WO2020059797A1 - Fe-Ni基超耐熱合金のリング圧延材の製造方法 - Google Patents

Fe-Ni基超耐熱合金のリング圧延材の製造方法 Download PDF

Info

Publication number
WO2020059797A1
WO2020059797A1 PCT/JP2019/036756 JP2019036756W WO2020059797A1 WO 2020059797 A1 WO2020059797 A1 WO 2020059797A1 JP 2019036756 W JP2019036756 W JP 2019036756W WO 2020059797 A1 WO2020059797 A1 WO 2020059797A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
rolled material
rolled
rolling
heating
Prior art date
Application number
PCT/JP2019/036756
Other languages
English (en)
French (fr)
Inventor
宙也 青木
福井 毅
大吾 大豊
藤田 悦夫
尚幸 岩佐
拓 広澤
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2020504260A priority Critical patent/JP6738549B1/ja
Priority to ES19861690T priority patent/ES2969316T3/es
Priority to US17/276,332 priority patent/US11319617B2/en
Priority to EP19861690.6A priority patent/EP3854901B1/en
Publication of WO2020059797A1 publication Critical patent/WO2020059797A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/06Making articles shaped as bodies of revolution rings of restricted axial length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/26Manufacture essentially without removing material by rolling

Definitions

  • the present invention relates to a method for producing a rolled material of a Fe—Ni-base superalloy.
  • No. 718 alloy is a super heat-resistant alloy that has been conventionally most widely used for turbine parts of aircraft engines because of its excellent mechanical properties. Since high fatigue strength is required for rotating parts made of the 718 alloy used in the aircraft engine, the 718 alloy constituting the part is required to have a fine grain structure. For example, in the case of a ring-shaped rotating part, usually, after producing a billet from an ingot, utilizing the pinning effect of the delta phase, a fine grain structure is formed through hot forging, ring rolling, and stamping forging. It is built. On the other hand, from the viewpoint of manufacturing cost, it is desirable that the stamping shape be a shape in which the excess thickness of the product is as thin as possible. For this reason, a ring-shaped stamping forging material provided for stamping forging has a particularly high perfect circle. Degree is required.
  • Patent Literature 1 The invention described in Patent Literature 1 is excellent in that AGG can be prevented under a condition represented by the formula (1) or (2) in a single hot working. However, it is not realistic in terms of pressurizing ability to apply a substantial strain satisfying the expression (1) to the entire area of the ring-shaped stamping and forging material only by the roundness correction process. On the other hand, it is difficult to control the provision of the equivalent strain that satisfies the expression (2) to the ring-shaped stamping forging material because the strain remaining in the ring rolled material at the end of the ring rolling is not uniform. Thus, the problem of AGG occurring during heating to the stamping and forging temperature can be solved even if it is considered independently to prevent AGG in the two steps of the ring rolling step and the roundness correction step. It was difficult to do.
  • An object of the present invention is to provide a method of manufacturing a rolled Fe—Ni-base superalloy ring having high roundness, suppressing AGG, and suppressing grain growth.
  • the present invention has been made in view of the above-mentioned problems. That is, in the present invention, C: 0.08% or less, Ni: 50.0 to 55.0%, Cr: 17.0 to 21.0%, Mo: 2.8 by mass% using ring rolling.
  • a method for producing a rolled material of a Fe—Ni-based super heat-resistant alloy having a composition consisting of unavoidable impurities As a finish of the ring rolling step, the ring-rolled material is heated at a temperature in the range of 900 to 980 ° C., and the ring-rolled material is heated using a ring rolling machine having a pair of rolling rolls including a main roll and a mandrel roll and a pair of axial rolls.
  • Finishing ring rolling step of expanding the diameter and pressing in the axial direction of the ring rolling material A heating step of heating the rolled material rolled in the finishing ring rolling step in a temperature range of 980 to 1010 ° C.
  • a ring expander composed of an expansion cone and an expansion die to improve the roundness of the rolled material heated in the heating step while expanding the diameter of the rolled material, and a roundness correcting step for improving roundness.
  • This is a method for producing a rolled material of a heat-resistant alloy.
  • an expansion rate of a ring outer diameter of the rolled material may be 0.8% or less. preferable.
