしながら、樹脂層とゴム層とを接着剤により接着させると、接着性は向上するものの、繰り返し負荷をかけることに起因する樹脂層の亀裂が生じやすくなる場合がある。そのため、接着性を向上させつつ樹脂層の亀裂を抑制することで、タイヤの耐久性をさらに向上させる余地がある。
 本開示は、上記事情に鑑み、繰り返し負荷をかけることに起因する樹脂層の亀裂が抑制されたタイヤ用樹脂ゴム複合体、及び耐久性に優れたタイヤを提供することを目的とする。
 前記課題を解決するための具体的な手段は、以下の実施態様が含まれる。
<1> 樹脂を含む樹脂層と、接着剤を含む組成物の硬化層であり、前記樹脂層に直接接して設けられ、引張追従指数が80以上である接着剤層と、ゴムを含むゴム層と、をこの順に有し、
 前記引張追従指数は、試験用特定樹脂からなる第1の試験片を100mm/minの速度で引っ張り試験を行ったときの破断伸びを100とした場合における、前記試験用特定樹脂上に前記接着剤層が設けられた第2の試験片を100mm/minの速度で引っ張り試験を行ったときの破断伸びを表す指数である、
 タイヤ用樹脂ゴム複合体。
 本開示によれば、繰り返し負荷をかけることに起因する樹脂層の亀裂が抑制されたタイヤ用樹脂ゴム複合体、及び耐久性に優れたタイヤを提供することができる。
図1は、第1実施形態に係るタイヤの一部の断面を示す斜視図である。 図2は、第1実施形態に係るタイヤの構成を示すタイヤ幅方向に沿った断面図である。 図3は、第2実施形態に係るタイヤの構成を示すタイヤ幅方向に沿った断面図である 図4は、第3実施形態に係るタイヤの構成を示すタイヤ幅方向に沿った断面図である 図5は、第4実施形態に係るタイヤのビード部を拡大した断面図である 図6は、第5実施形態に係るタイヤのビード部を拡大した断面図である。
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において、適宜変更を加えて実施することができる。
 本明細書において「樹脂」とは、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。また、以下の樹脂の説明において「同種」とは、エステル系同士、スチレン系同士等、樹脂の主鎖を構成する骨格と共通する骨格を備えたものを意味する。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において「工程」との語には、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その目的が達成されるものであれば、当該工程も本用語に含まれる。
 本明細書において、組成物中の各成分の量は、各成分に該当する物質が組成物中に複数存在する場合には、特に断りがない限り、組成物中に存在する複数の物質の合計量を意味する。
 本明細書において、「主成分」とは、特に断りがない限り、混合物中における質量基準の含有量が最も多い成分を意味する。
 また、本明細書において「熱可塑性樹脂」とは、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になるが、ゴム状弾性を有しない高分子化合物を意味する。
 本明細書において「熱可塑性エラストマー」とは、ハードセグメント及びソフトセグメントを有する共重合体を意味する。熱可塑性エラストマーとして具体的には、例えば、結晶性で融点の高いハードセグメント又は高い凝集力のハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーと、を有する共重合体が挙げられる。また、熱可塑性エラストマーとしては、例えば、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有するものが挙げられる。
 なお、上記ハードセグメントは、例えば、主骨格に芳香族基若しくは脂環式基等の剛直な基を有する構造、又は分子間水素結合若しくはπ-π相互作用による分子間パッキングを可能にする構造等のセグメントが挙げられる。また、ソフトセグメントは、例えば、主鎖に長鎖の基(例えば長鎖のアルキレン基等)を有し、分子回転の自由度が高く、伸縮性を有する構造のセグメントが挙げられる。
[タイヤ用樹脂ゴム複合体]
 本開示の一実施形態に係るタイヤ用樹脂ゴム複合体(以下「複合体」ともいう)は、樹脂を含む樹脂層と、接着剤を含む組成物の硬化層であり樹脂層に直接接して設けられ引張追従指数が80以上である接着剤層と、ゴムを含むゴム層と、をこの順に有する。
<引張追従指数>
 まず、引張追従指数について説明する。
 引張追従指数は、試験用特定樹脂からなる第1の試験片の破断伸びを100とした場合における、前記試験用特定樹脂上に前記接着剤層が設けられた第2の試験片の破断伸びを表す指数である。なお、上記第1の試験片の破断伸び及び第2の試験片の破断伸びは、各試験片を100mm/minの速度で引っ張り試験を行った時の破断伸びである。
 第1の試験片及び第2の試験片の作製は、例えば以下のようにして行う。
 試験用特定樹脂として、例えば、ダンベル型(JIS3号サイズ)、厚み2mm、ポリエステル系熱可塑性エラストマー製(東レデユポン製、品番:ハイトレル5557)の樹脂片を2枚準備する。一方の樹脂片の中央部に、測定対象の接着剤層を形成するための接着剤を、複合体の接着剤層の平均厚みと同じ厚みになるように塗布し、160℃、2MPaの条件下で20分間の加圧及び加熱を行い、「第2の試験片」とする。つまり、第2の試験片は、樹脂片に測定対象の接着剤層が設けられた試験片である。なお、第2の試験片に設けられる接着剤層は、樹脂片の片側表面の全面に設け、全体にわたって厚みが±10%の範囲で均一となるようにする。
 一方、接着剤を塗布していない樹脂についても同様に、160℃、2MPaの条件下で20分間の加圧及び加熱を行い、「第1の試験片」とする。
 次に、第1の試験片及び第2の試験片それぞれを、引張試験機(例えば、島津製作所製オートグラフ AG-X)にセットして、JIS K7161-1:2014年に基づいて破断伸び(%)を測定する。具体的には、室温環境(23℃)下で、100mm/分の速度で試験片を引っ張り、破断伸びの値を測定する。
 そして、第1の試験片における破断伸びを100とした場合における、第2の試験片における破断伸びの指数を「引張追従指数」とする。
 つまり、接着剤層における引張追従指数が100である場合、上記第1の試験片における破断伸び(%)と第2の試験片における破断伸び(%)とは、同じ値である。また、接着剤層における引張追従指数が100より小さい値である場合、上記第1の試験片における破断伸び(%)に比べて第2の試験片における破断伸び(%)が小さい値である。
<作用効果>
 樹脂層に接する接着剤層の引張追従指数が80以上であることにより、繰り返し負荷をかけることに起因する樹脂層の亀裂が抑制される理由は定かではないが、以下のように推測される。
 樹脂層とゴム層とを接着剤により接着させた複合体は、接着剤を用いずに樹脂層とゴム層とを直接接触させたものに比べ、樹脂層とゴム層との接着性は向上するものの、繰り返し負荷をかけることに起因する樹脂層の亀裂が生じやすくなる場合がある。特に、上記複合体をタイヤに適用する場合、走行時に負荷がかかりやすいため、繰り返し負荷がかかっても亀裂が生じにくいことが求められる。
 上記複合体における樹脂層の亀裂は、樹脂層に接する接着剤層の亀裂に起因するものと考えられる。具体的には、まず、複合体に負荷がかかると、ゴム弾性を有するゴム層は大きく変形しやすいのに対し、樹脂層は変形しにくいことにより、ゴム層の変形度と樹脂層の変形度との間に大きな差が生じると考えられる。そして、ゴム層と樹脂層との間に設けられた接着剤層が上記変形度の差に耐え切れず、接着剤層に亀裂が生じたのち、複合体にさらに負荷がかかることで、接着剤層に接する樹脂層にまで前記亀裂が伝播した結果、樹脂層にも亀裂が生じるものと推測される。
 これに対して、本開示の一実施形態に係る複合体は、樹脂層に接する接着剤層の引張追従指数が80以上である。そのため、接着剤層の引張追従指数が80未満である場合に比べ、複合体に負荷がかかりゴム層の変形度と樹脂層の変形度との間に大きな差が生じても、接着剤層に亀裂が生じにくいため、接着剤層の亀裂に起因する樹脂層の亀裂が生じにくいものと推測される。
 以上のことから、上記複合体は、繰り返し負荷をかけることに起因する樹脂層の亀裂が抑制されるとともに、上記複合体を有するタイヤは、耐久性に優れるものと推測される。
<層構成>
 複合体は、樹脂層、樹脂層に接する接着剤層、及びゴム層を少なくともこの順に有していればよく、他の層をさらに有してもよい。他の層としては、例えば、ゴム層に直接接するように接着剤層とゴム層との間に設けられたゴム側接着層のほか、樹脂層のゴム層と反対側に設けられた他の樹脂層、ゴム層の樹脂層と反対側に設けられた他のゴム層等が挙げられる。
 すなわち、複合体は、接着剤層が樹脂層及びゴム層の両方に直接接する形態であってもよく、接着剤層が樹脂層及びゴム側接着層に接し、ゴム側接着層がゴム層に直接接する形態であってもよい。接着剤層が樹脂層及びゴム層に接する形態では、接着剤層が単体で、樹脂層とゴム層とを接着させる接着層(以下「一層系接着層」ともいう)の役割を果たしている。また、複合体が接着剤層及びゴム側接着層を有する形態では、接着剤層及びゴム側接着層の両方によって、樹脂層とゴム層とを接着させる接着層(以下「二層系接着層」ともいう)の役割を果たしている。
 なお、二層系接着層を有する複合体では、樹脂層に接する接着剤層の引張追従指数が80以上であればよく、ゴム側接着層の組成及び特性については、特に限定されるものではない。
 以下、複合体を構成する各層について説明する。
<樹脂層>
 樹脂層は、少なくとも樹脂を含み、必要に応じてその他の成分を含んでもよい。
 樹脂層は、樹脂を主成分として含むことが好ましい。具体的には、樹脂層の総量に対する樹脂の含有率が、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、75質量%以上であることがさらに好ましい。
 樹脂層は、樹脂として、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂のいずれを含んでもよいが、熱可塑性樹脂及び熱可塑性エラストマーからなる群より選ばれる少なくとも1種を含むことが好ましく、熱可塑性エラストマーを含むことがより好ましい。
 熱可塑性樹脂としては、例えば、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、ポリオレフィン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂等が挙げられる。
 熱可塑性エラストマーとしては、例えば、JIS K6418に規定されるポリエステル系熱可塑性エラストマー(TPC)、ポリアミド系熱可塑性エラストマー(TPA)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリオレフィン系熱可塑性エラストマー(TPO)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。
 熱硬化性樹脂としては、例えば、フェノール系熱硬化性樹脂、ユリア系熱硬化性樹脂、メラミン系熱硬化性樹脂、エポキシ系熱硬化性樹脂等が挙げられる。
 樹脂層は、これらの樹脂が単独で含まれていてもよく、2種以上の樹脂が組み合わせて含まれていてもよい。
 これらの中でも、樹脂としては、ポリエステル系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、ポリアミド系熱可塑性樹脂、ポリスチレン系熱可塑性エラストマー、ポリスチレン系熱可塑性樹脂、ポリウレタン系熱可塑性エラストマー、ポリウレタン系熱可塑性樹脂、ポリオレフィン系熱可塑性エラストマー、又はポリオレフィン系熱可塑性樹脂が好ましい。
 樹脂層は、ポリエステル系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、及びポリアミド系熱可塑性樹脂からなる群より選ばれる少なくとも1種を含むことが好ましく、ポリエステル系熱可塑性エラストマー及びポリエステル系熱可塑性樹脂からなる群より選ばれる少なくとも1種を含むことがより好ましい。
-熱可塑性エラストマー-
(ポリエステル系熱可塑性エラストマー)
 ポリエステル系熱可塑性エラストマーとしては、例えば、少なくともポリエステルが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
