WO2020059711A1 - リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用正極 - Google Patents

リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用正極 Download PDF

Info

Publication number
WO2020059711A1
WO2020059711A1 PCT/JP2019/036375 JP2019036375W WO2020059711A1 WO 2020059711 A1 WO2020059711 A1 WO 2020059711A1 JP 2019036375 W JP2019036375 W JP 2019036375W WO 2020059711 A1 WO2020059711 A1 WO 2020059711A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
insulating layer
material layer
Prior art date
Application number
PCT/JP2019/036375
Other languages
English (en)
French (fr)
Inventor
寛大 奥田
和徳 小関
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201980061698.9A priority Critical patent/CN112740439A/zh
Priority to JP2020538153A priority patent/JP6849863B2/ja
Publication of WO2020059711A1 publication Critical patent/WO2020059711A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery, a method for producing the same, and a positive electrode for a lithium ion secondary battery.
  • Lithium-ion secondary batteries are used as large stationary power sources for power storage, power sources for electric vehicles, etc.
  • a lithium ion secondary battery includes both electrodes having an electrode active material layer formed on a surface of a current collector made of a metal foil or the like, and a separator disposed between both electrodes.
  • the separator plays a role in preventing a short circuit between the two electrodes and holding the electrolytic solution.
  • a polyolefin-based porous film such as polyethylene or polypropylene is generally used.
  • lithium-ion secondary batteries have been attempted to be separatorless without using a separator such as the porous film for the purpose of reducing the number of parts.
  • a separator such as the porous film
  • it has been studied to form an insulating layer on the surface of the electrode active material layer and prevent a short circuit between both electrodes by the insulating layer.
  • the insulating layer a layer having a three-dimensional network void structure including insulating particles and a binder for bonding the insulating particles to each other is known.
  • the present invention provides a lithium-ion secondary battery and a negative electrode for a lithium-ion secondary battery that can improve all of safety, charge / discharge characteristics, and output characteristics even without a separator. That is the task.
  • the present inventors have conducted intensive studies and found that the surface roughness and density of the positive electrode active material layer and the thickness of the insulating layer provided between the positive electrode lubricant material layer and the negative electrode lubricant material layer were adjusted within a predetermined range.
  • the inventors have found that the above problems can be solved, and have completed the present invention described below. That is, the present invention is as follows.
  • a lithium ion secondary battery including a positive electrode and a negative electrode, wherein the positive electrode includes a positive electrode active material layer and an insulating layer provided on a surface of the positive electrode active material layer.
  • the surface provided with the insulating layer of the positive electrode active material layer is arranged to be in contact with the negative electrode, has a surface roughness Ra of 0.5 to 2.0 ⁇ m, and the density of the positive electrode active material layer is 3.
  • a lithium ion secondary battery having a thickness of 0 to 4.0 g / cc and a thickness of the insulating layer of 10 to 30 ⁇ m.
  • the insulating layer contains insulating fine particles and a binder for an insulating layer.
  • a method for producing a lithium ion secondary battery comprising: a step of obtaining a positive electrode; and a step of pressing the positive electrode to a negative electrode via the insulating layer.
  • the composition according to [6] wherein the composition for an insulating layer contains insulating fine particles, a binder for an insulating layer, and an organic solvent, and the viscosity of the composition for an insulating layer at 25 ° C. is 2000 to 4000 cps.
  • a method for manufacturing a lithium ion secondary battery comprising: a step of obtaining a positive electrode; and a step of pressing the positive electrode to a negative electrode via the insulating layer.
  • a separator-free positive electrode for a lithium ion secondary battery having no separator between the positive electrode and the negative electrode comprising: a positive electrode active material layer; and an insulating layer provided on a surface of the positive electrode active material layer.
  • the surface of the active material layer on which the insulating layer is provided has a surface roughness Ra of 0.5 to 2.0 ⁇ m, and the density of the positive electrode active material layer is 3.0 to 4.0 g / cc;
  • a positive electrode for a lithium ion secondary battery having a layer thickness of 10 to 30 ⁇ m.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a lithium ion secondary battery of the present invention.
  • a lithium ion secondary battery 10 includes a positive electrode 11 and a negative electrode 21, and the positive electrode 11 includes a positive electrode active material layer 12 and a positive electrode active material layer. And the insulating layer 13 is provided so that the insulating layer 13 contacts the negative electrode active material layer 22 of the negative electrode 21. Since the insulating layer 13 provided on the surface of the positive electrode active material layer is arranged so as to be in contact with the negative electrode active material layer 22 of the negative electrode 21, a so-called separatorless lithium ion secondary battery that does not require a separator is provided. be able to.
  • the positive electrode 11 and the negative electrode 21 are bonded to each other via the insulating layer 13 by pressure bonding or the like to form an integrated laminate, so that charge / discharge characteristics, output characteristics, and the like can be easily improved.
  • the positive electrode 11 includes the positive electrode current collector 14, and the positive electrode active material layer 12 is stacked on the positive electrode current collector 14.
  • the negative electrode 21 includes a negative electrode current collector 24, and the negative electrode active material layer 22 is stacked on the negative electrode current collector 24.
  • a surface layer such as an insulating layer may be provided on the surface of the negative electrode active material layer 22 (the surface opposite to the surface on the negative electrode current collector 24 side). No layer is provided, and the insulating layer 13 of the positive electrode 11 directly contacts the negative electrode active material layer 22.
  • FIG. 1 shows a configuration in which the positive electrode active material layer 12 and the negative electrode active material layer 22 are provided on only one surface of each of the positive electrode current collector 14 and the negative electrode current collector 24.
  • the positive electrode active material layer 12 may be provided on the lower surface.
  • the insulating layer 13 may be provided on the surface of each positive electrode active material layer 12.
  • the negative electrode current collector 24 may be provided with the negative electrode active material layers 22 on both surfaces.
  • the positive electrode 11 and the negative electrode 21 each having the positive electrode active material layer 12 and the negative electrode active material layer 22 on both surfaces are used, the positive electrode 11 and the negative electrode 21 are alternately arranged so that a plurality of layers are provided, respectively.
  • the insulating layer 13 provided on the surface of the layer 12 be disposed so as to be in contact with the negative electrode 21 (negative electrode active material layer 22).
  • the positive electrode of the present invention is as described above, more specifically, there is no separator between the positive electrode and the negative electrode, a separator-less positive electrode for a lithium ion secondary battery, and a positive electrode active material layer, a positive electrode An insulating layer provided on the surface of the active material layer.
  • the surface roughness Ra of the surface of the positive electrode active material layer on which the insulating layer is provided is 0.5 to 2.0 ⁇ m, the density of the positive electrode active material layer is 3.0 to 4.0 g / cc, The thickness of the insulating layer is 10 to 30 ⁇ m.
  • thinning of the positive electrode and the negative electrode is also required.
  • thinning of an insulating layer provided for eliminating a separator was studied.
  • the thickness of the insulating layer is reduced, the charge / discharge characteristics are likely to deteriorate.
  • the surface roughness Ra of the positive electrode active material layer on the side where the insulating layer is provided and the density of the positive electrode active material layer are set to the above specific ranges, so that the output as well as the charge / discharge characteristics are obtained. It has been found that the characteristics can be improved.
  • Ra is a height when the area surrounded by the roughness curve and the straight line of the average value is smoothed into a rectangle, and is an averaged stable value.
  • the surface roughness other than Ra for example, the maximum height Rz (JIS B 0601 (2001)) is calculated based on the sum of the maximum value and the minimum value. It is difficult to find correlations with discharge characteristics and output characteristics. That is, by controlling Ra, the charge / discharge characteristics and the output characteristics can be improved. (Positive electrode active material layer)
  • the surface roughness Ra of the surface of the positive electrode active material layer on which the insulating layer is provided is 0.5 to 2.0 ⁇ m.
  • the surface roughness Ra is estimated to affect the ratio of the effective surface contributing to output generation. If the surface roughness Ra is less than 0.5 ⁇ m, the surface area of the electrode is reduced, and the ratio of the effective surface is reduced. It is considered that output characteristics cannot be obtained. When the thickness exceeds 2.0 ⁇ m, the charge / discharge characteristics deteriorate when a thin insulating layer is used.
  • the surface roughness Ra is preferably 0.9 ⁇ m or more, and more preferably 1.5 ⁇ m or less.
  • the surface roughness Ra is an arithmetic average roughness determined according to JIS B 0601 (2001), and can be measured by the method described in Examples.
  • the positive electrode active material layer has a density of 3.0 to 4.0 g / cc.
  • the density is preferably 3.2 g / cc or more, and more preferably 3.6 g / cc or less. The density can be measured by the method described in the examples.
  • the surface roughness Ra and the density of the surface of the positive electrode active material layer on which the insulating layer is provided can be adjusted by the pressing force of the press working after forming the coating film of the positive electrode active material layer and / or the insulating layer.
  • the average particle diameter of the positive electrode active material to be used may be reduced, or large and small particles may be combined.
  • the shape (aspect ratio) of the used positive electrode active material it is possible to perform in-plane orientation and reduce the surface roughness Ra.
  • the surface roughness of only the surface portion may be controlled by applying a magnetic field to promote orientation, applying a strong shearing process during coating, or performing multi-layer coating.
  • the shape of the positive electrode active material and the shape of the conductive auxiliary agent may be combined so that the filling of the positive electrode active material is promoted by pressing force or heating of the press working, or the shape is easily deformed.
  • the positive electrode active material layer typically contains a positive electrode active material and a positive electrode binder. Although it does not specifically limit as a positive electrode active material, a lithium metal oxide compound is mentioned. Examples of the lithium metal oxide compound include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and the like. Further, olivine-type lithium iron phosphate (LiFePO 4 ) may be used.
  • a plurality of metals other than lithium may be used, and an NCM (nickel-cobalt-manganese) -based oxide, an NCA (nickel-cobalt-aluminum) -based oxide, or the like, which is called a ternary system, may be used.
  • NCA is preferable from the viewpoint of improving the charge / discharge capacity of the lithium ion secondary battery.
  • the nickel-cobalt-aluminum-based oxide is obtained by substituting a part of nickel of lithium nickelate with aluminum and cobalt.
  • Nickel-cobalt-aluminum-based oxide by the formula Li t Ni 1-x-y Co x Al y O 2 (where, 0.95 ⁇ t ⁇ 1.15,0 ⁇ x ⁇ 0.3,0 ⁇ y ⁇ 0.2, x + y ⁇ 0.5).
  • the average particle size of the positive electrode active material is preferably from 0.5 to 50 ⁇ m, more preferably from 1 to 30 ⁇ m, even more preferably from 5 to 15 ⁇ m.
  • the average particle diameter in the present specification means a particle diameter (D50) at a volume integration of 50% in a particle size distribution obtained by a laser diffraction / scattering method.
  • the content of the positive electrode active material is preferably 50 to 98.5% by mass, more preferably 60 to 98% by mass, based on the total amount of the positive electrode active material layer.
  • the positive electrode active material layer preferably contains a conductive auxiliary.
  • the electric conductivity can be improved by containing the conductive assistant.
  • the type of the conductive additive is not particularly limited as long as it is a material having higher conductivity than the positive electrode active material, but it is preferable to use a carbon material.
  • the carbon material include, but are not particularly limited to, Ketjen black, acetylene black, carbon nanotubes, chain carbon, fibrous or rod-like carbon, graphite particles, and the like, with acetylene black being preferred.
  • the content of the conductive auxiliary is preferably 1 to 30% by mass, more preferably 2 to 25% by mass, based on the total amount of the positive electrode active material layer. Is more preferred. According to the configuration of the present invention, even if the positive electrode active material layer contains a conductive additive, the insulating property of the insulating layer provided on the positive electrode active material layer can be kept good.
  • the positive electrode active material layer usually contains a binder (a positive electrode binder).
  • a binder a positive electrode binder
  • the positive electrode binder include fluorine-containing resins such as polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), and polytetrafluoroethylene (PTFE); and polymethyl acrylate (PMA).
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • PTFE polytetrafluoroethylene
  • PMA polymethyl acrylate
  • Acrylic resin such as polymethyl methacrylate (PMMA), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP),
  • PMMA polymethyl methacrylate
  • PMMA polyvinyl acetate
  • PA polyamide
  • PVC polyvinyl chloride
  • PEN polyether nitrile
  • PE polyethylene
  • PP polypropylene
  • PAN polyacrylonitrile
  • PAN acrylonitrile-butadiene rubber
  • styrene-butadiene rubber poly (meth) acrylic acid
  • carboxymethylcellulose hydroxyethylcellulose
  • polyvinyl alcohol polyvinyl alcohol.
  • carboxymethyl cellulose and the like may be used in the form of a salt such as a sodium salt.
  • a fluorine-containing resin is preferable, and among the fluorine-containing resins, polyvinylidene fluoride (PVDF) is preferably used.
  • the content of the binder for the positive electrode is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, and further preferably 2 to 4% by mass, based on the total amount of the positive electrode material.
  • the thickness of the positive electrode active material layer is not particularly limited, but is preferably 10 to 100 ⁇ m, and more preferably 20 to 80 ⁇ m.