  • the present invention uses a ring rolled material obtained by heating the ring rolled material to a temperature of more than 980 ° C. and not more than 1010 ° C. as a pre-process of the finishing ring rolling step, and comprises a pair of a main roll and a mandrel roll. It is preferable that the method further includes an intermediate ring rolling step of expanding the diameter of the ring-rolled material and pressing the ring-rolled material in the axial direction using a ring rolling machine having the above-mentioned rolling roll and a pair of axial rolls.
  • the present invention it is possible to obtain a ring-rolled material of an Fe—Ni-based super heat-resistant alloy having high roundness, suppressing AGG, and suppressing grain growth. For example, it is possible to improve the reliability of fatigue characteristics of turbine parts and the like of an aircraft engine using the same.
  • the most important feature of the present invention is to prevent AGG by optimizing the conditions of the ring rolling step and the roundness correction step of the ring rolled material.
  • AGG occurs during heat treatment after low strain is applied to an initial state in which no strain remains.
  • the technical concept of the present invention for suppressing AGG generation is as follows. While the strain is sufficiently accumulated in the ring rolling, the strain accumulated in the ring rolled material is reduced to zero as much as possible by static recrystallization by heat treatment. AGG can be avoided by performing roundness correction (low distortion imparting) from this state.
  • the alloy composition specified in the present invention is known as an NCF718 alloy (Fe-Ni-base super heat-resistant alloy) shown in JIS-G4901, and the description of the composition is omitted.
  • 718 alloy The composition of the 718 alloy is in addition to the elements specified in the present invention, in the range of 0.35% or less of Si, 0.35% or less of Mn, 0.015% or less of P, 0.015% or less of S, and 0.30% or less of Cu. can do.
  • the “finish ring rolling step” is a final ring rolling step.
  • a ring-rolled material having a 718 alloy composition for a finish ring rolling step is prepared, and the ring-rolled material is heated in a temperature range of 900 to 980 ° C.
  • the heated ring-rolled material is expanded in diameter and pressed in the axial direction of the ring-rolled material. Finish ring rolling is performed.
  • AGG in the 718 alloy has been confirmed as a phenomenon in which, when low strain is introduced into the 718 alloy having a fine grain structure, the crystal grains surpass pinning during the subsequent heat treatment and crystal grains grow significantly.
  • introducing a slight strain to avoid AGG generation is because the strain remains in the ring-rolled material at the end of ring rolling with a distribution. It is difficult to control.
  • the ring-rolled material is sufficiently accumulated in the finished ring-rolling step and then reheated, the accumulated strain can be reduced as much as possible over the entire ring-rolled material due to the occurrence of static recrystallization.
  • the heating temperature of the ring rolled material is set in the range of 900 to 980 ° C., and by performing the ring rolling, recrystallization during ring rolling is suppressed, and the ring rolled material at the end of ring rolling is reduced. As an unrecrystallized or partially recrystallized structure, leaving strain in the ring rolled material. If the heating temperature exceeds 980 ° C., recrystallization during ring rolling is promoted, and it is not possible to sufficiently accumulate strain in the rolled material.
  • the heating temperature of the ring rolling material is set to 900 to 980 ° C.
  • the lower limit of the preferred heating temperature is 910 ° C, more preferably 920 ° C.
  • the upper limit of the preferred heating temperature is 970 ° C., more preferably 960 ° C.
  • the ring rolling step may be repeatedly performed by reheating.
  • an “intermediate ring rolling step” may be applied as a step before the above-mentioned finishing ring rolling step.
  • the reason for setting the heating temperature in the intermediate ring rolling step to be in the range of more than 980 ° C. and not more than 1010 ° C. is to obtain a sufficient recrystallized structure. In a temperature range of 980 ° C. or less, it is difficult to obtain sufficient recrystallization, and when it exceeds 1010 ° C., crystal grains tend to be coarse.
  • the lower limit of the preferable heating temperature in the intermediate ring rolling step is 985 ° C., and it is preferable to perform the heating at a temperature higher by 10 ° C.
  • Intermediate ring rolling is performed on the ring-rolled material heated at the heating temperature of the intermediate ring rolling step to create a fine grain structure by promoting recrystallization, and the final (finish) ring-rolling heating temperature is set to 900.