 ハードセグメントを形成するポリエステルとしては、芳香族ポリエステルを用いることができる。芳香族ポリエステルは、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。芳香族ポリエステルは、好ましくは、テレフタル酸及びジメチルテレフタレートからなる群より選ばれる少なくとも1種と、1,4-ブタンジオールと、から誘導されるポリブチレンテレフタレートである。また、芳香族ポリエステルは、例えば、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸、5-スルホイソフタル酸、若しくはこれらのエステル形成性誘導体等のジカルボン酸成分と、分子量300以下のジオール(例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコール等の脂肪族ジオール;1,4-シクロヘキサンジメタノール、トリシクロデカンジメチロール等の脂環式ジオール;キシリレングリコール、ビス(p-ヒドロキシ)ジフェニル、ビス(p-ヒドロキシフェニル)プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、ビス[4-(2-ヒドロキシ)フェニル]スルホン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’-ジヒドロキシ-p-ターフェニル、4,4’-ジヒドロキシ-p-クオーターフェニル等の芳香族ジオール;等)と、から誘導されるポリエステル、又はこれらのジカルボン酸成分及びジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分、多官能ヒドロキシ成分等を5モル%以下の範囲で共重合することも可能である。
 ハードセグメントを形成するポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
 また、ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル、脂肪族ポリエーテル等が挙げられる。
 脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドとの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランとの共重合体等が挙げられる。
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等が挙げられる。
 これらの脂肪族ポリエーテル及び脂肪族ポリエステルの中でも、得られるポリエステルブロック共重合体の弾性特性の観点から、ソフトセグメントを形成するポリマーとしては、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε-カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペート等が好ましい。
 また、ソフトセグメントを形成するポリマーの数平均分子量は、強靱性及び低温柔軟性の観点から、300~6000が好ましい。さらに、ハードセグメント(x)とソフトセグメント(y)との質量比(x:y)は、成形性の観点から、99:1~20:80が好ましく、98:2~30:70が更に好ましい。
 上述のハードセグメントとソフトセグメントとの組合せとしては、例えば、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、上述のハードセグメントとソフトセグメントとの組合せとしては、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントが脂肪族ポリエーテルである組み合わせが好ましく、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントがポリ(エチレンオキシド)グリコールである組み合わせが更に好ましい。
 ポリエステル系熱可塑性エラストマーの市販品としては、例えば、東レ・デュポン(株)製の「ハイトレル」シリーズ(例えば、3046、5557、6347、4047N、4767N等)、東洋紡(株)製の「ペルプレン」シリーズ(例えば、P30B、P40B、P40H、P55B、P70B、P150B、P280B、E450B、P150M、S1001、S2001、S5001、S6001、S9001等)等を用いることができる。
 ポリエステル系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
(ポリアミド系熱可塑性エラストマー)
 ポリアミド系熱可塑性エラストマーとは、結晶性で融点の高いハードセグメントを形成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーとを有する共重合体からなる熱可塑性の樹脂材料であって、ハードセグメントを形成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。
 ポリアミド系熱可塑性エラストマーとしては、例えば、少なくともポリアミドが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル、ポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーは、ハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いて形成されてもよい。
 ポリアミド系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等や、特開2004-346273号公報に記載のポリアミド系エラストマー等を挙げることができる。
 ポリアミド系熱可塑性エラストマーにおいて、ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)又は一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Rは、炭素数2~20の炭化水素の分子鎖(例えば炭素数2~20のアルキレン基)を表す。
Figure JPOXMLDOC01-appb-C000002
 一般式(2)中、Rは、炭素数3~20の炭化水素の分子鎖(例えば炭素数3~20のアルキレン基)を表す。
 一般式(1)中、Rとしては、炭素数3~18の炭化水素の分子鎖、例えば炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖、例えば炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の炭化水素の分子鎖、例えば炭素数10~15のアルキレン基が特に好ましい。
 また、一般式(2)中、Rとしては、炭素数3~18の炭化水素の分子鎖、例えば炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖、例えば炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の炭化水素の分子鎖、例えば炭素数10~15のアルキレン基が特に好ましい。
 一般式(1)又は一般式(2)で表されるモノマーとしては、ω-アミノカルボン酸又はラクタムが挙げられる。また、ハードセグメントを形成するポリアミドとしては、これらω-アミノカルボン酸又はラクタムの重縮合体、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
 ω-アミノカルボン酸としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸等の炭素数5~20の脂肪族ω-アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε-カプロラクタム、ウデカンラクタム、ω-エナントラクタム、2-ピロリドン等の炭素数5~20の脂肪族ラクタム等を挙げることができる。
 ジアミンとしては、例えば、炭素数2~20の脂肪族ジアミン及び炭素数6~20の芳香族ジアミン等が挙げられる。炭素数2~20の脂肪族ジアミン及び炭素数6~20の芳香族ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン、メタキシレンジアミン等を挙げることができる。
 また、ジカルボン酸は、HOOC-(R-COOH(R:炭素数3~20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数2~20の脂肪族ジカルボン酸を挙げることができる。
 ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε-カプロラクタム、又はウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
 また、ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテル等が挙げられ、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。また、ポリエーテルの末端にアンモニア等を反応させることによって得られるポリエーテルジアミン等も用いることができる。
 ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
Figure JPOXMLDOC01-appb-C000003
 一般式(3)中、x及びzは、1~20の整数を表す。yは、4~50の整数を表す。
 一般式(3)において、x及びzは、それぞれ、1~18の整数が好ましく、1~16の整数がより好ましく、1~14の整数が更に好ましく、1~12の整数が特に好ましい。また、一般式(3)において、yは、5~45の整数が好ましく、6~40の整数がより好ましく、7~35の整数が更に好ましく、8~30の整数が特に好ましい。
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、又はラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せが好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せがより好ましい。
 ハードセグメントを形成するポリマー(ポリアミド)の数平均分子量は、溶融成形性の観点から、300~15000が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~90:10が好ましく、50:50~80:20がより好ましい。
 ポリアミド系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 ポリアミド系熱可塑性エラストマーの市販品としては、例えば、宇部興産(株)の「UBESTA XPA」シリーズ(例えば、XPA9068X1、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2XPA9044等)、ダイセル・エポニック(株)の「ベスタミド」シリーズ(例えば、E40-S3、E47-S1、E47-S3、E55-S1、E55-S3、EX9200、E50-R2等)等を用いることができる。
(ポリスチレン系熱可塑性エラストマー)
 ポリスチレン系熱可塑性エラストマーとしては、例えば、少なくともポリスチレンがハードセグメントを形成し、他のポリマー(例えば、ポリブタジエン、ポリイソプレン、ポリエチレン、水添ポリブタジエン、水添ポリイソプレン等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリスチレンとしては、例えば、公知のラジカル重合法、イオン性重合法等で得られるものが好ましく用いられ、具体的には、アニオンリビング重合を持つポリスチレンが挙げられる。また、ソフトセグメントを形成するポリマーとしては、例えば、ポリブタジエン、ポリイソプレン、ポリ(2,3-ジメチル-ブタジエン)等が挙げられる。
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ポリスチレン/ポリブタジエンの組合せ、又はポリスチレン/ポリイソプレンの組合せが好ましい。また、熱可塑性エラストマーの意図しない架橋反応を抑制するため、ソフトセグメントは水素添加されていることが好ましい。
 ハードセグメントを形成するポリマー(ポリスチレン)の数平均分子量は、5000~500000が好ましく、10000~200000がより好ましい。
