WO2007080750A1 - スパッタリング用チタン材の製造方法 - Google Patents

スパッタリング用チタン材の製造方法 Download PDF

Info

Publication number
WO2007080750A1
WO2007080750A1 PCT/JP2006/325188 JP2006325188W WO2007080750A1 WO 2007080750 A1 WO2007080750 A1 WO 2007080750A1 JP 2006325188 W JP2006325188 W JP 2006325188W WO 2007080750 A1 WO2007080750 A1 WO 2007080750A1
Authority
WO
WIPO (PCT)
Prior art keywords
forging
forged
titanium material
sputtering
titanium
Prior art date
Application number
PCT/JP2006/325188
Other languages
English (en)
French (fr)
Inventor
Masaki Yoshino
Shogo Yoshikawa
Original Assignee
Osaka Titanium Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006006055A external-priority patent/JP4990531B2/ja
Application filed by Osaka Titanium Technologies Co., Ltd. filed Critical Osaka Titanium Technologies Co., Ltd.
Publication of WO2007080750A1 publication Critical patent/WO2007080750A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/04Shaping in the rough solely by forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the present invention relates to a method for producing a titanium material used for a sputtering target, and more specifically, using a molten ingot as a forging material, a uniform macro structure and a fine microstructure without leaving a forged structure (target processing)
  • the crystal grain size is less than 10 / zm later), and the forging process can reduce defects generated on the surface and surface layer of the material to be forged, and can have good upset forgeability.
  • the present invention relates to an optimum method for manufacturing a titanium material for sputtering.
  • metallic titanium materials have been used in a wide range of fields as structural materials with excellent specific strength such as excellent specific strength and high corrosion resistance.
  • the semiconductor field where the progress of high integration has been remarkable recently with the demand for fine pattern processing, the low resistance characteristics, high strength characteristics, or the nori characteristics of titanium nitride, etc. possessed by high-purity titanium materials are large.
  • the amount of high-purity titanium material used is rapidly increasing.
  • the force used as a sputtering target is 99.98% or more of the material purity excluding gas impurities. Required. Furthermore, in the production of such a titanium target, in order to make the film thickness formed by sputtering uniform, it is necessary to make the crystal grains fine and make the macro structure uniform, and for this reason, forging and A process is adopted in which the shape is adjusted by rolling and the crystal grain size is controlled by recrystallization in the subsequent heat treatment.
  • the forge forming ratio is set to 5 or more at a temperature equal to or higher than the transformation point.
  • secondary forging that combines forging and upsetting so that the forging ratio is 5 or more at temperatures below the transformation point.
  • the forged structure is destroyed by primary forging at a temperature equal to or higher than the transformation point, and processing strain is accumulated in the subsequent secondary forging. Therefore, the recrystallization is promoted in the subsequent rolling and heat treatment process, and the sputtering target that has obtained the forge strength by improving the grain size is said to be excellent in film thickness uniformity. .
  • a titanium ingot dissolved in high purity for example, 500 to 900 mm ⁇
  • a plurality of forging processes are repeated until a predetermined finishing outer diameter (for example, 165 mm ⁇ ). Stretch out. Then, it cuts out to a predetermined diameter and length, compresses it in the length direction of the forged material, performs upset forging, and processes it into a disk-shaped titanium material having a predetermined thickness.
  • the metallographic structure of titanium material is divided into a-phase dense hexagonal crystals and ⁇ -phase body-centered cubic crystals according to the temperature environment, and the transformation from OC phase to ⁇ -phase is in the high temperature range ⁇ transformation Done at point.
  • the body-centered cubic crystal in the metal structure has better workability than the dense hexagonal crystal, and the growth of crystal grains becomes remarkable under a high temperature environment.
  • the forging process is repeated multiple times using the molten ingot as a starting material, and after finishing forging into a cylindrical shape, sputtering is performed by upsetting forging and symmetrical axial rolling.
  • sputtering is performed by upsetting forging and symmetrical axial rolling.
  • the upset forged titanium material is finished into a disk shape by symmetrical axis rolling, but once the upset forging damages the circular shape, it becomes a square or elliptical shape. It is difficult to correct the cross section of the titanium material to a disk shape. For this reason, if target processing is performed with the same cross-sectional shape, the product yield will be significantly reduced, and the conventional forging method of melted ingots will have a problem of poor silver buildability! .
  • FIG. 1 is a diagram for explaining a processing process in conventional warm forging in which a molten ingot is used as a starting material to forge into a final cylindrical shape.
  • Forging up to the finished outer diameter (eg, 165 mm ⁇ ) from the melting ingot (eg, 730 mm ⁇ ingot) is divided into four stages of forging processes.
  • finish forging is performed using the round die 2, but the flat die 1 is used until the previous stage. It was forged into a pillar shape.
  • a sputtering target is manufactured using a molten ingot as a starting material, after being forged to a cylindrical titanium material having a final shape, it is cut out to a predetermined length and then in the length direction. Upset forging is performed and processed into a disc-shaped titanium material having a predetermined thickness.
  • the crystal orientation distribution In order to improve the upset forgeability of the forged material, the crystal orientation distribution must have regularity. It is necessary to make it. In other words, by making the crystal orientation of the forged material uniform and regular, deformation in the radial direction by upset forging is matched, and the cross section of the titanium material after upset forging approximates a circle. Become a shape.
  • the round die is formed at all stages until the end of the warm forging start force using a molten ingot as a starting material. It is also possible by performing the forging work. In other words, by cylindrical forging using a round die, it is processed into a shape similar to the final cross-sectional shape of the forged material, and the processing force is transmitted uniformly and regularly to the center of the material. can do.
  • FIG. 2 is a diagram showing a process of performing cylindrical forging at all stages of the warm forging process using a molten ingot as a starting material in order to ensure upset forgeability. Until the final outer diameter of the forged material is processed, it is divided into four stages of cylindrical forging. Each forging is performed by free forging using a round die 2. As a result, it can be machined into a shape similar to the final shape, and the machining force can be propagated uniformly to the center of the material, ensuring excellent upset forgeability.
  • the upset forgeability can be improved and the microstructure necessary for film thickness characteristics can be refined and uniformed as described above.
  • a forged structure such as columnar crystals may remain on the surface layer of the cross-sectional macrostructure.
  • a sputtering target is manufactured from a titanium material in which a surface structure remains in the surface layer portion, a uniform formed film cannot be obtained during sputtering.
  • the present invention is a problem in the production of the titanium material of the sputtering target described above. It was made in view of the forging process, which uses a molten ingot as a starting material, and has a uniform macrostructure and fine microstructure (with a crystal grain size of less than 10 ⁇ after target processing) with no residual residual structure.
  • An object of the present invention is to provide a method for producing a titanium material for sputtering that is suitable for a titanium target, can reduce defects generated in the surface layer of the cross section after cylindrical forging, and can have good upset forgeability. As! /
  • the present inventors have developed a forging process for prismatic forging using the flat mold shown in FIG. 1 and a cylindrical forging using the round mold shown in FIG.
  • the forging process was examined in detail.
  • the forged structure remaining in the surface layer of the cross-sectional macrostructure is subjected to a relatively large reduction amount using a flat die at the beginning of forging by warm working below the j8 transformation point (for example, 880 ° C). It was clarified that it can be reduced by loading the forging.
  • Fig. 3 is a diagram schematically explaining the deformation behavior in the forging process.
  • (A) shows the deformation behavior of the material to be forged in prismatic forging using a flat die
  • the microstructure can be refined and the macro structure can be made uniform for the film thickness characteristics. Defects appear in the surface layer of the cross-section after forging and are detected by ultrasonic flaw detection. Therefore, in the initial stage of the forging process, forging is performed by forging the entire circumference of the material to be forged under a light pressure using a flat die (hereinafter simply referred to as “all-round forging by light pressure!”). We focused on the ability to suppress defects in the surface layer of the cross-section while ensuring a reduction in the process.
  • the present invention has been completed on the basis of the above findings, and the gist of the following (1) to (3) is a method for producing a titanium material for sputtering.
  • Sputtering is characterized by being forged into the final columnar shape after secondary forging, which also has a cylindrical forging force using a round die in warm forging in the next step. It is a manufacturing method of the titanium material.
  • the reduction amount per pass in the primary forging is 7% or more, or in Z and the secondary forging, the final shape is forged. It is desirable to perform cylindrical forging using one or two or more round dies whose dimensions (shape) of the hole mold are larger than those of the round dies to be extended.
  • the purity of the material to be forged is preferably 99.98% or more excluding gas impurities.
  • the melting ingot is defined as the starting material because the outer diameter of the target forged material is 500mn! This is because it assumes a forging process for large-diameter titanium materials of up to 1000 mm. Furthermore, the outer diameter of the final cylindrical shape is 150 to 350 mm, and many are finished forged to 150 to 200 mm.
  • the to-be-forged material is squeezed from one direction with a pair of opposing dies, and then the to-be-formed material is moved to a predetermined angle (for example, 30 °, (45 °, 90 °) and forging to the target outer diameter, then feeding the forged material in the longitudinal direction and repeating from one end of the forged material to the other end to a predetermined dimension over the entire length Be trained.
  • a predetermined angle for example, 30 °, (45 °, 90 °
  • the forging material is squeezed from one direction by a pair of molds simply as “pass”.
  • the amount of reduction per pass is not an absolute value but is defined by a reduction rate.
  • “the amount of reduction per pass” is indicated by ⁇ (dimension before reduction) (dimension after reduction) Z (dimension before reduction) X 100 (%).
  • all-round forging by light reduction means that the entire circumference of the material to be forged is subjected to light pressure with a rotation angle of 45 ° or less per pass using a flat die. Forging.
  • the rotation angle per pass is preferably 3 to 40 °, and more preferably 15 to 30 °.
  • a primary forging consisting of prismatic forging using a flat die by warm forging and a secondary forging consisting of cylindrical forging using a round die.