  • Positive electrode current collector Materials constituting the positive electrode current collector include, for example, conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, preferably aluminum or copper, more preferably aluminum is used. You.
  • the thickness of the positive electrode current collector is not particularly limited, but is preferably 1 to 50 ⁇ m.
  • the thickness of the insulating layer is 10 to 30 ⁇ m as described above. If the thickness of the insulating layer is less than 10 ⁇ m, good charge / discharge characteristics cannot be obtained. In addition, it is difficult to secure insulation, and safety is reduced. If it exceeds 30 ⁇ m, the ion path becomes long and good output characteristics cannot be obtained. In addition, the energy density becomes low.
  • the thickness of the insulating layer is preferably 15 ⁇ m or more, and more preferably 25 ⁇ m or less. The thickness of the insulating layer can be measured by the method described in Examples.
  • the insulating layer contains insulating fine particles and a binder for the insulating layer. That is, the insulating layer is formed by binding the insulating fine particles with the binder for the insulating layer.
  • the insulating fine particles are not particularly limited as long as they are insulating, and may be organic particles or inorganic particles.
  • Specific organic particles include, for example, cross-linked polymethyl methacrylate, cross-linked styrene-acrylic acid copolymer, cross-linked acrylonitrile resin, polyamide resin, polyimide resin, poly (lithium 2-acrylamido-2-methylpropanesulfonate), Examples include particles composed of an organic compound such as a polyacetal resin, an epoxy resin, a polyester resin, a phenol resin, and a melamine resin.
  • the inorganic particles include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), potassium fluoride, and fluoride.
  • examples include particles composed of inorganic compounds such as lithium chloride, clay, zeolite, and calcium carbonate.
  • the inorganic particles may be particles composed of a known composite oxide such as a niobium-tantalum composite oxide or a magnesium-tantalum composite oxide.
  • the insulating fine particles may be particles in which each of the above-mentioned materials is used alone or in combination of two or more.
  • the insulating fine particles may be fine particles containing both an inorganic compound and an organic compound.
  • inorganic-organic composite particles in which an inorganic oxide is coated on the surface of particles made of an organic compound may be used.
  • inorganic particles are preferable, and among them, alumina particles and boehmite particles are preferable, and alumina particles are particularly preferable.
  • the average particle diameter of the insulating fine particles is smaller than the thickness of the insulating layer, and is, for example, 0.001 to 1 ⁇ m, preferably 0.05 to 0.8 ⁇ m, and more preferably 0.1 to 0.6 ⁇ m. .
  • the porosity can be easily adjusted within the above range.
  • the insulating fine particles one kind having an average particle diameter within the above range may be used alone, or two kinds of insulating fine particles having different average particle diameters may be mixed and used.
  • the content of the insulating fine particles contained in the insulating layer is preferably 15 to 95% by mass, more preferably 40 to 90% by mass, and still more preferably 60 to 85% by mass, based on the total amount of the insulating layer.
  • the insulating layer can form a uniform porous structure and impart appropriate insulating properties.
  • the binder for the insulating layer the same type as the binder for the positive electrode described above can be used. Among them, a fluorine-containing resin or an acrylic resin is preferable, and an acrylic resin is more preferable.
  • the acrylic resin includes an acrylic polymer having a structural unit derived from a (meth) acrylic acid ester. Specifically, it is preferable to have a constitutional unit derived from an alkyl (meth) acrylate, and a constitutional unit derived from an alkyl (meth) acrylate is, for example, 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more. contains.
  • the alkyl (meth) acrylate is preferably an alkyl acrylate having an alkyl group having 1 to 12, more preferably 2 to 8, carbon atoms.
  • the acrylic polymer preferably contains 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more of a structural unit derived from an alkyl acrylate having an alkyl group having 2 to 8 carbon atoms.
  • alkyl acrylate having 2 to 8 carbon atoms in the alkyl group examples include ethyl acrylate, propyl acrylate, butyl acrylate, pentyl acrylate, hexyl acrylate, and octyl acrylate.
  • the alkyl group in these may be a straight-chain alkyl group or a branched alkyl group which is a structural isomer thereof, such as 2-ethylhexyl acrylate.
  • the acrylic polymer may be a copolymer of an alkyl (meth) acrylate and a vinyl monomer other than the alkyl (meth) acrylate.
  • vinyl monomers other than alkyl (meth) acrylate examples include vinyl group-containing (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, amino group-containing (meth) acrylates, nitrile group-containing vinyl monomers such as acrylonitrile, and (meth) acrylic.
  • vinyl group-containing (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, amino group-containing (meth) acrylates, nitrile group-containing vinyl monomers such as acrylonitrile, and (meth) acrylic.
  • carboxyl group-containing vinyl monomers such as acid and itaconic acid
  • aromatic ring-containing (meth) acrylates such as phenoxyethyl (meth) acrylate.
  • acrylic polymers include polybutyl acrylate.
  • acrylic polymer may be cross-linked, and specific examples thereof include cross-linked polybutyl acrylate.
  • (meth) acrylate means one or both of acrylate and methacrylate, and the same applies to other similar terms.
  • the weight average molecular weight of the acrylic resin is preferably 100,000 to 2,000,000.
  • the content of the binder for the insulating layer in the insulating layer is preferably 5 to 50% by mass, more preferably 10 to 45% by mass, and still more preferably 15 to 40% by mass, based on the total amount of the insulating layer.
  • the insulating layer may contain other optional components other than the insulating fine particles and the binder for the insulating layer as long as the effects of the present invention are not impaired.
  • the negative electrode active material layer typically includes a negative electrode active material and a negative electrode binder.
  • the negative electrode active material used for the negative electrode active material layer include carbon materials such as graphite and hard carbon, a composite of a tin compound and silicon and carbon, and lithium. Among these, carbon materials are preferable, and graphite is preferable. More preferred.
  • the negative electrode active material is not particularly limited, but preferably has an average particle size of 0.5 to 50 ⁇ m, more preferably 1 to 30 ⁇ m.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 50 to 98.5% by mass, more preferably 60 to 98% by mass, based on the total amount of the negative electrode active material layer.
  • the negative electrode active material layer may contain a conductive auxiliary.
  • a conductive assistant a material having higher conductivity than the above-mentioned negative electrode active material is used, and specific examples thereof include carbon materials such as carbon black, carbon nanofiber, carbon nanotube, and graphite particles.
  • the content of the conductive auxiliary is preferably 1 to 30% by mass, more preferably 2 to 25% by mass, based on the total amount of the negative electrode active material layer. Is more preferred.
  • the negative electrode binder contained in the negative electrode active material layer the same type of binder as described above for the positive electrode binder can be used.
  • the content of the negative electrode binder in the negative electrode active material layer is preferably 1.5 to 40% by mass, more preferably 2.0 to 25% by mass, based on the total amount of the negative electrode active material layer.
  • the thickness of the negative electrode active material layer is not particularly limited, but is preferably from 10 to 200 ⁇ m, and more preferably from 50 to 150 ⁇ m.
  • the negative electrode current collector examples include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, aluminum or copper is preferable, and copper is more preferable.
  • the negative electrode current collector is generally made of a metal foil, and its thickness is not particularly limited, but is preferably 1 to 50 ⁇ m.
  • the lithium ion secondary battery usually includes a casing, and the above-described positive electrode and negative electrode may be housed in the casing.
  • the casing is not particularly limited, but may be an exterior can or an exterior film.
  • the exterior film may be provided between two exterior films or one exterior film may be folded in two, for example, and the negative electrode and the positive electrode may be arranged between the exterior films.
  • the lithium ion secondary battery includes a wound type and a stacked type, and the lithium ion secondary battery of the present invention is preferably a stacked type.
  • the stacked lithium ion secondary battery includes a plurality of positive electrodes each having a positive electrode active material layer provided on both surfaces of a positive electrode current collector, and a plurality of negative electrodes each having a negative electrode active material layer provided on both surfaces of a negative electrode current collector. .
  • Each of the positive electrode and the negative electrode has a planar shape, and these are stacked so as to alternate along the thickness direction.
  • the insulating layer provided on the surface of each positive electrode active material layer contacts an adjacent negative electrode (for example, a negative electrode active material layer), and preferably adheres to a negative electrode (for example, a negative electrode active material layer).
  • the plurality of positive electrode current collectors constituting each positive electrode are collectively attached to a positive electrode tab or the like, and connected to a positive electrode terminal via the positive electrode tab or the like.
  • the plurality of negative electrode current collectors constituting each negative electrode are put together and attached to a negative electrode tab or the like, and connected to the negative electrode terminal via the negative electrode tab or the like.
  • a lithium ion secondary battery usually includes an electrolyte.
  • the electrolyte is not particularly limited, and a known electrolyte used in a lithium ion secondary battery may be used.
  • an electrolyte is used as the electrolyte.
  • the electrolyte include an electrolyte containing an organic solvent and an electrolyte salt.
  • the organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ⁇ -butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, and 1,2.
  • Polar solvents such as -diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane and methyl acetate, or a mixture of two or more of these solvents.
  • electrolyte salt LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 CO 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 and a salt containing lithium such as LiN (COCF 2 CF 3 ) 2 and lithium bisoxalate borate (LiB (C 2 O 4 ) 2 ).
  • the electrolyte may be a gel electrolyte further containing a polymer compound in the above-mentioned electrolytic solution.
  • the polymer compound include a fluorine-based polymer such as polyvinylidene fluoride and a polyacryl-based polymer such as poly (methyl meth) acrylate.
  • the gel electrolyte may be used as a separator.
  • the electrolyte may be disposed between the positive electrode and the negative electrode.
  • the electrolyte is filled in a casing in which the above-described positive electrode and negative electrode are housed. Further, the electrolyte may be, for example, applied on the positive electrode and the negative electrode and disposed between the positive electrode and the negative electrode.
  • the method for producing an electrode for a lithium ion secondary battery according to one embodiment of the present invention includes a step of applying a composition for an insulating layer on the surface of a positive electrode active material layer to form an insulating layer, thereby obtaining a positive electrode ( A positive electrode forming step) and a step of pressing the positive electrode to the negative electrode via the insulating layer (pressure bonding step).
  • a positive electrode forming step a step of applying a composition for an insulating layer on the surface of a positive electrode active material layer to form an insulating layer, thereby obtaining a positive electrode
  • a step of pressing the positive electrode to the negative electrode via the insulating layer pressure bonding step
  • a positive electrode active material layer is formed over a positive electrode current collector.
  • a positive electrode active material layer composition including a positive electrode active material, a positive electrode binder, and a solvent is prepared.
  • the composition for a positive electrode active material layer may include other components such as a conductive auxiliary compounded as necessary.
  • the positive electrode active material, the positive electrode binder, the conductive additive, and the like are as described above.
  • the composition for the positive electrode active material layer becomes a slurry.
  • the solvent in the composition for the positive electrode active material layer is preferably a solvent that dissolves the binder for the positive electrode, and may be appropriately selected depending on the type of the binder for the positive electrode, and may be water or an organic solvent. May be used.
  • the organic solvent may be appropriately selected from organic solvents used for the insulating layer described below.
  • the solid concentration of the composition for a positive electrode active material layer is preferably 5 to 75% by mass, and more preferably 20 to 65% by mass.
  • the positive electrode active material layer may be formed by a known method using the positive electrode active material layer composition.
  • the positive electrode active material layer composition is applied on a positive electrode current collector and dried. Can be formed.
  • the positive electrode active material layer may be formed by applying the composition for a positive electrode active material layer on a substrate other than the positive electrode current collector and drying the composition.
  • a known release sheet may be used as a substrate other than the positive electrode current collector. The positive electrode active material layer formed on the substrate may be peeled off from the substrate and transferred onto the positive electrode current collector.
  • the positive electrode active material layer formed on the positive electrode current collector or the substrate is preferably pressed under pressure.
  • the pressure press may be performed by a roll press or the like.
  • the pressing pressure is preferably from 200 to 2000 kN / m, more preferably from 500 to 1500 kN / m.
  • a composition for an insulating layer is applied over the surface of the positive electrode active material layer to form an insulating layer.
  • the insulating layer composition used for forming the insulating layer contains insulating fine particles, an insulating layer binder, and an organic solvent, and the viscosity of the insulating layer composition at 25 ° C. is preferably 1000 to 4000 cps. When the viscosity at 25 ° C. is 1000 to 4000 cps, it is possible to prevent the insulating layer composition from penetrating into the positive electrode active material layer.
  • the viscosity at 25 ° C. is more preferably from 1500 to 4000 cps, and even more preferably from 2000 to 4000 cps.
  • the viscosity is a viscosity measured by a B-type viscometer at a temperature of 60 rpm at the time of application (25 ° C.).
  • the solid content of the insulating layer composition is preferably 15 to 55% by mass, more preferably 35 to 45% by mass.
  • composition for an insulating layer may contain other optional components that are blended as required. Details of the insulating fine particles, the binder for the insulating layer, and the like are as described above.
  • the composition for an insulating layer becomes a slurry (slurry for an insulating layer).
  • organic solvent used in the composition for an insulating layer include one or more selected from N-methylpyrrolidone, N-ethylpyrrolidone, dimethylacetamide, and dimethylformamide. .
  • N-methylpyrrolidone is particularly preferred.
  • the insulating layer can be formed by applying the composition for an insulating layer to the surface of the positive electrode active material layer and then drying the composition.
  • the method of applying the composition for an insulating layer to the surface of the positive electrode active material layer is not particularly limited, and examples thereof include a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a bar coating method, a gravure coating method, and screen printing. And the like. Among these, the gravure coating method is preferable from the viewpoint of uniformly applying the insulating layer.
  • the drying temperature is not particularly limited as long as the solvent can be removed, but is, for example, 50 to 130 ° C., preferably 60 to 100 ° C.
  • the drying time is not particularly limited, but is, for example, 30 seconds to 30 minutes, preferably 2 to 20 minutes.
  • a negative electrode active material layer In manufacturing a negative electrode, first, a negative electrode active material layer is formed. In forming the negative electrode active material layer, first, a negative electrode active material layer composition including a negative electrode active material, a negative electrode binder, and a solvent is prepared.
  • the composition for a negative electrode active material layer may include other components such as a conductive auxiliary compounded as necessary.
  • the negative electrode active material, the negative electrode binder, the conductive auxiliary, and the like are as described above.
  • the composition for the negative electrode active material layer becomes a slurry.
  • Water is used as the solvent in the negative electrode active material layer composition.
  • the water-soluble polymer used as the negative electrode binder can be easily dissolved in the negative electrode active material layer composition.
  • the particulate binder and other binders are preferably mixed with water in the form of an emulsion.
  • the solid concentration of the composition for a negative electrode active material layer is preferably 5 to 75% by mass, more preferably 20 to 65% by mass.
  • the negative electrode active material layer may be formed by a known method using the negative electrode active material layer composition.
  • the negative electrode active material layer composition is applied on a negative electrode current collector and dried. Can be formed.
  • the negative electrode active material layer may be formed by applying the composition for a negative electrode active material layer on a substrate other than the negative electrode current collector and drying the composition.
  • a substrate other than the negative electrode current collector a known release sheet may be used.
  • the negative electrode active material layer formed on the substrate may be transferred onto the negative electrode current collector by peeling the negative electrode active material layer from the substrate.
  • the negative electrode active material layer formed on the negative electrode current collector or the substrate is preferably pressed under pressure. By pressing under pressure, the density of the negative electrode can be increased.
  • the pressure press may be performed by a roll press or the like.
  • the positive electrode obtained as described above is preferably pressed against the negative electrode to form a laminate including the positive electrode and the negative electrode.
  • the insulating layer may be arranged so as to be in contact with the negative electrode, typically the negative active material layer, and the positive electrode may be pressed to the negative electrode via the insulating layer.
  • the positive electrode and the negative electrode are laminated in a plurality of layers so as to be alternately arranged in the thickness direction. It is good to let.
  • a specific method of pressing the positive electrode and the negative electrode by pressing is to press the stacked positive electrode and the negative electrode (if each has a plurality of layers, alternately arranged and stacked) with a press machine or the like. It is good to do in.
  • the pressing is preferably performed under such a condition that the positive electrode active material layer and the negative electrode active material layer are not compressed more than necessary and the insulating layer adheres to the negative electrode.
  • the pressing temperature is 50 to 130 ° C., preferably 60 to 100 ° C.
  • the pressing pressure is, for example, 0.2 to 3 MPa, preferably 0.4 to 1.5 MPa.
  • the pressing time is, for example, 15 seconds to 15 minutes, preferably 30 seconds to 10 minutes.
  • the laminated body of the positive electrode and the negative electrode obtained as described above is, for example, connected to the positive electrode current collector to the positive electrode terminal, the negative electrode current collector to the negative electrode terminal, and housed in a casing, so that the lithium ion
  • the above manufacturing method is one embodiment of the manufacturing method of the lithium ion secondary battery of the present invention, and is not limited to the above.
  • the positive electrode and the negative electrode may be simply overlapped without being pressed.
  • the method for evaluating the electrode for an ion secondary battery and the method for measuring various physical properties are as follows. (Charge / discharge characteristics evaluation) For the lithium ion secondary batteries produced in each of the examples and comparative examples, constant current charging of 1 C was performed, and then the current was reduced as soon as 4.2 V was reached, and charging was completed when the current reached 0.05 C. Was. Thereafter, a constant current discharge of 1 C was performed, and when the discharge was completed to 2.5 V, a discharge was completed to complete the discharge. Thereafter, the battery was allowed to stand for 30 minutes, and the voltage was measured after 30 minutes. In each of Examples and Comparative Examples, a test was performed on a 15-cell lithium ion secondary battery, and an average value was calculated. A: Average value 2.5V or more B: Average value 2.3V or more and less than 2.5V C: Average value 2.0V or more and less than 2.3V D: Average value 1.0V or more and less than 2.0V E: Average value 1. Less than 0V
  • the lithium ion secondary batteries produced in each of the examples and comparative examples were evaluated by calculating the discharge capacity as described below.
  • the constant current charging of 1 C was performed, and then the current was reduced as soon as the voltage reached 4.2 V, and the constant voltage charging was completed when the current reached 0.05 C. Thereafter, a constant current discharge of 10 C was performed, and when the discharge was completed to 2.5 V, a discharge for completing the discharge was performed, and a discharge capacity was calculated.
  • the output characteristics were evaluated based on the following criteria.
  • A: The discharge capacity at 10 C is 30% or more compared to the discharge capacity at a constant current of 1 C.
  • B The discharge capacity at 10C is 20% or more and less than 30% as compared with the discharge capacity at a constant current of 1C.
  • C The discharge capacity at 10 C is 10% or more and less than 20% as compared with the discharge capacity at a constant current of 1 C.
  • D The discharge capacity at 10 C is less than 10% as compared with the discharge capacity at a constant current of 1 C.
  • the thickness of the insulating layer was measured by the following method. A cross section of the electrode on which the insulating layer was formed was exposed by an ion milling method. The exposed cross section was observed with a field emission scanning electron microscope (FE-SEM). The observation was made so that the surface of the insulating layer of the electrode could be seen from the surface to the bottom. The section magnification was 20000 times. For the obtained image, the length from the interface between the electrode active material and the insulating layer to the surface of the insulating layer was randomly measured using image analysis software (Image J) in a direction perpendicular to the electrode current collector. Ten points were measured for one image, and the average value was taken as the thickness of the insulating layer.
  • Image J image analysis software
  • the surface roughness of the surface of the positive electrode active material layer on which the insulating layer was provided was determined by using a non-contact laser surface analyzer (OLS-4500, manufactured by Olympus Corporation) and the magnification was set so as to provide a 600 ⁇ m ⁇ 600 ⁇ m field of view.
  • OLS-4500 manufactured by Olympus Corporation
  • the arithmetic average value in the height direction of 30 visual fields was defined as the surface roughness.
  • Example 1 [Preparation of positive electrode] (Formation of positive electrode active material layer) 100 parts by mass of Li (Ni—Co—Al) O 2 (NCA-based oxide) having an average particle diameter of 10 ⁇ m as a positive electrode active material, 4 parts by mass of acetylene black as a conductive additive, and a binder for an electrode 4 parts by mass of polyvinylidene fluoride (PVdF) and N-methylpyrrolidone (NMP) as a solvent were mixed to obtain a composition for a positive electrode active material layer adjusted to a solid concentration of 60% by mass.
  • PVdF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the composition for a positive electrode active material layer was applied on both sides of a 15 ⁇ m-thick aluminum foil as a positive electrode current collector, and was preliminarily dried and then vacuum dried at 120 ° C. Thereafter, the positive electrode current collector coated with the composition for a positive electrode active material layer on both sides is pressed under pressure at 1000 kN / m, and further punched into a 40 mm ⁇ 50 mm square of the electrode dimensions, and a 50 ⁇ m thick positive electrode active material is formed on both sides. A positive electrode having a layer was obtained. Among these dimensions, the area where the positive electrode active material layer was formed was 40 mm ⁇ 45 mm.
  • a polymer solution in which crosslinked polybutyl acrylate was dissolved in NMP at a concentration of 10% by mass was prepared.
  • Alumina particles manufactured by Nippon Light Metal Co., Ltd., product name: AHP200, average particle diameter 0.4 ⁇ m
  • the solution was mixed while applying moderate shear to prepare an insulating layer composition (insulating layer slurry).
  • the solid content concentration in the insulating layer slurry was 40% by mass.
  • the obtained slurry for an insulating layer was applied to both surfaces of the positive electrode active material layer by gravure coating at a temperature of 90 ° C. while applying a shearing force.
  • the viscosity of the slurry for the insulating layer at the time of coating was 2000 cps.
  • the coating film was dried at 90 ° C. for 10 minutes using a heating oven to form insulating layers on both surfaces of the negative electrode.
  • the thickness of the insulating layer after drying was 15 ⁇ m per side.
  • the composition for a negative electrode active material layer was applied to both surfaces of a copper foil having a thickness of 12 ⁇ m as a negative electrode current collector, and dried at 100 ° C. under vacuum. Thereafter, the negative electrode current collector having both surfaces coated with the negative electrode active material layer composition was pressed under a linear pressure of 500 kN / m to obtain a 50 ⁇ m thick negative electrode active material layer.
  • the density of the negative electrode active material layer was 1.55 g / cc.
  • the dimension of the negative electrode was 45 mm ⁇ 55 mm, and the area where the negative electrode active material layer was applied was 45 mm ⁇ 50 mm.
  • LiPF 6 as an electrolyte salt was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 (EC: DEC) so as to have a concentration of 1 mol / liter, and the electrolytic solution was dissolved.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the laminated body was sandwiched between aluminum laminated films, the terminal tabs were projected outside, and three sides were sealed by laminating. From one side left without sealing, the electrolyte solution obtained above was injected, and vacuum sealing was performed to produce a laminated lithium ion secondary battery (cell).
  • a Kapton adhesive tape manufactured by Teraoka Seisakusho was applied so as to cover the end 5 mm (positive electrode end treatment).
  • Example 1 was the same as Example 1 except that the solid content concentration of the insulating layer slurry was adjusted to 26% by mass, and the thickness of the insulating layer formed on the positive electrode active material was changed to 13 ⁇ m.
  • Example 1 was the same as Example 1 except that the solid content concentration of the insulating layer slurry was adjusted to 52% by mass, and the thickness of the insulating layer formed on the positive electrode active material was changed to 28 ⁇ m.
  • Example 4 The pressing pressure was adjusted to 700 kN / m, the surface roughness of the positive electrode was set to 1.3 ⁇ m, the density of the positive electrode was set to 3.3 g / cc, and the thickness of the insulating layer formed on the positive electrode active material was changed to 20 ⁇ m. Except for this point, the procedure was the same as in Example 1.
  • Example 5 The pressing pressure was adjusted to 400 kN / m, the surface roughness of the positive electrode was set to 1.5 ⁇ m, the density of the positive electrode was set to 3.1 g / cc, and the thickness of the insulating layer formed on the positive electrode active material was changed to 20 ⁇ m. Except for this point, the procedure was the same as in Example 1.
  • Example 6 The pressing pressure was adjusted to 1800 kN / m, the surface roughness of the positive electrode was changed to 0.8 ⁇ m, the density of the positive electrode was changed to 3.8 g / cc, and the thickness of the insulating layer formed on the positive electrode active material was changed to 13 ⁇ m. Except for this point, the procedure was the same as in Example 1.
  • Example 7 The pressing pressure was adjusted to 1800 kN / m, the surface roughness of the positive electrode was changed to 0.8 ⁇ m, the density of the positive electrode was changed to 3.8 g / cc, and the thickness of the insulating layer formed on the positive electrode active material was changed to 20 ⁇ m. Except for this point, the procedure was the same as in Example 1.
  • Example 1 The procedure was the same as in Example 1 except that the solid content concentration of the insulating layer slurry was adjusted to 10% by mass and the thickness of the insulating layer formed on the positive electrode active material was changed to 5 ⁇ m.
  • Example 2 Same as Example 1 except that the insulating layer slurry having a solid content concentration of 40% by mass was applied twice (overcoated) and the thickness of the insulating layer formed on the negative electrode active material was changed to 50 ⁇ m. I made it.
  • Example 3 The procedure was the same as in Example 1 except that the pressing pressure was adjusted to 100 kN / m 2, the surface roughness of the positive electrode was changed to 3 ⁇ m, and the density of the positive electrode was changed to 2.2 g / cc.
  • Example 4 The same operation as in Example 1 was carried out except that a polyethylene microporous film having a thickness of 5 ⁇ m was provided instead of the insulating layer.
  • the microporous polyethylene membrane used had an air permeability of 100 sec / 100 cc and a thickness of 15 ⁇ m.
  • the surface roughness and density of the positive electrode active material layer and the thickness of the insulating layer provided between the positive electrode slip material layer and the negative electrode slip material layer are adjusted within a predetermined range. , Safety, charge / discharge characteristics, and output characteristics were all improved.

Abstract

正極と、負極とを備えるリチウムイオン二次電池であって、前記正極が、正極活物質層と、前記正極活物質層の表面上に設けられる絶縁層とを備え、前記絶縁層が前記負極に接触するように配置され、前記正極活物質層の絶縁層が設けられている表面の表面粗さRaが0.5~2.0μmであり、前記正極活物質層の密度が3.0~4.0g/ccであり、前記絶縁層の厚さが10~30μmである、リチウムイオン二次電池である。

Description

リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用正極
 本発明は、リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用正極に関する。
 リチウムイオン二次電池は、電力貯蔵用の大型定置用電源、電気自動車用等の電源として利用されており、近年では電池の小型化及び薄型化の研究が進展している。リチウムイオン二次電池は、金属箔などからなる集電体の表面に電極活物質層を形成した両電極と、両電極の間に配置されるセパレータを備えるものが一般的である。セパレータは、両電極間の短絡防止や電解液を保持する役割を果たす。セパレータとしては、一般的にポリエチレン、ポリプロピレン等のポリオレフィン系多孔質フィルムが用いられる。
 従来、リチウムイオン二次電池は、部品点数を少なくすることなどを目的として、上記多孔質フィルムなどのセパレータを使用しないセパレータレスとすることが試みられている。セパレータレスとするために、電極活物質層表面に絶縁層を形成し、絶縁層により両電極間の短絡を防止することが検討されている。絶縁層としては、特許文献1に開示されるように、絶縁性粒子と、絶縁性粒子同士を結合させるバインダーを含み、3次元網目空隙構造を有するものが知られている。
特許第3253632号
 ところで、リチウムイオン二次電池には、加熱されたときに熱暴走しないなどの安全性を確保しつつ、充放電特性、出力特性などを高めることが求められている。しかし、従来のセパレータレスで使用される絶縁層は、絶縁層の構成や電極活物質層との組み合わせが十分に検討されているとはいえず、安全性、充放電特性、及び出力特性が十分に高められているとはいえない。
 そこで、本発明は、セパレータレスであっても、安全性、充放電特性、及び出力特性をいずれも良好にすることが可能なリチウムイオン二次電池、及びリチウムイオン二次電池用負極を提供することを課題とする。
 本発明者らは、鋭意検討の結果、正極活物質層の表面粗さや密度、正極滑物質層と負極滑物質層との間に設けられる絶縁層の厚さを所定の範囲内に調整することで、上記課題が解決できることを見出し、以下の本発明を完成させた。すなわち本発明は下記のとおりである。
[1]正極と、負極とを備えるリチウムイオン二次電池であって、前記正極が、正極活物質層と、前記正極活物質層の表面上に設けられる絶縁層とを備え、前記絶縁層が前記負極に接触するように配置され、前記正極活物質層の絶縁層が設けられている表面の表面粗さRaが0.5~2.0μmであり、前記正極活物質層の密度が3.0~4.0g/ccであり、前記絶縁層の厚さが10~30μmである、リチウムイオン二次電池。
[2] 前記絶縁層は、絶縁性微粒子と絶縁層用バインダーを含有する、[1]に記載のリチウムイオン二次電池。
[3] 前記正極活物質層は、正極活物質と正極用バインダーを含有する、[1]又は[2]に記載のリチウムイオン二次電池。
[4] 前記正極活物質がリチウムニッケルコバルトアルミニウム系酸化物である、[3]に記載のリチウムイオン二次電池。
[5] 前記正極活物質層が、さらに導電助剤を含有する、[3]又は[4]に記載のリチウムイオン二次電池。
[6] [1]~[5]のいずれかに記載のリチウムイオン二次電池の製造方法であって、正極活物質層の表面上に、絶縁層用組成物を塗布して絶縁層を形成して、正極を得る工程と、前記絶縁層を介して前記正極を負極に圧着させる工程と、を備えるリチウムイオン二次電池の製造方法。
[7] 前記絶縁層用組成物が、絶縁性微粒子と絶縁層用バインダーと有機溶剤とを含み、前記絶縁層用組成物の25℃における粘度が2000~4000cpsである、[6]に記載のリチウムイオン二次電池の製造方法。
[8] 正極と負極の間にセパレータがない、セパレータレスのリチウムイオン二次電池用正極であって、正極活物質層と、正極活物質層の表面に設けられる絶縁層とを備え、前記正極活物質層の絶縁層が設けられている表面の表面粗さRaが0.5~2.0μmであり、前記正極活物質層の密度が3.0~4.0g/ccであり、前記絶縁層の厚さが10~30μmである、リチウムイオン二次電池用正極。
 本発明によれば、セパレータレスのリチウムイオン二次電池において、安全性、充放電特性、及び出力特性をいずれも良好にできる。
本発明のリチウムイオン二次電池の一実施形態を示す概略断面図である。
<リチウムイオン二次電池>
 以下、本発明のリチウムイオン二次電池について詳細に説明する。
 図1に示すように、本発明の一形態であるリチウムイオン二次電池10は、正極11と、負極21とを備え、正極11は、正極活物質層12と、正極活物質層の表面上に設けられる絶縁層13とを備え、絶縁層13が負極21の負極活物質層22に接触するように配置されてなる。
 正極活物質層の表面上に設けられる絶縁層13が負極21の負極活物質層22に接触するように配置されてなることで、いわゆるセパレータを必要としないセパレータレスのリチウムイオン二次電池とすることができる。これにより、熱でセパレータが収縮することによる短絡を防止できる。また、加熱されたときに熱暴走しないなどの安全性を確保することができる。
 また、正極11と負極21とを絶縁層13を介して、圧着などにより接着し一体的な積層体とすることで、充放電特性、及び出力特性などを高めやすくなる。
 リチウムイオン二次電池10において、正極11は、正極集電体14を備え、正極活物質層12は、正極集電体14の上に積層される。負極21は、負極集電体24を備え、負極活物質層22は、負極集電体24の上に積層される。負極活物質層22の表面(負極集電体24側の面とは反対側の面)には、絶縁層などの表面層(図示しない)が設けられてもよいが、典型的には、表面層が設けられず、正極11の絶縁層13が負極活物質層22に直接接触する。
 なお、図1は、正極活物質層12及び負極活物質層22が、正極集電体14、負極集電体24それぞれの片面のみに設けられた構成を示すが、正極集電体14の両面に正極活物質層12が設けられてもよい。その場合、各正極活物質層12の表面に絶縁層13が設けられるとよい。また、負極集電体24も同様に両面に負極活物質層22が設けられるとよい。
 それぞれ両面に正極活物質層12及び負極活物質層22を有する、正極11及び負極21を使用する場合、正極11及び負極21は、それぞれ複数層設けられるように交互に配置され、各正極活物質層12の表面に設けられた絶縁層13が負極21(負極活物質層22)に接触するように配置されるとよい。
 以下、正極、負極などについて詳細に説明する。
[正極]
 本発明の正極は既述のとおりであるが、より具体的には、正極と負極の間にセパレータがない、セパレータレスのリチウムイオン二次電池用正極であって、正極活物質層と、正極活物質層の表面に設けられる絶縁層とを備えてなる。また、正極活物質層の絶縁層が設けられている表面の表面粗さRaは0.5~2.0μmであり、正極活物質層の密度が3.0~4.0g/ccであり、絶縁層の厚さは10~30μmとなっている。
 近年の小型化及び薄型化への対応を考慮すると、正極及び負極についても薄型化が求められるが、本発明ではセパレータレスとするために設けられる絶縁層の薄膜化についての検討を行った。しかし、絶縁層の厚みを小さくすると充放電特性が低下しやすい。そこで、絶縁層の厚みをある程度小さくしながら、絶縁層が設けられる側の正極活物質層の表面粗さRa及び正極活物質層の密度を上記の特定範囲にすることで、充放電特性とともに出力特性をも良好にできることを見出した。また、特にRaは、粗さ曲線とその平均値の直線で囲まれる面積を長方形に平滑化した際の高さで、平均化された安定した値となるため、全体の凹凸の程度を読み取るのに最適なパラメータとなる。一方で、Ra以外の表面粗さ、例えば、最大高さRz(JIS B 0601(2001))は最大値と最小値の和をもとに計算されるため、表面状態が影響されるような充放電特性、出力特性との相関を見出しづらい。すなわち、Raを制御することで、充放電特性及び出力特性を良好にすることができる。
(正極活物質層)
 正極活物質層の絶縁層が設けられている表面の表面粗さRaは、既述のとおり、0.5~2.0μmとなっている。表面粗さRaは、出力発生に寄与する有効表面の割合に影響を与えると推定され、表面粗さRaが0.5μm未満だと電極表面積が小さくなって、有効表面の割合が減少し良好な出力特性が得られないと考えられる。2.0μmを超えると薄い絶縁層を用いた場合に充放電特性が低下する。表面粗さRaは、0.9μm以上であることが好ましく、また、1.5μm以下であることが好ましい。
 表面粗さRaは、JIS B 0601(2001)に準拠して決定される算術平均粗さであり、実施例に記載の方法により測定することができる。
 正極活物質層は、密度が3.0~4.0g/ccとなっている。密度が3.0g/cc未満だと絶縁層の浸み込みが大きくなり充放電特性が低下する。4.0g/ccを超えると電解液が浸透し難くなり良好な出力特性が得られない。密度は、3.2g/cc以上であることが好ましく、また、3.6g/cc以下であることが好ましい。
 密度は実施例に記載の方法により測定することができる。
 正極活物質層の絶縁層が設けられている表面の表面粗さRa及び密度は、正極活物質層及び/または絶縁層の塗膜を形成後に行うプレス加工の加圧力により調整することができる。また、表面粗さRaを小さくするには、例えば、使用する正極活物質の平均粒子径を小さくすることや、大小の粒子を組み合わせてもよい。さらに、用いる正極活物質の形状(アスペクト比)を大きくすることによって面内配向させ表面粗さRaを小さくすることができる。
 さらに、配向を促進させるために磁場をかけることや塗布時に強いせん断をかけるようなプロセス、複層塗工することによって表面部分のみの表面粗さを制御してもよい。
 また、プレス加工の加圧力や加熱などによって正極活物質の充填を促進させることや変形しやすいように正極活物質と導電助剤の形状を組み合わせてもよい。
 正極活物質層は、典型的には、正極活物質と、正極用バインダーとを含有する。
 正極活物質としては、特に限定されないが、金属酸リチウム化合物が挙げられる。金属酸リチウム化合物としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等が例示できる。また、オリビン型リン酸鉄リチウム(LiFePO)などであってもよい。さらに、リチウム以外の金属を複数使用したものでもよく、三元系と呼ばれるNCM(ニッケルコバルトマンガン)系酸化物、NCA(ニッケルコバルトアルミニウム)系酸化物などを使用してもよい。これらの中でも、リチウムイオン二次電池の充放電容量を向上させる観点から、NCAが好ましい。
 ニッケルコバルトアルミニウム系酸化物は、ニッケル酸リチウムのニッケルの一部をアルミニウム及びコバルトで置換したものである。ニッケルコバルトアルミニウム系酸化物は、一般式ではLitNi1-x-yCoAl(但し、0.95≦t≦1.15、0<x≦0.3、0<y≦0.2、x+y≦0.5を満たす。)と表される。
 正極活物質の平均粒子径は0.5~50μmであることが好ましく、1~30μmであることがより好ましく、5~15μmであることが更に好ましい。平均粒子径が50μm以下であることで、表面粗さRaを小さくすることできる。平均粒子径が0.5μm以上であることで、正極活物質の密度を3.0~4.0g/ccに調整しやすくなる。
 なお、本明細書における平均粒子径は、レーザー回折・散乱法によって求めた粒度分布において、体積積算が50%での粒径(D50)を意味する。
 正極活物質の含有量は、正極活物質層全量基準で50~98.5質量%が好ましく、60~98質量%がより好ましい。
 正極活物質層には、導電助剤を含有することが好ましい。導電助剤を含有することにより、電気伝導性を向上させることができる。
 導電助剤の種類としては、正極活物質よりも導電性の高い材料であれば特に限定されないが、炭素材料を用いることが好ましい。炭素材料としては、特に限定されないが、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、鎖状のカーボン、繊維状又は棒状カーボン、黒鉛粒子等が挙げられ、アセチレンブラックが好ましい。
 正極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、正極活物質層全量基準で、1~30質量%であることが好ましく、2~25質量%であることがより好ましい。
 なお、本発明の構成によれば、正極活物質層が導電助剤を含有していても、正極活物質層に設けられる絶縁層の絶縁性は良好に保つことができる。
 正極活物質層は、通常バインダー(正極用バインダー)を含有する。
 正極用バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)、ポリテトラフルオロエチレン(PTFE)等のフッ素含有樹脂、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)などのアクリル樹脂、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、アクリロニトリル・ブタジエンゴム、スチレンブタジエンゴム、ポリ(メタ)アクリル酸、カルボキシメチルセルロース、ヒドロキシエチルセルロース、及びポリビニルアルコール等が挙げられる。これらバインダーは、1種単独で使用されてもよいし、2種以上が併用されてもよい。また、カルボキシメチルセルロースなどは、ナトリウム塩などの塩の態様にて使用されていてもよい。これらの中でも、フッ素含有樹脂であることが好ましく、フッ素含有樹脂の中でもポリフッ化ビニリデン(PVDF)を使用することが好ましい。
 正極用バインダーの含有量は、正極材料全量基準で、0.1~10質量%であることが好ましく、0.5~5質量%がより好ましく、2~4質量%であることが更に好ましい。
 正極活物質層の厚さは、特に限定されないが、10~100μmが好ましく、20~80μmがより好ましい。
(正極集電体)
 正極集電体を構成する材料は、例えば、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が挙げられ、これらの中では好ましくはアルミニウム又は銅、より好ましくはアルミニウムが使用される。正極集電体の厚さは、特に限定されないが、1~50μmが好ましい。
(絶縁層)
 絶縁層の厚さは既述のとおり、10~30μmとなっている。絶縁層の厚さが10μm未満だと良好な充放電特性が得られない。また絶縁性の確保が難しくなり安全性が低下する。30μmを超えるとイオンパスが長くなり良好な出力特性が得られない。また、エネルギー密度も低くなる。
 絶縁層の厚さは、15μm以上であることが好ましく、また、25μm以下であることが好ましい。
 絶縁層の厚さは実施例に記載の方法により測定することができる。
 絶縁層は、絶縁性微粒子と絶縁層用バインダーとを含有する。すなわち、絶縁層は、絶縁性微粒子が絶縁層用バインダーによって結着されて構成される。
 絶縁性微粒子は、絶縁性であれば特に限定されず、有機粒子、無機粒子の何れであってもよい。具体的な有機粒子としては、例えば、架橋ポリメタクリル酸メチル、架橋スチレン-アクリル酸共重合体、架橋アクリロニトリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸リチウム)、ポリアセタール樹脂、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、メラミン樹脂等の有機化合物から構成される粒子が挙げられる。無機粒子としては二酸化ケイ素、窒化ケイ素、アルミナ、ベーマイト、チタニア、ジルコニア、窒化ホウ素、酸化亜鉛、二酸化スズ、酸化ニオブ(Nb)、酸化タンタル(Ta)、フッ化カリウム、フッ化リチウム、クレイ、ゼオライト、炭酸カルシウム等の無機化合物から構成される粒子が挙げられる。また、無機粒子は、ニオブ-タンタル複合酸化物、マグネシウム-タンタル複合酸化物等の公知の複合酸化物から構成される粒子であってもよい。
 絶縁性微粒子は、上記した各材料が1種単独で使用される粒子であってもよいし、2種以上が併用される粒子であってもよい。また、絶縁性微粒子は、無機化合物と有機化合物の両方を含む微粒子であってもよい。例えば、有機化合物からなる粒子の表面に無機酸化物をコーティングした無機有機複合粒子であってもよい。
 これらの中では、無機粒子が好ましく、中でもアルミナ粒子、ベーマイト粒子が好ましく、アルミナ粒子が特に好ましい。
 絶縁性微粒子の平均粒子径は、絶縁層の厚さよりも小さくなるものであり、例えば0.001~1μm、好ましくは0.05~0.8μm、より好ましくは0.1~0.6μmである。絶縁層の平均粒子径をこれら範囲内することで、空隙率を上記範囲内に調整しやすくなる。
 絶縁性微粒子は、平均粒子径が上記範囲内の1種が単独で使用されてもよいし、平均粒子径の異なる2種の絶縁性微粒子が混合されて使用されてもよい。
 絶縁層に含有される絶縁性微粒子の含有量は、絶縁層全量基準で、好ましくは15~95質量%、より好ましくは40~90質量%、更に好ましくは60~85質量%である。絶縁性微粒子の含有量が上記範囲内であると、絶縁層は、均一な多孔質構造が形成でき、かつ適切な絶縁性が付与される。
 絶縁層用バインダーとしては、上記した正極用バインダーと同種のものが使用できるが、なかでも、フッ素含有樹脂、アクリル樹脂であることが好ましく、アクリル樹脂であることがより好ましい。
 上記アクリル樹脂について以下、詳細に説明する。
 アクリル樹脂は、(メタ)アクリル酸エステル由来の構成単位を有するアクリル系重合体が挙げられる。具体的には、アルキル(メタ)アクリレート由来の構成単位を有することが好ましく、アルキル(メタ)アクリレート由来の構成単位を例えば50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上含有する。
 アルキル(メタ)アクリレートは、好ましくはアルキル基の炭素数が1~12、より好ましくは2~8のアルキルアクリレートである。そして、アクリル系重合体は、アルキル基の炭素数が2~8のアルキルアクリレート由来の構成単位を好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上含有する。
 アルキル基の炭素数が2~8のアルキルアクリレートとしては、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、オクチルアクリレートなどが挙げられる。これらにおけるアルキル基は、直鎖アルキル基であってもよいし、その構造異性体である分岐アルキル基であってもよく、例えば2-エチルヘキシルアクリレートなどであってもよい。
 また、アクリル系重合体は、アルキル(メタ)アクリレートと、アルキル(メタ)アクリレート以外のビニルモノマーとの共重合体であってもよい。アルキル(メタ)アクリレート以外のビニルモノマーとしては、2-ヒドロキシエチル(メタ)アクリレートなどの水酸基含有(メタ)アクリレート、アミノ基含有(メタ)アクリレート、アクリロニトリルなどのニトリル基含有ビニルモノマー、(メタ)アクリル酸、イタコン酸などのカルボキシル基含有ビニルモノマー、フェノキシエチル(メタ)アクリレートなど芳香環含有(メタ)アクリレートなどが挙げられる。
 好適なアクリル系重合体の具体例としては、ポリブチルアクリレートが挙げられる。
 また、アクリル系重合体は、架橋していてもよく、好ましい具体例としては、架橋ポリブチルアクリレートなどが挙げられる。
 なお、本明細書においては、(メタ)アクリレートとは、アクリレート及びメタクリレートの一方又は両方を意味し、他の類似する用語も同様である。
 正極活物質層への絶縁層の浸み込みをより抑制する観点から、アクリル樹脂の重量平均分子量は、10万~200万であることが好ましい。
 絶縁層における絶縁層用バインダーの含有量は、絶縁層全量基準で、5~50質量%であることが好ましく、10~45質量%がより好ましく、15~40質量%が更に好ましい。
 絶縁層は、本発明の効果を損なわない範囲内において、絶縁性微粒子及び絶縁層用バインダー以外の他の任意成分を含んでもよい。
[負極]
(負極活物質層)
 負極活物質層は、典型的には、負極活物質と、負極用バインダーとを含む。
 負極活物質層に使用される負極活物質としては、グラファイト、ハードカーボンなどの炭素材料、スズ化合物とシリコンと炭素の複合体、リチウムなどが挙げられるが、これら中では炭素材料が好ましく、グラファイトがより好ましい。
 負極活物質は、特に限定されないが、その平均粒子径が0.5~50μmであることが好ましく、1~30μmであることがより好ましい。
 負極活物質層における負極活物質の含有量は、負極活物質層全量基準で、50~98.5質量%が好ましく、60~98質量%がより好ましい。
 負極活物質層は、導電助剤を含有してもよい。導電助剤は、上記負極活物質よりも導電性の高い材料が使用され、具体的には、カーボンブラック、カーボンナノファーバー、カーボンナノチューブ、黒鉛粒子などの炭素材料が挙げられる。
 負極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、負極活物質層全量基準で、1~30質量%であることが好ましく、2~25質量%であることがより好ましい。
 負極活物質層に含有される負極用バインダーとしては、上記した正極用バインダーと同種のものが使用できる。
 負極活物質層における負極用バインダーの含有量は、負極活物質層全量基準で、1.5~40質量%であることが好ましく、2.0~25質量%がより好ましい。
 負極活物質層の厚みは、特に限定されないが、10~200μmであることが好ましく、50~150μmであることがより好ましい。
(負極集電体)
 負極集電体を構成する材料としては、例えば、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が挙げられ、これらの中ではアルミニウム又は銅が好ましく、銅がより好ましい。負極集電体は、一般的に金属箔からなり、その厚さは、特に限定されないが、1~50μmが好ましい。
[ケーシング]
 リチウムイオン二次電池は、通常、ケーシングを備え、上記した正極及び負極をケーシング内に収納とするとよい。ケーシングとしては、特に限定されないが、外装缶などであてもよいし、外装フィルムであってもよい。外装フィルムは、2枚の外装フィルムの間、或いは、1枚の外装フィルムが例えば2つ折りで折り畳まれ、その外装フィルムの間に負極、及び正極を配置するとよい。
[リチウムイオン二次電池の構造]
 リチウムイオン二次電池は、巻回型、積層型などがあるが、本発明のリチウムイオン二次電池は、積層型であることが好ましい。
 積層型のリチウムイオン二次電池では、正極集電体の両面に正極活物質層が設けられた正極と、負極集電体の両面に負極活物質層が設けられた負極とをそれぞれ複数枚備える。正極及び負極は、いずれも平面状であり、これらは厚さ方向に沿って交互となるように積層される。また、各正極活物質層の表面に設けられた絶縁層は、隣接する負極(例えば、負極活物質層)に接触し、好ましくは負極(例えば、負極活物質層)に接着する。
 各正極を構成する複数の正極集電体は、纏められて正極タブなどに取り付けられ、正極タブなどを介して正極端子に接続される。また、各負極を構成する複数の負極集電体は、纏められて負極タブなどに取り付けられ、負極タブなどを介して負極端子に接続される。
[電解質]
 リチウムイオン二次電池は、通常は電解質を備える。電解質は特に限定されず、リチウムイオン二次電池で使用される公知の電解質を使用すればよい。電解質としては例えば電解液を使用する。
 電解液としては、有機溶媒と、電解質塩を含む電解液が例示できる。有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、メチルアセテートなどの極性溶媒、又はこれら溶媒の2種類以上の混合物が挙げられる。電解質塩としては、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFCO、LiN(SOCF、LiN(SOCFCF、LiN(COCF及びLiN(COCFCF、リチウムビスオキサレートボラート(LiB(C)等のリチウムを含む塩が挙げられる。
 また、有機酸リチウム塩-三フッ化ホウ素錯体、LiBH等の錯体水素化物等の錯体が挙げられる。これらの塩又は錯体は、1種単独で使用してもよいが、2種以上の混合物であってもよい。
 また、電解質は、上記電解液に更に高分子化合物を含むゲル状電解質であってもよい。高分子化合物としては、例えば、ポリフッ化ビニリデン等のフッ素系ポリマー、ポリ(メタ)アクリル酸メチル等のポリアクリル系ポリマーが挙げられる。なお、ゲル状電解質は、セパレータとして使用されてもよい。
 電解質は、正極及び負極間に配置されればよい。したがって、例えば、電解質は、上記した正極及び負極が内部に収納されたケーシング内に充填される。また、電解質は、例えば、正極及び負極上に塗布されて正極及び負極間に配置されてもよい。
<リチウムイオン二次電池の製造方法>
 次に、リチウムイオン二次電池用電極の製造方法の一実施形態について詳細に説明する。本発明の一実施形態に係るリチウムイオン二次電池用電極の製造方法は、正極活物質層の表面上に、絶縁層用組成物を塗布して絶縁層を形成して、正極を得る工程(正極作製工程)と、絶縁層を介して正極を負極に圧着させる工程(圧着工程)とを備える。
 以下、本製造方法について工程ごとに詳細に説明する。
[正極作製工程]
(正極活物質層の形成)
 正極の作製においては、正極集電体の上に正極活物質層を形成する。正極活物質層の形成においては、最初に正極活物質と、正極用バインダーと、溶媒とを含む正極活物質層用組成物を用意する。正極活物質層用組成物は、必要に応じて配合される導電助剤などのその他成分を含んでもよい。正極活物質、正極用バインダー、導電助剤などは上記で説明したとおりである。正極活物質層用組成物はスラリーとなる。
 正極活物質層用組成物における溶媒は、正極用バインダーを溶解する溶媒を使用することが好ましく、正極用バインダーの種類に応じて適宜選択すればよく、水を使用してもよいし、有機溶剤を使用してもよい。有機溶剤としては、後述の絶縁層で用いられる有機溶剤から適宜選択すればよい。正極活物質層用組成物の固形分濃度は、好ましくは5~75質量%、より好ましくは20~65質量%である。
 正極活物質層は、上記正極活物質層用組成物を使用して公知の方法で形成すればよく、例えば、上記正極活物質層用組成物を正極集電体の上に塗布し、乾燥することによって形成することができる。
 また、正極活物質層は、正極活物質層用組成物を、正極集電体以外の基材上に塗布し、乾燥することにより形成してもよい。正極集電体以外の基材としては、公知の剥離シートが挙げられる。基材の上に形成した正極活物質層は、基材から剥がして正極集電体の上に転写すればよい。
 正極集電体又は基材の上に形成した正極活物質層は、好ましくは加圧プレスする。加圧プレスすることで、正極密度を高めることが可能になる。加圧プレスは、ロールプレスなどにより行えばよい。
 プレス圧としては、200~2000kN/mとすることが好ましく、500~1500kN/mとすることがより好ましい。200~2000kN/mとすることで正極活物質層の表面粗さRaや密度を所望の範囲に調整しやすくなる。
(絶縁層の形成)
 正極の作製においては、正極活物質層を形成した後に、正極活物質層の表面上に、絶縁層用組成物を塗布して絶縁層を形成する。
 絶縁層の形成に使用する絶縁層用組成物は、絶縁性微粒子と絶縁層用バインダーと有機溶剤とを含み、当該絶縁層用組成物の25℃における粘度は1000~4000cpsであることが好ましい。25℃における粘度が1000~4000cpsであることで、絶縁層用組成物の正極活物質層への浸み込みを防ぐことできる。これにより、絶縁層及び正極活物質層それぞれが所望の機能を発揮しやすくなり、充放電特性、出力特性などが良好となる。25℃における粘度は1500~4000cpsであることがより好ましく、2000~4000cpsであることがさらに好ましい。当該粘度は、B型粘度計で60rpm、塗布時(25℃)の温度条件で測定した粘度である。
 正極活物質層への浸み込みを防ぐ観点から、絶縁層用組成物の固形分濃度は、好ましくは15~55質量%、より好ましくは35~45質量%である。
 絶縁層用組成物は、必要に応じて配合されるその他の任意成分を含んでいてもよい。絶縁性微粒子、絶縁層用バインダーなどの詳細は上記で説明したとおりである。絶縁層用組成物はスラリー(絶縁層用スラリー)となる。
 本製造方法において、絶縁層用組成物に使用する有機溶剤の具体例としては、N-メチルピロリドン、N-エチルピロリドン、ジメチルアセトアミド、及びジメチルホルムアミドから選択される1種又は2種以上が挙げられる。これらの中では、N-メチルピロリドンが特に好ましい。
 絶縁層は、絶縁層用組成物を、正極活物質層の表面に塗布した後、乾燥することによって形成できる。絶縁層用組成物を正極活物質層の表面に塗布する方法は特に限定されず、例えば、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、バーコート法、グラビアコート法、スクリーン印刷法等が挙げられる。これらの中では、絶縁層を均一に塗布する観点などから、グラビアコート法が好ましい。
 また、乾燥温度は、上記溶媒を除去できれば特に限定されないが、例えば50~130℃、好ましくは60~100℃である。また、乾燥時間は、特に限定されないが、例えば、30秒~30分間、好ましくは2~20分間である。
[負極作製工程]
(負極活物質層の形成)
 負極の作製においては、まず、負極活物質層を形成する。負極活物質層の形成においては、最初に負極活物質と、負極用バインダーと、溶媒とを含む負極活物質層用組成物を用意する。負極活物質層用組成物は、必要に応じて配合される導電助剤などのその他成分を含んでもよい。負極活物質、負極用バインダー、導電助剤などは上記で説明したとおりである。負極活物質層用組成物は、スラリーとなる。
 負極活物質層用組成物における溶媒は、水を使用する。水を使用することで、負極用バインダーとして使用する水溶性ポリマーを負極活物質層用組成物中に容易に溶解できる。また、粒子状結着剤やその他のバインダーは、水にエマルションの形態で配合させるとよい。負極活物質層用組成物の固形分濃度は、好ましくは5~75質量%、より好ましくは20~65質量%である。
 負極活物質層は、上記負極活物質層用組成物を使用して公知の方法で形成すればよく、例えば、上記負極活物質層用組成物を負極集電体の上に塗布し、乾燥することによって形成することができる。
 また、負極活物質層は、負極活物質層用組成物を、負極集電体以外の基材上に塗布し、乾燥することにより形成してもよい。負極集電体以外の基材としては、公知の剥離シートが挙げられる。基材の上に形成した負極活物質層は、基材から負極活物質層を剥がして負極集電体の上に転写すればよい。
 負極集電体又は基材の上に形成した負極活物質層は、好ましくは加圧プレスする。加圧プレスすることで、負極密度を高めることが可能になる。加圧プレスは、ロールプレスなどにより行えばよい。
[圧着工程]
 上記のようにして得られた正極は、負極に圧着させて、正極と負極からなる積層体を形成するとよい。ここで、より具体的には、正極は、絶縁層を負極、典型的には負活物質層に接触するように配置し、正極を絶縁層を介して負極に圧着させるよい。
 また、正極と負極とをそれぞれ複数層積層する場合には、正極と負極とを厚さ方向に交互となるようにそれぞれ複数層積層して、各正極と負極間は、絶縁層を介して圧着させるとよい。
 正極と負極とを圧着させる具体的な方法は、正極と負極とを重ね合わせたもの(それぞれが複数層ある場合には、交互に配置して重ね合わせたもの)をプレス機などによりプレスすることで行うとよい。プレス条件は、正極活物質層及び負極活物質層が必要以上に圧縮せず、かつ絶縁層が負極に接着する程度の条件で行うとよい。具体的には、プレス温度は、50~130℃、好ましくは60~100℃であり、プレス圧力は、例えば、0.2~3MPa、好ましくは0.4~1.5MPaである。また、プレス時間は、例えば、15秒~15分間、好ましくは30秒~10分間である。
 上記のようにして得られた正極と負極の積層体は、例えば、正極集電体を正極端子に、負極集電体を負極端子に接続させ、かつケーシング内に収納することで、リチウムイオン二次電池を得ることができる。
 なお、以上の製造方法は、本発明のリチウムイオン二次電池の製造方法の一実施形態であって、上記に限定されない。例えば、正極が負極に接着しない場合には、正極と負極とは圧着させずにこれらを重ね合わせるだけでもよい。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
 イオン二次電池用電極の評価方法、及び各種物性の測定方法は以下の通りである。
(充放電特性評価)
 各実施例、比較例で作製したリチウムイオン二次電池について、1Cの定電流充電を行い、次いで4.2V到達次第電流を減少させ0.05Cとなった時点で充電完了する定電圧充電を行った。その後、1Cの定電流放電を行い、2.5Vまで放電させた時点で放電完了とする放電を行った。その後、30分電池を静置し、30分後に電圧を測定した。各実施例、比較例において、15セルのリチウムイオン二次電池について試験を行い、平均値を計算した。
  A:平均値2.5V以上
  B:平均値2.3V以上2.5V未満
  C:平均値2.0V以上2.3V未満
  D:平均値1.0V以上2.0V未満
  E:平均値1.0V未満
(出力特性評価)
 各実施例、比較例で作製したリチウムイオン二次電池について、以下のように放電容量を求めることで評価した。
 1Cの定電流充電を行い、次いで4.2V到達次第電流を減少させ0.05Cとなった時点で充電完了する定電圧充電を行った。その後、10Cの定電流放電を行い、2.5Vまで放電させた時点で放電完了とする放電を行い、放電容量を計算した。以下の基準で出力特性を評価した。
  A:1Cの定電流の放電容量に比べ、10Cの放電容量が30%以上である。
  B:1Cの定電流の放電容量に比べ、10Cの放電容量が20%以上30%未満である。
  C:1Cの定電流の放電容量に比べ、10Cの放電容量が10%以上20%未満である。
  D:1Cの定電流の放電容量に比べ、10Cの放電容量が10%未満である。
(安全性評価)
 各実施例、比較例で作製したリチウムイオン二次電池について、1Cの定電流充電を行い、次いで4.2V到達次第電流を減少させ0.05Cとなった時点で充電完了する定電圧充電を行った。その後電池を加熱し、110℃として保管した。110℃到達後1時間保持したときの電池の最高温度を測定した。
  A:最高温度115℃未満
  B:最高温度115℃以上140℃未満
  C:最高温度140℃以上160℃未満
  D:最高温度160℃以上200℃未満
  E:最高温度200℃以上
(絶縁層の厚さ)
 絶縁層の厚さは、以下の方法により測定した。
 絶縁層が形成された電極に対し、イオンミリング方式で断面を露出させた。露出した断面を電界放出型走査電子顕微鏡(FE-SEM)にて観察した。観察は電極の絶縁層の表層から底部まで見えるような視野とした。断面倍率は、20000倍で行った。得られた画像に対し、画像解析ソフト(Image J)を使用しランダムに電極活物質と絶縁層の界面から絶縁層表面までの長さを、電極集電体に対して垂直方向に計測した。1枚の画像につき、10点測定し、平均値を絶縁層の厚さとした。
(正極の表面粗さ:Ra)
 正極活物質層の絶縁層が設けられている表面の表面粗さは、非接触レーザ表面分析機(オリンパス社製 OLS-4500)を使用し、600μm×600μm視野となるように倍率を設定した。30視野の高さ方向の算術平均値を、表面粗さとした。
(正極の電極密度)
 正極活物質層の密度は、次のようにして測定した。まず、正極を直径16mmで打ち抜いた測定試料を複数枚準備する。各測定試料の質量を精密天秤にて秤量し、質量を測定する。予め測定した正極集電体の質量を測定結果から差し引くことにより、測定試料中の正極活物質層の質量を算出することができる。また、断面出し加工した測定試料をSEMで観察するなどの公知の方法によって、正極活物質層の厚みを測定する。各測定値の平均値から下記式(1)に基づいて、正極活物質層の密度を算出することができる。
 正極活物質層の密度(g/cc)=正極活物質層の質量(g)/[正極活物質の厚み(cm)×打ち抜いた正極の面積(cm)]・・・(1)
[実施例1]
[正極の作製]
(正極活物質層の形成)
 正極活物質としての平均粒子径10μmのLi(Ni-Co-Al)O(NCA系酸化物)を100質量部と、導電助剤としてのアセチレンブラックを4質量部と、電極用バインダーとしてのポリフッ化ビニリデン(PVdF)4質量部と、溶媒としてのN-メチルピロリドン(NMP)とを混合し、固形分濃度60質量%に調整した正極活物質層用組成物を得た。この正極活物質層用組成物を、正極集電体としての厚さ15μmのアルミニウム箔の両面に塗布し、予備乾燥後、120℃で真空乾燥した。その後、両面に正極活物質層用組成物を塗布した正極集電体を、1000kN/mで加圧プレスし、更に電極寸法の40mm×50mm角に打ち抜いて、両面に厚さ50μmの正極活物質層を有する正極とした。該寸法のうち、正極活物質層が形成された面積は40mm×45mmであった。
(絶縁層の形成)
 架橋ポリブチルアクリレートを、濃度10質量%でNMPに溶解したポリマー溶液を用意した。絶縁性微粒子としてのアルミナ粒子(日本軽金属社製、製品名:AHP200、平均粒子径0.4μm)に、アルミナ粒子100質量部に対して架橋ポリブチルアクリレートが7質量部となるように、上記ポリマー溶液を中程度のせん断をかけながら混合して、絶縁層用組成物(絶縁層用スラリー)を調製した。絶縁層用スラリーにおける固形分濃度は40質量%であった。
 得られた絶縁層用スラリーを正極活物質層の両面に温度90℃でグラビア塗工により、せん断力をかけながら塗布した。塗布時の絶縁層用スラリーの粘度は2000cpsであった。その後、加熱オーブンを用いて塗膜を90℃で10分間乾燥させ、負極の両面に絶縁層を形成した。乾燥後の絶縁層の厚さは片面あたり15μmであった。
[負極の作製]
(負極活物質層の形成)
 負極活物質としてのグラファイト(平均粒子径10μm)100質量部(97質量%)と、負極用バインダーとしてのスチレンブタジエンゴム(SBR、平均粒子径:200nm)の水分散体を固形分量として1.5質量部(1.5質量%)と、増粘剤としてのカルボキシメチルセルロース(CMC)のナトリウム塩を1.5質量部(1.5質量%)と、溶媒としての水とを混合し、固形分濃度50質量%に調整した負極活物質層用組成物を得た。
 この負極活物質層用組成物を、負極集電体としての厚さ12μmの銅箔の両面に塗布して100℃で真空乾燥した。その後、両面に負極活物質層用組成物を塗布した負極集電体を、線圧500kN/mで加圧プレスして厚さ50μmの負極活物質層を得た。負極活物質層の密度は1.55g/ccであった。なお、負極の寸法は45mm×55mmであり、該寸法のうち、負極活物質層が塗布された面積は45mm×50mmであった。
(電解液の調製)
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)を3:7の体積比(EC:DEC)で混合した溶媒に、電解質塩としてLiPFを1モル/リットルとなるように溶解して、電解液を調製した。
(リチウムイオン二次電池の製造)
 上記で得た絶縁層を有する正極25枚と、負極26枚を積層し仮積層体を得た。ここで、正極と負極は交互に配置した。平板型ホットプレス機を用いて、上記仮積層体を、80℃、0.6MPaの条件で1分間プレスし積層体を得た。
 各正極の正極集電体の露出部の端部を纏めて超音波融着で接合するとともに、外部に突出する端子用タブを接合した。同様に、各負極の負極集電体の露出部の端部を纏めて超音波融着で接合するとともに、外部に突出する端子用タブを接合した。
 次いで、アルミラミネートフィルムで上記積層体を挟み、端子用タブを外部に突出させ、三辺をラミネート加工によって封止した。封止せずに残した一辺から、上記で得た電解液を注入し、真空封止することによって積層型のリチウムイオン二次電池(セル)を製造した。
 なお、正極については、寺岡製作所製カプトン粘着テープをその端部5mmを被覆するように張り付けた(正極端部処理)。
[実施例2]
 絶縁層スラリーの固形分濃度を26質量%に調整して、正極活物質上に形成される絶縁層の厚さを13μmに変更した点を除いて実施例1と同様にした。
[実施例3]
 絶縁層スラリーの固形分濃度を52質量%に調整して、正極活物質上に形成される絶縁層の厚さを28μmに変更した点を除いて実施例1と同様にした。
[実施例4]
 プレス圧を700kN/mに調整して、正極の表面粗さを1.3μmとし、正極の密度を3.3g/ccとし、正極活物質上に形成される絶縁層の厚さを20μmに変更した点を除いて実施例1と同様にした。
[実施例5]
 プレス圧を400kN/mに調整して、正極の表面粗さを1.5μmとし、正極の密度を3.1g/ccとし、正極活物質上に形成される絶縁層の厚さを20μmに変更した点を除いて実施例1と同様にした。
[実施例6]
 プレス圧を1800kN/mに調整して、正極の表面粗さを0.8μmとし、正極の密度を3.8g/ccとし、正極活物質上に形成される絶縁層の厚さを13μmに変更した点を除いて実施例1と同様にした。
[実施例7]
 プレス圧を1800kN/mに調整して、正極の表面粗さを0.8μmとし、正極の密度を3.8g/ccとし、正極活物質上に形成される絶縁層の厚さを20μmに変更した点を除いて実施例1と同様にした。
[比較例1]
 絶縁層スラリーの固形分濃度を10質量%に調整して、正極活物質上に形成される絶縁層の厚さを5μmに変更した点を除いて実施例1と同様にした。
[比較例2]
 固形分濃度が40質量%の絶縁層スラリーで二回塗工(重ね塗り)して、負極活物質上に形成される絶縁層の厚さを50μmに変更した点を除いて実施例1と同様にした。
[比較例3]
 プレス圧を100kN/m を調整して、正極の表面粗さを3μmとし、正極の密度を2.2g/ccに変更した点を除いて実施例1と同様にした。
[比較例4]
 絶縁層の代わりに厚さが5μmのポリエチレン微多孔膜を設けた以外は実施例1と同様に実施した。
 なお、ポリエチレン微多孔膜は、透気度100sec/100cc、厚み15μmのものを使用した。
Figure JPOXMLDOC01-appb-T000001
 以上のように、各実施例では、正極活物質層の表面粗さや密度、正極滑物質層と負極滑物質層との間に設けられる絶縁層の厚さを所定の範囲内に調整することで、安全性、充放電特性、及び出力特性がいずれも良好になった。
 10 リチウムイオン二次電池
 11 正極
 12 正極活物質層
 13 絶縁層
 14 正極集電体
 21 負極
 22 負極活物質層
 24 負極集電体

 

Claims (8)

  1.  正極と、負極とを備えるリチウムイオン二次電池であって、
     前記正極が、正極活物質層と、前記正極活物質層の表面上に設けられる絶縁層とを備え、
     前記絶縁層が前記負極に接触するように配置され、
     前記正極活物質層の絶縁層が設けられている表面の表面粗さRaが0.5~2.0μmであり、
     前記正極活物質層の密度が3.0~4.0g/ccであり、
     前記絶縁層の厚さが10~30μmである、リチウムイオン二次電池。
  2.  前記絶縁層は、絶縁性微粒子と絶縁層用バインダーを含有する、請求項1に記載のリチウムイオン二次電池。
  3.  前記正極活物質層は、正極活物質と正極用バインダーを含有する、請求項1又は2に記載のリチウムイオン二次電池。
  4.  前記正極活物質がリチウムニッケルコバルトアルミニウム系酸化物である、請求項3に記載のリチウムイオン二次電池。
  5.  前記正極活物質層が、さらに導電助剤を含有する、請求項3又は4に記載のリチウムイオン二次電池。
  6.  請求項1~5のいずれか1項に記載のリチウムイオン二次電池の製造方法であって、正極活物質層の表面上に、絶縁層用組成物を塗布して絶縁層を形成して、正極を得る工程と、
     前記絶縁層を介して前記正極を負極に圧着させる工程と、を備えるリチウムイオン二次電池の製造方法。
  7.  前記絶縁層用組成物が、絶縁性微粒子と絶縁層用バインダーと有機溶剤とを含み、
     前記絶縁層用組成物の25℃における粘度が2000~4000cpsである、請求項6に記載のリチウムイオン二次電池の製造方法。
  8.  正極と負極の間にセパレータがない、セパレータレスのリチウムイオン二次電池用正極であって、
     正極活物質層と、正極活物質層の表面に設けられる絶縁層とを備え、
     前記正極活物質層の絶縁層が設けられている表面の表面粗さRaが0.5~2.0μmであり、
     前記正極活物質層の密度が3.0~4.0g/ccであり、
     前記絶縁層の厚さが10~30μmである、リチウムイオン二次電池用正極。
PCT/JP2019/036375 2018-09-19 2019-09-17 リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用正極 WO2020059711A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980061698.9A CN112740439A (zh) 2018-09-19 2019-09-17 锂离子二次电池及其制造方法、以及锂离子二次电池用正极
JP2020538153A JP6849863B2 (ja) 2018-09-19 2019-09-17 リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用正極

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018175105 2018-09-19
JP2018-175105 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020059711A1 true WO2020059711A1 (ja) 2020-03-26

Family

ID=69887047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036375 WO2020059711A1 (ja) 2018-09-19 2019-09-17 リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用正極

Country Status (3)

Country Link
JP (1) JP6849863B2 (ja)
CN (1) CN112740439A (ja)
WO (1) WO2020059711A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243091A (zh) * 2021-12-17 2022-03-25 鄂尔多斯市紫荆创新研究院 无隔膜半固态锂离子电池
WO2023188395A1 (ja) * 2022-03-31 2023-10-05 ビークルエナジージャパン株式会社 リチウムイオン二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914393A (zh) * 2022-05-20 2022-08-16 珠海冠宇电池股份有限公司 一种负极片及锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117169A1 (ja) * 2004-05-27 2005-12-08 Matsushita Electric Industrial Co., Ltd. 捲回型非水系二次電池およびそれに用いる電極板
JP2006179205A (ja) * 2004-12-21 2006-07-06 Hitachi Maxell Ltd 非水電解質電池
JP2009151959A (ja) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd 非水電解質二次電池用正極、非水電解質二次電池および電子機器
JP2009301765A (ja) * 2008-06-11 2009-12-24 Sony Corp 多孔性保護膜付き電極、非水電解質二次電池、及び多孔性保護膜付き電極の製造方法
WO2010024328A1 (ja) * 2008-08-29 2010-03-04 日本ゼオン株式会社 多孔膜、二次電池電極及びリチウムイオン二次電池
JP2013196781A (ja) * 2012-03-15 2013-09-30 Nissan Motor Co Ltd 電気デバイス用正極およびこれを用いた電気デバイス
JP2014127275A (ja) * 2012-12-25 2014-07-07 Toyota Industries Corp 蓄電装置、及び蓄電装置の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4421570B2 (ja) * 2006-03-30 2010-02-24 株式会社東芝 非水電解質電池、電池パック及び自動車

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117169A1 (ja) * 2004-05-27 2005-12-08 Matsushita Electric Industrial Co., Ltd. 捲回型非水系二次電池およびそれに用いる電極板
JP2006179205A (ja) * 2004-12-21 2006-07-06 Hitachi Maxell Ltd 非水電解質電池
JP2009151959A (ja) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd 非水電解質二次電池用正極、非水電解質二次電池および電子機器
JP2009301765A (ja) * 2008-06-11 2009-12-24 Sony Corp 多孔性保護膜付き電極、非水電解質二次電池、及び多孔性保護膜付き電極の製造方法
WO2010024328A1 (ja) * 2008-08-29 2010-03-04 日本ゼオン株式会社 多孔膜、二次電池電極及びリチウムイオン二次電池
JP2013196781A (ja) * 2012-03-15 2013-09-30 Nissan Motor Co Ltd 電気デバイス用正極およびこれを用いた電気デバイス
JP2014127275A (ja) * 2012-12-25 2014-07-07 Toyota Industries Corp 蓄電装置、及び蓄電装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243091A (zh) * 2021-12-17 2022-03-25 鄂尔多斯市紫荆创新研究院 无隔膜半固态锂离子电池
CN114243091B (zh) * 2021-12-17 2023-05-12 鄂尔多斯市紫荆创新研究院 无隔膜半固态锂离子电池
WO2023188395A1 (ja) * 2022-03-31 2023-10-05 ビークルエナジージャパン株式会社 リチウムイオン二次電池

Also Published As

Publication number Publication date
CN112740439A (zh) 2021-04-30
JP6849863B2 (ja) 2021-03-31
JPWO2020059711A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
JP6871342B2 (ja) 電極、電極製造方法、並びに二次電池及びその製造方法
JP6805374B2 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
JP6849863B2 (ja) リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用正極
JPWO2020162598A1 (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2020184502A1 (ja) 非水電解質二次電池用電極、及び非水電解質二次電池
WO2019156172A1 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極構造体、及びリチウムイオン二次電池の製造方法
JP7150448B2 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
WO2020050285A1 (ja) リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用電極
JP2020140896A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6237777B2 (ja) 負極活物質、それを用いた負極、及びリチウムイオン二次電池
JP2020126733A (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP7160573B2 (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2020140895A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6876879B2 (ja) リチウムイオン二次電池用電極、リチウムイオン二次電池及びリチウムイオン二次電池用電極の製造方法
JP2019220356A (ja) リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池用正極材料からなる正極活物質層及びそれを用いたリチウムイオン二次電池
JP6128228B2 (ja) 負極活物質、それを用いた負極、及びリチウムイオン二次電池
WO2020158306A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
CN112385058B (zh) 锂离子二次电池用正极材料、正极活性物质层和锂离子二次电池
JP7245100B2 (ja) リチウムイオン二次電池
JP6826240B2 (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2022146804A (ja) リチウムイオン二次電池用電極、その製造方法、スラリー組成物、及びリチウムイオン二次電池
JP2022146805A (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
JPWO2021065904A1 (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538153

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862845

Country of ref document: EP

Kind code of ref document: A1