 また、ソフトセグメントを形成するポリマーの数平均分子量としては、5000~1000000が好ましく、10000~800000がより好ましく、30000~500000が更に好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との体積比(x:y)は、成形性の観点から、5:95~80:20が好ましく、10:90~70:30がより好ましい。
 ポリスチレン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 ポリスチレン系熱可塑性エラストマーとしては、例えば、スチレン-ブタジエン系共重合体[SBS(ポリスチレン-ポリ(ブチレン)ブロック-ポリスチレン)、SEBS(ポリスチレン-ポリ(エチレン/ブチレン)ブロック-ポリスチレン)]、スチレン-イソプレン共重合体(ポリスチレン-ポリイソプレンブロック-ポリスチレン)、スチレン-プロピレン系共重合体[SEP(ポリスチレン-(エチレン/プロピレン)ブロック)、SEPS(ポリスチレン-ポリ(エチレン/プロピレン)ブロック-ポリスチレン)、SEEPS(ポリスチレン-ポリ(エチレン-エチレン/プロピレン)ブロック-ポリスチレン)、SEB(ポリスチレン(エチレン/ブチレン)ブロック)]等が挙げられる。
 ポリスチレン系熱可塑性エラストマーの市販品としては、例えば、旭化成(株)製の「タフテック」シリーズ(例えば、H1031、H1041、H1043、H1051、H1052、H1053、H1062、H1082、H1141、H1221、H1272等)、(株)クラレ製の「SEBS」シリーズ(8007、8076等)、「SEPS」シリーズ(2002、2063等)等を用いることができる。
(ポリウレタン系熱可塑性エラストマー)
 ポリウレタン系熱可塑性エラストマーとしては、例えば、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを形成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるポリウレタン系熱可塑性エラストマー(TPU)が挙げられる。ポリウレタン系熱可塑性エラストマーは、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
Figure JPOXMLDOC01-appb-C000004
 式中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。Rは、脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。P’は、短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。
 式A中、Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルとしては、例えば、分子量500~5000のものを使用することができる。Pは、Pで表される長鎖脂肪族ポリエーテル及び長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジペート)ジオール、ポリ-ε-カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、ABA型トリブロックポリエーテル等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
 式A及び式B中、Rは、Rで表される脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジイソシアネート化合物を用いて導入された部分構造である。Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2-エチレンジイソシアネート、1,3-プロピレンジイソシアネート、1,4-ブタンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等が挙げられる。
 また、Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4-シクロヘキサンジイソシアネート、4,4-シクロヘキサンジイソシアネート等が挙げられる。さらに、Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
 式B中、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素としては、例えば、分子量500未満のものを使用することができる。また、P’は、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジオール化合物に由来する。P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、例えば、グリコール及びポリアルキレングリコールが挙げられ、具体的には、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等が挙げられる。
 また、P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,3-ジオール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール等が挙げられる。
 さらに、P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルサルファイド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシジフェニルメタン、ビスフェノールA、1,1-ジ(4-ヒドロキシフェニル)シクロヘキサン、1,2-ビス(4-ヒドロキシフェノキシ)エタン、1,4-ジヒドロキシナフタリン、2,6-ジヒドロキシナフタリン等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
 ハードセグメントを形成するポリマー(ポリウレタン)の数平均分子量は、溶融成形性の観点から、300~1500が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性及び熱安定性の観点から、500~20000が好ましく、500~5000が更に好ましく、500~3000が特に好ましい。また、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、15:85~90:10が好ましく、30:70~90:10が更に好ましい。
 ポリウレタン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。ポリウレタン系熱可塑性エラストマーとしては、例えば、特開平5-331256号公報に記載の熱可塑性ポリウレタンを用いることができる。
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、芳香族ジオールと芳香族ジイソシアネートとからなるハードセグメントと、ポリ炭酸エステルからなるソフトセグメントとの組合せが好ましく、より具体的には、トリレンジイソシアネート(TDI)/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、TDI/カプロラクトン系ポリオール共重合体、TDI/ポリカーボネート系ポリオール共重合体、4,4’-ジフェニルメタンジイソシアネート(MDI)/ポリエステル系ポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI/カプロラクトン系ポリオール共重合体、MDI/ポリカーボネート系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体からなる群より選ばれる少なくとも1種が好ましく、TDI/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、MDI/ポリエステルポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体からなる群より選ばれる少なくとも1種が更に好ましい。
 また、ポリウレタン系熱可塑性エラストマーの市販品としては、例えば、BASF社製の「エラストラン」シリーズ(例えば、ET680、ET880、ET690、ET890等)、(株)クラレ社製「クラミロンU」シリーズ(例えば、2000番台、3000番台、8000番台、9000番台等)、日本ミラクトラン(株)製の「ミラクトラン」シリーズ(例えば、XN-2001、XN-2004、P390RSUP、P480RSUI、P26MRNAT、E490、E590、P890等)等を用いることができる。
(ポリオレフィン系熱可塑性エラストマー)
 ポリオレフィン系熱可塑性エラストマーとしては、例えば、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリオレフィン、他のポリオレフィン、ポリビニル化合物等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
 ポリオレフィン系熱可塑性エラストマーとしては、例えば、オレフィン-α-オレフィンランダム共重合体、オレフィンブロック共重合体等が挙げられ、具体的には、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、1-ブテン-1-ヘキセン共重合体、1-ブテン-4-メチル-ペンテン、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、プロピレン-酢酸ビニル共重合体等が挙げられる。
 これらの中でも、ポリオレフィン系熱可塑性エラストマーとしては、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、及びプロピレン-酢酸ビニル共重合体からなる群より選ばれる少なくとも1種が好ましく、エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、及びエチレン-ブチルアクリレート共重合体からなる群より選ばれる少なくとも1種が更に好ましい。
 また、エチレンとプロピレンといったように2種以上のオレフィン樹脂を組み合わせて用いてもよい。また、ポリオレフィン系熱可塑性エラストマー中のオレフィン樹脂含有率は、50質量%以上100質量%以下が好ましい。
 ポリオレフィン系熱可塑性エラストマーの数平均分子量は、5000~10000000であることが好ましい。ポリオレフィン系熱可塑性エラストマーの数平均分子量が5000~10000000であると、熱可塑性樹脂材料の機械的物性が十分であり、加工性にも優れる。同様の観点から、ポリオレフィン系熱可塑性エラストマーの数平均分子量は、7000~1000000であることが更に好ましく、10000~1000000が特に好ましい。これにより、熱可塑性樹脂材料の機械的物性及び加工性を更に向上させることができる。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。更に、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~95:15が好ましく、50:50~90:10が更に好ましい。
 ポリオレフィン系熱可塑性エラストマーは、公知の方法によって共重合することで合成することができる。
 また、ポリオレフィン系熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマーを酸変性してなるものを用いてもよい。
 「ポリオレフィン系熱可塑性エラストマーを酸変性してなるもの」とは、ポリオレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させたものをいう。
 ポリオレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることとしては、例えば、ポリオレフィン系熱可塑性エラストマーに、酸性基を有する不飽和化合物として、不飽和カルボン酸(一般的には、無水マレイン酸)の不飽和結合部位を結合(例えば、グラフト重合)させることが挙げられる。
 酸性基を有する不飽和化合物としては、ポリオレフィン系熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する不飽和化合物が好ましい。カルボン酸基を有する不飽和化合物としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