  • a secondary forging consisting of cylindrical forging using a round die.
  • forging using a molten ingot as a starting material, it has both a uniform macro structure with no residual forged structure and a fine microstructure (grain size less than 10 / zm after target processing).
  • it can have good upset forgeability and is the optimal spa for titanium targets.
  • a titanium material for the tattering can be obtained.
  • FIG. 1 is a diagram for explaining a processing process in conventional warm forging in which a molten ingot is used as a starting material to forge into a final cylindrical shape.
  • FIG. 2 is a diagram showing the steps of performing cylindrical forging at all stages of the warm forging process using a molten ingot as a starting material to ensure upset forgeability.
  • Fig. 3 is a diagram for schematically explaining the deformation behavior in the forging process.
  • (A) shows the deformation behavior of the forged material during rectangular column forging using a flat die, and
  • (b) shows the round die. The deformation behavior of the material to be forged by cylindrical forging is shown.
  • FIG. 4 is a view for explaining an example of a processing process in warm forging for producing the sputtering titanium material of the present invention.
  • FIG. 5 is a diagram for explaining another example of a processing process in warm forging for producing the sputtering titanium material of the present invention.
  • FIG. 6 is a view showing an example of a flat die used in the primary forging of the present invention.
  • FIG. 7 is a view showing an example of a round die used in the secondary forging of the present invention.
  • FIG. 4 is a view for explaining an example of a processing process in warm forging for producing the sputtering titanium material of the present invention. As shown in the figure, until the forging material with the final outer diameter is processed, it consists of primary forging consisting of prismatic forging using a flat die 1 and cylindrical forging using a round die 2. It consists of secondary forging.
  • the objective is to destroy the forged structure remaining in the surface layer portion of the cross-sectional macrostructure by securing the amount of reduction in the initial stage of the warm forging.
  • the secondary forging using a round die 2 in addition to the accumulation of processing strain, it can be processed into a shape similar to the final shape, and the processing force is propagated uniformly and regularly to the center of the material.
  • the crystal grains can be made finer and uniform, the crystal orientation distribution can be made regular, and excellent upset forgeability can be exhibited.
  • FIG. 5 is a diagram for explaining another example of a processing process in warm forging for producing the sputtering titanium material of the present invention.
  • the titanium material manufacturing method of the present invention In this method, in order to suppress the defects that occur in the surface layer of the cross-section after finish forging while ensuring the amount of reduction in the entire forging process, the angle of the cross-sectional surface layer with poor deformability is small before primary forging. It is desirable to perform all-around forging by light pressure, forging the entire circumference of the material to be forged and rotating it.
  • the reduction amount is preferably 1% or more in order to obtain the effect of forging the cross-sectional surface layer portion of the material to be forged.
  • the rotation angle per pass is set to 45 degrees or less. At this time, the rotation angle per pass is preferably 3 to 40 °, and more preferably 15 to 30 °.
  • FIG. 6 is a view showing an example of a flat die used in the primary forging of the present invention.
  • Flat mold 1 is composed of upper mold la and lower mold lb—a pair of molds. A hot forging material is inserted between these molds, and it is free forging. It is reduced by a steam hammer or a hydraulic press, and uniformly stretched for each pass.
  • the reduction of the forged structure can be suppressed and the forged structure inside the material can be destroyed by securing a reduction amount in the initial stage of the warm forging. .
  • the metal flow of the material to be forged undergoes reduction that does not occur in the extreme longitudinal direction, and the metal on the surface and surface layer. There is no significant difference between the flow and the metal flow at the center. As a result, it is possible to prevent defects generated in the surface layer of the cross-section after forging, and to reduce the outer diameter force amount of the billet for upsetting forging.
  • the reduction per pass The amount should be 7% or more. Furthermore, by providing a lower limit of the reduction amount, it is possible to prevent an increase in reheat (reheating) treatment if the efficiency is reduced as the number of forging passes increases.
  • the upper limit of the rolling reduction in primary forging is not stipulated, if the rolling reduction is too large, there is a risk of shear cracking, buckling or entrainment at the material edge, so it is desirable to set the upper limit to 50%. That's right.
  • the force for performing cylindrical forging using a round die of 1 with a larger size (shape) of the hole mold part than the round die forged to the final shape is not limited. That is, in the secondary forging of the present invention, cylindrical forging is performed by using one or more round dies having a larger size (shape) of the hole mold part than the round dies forged to the final shape. It is out.
  • FIG. 7 is a view showing an example of a round die used in the secondary forging of the present invention.
  • the round mold 2 of the present invention has a pair of upper and lower molds 2a, 2 having a hole mold part having an elliptical shape (longer diameter D and shorter diameter D).
  • the upset forgeability can be improved by improving the crystal orientation of the forged material.
  • the judgment standard for upsetting forgeability is based on the major axis Z minor axis ratio of the cross-section after forging performed at a predetermined upsetting ratio (2 to 3). It is judged that forgeability is good.
  • the larger the upsetting ratio the larger the major axis Z minor axis ratio, and the yield after upsetting forgeability deteriorates.
  • the major axis D is obtained by combining the upper and lower molds.
  • the material diameter that can be machined with different molds and the final machining diameter are determined, so the final finish from the material outer diameter It is necessary to replace the round metal mold for the small diameter one after another until the outer diameter.
  • high-purity titanium material is warm-forged, and it is desirable to maintain the temperature range of 500 ° C or more and the j8 transformation point or less over the entire area of the material to be forged. .
  • the reason why the ⁇ transformation point (about 880 ° C) or less is used is to suppress the growth of crystal grains because the crystal grain growth at high temperatures becomes more remarkable in high-purity titanium.
  • the lower limit of the holding temperature is set to 500 ° C in order to ensure forging force resistance over the entire area of the forged material. When managing the lower limit temperature, it is necessary to pay attention to the surface temperature of the material to be forged.
  • the primary forging cutter and the like undergo the secondary forging to the final column forging. It is possible to perform forging with the force S between each process or Z and reheating (reheating) the material appropriately in a heating furnace in the middle of each process.
  • 850 ° C X 2 to 12Hr can be adopted as specific heat (heating) or reheat (reheating) conditions. Also, as the forging progresses, the material to be forged becomes longer, so forging is performed while appropriately cutting to a length that is easy to handle when working.
  • the purity of the high-purity titanium material targeted by the present invention is 99.98% or more excluding gas impurities because the purity required when used as a sputtering target is increased. This is to satisfy.
  • the characteristics of the sputtering titanium material of the present invention will be described based on specific examples using a high-purity titanium material.
  • the purity of the titanium materials used in the examples was 99.995% excluding gas impurities.
  • a columnar titanium material having a final shape of 165 mm ⁇ was forged by the warm forging process shown in FIG.
  • a VAR melting ingot with a diameter of 730 mm ⁇ X length of 2500 mm was used as a starting material.
  • it is forged into a 660 mm polygon with a reduction of 9.6% using a flat die, and 850 ° CX 3 in a heating furnace.
  • the flat die was forged into a 415 mm polygonal column with a reduction amount of 37% and further flattened into a 360 mm polygon with a reduction amount of 9.6%.
  • the titanium material obtained by finish forging was subjected to observation of the macrostructure of the cross section, and the distribution of the crystal grain size in the radial direction was measured by the ASTM E-112 cutting method. Furthermore, the occurrence of defects on the surface layer of the titanium material was measured by ultrasonic flaw detection. These results are shown in Table 1.
  • the finished forged titanium material is cut to a predetermined length (for example, 200 mm), heated in a heating furnace at 600 ° C for 2 hours, then upset and forged in the length direction.
  • the forging ratio was 2 (length after forging 100mm).
  • Table 1 shows the measurement results of upset forgeability, that is, the ratio of major axis to minor axis ratio of the cross-section after forging.
  • a columnar titanium material having a final shape of 165 mm ⁇ was forged by the warm forging process shown in FIG. As in Example 1, using a VAR melting ingot as the starting material with a diameter of 730 mm ⁇ X length of 2500 mm, and 850 in a calo heat furnace. CX After 12 hours of uniform heat (calorie heat) and before primary forging, perform all-around forging (4% reduction, rotation angle 30 °) by light rolling using a flat die, Forged into a 660mm cylinder.
  • reheating (reheating for 850 ° CX for 3 hours between processes so that the temperature of the forged material is 850 to 500 ° C is possible through the first to fourth steps. Heating).
  • the forging material was forged while being cut as appropriate so that the length was easy to handle when working.
  • a columnar titanium having a final shape of 165 mm ⁇ was processed using a round die by the warm forging process shown in FIG.
  • the starting material used was a VAR melting ingot having a diameter of 730 mm and a diameter of X and a length of 2500 mm.
  • forging 590mm ⁇ , forging in the second step to 380mm ⁇ , forging to 280mm ⁇ in the third step did.
  • the steel was forged up to a final outer diameter of 165 mm ⁇ with a round die.
  • Table 1 shows a comparison of the measurement results in Invention Examples 1 and 2 and Comparative Examples 1 and 2.
  • the upset forgeability is a result of an upset ratio of 2.
  • Inventive Examples 1 and 2 and Comparative Example 2 are 1.02, indicating excellent upset forgeability.
  • Invention Examples 1 and 2 have excellent characteristics in terms of deviations in cross-sectional macrostructure observation, crystal grain size, ultrasonic flaw detection of surface layer defects, and upset forgeability. It can be seen that it is the best titanium material for the sputtering target.
  • a flat die is used in warm forging.
  • a melted ingot is used as a starting material to create a Mac Combined with a fine microstructure (grain size of less than 10 / zm after target processing), good upset forgeability, and reduced yield of defects in the surface layer after stretch forging.
  • a titanium material for sputtering that is optimal for a titanium target.
  • defects that occur in the surface layer can be remarkably reduced by forging the entire circumference of the surface layer of the material to be forged before primary forging by performing all-around forging under light pressure.
  • they can be widely used as titanium materials that are optimal for titanium targets.