  • the temperature may be in the range of 9980 ° C., and the final ring rolling may be performed.
  • the heating of the ring rolling material in performing the final (finish) ring rolling may be performed in a temperature range of 900 to 980 ° C.
  • the preferred lower limit of the heating temperature is 985 ° C, more preferably 990 ° C. Further, a preferable upper limit of the heating temperature is 1005 ° C, more preferably 1000 ° C.
  • a ring expander composed of an expansion cone and an expansion die, expand the diameter while pressing the expansion die against the inner diameter side of the ring rolled material heated in the above-mentioned heating process, correct the ellipse, improve the roundness Perform roundness correction.
  • this roundness correction step it is necessary to apply a low strain to avoid the generation of AGG, and therefore it is preferable to perform the expansion at the ring outer diameter at 0.8% or less. It is more preferably at most 0.6%, further preferably at most 0.5%.
  • the diameter expansion rate is ⁇ (D EXP ⁇ D RM ) / D RM ⁇ ⁇ 100 [%] (where D EXP is the ring outer diameter after straightness correction, and D RM is the ring outer diameter before straightness correction. ).
  • the roundness correction step the roundness of the ring rolled material can be reduced to 3 mm or less.
  • the roundness is (D MAX -D MIN ) / 2 [mm] (where D MAX is the maximum value of the ring outer diameter after roundness correction, and D MIN is the minimum value of the ring outer diameter after roundness correction). ).
  • the roundness correction may be performed in a plurality of times.
  • the heating process described above is applied only to the final roundness correction, and in the previous roundness correction, the roundness is corrected without reheating so as not to release the accumulated strain left by ring rolling. It is better to reheat at a low temperature.
  • the temperature is set to 960 ° C. or lower which avoids the aging temperature range of 600 to 760 ° C. Preferably it is 950 ° C or lower, more preferably 940 ° C or lower.
  • the above-described ring rolled material of the present invention is used as a material for hot forging and pre-forging heating at 980 to 1010 ° C. is applied, a metal structure in which generation of AGG and grain growth are suppressed can be obtained.
  • the preferred lower limit of the heating temperature before forging is 985 ° C, more preferably 990 ° C.
  • the preferred upper limit of the heating temperature is 1005 ° C, more preferably 1000 ° C.
  • it since it has high roundness, it is suitable as a hot forging material for stamping and forging.
  • Example 1 A billet having a chemical composition corresponding to the Fe—Ni-base superalloy (718 alloy) shown in Table 1 was hot forged in a temperature range of 980 to 1010 ° C., and a ring-shaped ring rolled material produced by piercing was used. Obtained. This ring-rolled material was heated at a heating temperature in the range of more than 980 ° C to 1000 ° C or less, and intermediate ring rolling was performed. Next, after heating at a heating temperature of 960 ° C., finish ring rolling was performed to obtain a ring-rolled material having an outer diameter of about 1300 mm, an inner diameter of about 1100 mm, and a height of about 200 mm.
  • the obtained rolled ring material was slightly elliptical. Roundness exceeded approximately 3 mm.
  • the ring rolled material was heated at a heating temperature of 980 ° C.
  • roundness correction was performed so that the diameter expansion amount was in the range of 5 to 10 mm.
  • the diameter expansion ratio at this time was 0.3%.
  • the roundness of this rolled material was 1.5 mm after roundness correction.
  • heating for stamping and forging was performed at 1000 ° C. for 3 hours to produce an example of the present invention (No. 1).
  • comparative examples Nos.
  • Table 2 shows the results obtained by measuring the crystal grain size number by the method specified in ASTM-E112. No. of the present invention.
  • No. 1 a fine grain structure having an ASTM grain size number of 8 or more is obtained after heating at 1000 ° C. assuming stamping forging. By using such a uniform fine crystal grain material, a good metal structure can be obtained even after die forging for molding a final product.
  • Comparative Example No. In Nos. 11 to 14, a large number of coarse crystal grains having a crystal grain size number of 6 or less were confirmed. No.
  • FIG. 1 shows a photograph of the metal structure of the example of the present invention
  • FIG. 11 shows a metallographic photograph of No. 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