 ポリオレフィン系熱可塑性エラストマーの市販品としては、例えば、三井化学(株)製の「タフマー」シリーズ(例えば、A0550S、A1050S、A4050S、A1070S、A4070S、A35070S、A1085S、A4085S、A7090、A70090、MH7007、MH7010、XM-7070、XM-7080、BL4000、BL2481、BL3110、BL3450、P-0275、P-0375、P-0775、P-0180、P-0280、P-0480、P-0680等)、三井・デュポンポリケミカル(株)製の「ニュクレル」シリーズ(例えば、AN4214C、AN4225C、AN42115C、N0903HC、N0908C、AN42012C、N410、N1050H、N1108C、N1110H、N1207C、N1214、AN4221C、N1525、N1560、N0200H、AN4228C、AN4213C、N035C)等、「エルバロイAC」シリーズ(例えば、1125AC、1209AC、1218AC、1609AC、1820AC、1913AC、2112AC、2116AC、2615AC、2715AC、3117AC、3427AC、3717AC等)、住友化学(株)の「アクリフト」シリーズ、「エバテート」シリーズ等、東ソー(株)製の「ウルトラセン」シリーズ等、プライムポリマー製の「プライムTPO」シリーズ(例えば、E-2900H、F-3900H、E-2900、F-3900、J-5900、E-2910、F-3910、J-5910、E-2710、F-3710、J-5910、E-2740、F-3740、R110MP、R110E、T310E、M142E等)等も用いることができる。
-熱可塑性樹脂-
(ポリエステル系熱可塑性樹脂)
 ポリエステル系熱可塑性樹脂としては、前述のポリエステル系熱可塑性エラストマーのハードセグメントを形成するポリエステルを挙げることができる。
 ポリエステル系熱可塑性樹脂としては、具体的には、ポリ乳酸、ポリヒドロキシ-3-ブチル酪酸、ポリヒドロキシ-3-ヘキシル酪酸、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等の芳香族ポリエステルなどを例示することができる。これらの中でも、耐熱性及び加工性の観点から、ポリエステル系熱可塑性樹脂としては、ポリブチレンテレフタレートが好ましい。
 ポリエステル系熱可塑性樹脂の市販品としては、例えば、ポリプラスチック(株)製の「ジュラネックス」シリーズ(例えば、2000、2002等)、三菱エンジニアリングプラスチック(株)製の「ノバデュラン」シリーズ(例えば、5010R5、5010R3-2等)、東レ(株)製の「トレコン」シリーズ(例えば、1401X06、1401X31等)等を用いることができる。
(ポリアミド系熱可塑性樹脂)
 ポリアミド系熱可塑性樹脂としては、前述のポリアミド系熱可塑性エラストマーのハードセグメントを形成するポリアミドを挙げることができる。
 ポリアミド系熱可塑性樹脂としては、具体的には、ε-カプロラクタムを開環重縮合したポリアミド(アミド6)、ウンデカンラクタムを開環重縮合したポリアミド(アミド11)、ラウリルラクタムを開環重縮合したポリアミド(アミド12)、ジアミンと二塩基酸とを重縮合したポリアミド(アミド66)、メタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を例示することができる。
 アミド6は、例えば、{CO-(CH-NH}で表すことができる。アミド11は、例えば、{CO-(CH10-NH}で表すことができる。アミド12は、例えば、{CO-(CH11-NH}で表すことができる。アミド66は、例えば、{CO(CHCONH(CHNH}で表すことができる。アミドMXは、例えば、下記構造式(A-1)で表すことができる。ここで、nは繰り返し単位数を表す。
Figure JPOXMLDOC01-appb-C000005
 アミド6の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、1022B、1011FB等)を用いることができる。アミド11の市販品としては、例えば、アルケマ(株)製の「Rilsan B」シリーズを用いることができる。アミド12の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、3024U、3020U、3014U等)を用いることができる。アミド66の市販品としては、例えば、旭化成(株)製の「レオナ」シリーズ(例えば、1300S、1700S等)を用いることができる。アミドMXの市販品としては、例えば、三菱ガス化学(株)製の「MXナイロン」シリーズ(例えば、S6001、S6021、S6011等)を用いることができる。
 ポリアミド系熱可塑性樹脂は、上記の構成単位のみで形成されるホモポリマーであってもよく、上記の構成単位と他のモノマーとのコポリマーであってもよい。コポリマーの場合、各ポリアミド系熱可塑性樹脂における上記構成単位の含有率は、40質量%以上であることが好ましい。
(ポリオレフィン系熱可塑性樹脂)
 ポリオレフィン系熱可塑性樹脂としては、前述のポリオレフィン系熱可塑性エラストマーのハードセグメントを形成するポリオレフィンを挙げることができる。
 ポリオレフィン系熱可塑性樹脂としては、具体的には、ポリエチレン系熱可塑性樹脂、ポリプロピレン系熱可塑性樹脂、ポリブタジエン系熱可塑性樹脂等を例示することができる。これらの中でも、耐熱性及び加工性の点から、ポリオレフィン系熱可塑性樹脂としては、ポリプロピレン系熱可塑性樹脂が好ましい。
 ポリプロピレン系熱可塑性樹脂の具体例としては、プロピレンホモ重合体、プロピレン-α-オレフィンランダム共重合体、プロピレン-α-オレフィンブロック共重合体等が挙げられる。α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数3~20程度のα-オレフィン等が挙げられる。
-他の成分-
 樹脂層は、樹脂以外にも、効果を損なわない範囲で添加剤等の他の成分を含んでもよい。他の成分としては、例えば、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、発色剤、耐候剤等が挙げられる。
<接着剤層>
 接着剤層は、接着剤を含む組成物の硬化層であり、引張追従指数が80以上であれば、特に限定されるものではない。
 接着剤層の引張追従指数は、80以上120以下であることが好ましく、85以上120以下であることがより好ましく、90以上120以下であることがさらに好ましい。
 上記接着剤層の引張追従指数は、少なくとも、接着剤層の組成、物性、及び厚みに依存する値である。
 組成物に含まれる接着剤(すなわち、接着剤層用の接着剤)としては、例えば、溶液系接着剤、ホットメルト接着剤等が挙げられる。接着剤は、1種のみ用いてもよく、2種以上を併用してもよい。
 なお、接着剤層の形成に用いる接着剤が非反応性の接着剤である場合、接着剤層は前記非反応性の接着剤を含み、接着剤層の形成に用いる接着剤が反応性の接着剤である場合、接着剤層は前記反応性の接着剤の反応生成物を含む。
 溶液系接着剤としては、例えば、エポキシ樹脂を主成分として含むエポキシ樹脂系接着剤、イソシアネート化合物を含むイソシアネート系接着剤、フェノール系樹脂を主成分として含むフェノール樹脂系接着剤、オレフィン系樹脂を主成分として含むオレフィン樹脂系接着剤、ポリウレタン系樹脂を主成分として含むポリウレタン樹脂系接着剤、ビニル系樹脂(例えば、酢酸ビニル系樹脂、ポリビニルアルコール系樹脂等)を主成分として含むビニル樹脂系接着剤、合成ゴムを主成分として含むゴム系接着剤、レゾルシノール及びホルマリンを主原料とするRFL系接着剤等が挙げられる。
 ホットメルト接着剤としては、例えば、変性オレフィン系樹脂(変性ポリエチレン系樹脂、変性ポリプロピレン系樹脂等)、ポリアミド系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、変性ポリエステル系樹脂、エチレン-アクリル酸エチル共重合体、エチレン-酢酸ビニル共重合体等の1種又は2種以上の熱可塑性樹脂を主成分(主剤)として含むものが挙げられる。
 接着剤は、引張追従指数が80以上である接着剤層が得られるものであれば特に限定されず、市販品を用いてもよい。
 引張追従指数が80以上である接着剤層を得る観点から、接着剤として、エポキシ樹脂系接着剤、イソシアネート系接着剤、及びフェノール樹脂系接着剤からなる群より選ばれる少なくとも1種を用いることが好ましく、エポキシ樹脂系接着剤及びイソシアネート系接着剤からなる群より選ばれる少なくとも1種を用いることがより好ましい。
 さらに、これらの中でも、一層系接着層である接着剤層に用いる接着剤としては、イソシアネート系接着剤が好ましく挙げられる。また、二層系接着層である接着剤層に用いる接着剤としては、エポキシ系接着剤が好ましく挙げられる。
 引張追従指数が80以上である接着剤層が得られるエポキシ樹脂系接着剤の市販品としては、例えば、メタロックN-20(東洋化学研究所製)、メタロックN-23(東洋化学研究所製)、メタロックPH-37(東洋化学研究所製)等が挙げられる。
 また、引張追従指数が80以上である接着剤層を得られるイソシアネート系接着剤の市販品としては、例えば、メタロックF-112(東洋化学研究所製)、ケムロック233X(LORD製)、ケムロック6125(LORD製)等が挙げられる。
 さらに、引張追従指数が80以上である接着剤層を得られるフェノール樹脂系接着剤の市販品としては、例えば、PH-56(東洋化学研究所製)等が挙げられる。
 接着剤を含む組成物は、接着剤以外の他の成分を含んでもよい。他の成分としては、例えば、ラジカル捕捉剤、ゴム、エラストマー、熱可塑性樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、発色剤、耐候剤等が挙げられる。
 ただし、接着剤層においては、接着剤に起因する成分の割合が、接着剤層全体に対し、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、75質量%以上であることがさらに好ましい。
 接着剤層の形成は、接着剤を含む組成物を、接着剤層が直接接する層(例えば樹脂層)に塗布し、硬化させることで行われる。
 接着剤を含む組成物の塗布方法としては、例えば、浸漬法、バーコート法、ニーダーコート法、カーテンコート法、ローラコート法、スピンコート法、刷毛塗法、スプレー法等が挙げられる。
 接着剤を含む組成物を硬化させる方法としては、例えば、加熱する方法、加熱及び加圧を行う方法等が挙げられる。
 接着剤層の平均厚みは、0.5μm以上80μm以下が好ましく、0.5μm以上70μm以下がより好ましく、0.5μm以上60μm以下がさらに好ましく、0.5μm以上40μm以下が特に好ましく、0.5μm以上30μm以下が極めて好ましい。接着剤層の平均厚みが上記範囲であることにより、・上記範囲よりも薄い場合に比べて樹脂層とゴム層との接着性が得られやすくなり、上記範囲よりも厚い場合に比べて繰り返し負担をかけることに起因する樹脂層の亀裂が抑制される。
 なお、接着剤層の平均厚みは、タイヤ幅方向における切断面のSEM画像を任意の5箇所から取得し、得られたSEM画像から測定される接着剤層の厚みの数平均値とする。
<ゴム側接着層>
 複合体は、必要に応じて、接着剤層とゴム層との間にゴム側接着層を設けてもよい、
 ゴム側接着層としては、例えば、接着剤層と同様に、ゴム側接着層用の接着剤を含む組成物の硬化層が挙げられる。
 ゴム側接着層に用いる組成物に含まれる接着剤についても、接着剤層に用いる組成物に含まれるものと同様のものが挙げられる。なお、ゴム側接着層用の接着剤は、接着剤層の組成に応じて選択される。例えば、接着剤層がエポキシ系接着剤を含む組成物の硬化層である場合、ゴム側接着層用の接着剤としては、イソシアネート系接着剤が好ましく挙げられる。
 ゴム側接着層に用いる組成物に含まれうる他の成分及びゴム側接着層の形成方法についても、接着剤層の場合と同様である。
 ゴム側接着層の引張追従指数は、特に限定されるものではなく、例えば80上120以下が挙げられ、85以上120以下が好ましく、90以上120以下がより好ましい。ゴム側接着層の引張追従指数は、接着剤層の引張追従指数と同様の方法で測定される。
