WO2021117418A1 - タイヤ用樹脂金属複合部材及びタイヤ - Google Patents

タイヤ用樹脂金属複合部材及びタイヤ Download PDF

Info

Publication number
WO2021117418A1
WO2021117418A1 PCT/JP2020/042591 JP2020042591W WO2021117418A1 WO 2021117418 A1 WO2021117418 A1 WO 2021117418A1 JP 2020042591 W JP2020042591 W JP 2020042591W WO 2021117418 A1 WO2021117418 A1 WO 2021117418A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
tire
metal composite
resin layer
thermoplastic elastomer
Prior art date
Application number
PCT/JP2020/042591
Other languages
English (en)
French (fr)
Inventor
壮一 京
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2021563808A priority Critical patent/JPWO2021117418A1/ja
Publication of WO2021117418A1 publication Critical patent/WO2021117418A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/04Bead cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • This disclosure relates to resin-metal composite members for tires and tires.
  • a reinforcing belt member in which a reinforcing cord containing a metal wire is spirally wound is provided on the outer circumference of the tire. It is done. Further, normally, a bead member that plays a role of fixing to the rim is provided at a position where the tire comes into contact with the rim, and a reinforcing cord is also used for this bead member.
  • Japanese Patent Application Laid-Open No. 2019-1359 describes a resin-metal composite member for a tire having a metal member, an adhesive layer, and a coating resin layer in this order, and the adhesive layer is a polyester-based material having a polar functional group. Those containing thermoplastic elastomers are described.
  • a metal is formed by forming an adhesive layer provided between the metal member and the coating resin layer using a polyester-based thermoplastic elastomer having a polar functional group.
  • the adhesiveness to the member is improved.
  • the adhesive layer formed by using the polyester-based thermoplastic elastomer having a polar functional group has room for improvement in crack resistance.
  • a resin-metal composite member for a tire having a metal member and a resin layer arranged around the metal member, and the resin layer contains a thermoplastic elastomer and an epoxy resin as a resin.
  • a resin-metal composite member for a tire having a resin layer having excellent adhesiveness to a metal member and crack resistance, and a tire having the resin-metal composite member for a tire are provided.
  • the term "resin” is a concept that includes a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin, and does not include vulcanized rubber.
  • the term “same type” means a resin having a skeleton common to the skeleton constituting the main chain of the resin, such as ester-based resins and styrene-based resins.
  • the numerical range represented by using "-” in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the term “process” is used not only for an independent process but also for a process as long as the purpose is achieved even if the process cannot be clearly distinguished from other processes. include.
  • thermoplastic resin means a polymer compound which softens and flows as the temperature rises and becomes relatively hard and strong when cooled, but does not have rubber-like elasticity.
  • thermoplastic elastomer means a copolymer having a hard segment and a soft segment. Examples of the thermoplastic elastomer include those in which the material softens and flows as the temperature rises, becomes relatively hard and strong when cooled, and has rubber-like elasticity.
  • thermoplastic elastomer for example, a polymer constituting a crystalline hard segment having a high melting point or a hard segment having a high cohesive force, and a polymer constituting an amorphous soft segment having a low glass transition temperature may be used. Examples thereof include copolymers having.
  • the hard segment refers to a component that is relatively harder than the soft segment.
  • the hard segment is preferably a molecular restraint component that serves as a cross-linking point of the cross-linked rubber that prevents plastic deformation.
  • a hard segment a segment having a rigid group such as an aromatic group or an alicyclic group in the main skeleton, or a structure that enables intermolecular packing by intermolecular hydrogen bonds or ⁇ - ⁇ interactions can be used.
  • the soft segment refers to a component that is relatively softer than the hard segment.
  • the soft segment is preferably a flexible component exhibiting rubber elasticity.
  • examples of the soft segment include a segment having a long-chain group (for example, a long-chain alkylene group) in the main chain, a high degree of freedom in molecular rotation, and a stretchable structure.
  • the resin-metal composite member according to the present embodiment has a metal member and a resin layer arranged around the metal member, and the resin layer contains a thermoplastic elastomer and an epoxy resin, and is a resin for tires. It is a metal composite member.
  • the resin layer of the resin-metal composite member having the above structure is excellent in adhesive force and crack resistance to the metal member.
  • the reason why the resin layer exhibits excellent adhesive strength is not always clear, but it is conceivable that some kind of interaction that enhances the adhesive strength occurs between the epoxy group existing in the resin layer and the surface of the metal member.
  • the reason why the resin layer exhibits excellent crack resistance is not always clear, but thermoplastic elastomers having polar functional groups tend to have molecular weights reduced in the process of introducing polar functional groups into the molecule.
  • the decrease in the molecular weight of the thermoplastic elastomer can be suppressed by blending the epoxy resin as a component different from the thermoplastic elastomer.
  • the shape of the resin-metal composite member is not particularly limited. For example, a cord shape, a sheet shape and the like can be mentioned.
  • the resin-metal composite member may include only one metal member or may include a plurality of metal members.
  • the resin-metal composite member includes a reinforcing belt member arranged on the outer periphery of the tire skeleton or carcass constituting the tire, a bead member arranged at a place where the tire comes into contact with the rim, and the like.
  • the resin layer contains a thermoplastic elastomer and an epoxy resin.
  • the "epoxy resin” does not include a resin corresponding to either a thermoplastic elastomer or a thermoplastic resin (for example, a thermoplastic elastomer or a thermoplastic resin having an epoxy group in the molecule).
  • epoxy resin The type of epoxy resin is not particularly limited. For example, novolak type epoxy resin, dicyclopentadiene type epoxy resin, triphenylmethane type epoxy resin, bisphenol type epoxy resin, biphenyl type epoxy resin, glycidylamine type epoxy resin, naphthalene type epoxy resin, linear aliphatic epoxy resin, etc. Can be mentioned.
  • the epoxy resin contained in the resin layer may be only one type or two or more types.
  • the epoxy resin is preferably solid at room temperature.
  • an epoxy resin having a softening point of 50 ° C. to 100 ° C. measured by the ring-and-ball method is preferable.
  • the alicyclic structure includes a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, a cyclohexane structure, a cycloheptane structure, a cyclooctane structure, a cubane structure, a norbornane structure, a tetrahydrodicyclopentadiene structure, an adamantane structure, and a diadamantane structure.
  • Examples thereof include a spiro ring structure such as a bicyclo [2.2.2] octane structure, a decahydronaphthalene structure, and a spiro [5.5] undecane structure.
  • a spiro ring structure such as a bicyclo [2.2.2] octane structure, a decahydronaphthalene structure, and a spiro [5.5] undecane structure.
  • an epoxy resin having a tetrahydrodicyclopentadiene structure (dicyclopentadiene type epoxy resin) is preferable.
  • the content of the epoxy resin in the entire resin layer is preferably 15% by mass or less, more preferably 12.5% by mass or less, and 10% by mass. The following is more preferable.
  • the content of the epoxy resin in the entire resin layer is preferably 1% by mass or more, more preferably 2% by mass or more, and 5% by mass or more. Is even more preferable
  • the epoxy equivalent of the epoxy resin is preferably 100 g / eq to 300 g / eq.
  • the epoxy equivalent is 100 g / eq or more, a sufficient epoxy group can be present in the resin layer with a certain blending amount, and the adhesiveness to the metal member tends to be effectively improved.
  • the epoxy group can be sufficiently present in the resin without significantly impairing the physical properties of the resin to be added even if the amount of the epoxy resin is small, and the adhesiveness to the metal member tends to be effectively improved.
  • the value of is preferably 0.003 to 0.15, more preferably 0.017 to 0.1, and even more preferably 0.04 to 0.06.
  • thermoplastic elastomer The type of thermoplastic elastomer contained in the resin layer is not particularly limited.
  • polyester-based thermoplastic elastomer polyamide-based thermoplastic elastomer, polystyrene-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, olefin-based thermoplastic elastomer, thermoplastic rubber crosslinked product, other thermoplastic elastomers, etc. specified in JIS K6418, etc.
  • the amount of the thermoplastic elastomer contained in the resin layer may be only one type or two or more types.
  • thermoplastic elastomer contained in the resin layer does not have a polar functional group (epoxide group, carboxy group, acid anhydride group, amino group, etc.).
  • a thermoplastic elastomer having a polar functional group may be contained in the resin layer as long as the above-mentioned effects are not impaired.
  • the resin layer preferably contains a polyester-based thermoplastic elastomer as the thermoplastic elastomer.
  • polyester-based thermoplastic elastomer for example, at least polyester forms a hard segment having a high crystallinity and a high melting point, and another polymer (for example, polyester or polyether) is amorphous and has a low glass transition temperature. Examples include the forming material.
  • an aromatic polyester can be used as the polyester forming the hard segment.
  • the aromatic polyester can be formed from, for example, an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol.
  • the aromatic polyester is preferably a polybutylene terephthalate derived from terephthalic acid and / or dimethylterephthalate and 1,4-butanediol, and further is isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid.
  • Diols such as aliphatic diols such as ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol and decamethylene glycol, and alicyclic such as 1,4-cyclohexanedimethanol and tricyclodecanedimethylol.
  • Diol xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2-bis [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxy) ) Phosphores, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 4,4'-dihydroxy-p-terphenyl, 4,4'-dihydroxy-p-quarterphenyl and other aromatics It may be a polyester derived from a diol or the like, or a copolymerized polyester in which two or more kinds of these dicarboxylic acid components and diol components are used in combination.
  • polyester forming the hard segment examples include polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and the like, and polybutylene terephthalate is preferable.
  • Examples of the polymer forming the soft segment include aliphatic polyesters and aliphatic polyethers.
  • the aliphatic polyether include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, a copolymer of ethylene oxide and propylene oxide, and poly (propylene oxide).
  • Ethylene oxide addition polymer of glycol, copolymer of ethylene oxide and tetrahydrofuran, etc. can be mentioned.
  • Examples of the aliphatic polyester include poly ( ⁇ -caprolactone), polyenant lactone, polycaprilolactone, polybutylene adipate, polyethylene adipate and the like.
  • poly (tetramethylene oxide) glycol and poly (propylene oxide) glycol are examples of polymers that form soft segments from the viewpoint of the elastic properties of the obtained polyester block copolymer.
  • Ethylene oxide adduct, poly ( ⁇ -caprolactone), polybutylene adipate, polyethylene adipate and the like are preferable.
  • the number average molecular weight of the polymer forming the soft segment is preferably 300 to 6000 from the viewpoint of toughness and low temperature flexibility. Further, the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 99: 1 to 20:80, more preferably 98: 2 to 30:70 from the viewpoint of moldability. ..
  • each combination of the above-mentioned hard segment and the soft segment for example, each combination of the above-mentioned hard segment and the soft segment can be mentioned.
  • a combination in which the hard segment is polybutylene terephthalate and the soft segment is an aliphatic polyether is preferable, and the hard segment is polybutylene terephthalate and the soft segment. More preferably, the combination is poly (ethylene oxide) glycol.
  • polyester-based thermoplastic elastomers include, for example, the "Hytrel” series manufactured by Toray DuPont Co., Ltd. (for example, 3046, 4047, 4767, 5557, 6347, 6377, 7247, etc.) and Toyobo Co., Ltd. "Perprene” series (for example, P30B, P40B, P40H, P55B, P70B, P150B, P280B, P450B, P150M, S1001, S2001, S5001, S6001, S9001 and the like) can be used.
  • the polyester-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • a polyamide-based thermoplastic elastomer is a thermoplastic resin material composed of a copolymer having a polymer that forms a hard segment that is crystalline and has a high melting point and a polymer that forms a soft segment that is amorphous and has a low glass transition temperature. It means a polymer having an amide bond (-CONH-) in the main chain of the polymer forming the hard segment.
  • the polyamide-based thermoplastic elastomer for example, at least polyamide forms a hard segment having a high crystallinity and a high melting point, and other polymers (for example, polyester, polyether, etc.) are amorphous and have a low glass transition temperature.
  • the polyamide-based thermoplastic elastomer may be formed by using a chain length extender such as a dicarboxylic acid in addition to the hard segment and the soft segment.
  • a chain length extender such as a dicarboxylic acid
  • Specific examples of the polyamide-based thermoplastic elastomer include the amide-based thermoplastic elastomer (TPA) specified in JIS K6418: 2007, the polyamide-based elastomer described in JP-A-2004-346273, and the like. it can.
  • examples of the polyamide forming the hard segment include a polyamide produced by a monomer represented by the following general formula (1) or general formula (2).
  • R 1 represents a molecular chain of a hydrocarbon having 2 to 20 carbon atoms (for example, an alkylene group having 2 to 20 carbon atoms).
  • R 2 represents a molecular chain of a hydrocarbon having 3 to 20 carbon atoms (for example, an alkylene group having 3 to 20 carbon atoms).
  • R 1 a molecular chain of a hydrocarbon having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms is preferable, and a molecular chain of a hydrocarbon having 4 to 15 carbon atoms, for example, carbon.
  • An alkylene group having 4 to 15 carbon atoms is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • the R 2 the molecular chains of hydrocarbon having 3-18 carbon atoms, for example, preferably an alkylene group having 3 to 18 carbon atoms, the molecular chain of a hydrocarbon having 4 to 15 carbon atoms, for example, an alkylene group having 4 to 15 carbon atoms is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • the monomer represented by the general formula (1) or the general formula (2) include ⁇ -aminocarboxylic acid and lactam.
  • the polyamide forming the hard segment include polycondensates of these ⁇ -aminocarboxylic acids or lactams, and copolymers of diamines and dicarboxylic acids.
  • Examples of the ⁇ -aminocarboxylic acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like having 5 to 20 carbon atoms.
  • An aliphatic ⁇ -aminocarboxylic acid and the like can be mentioned.
  • Examples of the lactam include aliphatic lactams having 5 to 20 carbon atoms such as lauryl lactam, ⁇ -caprolactam, udecan lactam, ⁇ -enantractum, and 2-pyrrolidone.
  • diamine examples include ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4.
  • diamine compounds such as aliphatic diamines having 2 to 20 carbon atoms such as -trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, and metaxylene diamine.
  • the dicarboxylic acid can be represented by HOOC- (R 3 ) m-COOH (R 3 : molecular chain of hydrocarbon having 3 to 20 carbon atoms, m: 0 or 1), for example, oxalic acid, succinic acid. , Glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid and other aliphatic dicarboxylic acids having 2 to 20 carbon atoms can be mentioned.
  • the polyamide forming the hard segment a polyamide obtained by ring-opening polycondensation of lauryl lactam, ⁇ -caprolactam, or udecan lactam can be preferably used.
  • polymer forming the soft segment examples include polyester, polyether and the like, and specific examples thereof include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, ABA type triblock polyether and the like. These can be used alone or in combination of two or more. Further, a polyether diamine or the like obtained by reacting the terminal of the polyether with ammonia or the like can also be used.
  • ABA-type triblock polyether means a polyether represented by the following general formula (3).
  • x and z represent integers from 1 to 20.
  • y represents an integer of 4 to 50.
  • x and z are preferably integers of 1 to 18, more preferably integers of 1 to 16, further preferably integers of 1 to 14, and particularly preferably integers of 1 to 12.
  • y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, further preferably an integer of 7 to 35, and particularly preferably an integer of 8 to 30.
  • the combination of the hard segment and the soft segment includes a ring-opening polycondensate of lauryl lactam / polyethylene glycol, a ring-opening polycondensate of lauryl lactam / polypropylene glycol, and a ring-opening polycondensation of lauryl lactam.
  • a combination of body / polytetramethylene ether glycol or a ring-opening polycondensate of lauryl lactam / ABA-type triblock polyether is preferable, and a combination of lauryl lactam ring-opening polycondensate / ABA-type triblock polyether is more preferable. preferable.
  • the number average molecular weight of the polymer (polyamide) forming the hard segment is preferably 300 to 15,000 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 90:10, more preferably 50:50 to 80:20 from the viewpoint of moldability. ..
  • Polyamide-based thermoplastic elastomers can be synthesized by copolymerizing a polymer that forms a hard segment and a polymer that forms a soft segment by a known method.
  • Examples of commercially available polyamide-based thermoplastic elastomers include Ube Industries, Ltd.'s "UBESTA XPA” series (for example, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2XPA9044, etc.) and Daicel Eponic Co., Ltd. Series (for example, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2, etc.) can be used.
  • polystyrene-based thermoplastic elastomers for example, at least polystyrene forms a hard segment, and other polymers (for example, polybutadiene, polyisoprene, polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene, etc.) are amorphous and have a glass transition temperature. Examples include materials forming low soft segments.
  • polystyrene forming the hard segment for example, polystyrene obtained by a known radical polymerization method, ionic polymerization method or the like is preferably used, and specific examples thereof include polystyrene having anionic living polymerization.
  • the polymer forming the soft segment include polybutadiene, polyisoprene, and poly (2,3-dimethyl-butadiene).
  • each combination of the hard segment and the soft segment mentioned above can be mentioned.
  • a polystyrene / polybutadiene combination or a polystyrene / polyisoprene combination is preferable.
  • the soft segment is hydrogenated.
  • the number average molecular weight of the polymer (polystyrene) forming the hard segment is preferably 5000 to 500,000, more preferably 10,000 to 200,000.
  • the number average molecular weight of the polymer forming the soft segment is preferably 5000 to 1,000,000, more preferably 10,000 to 800,000, and even more preferably 30,000 to 500,000.
  • the volume ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, from the viewpoint of moldability. ..
  • Polystyrene-based thermoplastic elastomers can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • polystyrene-based thermoplastic elastomers include styrene-butadiene-based copolymers [SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], and styrene-isoprene.
  • Copolymers polystyrene-polyisoprene block-polystyrene
  • styrene-propylene-based copolymers [SEP (polystyrene- (ethylene / propylene) block), SEPS (polystyrene-poly (ethylene / propylene) block-polystyrene), SEEPS ( Polystyrene-poly (polystyrene-ethylene / propylene) block-polystyrene), SEB (polystyrene (ethylene / butylene) block)] and the like can be mentioned.
  • SEP polystyrene- (ethylene / propylene) block
  • SEPS polystyrene-poly (ethylene / propylene) block-polystyrene
  • SEEPS Polystyrene-poly (polystyrene-ethylene / propylene) block-polystyrene
  • polystyrene-based thermoplastic elastomers include, for example, the "Tough Tech” series manufactured by Asahi Kasei Corporation (for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.).
  • the "SEBS” series (8007, 8076, etc.) and “SEPS” series (2002, 2063, etc.) manufactured by Kuraray Co., Ltd. can be used.
  • polyurethane-based thermoplastic elastomer for example, at least polyurethane forms a hard segment in which pseudo-crosslinks are formed by physical aggregation, and other polymers form a soft segment which is amorphous and has a low glass transition temperature. Materials that are available are listed. Specific examples of the polyurethane-based thermoplastic elastomer include the polyurethane-based thermoplastic elastomer (TPU) specified in JIS K6418: 2007.
  • TPU polyurethane-based thermoplastic elastomer
  • the polyurethane-based thermoplastic elastomer can be represented as a copolymer containing a soft segment containing a unit structure represented by the following formula A and a hard segment containing a unit structure represented by the following formula B.
  • P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester.
  • R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P' represents a short chain aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P is derived from a diol compound containing a long-chain aliphatic polyether represented by P and a long-chain aliphatic polyester.
  • diol compounds include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, poly (butylene adibate) diol, poly- ⁇ -caprolactone diol, and poly (hexamethylene carbonate) having a molecular weight within the above range.
  • Diol, ABA type triblock polyether and the like can be used alone or in combination of two or more.