AGGを抑制し、ASTM結晶粒度番号で8番以上の微細結晶粒組織を有し、高い真円度のFe-Ni基超耐熱合金リング圧延材の製造方法を提供する。 718合金の組成を有するFe-Ni基超耐熱合金のリング圧延材の製造方法において、前記組成を有するリング状のリング圧延素材を仕上げのリング圧延工程として、900~980℃の温度範囲で加熱して仕上げリング圧延し、仕上げリング圧延されたリング圧延材を980~1010℃の温度範囲で加熱し、リングエキスパンダーを用いて、リング圧延材を拡径しながら楕円を矯正するFe-Ni基超耐熱合金のリング圧延材の製造方法。

Description

Fe-Ni基超耐熱合金のリング圧延材の製造方法
 本発明は、Fe-Ni基超耐熱合金のリング圧延材の製造方法に関する。
 718合金は、優れた機械的特性を具備しているため、従来から航空機エンジンのタービン部品に最も広く使用されている超耐熱合金である。この航空機エンジンに使用される718合金からなる回転部品には、高い疲労強度が要求されるため、その部品を構成する718合金には微細結晶粒組織が求められる。例えば、リング状の回転部品の場合、通常、インゴットからビレットを作製した後、デルタ相のピンニング効果を利用して、熱間での鍛造とリング圧延と型打ち鍛造とを経て微細結晶粒組織が造り込まれる。一方、製造コストの観点から、型打ち形状は製品に対する余肉を極力薄くした形状にすることが望ましく、そのために、型打ち鍛造に供するリング状の型打ち鍛造用素材には、特に高い真円度が求められる。
 しかし、リング状の型打ち鍛造用素材を作製する際、高い真円度を得るために真円矯正を行うと、その後の型打ち鍛造温度への加熱中にデルタ相のピンニングを乗り越えて急速に結晶粒が粗大化する、いわゆる異常結晶粒成長(abnormal-grain-growth:以下AGGと記す場合がある)を引き起こしてしまうことがある。AGGの発生により、結晶粒径が10倍以上に粗大化する場合もあり、型打ち鍛造工程で結晶粒を微細化しきれない結果、製品に粗粒が残存し疲労特性が大きく損なわれる問題が生じる。AGGを回避する方法として、例えば、特許文献1では、熱間加工の条件として、以下の相当歪と相当歪速度の関係式(1)または(2)を満足する条件が有効としている。
[相当歪]≧0.139×[相当歪速度(/sec)]-0.30…(1)
[相当歪]≦0.017×[相当歪速度(/sec)]-0.34…(2)
特許第5994951号公報
 特許文献1に記載の発明は、単一の熱間加工において、式(1)または(2)に示す条件でAGGを防止することができる点で優れる。しかし、式(1)を満足する相当歪を真円矯正の工程だけでリング状の型打ち鍛造用素材の全域に付与することは、加圧能力の点から現実的ではない。一方、式(2)を満足する相当歪をリング状の型打ち鍛造用素材に付与することは、リング圧延終了時のリング圧延材に残存する歪が一様ではないため、制御が難しい。このように、リング圧延の工程と真円矯正の工程との2つの工程で、それぞれAGGを防止することを独立に考えても、型打ち鍛造温度への加熱中にAGGが発生する問題を解決することは困難であった。
 本発明の目的は、高い真円度を有し、且つAGGを抑制し、粒成長を抑制することが可能なFe-Ni基超耐熱合金リング圧延材の製造方法を提供することである。
 本発明は上述した課題に鑑みてなされたものである。
 即ち本発明は、リング圧延を用いた、質量%で、C:0.08%以下、Ni:50.0~55.0%、Cr:17.0~21.0%、Mo:2.8~3.3%、Al:0.20~0.80%、Ti:0.65~1.15%、Nb+Ta:4.75~5.50%、B:0.006%以下、残部がFe及び不可避的な不純物からなる組成を有するFe-Ni基超耐熱合金のリング圧延材の製造方法において、
 前記リング圧延工程の仕上げとして、900~980℃の温度範囲で加熱し、主ロールとマンドレルロールとからなる一対の圧延ロールと一対のアキシャルロールとを有するリング圧延機を用いて、前記リング圧延素材を拡径するとともに前記リング圧延素材の軸方向に押圧加工する仕上げリング圧延工程と、
 前記仕上げリング圧延工程で圧延されたリング圧延材を980~1010℃の温度範囲で加熱する加熱工程と、
 拡管コーンと拡管ダイスとから構成されるリングエキスパンダーを用いて、前記加熱工程で加熱されたリング圧延材を拡径しながら真円度を向上させる真円矯正工程と、を備えるFe-Ni基超耐熱合金のリング圧延材の製造方法である。
 また、本発明のFe-Ni基超耐熱合金のリング圧延材の製造方法では、前記真円矯正工程において、前記リング圧延材のリング外径の拡径率が0.8%以下であることが好ましい。
 また、本発明は、前記仕上げリング圧延工程の前工程として、前記リング圧延素材を980℃を超えて1010℃以下の温度に加熱したリング圧延素材を用いて、主ロールとマンドレルロールとからなる一対の圧延ロールと一対のアキシャルロールとを有するリング圧延機を用いて、前記リング圧延素材を拡径するとともに前記リング圧延素材の軸方向に押圧加工する中間リング圧延工程を更に含むことが好ましい。
 本発明によれば、高い真円度を有し、且つAGGを抑制し、粒成長を抑制したFe-Ni基超耐熱合金のリング圧延材を得ることができる。例えば、これを用いてなる航空機エンジンのタービン部品等の疲労特性の信頼性を向上させることができる。
本発明のリング圧延材の製造方法を適用したリング圧延材の金属組織写真である。 異常結晶粒成長が発生した比較例のリング圧延材の金属組織写真である。
 本発明の最大の特徴は、リング圧延工程とリング圧延材の真円矯正工程との条件を適正化することにより、AGGを防止することにある。AGGは、歪が残留していない初期状態に低歪を加えた後の熱処理中に発生する。本発明のAGG発生を抑制する技術思想は次の通りである。
 リング圧延で歪を十分に蓄積させた状態で加熱処理による静的再結晶でリング圧延材に蓄積された歪を極力ゼロに下げる。この状態から真円矯正(低歪付与)を行えば、AGGを回避することができる。
 なお、本発明で規定する合金組成は、JIS-G4901に示されるNCF718合金(Fe-Ni基超耐熱合金)として知られているものであるため、組成に関する説明は割愛する。以後は単に「718合金」と記す。なお、718合金の組成は、本発明で規定した各元素以外にSi0.35%以下、Mn0.35%以下、P0.015%以下、S0.015%以下、Cu0.30%以下の範囲で含有することができる。
 <リング圧延工程>
 先ず、本発明で特徴的な「仕上げリング圧延工程」から説明する。なお、「仕上げリング圧延工程」とは最終のリング圧延工程である。
 718合金の組成を有する仕上げリング圧延工程用のリング圧延素材を用意し、そのリング圧延素材を900~980℃の温度範囲で加熱する。そして、主ロールとマンドレルロールとからなる一対の圧延ロールと一対のアキシャルロールとを有するリング圧延機を用いて、加熱されたリング圧延素材を拡径するとともにリング圧延素材の軸方向に押圧加工する仕上げリング圧延を行う。
 718合金のAGGの発生は、微細結晶粒組織を有する718合金に低歪が導入されると、その後の加熱処理中にピンニングを乗り越えて結晶粒が著しく成長する現象として確認されている。前記したとおり、リング圧延材の真円矯正の工程で、AGG発生を回避するためのわずかな歪を導入することは、リング圧延終了時のリング圧延材に歪が分布をもって残存しているため、制御が困難である。しかし、仕上げリング圧延工程でリング圧延材に歪を十分蓄積させた状態とし、その後再加熱すれば、静的な再結晶の発生によりリング圧延材全域で蓄積歪を極力低減させることができる。これにより、例えば、真円矯正工程で限られた低歪付与の制御が可能となり、AGG発生を防ぐことができる。そのため、仕上げリング圧延工程においては、リング圧延素材の加熱温度を900~980℃の範囲とし、それをリング圧延することにより、リング圧延中の再結晶を抑制し、リング圧延終了時のリング圧延材を未再結晶または部分再結晶組織として、リング圧延材に歪を残存させる。加熱温度が980℃を超えるとリング圧延中の再結晶が促進され、リング圧延材に歪を十分に蓄積させることはできない。一方、加熱温度が900℃未満では再結晶はほぼ完全に抑制されるものの、圧延荷重が著しく高くなり、リング圧延が困難となる。したがって、リング圧延素材の加熱温度は900~980℃とする。好ましい加熱温度の下限は910℃であり、更に好ましくは920℃である。また、好ましい加熱温度の上限は970℃であり、更に好ましくは960℃である。
 なお、リング圧延工程は再加熱して繰り返し行っても良い。その場合、前述の仕上げリング圧延工程の前工程として「中間リング圧延工程」を適用しても良い。
 中間リング圧延工程の加熱温度を980℃を超えて1010℃以下の範囲とするのは、十分な再結晶組織を得るためである。980℃以下の温度範囲では十分な再結晶を得にくくなり、1010℃を超えると結晶粒が粗大化しやすくなる。この中間のリング圧延工程の好ましい加熱温度の下限は985℃であり、前述した仕上げリング圧延工程よりも10℃以上高めの温度で行うのが好ましい。この中間リング圧延工程の加熱温度で加熱されたリング圧延素材に中間のリング圧延を施し再結晶促進による微細結晶粒組織の造り込みを行い、最終の(仕上げの)リング圧延時の加熱温度を900~980℃の温度範囲とし、最終のリング圧延を行うこととしても良い。つまり、加熱とリング圧延を複数回行う場合は、最終の(仕上げの)リング圧延を行う際のリング圧延素材の加熱を900~980℃の温度範囲で行えば良い。
 <加熱工程>
 上述したリング圧延工程でリング圧延材に歪を残存させ、続く加熱工程による加熱により再結晶をリング圧延材全域に発生させれば、リング圧延材を真円矯正する工程でAGGを回避する低歪の付与が制御しやすくなる。そのため、真円矯正工程前のリング圧延材の加熱を980~1010℃の温度範囲で行う。980℃未満では再結晶が促進されず、蓄積歪を十分に低減することができない。一方、1010℃を超えると結晶粒成長のリスクが高く、型打ち鍛造前の荒地の内質としては不適当となるおそれがある。好ましい加熱温度の下限は985℃であり、更に好ましくは990℃である。また、好ましい加熱温度の上限は1005℃であり、更に好ましくは1000℃である。
 <真円矯正工程>
 拡管コーンと拡管ダイスとから構成されるリングエキスパンダーを用いて、上述した加熱工程で加熱されたリング圧延材の内径側に拡管ダイス押し当てながら拡径して楕円を矯正し、真円度を向上させる真円矯正を行う。この真円矯正工程では、AGG発生を回避する低歪の付与でなければならないため、リング外径での拡径率は0.8%以下で行うことが好ましい。より好ましくは0.6%以下、さらに好ましくは0.5%以下である。なお、拡径率は、{(DEXP―RM)/DRM}×100[%](ここでDEXPは真円矯正後のリング外径、DRMは真円矯正前のリング外径)で求める。この真円矯正工程により、リング圧延材の真円度を3mm以下とすることができる。なお、真円度は(DMAX-DMIN)/2[mm](ここでDMAXは真円矯正後のリング外径の最大値、DMINは真円矯正後のリング外径の最小値)で求めたものである。
 なお、真円矯正は複数回に分けて行っても良い。その場合、最終の仕上げ真円矯正のみを前述した加熱工程を適用し、それまでの真円矯正ではリング圧延で残存させた蓄積歪を解放させないように再加熱を行わずに真円矯正するか、低温で再加熱して行うのが良い。低温で再加熱する場合は、時効温度域である600~760℃を避けた960℃以下とする。好ましくは950℃以下、より好ましくは940℃以下である。
 上述した本発明のリング圧延材を熱間鍛造用素材として用いて、980~1010℃の鍛造前加熱を適用すると、AGGの発生と粒成長とを抑制した金属組織とすることができる。鍛造前の加熱温度の好ましい下限温度は985℃であり、更に好ましくは990℃である。好ましい加熱温度の上限は1005℃であり、さらに好ましくは1000℃である。
 また、高い真円度を有しているため、型打鍛造用の熱間鍛造用素材として好適である。
 (実施例1)
 表1に示すFe-Ni基超耐熱合金(718合金)に相当する化学組成のビレットを980~1010℃の温度範囲で熱間鍛造を行った後、ピアシングで作製したリング状のリング圧延素材を得た。このリング圧延素材を加熱温度が980℃を超えて1000℃以下の範囲で加熱し、中間のリング圧延を行った。次いで加熱温度が960℃で加熱した後、仕上げのリング圧延を行い、外径が約1300mm、内径が約1100mm、高さが約200mmのリング圧延材を得た。得られたリング圧延材はやや楕円となっていた。真円度はおおよそ3mmを超えていた。
 仕上げのリング圧延を終了後、リング圧延材を加熱温度980℃で加熱した。そして、拡管コーンと拡管ダイスとから構成されるリングエキスパンダーを用いて拡径量が5~10mmの範囲となるように真円矯正を行った。このときの拡径率は0.3%であった。このリング圧延材の真円度は、真円矯正後で1.5mmであった。真円矯正後、1000℃で3時間の型打ち鍛造用の加熱を行い、本発明例(No.1)を作製した。比較のため、仕上げのリング圧延を行うリング圧延素材の加熱温度と真円矯正を行うリング圧延材の加熱温度を変えた比較例(No.11~14)を作製した。それらの加熱温度を表2に示す。
 なお、上記のリング圧延材を製造するときに用いたリング圧延機は、主ロールとマンドレルロールとからなる一対の圧延ロールにより、リング圧延素材の内径及び外径の直径を拡張し、一対のアキシャルロールにより、リング圧延素材の高さ(厚み)方向を押圧する機能を有するものである。
Figure JPOXMLDOC01-appb-T000001
 型打ち鍛造用の加熱を行った後、本発明例と比較例とのリング圧延材のリングラジアル方向に対する横断面全域の金属組織を光学顕微鏡で観察した。ASTM-E112で規定される方法で結晶粒度番号を測定した結果を表2に示す。本発明のNo.1では、型打ち鍛造を想定した1000℃で加熱後の結晶粒度番号はASTM結晶粒度番号で8以上の微細結晶粒組織が得られている。このような均一な微細結晶粒素材を用いることで、最終製品を成型する型鍛造後も良好な金属組織が得られる。一方、比較例のNo.11~14では結晶粒度番号で6以下の粗大結晶粒が多数確認された。No.11、13、14は仕上げ圧延リング圧延の加熱温度が高く、圧延中に再結晶が起きて十分な歪量が蓄積されていないため、真円矯正前の加熱で十分な再結晶が起きなかった。No.12は、仕上げリング圧延の加熱温度は本発明と同等であり、十分な歪が蓄積されているが、真円矯正前の加熱温度が低く、再結晶が不十分であったと考えられる。なお、図1に本発明例の金属組織写真を、図2に比較例のNo.11の金属組織写真を示す。
Figure JPOXMLDOC01-appb-T000002
 以上説明する通り、本発明の製造方法を適用すると、高い真円度を有し、且つAGGを抑制し、ASTM結晶粒度番号で8番以上の微細結晶粒組織を備えたFe-Ni基超耐熱合金リング圧延材を得られることがわかる。このことから、航空機エンジンのタービン部品等の疲労特性の信頼性を向上させることができる。

Claims (3)

  1.  リング圧延を用いた、質量%で、C:0.08%以下、Ni:50.0~55.0%、Cr:17.0~21.0%、Mo:2.8~3.3%、Al:0.20~0.80%、Ti:0.65~1.15%、Nb+Ta:4.75~5.50%、B:0.006%以下、残部がFeおよび不可避的な不純物からなる組成を有するFe-Ni基超耐熱合金のリング圧延材の製造方法において、
     前記リング圧延工程の仕上げとして、900~980℃の温度範囲で加熱し、主ロールとマンドレルロールとからなる一対の圧延ロールと一対のアキシャルロールとを有するリング圧延機を用いて、前記リング圧延素材を拡径するとともに前記リング圧延素材の軸方向に押圧加工する仕上げリング圧延工程と、
     前記仕上げリング圧延工程で圧延されたリング圧延材を980~1010℃の温度範囲で加熱する加熱工程と、
     拡管コーンと拡管ダイスとから構成されるリングエキスパンダーを用いて、前記加熱工程で加熱されたリング圧延材を拡径しながら真円度を向上させる真円矯正工程と、を備えることを特徴とするFe-Ni基超耐熱合金のリング圧延材の製造方法。
  2.  前記真円矯正工程において、前記リング圧延材のリング外径の拡径率が0.8%以下である、請求項1に記載のFe-Ni基超耐熱合金のリング圧延材の製造方法。
  3.  前記仕上げリング圧延工程の前工程として、前記リング圧延素材を980℃を超えて1010℃以下の温度に加熱したリング圧延素材を用いて、主ロールとマンドレルロールとからなる一対の圧延ロールと一対のアキシャルロールとを有するリング圧延機を用いて、前記リング圧延素材を拡径するとともに前記リング圧延素材の軸方向に押圧加工する中間リング圧延工程を更に含む請求項1または2に記載のFe-Ni基超耐熱合金のリング圧延材の製造方法。
PCT/JP2019/036756 2018-09-19 2019-09-19 Fe-Ni基超耐熱合金のリング圧延材の製造方法 WO2020059797A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020504260A JP6738549B1 (ja) 2018-09-19 2019-09-19 Fe−Ni基超耐熱合金のリング圧延材の製造方法
ES19861690T ES2969316T3 (es) 2018-09-19 2019-09-19 Método de producción de material laminado de anillo de superaleación a base de Fe-Ni
US17/276,332 US11319617B2 (en) 2018-09-19 2019-09-19 Production method for ring-rolled material of Fe—Ni-based superalloy
EP19861690.6A EP3854901B1 (en) 2018-09-19 2019-09-19 Production method for ring-rolled material of fe-ni based superalloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-174958 2018-09-19
JP2018174958 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020059797A1 true WO2020059797A1 (ja) 2020-03-26

Family

ID=69888480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036756 WO2020059797A1 (ja) 2018-09-19 2019-09-19 Fe-Ni基超耐熱合金のリング圧延材の製造方法

Country Status (5)

Country Link
US (1) US11319617B2 (ja)
EP (1) EP3854901B1 (ja)
JP (1) JP6738549B1 (ja)
ES (1) ES2969316T3 (ja)
WO (1) WO2020059797A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079043A (ja) * 2009-10-09 2011-04-21 Mitsubishi Materials Corp 環状成形体の製造方法及び環状成形体
KR20120017896A (ko) * 2010-08-20 2012-02-29 한국기계연구원 균일조직을 가지는 니켈기지 초내열합금 형상링의 제조방법
JP5994951B2 (ja) 2014-03-31 2016-09-21 日立金属株式会社 Fe−Ni基超耐熱合金の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292761B2 (ja) * 2013-03-28 2018-03-14 日立金属Mmcスーパーアロイ株式会社 環状成形体の製造方法
WO2020059798A1 (ja) * 2018-09-19 2020-03-26 日立金属株式会社 Fe-Ni基超耐熱合金のリング圧延材の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079043A (ja) * 2009-10-09 2011-04-21 Mitsubishi Materials Corp 環状成形体の製造方法及び環状成形体
KR20120017896A (ko) * 2010-08-20 2012-02-29 한국기계연구원 균일조직을 가지는 니켈기지 초내열합금 형상링의 제조방법
JP5994951B2 (ja) 2014-03-31 2016-09-21 日立金属株式会社 Fe−Ni基超耐熱合金の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3854901A4

Also Published As

Publication number Publication date
JPWO2020059797A1 (ja) 2021-01-07
EP3854901A4 (en) 2022-06-08
EP3854901A1 (en) 2021-07-28
JP6738549B1 (ja) 2020-08-12
US20220042144A1 (en) 2022-02-10
US11319617B2 (en) 2022-05-03
EP3854901B1 (en) 2023-12-27
ES2969316T3 (es) 2024-05-17

Similar Documents

Publication Publication Date Title
JP6150192B2 (ja) Ni基超耐熱合金の製造方法
JP6422045B1 (ja) Ni基超耐熱合金およびその製造方法
US11085104B2 (en) Method for manufacturing Ni-based heat-resistant superalloy wire, and Ni-based heat-resistant super alloy wire
WO2020059798A1 (ja) Fe-Ni基超耐熱合金のリング圧延材の製造方法
JP6171762B2 (ja) Ni基耐熱合金の鍛造加工方法
JP6610846B1 (ja) Ni基超耐熱合金の製造方法およびNi基超耐熱合金
CN109252061B (zh) 一种高温、高热稳定性、高断裂韧性钛合金棒材的制备方法
US20140041768A1 (en) Fabrication method for stepped forged material
WO2015151318A1 (ja) Fe-Ni基超耐熱合金の製造方法
WO2020031579A1 (ja) Ni基超耐熱合金の製造方法およびNi基超耐熱合金
JP6663575B2 (ja) Ni基超耐熱合金の製造方法
JP2019183263A (ja) 冷間加工用Ni基超耐熱合金素材
WO2020059797A1 (ja) Fe-Ni基超耐熱合金のリング圧延材の製造方法
WO2007080750A1 (ja) スパッタリング用チタン材の製造方法
JPH06293946A (ja) 微細結晶粒超耐熱合金部材の製造方法
JP6299344B2 (ja) ディスク形状品の鍛造加工方法
TWI568862B (zh) 沃斯田鐵系合金鋼材之製造方法
RU2349410C2 (ru) Способ изготовления цельнокатаных колец из жаропрочных никелевых сплавов
WO2023176333A1 (ja) テーパーリング素材の製造方法
KR20230095259A (ko) 미세 및 등축 결정립을 갖는 티타늄 박판의 제조방법 및 이를 이용하여 제조된 티타늄 박판
JPH04202733A (ja) Co基合金部材の製造方法
CN118663828A (zh) 一种提高gh4698合金热处理态晶粒度和均匀性的锻造方法
JPH03243740A (ja) 超塑性加工性に優れたチタン合金及びその製造方法、並びにチタン合金の超塑性加工方法
JPH05171379A (ja) 環状体の加工方法
JPH04191353A (ja) Ni基耐熱合金素材の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020504260

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019861690

Country of ref document: EP

Effective date: 20210419