 ゴム側接着層の平均厚みとしては、例えば、0.5μm以上80μm以下が挙げられ、0.5μm以上70μm以下が好ましく、0.5μm以上60μm以下がより好ましく、0.5μm以上30μm以下が特に好ましく、0.5μm以上20μm以下が極めて好ましい。ゴム側接着層の平均厚みは、前記接着剤層の平均厚みと同様の方法で求められる。
<ゴム層>
 ゴム層は、少なくともゴムを含み、必要に応じてその他の成分を含んでもよい。
 ゴム層は、ゴムを主成分として含むことが好ましい。具体的には、ゴム層の総量に対するゴムの含有率が、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、75質量%以上であることがさらに好ましい。
 ゴムとしては、特に限定されず、例えば、天然ゴム(NR);ポリイソプレン合成ゴム(IR)、ポリブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)等の共役ジエン系合成ゴム;エチレン-プロピレン共重合体ゴム(EPM);エチレン-プロピレン-ジエン共重合体ゴム(EPDM);ポリシロキサンゴムなどのゴムが挙げられる。
 これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 ゴムは未加硫ゴムであってもよく、加硫ゴムであってもよい。
 ゴム層は、ゴムを含む組成物を一般的な方法で混練後、加硫して得たものであることが好ましい。
 その他の成分としては、例えば、カーボンブラック等の補強材、充填剤、加硫剤、加硫促進剤、脂肪酸又はその塩、金属酸化物、プロセスオイル、老化防止剤等が挙げられる。
 加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤等が用いられる。その中でも、加硫剤として硫黄が用いられていることが好ましい。
 加硫促進剤としては、公知の加硫促進剤、例えばアルデヒド類、アンモニア類、アミン類、グアニジン類、チオウレア類、チアゾール類、スルフェンアミド類、チウラム類、ジチオカーバメイト類、キサンテート類等が用いられる。
 脂肪酸としては、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸などが挙げられ、また、これらはステアリン酸亜鉛のように塩の状態で配合されてもよい。これらの中でも、ステアリン酸が好ましい。
 また、金属酸化物としては、亜鉛華(ZnO)、酸化鉄、酸化マグネシウム等が挙げられ、中でも亜鉛華が好ましい。
 プロセスオイルは、アロマティック系、ナフテン系、パラフィン系のいずれを用いてもよい
 老化防止剤としては、アミン-ケトン系、イミダゾール系、アミン系、フェノール系、硫黄系及び燐系などが挙げられる。
<用途>
 複合体における樹脂層及びゴム層の組合せとしては、例えば以下の組合せが挙げられる。
 ・樹脂層としてのベルト層と、ゴム層としてのトレッド、タイヤ骨格部材、及びベルト層の表面に接着されたゴムシートからなる群より選択される少なくとも1種の部材と、の組合せ。
 ・樹脂層としてのビード部材と、ゴム層としてのタイヤ骨格部材、及びビード部材の表面に接着されたゴムシートからなる群より選択される少なくとも1種の部材と、の組合せ。
 ・樹脂層としてのタイヤ骨格部材と、ゴム層としてのトレッド、ベルト層、ビード部材、及びタイヤ骨格部材の表面に接着されたゴムシートからなる群より選択される少なくとも1種の部材と、の組合せ。
 ・樹脂層としてのベルトコードと、ゴム層としてのベルトコードを被覆するコード被覆層、及び前記ベルトコードの表面に接着されたゴムシートからなる群より選択される少なくとも1種の部材と、の組合せ(つまりベルト層が複合体である)。
 ・樹脂層としてのビードワイヤーと、ゴム層としてのビードワイヤーを被覆するワイヤー被覆層、及び前記ビードワイヤーの表面に接着されたゴムシートからなる群より選択される少なくとも1種の部材と、の組合せ(つまりビードコアが複合体である)。
[タイヤ]
 本開示の一実施形態に係るのタイヤは、少なくとも前述の複合体を有する。
 以下、前述の複合体を有するタイヤの実施形態について、図を参照して説明するが、本開示のタイヤはこれらの例に限定されるものではない。
 なお、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。また、実質的に同一の機能を有する部材には全図面を通じて同じ符号を付し、重複する説明は省略する場合がある。
<第1実施形態>
 第1実施形態では、樹脂を含む環状のタイヤ骨格部材と、タイヤ骨格部材のタイヤ径方向外側に設けられ、複数の補強コードと補強コードを被覆する被覆樹脂とを含むベルト層と、ベルト層のタイヤ径方向外側の面に設けられたゴム部材と、を有し、ベルト層とゴム部材との間に一層系接着層である接着剤層が設けられている。つまり、第1実施形態では、前記樹脂層に相当するベルト層の被覆樹脂と、接着剤層と、前記ゴム層に相当するゴム部材と、をこの順に有する複合体を有する。
 なお、一層系接着層である接着剤層の代わりに、二層系接着層を設けてもよい。つまり、前記樹脂層に相当するベルト層の被覆樹脂と、接着剤層と、ゴム側接着層と、前記ゴム層に相当するゴム部材と、をこの順に有する複合体を有してもよい。
 以下、第1実施形態について、図1及び図2を参照して説明する。なお、図2中、矢印Wはタイヤ回転軸と平行な方向(以下、「タイヤ幅方向」と称する場合がある)を示し、矢印Sはタイヤの回転軸を通りタイヤ幅方向と直交する方向(以下、「タイヤ径方向」と称する場合がある)を示す。さらに、一点鎖線CLは、タイヤのセンターライン(以下「タイヤ赤道面」ともいう)を示す。
 図1は、第1実施形態に係るタイヤの一部の断面を示す斜視図であり、図2は、第1実施形態に係るタイヤの構成を示すタイヤ幅方向に沿った断面図である。
 図1及び図2に示すように、第1実施形態に係るタイヤ10は、樹脂を含む樹脂材料で構成された環状のタイヤ骨格部材であるタイヤケース17と、タイヤケース17のタイヤ径方向外側に設けられたベルト層12と、タイヤケース17のタイヤ径方向外側の面のうちベルト層12が設けられてない領域並びにベルト層12のタイヤ径方向外側の面及びタイヤ幅方向外側の面に設けられた接着剤層11と、接着剤層11のタイヤ径方向外側の面に設けられたゴム部材の一例であるトレッド30と、を備えている。また、ベルト層12は、被覆樹脂26で被覆された複数の補強コード24を備えている。
-タイヤ骨格部材-
 タイヤケース17は、例えば、樹脂材料の一例である熱可塑性エラストマーを用いて構成され、タイヤ周方向に円環状に形成されている。
 タイヤケース17は、タイヤ幅方向に間隔をあけて配置された一対のビード部14と、これら一対のビード部14からタイヤ径方向外側へそれぞれ延出する一対のサイド部16と、一対のサイド部16を連結するクラウン部18と、を含んで構成されている。ビード部14は、リム(図示せず)に接触する部位である。また、サイド部16は、タイヤ10の側部を形成し、ビード部14からクラウン部18に向かってタイヤ幅方向外側に凸となるように緩やかに湾曲している。
 クラウン部18は、一方のサイド部16のタイヤ径方向外側端と他方のサイド部16のタイヤ径方向外側端とを連結する部位であり、タイヤ径方向外側に配設されるトレッド30を支持する。
 また、本実施形態では、クラウン部18は、略一定厚みとされている。タイヤケース17のクラウン部18における外周面18Aは、タイヤ幅方向断面において平坦状に形成されていてもよいし、またタイヤ径方向外側に膨らんだ湾曲形状であってもよい。なお、本実施形態のクラウン部18の外周面18Aは、ベルト層12が設けられるタイヤケース17の外周である。
 また、タイヤケース17は、1つのビード部14、一つのサイド部16、及び半幅のクラウン部18を有する円環状のタイヤ半体17Hを一対形成し、これらのタイヤ半体17Hを互いに向かい合わせ、各々の半幅のクラウン部18の端部同士をタイヤ赤道面CLで接合して形成されている。この端部同士は、例えば溶接用樹脂材料17Aを用いて接合されている。
 ビード部14には、タイヤ周方向に沿って延びる円環状のビードコア20が埋設されている。このビードコア20は、ビードコード(図示せず)で構成されている。このビードコードは、スチールコード等の金属コード、有機繊維コード、樹脂被覆した有機繊維コード、または硬質樹脂などで構成される。なお、ビード部14の剛性を十分に確保できれば、ビードコア20自体を省略してもよい。
 なお、タイヤケース17を一体成型品としてもよく、タイヤケース17を3以上の樹脂部材に分けて製造し、これらを接合して形成してもよい。例えば、タイヤケース17を各部位(例えば、ビード部14、サイド部16、クラウン部18)ごとに分けて製造し、これらを接合して形成してもよい。このとき、タイヤケース17の各部位(例えば、ビード部14、サイド部16、クラウン部18)を異なる特徴を有する樹脂材料で形成してもよい。
 また、タイヤケース17に、補強材(高分子材料又は金属製の繊維、コード、不織布、織布等)を埋設配置してもよい。
 また、ビード部14の表面のうち、リム(図示せず)との接触部分に、該リムとの間の気密性を高めるための被覆層21を形成してもよい。被覆層21の材料としては、例えば、タイヤケース17よりも軟質で且つ耐候性が高いゴム等の材料が挙げられる。被覆層21は、ビード部14のタイヤ幅方向内側の内面からタイヤ幅方向外側へ折り返され、サイド部16の外面を経由して、ベルト層12のタイヤ幅方向外側の端部近傍まで延びているように設けられてもよい。また、被覆層の延出端部は、後述するトレッド30によって覆われていてもよい。ただし、タイヤケース17のビード部14のみにより、リム(図示せず)との間のシール性(気密性)を確保できれば、被覆層21を設けなくてもよい。
 なお、被覆層21がゴムを含むゴム部材である場合、タイヤケース17と被覆層21との間に、接着剤層11と同様の接着剤層を設けることにより、タイヤケース17と接着剤層と被覆層21とをこの順に有する複合体としてもよい。
-ベルト層-
 次に、ベルト層12について説明する。
 ベルト層12は、樹脂被覆コード28がタイヤケース17の外周にタイヤ周方向に螺旋状に巻かれてタイヤケース17に接合されると共に、樹脂被覆コード28におけるタイヤ幅方向に互いに隣接する部分同士が接合されることで構成されている。なお、樹脂被覆コード28は、補強コード24を被覆樹脂26で被覆して構成されている
 補強コード24は、金属繊維又は有機繊維等のモノフィラメント(単線)、又はこれらの繊維を撚ったマルチフィラメント(撚り線)で構成され、被覆樹脂26は、例えば熱可塑性エラストマーで構成されている。
 補強コード24としては、例えば、一本の金属コードからなるモノフィラメント(単線)、複数本の金属コードを撚ったマルチフィラメント(撚り線)等が挙げられるが、タイヤの耐久性をより向上させる観点からは、マルチフィラメントが好ましい。複数本の金属コードの数としては、例えば2本~10本が挙げられ、5本~9本が好ましい。
 タイヤの耐内圧性と軽量化とを両立する観点からは、補強コード24の太さは、0.2mm~2mmであることが好ましく、0.8mm~1.6mmであることがより好ましい。
 なお、図1及び図2に示すベルト層12では、樹脂被覆コード28の層が単層であり、補強コード24がタイヤ幅方向に一列に並んだ構成となっているが、これに限られない。ベルト層12は、樹脂被覆コード28がタイヤ周方向に螺旋状に巻かれて層を形成した後に、前記層の外周面にさらに樹脂被覆コード28が巻かれた積層構造のベルト層であってもよい。
 また、図1及び図2に示すベルト層12は、タイヤケース17の外周面に樹脂被覆コード28を螺旋状に巻いて接合することで構成されているが、これに限られない。例えば、複数本の補強コード24と被覆樹脂26とがシート状に一体化されたものをタイヤケース17の外周面に巻くことで構成されたベルト層であってもよい。
-ゴム部材-
 次に、ゴム部材の一例であるトレッド30について説明する。
 図1及び図2に示すように、ベルト層12のタイヤ径方向外側に、トレッド30が配置されている。なお、トレッド30は、例えば、タイヤケース17上のベルト層12に、接着剤層11となる組成物を介して未加硫の状態で積層された後、加硫接着される。
 トレッド30のタイヤ径方向の外周面には、タイヤ周方向に延びる排水用の溝30Aが形成されている。本実施形態では、2本の溝30Aが形成されているが、これに限らず、さらに多くの溝30Aを形成してもよい。また、トレッドパターンとしては、公知のものを用いることができる。
 なお、図1及び図2においては、トレッド30が単層のゴム部材で構成されているが、これに限られず、例えば、クッションゴムの層とトレッドの層とが積層されたゴム部材であってもよい。
-タイヤの製造方法-