  • R is derived from a diisocyanate compound containing an aliphatic hydrocarbon represented by R, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • the aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate, and 1,6-hexamethylene diisocyanate.
  • Examples of the diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexanediisocyanate and 4,4-cyclohexanediisocyanate.
  • the aromatic diisocyanate compound containing an aromatic hydrocarbon represented by R include 4,4'-diphenylmethane diisocyanate and tolylene diisocyanate. These can be used alone or in combination of two or more.
  • the short-chain aliphatic hydrocarbon represented by P' the alicyclic hydrocarbon, or the aromatic hydrocarbon, for example, one having a molecular weight of less than 500 can be used.
  • P' is derived from a diol compound containing a short-chain aliphatic hydrocarbon represented by P', an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • Examples of the aliphatic diol compound containing a short-chain aliphatic hydrocarbon represented by P'in include glycols and polyalkylene glycols, and specifically, ethylene glycol, propylene glycol, trimethylene glycol, 1,4.
  • Cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol and the like can be mentioned.
  • examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P'in include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4'-.
  • the number average molecular weight of the polymer (polyurethane) forming the hard segment is preferably 300 to 1500 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably 500 to 20000, more preferably 500 to 5000, and particularly preferably 500 to 3000, from the viewpoint of flexibility and thermal stability of the polyurethane-based thermoplastic elastomer. ..
  • the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 15:85 to 90:10, more preferably 30:70 to 90:10, from the viewpoint of moldability. ..
  • the polyurethane-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • the polyurethane-based thermoplastic elastomer for example, the thermoplastic polyurethane described in JP-A-5-331256 can be used.
  • polyurethane-based thermoplastic elastomer specifically, a combination of a hard segment composed of an aromatic diol and an aromatic diisocyanate and a soft segment composed of a copolymer ester is preferable, and more specifically, tolylene diisocyanate (more specifically, tolylene diisocyanate (TDI) / polyester-based polyol copolymer, TDI / polyether-based polyol copolymer, TDI / caprolactone-based polyol copolymer, TDI / polycarbonate-based polyol copolymer, 4,4'-diphenylmethane diisocyanate (MDI) / polyester At least one selected from based polyol copolymers, MDI / polyether polyol copolymers, MDI / caprolactone-based polyol copolymers, MDI / polycarbonate-based polyol copolymers, and MDI + hydroquinone / polyhe
  • Species are preferred, including TDI / polyester polyol copolymers, TDI / polyether polyol copolymers, MDI / polyester polyol copolymers, MDI / polyether polyol copolymers, and MDI + hydroquinone / polyhexamethylene carbonates. At least one selected from the copolymer is more preferable.
  • thermoplastic elastomers examples include the "Elastollan” series manufactured by BASF (for example, ET680, ET880, ET690, ET890, etc.) and the “Kuramiron U” series manufactured by Kuraray Co., Ltd. (for example). , 2000 series, 3000 series, 8000 series, 9000 series, etc.), "Milactran” series manufactured by Nippon Miractran Co., Ltd. (for example, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E490, E590, P890, etc.) Etc. can be used.
  • the olefin-based thermoplastic elastomer for example, at least polyolefin forms a crystalline hard segment having a high melting point, and other polymers (for example, polyolefin, other polyolefin, polyvinyl compound, etc.) are amorphous and have a glass transition temperature. Examples include materials forming low soft segments. Examples of the polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, polybutene and the like.
  • olefin-based thermoplastic elastomer examples include an olefin- ⁇ -olefin random copolymer, an olefin block copolymer, and the like, and specific examples thereof include a propylene block copolymer, an ethylene-propylene copolymer, and a propylene-.
  • a propylene block copolymer an ethylene-propylene copolymer, a propylene-1-hexene copolymer, a propylene-4-methyl-1pentene copolymer, and a propylene-1- Butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer , Ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylate copolymer , Propropylene-methyl meth
  • At least one selected from coalescing, ethylene-methyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-butyl acrylate copolymer is more preferable.
  • two or more kinds of olefin resins such as ethylene and propylene may be used in combination.
  • the olefin resin content in the olefin-based thermoplastic elastomer is preferably 50% by mass or more and 100% by mass or less.
  • the number average molecular weight of the olefin-based thermoplastic elastomer is preferably 5000 to 10000000.
  • the number average molecular weight of the olefin-based thermoplastic elastomer is 5000 to 1000000, the mechanical properties of the thermoplastic resin material are sufficient, and the processability is also excellent.
  • the number average molecular weight of the olefin-based thermoplastic elastomer is more preferably 7,000 to 1,000,000, and particularly preferably 10,000 to 1,000,000. Thereby, the mechanical physical characteristics and workability of the thermoplastic resin material can be further improved.
  • the number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 95:15, more preferably 50:50 to 90:10, from the viewpoint of moldability. ..
  • the olefin-based thermoplastic elastomer can be synthesized by copolymerizing by a known method.
  • thermoplastic elastomers examples include the "Toughmer” series manufactured by Mitsui Chemicals, Inc. (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010.
  • the resin layer may further contain a thermoplastic resin.
  • a thermoplastic resin for example, the elastic modulus of the resin layer can be adjusted within a desired range. Since the thermoplastic resin generally has a higher elastic modulus than the thermoplastic elastomer, the elastic modulus of the resin layer tends to be higher by blending the thermoplastic resin.
  • thermoplastic resin contained in the resin layer is preferably the same type as the thermoplastic elastomer contained in the resin layer.
  • the thermoplastic elastomer contained in the resin layer is a polyester-based thermoplastic elastomer, it is preferably a polyester-based thermoplastic resin.
  • thermoplastic resin contained in the resin layer examples include polyester-based thermoplastic resin, polyamide-based thermoplastic resin, olefin-based thermoplastic resin, polyurethane-based thermoplastic resin, vinyl chloride-based thermoplastic resin, and polystyrene-based thermoplastic resin. Be done. These may be used alone or in combination of two or more.
  • polyester-based thermoplastic resin examples include polylactic acid, polyhydroxy-3-butylbutyric acid, polyhydroxy-3-hexylbutyric acid, poly ( ⁇ -caprolactone), polyenant lactone, polycaprylolactone, polybutylene adipate, polyethylene adipate and the like.
  • aromatic polyesters such as aliphatic polyesters, polyethylene terephthalates, polybutylene terephthalates, polyethylene naphthalates, and polybutylene naphthalates.
  • polybutylene terephthalate is preferable as the polyester-based thermoplastic resin from the viewpoint of heat resistance and processability.
  • polyester-based thermoplastic resins include, for example, the "Juranex” series manufactured by Polyplastics Co., Ltd. (for example, 2000, 2002, etc.) and the “Novaduran” series manufactured by Mitsubishi Engineering Plastics Co., Ltd. (for example, 5010R5). , 5010R3-2, etc.), "Trecon” series manufactured by Toray Industries, Inc. (for example, 1401X06, 1401X31, etc.) and the like can be used.
  • polyamide-based thermoplastic resin examples include a polyamide obtained by ring-opening polycondensation of ⁇ -caprolactam (amide 6), a polyamide obtained by ring-opening polycondensation of undecanelactam (amide 11), and a polyamide obtained by ring-opening polycondensation of lauryllactam (amide 12).
  • Polyamide (amide 66) obtained by polycondensing diamine and dibasic acid, polyamide having metaxylene diamine as a constituent unit (amide MX), and the like can be exemplified.
  • the amide 6 can be represented by, for example, ⁇ CO- (CH 2 ) 5- NH ⁇ n.
  • the amide 11 can be represented by, for example, ⁇ CO- (CH 2 ) 10- NH ⁇ n.
  • the amide 12 can be represented by, for example, ⁇ CO- (CH 2 ) 11- NH ⁇ n.
  • the amide 66 can be represented by, for example, ⁇ CO (CH 2 ) 4 CONH (CH 2 ) 6 NH ⁇ n .
  • the amide MX can be represented by, for example, the following structural formula (A-1). Here, n represents the number of repeating units.
  • amide 6 As a commercially available product of amide 6, for example, the "UBE nylon” series (for example, 1022B, 1011FB, etc.) manufactured by Ube Industries, Ltd. can be used.
  • amide 11 for example, the "Rilsan B” series manufactured by Arkema Co., Ltd. can be used.
  • amide 12 As a commercially available product of amide 12, for example, the "UBE nylon” series manufactured by Ube Industries, Ltd. (for example, 3024U, 3020U, 3014U, etc.) can be used.
  • amide 66 for example, the "UBE nylon” series manufactured by Ube Industries, Ltd. (for example, 2020B, 2015B, etc.) can be used.
  • amide MX for example, the "MX nylon” series manufactured by Mitsubishi Gas Chemical Company, Inc. (for example, S6001, S6021, S6011, etc.) can be used.
  • the polyamide-based thermoplastic resin may be a homopolymer formed only by the above-mentioned structural units, or may be a copolymer of the above-mentioned structural units and other monomers.
  • the content of the structural unit in each polyamide-based thermoplastic resin is preferably 40% by mass or more.
  • polyolefin-based thermoplastic resin examples include polyethylene-based thermoplastic resins, polypropylene-based thermoplastic resins, and polybutadiene-based thermoplastic resins.
  • polypropylene-based thermoplastic resin is preferable as the polyolefin-based thermoplastic resin from the viewpoint of heat resistance and processability.
  • Specific examples of the polypropylene-based thermoplastic resin include a propylene homopolymer, a propylene- ⁇ -olefin random copolymer, a propylene- ⁇ -olefin block copolymer, and the like.
  • Examples of the ⁇ -olefin include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, and the like.
  • Examples thereof include ⁇ -olefins having about 3 to 20 carbon atoms such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosen.
  • the resin layer may contain components other than the resin, if necessary.
  • components other than the resin include rubber, fillers (silica, calcium carbonate, clay, etc.), antioxidants, plasticizers, colorants, weathering agents, reinforcing materials, and the like.
  • the resin layer may contain zinc cyanurate as a component other than the resin.
  • the adhesive force to the metal member tends to be further improved.
  • the content of zinc cyanurate in the entire resin layer may be 0.1% by mass to 5% by mass from the viewpoint of the effect of improving the adhesive strength and the balance with other components. It is preferably 0.5% by mass to 2% by mass, more preferably 0.5% by mass.
  • the ratio of the entire resin to the resin layer is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more. preferable.
  • the weight average molecular weight of the resin contained in the resin layer is preferably 35,000 or more, more preferably 37,500 or more, and further preferably 40,000 or more. ..
  • the weight average molecular weight of the resin contained in the resin layer is the weight average molecular weight of the entire resin contained in the resin layer.
  • the weight average molecular weight of the resin can be measured by the method described in Examples described later.
  • the upper limit of the weight average molecular weight of the resin contained in the resin layer is not particularly limited, but may be 100,000 or less.
  • the resin layer preferably has a tensile elastic modulus of 500 MPa or more, more preferably 550 MPa or more, and further preferably 600 MPa or more.
  • the upper limit of the tensile elastic modulus of the resin layer is not particularly limited, but may be 1,000 MPa or less. In the present disclosure, the tensile elastic modulus of the resin layer can be measured by the method described in Examples described later.
  • the thickness of the resin layer is not particularly limited, but is preferably 0.5 ⁇ m to 500 ⁇ m, more preferably 1 ⁇ m to 150 ⁇ m, and even more preferably 1 ⁇ m to 100 ⁇ m.
  • the average thickness of the resin layer is measured from the obtained SEM images obtained by acquiring SEM images of the cross section obtained by cutting the resin metal composite member along the laminating direction of the metal member and the resin layer from any five points. It is the arithmetic mean value of the thickness of the resin layer.
  • the thickness of the resin layer in each SEM image is a value measured at the portion having the smallest thickness.
  • the resin-metal composite member may further have a coating resin layer arranged around the resin layer.
  • the resin layer in this case functions as, for example, an adhesive layer arranged between the metal member and the coating resin layer. That is, the resin-metal composite member according to the present embodiment has a metal member, an adhesive layer arranged around the metal member, and a coating resin layer arranged around the adhesive layer, and the adhesive layer is provided.
  • the layer may contain a thermoplastic elastomer as a resin and an epoxy resin.
  • the material constituting the coating resin layer is not particularly limited.
  • the thermoplastic elastomer and the thermoplastic resin that may be contained in the resin layer may be selected from those described above.
  • the coating resin layer contains the same type of resin as the resin contained in the resin layer.
  • the resin layer contains a polyester-based thermoplastic elastomer
  • the coating resin layer may contain components other than the resin, if necessary.
  • components other than the resin include rubber, fillers (silica, calcium carbonate, clay, etc.), antioxidants, plasticizers, colorants, weathering agents, reinforcing materials, and the like.
  • the ratio of the entire resin to the coating resin layer is preferably 50% by mass or more, more preferably 70% by mass or more, and 80% by mass or more. Is even more preferable.
  • the thickness of the coating resin layer is not particularly limited. For example, it may be in the range of 10 ⁇ m to 1000 ⁇ m, or may be in the range of 50 ⁇ m or more and 700 ⁇ m or less.
  • the average thickness of the coating resin layer is measured in the same manner as the thickness of the resin layer.
  • the metal member used for the resin-metal composite member is not particularly limited, and for example, a metal cord or the like used for reinforcing a conventional rubber tire can be appropriately used.
  • the metal cord include a monofilament (single wire) made of one metal cord, a multifilament (twisted wire) in which a plurality of metal cords are twisted, and the like. From the viewpoint of improving the durability of the tire, the metal member is more preferably multifilament.
  • the shape of the metal member is not limited to the linear shape (cord shape), and may be, for example, a plate-shaped metal member.
  • the cross-sectional shape, size (diameter), and the like of the metal member are not particularly limited, and those suitable for a desired tire can be appropriately selected and used.
  • the metal member is a multifilament containing a plurality of cords
  • the number of the plurality of cords includes, for example, 2 to 10, preferably 5 to 9.
  • the thickness of the metal member is preferably 0.2 mm to 2 mm, more preferably 0.8 mm to 1.6 mm.
  • the thickness of the metal member shall be the arithmetic mean value of the thickness measured at five arbitrarily selected points.
  • the tensile elastic modulus of the metal member itself is usually about 100,000 MPa to 300,000 MPa, preferably 120,000 MPa to 270000 MPa, and even more preferably 150,000 MPa to 250,000 MPa.
  • the tensile elastic modulus of a metal member is calculated from the inclination of a stress-strain curve drawn by a ZWICK type chuck with a tensile tester.
  • the breaking elongation (tensile breaking elongation) of the metal member itself is usually about 0.1% to 15%, preferably 1% to 15%, and even more preferably 1% to 10%.
  • the tensile elongation at break of a metal member can be obtained from the strain by drawing a stress-strain curve using a ZWICK type chuck with a tensile tester.
  • the tire according to the present embodiment includes the above-mentioned resin-metal composite member for a tire.
  • the resin-metal composite member for a tire is used, for example, as a reinforcing belt member, a bead member, or the like that is wound around the outer peripheral portion of a tire skeleton or carcass constituting a tire in the circumferential direction.
  • the tire skeleton or carcass constituting the tire according to the present embodiment will be described.
  • Carcass includes so-called radial carcass, bias carcass, semi-radial carcass and the like in conventional rubber tires. Carcass generally has a structure in which reinforcing materials such as cords and fibers are coated with a rubber material.
  • the "tire frame” refers to a skeleton member (so-called tire skeleton for a resin tire) formed of a resin material.
  • Examples of the elastic material for forming the carcass include a rubber material described later, and examples of the elastic material for forming the tire skeleton include a resin material described later.
  • the rubber material may contain at least rubber (rubber component), and may contain other components such as additives as long as the effects of the present embodiment are not impaired.
  • the content of rubber (rubber component) in the rubber material is preferably 50% by mass or more, more preferably 90% by mass or more, based on the total amount of the rubber material.
  • the rubber component is not particularly limited, and natural rubber and various synthetic rubbers used in conventionally known rubber blends can be used alone or in combination of two or more.
  • the rubbers shown below, or a blend of two or more of these rubbers can be used.
  • the natural rubber may be a sheet rubber or a block rubber, and all of RSS # 1 to # 5 can be used.
  • the synthetic rubber various diene-based synthetic rubbers, diene-based copolymer rubbers, special rubbers, modified rubbers, and the like can be used.
  • a butadiene polymer such as polybutadiene (BR), a copolymer of butadiene and an aromatic vinyl compound (for example, SBR, NBR, etc.), a copolymer of butadiene and another diene compound
  • Isoprene-based polymers such as polyisoprene (IR), copolymers of isoprene and aromatic vinyl compounds, copolymers of isoprene and other diene-based compounds
  • chloroprene rubber (CR), butyl rubber (IIR), halogenated Butyl rubber (X-IIR); ethylene-propylene-based copolymer rubber (EPM), ethylene-propylene-diene-based copolymer rubber (EPDM), and any blends thereof and the like can be mentioned.
  • additives may be added to the rubber depending on the purpose.
  • the additive include a reinforcing material such as carbon black, a filler, a vulcanizing agent, a vulcanization accelerator, a fatty acid or a salt thereof, a metal oxide, a process oil, an antiaging agent, and the like, and these are appropriately blended. can do.
  • the carcass formed of the rubber material is obtained by vulcanizing the rubber by heating the unvulcanized rubber material.
  • the resin material may contain at least a resin (resin component), and may contain other components such as additives as long as the effects of the present embodiment are not impaired.
  • the content of the resin (resin component) in the resin material is preferably 50% by mass or more, more preferably 90% by mass or more, based on the total amount of the resin material.
  • the resin (resin component) contained in the resin material examples include a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin. From the viewpoint of riding comfort during traveling, the resin material preferably contains a thermoplastic elastomer.
  • thermoplastic resin and the thermoplastic elastomer examples include those described above as the thermoplastic resin and the thermoplastic elastomer which may be contained in the adhesive layer.
  • thermosetting resin examples include phenol resin, urea resin, melamine resin, epoxy resin and the like.
  • a resin material that forms the tire skeleton body that contains the same type of resin as the coating resin layer contained in the resin metal composite member.
  • the coating resin layer contains a polyester-based thermoplastic resin or a polyester-based thermoplastic elastomer
  • the elastic material may contain components other than rubber or resin, if desired.
  • other components include fillers (silica, calcium carbonate, clay, etc.), antioxidants, oils, plasticizers, colorants, weathering agents, reinforcing materials, and the like.
  • the resin / metal composite member is applied to the belt portion in the following embodiment, the resin / metal composite member may be applied to other portions such as the bead portion in addition to the belt portion.
  • the tire according to the first embodiment includes a tire skeleton body containing a resin.
  • FIG. 1A is a perspective view showing a cross section of a part of the tire according to the first embodiment.
  • FIG. 1B is a cross-sectional view of a state in which the bead portion of the tire is attached to the rim (which is a separate body from the tire).
  • the tire 10 according to the first embodiment is a pneumatic tire, and has a cross-sectional shape substantially similar to that of a conventional general rubber pneumatic tire.
  • the tire 10 has a pair of bead portions 12 in contact with the bead seat 21 of the rim 20 and the rim flange 22, a side portion 14 extending outward from the bead portion 12 in the tire radial direction, and one side portion 14 in the tire radial direction.
  • a tire skeleton 17 including a crown portion (outer peripheral portion) 16 connecting the outer end and the outer end in the tire radial direction of the other side portion 14 is provided.
  • the tire skeleton body 17 is formed by using a resin material.
  • the tire skeleton body 17 is formed by injection-molding one bead portion 12, one side portion 14, and a half-width crown portion 16 into an annular tire skeleton body half body (tire skeleton piece) 17A having the same shape. It is formed by facing each other and joining at the equatorial plane of the tire.
  • An annular bead core 18 made of a steel cord is embedded in the bead portion 12. Further, the portion of the bead portion 12 in contact with the rim 20 and at least the portion of the rim 20 in contact with the rim flange 22 are made of rubber, which is a material having better sealing properties than the resin material constituting the tire skeleton 17. An annular seal layer 24 is formed.