Abstract

 溶解インゴットを出発原料として、清浄なマクロ組織、微細なミクロ組織を備え、表層欠陥が少なく、良好な据え込み鍛造性を具備するスパッタリング用チタン材を製造するため、温間鍛造で平金型を用いた角柱鍛伸からなる1次鍛造と、丸金型を用いた円柱鍛伸からなる2次鍛造とを組み合わせる。すなわち、1次鍛造では温間鍛造の初期に圧下量を確保することにより、断面マクロ組織の表層部に残留する鋳造組織を破壊することができ、2次鍛造では、加工歪みの蓄積に加え、最終形状に相似する形状に加工できるとともに、加工力を素材中心部に均一、かつ規則的に伝搬し、結晶粒の微細化と均一化をおこない、結晶の配向性分布に規則性を持たせ、優れた据え込み鍛造性を発揮させることができる。これらの特性により、チタンターゲットに最適なチタン材として、広範に利用することができる。

Description

明 細 書
スパッタリング用チタン材の製造方法
技術分野
[0001] 本発明は、スパッタリングターゲットに用いられるチタン材の製造方法に関し、さらに 詳しくは、溶解インゴットを鍛造素材として、铸造組織を残留させることなく均一なマク 口組織と微細なミクロ組織 (ターゲット加工後に結晶粒径が 10 /z m未満)を兼ね備え 、その鍛造工程で被鍛造材の表面および表層部に発生する欠陥を低減するとともに 、良好な据え込み鍛造性を具備することができ、チタンターゲットに最適なスパッタリ ング用チタン材の製造方法に関するものである。
背景技術
[0002] 従来から、金属チタン材は優れた比強度、さらに高耐食性等の優れた特性力 構 造材料として広い分野で用いられている。特に、最近において高集積ィ匕の進拔が著 しい半導体分野では、微細パターン加工の要請にともない、高純度チタン材が具備 する低抵抗特性、高強度特性、または窒化チタンのノリャ特性等が大きな誘因とな つて、高純度チタン材の使用量が急速に増加している。
[0003] 通常、高純度チタン材を電極材料等の半導体材料として適用する場合には、スパ ッタリング用ターゲットとして使用される力 このときの純度はガス不純物を除いて 99. 98%以上の材料が要求される。さらに、このようなチタンターゲットの製造においては 、スパッタリングによって形成される膜厚の均一化を図るために、結晶粒の微細化お よびマクロ組織の均一化が必要とされており、そのために鍛造および圧延で形状を 整えるとともに、その後の熱処理での再結晶により、結晶粒径を制御するプロセスが 採用されている。
[0004] 例えば、特開平 8— 232061号公報では、優れた膜厚の均一化特性を発揮するス ノ^タリング用ターゲットを得るため、変態点以上の温度で鍛鍊成形比が 5以上となる ように鍛伸と据え込みを組み合わせた 1次鍛造加工を 1回以上行った後、変態点以 下の温度で鍛鍊成形比が 5以上となるように鍛伸と据え込みを組み合わせた 2次鍛 造加工を 1回以上行なう鍛造プロセスを提案している。 [0005] すなわち、特開平 8— 232061号公報で開示する鍛造プロセスでは、変態点以上 の温度における 1次鍛造加工で铸造組織を破壊することとし、その後の 2次鍛造加工 で加工歪を蓄積することにより、これに続く圧延'熱処理工程で再結晶が促進され、 結晶粒の微細化が図られることにより、その鍛伸材力も得られたスパッタリングターゲ ットは膜厚の均一性に優れるとしている。
[0006] ところが、高純度チタン材カもスパッタリング用ターゲットを製作する際には、形成さ れる膜厚の均一特性を確保するとともに、製造効率を向上させるために、溶解インゴ ットを鍛造素材として円柱状に仕上鍛伸したのち、据え込み鍛造や対称軸圧延を施 すプロセスが採用されるようになる。
[0007] 具体的には、高純度で溶解されたチタンインゴット(例えば、 500〜900mm φ )を 出発原料として、複数回の鍛伸工程を繰り返し、所定の仕上外径 (例えば、 165mm φ )まで鍛伸する。その後、所定の直径および長さに切り出して、鍛伸材の長さ方向 に圧縮して据え込み鍛造を行 、、所定厚さの円盤状チタン材に加工する。
[0008] 次いで、加工された円盤状チタン材を半径方向へ均一に拡大させるために、対称 軸圧延を実施して、さらに薄い円盤形状 (例えば、厚さ 25mm)に加工する。その後、 機械切削して所定のスパッタリング用ターゲットとして仕上力卩ェが行われる。
[0009] チタン材の金属組織は、その温度環境に応じて、 a相の稠密六方晶と β相の体心 立方晶に区分され、 OC相から β相への変態は高温域にある β変態点で行われる。と ころで、その金属組織のうち体心立方晶は、稠密六方晶に較べて加工性は良好であ る力 高温環境下では結晶粒の成長が著しくなる。
[0010] そのため、スパッタリング用ターゲットのように、結晶粒の成長や再結晶を抑える必 要がある部材の加工では、その加工温度を制御することが必要になる。特に、高純 度チタンの結晶粒の成長は、高温環境下で一層顕著になるため、 j8変態点(例えば 、 880°C)以下での加工が必要になる。したがって、上述のターゲットの製作過程で の円柱状チタン材の鍛伸には、ある程度の加工性を確保しつつ、結晶粒の成長を抑 制するため、 β変態点以下での温間鍛造が前提とされる。
[0011] 前述の通り、溶解インゴットを出発材料として複数回の鍛伸工程を繰り返し、円柱状 に仕上鍛伸したのち、据え込み鍛造や対称軸圧延を施すプロセスでスパッタリング 用ターゲットを製造するようになると、良好なスパッタ膜厚特性を確保するだけでなく 、最終形状における鍛伸材の据え込み鍛造性を向上させることが必要になる。
[0012] 例えば、スパッタリンダ用ターゲットの製作において、据え込み鍛造されたチタン材 は対称軸圧延で円盤形状に仕上げられるが、一旦、据え込み鍛造によって円形形 状が損なわれ、角形状または楕円形状となったチタン材断面は、円盤形状に修正す ることは困難である。このため、そのままの断面形状でターゲット加工を行うと、製品 歩留まりが著しく低下することになり、従来の溶解インゴットの鍛造方法では据え込み 銀造'性の悪ィヒが問題となって!/ヽた。
[0013] 図 1は、溶解インゴットを出発材料として最終形状の円柱状に鍛伸する従来の温間 鍛造での加工プロセスを説明する図である。溶解インゴット(例えば、 730mm φイン ゴット)カゝら仕上外径 (例えば、 165mm φ )に至るまでの鍛伸は、 4段階の鍛造工程 に区分されている。このとき、従来の温間鍛造では、最終的に円柱状に鍛伸する場 合には、丸金型 2を用いて仕上鍛伸を行うが、その前段階まで平金型 1を用いて角 柱形状に鍛造していた。
[0014] 鍛造素材が大径となるチタン材の鍛造プロセスでは、複数回の鍛造工程が必要と なり、後述する図 7に示すように、丸金型 2を用いる場合には、丸金型 2の穴型部の寸 法 (形状)によって、その金型で加工できる素材径と最終加工径が決定されるため、 鍛造工程に応じて丸金型 2を交換していく必要がある。これに対し、平金型 1を用い る場合には、鍛造工程に応じて、その都度金型の交換を必要としないことから、従来 の温間鍛造での加工プロセスでは、最終的に円柱状に鍛伸する前段階まで、平金 型 1を用いて角柱形状に鍛造して 、た。
[0015] このように、溶解インゴットを出発材料としてスパッタリング用ターゲットを製作する際 には、最終形状の円柱状チタン材まで鍛伸されると、所定の長さに切り出した後、長 さ方向に据え込み鍛造が行われ、所定厚さの円盤状チタン材に加工される。
[0016] し力しながら、図 1に示す従来の温間鍛造で鍛伸する場合には、据え込み鍛造後 のチタン材の断面が、円形に近似する形状にはならず、半径方向への据え込み変形 が不揃いとなり、製品歩留まりを著しく低下させることになる。
[0017] 鍛伸材の据え込み鍛造性を向上させるには、結晶の配向性分布に規則性を持た せることが必要になる。すなわち、鍛伸材の結晶の配向性を均一、かつ規則的にす ることにより、据え込み鍛造による半径方向への変形が整合され、据え込み鍛造後の チタン材の断面が、円形に近似する形状になる。
[0018] このように、鍛伸材の結晶配向性に規則性を持たせるには、例えば、溶解インゴット を出発材料とした温間鍛造の開始力 終了に至るまでの全段階で丸金型を用いる円 柱鍛伸を実施することによつても可能になる。すなわち、丸金型を用いた円柱鍛伸に より、鍛伸材の最終的な断面形状に相似する形状に加工するとともに、加工力を素 材中心部に向力つて均一、かつ規則的に伝搬することができる。
[0019] 図 2は、据え込み鍛造性を確保するため、溶解インゴットを出発材料として温間鍛 造での加工プロセスの全段階で円柱鍛伸を実施する工程を示す図である。最終外 径の鍛伸材を加工するまで 4段階の円柱鍛造の工程に区分されるが、それぞれの円 柱鍛伸は、丸金型 2を用いた自由鍛造によって行われる。これにより、最終形状に相 似する形状に加工するとともに、加工力を素材中心部に均一に伝搬でき、優れた据 え込み鍛造性を確保することができる。
[0020] し力しながら、前記図 2に示す鍛造プロセスによれば、前述の通り、据え込み鍛造 性を向上させるとともに、膜厚特性に必要なミクロ組織の微細化および均一化を図る ことができるが、仕上鍛伸後に断面マクロ組織の表層部に、柱状晶が残影したような 铸造組織が残留することがある。このように、表層部に铸造組織が残留したチタン材 からスパッタリング用ターゲットを製作すると、スパッタリング時に均一な形成膜を得る ことができなくなる。
[0021] このため、丸金型を用いた円柱鍛伸における加工度を増加すると、铸造組織の残 留を軽減することができるが、円柱鍛伸後の断面表層部に欠陥が発生し、仕上鍛伸 後の超音波探傷によって検出されるようになる。このような検出欠陥を除去するには、 仕上鍛伸材力も所定直径に切り出して据え込み鍛造用のビレットを加工する際に、 仕上鍛伸材の外径加工量を大きくとる必要があり、加工歩留まりを低下させる要因と なる。
発明の開示
[0022] 本発明は、上述したスパッタリング用ターゲットのチタン材の製造における問題点に 鑑みてなされたものであり、溶解インゴットを出発原料として、铸造組織の残留がない 均一なマクロ組織と微細なミクロ組織 (ターゲット加工後に結晶粒径が 10 πι未満) を兼ね備え、その鍛造プロセスでの円柱鍛伸後の断面表層部に発生する欠陥を低 減するとともに、良好な据え込み鍛造性を具備することができ、チタンターゲットに最 適なスパッタリング用チタン材の製造方法を提供することを目的として!/、る。
[0023] 本発明者らは、上記の課題を解決するため、前記図 1に示す平金型を用いた角柱 鍛伸の鍛造プロセス、および前記図 2に示す丸金型を用いた円柱鍛伸の鍛造プロセ スについて詳細に検討した。その結果、断面マクロ組織の表層部に残留する铸造組 織は、 j8変態点(例えば、 880°C)以下の温間加工による鍛造初期に、平金型を用い て比較的大きな圧下量を被鍛造材に負荷することにより、低減できることを明らかにし た。
[0024] さらに、仕上鍛伸後の超音波探傷によって検出される断面表層部の欠陥は、丸金 型を用いた円柱鍛伸の鍛造プロセスでの被鍛造材の変形挙動に起因することを明 【しし 7こ。
[0025] 図 3は、鍛造プロセスにおける変形挙動を模式的に説明する図であり、 (a)は平金 型を用いた角柱鍛伸での被鍛造材の変形挙動を示し、 (b)は丸金型を用いた円柱 鍛伸での被鍛造材の変形挙動を示している。いずれの場合も金型 1、 2を介して上下 方向から圧下が加えられ、被鍛造材 (インゴット) 3の内部には圧縮力 pが発生してい る。
[0026] 図 3 (a)に示すように、平金型 1を用いる場合には、被鍛造材 3の上下外周部が金 型により拘束されるが、上下方向からの圧下による圧縮力 pは上下方向のみならず水 平方向にも分散する傾向を示し、圧縮変形にともなうメタルフローは被鍛造材の長手 方向のみならず水平方向にも生じる。このため、平金型 1を用いた角柱鍛伸でのメタ ルフローは比較的小さなものとなる。
[0027] 一方、図 3 (b)に示すように、丸金型 2を用いる場合には、被鍛造材 3の外周部はほ ぼ全周に亘り金型により拘束され、上下方向力 の圧下による圧縮力 pは半径方向 に均一に負荷されることから、表層部分は相似的に圧縮されるが大きな変形とならず 、その中心部分での変形量は比較的大きなものとなる。このため、丸金型 2を用いた 円柱鍛伸でのメタルフローは、中心部分の長手方向に沿って優先的に生じ大きなも のとなる。
[0028] したがって、丸金型 2を用いた円柱鍛伸の鍛造プロセスでは、上下方向からの圧下 による圧縮力 pにともなって、丸金型 2により拘束される被鍛造材 3の表面および表層 部でのメタルフローとその中心部分でのメタルフローに大きな差異が生じ、これが起 因となって断面表層部に欠陥が生じ易くなる。
[0029] さらに、断面表層部に発生する欠陥に関し、鍛造プロセスを通じて圧下量を増加さ せると、膜厚特性に必要なミクロ組織の微細化およびマクロ組織の均一化を図ること ができるが、仕上鍛伸後の断面表層部に欠陥を発生するようになり、超音波探傷によ つて検出されることになる。そこで、鍛造プロセスの初期段階において、平金型を用 V、て軽圧下で被鍛造材の全周を鍛造 (以下、単に「軽圧下による全周鍛造」と!、う) することにより、鍛造プロセスにおける圧下量を確保しつつ、断面表層部の欠陥を抑 制できることに着目した。
[0030] 本発明は、上記知見に基づいて完成されたものであり、下記(1)〜(3)のスパッタリ ング用チタン材の製造方法を要旨としている。
(1)最終形状として円柱状に仕上鍛伸され、スパッタリングターゲットに用いられるチ タン材の製造方法であって、溶解インゴットを出発原料として温間鍛造で平金型を用 Vヽた角柱鍛伸からなる 1次鍛造を行 ヽ、次 ヽで温間鍛造で丸金型を用いた円柱鍛伸 力もなる 2次鍛造を経て、最終の円柱形状に鍛伸されることを特徴とするスパッタリン グ用チタン材の製造方法である。
[0031] (2)上記(1)のチタン材の製造方法において、前記 1次鍛造における 1パス当たりの 圧下量が 7%以上にすること、または Zおよび前記 2次鍛造では、最終形状に鍛伸 する丸金型に比べ穴型部の寸法 (形状)が大きい 1または 2以上の丸金型を用いて 円柱鍛伸を行うことが望ましい。
さらに、圧下量を確保しつつ、断面表層部の欠陥を抑制するため、前記 1次鍛造の 前に、圧下量が 4%以下の「軽圧下による全周鍛造」を行うことができる。
[0032] (3)上記(1)のチタン材の製造方法において、温間鍛造を被鍛造材の全域に亘り 50 0°C以上、 |8変態点以下の温度範囲に保持して行うのが望ましい。さらに、被鍛造材 の全域に亘り 500°C以上に保持するため、前記 1次鍛造から 2次鍛造を経て最終の 円柱鍛造に至る工程にぉ 、てリヒート(再加熱)処理を施すことができる。
また、スパッタリングターゲットに用いられるため、被鍛造材の純度はガス不純物を 除いて 99. 98%以上とするのが望ましい。
[0033] 本発明のチタン材の製造方法において、溶解インゴットを出発原料と規定している のは、対象とする被鍛造材の外径を 500mn!〜 1000mmとする大径チタン材の鍛造 プロセスを前提としているためである。さらに、最終の円柱形状の外径は 150〜350 mmであり、多くは 150〜200mmに仕上鍛伸される。
[0034] 通常、平金型または丸金型を用いた自由鍛造では、対向する一対の金型で被鍛 造材を一方向から圧下した後、被鍛造材を所定角度 (例えば、 30° 、45° 、90° ) に回転し目標の外径寸法まで鍛造し、次いで被鍛造材を長手方向に送り、被鍛造材 の一方の端部から他方の端部まで繰り返して全長に亘り所定寸法に鍛伸される。本 発明のチタン材の製造方法においては、一対の金型により被鍛造材を一方向から圧 下することを単に「パス」 t 、う。
[0035] また、本発明のチタン材の製造方法に適用される被鍛造材には種々のサイズがあ るため、 1パス当たりの圧下量は絶対値ではなく圧下率で規定する。ここで、 「1パス 当たりの圧下量」は { (圧下前の寸法) (圧下後の寸法) Z (圧下前の寸法) } X 100 (%)で示す。
[0036] 本発明のチタン材の製造方法において「軽圧下による全周鍛造」とは、平金型を用 いて 1パス当たりの回転角度が 45° 以下の軽圧下で被鍛造材の全周を鍛造すること をいう。さらに、 1パス当たりの回転角度は 3〜40° とするのが望ましぐさらに望まし くは 15〜30° である。
[0037] 本発明のスパッタリング用チタン材の製造方法によれば、温間鍛造で平金型を用 いた角柱鍛伸からなる 1次鍛造と、丸金型を用いた円柱鍛伸からなる 2次鍛造とを組 み合わせることにより、溶解インゴットを出発原料として、铸造組織の残留がない均一 なマクロ組織と微細なミクロ組織 (ターゲット加工後に結晶粒径が 10 /z m未満)を兼 ね備え、その鍛造プロセスにおいて被鍛造材の表層部に発生する欠陥を低減すると ともに、良好な据え込み鍛造性を具備することができ、チタンターゲットに最適なスパ ッタリング用チタン材を得ることができる。
図面の簡単な説明
[0038] 図 1は、溶解インゴットを出発材料として最終形状の円柱状に鍛伸する従来の温間 鍛造での加工プロセスを説明する図である。
図 2は、据え込み鍛造性を確保するため、溶解インゴットを出発材料として温間鍛 造での加工プロセスの全段階で円柱鍛伸を実施する工程を示す図である。
図 3は、鍛造プロセスにおける変形挙動を模式的に説明する図であり、(a)は平金 型を用いた角柱鍛伸での被鍛造材の変形挙動を示し、 (b)は丸金型を用いた円柱 鍛伸での被鍛造材の変形挙動を示して ヽる。
図 4は、本発明のスパッタリング用チタン材を製造するための温間鍛造での加工プ 口セスの一例を説明する図である。
図 5は、本発明のスパッタリング用チタン材を製造するための温間鍛造での加工プ 口セスの他の例を説明する図である。
図 6は、本発明の 1次鍛造で採用する平金型の一例を示す図である。 図 7は、本発明の 2次鍛造で採用する丸金型の 1例を示す図である。
発明を実施するための最良の形態
[0039] 図 4は、本発明のスパッタリング用チタン材を製造するための温間鍛造での加工プ 口セスの一例を説明する図である。同図に示すように、最終外径の鍛伸材を加工す るまでに、平金型 1を用いた角柱鍛伸からなる 1次鍛造と、丸金型 2を用いた円柱鍛 伸からなる 2次鍛造とからなる。
[0040] 平金型 1を用いた 1次鍛造では、温間鍛造の初期に圧下量を確保することにより、 断面マクロ組織の表層部に残留する铸造組織を破壊することを目的にする。これに 対し、丸金型 2を用いた 2次鍛造では、加工歪みの蓄積に加え、最終形状に相似す る形状に加工できるとともに、加工力を素材中心部に均一、かつ規則的に伝搬し、結 晶粒の微細化と均一化をおこない、結晶の配向性分布に規則性を持たせ、優れた 据え込み鍛造性を発揮させることができる。
[0041] 図 5は、本発明のスパッタリング用チタン材を製造するための温間鍛造での加工プ 口セスの他の例を説明する図である。同図に示すように、本発明のチタン材の製造方 法では、鍛造プロセス全体での圧下量を確保しつつ、仕上鍛伸後の断面表層部に 発生する欠陥を抑制するため、 1次鍛造の前に、変形能が悪い断面表層部を小刻み な角度で回転させ、被鍛造材の全周を鍛鍊する、軽圧下による全周鍛造を行うのが 望ましい。
[0042] 軽圧下による全周鍛造では、平金型を用いて圧下量を 4%以下とする。圧下量が 4 %を超えて増加すると、仕上鍛伸後の断面表層部に欠陥が生ずるおそれがある。一 方、軽圧下による全周鍛造を行う場合に、被鍛造材の断面表層部を鍛鍊する効果を 得るには、圧下量を 1%以上とするのが望ましい。
[0043] また、軽圧下による全周鍛造を行うことにより全周の表層部を鍛鍊する効果を得る には、 1パス当たりの回転角度を 45度以下にする。このとき、 1パス当たりの回転角度 は 3〜40° とするのが望ましぐさらに 15〜30° にするのが望ましい。
[0044] 1次鍛造では、例えば、前記図 4の加工プロセスに示すように、出発素材として直径 730mm φのインゴットが使用され、温間鍛造のためヒート (加熱)された後、平金型 1 を用いて軽圧下で 660mmの多角に鍛伸され、次 ヽで平金型 1を用いて 415mm多 角を経て 360mm多角に強圧下される。引き続き、必要に応じてリヒート(再加熱)さ れた後、 2次鍛造により最終仕上まで円柱鍛伸される。
[0045] 図 6は、本発明の 1次鍛造で採用する平金型の一例を示す図である。平金型 1では 上型 laおよび下型 lb—対の金型から構成されており、この金型の間に加熱された 被鍛造材を挿入して、自由鍛造であって上下方向から空気ハンマー、蒸気ハンマー 、または液圧プレスによって圧下し、 1パス毎に均一に鍛伸する。
[0046] 前述の通り、平金型 1を用いた 1次鍛造では、温間鍛造の初期に圧下量を確保す ることにより、铸造組織の残留を抑制し、素材内部の铸造組織を破壊できる。さらに、 平金型 1による 1次鍛造では、比較的大きな圧下量を負荷したとしても、被鍛造材の メタルフローは極端に長手方向に発生することがなぐ圧下を受ける表面および表層 部でのメタルフローと中心部でのメタルフローに大きな差異が生ずることがない。これ にともなって、鍛伸後の断面表層部に発生する欠陥を防止でき、据え込み鍛造用ビ レットの外径力卩ェ量を低減することができる。
[0047] 平金型 1を用いた 1次鍛造では、上記の効果を確保するため、 1パス当たりの圧下 量を 7%以上にするのが望ましい。さらに、圧下量の下限を設けることにより、鍛造パ ス回数の増加にともなう能率低下ゃリヒート (再加熱)処理の増加を防止できる。 1次 鍛造での圧下量の上限は規定しないが、圧下量が大きすぎると、素材エッジ部での せん断割れや座屈、巻き込み等のおそれがあるため、上限値を 50%とするのが望ま しい。
[0048] 2次鍛造では、例えば、前記図 4および図 5の加工プロセスに示すように、 1次鍛造 に引き続き、必要に応じてリヒート(再加熱)を施し、丸金型 2に変更して素材を 285m πι φに鍛伸したのち、丸金型 2の穴型部の寸法 (形状)を変更して、最終仕上の 165 mm φ鍛伸材まで鍛伸する。
[0049] 同図に示す 2次鍛造において、最終形状に鍛伸する丸金型に比べ穴型部の寸法( 形状)が大きい 1の丸金型を用いて円柱鍛伸を行っている力 この加工プロセスには 限定されない。すなわち、本発明の 2次鍛造では、最終形状に鍛伸する丸金型に比 ベ穴型部の寸法 (形状)が大きい 1または 2以上の丸金型を用いて円柱鍛伸を行うこ とがでさる。
[0050] 図 7は、本発明の 2次鍛造で採用する丸金型の 1例を示す図である。本発明の丸金 型 2は、楕円形状 (長径 Dおよび短径 D )の穴型部を有する上下一対の金型 2a、 2
A B
bから構成されており、この穴型部に加熱された被鍛造材を挿入して、自由鍛造であ つて上下方向力 空気ハンマー、蒸気ハンマー、または液圧プレスによって加圧し、 1パス毎に均一に鍛伸していくことができる。
[0051] 前述の通り、丸金型 2を用いた 2次鍛造では、鍛伸材の結晶配向性を改善すること により、据え込み鍛造性を向上させることができる。通常、据え込み鍛造性の判断基 準は、所定の据え込み比(2〜3)で行った鍛造後の断面の長径 Z短径比で判断し、 長径 Z短径比が小さい程、据え込み鍛造性が良好と判断される。一方、据え込み比 が大きくなればなる程、長径 Z短径比が大きくなり、据え込み鍛造性後の歩留まりが 悪化する。
[0052] 上記図 7に示す丸金型では、上下の金型を組み合わされることによって、長径 D
A
および短径 Dの穴型部が形成される。しかし、丸金型の穴型部の形状によって、そ
B
の金型で加工できる素材径と最終加工径が決定されるため、素材外径から最終仕上 外径まで順次、丸金型を小径用に交換して 、く必要がある。
[0053] 本発明の製造方法では、高純度チタン材を温間鍛造するものであるが、被鍛造材 の全域に亘り 500°C以上、 j8変態点以下の温度範囲に保持して行うが望ましい。 β 変態点 (約 880°C)以下としているのは、高純度チタンにおいては高温での結晶粒成 長はさらに顕著になるので、結晶粒の成長を抑制するためである。一方、保持温度 の下限を 500°Cとしているのは、被鍛造材の全域に亘り鍛造力卩ェ性を確保するため である。下限温度の管理に際しては、被鍛造材の表面温度に留意する必要がある。
[0054] 被鍛造材の全域に亘り上記の温度範囲に保持するため、溶解インゴットをヒート (加 熱)した後、 1次鍛造カゝら 2次鍛造を経て最終の円柱鍛造に至る工程では、各工程間 または Zおよび各工程の途中段階で加熱炉により適宜素材をリヒート (再加熱)しな 力 Sら鍛伸を行うことができる。
[0055] 本発明の製造方法では、具体的なヒート (加熱)またはリヒート(再加熱)条件として 8 50°C X 2〜12Hrを採用することができる。また、鍛伸が進むにつれて被鍛造材が長 くなるため、作業をする上で取り扱いやすい長さに適宜切断しながら鍛伸を行う。
[0056] さらに、本発明が対象とする高純度チタン材の純度をガス不純物を除いて 99. 98 %以上とするのが望ましいとしているのは、スパッタリングターゲットとして用いられる 場合に要求される純度を満足するためである。
実施例
[0057] 本発明のスパッタリング用チタン材の特性を、高純度チタン材を用いた具体的な実 施例に基づいて説明する。実施例に供したチタン材の純度は、いずれもガス不純物 を除!ヽて 99. 995%とした。
[0058] (発明例 1)
前記図 4に示す温間鍛造の加工プロセスによって、最終形状が 165mm φとなる円 柱状のチタン材を鍛伸した。出発素材としては、 VAR溶解インゴットで直径 730mm φ X長さ 2500mmを使用した。 1次鍛造では、加熱炉で 850°C X 12時間の均一ヒ ート (加熱)後、平金型により圧下量が 9. 6%で 660mm多角に鍛伸し、加熱炉で 85 0°C X 3時間のリヒート(再加熱)後、平金型により圧下量が 37%で 415mmの多角柱 鍛伸をおこない、さらに平金型により圧下量が 9. 6%で 360mm多角に鍛伸した。 [0059] 次いで、 2次鍛造では、加熱炉で 850°C X 3時間のリヒート(再加熱)後、丸金型を 用いて 285mm φに鍛伸した後、丸金型を変更して仕上外径である 165mm φまで 鍛伸した。 1次鍛造〜 2次鍛造〜仕上鍛伸の工程を通じて、素材温度が 850〜500 °Cの温間加工が可能になるように、工程間で均一加熱を行った。鍛伸材は作業をす る上で取り扱 、やす 、長さになるように、適宜切断しながら鍛伸を行った。
[0060] 仕上鍛伸で得られたチタン材は、断面のマクロ組織観察を行うとともに、半径方向 の結晶粒径の分布状況を ASTM E— 112切断法で測定した。さら〖こ、チタン材の 表層部の欠陥の発生状況を、超音波探傷により測定した。これらの結果を表 1に示 す。
また、仕上鍛伸されたチタン材は、所定の長さ(例えば、 200mm)に切断した後、 加熱炉中にて 600°Cで 2時間加熱後、長さ方向に据え込み鍛造して、据え込み比 2 ( 鍛造後の長さ 100mm)鍛造を行った。このときの据え込み鍛造性、すなわち、鍛造 後の断面の長径 Z短径比の測定結果を表 1に示す。
[0061] (発明例 2)
前記図 5に示す温間鍛造の加工プロセスによって、最終形状が 165mm φとなる円 柱状のチタン材を鍛伸した。実施例 1と同様に、出発素材に VAR溶解インゴットで直 径 730mm φ X長さ 2500mmを使用し、カロ熱炉で 850。C X 12時間の均一ヒート(カロ 熱)後、 1次鍛造前に、平金型を用いて軽圧下による全周鍛造 (圧下量 4%、回転角 度 30° )を行い、表層部の全周を鍛練して 660mm円柱に鍛伸した。
[0062] 軽圧下による全周鍛造後、加熱炉で 850°C X 3時間のリヒート(再加熱)後、平金型 により圧下量が 37%で 415mmの多角柱鍛伸をおこない、さらに平金型により圧下 量が 9. 6%で 360mm多角に鍛伸した。次いで、 2次鍛造では、丸金型を用いて 28 5mm φに鍛伸した後、丸金型を変更して仕上外径である 165mm φまで鍛伸した。
[0063] 発明例 2で仕上鍛伸されたチタン材は、発明例 1の場合と同様に、断面マクロ組織 観察、半径方向の結晶粒径測定、および表層部欠陥の超音波探傷を実施した。さら に、据え込み比 2の鍛造を行ったときの断面の長径 Ζ短径比の測定を実施した。この ときの結果を表 1に示す。
[0064] (比較例 1) 前記図 1に示す温間鍛造の加工プロセスによって、平金型を用いた四角柱鍛造を 行い、最終形状が 165mm φとなる円柱状チタンをカ卩ェした。出発素材は発明例 1の 場合と同様に、 VAR溶解インゴットで直径 730mm φ X長さ 2500mmとした。第 1の 工程では、加熱炉で 850°Cに均一ヒート (加熱)後、 360mm角に鍛伸し、第 2の工程 では 250mm角に鍛伸し、第 3の工程では 175mm角に鍛伸した。第 4の工程では、 丸金型にて仕上外径である 165mm φまで鍛伸した。
[0065] 図示しないが、第 1から第 4の工程を通じて、被鍛造材の温度が 850〜500°Cの温 間加工が可能になるように、工程間で 850°C X 3時間のリヒート (再加熱)を行った。 鍛伸材は作業をする上で取り扱いやすい長さになるように、適宜切断しながら鍛伸を 行った。
[0066] 比較例 1で仕上鍛伸されたチタン材は、発明例 1の場合と同様に、断面マクロ組織 観察、半径方向の結晶粒径測定、および表層部欠陥の超音波探傷を実施した。さら に、据え込み比 2の鍛造を行ったときの断面の長径 Z短径比の測定を実施した。この ときの結果を表 1に示す。
[0067] (比較例 2)
前記図 2に示す温間鍛造の加ェプロセスによって、丸金型を用 、最終形状が 165 mm φとなる円柱状チタンを加工した。出発素材は発明例 1の場合と同様に、 VAR 溶解インゴットで直径 730mm φ X長さ 2500mmを使用した。第 1の工程では、加熱 炉で 850°Cの均一ヒート(加熱)後、 590mm φ〖こ鍛伸し、第 2の工程では 380mm φ に鍛伸し、第 3の工程では 280mm φに鍛伸した。次いで、第 4の工程では、丸金型 にて仕上外径である 165mm φまで鍛伸した。
[0068] 比較例 1と同様に、第 1から第 4の工程を通じて、素材温度が 850〜500°Cの温間 加工が可能になるように、工程間で均一リヒート (再加熱)を行った。鍛伸材は作業を する上で取り扱!/、やす 、長さになるように、適宜切断しながら鍛伸を行った。
比較例 2で仕上鍛伸されたチタン材は、発明例 1の場合と同様に、断面マクロ組織 観察、半径方向の結晶粒径測定、および表層部欠陥の超音波探傷を実施した。さら に、据え込み比 2の鍛造を行ったときの断面の長径 Z短径比の測定を実施した。この ときの結果を表 1に示す。 [0069] (測定結果)
発明例 1、 2および比較例 1、 2における測定結果の比較を、表 1に示す。
[0070] [表 1]
表 1
Figure imgf000016_0001
[0071] 断面のマクロ糸且織観察では、発明例 1、 2および比較例 1では均一、かつ清浄なマ クロ組織であつたが、比較例 2では断面周辺部に铸造組織の残留が観察され、悪い 結果 (評価は X )となった。
[0072] 結晶粒度の測定結果は粒径バラツキの標準偏差で示しているが、発明例 1、 2およ び比較例 1、 2のいずれも 9〜10 mと良好な結果であり、いずれの温間鍛造の加工 プロセスであっても铸造組織の破壊が充分に行われていることが分かる。
[0073] 表層部欠陥の超音波探傷の結果では、比較例 2の場合には表層部での欠陥発生 が多く(評価は X )、据え込み鍛造用ビレットを加工する際に、外径加工量を多くとる 必要があることが分かる。特に、発明例 2の場合には、 1次鍛造の前に被鍛造材の表 層部全周を鍛鍊する軽圧下による全周鍛造を行うことにより、表層部に発生する欠陥 を顕著に低減することができた (評価は◎)。
[0074] 据え込み鍛造性は据え込み比 2の結果であり、発明例 1、 2および比較例 2は 1. 02 であり、優れた据え込み鍛造性を示している。
表 1に示す結果から、発明例 1、 2は、断面のマクロ組織観察、結晶粒度、表層部欠 陥の超音波探傷、および据え込み鍛造性の 、ずれにお!ヽても優れた特性を発揮で きることから、スパッタリングターゲットに最適なチタン材であることが分かる。
産業上の利用可能性
[0075] 本発明のスパッタリング用チタン材の製造方法によれば、温間鍛造で平金型を用 いた角柱鍛伸からなる 1次鍛造と、丸金型を用いた円柱鍛伸からなる 2次鍛造とを組 み合わせることにより、溶解インゴットを出発原料として、铸造組織の残留がないマク 口組織と微細なミクロ組織 (ターゲット加工後に結晶粒径が 10 /z m未満)を兼ね備え 、良好な据え込み鍛造性を具備するとともに、延伸鍛造後の表層部での欠陥発生を 低減することでカ卩ェ歩留まりにも優れ、チタンターゲットに最適なスパッタリング用チタ ン材を得ることができる。
特に、 1次鍛造の前に被鍛造材の表層部全周を鍛鍊する、軽圧下による全周鍛造 を施すことにより、表層部に発生する欠陥を顕著に低減することができる。これらによ り、チタンターゲットに最適なチタン材として、広範に利用することができる。

Claims

請求の範囲
[1] 最終形状として円柱状に仕上鍛伸され、スパッタリングターゲットに用いられるチタ ン材の製造方法であって、
溶解インゴットを出発原料として温間鍛造で平金型を用いた角柱鍛伸からなる 1次 鍛造を行 ヽ、次 、で温間鍛造で丸金型を用いた円柱鍛伸からなる 2次鍛造を経て、 最終の円柱形状に鍛伸されることを特徴とするスパッタリング用チタン材の製造方法
[2] 前記 1次鍛造における 1パス当たりの圧下量が 7%以上であることを特徴とする請求 項 1に記載のスパッタリング用チタン材の製造方法。
[3] 前記 2次鍛造では、最終形状に鍛伸する丸金型に比べ穴型部の寸法 (形状)が大 きい 1または 2以上の丸金型を用いて円柱鍛伸を行うことを特徴とする請求項 1または
2に記載のスパッタリング用チタン材の製造方法。
[4] 前記 1次鍛造の前に、平金型を用いて圧下量が 4%以下の軽圧下で被鍛造材の 全周を鍛造することを特徴とする請求項 1〜3のいずれかに記載のスパッタリング用 チタン材の製造方法。
[5] 上記温間鍛造が被鍛造材の全域に亘り 500°C以上、 β変態点以下の温度範囲に 保持して行われることを特徴とする請求項 1〜4のいずれかに記載のスパッタリング用 チタン材の製造方法。
[6] 被鍛造材の全域に亘り 500°C以上に保持するため、前記 1次鍛造から 2次鍛造を 経て最終の円柱鍛造に至る工程においてリヒート (再加熱)処理が施されることを特 徴とする請求項 5に記載のスパッタリング用チタン材の製造方法。
[7] 被鍛造材の純度がガス不純物を除いて 99. 98%以上であることを特徴とする請求 項 1〜6のいずれかに記載のスパッタリング用チタン材の製造方法。
PCT/JP2006/325188 2006-01-13 2006-12-18 スパッタリング用チタン材の製造方法 WO2007080750A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-006055 2006-01-13
JP2006006055A JP4990531B2 (ja) 2005-07-11 2006-01-13 スパッタリング用チタン材の製造方法。

Publications (1)

Publication Number Publication Date
WO2007080750A1 true WO2007080750A1 (ja) 2007-07-19

Family

ID=38256161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325188 WO2007080750A1 (ja) 2006-01-13 2006-12-18 スパッタリング用チタン材の製造方法

Country Status (1)

Country Link
WO (1) WO2007080750A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613850B (zh) * 2009-07-27 2010-09-29 宁波江丰电子材料有限公司 铝靶材的加工方法
CN106424500A (zh) * 2016-12-14 2017-02-22 中南大学 一种面向锻件目标晶粒组织的等温模锻工艺轨迹规划方法
CN107774850A (zh) * 2017-09-12 2018-03-09 陕西飞机工业(集团)有限公司 一种u型相近结构零件合用一个模锻件毛坯的加工方法
CN109175179A (zh) * 2018-11-23 2019-01-11 中国航发南方工业有限公司 一种高温合金锻件锻造拔长方法
CN109622837A (zh) * 2018-12-11 2019-04-16 陕西宏远航空锻造有限责任公司 一种高探伤水平的tc11钛合金饼坯的制备方法及装置
EP3859047A4 (en) * 2018-09-26 2022-06-29 JX Nippon Mining & Metals Corporation Sputtering target and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012358A1 (fr) * 1999-08-16 2001-02-22 Sumitomo Sitix Of Amagasaki, Inc. Materiau en titane a capacite superieure de forgeage par refoulement, et procede de fabrication
JP2003213389A (ja) * 2002-01-15 2003-07-30 Toho Titanium Co Ltd ターゲット用チタン材の製造方法
JP2005118785A (ja) * 2003-10-14 2005-05-12 Sumitomo Titanium Corp 高純度チタンビレットおよびその製造方法ならびに高純度チタンターゲットの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012358A1 (fr) * 1999-08-16 2001-02-22 Sumitomo Sitix Of Amagasaki, Inc. Materiau en titane a capacite superieure de forgeage par refoulement, et procede de fabrication
JP2003213389A (ja) * 2002-01-15 2003-07-30 Toho Titanium Co Ltd ターゲット用チタン材の製造方法
JP2005118785A (ja) * 2003-10-14 2005-05-12 Sumitomo Titanium Corp 高純度チタンビレットおよびその製造方法ならびに高純度チタンターゲットの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613850B (zh) * 2009-07-27 2010-09-29 宁波江丰电子材料有限公司 铝靶材的加工方法
CN106424500A (zh) * 2016-12-14 2017-02-22 中南大学 一种面向锻件目标晶粒组织的等温模锻工艺轨迹规划方法
CN106424500B (zh) * 2016-12-14 2018-09-07 中南大学 一种面向锻件目标晶粒组织的等温模锻工艺轨迹规划方法
CN107774850A (zh) * 2017-09-12 2018-03-09 陕西飞机工业(集团)有限公司 一种u型相近结构零件合用一个模锻件毛坯的加工方法
CN107774850B (zh) * 2017-09-12 2019-05-14 陕西飞机工业(集团)有限公司 一种u型相近结构零件合用一个模锻件毛坯的加工方法
EP3859047A4 (en) * 2018-09-26 2022-06-29 JX Nippon Mining & Metals Corporation Sputtering target and method for producing same
CN109175179A (zh) * 2018-11-23 2019-01-11 中国航发南方工业有限公司 一种高温合金锻件锻造拔长方法
CN109622837A (zh) * 2018-12-11 2019-04-16 陕西宏远航空锻造有限责任公司 一种高探伤水平的tc11钛合金饼坯的制备方法及装置

Similar Documents

Publication Publication Date Title
JP4990531B2 (ja) スパッタリング用チタン材の製造方法。
RU2339731C2 (ru) Обработка сплавов титан-алюминий-ванадий и изделия, изготовленные с ее помощью
JP6171762B2 (ja) Ni基耐熱合金の鍛造加工方法
CN101857950B (zh) 钽溅射靶
JP4013761B2 (ja) チタン合金棒材の製造方法
CN106670359B (zh) 一种gh4169合金环件及其制备方法
JP4209092B2 (ja) TiAl基合金及びその製造方法並びにそれを用いた動翼
US7708845B2 (en) Method for manufacturing thin sheets of high strength titanium alloys description
WO2007080750A1 (ja) スパッタリング用チタン材の製造方法
WO2016152935A1 (ja) チタン板、熱交換器用プレートおよび燃料電池用セパレータ
RU2555267C2 (ru) Способ изготовления тонких листов из двухфазного титанового сплава и изделие из этих листов
JP3715239B2 (ja) 据え込み鍛造性に優れるチタン材およびその製造方法
JP2018001249A (ja) 熱間圧延用チタン素材の製造方法
CN112536406B (zh) 一种避免表面开裂的锻造拔长方法
WO2017175569A1 (ja) チタン板、熱交換器用プレートおよび燃料電池用セパレータ
JP7307313B2 (ja) α+β型チタン合金棒材及びその製造方法
CA3009962C (en) A method of manufacturing rods from titanium alloys
CN113718110B (zh) 一种采用累积能量控制板材组织的高品质铌板的制备方法
CN111155060A (zh) 钴靶坯的制作方法
CN112496216B (zh) 一种30Cr15MoN高氮马氏体不锈钢钢棒的锻造生产工艺
JP2017190480A (ja) チタン板
JP7145963B2 (ja) スパッタリングターゲット及びその製造方法
JP2016108652A (ja) チタン板、熱交換器用プレートおよび燃料電池用セパレータ
CN107761062A (zh) 靶坯及靶材组件的制造方法
KR20220023763A (ko) 지르코늄 합금 배관의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834900

Country of ref document: EP

Kind code of ref document: A1