 次に、本実施形態のタイヤ10の製造方法について説明する。まず、熱可塑性材料を用いた射出成型により、ビードコア20を含むタイヤ半体17Hを一組形成する。
 次に、一対のタイヤ半体17Hを互いに向かい合わせ、クラウン部18となる部分の端部同士を突き合わせ、突き合わせ部分に溶融状態の溶接用樹脂材料17Aを付着させて一対のタイヤ半体17Hを接合する。このようにして、円環状のタイヤケース17が形成される。
 次に、タイヤケース17の外周に樹脂被覆コード28を巻き付ける工程について説明する。具体的には、クラウン部18の外周面18Aに向かって樹脂被覆コード28を送り出しつつ、樹脂被覆コード28の熱可塑性樹脂及びクラウン部18の外周面18Aに熱風を吹き当てて加熱し溶融させる。そして、熱可塑性樹脂が溶融した状態の樹脂被覆コード28を、溶融した状態のクラウン部18の外周面18Aに押し付けて接合させ、これらを冷却することで固化させる。
 このようにして、タイヤケース17の外周、具体的には、クラウン部18の外周に樹脂被覆コード28の層が形成され、ベルト層12となる。
 なお、必要に応じて、タイヤケース17とベルト層12との間に接着層を設けてもよい。
 次に、ベルト層12の外周面に、接着剤層11及びトレッド30を形成する。
 具体的には、まず、ベルト層12の外周面に、接着剤層11となる組成物を塗布し、必要に応じて乾燥させ、組成物層を形成させる。次に、組成物層の外周面に、加硫前のトレッドを巻き付ける。なお、組成物の塗布及び加硫前のトレッドの巻き付けは、ベルト層12が設けられたタイヤケース17を回転させながら行ってもよい。
 そして、ベルト層12、組成物層、及び加硫前のトレッドが積層されたタイヤケース17(すなわち、生タイヤ)を加硫する。具体的には、例えば、タイヤケース17を加硫缶やモールドに収容して加熱することで、組成物層が硬化して接着剤層11が形成され、かつ、加硫前のトレッドが加硫されてトレッド30が形成される。加硫温度としては、例えば160℃~220℃が挙げられ、加硫時間としては、例えば1分間~20分間が挙げられる。
 以上のようにして、第1実施形態のタイヤ10が得られる。
<第2実施形態>
 第2実施形態では、ゴムを含む環状のタイヤ骨格部材と、タイヤ骨格部材のタイヤ径方向外側に設けられ、複数の補強コードと補強コードを被覆する被覆樹脂とを含むベルト層と、ベルト層のタイヤ径方向外側の面に設けられたゴム部材と、を有し、ベルト層とゴム部材との間に一層系接着層である接着剤層が設けられている。第2実施形態は、タイヤ骨格部材がゴムを含むこと以外は第1実施形態と同様であり、前記樹脂層に相当するベルト層と、接着剤層と、前記ゴム層に相当するゴム部材と、をこの順に有する複合体を有する。
 なお、第2実施形態においても、一層系接着層である接着剤層の代わりに、二層系接着層を設けてもよい。つまり、前記樹脂層に相当するベルト層と、接着剤層と、ゴム側接着層と、前記ゴム層に相当するゴム部材と、をこの順に有する複合体を有してもよい。
 以下、第2実施形態について、図3を参照して説明する。
 図3は、第2実施形態に係るタイヤの構成を示すタイヤ幅方向に沿った断面図である。図3において他の図と共通する部材については同様の符号を付して説明を省略する。
 図3に示すように、第2実施形態に係るタイヤ80は、ゴムを含有するゴム材料を含んで構成された環状のタイヤ骨格部材の一例であるタイヤケース94と、ベルト層12と、接着剤層11と、ゴム部材の一例であるトレッド30と、を備えている。
 ベルト層12、接着剤層11、及びトレッド30については、第1実施形態と同様であるため、説明を省略する。
 図3に示すように、本実施形態のタイヤ80は、例えば、所謂ラジアルタイヤであり、ビードコア20が埋設された一対のビード部14を備え、一方のビード部14と他方のビード部14との間に、1枚のカーカスプライ82からなるカーカス86が跨っている。なお、図3は、タイヤ80の空気充填前の自然状態の形状を示している。
 カーカスプライ82は、例えば、空気入りタイヤ80のラジアル方向に延びる複数本のコード(図示せず)をコーティングゴム(図示せず)で被覆して形成されている。カーカスプライ82のコードの材料は、例えば、PETが挙げられるが、従来公知の他の材料であってもよい。
 カーカスプライ82は、タイヤ幅方向の端部分がビードコア20においてタイヤ径方向外側に折り返されている。カーカスプライ82は、一方のビードコア20から他方のビードコア20に跨る部分が本体部82Aと呼ばれ、ビードコア20から折り返されている部分が折り返し部82Bと呼ばれる。
 カーカスプライ82の本体部82Aと折返し部82Bとの間には、ビードコア20からタイヤ径方向外側に向けて厚さが漸減するビードフィラー88が配置されている。なお、タイヤ80において、ビードフィラー88のタイヤ径方向外側端88Aからタイヤ径方向内側の部分がビード部14とされている。
 カーカス86のタイヤ内側にはゴムからなるインナーライナー90が配置されており、カーカス86のタイヤ幅方向外側には、ゴムを含有するゴム材料からなるサイドゴム層92が配置されている。
 なお、本実施形態では、ビードコア20、カーカス86、ビードフィラー88、インナーライナー90、及びサイドゴム層92によってタイヤケース94が構成されている。
 カーカス86のクラウン部の外側、言い換えればカーカス86のタイヤ径方向外側には、接着剤層11を介してベルト層12が配置されており、ベルト層12はカーカス86の外周面に密着している。
 そして、ベルト層12のタイヤ径方向外側には、接着剤層11を介して、ゴムを含有するゴム材料からなるトレッド30が配置されている。トレッド30に用いるゴム材料は、従来一般公知のものが用いられる。トレッド30には、排水用の溝30Aが形成されている。トレッド30の溝30Aにおけるパターンも従来一般公知のものが用いられる。
(タイヤの製造方法)
 次に、本実施形態のタイヤ80の製造方法の一例を説明する。
 まず、公知のタイヤ成形ドラム(不図示)の外周に、ゴム材料からなるインナーライナー90、ビードコア20、ゴム材料からなるビードフィラー88、コードをゴム材料で被覆したカーカスプライ82、及びサイドゴム層92からなる未加硫のタイヤケース94を形成する。
 一方、ベルト層12は、以下のようにして形成する。
 具体的には、ベルト成形ドラム(図示せず)の外周面に向かって樹脂被覆コード28を送り出す。樹脂被覆コード28は、熱風により加熱され溶融した状態でベルト成形ドラムの外周面に押し付けられ、その後冷却される。このようにして、樹脂被覆コード28をベルト成形ドラムの外周面に螺旋状に巻き付けると共に該外周面に押し付けていくことで、ベルト成形ドラムの外周面に樹脂被覆コード28の層が形成される。
 次に、樹脂被覆コード28が冷却されて被覆樹脂26が固化したベルト層12を、ベルト成形ドラムから取り外す。そして、取り外したベルト層12の内周面に、接着剤層11となる組成物を塗布して組成物層を形成させた後、タイヤ成形ドラムにおける前記未加硫のタイヤケース94の径方向外側に上記ベルト層12を配置する。その後、タイヤケース94を拡張し、タイヤケース94の外周面、言い換えればカーカス86の外周面を、ベルト層12の内周面に圧着する。
 最後に、ベルト層12の外周面に、接着剤層11となる組成物を塗布して組成物層を形成させた後、未加硫のトレッドを貼り付け、生タイヤが完成する。
 このようにして製造された生タイヤは、加硫成形モールドで加硫成形され、タイヤ80が完成する。
<第3実施形態>
 第3実施形態では、樹脂を含む環状のタイヤ骨格部材と、タイヤ骨格部材のタイヤ径方向外側に設けられ、複数の補強コードと補強コードを被覆する被覆樹脂とを含むベルト層と、ベルト層のタイヤ径方向外側の面に設けられた第1のゴム部材と、タイヤ骨格部材のタイヤ幅方向外側に設けられた第2のゴム部材と、を有し、タイヤ骨格部材と第2のゴム部材との間に一層系接着層である接着剤層が設けられている。つまり、第3実施形態では、前記樹脂層に相当するタイヤ骨格部材と、接着剤層と、前記ゴム層に相当する第2のゴム部材と、をこの順に有する複合体を有する。
 なお、一層系接着層である接着剤層の代わりに、二層系接着層を設けてもよい。つまり、前記樹脂層に相当するタイヤ骨格部材と、接着剤層と、ゴム側接着層と、前記ゴム層に相当するゴム部材と、をこの順に有する複合体を有してもよい。
 また、第1実施形態と同様に、ベルト層と第1のゴム層との間に一層系接着層である接着剤層を設けてもよく、ベルト層と第1のゴム層との間に二層系接着層を設けてもよい。
 図4は、第3実施形態に係るタイヤの構成を示すタイヤ幅方向に沿った断面図である。図4において他の図と共通する部材については同様の符号を付して説明を省略する。
 図4に示すように、第3実施形態に係るタイヤ110は、樹脂を含む樹脂材料で構成された環状のタイヤ骨格部材であるタイヤケース17と、タイヤケース17のタイヤ径方向外側に設けられたベルト層12と、ベルト層12のタイヤ径方向外側の面並びにタイヤケース17のタイヤ径方向外側及びタイヤ幅方向外側の面に設けられた接着剤層11と、接着剤層11のタイヤ径方向外側の面に設けられた第1のゴム部材の一例であるトレッド30と、接着剤層11のタイヤ幅方向外側の面に設けられた第2のゴム部材の一例であるサイドゴム層13と、を備えている。
 タイヤケース17、ベルト層12、接着剤層11、及びトレッド30については、第1実施形態と同様であるため、説明を省略する。また、サイドゴム層13としては、第2実施形態におけるサイドゴム層92と同様のものが用いられる。
 なお、第3実施形態では、第2のゴム部材として、タイヤケース17のタイヤ幅方向外側に接着剤層11を介してサイドゴム層13を設けたが、タイヤケース17のタイヤ幅方向内側に接着剤層を介してインナーゴム層を設けてもよい。
<第4実施形態>
 第4実施形態では、ゴムを含む環状のタイヤ骨格部材のビード部に前記複合体を有する形態の一例である。具体的には、ビードワイヤーが被覆樹脂で被覆されたビードコアと、前記ビードコア間に位置する本体部と前記ビードコア周りに内側から外側へ折り返された折返し部とを有するカーカスと、ビードコアと前記本体部と前記折返し部との間に設けられた樹脂製のビードフィラーと、ビードコア及びビードフィラーの周囲に設けられた一層系接着層である接着剤層と、接着剤層の周囲に設けられたゴム部材と、によりタイヤ骨格部材が構成されている。つまり、第4実施形態では、前記樹脂層に相当するビードコアの被覆樹脂及びビードフィラーと、接着剤層と、前記ゴム層に相当するゴム部材と、をこの順に有する複合体を有する。
 なお、一層系接着層である接着剤層の代わりに、二層系接着層を設けてもよい。つまり、前記樹脂層に相当するビードコアの被覆樹脂及びビードフィラーと、接着剤層と、ゴム側接着層と、前記ゴム層に相当するゴム部材と、をこの順に有する複合体を有してもよい。
 図5は、第4実施形態に係るタイヤのビード部を拡大した断面図である。図5において他の図と共通する部材については同様の符号を付して説明を省略する。
 図5に示すように、第4実施形態に係るタイヤのビード部14は、ゴム部材91と、樹脂製のビードフィラー89と、ビードコア20と、ビードフィラー89及びビードコア20の周囲を取り囲む接着剤層11と、カーカス86と、を備えている。
 図5に示すビード部14では、ビードコア20とビードフィラー89とが、ゴム部材91内に埋設され、ビードコア20とビードフィラー89とが、一体に構成されたコア・フィラ部材50を構成し、その周囲に接着剤層11が設けられている。ただし、ビードコア20とビードフィラー89とは別体でもよい。
 図5に示すように、ビードコア20は、それぞれ、タイヤ幅方向断面を観たときに、ビードワイヤー束62と、ビードワイヤー束62の周囲を囲むとともに樹脂材料から構成された被覆層65と、を有している。
 図5の例では、ビードフィラー89が、ビードコア20の被覆層65と一体に、被覆層65と同じ樹脂材料から構成されている。ただし、ビードフィラー89を構成する樹脂材料は、ビードコア20の被覆層65とは異なるものでもよい。また、ビードフィラー89を構成する樹脂材料は、ビードフィラー89の部分ごとに異なっていてもよい。
 図5の例において、ビードコア20のビードワイヤー束62は、タイヤ幅方向断面を観たときに、ビードコア20を構成するビードワイヤーの断面が複数現れる構成を指しているにすぎず、ビードコア20を構成するビードワイヤーの実際の本数は、1本でも複数本でもよい。すなわち、ビードワイヤー束62は、1本のビードワイヤーがタイヤ周方向に複数回にわたって巻回されることによって構成されてもよいし、複数本のビードワイヤーがそれぞれタイヤ周方向に1回又は複数回にわたって巻回されることによって構成されてもよい。