  • the resin metal composite member 26 which is a reinforcing cord, is embedded in the crown portion 16 in a cross-sectional view along the axial direction of the tire skeleton body 17, and the tire skeleton body 17 has at least a part thereof embedded therein. It is wound spirally in the circumferential direction. Further, on the outer peripheral side of the resin metal composite member 26 in the tire radial direction, a tread 30 made of rubber, which is a material having better wear resistance than the resin material constituting the tire skeleton 17, is arranged. The details of the resin metal composite member 26 will be described later.
  • the tire skeleton body 17 is formed of a resin material. Since the tire skeleton body half body 17A has a symmetrical shape, that is, one tire skeleton body half body 17A and the other tire skeleton body 17A have the same shape, there is one type of mold for molding the tire skeleton body half body 17A. There is a merit that it is enough.
  • the tire skeleton body 17 is formed of a single resin material, but the present invention is not limited to such an embodiment.
  • a resin material having different characteristics may be used for each portion (for example, side portion 14, crown portion 16, bead portion 12, etc.) of the tire skeleton body 17.
  • reinforcing materials polymer materials, metal fibers, cords, non-woven fabrics, woven fabrics, etc.
  • the tire skeleton body 17 may be reinforced with the reinforcing material. There is no need to bury the reinforcing material.
  • the tire skeleton half body 17A is molded by injection molding, but the present invention is not limited to this, and for example, even if it is molded by vacuum forming, pneumatic molding, melt casting, or the like. Good. Further, in the tire 10 according to the first embodiment, the tire skeleton body 17 is formed by joining two members (tire skeleton body half body 17A), but the tire skeleton body 17 is not limited to this, and a low melting point metal is used.
  • the tire skeleton may be formed as one member by the molten core method, the split core method, or blow molding used, or may be formed by joining three or more members.
  • An annular bead core 18 made of a metal cord such as a steel cord is embedded in the bead portion 12 of the tire 10.
  • the resin-metal composite member according to the present embodiment can be used.
  • the bead portion 12 can be made of the resin-metal composite member.
  • the bead core 18 may be formed of an organic fiber cord, a resin-coated organic fiber cord, or a hard resin in addition to the steel cord.
  • the bead core 18 may be omitted as long as the rigidity of the bead portion 12 is ensured and there is no problem in fitting with the rim 20.
  • An annular seal layer 24 made of rubber is formed at a portion of the bead portion 12 in contact with the rim 20 or at least a portion of the rim 20 in contact with the rim flange 22.
  • the seal layer 24 may also be formed at a portion where the tire skeleton body 17 (bead portion 12) and the bead sheet 21 come into contact with each other.
  • rubber is used as the material for forming the seal layer 24, it is preferable to use the same type of rubber as the rubber used for the outer surface of the bead portion of a conventional general rubber pneumatic tire.
  • the rubber seal layer 24 is omitted if the sealing property between the tire skeleton body 17 and the rim 20 can be ensured only by the resin material forming the tire skeleton body 17. May be good.
  • the seal layer 24 may be formed by using another thermoplastic resin or thermoplastic elastomer having better sealing properties than the resin material forming the tire skeleton 17.
  • FIG. 2 is a cross-sectional view of the tire 10 according to the first embodiment along the tire rotation axis, showing a state in which the resin cord member 26 is embedded in the crown portion of the tire skeleton body 17.
  • the resin cord member 26 is spirally wound in a state where at least a part thereof is embedded in the crown portion 16 in a cross-sectional view along the axial direction of the tire skeleton body 17.
  • the portion of the resin cord member 26 embedded in the crown portion 16 is in close contact with the resin material constituting the crown portion 16 (tire skeleton body 17).
  • L in FIG. 2 indicates the embedding depth of the resin cord member 26 in the tire rotation axis direction with respect to the crown portion 16 (tire skeleton body 17).
  • the embedding depth L of the resin cord member 26 with respect to the crown portion 16 is 1/2 of the diameter D of the resin cord member 26.
  • the resin cord member 26 has a structure in which a metal member 27 (for example, a steel cord twisted with steel fibers) is used as a core, and the outer periphery of the metal member 27 is coated with a coated resin layer 28 via an adhesive layer 25. doing.
  • a rubber tread 30 is arranged on the outer peripheral side of the resin cord member 26 in the tire radial direction. Further, the tread 30 is formed with a tread pattern composed of a plurality of grooves on the contact patch with the road surface, as in the case of the conventional rubber pneumatic tire.
  • the resin cord member 26 coated with the coated resin layer 28 containing the thermoplastic elastomer is in close contact with the tire skeleton 17 formed of the resin material containing the same type of thermoplastic elastomer. It is buried. Therefore, the contact area between the coating resin layer 28 covering the metal member 27 and the tire skeleton body 17 becomes large, and the durability between the resin cord member 26 and the tire skeleton body 17 is improved, and as a result, the durability of the tire is improved. It will be excellent.
  • the embedding depth L of the resin cord member 26 with respect to the crown portion 16 is preferably 1/5 or more of the diameter D of the resin cord member 26, and is preferably 1/2. It is more preferable to exceed. Then, it is more preferable that the entire resin cord member 26 is embedded in the crown portion 16.
  • the embedding depth L of the resin cord member 26 exceeds 1/2 of the diameter D of the resin cord member 26, it becomes difficult to pop out from the embedded portion due to the dimensions of the resin cord member 26.
  • the surface outer peripheral surface becomes flat, and the member is placed on the crown portion 16 in which the resin cord member 26 is embedded. However, it is possible to prevent air from entering the peripheral portion of the resin cord member 26.
  • the tread 30 is made of rubber, but instead of rubber, a tread made of a thermoplastic resin material having excellent wear resistance may be used.
  • the tire skeleton halves supported by a thin metal support ring face each other.
  • the joining mold is installed so as to be in contact with the outer peripheral surface of the abutting portion of the tire skeleton half body.
  • the joint mold is configured to press the periphery of the joint portion (butting portion) of the tire skeleton half body with a predetermined pressure (not shown).
  • the periphery of the joint portion of the tire skeleton half body is pressed at a temperature equal to or higher than the melting point (or softening point) of the resin material forming the tire skeleton body.
  • the joint portion of the tire skeleton body half body is heated and pressurized by the joint mold, the joint portion is melted, the tire skeleton body halves are fused to each other, and these members are integrated into the tire skeleton body 17 Is formed.
  • a resin cord member molding process which is a resin-metal composite member according to the present embodiment, will be described.
  • the metal member 27 is unwound from the reel and its surface is cleaned.
  • the outer circumference of the metal member 27 is covered with a material that forms an adhesive layer extruded from the extruder to form the adhesive layer 25.
  • the coated resin layer 28 is formed by coating the top with the resin extruded from the extruder. Then, the obtained resin cord member 26 is wound around the reel 58.
  • FIG. 3 is an explanatory diagram for explaining an operation of installing the resin cord member on the crown portion of the tire skeleton using the resin cord member heating device and rollers.
  • the resin cord member supply device 56 conveys the resin cord member 26, the reel 58 around which the resin cord member 26 is wound, the resin cord member heating device 59 arranged on the downstream side of the reel 58 in the cord transport direction, and the resin cord member 26.
  • the resin cord member of the first roller 60 arranged on the downstream side in the direction, the first cylinder device 62 that moves the first roller 60 in the direction of contacting and separating from the outer peripheral surface of the tire, and the first roller 60.
  • a second roller 64 arranged on the downstream side in the transport direction of the 26 26 and a second cylinder device 66 for moving the second roller 64 in the direction of contacting and separating with respect to the outer peripheral surface of the tire are provided.
  • the second roller 64 can be used as a metal cooling roller.
  • the surface of the first roller 60 or the second roller 64 is coated with a fluororesin (for example, Teflon (registered trademark)) in order to suppress the adhesion of the melted or softened resin material.
  • a fluororesin for example, Teflon (registered trademark)
  • the resin cord member heating device 59 includes a heater 70 and a fan 72 that generate hot air. Further, the resin cord member heating device 59 includes a heating box 74 through which the resin cord member 26 passes through the internal space to which hot air is supplied, and a discharge port 76 for discharging the heated resin cord member 26. There is.
  • the temperature of the heater 70 of the resin cord member heating device 59 is raised, and the ambient air heated by the heater 70 is sent to the heating box 74 by the wind generated by the rotation of the fan 72.
  • the resin cord member 26 unwound from the reel 58 is sent into the heating box 74 whose internal space is heated by hot air and heated (for example, the temperature of the resin cord member 26 is heated to about 100 ° C. to 250 ° C.). To do.
  • the heated resin cord member 26 passes through the discharge port 76 and is spirally wound around the outer peripheral surface of the crown portion 16 of the tire skeleton body 17 rotating in the direction of arrow R in FIG. 3 with a constant tension.
  • the resin material of the contact portion melts or softens and melt-bonds with the resin of the tire skeleton to form the crown portion 16. It is integrated with the outer peripheral surface.
  • the resin cord member is also melt-bonded to the adjacent resin cord member, the resin cord member is wound without a gap. As a result, air entry into the portion where the resin cord member 26 is embedded is suppressed.
  • the embedding depth L of the resin cord member 26 can be adjusted by the heating temperature of the resin cord member 26, the tension acting on the resin cord member 26, the pressing force of the first roller 60, and the like.
  • the burial depth L of the resin cord member 26 is set to be 1 ⁇ 5 or more of the diameter D of the resin cord member 26.
  • a band-shaped tread 30 is wound around the outer peripheral surface of the tire skeleton body 17 in which the resin cord member 26 is embedded, and this is housed in a vulcanizing can or a mold and heated (vulcanized).
  • the tread 30 may be unvulcanized rubber or vulcanized rubber.
  • the seal layer 24 made of vulcanized rubber is adhered to the bead portion 12 of the tire skeleton body 17 using an adhesive or the like, the tire 10 is completed.
  • the joint portion of the tire skeleton semifield 17A is heated by using a joint mold, but the present embodiment is not limited to this, and for example, a separately provided high frequency heating is used.
  • the tire skeleton half body 17A may be joined by heating the joint portion with a machine or the like, softening or melting the joint portion in advance by irradiation with hot air or infrared rays, and pressurizing with a joining mold.
  • the resin cord member supply device 56 has two rollers, a first roller 60 and a second roller 64, but the present embodiment is limited to this. However, it may have only one of the rollers (that is, one roller).
  • the resin cord member 26 is heated to melt or soften the surface of the tire skeleton 17 at the portion where the heated resin cord member 26 contacts.
  • the form is not limited to this embodiment, and the resin cord member 26 is placed on the crown portion after the outer peripheral surface of the crown portion 16 in which the resin cord member 26 is embedded is heated by using a hot air generator without heating the resin cord member 26. It may be buried in 16.
  • the heat source of the resin cord member heating device 59 is a heater and a fan, but this embodiment is not limited to this embodiment, and the resin cord member 26 is used. It may be a mode of directly heating with radiant heat (for example, infrared rays or the like).
  • thermoplastic resin material in which the resin cord member 26 is embedded is melted or softened is forcibly cooled by a second metal roller 64.
  • the present embodiment is not limited to this embodiment, and the melted or softened portion of the thermoplastic resin material is forcibly cooled and solidified by directly blowing cold air onto the melted or softened portion of the thermoplastic resin material. It may be the mode to do.
  • it is easy to spirally wind the resin cord member 26 in manufacturing a method of arranging the resin cord member 26 discontinuously in the width direction is also conceivable.
  • the resin cord member 26 has only one layer, but may have two or more layers.
  • the band-shaped tread 30 is wound around the outer peripheral surface of the tire skeleton 17 in which the resin cord member 26 is embedded, and then heated (vulcanized).
  • the embodiment is not limited to this embodiment, and the vulcanized strip-shaped tread may be adhered to the outer peripheral surface of the tire skeleton 17 with an adhesive or the like.
  • Examples of the vulcanized strip-shaped tread include precure tread used for rehabilitated tires.
  • the tire 10 according to the first embodiment is a so-called tubeless tire in which an air chamber is formed between the tire 10 and the rim 20 by mounting the bead portion 12 on the rim 20, but this embodiment is in this embodiment. It is not limited to, and may have a perfect tube shape.
  • FIG. 4 is a cross-sectional view in the tire width direction schematically showing the configuration of the tire 11 according to the present embodiment.
  • the rim R to which the tire 11 is assembled is shown by a broken line.
  • the tire 11 includes a pair of bead portions 112 arranged on both sides with respect to the tire equatorial plane CL, and a pair of side portions 111 extending outward in the tire radial direction from the pair of bead portions 112. It includes a tread portion 110 that connects the pair of side portions 111.
  • Each of the pair of bead portions 112 includes a bead core 160.
  • a carcass 120 including at least one layer (one layer in the example of the figure) of the carcass ply extends in a toroid shape between the bead cores 160 included in the pair of bead portions 112.
  • the carcass ply of the carcass 120 has a structure in which a cord made of steel or organic fiber is coated with rubber, for example.
  • the carcass 120 has a main body 120a extending in a toroid shape between a pair of bead cores 160 and a bead core 160 from the innermost end of the main body 120a in the tire radial direction on both sides of the tire equatorial plane CL. Includes a pair of folded portions 120b, which are folded outward in the tire width direction around the tire.
  • an inner liner 180 for preventing tire air leakage is arranged inside the tread portion 110 and the side portion 111.
  • a belt 130 composed of at least one layer (one layer in the example of the figure) is arranged outside the crown region of the carcass 120 in the tire radial direction of the tread portion 110.
  • the belt layer is formed, for example, by winding a reinforcing cord coated with a resin around a portion forming the belt layer.
  • the bead portion 112 includes a bead member 150 composed of a bead filler 170 and a bead core 160 located inside the bead filler 170 in the tire radial direction and including a metal cord such as a steel cord. Have been placed.
  • the bead member 150 is embedded in the rubber 140.
  • the belt 130 and the bead core 160 may be formed by using the resin metal composite member according to the above-described embodiment, respectively.
  • either one of the belt 130 and the bead core 160 may be formed by using the resin / metal composite member according to the above-described embodiment, and both may be formed by using the resin / metal composite member according to the above-described embodiment. May be good.
  • the disclosure includes tires of the following aspects.
  • a resin-metal composite member for a tire which comprises a metal member and a resin layer arranged around the metal member, and the resin layer contains a thermoplastic elastomer and an epoxy resin as a resin.
  • ⁇ 4> The resin-metal composite member for a tire according to any one of ⁇ 1> to ⁇ 3>, wherein the content of the epoxy resin in the entire resin layer is 1% by mass or more.
  • ⁇ 5> The resin-metal composite member for a tire according to any one of ⁇ 1> to ⁇ 4>, wherein the epoxy equivalent of the epoxy resin is 100 g / eq to 300 g / eq.
  • the value of A / B is 0.003 to 0.15.
  • ⁇ 7> The resin-metal composite member for a tire according to any one of ⁇ 1> to ⁇ 6>, wherein the resin layer further contains a thermoplastic resin as a resin.
  • ⁇ 8> The resin-metal composite member for a tire according to any one of ⁇ 1> to ⁇ 7>, wherein the weight average molecular weight of the entire resin contained in the resin layer is 40,000 or more.
  • ⁇ 9> The resin-metal composite member for a tire according to any one of ⁇ 1> to ⁇ 8>, wherein the resin layer further contains zinc cyanurate.
  • ⁇ 10> The resin-metal composite member for a tire according to any one of ⁇ 1> to ⁇ 9>, further comprising a coating resin layer arranged around the resin layer.
  • a tire comprising the resin-metal composite member for a tire according to any one of ⁇ 1> to ⁇ 10>.
  • TPC1 Polyester-based thermoplastic elastomer (manufactured by Toray DuPont, "Hytrel 6637”) TPC2 . Polyester-based thermoplastic elastomer (manufactured by Toray DuPont, “Hytrel 7247”) TPC3 . Polyester-based thermoplastic elastomer (manufactured by Toray DuPont, "Hytrel 6377”) TPC4 ... Polyester-based thermoplastic elastomer containing maleic anhydride group (manufactured by Mitsubishi Chemical Corporation, "Primaloy GQ741", maleic anhydride group equivalent: about 9.5 x 10-5 eq / g) PBT ...
  • Epoxy resin 1 Polybutylene terephthalate (manufactured by Toray Industries, Inc., "Trecon 1401X06”) Epoxy resin 1 ... Epoxy resin represented by the following formula (A) (manufactured by Nippon Kayaku Co., Ltd., "XD-1000", epoxy equivalent 245 g / eq to 260 g / eq, softening point 68 ° C. to 78 ° C.) Epoxy resin 2 ... Epoxy resin represented by the following formula (B) (manufactured by Nippon Kayaku Co., Ltd., "NC-7000L”, epoxy equivalent 223 g / eq to 238 g / eq, softening point 83 ° C. to 93 ° C.) Additive: Zinc cyanurate (manufactured by Nissan Chemical Industries, Ltd., "Star Fine F-10”)
  • the tensile elastic modulus, brass peeling force and weight average molecular weight of the prepared resin composition were measured by the following methods. The results are shown in Table 1.
  • Tension elastic modulus The tensile elastic modulus is measured in accordance with JIS K7113: 1995. Specifically, for example, using Tencilon RTF-1210 (1KN) manufactured by A & D Co., Ltd., the tensile speed is set to 100 mm / min, and the tensile elastic modulus (unit: MPa) of the resin composition is measured.
  • a measurement sample of the same material as the resin composition may be separately prepared and the elastic modulus may be measured.
  • a plate having a thickness of 2 mm formed of a resin composition may be produced by injection molding, a measurement sample obtained by punching out a dumbbell test piece of JIS3 may be prepared, and the tensile elastic modulus may be measured.
  • Weight average molecular weight is calculated in terms of polystyrene in gel permeation chromatography (GPC). Specifically, the resin composition is dissolved in a solvent such as hexafluoroisopropanol (HFIP), the insoluble matter is filtered through a filter, and the resin composition is derived as a relative molecular weight from the reference substance by GPC. ECOSEC (HLC-8320GPC) manufactured by Tosoh Corporation is used as the measuring device, and HFIP is used as the solvent.
  • a solvent such as hexafluoroisopropanol
  • a resin-metal composite member having an adhesive layer formed by using the resin compositions obtained in Example 5 and Comparative Example 1 and a tire in which the resin-metal composite member is arranged in a crown portion are produced.
  • the crack resistance of the adhesive layer was evaluated. Specifically, a multifilament having an average diameter of ⁇ 1.15 mm (a monofilament having a diameter of 0.35 mm (steel, strength: 280 N, elongation: 3%), a twisted wire obtained by twisting seven threads) and a resin for forming an adhesive layer.
  • a cord in which an adhesive layer and a coating resin layer are formed in this order around a multifilament using a composition and a polyester-based thermoplastic elastomer for forming a coating resin layer (manufactured by Toray DuPont, “Hytrel 5557”).
  • a resin-metal composite member in the shape of a shape is produced by extrusion molding.
  • the thickness of the adhesive layer is adjusted to 1 ⁇ m to 500 ⁇ m, and the thickness of the coating resin layer is adjusted to 10 ⁇ m to 1000 ⁇ m.
  • the produced resin-metal composite member was wound around the crown to produce a rubber tire (size: 225 / 40R18) , adjusted to an internal pressure of 3.0 kg / cm 2 in a room at 25 ⁇ 2 ° C., and then left to stand for 24 hours. After that, the air pressure was readjusted, a load of 1010 kg was applied to the tire, and the tire was run for 6000 km at a speed of 60 km / hour on a drum having a diameter of about 3 m. The tire after running was cut along the radial direction, and the cross section of the adhesive layer was observed with an optical microscope to investigate the state of crack generation.
  • Example 6 the weight average molecular weight of Example 6 is a predicted value.
  • the example in which the resin composition contains the epoxy resin is superior in the brass peeling power as compared with Comparative Example 2 in which the resin composition does not contain the epoxy resin.
  • the thermoplastic elastomer contained in the resin composition is excellent in crack resistance as compared with Comparative Example 1 containing a maleic anhydride group. The reason for this is considered to be that the weight average molecular weight of the resin contained in the resin composition of Examples is larger than that of Comparative Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Laminated Bodies (AREA)

Abstract

金属部材と、前記金属部材の周囲に配置される樹脂層と、を有し、前記樹脂層は樹脂として熱可塑性エラストマーと、エポキシ樹脂とを含む、タイヤ用樹脂金属複合部材。

Description

タイヤ用樹脂金属複合部材及びタイヤ
 本開示は、タイヤ用樹脂金属複合部材及びタイヤに関する。
 従来から、タイヤの耐久性(耐応力、耐内圧及び剛性)を高める試みのひとつとして、タイヤの外周に、金属製のワイヤを含む補強コードを螺旋状に巻回した補強ベルト部材を設けることが行なわれている。
 また、通常、タイヤがリムと接する位置にはリムへの固定の役割を担うビード部材が設けられており、このビード部材にも補強コードが用いられている。
 補強コードとして、例えば、特開2019-1359号公報には、金属部材と接着層と被覆樹脂層とをこの順に有するタイヤ用樹脂金属複合部材であって、接着層が極性官能基を有するポリエステル系熱可塑性エラストマーを含むものが記載されている。
 特開2019-1359号公報に記載の樹脂金属複合部材では、金属部材と被覆樹脂層との間に設けられる接着層を極性官能基を有するポリエステル系熱可塑性エラストマーを用いて形成することで、金属部材に対する接着性を高めている。その一方で、極性官能基を有するポリエステル系熱可塑性エラストマーを用いて形成した接着層は、耐亀裂性に改善の余地があることがわかった。
 以上のように、金属部材に対する接着性と耐亀裂性とに優れる樹脂層を備えるタイヤ用樹脂金属複合部材、及びこのタイヤ用樹脂金属複合部材を備えるタイヤの提供が望まれている。
 金属部材と、前記金属部材の周囲に配置される樹脂層と、を有し、前記樹脂層は樹脂として熱可塑性エラストマーと、エポキシ樹脂とを含む、タイヤ用樹脂金属複合部材。
 本開示によれば、金属部材に対する接着性と耐亀裂性とに優れる樹脂層を備えるタイヤ用樹脂金属複合部材、及びこのタイヤ用樹脂金属複合部材を備えるタイヤが提供される。
第一の実施形態に係るタイヤの一部の断面を示す斜視図である。 リムに装着したビード部の断面図である。 第一の実施形態のタイヤのタイヤ骨格体のクラウン部に補強コード部材が埋設された状態を示すタイヤ回転軸に沿った断面図である。 補強コード部材加熱装置、およびローラ類を用いてタイヤ骨格体のクラウン部に補強コード部材を設置する動作を説明するための説明図である。 第二の実施形態に係るタイヤの一部の断面を示す斜視図である。
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において、適宜変更を加えて実施することができる。
 本明細書において「樹脂」とは、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。また、以下の樹脂の説明において「同種」とは、エステル系同士、スチレン系同士等、樹脂の主鎖を構成する骨格と共通する骨格を備えたものを意味する。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において「工程」との語には、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その目的が達成されるものであれば、当該工程も本用語に含まれる。
 また、本明細書において「熱可塑性樹脂」とは、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になるが、ゴム状弾性を有しない高分子化合物を意味する。
 本明細書において「熱可塑性エラストマー」とは、ハードセグメント及びソフトセグメントを有する共重合体を意味する。熱可塑性エラストマーとしては、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつゴム状弾性を有するものが挙げられる。熱可塑性エラストマーとして具体的には、例えば、結晶性で融点の高いハードセグメント又は高い凝集力のハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーと、を有する共重合体が挙げられる。
 なお、上記ハードセグメントは、ソフトセグメントよりも相対的に硬い成分を指す。ハードセグメントは塑性変形を防止する架橋ゴムの架橋点の役目を果たす分子拘束成分であることが好ましい。例えばハードセグメントとしては、主骨格に芳香族基若しくは脂環式基等の剛直な基を有する構造、又は分子間水素結合若しくはπ-π相互作用による分子間パッキングを可能にする構造等のセグメントが挙げられる。
 また、上記ソフトセグメントは、ハードセグメントよりも相対的に柔らかい成分を指す。ソフトセグメントはゴム弾性を示す柔軟性成分であることが好ましい。例えばソフトセグメントとしては、主鎖に長鎖の基(例えば長鎖のアルキレン基等)を有し、分子回転の自由度が高く、伸縮性を有する構造のセグメントが挙げられる。
<樹脂金属複合部材>
 本実施形態に係る樹脂金属複合部材は、金属部材と、前記金属部材の周囲に配置される樹脂層と、を有し、前記樹脂層は熱可塑性エラストマーと、エポキシ樹脂とを含む、タイヤ用樹脂金属複合部材である。
 上記構成を有する樹脂金属複合部材の樹脂層は、金属部材に対する接着力と耐亀裂性とに優れる。
 樹脂層が優れた接着力を示す理由は必ずしも明らかではないが、樹脂層中に存在するエポキシ基と金属部材の表面との間に接着力を高める何らかの相互作用が生じることが考えられる。
 樹脂層が優れた耐亀裂性を示す理由は必ずしも明らかではないが、極性官能基を有する熱可塑性エラストマーは極性官能基を分子中に導入する過程で分子が切断され分子量が小さくなる傾向にあるのに対し、熱可塑性エラストマーと異なる成分としてエポキシ樹脂を配合することで、熱可塑性エラストマーの分子量の低下が抑えられることが考えられる。
 樹脂金属複合部材の形状は特に制限されない。例えば、コード状、シート状等が挙げられる。樹脂金属複合部材は一つの金属部材のみを含んでも、複数の金属部材を含んでもよい。
 樹脂金属複合部材の用途としては、タイヤを構成するタイヤ骨格体又はカーカスの外周に配置される補強ベルト部材、タイヤがリムと接する場所に配置されるビード部材等が挙げられる。
[樹脂層]
 樹脂層は、熱可塑性エラストマーと、エポキシ樹脂とを含む。
 本開示において「エポキシ樹脂」には、熱可塑性エラストマー又は熱可塑性樹脂のいずれかに該当する樹脂(例えば、分子中にエポキシ基を有する熱可塑性エラストマー又は熱可塑性樹脂)は含まないものとする。
(エポキシ樹脂)
 エポキシ樹脂の種類は特に制限されない。例えば、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ナフタレン型エポキシ樹脂、線状脂肪族エポキシ樹脂等が挙げられる。樹脂層に含まれるエポキシ樹脂は、1種のみでも2種以上であってもよい。
 熱可塑性エラストマーとの混合性の観点からは、エポキシ樹脂は常温で固体であることが好ましい。例えば、環球法で測定される軟化点が50℃~100℃であるエポキシ樹脂が好ましい。
 耐湿性の観点からは、低吸水性のエポキシ樹脂を用いることが好ましく、例えば分子中に脂環構造又はナフタレン構造を含むエポキシ樹脂が好ましい。脂環構造として具体的には、シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造、キュバン構造、ノルボルナン構造、テトラヒドロジシクロペンタジエン構造、アダマンタン構造、ジアダマンタン構造、ビシクロ[2.2.2]オクタン構造、デカヒドロナフタレン構造、スピロ[5.5]ウンデカン構造等のスピロ環構造などが挙げられる。これらの中でもテトラヒドロジシクロペンタジエン構造を有するエポキシ樹脂(ジシクロペンタジエン型エポキシ樹脂)が好ましい。
 充分な耐亀裂性の改善効果を得る観点からは、エポキシ樹脂の樹脂層全体における含有率は15質量%以下であることが好ましく、12.5質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 充分な接着力の向上効果を得る観点からは、エポキシ樹脂の樹脂層全体における含有率は1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい
 エポキシ樹脂のエポキシ当量は、100g/eq~300g/eqであることが好ましい。エポキシ当量が100g/eq以上であると一定の配合量で充分なエポキシ基を樹脂層中に存在させることができ、金属部材に対する接着性を効果的に改善できる傾向にあり、300g/eq以下であるとエポキシ樹脂が少ない比率でも添加する樹脂の物性を大きく損なうことなくエポキシ基を充分に樹脂中に存在させることができ、金属部材に対する接着性を効果的に改善できる傾向にある。
 樹脂層中に存在するエポキシ基の数を最適化する観点からは、エポキシ樹脂の樹脂層全体における含有率をA(質量%)、エポキシ当量をB(g/eq)としたときのA/Bの値が0.003~0.15であることが好ましく、0.017~0.1であることがより好ましく、0.04~0.06であることがさらに好ましい。
(熱可塑性エラストマー)
 樹脂層に含まれる熱可塑性エラストマーの種類は特に制限されない。例えば、JIS K6418に規定されるポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、熱可塑性ゴム架橋体、その他の熱可塑性エラストマー等が挙げられる。樹脂層に含まれる熱可塑性エラストマーは1種のみでも2種以上であってもよい。
 樹脂層の耐亀裂性を改善する観点からは、樹脂層に含まれる熱可塑性エラストマーは極性官能基(エポキシ基、カルボキシ基、酸無水物基、アミノ基等)を有していないことが好ましい。ただし、上述した効果が損なわれない範囲内であれば極性官能基を有する熱可塑性エラストマーを樹脂層中に含んでもよい。
 エポキシ樹脂に含まれるエポキシ基との反応を抑制する観点からは、樹脂層は、熱可塑性エラストマーとしてポリエステル系熱可塑性エラストマーを含むことが好ましい。 
-ポリエステル系熱可塑性エラストマー-
 ポリエステル系熱可塑性エラストマーとしては、例えば、少なくともポリエステルが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
 ハードセグメントを形成するポリエステルとしては、芳香族ポリエステルを用いることができる。芳香族ポリエステルは、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。芳香族ポリエステルは、好ましくは、テレフタル酸及び/又はジメチルテレフタレートと、1,4-ブタンジオールとから誘導されるポリブチレンテレフタレートであり、更に、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸、5-スルホイソフタル酸、或いは、これらのエステル形成性誘導体等のジカルボン酸成分と、分子量300以下のジオール、例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコール等の脂肪族ジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメチロール等の脂環式ジオール、キシリレングリコール、ビス(p-ヒドロキシ)ジフェニル、ビス(p-ヒドロキシフェニル)プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、ビス[4-(2-ヒドロキシ)フェニル]スルホン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’-ジヒドロキシ-p-ターフェニル、4,4’-ジヒドロキシ-p-クオーターフェニル等の芳香族ジオール等から誘導されるポリエステル、或いはこれらのジカルボン酸成分及びジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分、多官能ヒドロキシ成分等を5モル%以下の範囲で共重合することも可能である。
 ハードセグメントを形成するポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
 また、ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル、脂肪族ポリエーテル等が挙げられる。
 脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドとの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランとの共重合体等が挙げられる。
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等が挙げられる。
 これらの脂肪族ポリエーテル及び脂肪族ポリエステルの中でも、得られるポリエステルブロック共重合体の弾性特性の観点から、ソフトセグメントを形成するポリマーとしては、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε-カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペート等が好ましい。
 また、ソフトセグメントを形成するポリマーの数平均分子量は、強靱性及び低温柔軟性の観点から、300~6000が好ましい。さらに、ハードセグメント(x)とソフトセグメント(y)との質量比(x:y)は、成形性の観点から、99:1~20:80が好ましく、98:2~30:70が更に好ましい。
 上述のハードセグメントとソフトセグメントとの組合せとしては、例えば、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、上述のハードセグメントとソフトセグメントとの組合せとしては、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントが脂肪族ポリエーテルである組み合わせが好ましく、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントがポリ(エチレンオキシド)グリコールである組み合わせが更に好ましい。
 ポリエステル系熱可塑性エラストマーの市販品としては、例えば、東レ・デュポン(株)製の「ハイトレル」シリーズ(例えば、3046、4047、4767、5557、6347、6377、7247等)、東洋紡(株)製の「ペルプレン」シリーズ(例えば、P30B、P40B、P40H、P55B、P70B、P150B、P280B、P450B、P150M、S1001、S2001、S5001、S6001、S9001等)等を用いることができる。
 ポリエステル系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
-ポリアミド系熱可塑性エラストマー-
 ポリアミド系熱可塑性エラストマーとは、結晶性で融点の高いハードセグメントを形成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーとを有する共重合体からなる熱可塑性の樹脂材料であって、ハードセグメントを形成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。
 ポリアミド系熱可塑性エラストマーとしては、例えば、少なくともポリアミドが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル、ポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーは、ハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いて形成されてもよい。
 ポリアミド系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等や、特開2004-346273号公報に記載のポリアミド系エラストマー等を挙げることができる。
 ポリアミド系熱可塑性エラストマーにおいて、ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)又は一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。
Figure JPOXMLDOC01-appb-C000001
[一般式(1)中、Rは、炭素数2~20の炭化水素の分子鎖(例えば炭素数2~20のアルキレン基)を表す。]
Figure JPOXMLDOC01-appb-C000002
[一般式(2)中、Rは、炭素数3~20の炭化水素の分子鎖(例えば炭素数3~20のアルキレン基)を表す。]
 一般式(1)中、Rとしては、炭素数3~18の炭化水素の分子鎖、例えば炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖、例えば炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の炭化水素の分子鎖、例えば炭素数10~15のアルキレン基が特に好ましい。
 また、一般式(2)中、Rとしては、炭素数3~18の炭化水素の分子鎖、例えば炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖、例えば炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の炭化水素の分子鎖、例えば炭素数10~15のアルキレン基が特に好ましい。
 一般式(1)又は一般式(2)で表されるモノマーとしては、ω-アミノカルボン酸又はラクタムが挙げられる。また、ハードセグメントを形成するポリアミドとしては、これらω-アミノカルボン酸又はラクタムの重縮合体、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
 ω-アミノカルボン酸としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸等の炭素数5~20の脂肪族ω-アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε-カプロラクタム、ウデカンラクタム、ω-エナントラクタム、2-ピロリドン等の炭素数5~20の脂肪族ラクタム等を挙げることができる。
 ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン、メタキシレンジアミン等の炭素数2~20の脂肪族ジアミン等のジアミン化合物を挙げることができる。
 また、ジカルボン酸は、HOOC-(R)m-COOH(R:炭素数3~20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数2~20の脂肪族ジカルボン酸を挙げることができる。
 ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε-カプロラクタム、又はウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
 また、ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテル等が挙げられ、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。また、ポリエーテルの末端にアンモニア等を反応させることによって得られるポリエーテルジアミン等も用いることができる。
 ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
Figure JPOXMLDOC01-appb-C000003
[一般式(3)中、x及びzは、1~20の整数を表す。yは、4~50の整数を表す。]
 一般式(3)において、x及びzは、それぞれ、1~18の整数が好ましく、1~16の整数がより好ましく、1~14の整数が更に好ましく、1~12の整数が特に好ましい。また、一般式(3)において、yは、5~45の整数が好ましく、6~40の整数がより好ましく、7~35の整数が更に好ましく、8~30の整数が特に好ましい。
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、又はラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せが好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せがより好ましい。
 ハードセグメントを形成するポリマー(ポリアミド)の数平均分子量は、溶融成形性の観点から、300~15000が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~90:10が好ましく、50:50~80:20がより好ましい。
 ポリアミド系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 ポリアミド系熱可塑性エラストマーの市販品としては、例えば、宇部興産(株)の「UBESTA XPA」シリーズ(例えば、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2XPA9044等)、ダイセル・エポニック(株)の「ベスタミド」シリーズ(例えば、E40-S3、E47-S1、E47-S3、E55-S1、E55-S3、EX9200、E50-R2等)等を用いることができる。
-ポリスチレン系熱可塑性エラストマー-
 ポリスチレン系熱可塑性エラストマーとしては、例えば、少なくともポリスチレンがハードセグメントを形成し、他のポリマー(例えば、ポリブタジエン、ポリイソプレン、ポリエチレン、水添ポリブタジエン、水添ポリイソプレン等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリスチレンとしては、例えば、公知のラジカル重合法、イオン性重合法等で得られるものが好ましく用いられ、具体的には、アニオンリビング重合を持つポリスチレンが挙げられる。また、ソフトセグメントを形成するポリマーとしては、例えば、ポリブタジエン、ポリイソプレン、ポリ(2,3-ジメチル-ブタジエン)等が挙げられる。
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ポリスチレン/ポリブタジエンの組合せ、又はポリスチレン/ポリイソプレンの組合せが好ましい。また、熱可塑性エラストマーの意図しない架橋反応を抑制するため、ソフトセグメントは水素添加されていることが好ましい。
 ハードセグメントを形成するポリマー(ポリスチレン)の数平均分子量は、5000~500000が好ましく、10000~200000がより好ましい。
 また、ソフトセグメントを形成するポリマーの数平均分子量としては、5000~1000000が好ましく、10000~800000がより好ましく、30000~500000が更に好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との体積比(x:y)は、成形性の観点から、5:95~80:20が好ましく、10:90~70:30がより好ましい。
 ポリスチレン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 ポリスチレン系熱可塑性エラストマーとしては、例えば、スチレン-ブタジエン系共重合体[SBS(ポリスチレン-ポリ(ブチレン)ブロック-ポリスチレン)、SEBS(ポリスチレン-ポリ(エチレン/ブチレン)ブロック-ポリスチレン)]、スチレン-イソプレン共重合体(ポリスチレン-ポリイソプレンブロック-ポリスチレン)、スチレン-プロピレン系共重合体[SEP(ポリスチレン-(エチレン/プロピレン)ブロック)、SEPS(ポリスチレン-ポリ(エチレン/プロピレン)ブロック-ポリスチレン)、SEEPS(ポリスチレン-ポリ(エチレン-エチレン/プロピレン)ブロック-ポリスチレン)、SEB(ポリスチレン(エチレン/ブチレン)ブロック)]等が挙げられる。
 ポリスチレン系熱可塑性エラストマーの市販品としては、例えば、旭化成(株)製の「タフテック」シリーズ(例えば、H1031、H1041、H1043、H1051、H1052、H1053、H1062、H1082、H1141、H1221、H1272等)、(株)クラレ製の「SEBS」シリーズ(8007、8076等)、「SEPS」シリーズ(2002、2063等)等を用いることができる。
-ポリウレタン系熱可塑性エラストマー-
 ポリウレタン系熱可塑性エラストマーとしては、例えば、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを形成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるポリウレタン系熱可塑性エラストマー(TPU)が挙げられる。ポリウレタン系熱可塑性エラストマーは、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
Figure JPOXMLDOC01-appb-C000004
 [式中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。Rは、脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。P’は、短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。]
 式A中、Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルとしては、例えば、分子量500~5000のものを使用することができる。Pは、Pで表される長鎖脂肪族ポリエーテル及び長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジベート)ジオール、ポリ-ε-カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、ABA型トリブロックポリエーテル等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
 式A及び式B中、Rは、Rで表される脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジイソシアネート化合物に由来する。Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2-エチレンジイソシアネート、1,3-プロピレンジイソシアネート、1,4-ブタンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等が挙げられる。
 また、Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4-シクロヘキサンジイソシアネート、4,4-シクロヘキサンジイソシアネート等が挙げられる。さらに、Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
 式B中、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素としては、例えば、分子量500未満のものを使用することができる。また、P’は、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジオール化合物に由来する。P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、例えば、グリコール及びポリアルキレングリコールが挙げられ、具体的には、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等が挙げられる。
 また、P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,3-ジオール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール等が挙げられる。
 さらに、P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルサルファイド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシジフェニルメタン、ビスフェノールA、1,1-ジ(4-ヒドロキシフェニル)シクロヘキサン、1,2-ビス(4-ヒドロキシフェノキシ)エタン、1,4-ジヒドロキシナフタリン、2,6-ジヒドロキシナフタリン等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
 ハードセグメントを形成するポリマー(ポリウレタン)の数平均分子量は、溶融成形性の観点から、300~1500が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性及び熱安定性の観点から、500~20000が好ましく、500~5000が更に好ましく、500~3000が特に好ましい。また、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、15:85~90:10が好ましく、30:70~90:10が更に好ましい。
 ポリウレタン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。ポリウレタン系熱可塑性エラストマーとしては、例えば、特開平5-331256号公報に記載の熱可塑性ポリウレタンを用いることができる。
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、芳香族ジオールと芳香族ジイソシアネートとからなるハードセグメントと、ポリ炭酸エステルからなるソフトセグメントとの組合せが好ましく、より具体的には、トリレンジイソシアネート(TDI)/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、TDI/カプロラクトン系ポリオール共重合体、TDI/ポリカーボネート系ポリオール共重合体、4,4’-ジフェニルメタンジイソシアネート(MDI)/ポリエステル系ポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI/カプロラクトン系ポリオール共重合体、MDI/ポリカーボネート系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体から選ばれる少なくとも1種が好ましく、TDI/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、MDI/ポリエステルポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体から選ばれる少なくとも1種が更に好ましい。
 また、ポリウレタン系熱可塑性エラストマーの市販品としては、例えば、BASF社製の「エラストラン」シリーズ(例えば、ET680、ET880、ET690、ET890等)、(株)クラレ社製「クラミロンU」シリーズ(例えば、2000番台、3000番台、8000番台、9000番台等)、日本ミラクトラン(株)製の「ミラクトラン」シリーズ(例えば、XN-2001、XN-2004、P390RSUP、P480RSUI、P26MRNAT、E490、E590、P890等)等を用いることができる。
-オレフィン系熱可塑性エラストマー-
 オレフィン系熱可塑性エラストマーとしては、例えば、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリオレフィン、他のポリオレフィン、ポリビニル化合物等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
 オレフィン系熱可塑性エラストマーとしては、例えば、オレフィン-α-オレフィンランダム共重合体、オレフィンブロック共重合体等が挙げられ、具体的には、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、1-ブテン-1-ヘキセン共重合体、1-ブテン-4-メチル-ペンテン、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、プロピレン-酢酸ビニル共重合体等が挙げられる。
 これらの中でも、オレフィン系熱可塑性エラストマーとしては、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、及びプロピレン-酢酸ビニル共重合体から選ばれる少なくとも1種が好ましく、エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、及びエチレン-ブチルアクリレート共重合体から選ばれる少なくとも1種が更に好ましい。
 また、エチレンとプロピレンといったように2種以上のオレフィン樹脂を組み合わせて用いてもよい。また、オレフィン系熱可塑性エラストマー中のオレフィン樹脂含有率は、50質量%以上100質量%以下が好ましい。
 オレフィン系熱可塑性エラストマーの数平均分子量は、5000~10000000であることが好ましい。オレフィン系熱可塑性エラストマーの数平均分子量が5000~10000000であると、熱可塑性樹脂材料の機械的物性が十分であり、加工性にも優れる。同様の観点から、オレフィン系熱可塑性エラストマーの数平均分子量は、7000~1000000であることが更に好ましく、10000~1000000が特に好ましい。これにより、熱可塑性樹脂材料の機械的物性及び加工性を更に向上させることができる。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。更に、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~95:15が好ましく、50:50~90:10が更に好ましい。
 オレフィン系熱可塑性エラストマーは、公知の方法によって共重合することで合成することができる。
 オレフィン系熱可塑性エラストマーの市販品としては、例えば、三井化学(株)製の「タフマー」シリーズ(例えば、A0550S、A1050S、A4050S、A1070S、A4070S、A35070S、A1085S、A4085S、A7090、A70090、MH7007、MH7010、XM-7070、XM-7080、BL4000、BL2481、BL3110、BL3450、P-0275、P-0375、P-0775、P-0180、P-0280、P-0480、P-0680等)、三井・デュポンポリケミカル(株)製の「ニュクレル」シリーズ(例えば、AN4214C、AN4225C、AN42115C、N0903HC、N0908C、AN42012C、N410、N1050H、N1108C、N1110H、N1207C、N1214、AN4221C、N1525、N1560、N0200H、AN4228C、AN4213C、N035C)等、「エルバロイAC」シリーズ(例えば、1125AC、1209AC、1218AC、1609AC、1820AC、1913AC、2112AC、2116AC、2615AC、2715AC、3117AC、3427AC、3717AC等)、住友化学(株)の「アクリフト」シリーズ、「エバテート」シリーズ等、東ソー(株)製の「ウルトラセン」シリーズ等、プライムポリマー製の「プライムTPO」シリーズ(例えば、E-2900H、F-3900H、E-2900、F-3900、J-5900、E-2910、F-3910、J-5910、E-2710、F-3710、J-5910、E-2740、F-3740、R110MP、R110E、T310E、M142E等)等も用いることができる。
(熱可塑性樹脂)
 樹脂層は、熱可塑性樹脂をさらに含んでもよい。熱可塑性樹脂を含むことで、例えば、樹脂層の弾性率を所望の範囲に調節することができる。熱可塑性樹脂は一般に熱可塑性エラストマーよりも弾性率が高いため、熱可塑性樹脂を配合することで樹脂層の弾性率が高くなる傾向にある。
 樹脂層に含まれる熱可塑性樹脂は、樹脂層に含まれる熱可塑性エラストマーと同種であることが好ましい。例えば、樹脂層に含まれる熱可塑性エラストマーがポリエステル系熱可塑性エラストマーである場合はポリエステル系熱可塑性樹脂であることが好ましい。
 樹脂層に含まれる熱可塑性樹脂としては、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性樹脂、オレフィン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂等が挙げられる。これらは単独で又は2種以上を組み合わせて用いてもよい。
-ポリエステル系熱可塑性樹脂-
 ポリエステル系熱可塑性樹脂としては、ポリ乳酸、ポリヒドロキシ-3-ブチル酪酸、ポリヒドロキシ-3-ヘキシル酪酸、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等の芳香族ポリエステルなどを例示することができる。これらの中でも、耐熱性及び加工性の観点から、ポリエステル系熱可塑性樹脂としては、ポリブチレンテレフタレートが好ましい。
 ポリエステル系熱可塑性樹脂の市販品としては、例えば、ポリプラスチック(株)製の「ジュラネックス」シリーズ(例えば、2000、2002等)、三菱エンジニアリングプラスチック(株)製の「ノバデュラン」シリーズ(例えば、5010R5、5010R3-2等)、東レ(株)製の「トレコン」シリーズ(例えば、1401X06、1401X31等)等を用いることができる。
-ポリアミド系熱可塑性樹脂-
 ポリアミド系熱可塑性樹脂としては、ε-カプロラクタムを開環重縮合したポリアミド(アミド6)、ウンデカンラクタムを開環重縮合したポリアミド(アミド11)、ラウリルラクタムを開環重縮合したポリアミド(アミド12)、ジアミンと二塩基酸とを重縮合したポリアミド(アミド66)、メタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を例示することができる。
 アミド6は、例えば、{CO-(CH-NH}で表すことができる。アミド11は、例えば、{CO-(CH10-NH}で表すことができる。アミド12は、例えば、{CO-(CH11-NH}で表すことができる。アミド66は、例えば、{CO(CHCONH(CHNH}で表すことができる。アミドMXは、例えば、下記構造式(A-1)で表すことができる。ここで、nは繰り返し単位数を表す。
 アミド6の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、1022B、1011FB等)を用いることができる。アミド11の市販品としては、例えば、アルケマ(株)製の「Rilsan B」シリーズを用いることができる。アミド12の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、3024U、3020U、3014U等)を用いることができる。アミド66の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、2020B、2015B等)を用いることができる。アミドMXの市販品としては、例えば、三菱ガス化学(株)製の「MXナイロン」シリーズ(例えば、S6001、S6021、S6011等)を用いることができる。
Figure JPOXMLDOC01-appb-C000005
 ポリアミド系熱可塑性樹脂は、上記の構成単位のみで形成されるホモポリマーであってもよく、上記の構成単位と他のモノマーとのコポリマーであってもよい。コポリマーの場合、各ポリアミド系熱可塑性樹脂における上記構成単位の含有率は、40質量%以上であることが好ましい。
-ポリオレフィン系熱可塑性樹脂-
 ポリオレフィン系熱可塑性樹脂としては、ポリエチレン系熱可塑性樹脂、ポリプロピレン系熱可塑性樹脂、ポリブタジエン系熱可塑性樹脂等を例示することができる。これらの中でも、耐熱性及び加工性の点から、ポリオレフィン系熱可塑性樹脂としては、ポリプロピレン系熱可塑性樹脂が好ましい。
 ポリプロピレン系熱可塑性樹脂の具体例としては、プロピレンホモ重合体、プロピレン-α-オレフィンランダム共重合体、プロピレン-α-オレフィンブロック共重合体等が挙げられる。α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数3~20程度のα-オレフィン等が挙げられる。
(樹脂以外の成分)
 樹脂層は、必要に応じて樹脂以外の成分を含んでいてもよい。樹脂以外の成分としては、例えば、ゴム、充填剤(シリカ、炭酸カルシウム、クレイ等)、老化防止剤、可塑剤、着色剤、耐候剤、補強材等が挙げられる。
 樹脂層は、樹脂以外の成分としてシアヌル酸亜鉛を含んでもよい。樹脂層がシアヌル酸亜鉛を含むことで、金属部材に対する接着力がより向上する傾向にある。
 樹脂層がシアヌル酸亜鉛を含む場合、シアヌル酸亜鉛の樹脂層全体における含有率は、接着力改善効果と他の成分とのバランスの観点から、0.1質量%~5質量%であることが好ましく、0.5質量%~2質量%であることがより好ましい。
 樹脂層が樹脂以外の成分を含む場合、樹脂全体が樹脂層に占める割合は50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。
 耐亀裂性の観点からは、樹脂層に含まれる樹脂の重量平均分子量は35,000以上であることが好ましく、37,500以上であることがより好ましく、40,000以上であることがさらに好ましい。
 本開示において樹脂層に含まれる樹脂の重量平均分子量は、樹脂層に含まれる樹脂全体の重量平均分子量である。樹脂の重量平均分子量は、後述する実施例に記載の方法により測定できる。
 樹脂層に含まれる樹脂の重量平均分子量の上限値は特に制限されないが、100,000以下であってもよい。
 必要な剛性を確保する観点からは、樹脂層は、引張弾性率が500MPa以上であることが好ましく、550MPa以上であることがより好ましく、600MPa以上であることがさらに好ましい。樹脂層の引張弾性率の上限値は特に制限されないが、1,000MPa以下であってもよい。
 本開示において樹脂層の引張弾性率は、後述する実施例に記載の方法により測定できる。
 樹脂層の厚みは特に制限されないが、例えば、0.5μm~500μmであることが好ましく、1μm~150μmであることがより好ましく、1μm~100μmであることがさらに好ましい。
 樹脂層の平均厚みは、金属部材と樹脂層の積層方向に沿って樹脂金属複合部材を切断して得られる断面のSEM画像を任意の5箇所から取得し、得られたSEM画像から測定される樹脂層の厚みの算術平均値とする。各SEM画像における樹脂層の厚みは、最も厚みの小さい部分で測定される値とする。
 樹脂金属複合部材は、樹脂層の周囲に配置される被覆樹脂層をさらに有していてもよい。この場合の樹脂層は、例えば、金属部材と被覆樹脂層の間に配置される接着層として機能する。
 すなわち、本実施形態に係る樹脂金属複合部材は、金属部材と、前記金属部材の周囲に配置される接着層と、前記接着層の周囲に配置される被覆樹脂層と、を有し、前記接着層は樹脂として熱可塑性エラストマーと、エポキシ樹脂とを含むものであってもよい。
[被覆樹脂層]
 被覆樹脂層を構成する材料は、特に制限されない。例えば、樹脂層に含まれてもよい熱可塑性エラストマー及び熱可塑性樹脂として上述したものから選択してもよい。
 樹脂層に対する親和性の観点からは、被覆樹脂層は樹脂層に含まれる樹脂と同種の樹脂を含むことが好ましい。例えば、樹脂層がポリエステル系熱可塑性エラストマーを含む場合は、ポリエステル系熱可塑性エラストマー又はポリエステル系熱可塑性樹脂を含むことが好ましい。
 被覆樹脂層は、必要に応じて樹脂以外の成分を含んでいてもよい。樹脂以外の成分としては、例えば、ゴム、充填剤(シリカ、炭酸カルシウム、クレイ等)、老化防止剤、可塑剤、着色剤、耐候剤、補強材等が挙げられる。
 被覆樹脂層が樹脂以外の成分を含む場合、樹脂全体が被覆樹脂層に占める割合は50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。
 被覆樹脂層の厚みは、特に制限されない。例えば、10μm~1000μmの範囲であってもよく、50μm以上700μm以下の範囲であってもよい。
 被覆樹脂層の平均厚みは、樹脂層の厚みと同様にして測定される。
[金属部材]
 樹脂金属複合部材に用いる金属部材は特に制限されず、例えば、従来のゴムタイヤの補強に用いられる金属製のコード等を適宜用いることができる。金属製のコードとしては、例えば、一本の金属コードからなるモノフィラメント(単線)、複数本の金属コードを撚ったマルチフィラメント(撚線)等が挙げられる。タイヤの耐久性を向上させる観点からは、金属部材はマルチフィラメントがより好ましい。また、金属部材の形状は線状(コード状)に限られるものではなく、例えば板状の金属部材であってもよい。
 金属部材の断面形状、サイズ(直径)等は、特に限定されるものではなく、所望のタイヤに適したものを適宜選定して用いることができる。
 金属部材が複数本のコードを含むマルチフィラメントである場合、複数本のコードの数としては、例えば2本~10本が挙げられ、5本~9本が好ましい。
 タイヤの耐内圧性と軽量化とを両立する観点からは、金属部材の太さは、0.2mm~2mmであることが好ましく、0.8mm~1.6mmであることがより好ましい。金属部材の太さは、任意に選択した5箇所において測定した太さの算術平均値とする。
 金属部材自体の引張弾性率は、通常、100000MPa~300000MPa程度であり、120000MPa~270000MPaであることが好ましく、150000MPa~250000MPaであることが更に好ましい。金属部材の引張弾性率は、引張試験機にてZWICK型チャックを用いて応力-歪曲線を描き、その傾きから算出する。
 金属部材自体の破断伸び(引張破断伸び)は、通常、0.1%~15%程度であり、1%~15%が好ましく、1%~10%が更に好ましい。金属部材の引張破断伸びは、引張試験機にてZWICK型チャックを用いて応力-歪曲線を描き、歪から求めることができる。
<タイヤ>
 本実施形態に係るタイヤは、前述のタイヤ用樹脂金属複合部材を備える。
 タイヤ用樹脂金属複合部材は、例えば、タイヤを構成するタイヤ骨格体又はカーカスの外周部に周方向に巻回される補強ベルト部材、ビード部材等として用いられる。以下、本実施形態に係るタイヤを構成するタイヤ骨格体又はカーカスについて説明する。
 〔タイヤ骨格体又はカーカス〕
 本開示において「カーカス(carcass)」には、従来のゴム製のタイヤにおけるいわゆるラジアルカーカス、バイアスカーカス、セミラジアルカーカス等が含まれる。カーカスは一般に、コード、繊維等の補強材がゴム材料で被覆された構造を有する。
 本開示において「タイヤ骨格体(tire frame)」とは、樹脂材料で形成された骨格部材(いわゆる樹脂タイヤ用のタイヤ骨格体)を言う。
 カーカスを形成する弾性材料としては後述するゴム材料が挙げられ、タイヤ骨格体を形成する弾性材料としては後述する樹脂材料が挙げられる。
 (弾性材料:ゴム材料)
 ゴム材料は、ゴム(ゴム成分)を少なくとも含んでいればよく、本実施形態の効果を損なわない範囲で、添加剤等の他の成分を含んでもよい。ただし、前記ゴム材料中におけるゴム(ゴム成分)の含有量は、ゴム材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。
 ゴム成分としては、特に限定はなく、従来より公知のゴム配合に使用される天然ゴム及び各種合成ゴムを、単独もしくは2種以上混合して用いることができる。例えば、下記に示す様なゴム、もしくはこれらの2種以上のゴムブレンドを使用することができる。
 上記天然ゴムとしては、シートゴムでもブロックゴムでもよく、RSS#1~#5の総てを用いることができる。
 上記合成ゴムとしては、各種ジエン系合成ゴムやジエン系共重合体ゴム及び特殊ゴムや変性ゴム等を使用できる。具体的には、例えば、ポリブタジエン(BR)、ブタジエンと芳香族ビニル化合物との共重合体(例えばSBR、NBRなど)、ブタジエンと他のジエン系化合物との共重合体等のブタジエン系重合体;ポリイソプレン(IR)、イソプレンと芳香族ビニル化合物との共重合体、イソプレンと他のジエン系化合物との共重合体等のイソプレン系重合体;クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X-IIR);エチレン-プロピレン系共重合体ゴム(EPM)、エチレン-プロピレン-ジエン系共重合体ゴム(EPDM)及びこれらの任意のブレンド物等が挙げられる。
 ゴム材料は、目的に応じてゴムに添加物等の他の成分を加えてもよい。
 添加物としては、例えば、カーボンブラック等の補強材、充填剤、加硫剤、加硫促進剤、脂肪酸又はその塩、金属酸化物、プロセスオイル、老化防止剤等が挙げられ、これらを適宜配合することができる。
 ゴム材料で形成されるカーカスは、未加硫のゴム材料を加熱によってゴムを加硫することで得られる。
 (弾性材料:樹脂材料)
 樹脂材料は、樹脂(樹脂成分)を少なくとも含んでいればよく、本実施形態の効果を損なわない範囲で、添加剤等の他の成分を含んでもよい。ただし、前記樹脂材料中における樹脂(樹脂成分)の含有量は、樹脂材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。
 樹脂材料に含まれる樹脂(樹脂成分)としては、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂が挙げられる。走行時の乗り心地の観点から、樹脂材料は、熱可塑性エラストマーを含むことが好ましい。
 熱可塑性樹脂及び熱可塑性エラストマーとしては、接着層に含まれてもよい熱可塑性樹脂及び熱可塑性エラストマーとして上述したものが挙げられる。熱硬化性樹脂としては、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂等が挙げられる。
 接着性の観点からは、タイヤ骨格体を形成する樹脂材料としては、樹脂金属複合部材に含まれる被覆樹脂層と同種の樹脂を含むものを用いることが好ましい。例えば、被覆樹脂層がポリエステル系熱可塑性樹脂又はポリエステル系熱可塑性エラストマーを含む場合、タイヤ骨格体もポリエステル系熱可塑性樹脂又はポリエステル系熱可塑性エラストマーを用いることが好ましい。
 弾性材料(ゴム材料又は樹脂材料)は、所望に応じて、ゴム又は樹脂以外の他の成分を含んでもよい。他の成分としては、例えば、充填剤(シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等が挙げられる。
<タイヤの構造>
 以下、図面に従って、本開示の実施形態に係るタイヤについて説明する。
 なお、以下に示す各図は、模式的に示した図であり、各部の大きさ及び形状は、理解を容易にするために、適宜誇張して示している。また、以下の実施形態では樹脂金属複合部材をベルト部に適用しているが、ベルト部に加えてビード部等のその他の部位に樹脂金属複合部材を適用してもよい。
 (第一の実施形態)
 第一の実施形態に係るタイヤは、樹脂を含むタイヤ骨格体を備える。
 図1Aは、第一の実施形態に係るタイヤの一部の断面を示す斜視図である。図1Bは、タイヤのビード部をリム(タイヤとは別体である)に装着した状態の断面図である。
 図1Aに示すように、第一の実施形態に係るタイヤ10は空気入りタイヤであり、従来の一般的なゴム製の空気入りタイヤと略同様の断面形状を呈している。
 タイヤ10は、リム20のビードシート21とリムフランジ22とに接触する1対のビード部12と、ビード部12からタイヤ径方向外側に延びるサイド部14と、一方のサイド部14のタイヤ径方向外側端と他方のサイド部14のタイヤ径方向外側端とを連結するクラウン部(外周部)16と、からなるタイヤ骨格体17を備えている。タイヤ骨格体17は、樹脂材料を用いて形成されている。
 タイヤ骨格体17は、一つのビード部12と一つのサイド部14と半幅のクラウン部16とを一体として射出成形された同一形状の円環状のタイヤ骨格体半体(タイヤ骨格片)17Aを互いに向かい合わせ、タイヤ赤道面部分で接合することにより形成されている。
 ビード部12には、スチールコードからなる円環状のビードコア18が埋設されている。また、ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分には、タイヤ骨格体17を構成する樹脂材料よりもシール性に優れた材料であるゴムからなる円環状のシール層24が形成されている。
 クラウン部16には、補強コードである樹脂金属複合部材26が、タイヤ骨格体17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で、タイヤ骨格体17の周方向に螺旋状に巻回されている。また、樹脂金属複合部材26のタイヤ径方向外周側には、タイヤ骨格体17を構成する樹脂材料よりも耐摩耗性に優れた材料であるゴムからなるトレッド30が配置されている。なお、樹脂金属複合部材26の詳細については、後述する。
 第一の実施形態に係るタイヤ10では、タイヤ骨格体17が樹脂材料で形成されている。タイヤ骨格体半体17Aは左右対称形状、即ち、一方のタイヤ骨格体半体17Aと他方のタイヤ骨格体17Aとが同一形状であるので、タイヤ骨格体半体17Aを成形する金型が1種類で済むというメリットがある。
 なお、第一の実施形態に係るタイヤ10では、タイヤ骨格体17は、単一の樹脂材料で形成されているが、このような態様に限定されない。例えば、ゴム製の空気入りタイヤと同様に、タイヤ骨格体17の各部位(例えば、サイド部14、クラウン部16、ビード部12等)毎に異なる特徴を有する樹脂材料を用いてもよい。また、タイヤ骨格体17の各部位(例えば、サイド部14、クラウン部16、ビード部12等)に、補強材(高分子材料や金属製の繊維、コード、不織布、織布等)を埋設配置し、該補強材でタイヤ骨格体17を補強してもよい。補強材の埋設配置は、なくてもよい。
 第一の実施形態に係るタイヤ10では、タイヤ骨格体半体17Aが射出成形により成形されているが、これに限定されず、例えば、真空成形、圧空成形、メルトキャスティング等により成形されていてもよい。また、第一の実施形態に係るタイヤ10では、タイヤ骨格体17は、2つの部材(タイヤ骨格体半体17A)を接合して形成されているが、これに限定されず、低融点金属を用いた溶融中子方式、割り中子方式、又はブロー成形によってタイヤ骨格体を1つの部材としてもよく、3つ以上の部材を接合して形成されていてもよい。
 タイヤ10のビード部12には、スチールコード等の金属製のコードからなる円環状のビードコア18が埋設されている。なお、ビードコア18を含む部材として、前述の本実施形態に係る樹脂金属複合部材を用いることができ、例えばビード部12を樹脂金属複合部材で構成することができる。
 また、ビードコア18は、スチールコード以外に、有機繊維コード、樹脂被覆した有機繊維コード、又は硬質樹脂で形成されていてもよい。なお、ビードコア18は、ビード部12の剛性が確保され、リム20との嵌合に問題がないのであれば、省略してもよい。
 ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分には、ゴムからなる円環状のシール層24が形成されている。シール層24は、タイヤ骨格体17(ビード部12)とビードシート21とが接触する部分にも形成されていてもよい。シール層24の形成材料としてゴムを用いる場合には、従来の一般的なゴム製の空気入りタイヤのビード部外面に用いられているゴムと同種のゴムを用いることが好ましい。なお、タイヤ骨格体17を樹脂材料で形成する場合、ゴムのシール層24は、タイヤ骨格体17を形成する樹脂材料のみでリム20との間のシール性が確保できるのであれば、省略してもよい。
 シール層24は、タイヤ骨格体17を形成する樹脂材料よりもシール性に優れる他の熱可塑性樹脂又は熱可塑性エラストマーを用いて形成されてもよい。
 次に、図2を参照しながら、樹脂コード部材26で形成される補強ベルト部材について説明する。なお、この樹脂コード部材26に、前述の本実施形態に係る樹脂金属複合部材を用いることができる。
 図2は、第一の実施形態に係るタイヤ10のタイヤ回転軸に沿った断面図であり、樹脂コード部材26がタイヤ骨格体17のクラウン部に埋設された状態を示す。
 図2に示すように、樹脂コード部材26は、タイヤ骨格体17の軸方向に沿った断面視で、その少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されている。そして、樹脂コード部材26のクラウン部16に埋設された部分は、クラウン部16(タイヤ骨格体17)を構成する樹脂材料と密着した状態となっている。図2におけるLは、クラウン部16(タイヤ骨格体17)に対する樹脂コード部材26のタイヤ回転軸方向への埋設深さを示す。ある実施態様では、樹脂コード部材26のクラウン部16に対する埋設深さLは、樹脂コード部材26の直径Dの1/2である。
 樹脂コード部材26は、金属部材27(例えば、スチール繊維を撚ったスチールコード)を芯として、金属部材27の外周が、接着層25を介して、被覆樹脂層28で被覆された構造を有している。
 樹脂コード部材26のタイヤ径方向外周側には、ゴム製のトレッド30が配置されている。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターンが形成されている。
 ある実施態様では、タイヤ10では、熱可塑性エラストマーを含む被覆樹脂層28で被覆した樹脂コード部材26が、同種の熱可塑性エラストマーを含む樹脂材料で形成されているタイヤ骨格体17に密着した状態で埋設されている。そのため、金属部材27を被覆する被覆樹脂層28とタイヤ骨格体17との接触面積が大きくなり、樹脂コード部材26とタイヤ骨格体17との耐久性が向上し、その結果、タイヤの耐久性が優れたものとなる。
 樹脂コード部材26がクラウン部16に埋設されている場合、樹脂コード部材26のクラウン部16に対する埋設深さLは、樹脂コード部材26の直径Dの1/5以上であれば好ましく、1/2を超えることがより好ましい。そして、樹脂コード部材26の全体がクラウン部16に埋設されることが更に好ましい。樹脂コード部材26の埋設深さLが、樹脂コード部材26の直径Dの1/2を超えると、樹脂コード部材26の寸法上、埋設部から飛び出し難くなる。そして、樹脂コード部材26の全体がクラウン部16に埋設されると、表面(外周面)がフラットになり、樹脂コード部材26が埋設されたクラウン部16上に部材が載置された場合であっても、樹脂コード部材26の周辺部に空気が入るのを抑制することができる。
 第一の実施形態に係るタイヤ10では、トレッド30がゴムで形成されているが、ゴムの代わりに、耐摩耗性に優れる熱可塑性樹脂材料で形成したトレッドを用いてもよい。
 ついで、第一の実施形態に係るタイヤの製造方法について説明する。
[タイヤ骨格体成形工程]
 まず、薄い金属の支持リングに支持されたタイヤ骨格体半体同士を互いに向かい合わせる。次に、タイヤ骨格体半体の突き当て部分の外周面と接するように、接合金型を設置する。ここで、上記接合金型は、タイヤ骨格体半体の接合部(突き当て部分)周辺を所定の圧力で押圧するように構成されている(図示せず)。次に、タイヤ骨格体半体の接合部周辺を、タイヤ骨格体を形成する樹脂材料の融点(又は軟化点)以上で押圧する。タイヤ骨格体半体の接合部が接合金型によって加熱・加圧されると、上記接合部が溶融し、タイヤ骨格体半体同士が融着し、これら部材が一体となってタイヤ骨格体17が形成される。
[樹脂コード部材成形工程]
 次に、本実施形態に係る樹脂金属複合部材である樹脂コード部材成形工程について説明する。
 まず、例えば、リールから金属部材27を巻出し、その表面を洗浄する。次に、金属部材27の外周を、押出機から押し出した接着層を形成する材料で被覆して、接着層25を形成する。さらにその上を押出機から押し出した樹脂で被覆することで、被覆樹脂層28を形成する。そして、得られた樹脂コード部材26をリール58に巻き取る。
[樹脂コード部材巻回工程]
 次に、図3を参照しながら、樹脂コード部材巻回工程について説明する。図3は、樹脂コード部材加熱装置及びローラ類を用いてタイヤ骨格体のクラウン部に樹脂コード部材を設置する動作を説明するための説明図である。図3において、樹脂コード部材供給装置56は、樹脂コード部材26を巻き付けたリール58と、リール58のコード搬送方向下流側に配置された、樹脂コード部材加熱装置59と、樹脂コード部材26の搬送方向下流側に配置された第1のローラ60と、第1のローラ60をタイヤ外周面に対して接離する方向に移動する第1のシリンダ装置62と、第1のローラ60の樹脂コード部材26の搬送方向下流側に配置される第2のローラ64と、第2のローラ64をタイヤ外周面に対して接離する方向に移動する第2のシリンダ装置66と、を備えている。第2のローラ64は、金属製の冷却用ローラとして利用することができる。また、第1のローラ60又は第2のローラ64の表面は、溶融又は軟化した樹脂材料の付着を抑制するために、フッ素樹脂(例えば、テフロン(登録商標))でコーティングされている。以上により、加熱された樹脂コード部材は、タイヤ骨格体のケース樹脂に強固に一体化される。
 樹脂コード部材加熱装置59は、熱風を生じさせるヒーター70及びファン72を備えている。また、樹脂コード部材加熱装置59は、内部に熱風が供給される、内部空間を樹脂コード部材26が通過する加熱ボックス74と、加熱された樹脂コード部材26を排出する排出口76とを備えている。
 本工程では、まず、樹脂コード部材加熱装置59のヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風によって加熱ボックス74へ送る。次に、リール58から巻き出した樹脂コード部材26を、熱風で内部空間が加熱された加熱ボックス74内へ送り、加熱(例えば、樹脂コード部材26の温度を100℃~250℃程度に加熱)する。加熱された樹脂コード部材26は、排出口76を通り、図3の矢印R方向に回転するタイヤ骨格体17のクラウン部16の外周面に、一定のテンションをもって螺旋状に巻きつけられる。ここで、加熱された樹脂コード部材26の被覆樹脂層がクラウン部16の外周面に接触すると、接触部分の樹脂材料が溶融又は軟化し、タイヤ骨格体の樹脂と溶融接合してクラウン部16の外周面に一体化される。このとき、樹脂コード部材は隣接する樹脂コード部材とも溶融接合される為、隙間のない状態で巻回される。これにより、樹脂コード部材26を埋設した部分へのエア入りが抑制される。
 樹脂コード部材26の埋設深さLは、樹脂コード部材26の加熱温度、樹脂コード部材26に作用させるテンション、及び第1のローラ60による押圧力等によって調整することができる。ある実施態様では、樹脂コード部材26の埋設深さLが、樹脂コード部材26の直径Dの1/5以上となるように設定される。
 次に、樹脂コード部材26が埋設されたタイヤ骨格体17の外周面に帯状のトレッド30を巻き付け、これを加硫缶やモールドに収容して加熱(加硫)する。トレッド30は、未加硫ゴムであっても、加硫ゴムであってもよい。
 そして、タイヤ骨格体17のビード部12に、加硫済みのゴムからなるシール層24を、接着剤等を用いて接着すれば、タイヤ10の完成となる。
 第一の実施形態に係るタイヤの製造方法では、接合金型を用いてタイヤ骨格体半体17Aの接合部を加熱したが、本実施形態はこれに限定されず、例えば、別に設けた高周波加熱機等によって上記接合部を加熱したり、予め熱風や赤外線の照射等によって軟化又は溶融させ、接合金型によって加圧したりして、タイヤ骨格体半体17Aを接合させてもよい。
 第一の実施形態に係るタイヤの製造方法では、樹脂コード部材供給装置56は、第1のローラ60及び第2のローラ64の2つのローラを有しているが、本実施形態はこれに限定されず、何れか一方のローラのみ(即ち、ローラ1個)を有していてもよい。
 第一の実施形態に係るタイヤの製造方法では、樹脂コード部材26を加熱し、加熱した樹脂コード部材26が接触する部分のタイヤ骨格体17の表面を溶融又は軟化させる態様としたが、本実施形態はこの態様に限定されず、樹脂コード部材26を加熱せずに熱風生成装置を用い、樹脂コード部材26が埋設されるクラウン部16の外周面を加熱した後、樹脂コード部材26をクラウン部16に埋設するようにしてもよい。
 また、第一の実施形態に係るタイヤの製造方法では、樹脂コード部材加熱装置59の熱源をヒーター及びファンとする態様としたが、本実施形態はこの態様に限定されず、樹脂コード部材26を輻射熱(例えば、赤外線等)で直接加熱する態様としてもよい。
 さらに、第一の実施形態に係るタイヤの製造方法では、樹脂コード部材26を埋設した熱可塑性の樹脂材料が溶融又は軟化した部分を、金属製の第2のローラ64で強制的に冷却する態様としたが、本実施形態はこの態様に限定されず、熱可塑性の樹脂材料が溶融又は軟化した部分に冷風を直接吹きかけて、熱可塑性の樹脂材料の溶融又は軟化した部分を強制的に冷却固化する態様としてもよい。
 樹脂コード部材26は、螺旋巻きすることが製造上は容易であるが、幅方向で樹脂コード部材26を不連続に配置する方法等も考えられる。
 本実施形態のタイヤでは、樹脂コード部材26は1層のみであるが、2層以上としてもよい。
 第一の実施形態に係るタイヤの製造方法では、樹脂コード部材26が埋設されたタイヤ骨格体17の外周面に帯状のトレッド30を巻き付け、その後に加熱(加硫)する態様としたが、本実施形態はこの態様に限定されず、加硫済みの帯状のトレッドをタイヤ骨格体17の外周面に接着剤等により接着する態様としてもよい。加硫済みの帯状のトレッドとしては、例えば、更生タイヤに用いられるプレキュアトレッドが挙げられる。
 第一の実施形態に係るタイヤ10は、ビード部12をリム20に装着することでタイヤ10とリム20との間で空気室を形成する、いわゆるチューブレスタイヤであるが、本実施形態はこの態様に限定されず、完全なチューブ形状であってもよい。
 (第二の実施形態)
 第二の実施形態に係るタイヤは、タイヤ骨格体に代えてカーカスを備える。
 図4は、本実施形態に係るタイヤ11の構成を概略的に示す、タイヤ幅方向断面図である。図4には、便宜のため、タイヤ11が組み付けられるリムRを、破線により示している。
 タイヤ11は、図4に示すように、タイヤ赤道面CLに対して両側に配置される一対のビード部112と、一対のビード部112からそれぞれタイヤ径方向外側へ延びる一対のサイド部111と、前記一対のサイド部111をつなぐトレッド部110と、を備えている。一対のビード部112は、それぞれビードコア160を含んでいる。
 図4の例において、一対のビード部112に含まれるビードコア160の間には、少なくとも1層(図の例では1層)のカーカスプライを含むカーカス120が、トロイド状に延びている。カーカス120のカーカスプライは、例えば、スチール製又は有機繊維製等のコードがゴムにより被覆された構成を有する。
 図4の例において、カーカス120は、一対のビードコア160の間をトロイド状に延びる本体部120aと、タイヤ赤道面CLに対する両側のそれぞれにおいて、本体部120aのタイヤ径方向最内端から、ビードコア160の周りでタイヤ幅方向外側に向けて折り返された、一対の折り返し部120bと、を含んでいる。
 図4の例において、トレッド部110及びサイド部111の内側には、タイヤの空気漏れを防ぐためのインナーライナー180が配置されている。さらに、トレッド部110の、カーカス120のクラウン域よりもタイヤ径方向外側には、少なくとも1層(図の例では1層)のベルト層からなるベルト130が配置されている。ベルト層は、例えば、樹脂で被覆された補強コードをベルト層を形成する部分に巻きつけて形成される。
 図4の例において、ビード部112には、ビードフィラー170と、ビードフィラー170のタイヤ径方向内側に位置し、スチールコード等の金属製のコードを含むビードコア160とから構成されるビード部材150が配置されている。図4の例では、ビード部材150は、ゴム140内に埋設されている。
 図4の例において、ベルト130及びビードコア160は、それぞれ前述の実施形態に係る樹脂金属複合部材を用いて形成されてもよい。この場合、ベルト130及びビードコア160のいずれか一方が前述の実施形態に係る樹脂金属複合部材を用いて形成されてもよく、双方が前述の実施形態に係る樹脂金属複合部材を用いて形成されてもよい。
 以上、各種実施形態を挙げて説明したが、これらの実施形態は一例であり、本開示は、その要旨を逸脱しない範囲内において、種々変更を加えて実施することができる。また、本開示の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
 本開示には、以下に示す態様のタイヤが含まれる。
<1>金属部材と、前記金属部材の周囲に配置される樹脂層と、を有し、前記樹脂層は樹脂として熱可塑性エラストマーと、エポキシ樹脂とを含む、タイヤ用樹脂金属複合部材。
<2>前記熱可塑性エラストマーがポリエステル系熱可塑性エラストマーを含む、<1>に記載のタイヤ用樹脂金属複合部材。
<3>前記エポキシ樹脂の樹脂層全体における含有率は15質量%以下である、<1>又は<2>に記載のタイヤ用樹脂金属複合部材。
<4>前記エポキシ樹脂の樹脂層全体における含有率は1質量%以上である、<1>~<3>のいずれか1項に記載のタイヤ用樹脂金属複合部材。
<5>前記エポキシ樹脂のエポキシ当量は100g/eq~300g/eqである、<1>~<4>のいずれか1項に記載のタイヤ用樹脂金属複合部材。
<6>前記エポキシ樹脂の樹脂層全体における含有率をA(質量%)、前記エポキシ樹脂のエポキシ当量をB(g/eq)としたときのA/Bの値が0.003~0.15である、<1>~<5>のいずれか1項に記載のタイヤ用樹脂金属複合部材。
<7>前記樹脂層が樹脂として熱可塑性樹脂をさらに含む、<1>~<6>のいずれか1項に記載のタイヤ用樹脂金属複合部材。
<8>前記樹脂層に含まれる樹脂全体の重量平均分子量が40,000以上である、<1>~<7>のいずれか1項に記載のタイヤ用樹脂金属複合部材。
<9>前記樹脂層がシアヌル酸亜鉛をさらに含む、<1>~<8>のいずれか1項に記載のタイヤ用樹脂金属複合部材。
<10>前記樹脂層の周囲に配置される被覆樹脂層をさらに有する、<1>~<9>のいずれか1項に記載のタイヤ用樹脂金属複合部材。
<11><1>~<10>のいずれか1項に記載のタイヤ用樹脂金属複合部材を備えるタイヤ。
<12>前記タイヤ用樹脂金属複合部材が、前記タイヤの補強ベルト部材及びビード部材の少なくとも一方に含まれる、<11>に記載のタイヤ。
 以下、実施例により本開示を具体的に説明するが、本開示はこれらの記載に何ら制限を受けるものではない。
<樹脂組成物の調製>
 表1に記載の材料を表1に示す量(質量部)で混合して、樹脂組成物を調製した。表1に示す材料の詳細は、下記の通りである。得られた樹脂組成物に対し、(1)~(3)の評価を実施した結果を表1に示す。
 TPC1…ポリエステル系熱可塑性エラストマー(東レ・デュポン社製、「ハイトレル6367」)
 TPC2…ポリエステル系熱可塑性エラストマー(東レ・デュポン社製、「ハイトレル7247」)
 TPC3…ポリエステル系熱可塑性エラストマー(東レ・デュポン社製、「ハイトレル6377」)
 TPC4…無水マレイン酸基を含有するポリエステル系熱可塑性エラストマー(三菱ケミカル(株)製、「プリマロイGQ741」、無水マレイン酸基当量:約9.5×10-5eq/g)
 PBT…ポリブチレンテレフタレート(東レ(株)製、「トレコン1401X06」)
 エポキシ樹脂1…下記式(A)で示されるエポキシ樹脂(日本化薬(株)製、「XD-1000」、エポキシ当量245g/eq~260g/eq、軟化点68℃~78℃)
 エポキシ樹脂2…下記式(B)で示されるエポキシ樹脂(日本化薬(株)製、「NC-7000L」、エポキシ当量223g/eq~238g/eq、軟化点83℃~93℃)
 添加剤…シアヌル酸亜鉛(日産化学(株)製、「スターファインF-10」)
Figure JPOXMLDOC01-appb-C000006
 調製した樹脂組成物の引張弾性率、黄銅剥離力及び重量平均分子量を、下記の手法で測定した。結果を表1に示す。
(1)引張弾性率
 引張弾性率の測定は、JIS K7113:1995に準拠して行う。具体的には、例えば、A&D社製、テンシロンRTF-1210(1KN)を用い、引張速度を100mm/minに設定し、樹脂組成物の引張弾性率(単位:MPa)の測定を行う。
 なお、樹脂組成物の引張弾性率は、樹脂組成物と同じ材料の測定試料を別途準備して弾性率を測定してもよい。具体的には、射出成形にて樹脂組成物で形成した厚さ2mmの板を作製し、JIS3のダンベル試験片を打ち抜いた測定サンプルを用意し、引張弾性率の測定を行ってもよい。
(2)黄銅剥離力
 樹脂組成物の金属部材に対する接着力は、剥離試験により行う。具体的には、樹脂組成物からなる樹脂板と、黄銅(Cu/Zn=65/35)からなる幅20mmの試験片とを用意し、230℃のプレス機で樹脂板を溶融し試験片に圧着させて積層体を作製する。この積層体を用いて、引張試験機として島津製作所社製の島津オートグラフAGS-J(5KN)を用い、室温環境(25℃)で引張速度100mm/minで180°剥離試験を行って、剥離力(単位:N)を測定する。得られた測定値を、実施例1の測定値を100とした指数に変換する。
(3)重量平均分子量
 重量平均分子量(Mw)はゲルパーミエーションクロマトグラフィー(GPC)におけるポリスチレン換算にて算出する。具体的には、樹脂組成物をヘキサフルオロイソプロパノール(HFIP)等の溶媒に溶解後、不溶分をフィルターでろ過し、GPCにより基準物質からの相対分子量として導出する。測定機器としては東ソー社製のECOSEC(HLC-8320GPC)を用い、溶媒としてはHFIPを用いる。
(4)耐亀裂性
 実施例5と比較例1で得た樹脂組成物を用いて形成した接着層を備える樹脂金属複合部材、及びこの樹脂金属複合部材をクラウン部に配置したタイヤを作製し、接着層の耐亀裂性の評価を行った。
 具体的には、平均直径φ1.15mmのマルチフィラメント(φ0.35mmのモノフィラメント(スチール製、強力:280N、伸度:3%)7本を撚った撚り線)と、接着層形成用の樹脂組成物と、被覆樹脂層形成用のポリエステル系熱可塑性エラストマー(東レ・デュポン社製、「ハイトレル5557」)とを用いて、マルチフィラメントの周囲に接着層及び被覆樹脂層がこの順に形成されたコード状の樹脂金属複合部材を押出成形により作製する。接着層の厚みは1μm~500μm、被覆樹脂層の厚みは10μm~1000μmとなるようにそれぞれ調整する。
 作製した樹脂金属複合部材をクラウン部に巻回してゴムタイヤ(サイズ:225/40R18)を作製し、25±2℃の室内中で内圧3.0kg/cmに調整した後、24時間放置した。その後、空気圧の再調整を行い、1010Kgの荷重をタイヤに負荷し、直径約3mのドラム上で速度60km/時で6000km走行させた。走行後のタイヤを径方向に沿って切断し、接着層の断面を光学顕微鏡で観察して亀裂の発生の状態を調べた。
 試験の結果、比較例1では走行試験後の接着層における亀裂の数が断面あたり5個以上であったのに対し、実施例5では走行試験後の接着層における亀裂の数が断面あたり5個未満であった。
Figure JPOXMLDOC01-appb-T000007
 表1において、実施例6の重量平均分子量は予測値である。
 以上の結果に示すように、樹脂組成物がエポキシ樹脂を含む実施例は、樹脂組成物がエポキシ樹脂を含まない比較例2に比べて黄銅剥離力に優れている。また、樹脂組成物に含まれる熱可塑性エラストマーが無水マレイン酸基を含有する比較例1に比べて耐亀裂性に優れている。この理由としては、実施例の樹脂組成物に含まれる樹脂の重量平均分子量が比較例1よりも大きいことが考えられる。
 日本国特許出願第2019-224541号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (12)

  1.  金属部材と、前記金属部材の周囲に配置される樹脂層と、を有し、前記樹脂層は樹脂として熱可塑性エラストマーと、エポキシ樹脂とを含む、タイヤ用樹脂金属複合部材。
  2.  前記熱可塑性エラストマーがポリエステル系熱可塑性エラストマーを含む、請求項1に記載のタイヤ用樹脂金属複合部材。
  3.  前記エポキシ樹脂の樹脂層全体における含有率は15質量%以下である、請求項1又は請求項2に記載のタイヤ用樹脂金属複合部材。
  4.  前記エポキシ樹脂の樹脂層全体における含有率は1質量%以上である、請求項1~請求項3のいずれか1項に記載のタイヤ用樹脂金属複合部材。
  5.  前記エポキシ樹脂のエポキシ当量は100g/eq~300g/eqである、請求項1~請求項4のいずれか1項に記載のタイヤ用樹脂金属複合部材。
  6.  前記エポキシ樹脂の樹脂層全体における含有率をA(質量%)、前記エポキシ樹脂のエポキシ当量をB(g/eq)としたときのA/Bの値が0.003~0.15である、請求項1~請求項5のいずれか1項に記載のタイヤ用樹脂金属複合部材。
  7.  前記樹脂層が樹脂として熱可塑性樹脂をさらに含む、請求項1~請求項6のいずれか1項に記載のタイヤ用樹脂金属複合部材。
  8.  前記樹脂層に含まれる樹脂全体の重量平均分子量が40,000以上である、請求項1~請求項7のいずれか1項に記載のタイヤ用樹脂金属複合部材。
  9.  前記樹脂層がシアヌル酸亜鉛をさらに含む、請求項1~請求項8のいずれか1項に記載のタイヤ用樹脂金属複合部材。
  10.  前記樹脂層の周囲に配置される被覆樹脂層をさらに有する、請求項1~請求項9のいずれか1項に記載のタイヤ用樹脂金属複合部材。
  11.  請求項1~請求項10のいずれか1項に記載のタイヤ用樹脂金属複合部材を備えるタイヤ。
  12.  前記タイヤ用樹脂金属複合部材が、前記タイヤの補強ベルト部材及びビード部材の少なくとも一方に含まれる、請求項11に記載のタイヤ。
PCT/JP2020/042591 2019-12-12 2020-11-16 タイヤ用樹脂金属複合部材及びタイヤ WO2021117418A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021563808A JPWO2021117418A1 (ja) 2019-12-12 2020-11-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-224541 2019-12-12
JP2019224541 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021117418A1 true WO2021117418A1 (ja) 2021-06-17

Family

ID=76329365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042591 WO2021117418A1 (ja) 2019-12-12 2020-11-16 タイヤ用樹脂金属複合部材及びタイヤ

Country Status (2)

Country Link
JP (1) JPWO2021117418A1 (ja)
WO (1) WO2021117418A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224854A (ja) * 2005-02-18 2006-08-31 Yokohama Rubber Co Ltd:The 積層体及びそれを用いた空気入りタイヤ
JP2013082311A (ja) * 2011-10-07 2013-05-09 Bridgestone Corp タイヤ
JP2014510800A (ja) * 2011-02-03 2014-05-01 コンパニー ゼネラール デ エタブリッスマン ミシュラン ゴムに自己接着性であるポリマー層でシーズされた複合補強材
WO2014175453A1 (ja) * 2013-04-25 2014-10-30 株式会社ブリヂストン タイヤ
WO2014175452A1 (ja) * 2013-04-25 2014-10-30 株式会社ブリヂストン タイヤ
WO2018230273A1 (ja) * 2017-06-16 2018-12-20 株式会社ブリヂストン タイヤ用樹脂金属複合部材、及びタイヤ
WO2019230821A1 (ja) * 2018-05-30 2019-12-05 株式会社ブリヂストン タイヤ用樹脂金属複合部材、及びその製造方法、並びにタイヤ
WO2019230822A1 (ja) * 2018-05-30 2019-12-05 株式会社ブリヂストン タイヤ用樹脂金属複合部材、及びその製造方法、並びにタイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224854A (ja) * 2005-02-18 2006-08-31 Yokohama Rubber Co Ltd:The 積層体及びそれを用いた空気入りタイヤ
JP2014510800A (ja) * 2011-02-03 2014-05-01 コンパニー ゼネラール デ エタブリッスマン ミシュラン ゴムに自己接着性であるポリマー層でシーズされた複合補強材
JP2013082311A (ja) * 2011-10-07 2013-05-09 Bridgestone Corp タイヤ
WO2014175453A1 (ja) * 2013-04-25 2014-10-30 株式会社ブリヂストン タイヤ
WO2014175452A1 (ja) * 2013-04-25 2014-10-30 株式会社ブリヂストン タイヤ
WO2018230273A1 (ja) * 2017-06-16 2018-12-20 株式会社ブリヂストン タイヤ用樹脂金属複合部材、及びタイヤ
WO2019230821A1 (ja) * 2018-05-30 2019-12-05 株式会社ブリヂストン タイヤ用樹脂金属複合部材、及びその製造方法、並びにタイヤ
WO2019230822A1 (ja) * 2018-05-30 2019-12-05 株式会社ブリヂストン タイヤ用樹脂金属複合部材、及びその製造方法、並びにタイヤ

Also Published As

Publication number Publication date
JPWO2021117418A1 (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
JP6057981B2 (ja) タイヤ
JP6086643B2 (ja) タイヤ
WO2017104472A1 (ja) タイヤ
JP6785193B2 (ja) タイヤ用樹脂金属複合部材、及びタイヤ
JP6785245B2 (ja) タイヤ
WO2017104484A1 (ja) タイヤ
WO2013122157A1 (ja) タイヤ
JP5911731B2 (ja) タイヤ
CN110753628B (zh) 轮胎用树脂-金属复合构件和轮胎
JP6785195B2 (ja) タイヤ用樹脂金属複合部材、及びタイヤ
JPWO2019230822A1 (ja) タイヤ用樹脂金属複合部材、及びその製造方法、並びにタイヤ
JP6649766B2 (ja) タイヤ
JP2012046029A (ja) タイヤ
WO2021117418A1 (ja) タイヤ用樹脂金属複合部材及びタイヤ
WO2021117419A1 (ja) 樹脂組成物、樹脂金属複合部材及びタイヤ
JP5905289B2 (ja) タイヤ
JP5844173B2 (ja) タイヤ
JP7162004B2 (ja) タイヤ用金属樹脂複合部材及びタイヤ
JPWO2019230821A1 (ja) タイヤ用樹脂金属複合部材、及びその製造方法、並びにタイヤ
CN110785289B (zh) 轮胎用树脂金属复合构件和轮胎
JP6745284B2 (ja) タイヤ
JP2020062935A (ja) タイヤ用ワイヤー樹脂複合部材、及びタイヤ
JP2016035067A (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563808

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899137

Country of ref document: EP

Kind code of ref document: A1