 ビードワイヤーは、任意の既知の材料を用いることができ、例えばスチールコードを用いることができる。スチールコードは、例えば、スチールのモノフィラメント又は撚り線からなるものとすることができる。また、ビードワイヤーとして、有機繊維又はカーボン繊維等を用いることもできる。
 ビードコア20の被覆層65は、タイヤ周方向に沿って連続して延在しているとともに、タイヤ周方向の少なくとも一部において、タイヤ幅方向断面を観たときに、ビードコア20のビードワイヤー束62を全周にわたって囲むように、環状に構成されている。被覆層65は、タイヤ周方向の一部において、タイヤ幅方向断面を観たときに、環状でなくてもよく、例えばC字型等でもよい。
 本例では、タイヤ幅方向断面を観たときに、被覆層65のなす環形状の内側で、各ビードワイヤーが、樹脂材料からなる被覆樹脂63によって被覆されている。言いかえれば、被覆層65と各ビードワイヤーとの間の隙間領域が、被覆樹脂63によって埋められている。
 本例では、被覆樹脂63を構成する樹脂材料は、被覆層65を構成する樹脂材料とは異なる。ただし、被覆樹脂63を構成する樹脂材料は、被覆層65を構成する樹脂材料と同じでもよい。
 本例に限られず、タイヤ幅方向断面を観たときに、被覆層65のなす環形状の内側で、各ビードワイヤーは、被覆樹脂63の代わりに、ゴムからなる被覆ゴムによって被覆されていてもよい。言いかえれば、被覆層65と各ビードワイヤーとの間の隙間領域が、被覆ゴムによって埋められていてもよい。
 本実施形態のタイヤの製造は、前述の第2実施形態のタイヤと同様にして行われる。
 なお、本実施形態では、ビードフィラー89とビードコア20とを一体に成形することにより得られたコア・フィラ部材50を用いる。本実施形態では、コア・フィラ部材50の周囲に、接着剤層11となる組成物を塗布して組成物層を形成させた後、未加硫のゴム部材91を貼り付け、未加硫のタイヤケースを形成する。そして、必要に応じてベルト層及び未加硫のトレッドを設けて得られた生タイヤを、加硫成形することにより、タイヤを得る。
 以下、コア・フィラ部材50を製造する方法の一例について、説明する。
 コア・フィラ部材50の製造方法は、例えば、環状体形成工程と、射出成形工程と、冷却工程と、を含んでいる。
 環状体形成工程では、1本以上のビードワイヤーを被覆樹脂63で被覆してなるストリップ部材を巻回して、環状体を形成する。図5に示すビードコア20では、例えば、3本のビードワイヤーを被覆樹脂63で被覆してなるストリップ部材が渦巻状に巻回されて3段積層されている。
 本例では、環状体形成工程において、溶融状態の被覆樹脂63をビードワイヤーの外周側に被覆し、冷却により固化させることによって、ストリップ部材を形成する。そして、環状体は、ストリップ部材を巻回して段積みすることにより形成することができ、段同士の接合は、例えば、熱板溶着等で被覆樹脂63を溶融させながらストリップ部材を巻回して、溶融した被覆樹脂63を固化することにより行うことができる。あるいは、段同士を接着剤等により接着することにより接合することもできる。
 環状体形成工程に次いで、射出成形工程では、環状体形成工程において形成した環状体を、樹脂材料で被覆することにより、被覆層65と、被覆層65と一体のビードフィラー89と、を形成する。
 射出成形工程に次いで、冷却工程では、被覆層65及びビードフィラー89を、冷却により固化させる。コア・フィラ部材50におけるビードコア20は、環状体の周囲が、固化した被覆層65により覆われた構成となっている。また、被覆層65のタイヤ径方向外側には、ビードフィラー89が被覆層65と一体に構成されている。
<第5実施形態>
 第5実施形態では、ゴムを含む環状のタイヤ骨格部材のビード部に前記複合体を有する形態の他の一例である。具体的には、ビードワイヤーが被覆樹脂で被覆されたビードコアと、前記ビードコア間に位置する本体部と前記ビードコア周りに内側から外側へ折り返された折返し部とを有するカーカスと、ビードコアと前記本体部と前記折返し部との間に設けられたゴム製のビードフィラーと、ビードコアの周囲に設けられた一層系接着層である接着剤層と、ビードフィラー及び接着剤層の周囲に設けられたゴム層と、によりタイヤ骨格部材が構成されている。つまり、第5実施形態では、前記樹脂層に相当するビードコアの被覆樹脂と、接着剤層と、前記ゴム層に相当するビードフィラー及びゴム部材と、をこの順に有する複合体を有する。
 なお、一層系接着層である接着剤層の代わりに、二層系接着層を設けてもよい。つまり、前記樹脂層に相当するビードコアの被覆樹脂と、接着剤層と、ゴム側接着層と、前記ゴム層に相当するビードフィラー及びゴム部材と、をこの順に有する複合体を有してもよい。
 図6は、第5実施形態に係るタイヤのビード部を拡大した断面図である。図6において他の図と共通する部材については同様の符号を付して説明を省略する。
 図6に示すように、第5実施形態に係るタイヤのビード部14は、ゴム部材91と、ゴム製のビードフィラー88と、ビードコア20と、ビードコア20の周囲を取り囲む接着剤層11と、カーカス86と、を備えている。
 図6に示すビード部14は、ビードフィラー88がゴム製であるためビードコア20とビードフィラー88とが別体であり、ビードコア20の周囲のみに接着剤層11が設けられていること以外は、第4実施形態に係るタイヤのビード部と同様である。
 また、本実施形態のタイヤの製造方法も、ビードフィラー88とビードコア20とを別々に製造し、ビードコア20の周囲にのみ接着剤層11となる組成物を塗布して組成物層を形成する以外は、前述の第5実施形態のタイヤの製造方法と同様である。
 以上、本開示における実施形態の一例を説明したが、本開示はこれら実施形態に限定されるものではなく、他の種々の実施形態が可能である。
 さらに、前記第1実施形態~第5実施形態は、適宜組み合わせることができる。
 なお、本開示の一実施形態は、以下に示す態様が含まれる。
<1> 樹脂を含む樹脂層と、接着剤を含む組成物の硬化層であり、前記樹脂層に直接接して設けられ、引張追従指数が80以上である接着剤層と、ゴムを含むゴム層と、をこの順に有し、
 前記引張追従指数は、試験用特定樹脂からなる第1の試験片を100mm/minの速度で引っ張り試験を行ったときの破断伸びを100とした場合における、前記試験用特定樹脂上に前記接着剤層が設けられた第2の試験片を100mm/minの速度で引っ張り試験を行ったときの破断伸びを表す指数である、
 タイヤ用樹脂ゴム複合体。
<2> 前記接着剤層の平均厚みは、0.5μm以上80μm以下である<1>に記載のタイヤ用樹脂ゴム複合体。
<3> 前記接着剤は、エポキシ樹脂系接着剤、イソシアネート系接着剤、及びフェノール樹脂系接着剤からなる群より選択される少なくとも1種を含む<1>又は<2>に記載のタイヤ用樹脂ゴム複合体。
<4> 前記ゴム層に直接接するように前記接着剤層と前記ゴム層との間に設けられたゴム側接着層であって、イソシアネート系接着剤を含む組成物の硬化層であるゴム側接着層をさらに有する<1>~<3>のいずれか1つに記載のタイヤ用樹脂ゴム複合体。
<5> 前記樹脂層は、ポリエステル系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、及びポリアミド系熱可塑性樹脂からなる群より選択される少なくとも1種を含む<1>~<4>のいずれか1つに記載のタイヤ用樹脂ゴム複合体。
<6> <1>~<5>のいずれか1つに記載のタイヤ用樹脂ゴム複合体を有するタイヤ。
 以下、実施例により本開示の実施形態を具体的に説明するが、本開示はこれらの記載に何ら制限を受けるものではない。なお、特に断りのない限り「部」は質量基準を表す。
[実施例A1~実施例A4、比較例A1]
<被覆樹脂コードの作製>
 平均直径φ1.15mmのマルチフィラメント(φ0.35mmのモノフィラメント(スチール製、強力:280N、伸度:3%)7本を撚った撚り線)に、加熱溶融した接着剤(無水マレイン酸変性ポリエステル系熱可塑性エラストマー)を付着させる。次いで、その外周に、押出機にて押し出した被覆樹脂(ポリエステル系熱可塑性エラストマー)を付着させて被覆し、冷却する。なお、押出条件は、金属部材の温度を200℃、被覆樹脂の温度を240℃、押出速度を30m/分とする。以上のようにして、被覆樹脂コードを作製する。
<未加硫のトレッド(ゴム部材)の作製>
 下記成分をバンバリミキサー((株)神戸製鋼製、MIXTRON BB MIXER)で混練してシート形状に成形し、未加硫のトレッド(ゴム部材)を作製する。
・天然ゴム:RSS#3・・・50質量部
・スチレン・ブタジエン共重合体ゴム(SBR):#1500(乳化重合SBR)、JSR社製・・・50質量部
・カーボンブラック:ISAF、旭カーボン社製・・・50質量部
・老化防止剤:アンチゲン6C、住友化学社製・・・1質量部
・加硫促進剤:ノクセラーCZ(大内新興化学工業社製)、ノクセラーDM(大内新興化学工業社製)、ノクセラーD(大内新興化学工業社製)・・・合計2質量部
・硫黄・・・1.5質量部
<タイヤの作製>
 前述の第2実施形態に従って、未加硫のタイヤケース及びベルト層を作製する。
 ベルト層の内周面に、表1に示す接着剤層用の接着剤及びゴム側接着層用の接着剤を順に塗布した後、前述の第2実施形態に従って、内周面に接着剤が塗布されたベルト層を未加硫のタイヤケースの外周面に設置する。
 さらに、ベルト層の外周に、表1に示す接着剤層用の接着剤及びゴム側接着層用の接着剤を順に塗布した後、前述の方法で得られた未加硫のトレッド(ゴム部材)を巻きつけ、生タイヤを得る。そして、得られた生タイヤを160℃で20分間加熱することで加硫し、タイヤを得る。
 なお、接着剤層用の接着剤及びゴム側接着層用の接着剤の塗布量は、それぞれ、得られたタイヤにおける接着剤層及びゴム側接着層の平均厚みが表1に示す値になる量とする。
 以上のようにして、樹脂層に相当するベルト層の被覆樹脂と、接着剤層と、ゴム側接着層と、ゴム層に相当するトレッド(ゴム部材)と、をこの順に有する複合体(すなわち、二層系接着層を有する複合体)を有するタイヤを得る。
<測定>
 タイヤの作製に用いた接着剤層用の接着剤及びゴム側接着層用の接着剤それぞれを用いて、前述の方法により、接着剤層及びゴム側接着層の引張追従指数をそれぞれ求める。
<評価>
(タイヤ走行評価)
 実施例及び比較例で作製したタイヤ(サイズ225/40 R18)を、空気圧の調整を行い、JIS荷重の1.8倍荷重をタイヤに負荷して、直径3mのドラム上で、最大2万km走行させた。そして、タイヤが故障するまでに走行した距離を計測し、下記の評価基準に従って評価を行った。走行距離が長いほどタイヤの耐久性が優れていることを示し、評価がA又はBであると、実用上好ましいといえる。
A: 3000km以上走行し、亀裂の発生がないもの
B: 3000km以上走行したが、3000kmで亀裂が発生しているもの
C: 1000km以上走行したが、1000kmで亀裂が発生しているもの
D: 1000kmまでも走行しなかったもの
 亀裂の有無については、走行後のタイヤ幅方向における切断面を目視にて観察し、ベルト層の被覆樹脂における亀裂の有無を確認した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000006
 表中の成分は、次のとおりである。
・接着剤A1:メタロックN-20(東洋化学研究所)
・接着剤A2:メタロックN-23(東洋化学研究所)
・接着剤A3:メタロックF-112(東洋化学研究所)
 なお、上記表1に示す接着剤層の引張追従指数の数値に関して、実施例A1及び実施例A2は実際に測定を実施して得たデータであり、一方、実施例A3、比較例A1、及び実施例A4はシミュレーションによる予測データである。また、上記表に示すゴム側接着層の引張追従指数の数値及び評価結果はいずれも、シミュレーションによる予測データである。
[実施例B1~実施例B4]
 二層系接着層の代わりに一層系接着層を適用した以外は、実施例A1と同様にしてタイヤを作製する。
 具体的には、実施例A1と同様にして未加硫のタイヤケース及びベルト層を形成し、ベルト層の内周面に、表2に示す接着剤層用の接着剤を塗布した後、内周面に接着剤が塗布されたベルト層を未加硫のタイヤケースの外周面に設置する。さらに、ベルト層の外周に、表2に示す接着剤層用の接着剤を塗布した後、未加硫のトレッド(ゴム部材)を巻きつけ、生タイヤを得る。そして、得られた生タイヤを160℃で20分間加熱することで加硫し、タイヤを得る。
 なお、接着剤層用の接着剤の塗布量は、得られたタイヤにおける接着剤層の平均厚みが表2に示す値になる量とする。
 以上のようにして、樹脂層に相当するベルト層の被覆樹脂と、接着剤層と、ゴム層に相当するトレッド(ゴム部材)と、をこの順に有する複合体(すなわち、一層系接着層を有する複合体)を有するタイヤを得る。
 なお、接着剤層における引張追従指数の測定方法及びタイヤ走行評価方法については、実施例A1と同様である。
Figure JPOXMLDOC01-appb-T000007
 表中の成分は、次のとおりである。
・接着剤A4:ケムロック233X(LORD)
 なお、上記表2に示す接着剤層の引張追従指数の数値及び評価結果に関して、実施例B2は実際に測定を実施して得たデータであり、一方、実施例B1、比較例B3、及び実施例B4はシミュレーションによる予測データである。
[実施例C1~実施例C3、比較例C1]
 第3実施形態のタイヤを作製する。
 具体的には、まず、実施例A1と同様にして、被覆樹脂コード及び未加硫のトレッド(第1のゴム部材)を作製する。また、未加硫のトレッド(第1のゴム部材)と同様にして、未加硫のサイドゴム層(第2のゴム部材)を作製する。
 次に、ポリエステル系熱可塑性エラストマーからなる樹脂材料で形成されたタイヤ骨格部材を作製する。また、前述の第1実施形態に従って、タイヤ骨格部材の外周に前述の方法で得られた樹脂被覆コードを巻きつけ、ベルト層を形成する。
 タイヤ骨格部材及びベルト層の外周に、表3に示す接着剤層用の接着剤及びゴム側接着層用の接着剤を順に塗布した後、未加硫のトレッド(第1のゴム部材)及び未加硫のサイドゴム層(第2のゴム部材)を巻きつけ、生タイヤを得る。そして、得られた生タイヤを160℃20分間加熱することで加硫し、タイヤを得る。
 なお、接着剤層用の接着剤及びゴム側接着層用の接着剤の塗布量は、それぞれ、得られたタイヤにおける接着剤層及びゴム側接着層の平均厚みが表3に示す値になる量とする。
 以上のようにして、樹脂層に相当するタイヤ骨格部材と、接着剤層と、ゴム側接着層と、ゴム層に相当するサイドゴム(第2のゴム部材)と、をこの順に有する複合体(すなわち、二層系接着層を有する複合体)を有するタイヤを得る。
 なお、接着剤層及びゴム側接着層における引張追従指数の測定方法並びにタイヤ走行評価方法については、実施例A1と同様である。ここで、亀裂の有無については、走行後のタイヤ幅方向における切断面を目視にて観察し、タイヤ骨格部材のサイド部における亀裂の有無を確認する。
Figure JPOXMLDOC01-appb-T000008
 表中の成分は、次のとおりである。
・接着剤A1:メタロックN-20(東洋化学研究所)
・接着剤A2:メタロックN-23(東洋化学研究所)
・接着剤A3:メタロックF-112(東洋化学研究所)
 なお、上記表3に示す接着剤層及びゴム側接着層の引張追従指数の数値並びに評価結果はいずれも、シミュレーションによる予測データである。
[実施例D1~実施例D4]
 二層系接着層の代わりに一層系接着層を適用した以外は、実施例C1と同様にしてタイヤを作製する。
 具体的には、実施例C1と同様にしてタイヤ骨格部材及びベルト層を形成し、タイヤ骨格部材及びベルト層の外周に、表4に示す接着剤層用の接着剤を塗布した後、未加硫のトレッド(第1のゴム部材)及び未加硫のサイドゴム層(第2のゴム部材)を巻きつけ、生タイヤを得る。そして、得られた生タイヤを160℃で20分間加熱することで加硫し、タイヤを得る。
 なお、接着剤層用の接着剤の塗布量は、得られたタイヤにおける接着剤層の平均厚みが表4に示す値になる量とする。
 以上のようにして、樹脂層に相当するタイヤ骨格部材と、接着剤層と、ゴム層に相当するサイドゴム(第2のゴム部材)と、をこの順に有する複合体(すなわち、一層系接着層を有する複合体)を有するタイヤを得る。
 なお、接着剤層における引張追従指数の測定方法及びタイヤ走行評価方法については、実施例C1と同様である。
Figure JPOXMLDOC01-appb-T000009
 表中の成分は、次のとおりである。
・接着剤A4:ケムロック233X(LORD)
 なお、上記表4に示す接着剤層の引張追従指数の数値及び評価結果はいずれも、シミュレーションによる予測データである。
 表1~表4に示した評価結果から分かるように、引張追従指数が80以上である接着剤層を有する本実施例は、比較例に比べ、樹脂層の亀裂が抑制され、タイヤの耐久性に優れている。
 つまり、タイヤ走行時に特に大きな負荷がかかるタイヤのトレッド部及びサイド部に前述の複合体を適用することで、タイヤの耐久性が向上する。このことから、タイヤのビード部において前述の複合体を適用した場合においても、耐久性の高いタイヤが得られるものと推測される。
 2018年9月21日に出願された日本国特許出願2018-177199号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に取り込まれる。
10 タイヤ
11 接着剤層
12 ベルト層
13 サイドゴム層
14 ビード部
16 サイド部
17 タイヤケース
17A 溶接用樹脂材料
17H タイヤ半体
18 クラウン部
18A クラウン部の外周面
20 ビードコア
24 補強コード
26 被覆樹脂
28 樹脂被覆コード
30 トレッド
30A トレッドの溝
50 コア・フィラ部材
62 ビードワイヤー束
63 被覆樹脂
65 被覆層
80 タイヤ
82 カーカスプライ
86 カーカス
88 ビードフィラー
89 ビードフィラー
90 インナーライナー
91 ゴム部材
92 サイドゴム層
94 タイヤケース
110 タイヤ

Claims (6)

  1.  樹脂を含む樹脂層と、接着剤を含む組成物の硬化層であり、前記樹脂層に直接接して設けられ、引張追従指数が80以上である接着剤層と、ゴムを含むゴム層と、をこの順に有し、
     前記引張追従指数は、試験用特定樹脂からなる第1の試験片を100mm/minの速度で引っ張り試験を行ったときの破断伸びを100とした場合における、前記試験用特定樹脂上に前記接着剤層が設けられた第2の試験片を100mm/minの速度で引っ張り試験を行ったときの破断伸びを表す指数である、
     タイヤ用樹脂ゴム複合体。
  2.  前記接着剤層の平均厚みは、0.5μm以上80μm以下である請求項1に記載のタイヤ用樹脂ゴム複合体。
  3.  前記接着剤は、エポキシ樹脂系接着剤、イソシアネート系接着剤、及びフェノール樹脂系接着剤からなる群より選択される少なくとも1種を含む請求項1又は請求項2に記載のタイヤ用樹脂ゴム複合体。
  4.  前記ゴム層に直接接するように前記接着剤層と前記ゴム層との間に設けられたゴム側接着層であって、イソシアネート系接着剤を含む組成物の硬化層であるゴム側接着層をさらに有する請求項1~請求項3のいずれか1項に記載のタイヤ用樹脂ゴム複合体。
  5.  前記樹脂層は、ポリエステル系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、及びポリアミド系熱可塑性樹脂からなる群より選択される少なくとも1種を含む請求項1~請求項4のいずれか1項に記載のタイヤ用樹脂ゴム複合体。
  6.  請求項1~請求項5のいずれか1項に記載のタイヤ用樹脂ゴム複合体を有するタイヤ。
PCT/JP2019/037345 2018-09-21 2019-09-24 タイヤ用樹脂ゴム複合体及びタイヤ WO2020059890A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018177199A JP2022036330A (ja) 2018-09-21 2018-09-21 タイヤ用樹脂ゴム複合体及びタイヤ
JP2018-177199 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020059890A1 true WO2020059890A1 (ja) 2020-03-26

Family

ID=69887251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037345 WO2020059890A1 (ja) 2018-09-21 2019-09-24 タイヤ用樹脂ゴム複合体及びタイヤ

Country Status (2)

Country Link
JP (1) JP2022036330A (ja)
WO (1) WO2020059890A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113549252A (zh) * 2021-08-16 2021-10-26 福建佳通轮胎有限公司 一种轻轨胎配合用密封圈及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175453A1 (ja) * 2013-04-25 2014-10-30 株式会社ブリヂストン タイヤ
WO2016143716A1 (ja) * 2015-03-06 2016-09-15 株式会社ブリヂストン タイヤ
WO2016190390A1 (ja) * 2015-05-28 2016-12-01 株式会社ブリヂストン タイヤ及びその製造方法
JP2017149183A (ja) * 2016-02-22 2017-08-31 株式会社ブリヂストン タイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175453A1 (ja) * 2013-04-25 2014-10-30 株式会社ブリヂストン タイヤ
WO2016143716A1 (ja) * 2015-03-06 2016-09-15 株式会社ブリヂストン タイヤ
WO2016190390A1 (ja) * 2015-05-28 2016-12-01 株式会社ブリヂストン タイヤ及びその製造方法
JP2017149183A (ja) * 2016-02-22 2017-08-31 株式会社ブリヂストン タイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113549252A (zh) * 2021-08-16 2021-10-26 福建佳通轮胎有限公司 一种轻轨胎配合用密封圈及其制备方法

Also Published As

Publication number Publication date
JP2022036330A (ja) 2022-03-08

Similar Documents

Publication Publication Date Title
JP6356664B2 (ja) タイヤ
WO2014175452A1 (ja) タイヤ
WO2013129525A1 (ja) タイヤ
JP6619432B2 (ja) タイヤ及びタイヤの製造方法
WO2017104472A1 (ja) タイヤ
WO2013154205A1 (ja) タイヤ
WO2018230271A1 (ja) タイヤ用樹脂金属複合部材、及びタイヤ
WO2017104484A1 (ja) タイヤ
WO2020059890A1 (ja) タイヤ用樹脂ゴム複合体及びタイヤ
EP3805013A1 (en) Resin metal composite member for tires, method for producing same, and tire
JP6649766B2 (ja) タイヤ
WO2018131423A1 (ja) タイヤ
JP7221951B2 (ja) タイヤ用樹脂金属複合部材、及びその製造方法、並びにタイヤ
JP7331316B2 (ja) タイヤ
JP6049273B2 (ja) タイヤ
JP6114498B2 (ja) タイヤ
WO2020067473A1 (ja) タイヤ
WO2021117427A1 (ja) タイヤ用樹脂部材、ビード部材、タイヤ用ベルト、タイヤ骨格体及びタイヤ、並びに、これらの製造方法
WO2020095891A1 (ja) ランフラットタイヤ
EP4074518B1 (en) Resin composition, resin-metal composite member, and tire
WO2021117418A1 (ja) タイヤ用樹脂金属複合部材及びタイヤ
JP2020062935A (ja) タイヤ用ワイヤー樹脂複合部材、及びタイヤ
JP2019001357A (ja) タイヤ用樹脂金属複合部材、及びタイヤ
JP2019001360A (ja) タイヤ用樹脂金属複合部材、及びタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP