WO2020184502A1 - 非水電解質二次電池用電極、及び非水電解質二次電池 - Google Patents

非水電解質二次電池用電極、及び非水電解質二次電池 Download PDF

Info

Publication number
WO2020184502A1
WO2020184502A1 PCT/JP2020/009942 JP2020009942W WO2020184502A1 WO 2020184502 A1 WO2020184502 A1 WO 2020184502A1 JP 2020009942 W JP2020009942 W JP 2020009942W WO 2020184502 A1 WO2020184502 A1 WO 2020184502A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
layer
active material
groove
aqueous electrolyte
Prior art date
Application number
PCT/JP2020/009942
Other languages
English (en)
French (fr)
Inventor
博道 加茂
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2021505057A priority Critical patent/JPWO2020184502A1/ja
Publication of WO2020184502A1 publication Critical patent/WO2020184502A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Non-aqueous electrolyte secondary batteries are used as power sources for large stationary power sources for power storage, electric vehicles, etc., and in recent years, research on miniaturization and thinning of batteries has progressed. ing.
  • a lithium ion secondary battery includes both electrodes having an electrode active material layer formed on the surface of a metal foil, and a separator arranged between the electrodes.
  • the separator plays a role of preventing a short circuit between both electrodes and holding an electrolytic solution.
  • a porous insulating layer may be provided on the surface of the electrode active material layer. The insulating layer is sometimes used to further improve the short-circuit suppressing function between the electrodes and to secure the insulating property between the electrodes instead of the separator.
  • Patent Documents 1 and 2 when a groove is formed in the electrode, the impregnation speed of the electrolytic solution into the electrode becomes high, but the battery performance such as the capacity retention rate tends to deteriorate in a low temperature environment. It is in. However, Patent Documents 1 and 2 do not show that the capacity retention rate and the like in a low temperature environment can be satisfactorily maintained while increasing the impregnation rate of the electrolytic solution.
  • the present inventor has found that the above problems can be solved by forming a predetermined groove in the electrode layer provided on the electrode for a non-aqueous electrolyte secondary battery, and completed the following invention. That is, the present invention is as follows. [1] An electrode for a non-aqueous electrolyte secondary battery, comprising a current collector and an electrode layer provided on at least one surface of the current collector, wherein the electrode layer has one or more and 25 or less grooves. .. [2] The electrode layer includes an electrode active material layer and an insulating layer on at least one surface of the current collector in order from the current collector side, and the groove is formed on the surface of the insulating layer.
  • the positive electrode for a non-aqueous electrolyte secondary battery (hereinafter, also simply referred to as “positive electrode”) 10 is a positive electrode layer 12 provided on one surface of a positive electrode current collector 11 and a positive electrode current collector 11.
  • the positive electrode layer 12 may be composed of the positive electrode active material layer 13 alone, or may be a layer in which another layer is formed on the positive electrode active material layer 13. Specifically, as shown in FIGS.
  • the positive electrode active material layer 13 and the insulating layer 14 may be provided in this order from the positive electrode current collector 11 side.
  • the positive electrode layer 12 is usually composed of the positive electrode active material layer 13 and the insulating layer 14, and the surface 14A of the insulating layer 14 is the outermost surface of the positive electrode layer 12.
  • the positive electrode layer 12 is provided with the insulating layer 14.
  • the insulating layer 14 By providing the insulating layer 14, a short circuit between the positive electrode and the negative electrode can be effectively prevented. Further, if the insulating layer 14 is provided, it becomes difficult for the electrolytic solution to impregnate the positive electrode layer 12, but in one embodiment of the present invention, the impregnation speed of the electrolytic solution is increased by the groove 15 described later, and the insulating layer 14 is provided. It is possible to suppress a decrease in the impregnation rate due to the above.
  • the positive electrode 10 according to the embodiment of the present invention is provided with a groove 15 in the positive electrode layer 12.
  • the groove 15 since the groove 15 is provided in the positive electrode layer 12, the positive electrode layer 12 is easily impregnated with the electrolytic solution due to the capillary phenomenon, and the impregnation rate of the electrolytic solution in the positive electrode layer 12 is increased.
  • the groove 15 may be formed on the surface 13A of the positive electrode active material layer 13 when the positive electrode layer 12 is composed of the positive electrode active material layer 13 alone.
  • a groove 15 may be formed on the surface 13A of the positive electrode active material layer 13 as shown in FIG. 2, and FIG. As shown, the groove 15 may be formed on the surface 14A of the insulating layer 14.
  • the groove 15 is preferably formed on the surface 14A of the insulating layer 14.
  • the surface 14A is usually the outermost surface of the positive electrode layer 12, that is, the groove 15 is provided on the outermost surface of the positive electrode layer 12.
  • the groove 15 when the groove 15 is provided on the surface 14A of the insulating layer 14, the groove 15 may be provided on the surface 13A of the positive electrode active material layer 13, but the groove 15 is provided only on the surface 14A of the insulating layer 14. Is preferably provided.
  • the groove 15 when the groove 15 is provided on the surface 13A of the positive electrode active material layer 13, the groove may be provided on the surface 14A of the insulating layer 14, but the surface of the positive electrode active material layer 13 is also provided. It is preferable that the groove 15 is provided only in 13A.
  • the insulating layer 14 enters the inside of the groove 15 and the groove 15 is filled with the insulating layer.
  • the surface 14A of the insulating layer 14 is schematically drawn on a flat surface, but the surface of the insulating layer 14 is formed by the insulating layer 14 entering the inside of the groove 15 and the surface 14A of the insulating layer 14 being recessed.
  • a recess may be formed in 14A at a position corresponding to the groove 15.
  • such a recess is not referred to as "a groove provided on the surface 14A of the insulating layer 14" in this specification.
  • the positive electrode layer 12 is provided with one or more and 25 or less grooves 15. If the number of grooves in the positive electrode layer 12 is more than 25, the capacity retention rate in a low temperature environment or the like is lowered, and the battery performance cannot be improved. In addition, it becomes difficult to increase the impregnation rate of the electrolytic solution.
  • the number of grooves 15 in the positive electrode layer 12 is preferably 1 or more and 20 or less, more preferably 5 or more and 18 or less, from the viewpoint of improving the battery performance in a low temperature environment while increasing the impregnation rate of the electrolyte. More preferably, the number is 10 or more and 14 or less.
  • the positive electrode 10 shown in FIGS. 4 to 9 is a plan view of the positive electrode layer 12 shown in FIG. That is, it is a plan view of the positive electrode when the positive electrode layer 12 includes a positive electrode active material layer 13 and an insulating layer 14, and a groove is provided on the surface 14A (outermost surface of the positive electrode layer 12) of the insulating layer 14.
  • the positive electrode layer 12 is formed.
  • the positive electrode active material layer 13 and the insulating layer 14 are provided and the groove 15 is formed on the surface 13A of the positive electrode active material layer 13, the shape and arrangement of the grooves are the same, so the description thereof will be omitted. Further, when the positive electrode layer 12 includes the positive electrode active material layer 13 and the insulating layer 14, grooves 15 may be formed in both the positive electrode active material layer 13 and the insulating layer 14, but even in that case, the grooves 15 may be formed. Since the shape, arrangement, etc. are the same as the following, the description thereof will be omitted.
  • the shape of the groove 15 is not particularly limited, but may be linear or curved (not shown) as shown in FIGS. 4 to 9, but from the viewpoint of ease of manufacture. It is preferably a linear groove.
  • the direction of the groove 15 is not particularly limited, but the groove 15 may be an inclined groove inclined with respect to the longitudinal direction L of the positive electrode layer 12 as shown in FIG. 4, or may be an inclined groove with respect to the longitudinal direction L as shown in FIG. It may be a vertical groove that is vertical. Further, as shown in FIGS. 6 and 7, a parallel groove parallel to the longitudinal direction L of the positive electrode layer 12 may be used.
  • the inclination angle R with respect to the longitudinal direction L may be larger than 0 ° and less than 90 °, but is preferably 45 ° to 75 °.
  • the average installation distance between the grooves 15 in the positive electrode layer 12 is preferably 0.2 cm or more and less than 10 cm. If the average installation distance between the grooves 15 is narrower than 0.2 cm, the capacity retention rate in a low temperature environment or the like is lowered, and the battery performance cannot be improved. In addition, it becomes difficult to increase the impregnation rate of the electrolytic solution. On the other hand, if the average installation distance between the grooves 15 is wider than 10 cm, it becomes difficult for the positive electrode layer 12 to be sufficiently impregnated with the electrolytic solution.
  • the spacing between the grooves 15 in the positive electrode layer 12 is preferably 0.3 cm or more and less than 7 cm, more preferably 0.4 cm or more, from the viewpoint of improving the battery performance in a low temperature environment while increasing the impregnation rate of the electrolyte. It is less than 5 cm, more preferably 0.5 cm or more and less than 3 cm.
  • the installation interval between the grooves 15 means the shortest distance between the adjacent grooves 15, and the average installation interval between the grooves 15 means the average value of the installation intervals between the grooves 15 in the positive electrode layer 12.
  • the positive electrode current collector 11 (that is, the positive electrode 10) and the positive electrode layer 12 provided on the positive electrode current collector 11 are generally rectangular in a plan view, and in that case, the long side direction of the rectangle is the positive electrode.
  • the longitudinal direction L of the layer 12 is formed, and the short side direction of the rectangle is the short side direction S.
  • one side direction of the square is the longitudinal direction L of the positive electrode layer 12, and the other side direction is the lateral direction S.
  • the positive electrode layer 12 is not provided at one end 10A of the positive electrode 10, and the positive electrode current collector 11 is exposed.
  • the inclined grooves may be arranged in a row along the lateral direction S.
  • a plurality of grooves may be arranged in a row along an inclination direction in which the grooves are inclined with respect to the longitudinal direction L.
  • the plurality of grooves 15 do not need to be arranged in a single row in a striped pattern, and may be arranged in two rows or may be arranged randomly as shown in FIG.
  • the average width of the grooves 15 is preferably 0.2 mm or more and 6.5 mm or less.
  • the impregnation rate can be effectively improved by the groove 15.
  • the average width of the grooves 15 is more preferably 0.5 mm or more and 6.0 mm or less, and 0.8 mm or more and 2.0 mm. The following is more preferable.
  • the depth of the groove 15 may be smaller than the thickness of the layer (insulating layer 14 or positive electrode active material layer 13) on which the groove is provided.
  • the average depth of the specific groove 15 may be 0.05 ⁇ m or more and 4.5 ⁇ m or less, but is preferably 0.3 ⁇ m or more and 4.2 ⁇ m or less, more preferably 0.5 ⁇ m or more and 4 ⁇ m or less, and 1 ⁇ m. It is more preferably 3.5 ⁇ m or less.
  • the average depth of the grooves 15 is an average value of the depths D of all the grooves provided on one side of the positive electrode current collector 11.
  • the positive electrode active material a material using a plurality of metals other than lithium may be used, and NCM (nickel cobalt manganese) -based oxides, NCA (nickel cobalt aluminum-based) oxides, etc., which are called ternary systems, may be used. May be used.
  • the positive electrode active material these substances may be used alone or in combination of two or more.
  • the positive electrode active material is not particularly limited, but its average particle size is preferably 0.5 to 50 ⁇ m, and more preferably 1 to 30 ⁇ m.
  • the average particle size means the particle size (D50) when the volume integration is 50% in the particle size distribution obtained by the laser diffraction / scattering method.
  • the content of the positive electrode active material in the positive electrode active material layer 13 is preferably 50 to 98.5% by mass, more preferably 60 to 97% by mass, still more preferably 70 to 95% by mass, based on the total amount of the positive electrode active material layer.
  • the positive electrode binder is used to bind the positive electrode active material.
  • the binder for the positive electrode include polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), fluorine-containing resin such as polytetrafluoroethylene (PTFE), and polymethyl acrylate (PMA).
  • the content of the binder for the positive electrode in the positive electrode active material layer 13 is preferably 1 to 45% by mass, more preferably 2 to 35% by mass, and 3 to 25% by mass based on the total amount of the positive electrode active material layer. Is even more preferable.
  • the groove 15 is formed on the surface 13A of the positive electrode active material layer 13, the groove is easily formed appropriately when the content of the binder for the positive electrode is within the above range.
  • the positive electrode active material layer 13 preferably further contains a conductive auxiliary agent.
  • a conductive auxiliary agent a material having higher conductivity than the positive electrode active material and the negative electrode active material is used, and specific examples thereof include carbon materials such as Ketjen black, acetylene black (AB), carbon nanotubes, and rod-shaped carbon. Be done.
  • the conductive auxiliary agent may be used alone or in combination of two or more.
  • the content of the conductive auxiliary agent is preferably 0.5 to 20% by mass, preferably 1 to 15% by mass, based on the total amount of the positive electrode active material layer. It is more preferably present, and further preferably 2 to 10% by mass.
  • the positive electrode active material layer 13 may contain arbitrary components other than the positive electrode active material, the conductive auxiliary agent, and the binder as long as the effects of the present invention are not impaired.
  • the total content of the positive electrode active material, the conductive auxiliary agent, and the binder in the total mass of the positive electrode active material layer is preferably 90% by mass or more, and more preferably 95% by mass or more.
  • Density of the positive electrode active material layer 13 is preferably 1.6 ⁇ 2.3mg / cm 2, more preferably 1.9 ⁇ 2.2mg / cm 2. By setting the density of the positive electrode active material layer 13 within the above range, it becomes easy to improve the battery performance. Further, in the non-aqueous electrolyte secondary battery described later, the density of the positive electrode active material layer 13 is preferably higher than the density of the negative electrode active material layer. If the density of the positive electrode active material layer 13 is high, it becomes difficult for the electrolytic solution to be impregnated. However, in one embodiment of the present invention, the groove 15 is formed so that the electrolytic solution can be used even when the density of the positive electrode active material layer 13 is high. The impregnation rate can be increased.
  • the insulating fine particles are not particularly limited as long as they are insulating, and may be either organic particles or inorganic particles.
  • Specific organic particles include, for example, crosslinked polymethyl methacrylate, crosslinked styrene-acrylic acid copolymer, crosslinked acrylonitrile resin, polyamide resin, polyimide resin, poly (lithium 2-acrylamide-2-methylpropanesulfonate), and the like. Examples thereof include particles composed of organic compounds such as polyacetal resin, epoxy resin, polyester resin, phenol resin, and melamine resin.
  • Inorganic particles include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), potassium fluoride, and foot.
  • examples thereof include particles composed of inorganic compounds such as lithium pentoxide, clay, zeolite, and calcium carbonate.
  • the inorganic particles may be particles composed of known composite oxides such as niobium-tantalum composite oxide and magnesium-tantalum composite oxide.
  • the insulating particles are preferably inorganic particles.
  • One type of insulating fine particles may be used alone, or a plurality of types may be used in combination.
  • the average particle size of the insulating fine particles is not particularly limited as long as it is smaller than the thickness of the insulating layer, and is, for example, 0.001 to 1 ⁇ m, preferably 0.05 to 0.8 ⁇ m, and more preferably 0.1 to 0.6 ⁇ m. is there.
  • the content of the insulating fine particles contained in the insulating layer is preferably 50 to 98% by mass, more preferably 60 to 97% by mass, and further preferably 70 to 96% by mass based on the total amount of the insulating layer. When the content of the insulating fine particles is within the above range, the insulating layer can form a uniform porous structure and is provided with appropriate insulating properties.
  • the content of the binder for the insulating layer in the insulating layer is preferably 2 to 50% by mass, more preferably 3 to 40% by mass, and further preferably 4 to 30% by mass based on the total amount of the insulating layer.
  • the groove 15 is easily formed when the content of the binder for the insulating layer is within the above range.
  • the thickness of the insulating layer 14 is preferably 1 to 15 ⁇ m, more preferably 2 to 12 ⁇ m, and even more preferably 3 to 9 ⁇ m.
  • the thickness of the insulating layer 14 is preferably 1 to 15 ⁇ m, more preferably 2 to 12 ⁇ m, and even more preferably 3 to 9 ⁇ m.
  • the positive electrode current collector 11 examples include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, aluminum, titanium, nickel and stainless steel are preferable, and aluminum is more preferable.
  • the positive electrode current collector is generally made of a metal foil, and the thickness thereof is not particularly limited, but is preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m. When the thickness of the positive electrode current collector is 1 to 50 ⁇ m, the handling of the positive electrode current collector can be facilitated and the decrease in energy density can be suppressed.
  • composition for the positive electrode active material layer containing the positive electrode active material, the binder for the positive electrode, and the solvent is prepared.
  • the composition for the positive electrode active material layer may contain other components such as a conductive additive to be blended if necessary.
  • the positive electrode active material, the binder for the positive electrode, the conductive auxiliary agent and the like are as described above.
  • the positive electrode active material layer may be formed by a known method using the above-mentioned composition for the positive electrode active material layer.
  • the above-mentioned composition for the positive electrode active material layer is applied onto the positive electrode current collector and dried.
  • Can be formed by The method for applying the composition for the positive electrode active material layer is not particularly limited, and for example, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a bar coating method, a gravure coating method, a screen printing method, a die coating method, etc. Can be mentioned.
  • the drying temperature is not particularly limited as long as the solvent can be removed, but is, for example, 40 to 150 ° C, preferably 50 to 130 ° C.
  • the drying time is not particularly limited, but is, for example, 30 seconds to 2 hours, preferably 10 to 90 minutes.
  • the composition for the positive electrode active material layer may be dried by vacuum drying, if necessary.
  • the positive electrode active material layer may be formed by applying the composition for the positive electrode active material layer on a base material other than the positive electrode current collector and drying it.
  • the base material other than the positive electrode current collector include known release sheets.
  • the positive electrode active material layer formed on the base material preferably, after forming an insulating layer on the positive electrode active material layer, the positive electrode active material layer may be peeled off from the base material and transferred onto the positive electrode current collector.
  • the positive electrode active material layer formed on the positive electrode current collector or the base material is preferably pressure-pressed. By pressurizing, it becomes possible to increase the electrode density.
  • the pressure press may be performed by a roll press or the like.
  • a composition for an insulating layer In forming the positive electrode active material layer, first, a composition for an insulating layer is prepared.
  • the composition for an insulating layer contains insulating particles, a binder for an insulating layer, and a solvent.
  • the composition for the insulating layer may contain other optional components to be blended as needed. Details of the insulating particles, the binder for the insulating layer, and the like are as described above.
  • the composition for the insulating layer is a slurry.
  • the solvent water or an organic solvent may be used, and the details of the organic solvent include those similar to those of the organic solvent in the positive electrode active material layer composition.
  • the solid content concentration of the composition for the insulating layer is preferably 10 to 75% by mass, more preferably 15 to 50% by mass.
  • a groove is formed at any position of the positive electrode layer, preferably at any of the surfaces of the insulating layer and the positive electrode active material layer.
  • the method for forming the grooves is not particularly limited, but the grooves are applied to the applied composition before the coating liquid such as the composition for the positive electrode active material or the composition for the insulating layer is applied and the coating liquid dries. It may be formed by pressing against a pressing means such as a pressing roll having a shape corresponding to the above. The composition may be pressed against the pressing means before it is completely dried, or may be pressed against a pressing means such as a pressing roll during drying.
  • the groove may be formed when the coating liquid (composition for insulating layer, composition for positive electrode active material, etc.) is applied.
  • the coating liquid composition for insulating layer, composition for positive electrode active material, etc.
  • the positive electrode current collector is passed between the back roll and the gravure roll as the material to be coated, and the coating liquid is applied by the gravure roll.
  • the groove is formed by the back roll. May be formed.
  • the convex portion is pressed against the back surface of the material to be coated (the surface opposite to the surface on which the coating liquid is applied).
  • the gravure roll may be provided with a convex portion corresponding to the groove.
  • a convex portion may be formed between the inclined grooves.
  • a part of the discharge port may be shielded in the discharge port of the die head corresponding to the groove to be formed. When a part of the discharge port is shielded, the amount of coating on that part is reduced, whereby a groove can be formed.
  • Non-aqueous electrolyte secondary battery The above-mentioned positive electrode is used as a positive electrode for a non-aqueous electrolyte secondary battery, and is preferably used as a positive electrode for a lithium ion secondary battery.
  • the non-aqueous electrolyte secondary battery includes a positive electrode and a negative electrode, and the above-mentioned positive electrode may be used as the positive electrode.
  • the negative electrode includes a negative electrode current collector and a negative electrode layer provided on at least one surface of the negative electrode current collector.
  • the negative electrode layer may be composed of the negative electrode active material layer alone, or may be a layer in which another layer is formed on the negative electrode active material layer.
  • it may be composed of a negative electrode active material layer and an insulating layer formed on the negative electrode active material layer, but an insulating layer is provided on the positive electrode layer of the positive electrode, and an insulating layer is provided on the negative electrode layer. It is preferable not to provide it. This is because the insulating layer of the positive electrode can prevent a short circuit between the positive electrode and the negative electrode even if the insulating layer is not provided on the negative electrode layer.
  • the negative electrode layer preferably has no groove. That is, when the negative electrode layer is composed of the negative electrode active material layer alone as described above, it is preferable that no groove is formed in the negative electrode active material layer. Further, when the negative electrode layer is composed of the negative electrode active material layer and the insulating layer, it is preferable that no groove is formed in any of the negative electrode active material layer and the insulating layer. Since the negative electrode layer does not have a groove, a portion thinned by the groove cannot be formed, so that precipitation of lithium ions from the positive electrode in the thinned portion can be prevented.
  • the negative electrode active material layer typically includes a negative electrode active material and a binder for the negative electrode.
  • the negative electrode active material include carbon materials such as graphite and hard carbon, composites of tin compounds, silicon and carbon, and lithium. Among these, carbon materials are preferable, and graphite is more preferable.
  • the negative electrode active material these substances may be used alone or in combination of two or more.
  • the negative electrode active material is not particularly limited, but its average particle size is preferably 0.5 to 50 ⁇ m, and more preferably 1 to 30 ⁇ m.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 50 to 99% by mass, more preferably 60 to 98.5% by mass, based on the total amount of the negative electrode active material layer.
  • the binder for the negative electrode can be appropriately selected from the binders exemplified in the binder for the positive electrode and used.
  • the binder for the negative electrode may be used alone or in combination of two or more.
  • the content of the binder in the negative electrode active material layer is preferably 1 to 50% by mass, more preferably 1.5 to 40% by mass, based on the total amount of the negative electrode active material layer.
  • the negative electrode active material layer may contain a conductive auxiliary agent.
  • the conductive auxiliary agent include the same as in the case of the positive electrode active material layer.
  • the conductive auxiliary agent may be used alone or in combination of two or more.
  • the content of the conductive auxiliary agent is preferably 0.5 to 20% by mass, preferably 1 to 15% by mass, based on the total amount of the negative electrode active material layer. It is more preferably present, and further preferably 2 to 10% by mass.
  • the negative electrode active material layer may contain any components other than the negative electrode active material, the conductive auxiliary agent, and the binder as long as the effects of the present invention are not impaired, as in the case of the positive electrode active material layer. And its content is also the same.
  • the density of the negative electrode active material layer is preferably 1.2 ⁇ 1.7mg / cm 2, more preferably 1.35 ⁇ 1.65mg / cm 2. By setting the density of the negative electrode active material layer within the above range, it becomes easy to improve the battery performance. Further, as described above, the density of the negative electrode active material layer is preferably lower than the density of the positive electrode active material layer. Therefore, it is possible to prevent the impregnation rate of the electrolytic solution from becoming slow even if the negative electrode layer is not provided with a groove.
  • the thickness of the negative electrode active material layer is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, and even more preferably 40 to 100 ⁇ m. When the negative electrode active material layer is provided on both sides of the negative electrode current collector, it is the thickness of the negative electrode active material layer on each surface.
  • the details of the insulating layer in the negative electrode layer are as described in the insulating layer in the positive electrode layer as described above.
  • the negative electrode layer does not have to be provided with an insulating layer, but in that case, it is preferable that the insulating layer is formed on the positive electrode layer as described above. Even if the negative electrode layer is not provided with the insulating layer, the insulating layer of the positive electrode layer can prevent a short circuit between the negative electrode and the positive electrode.
  • the details of the method of forming the negative electrode active material layer and the insulating layer in the negative electrode layer are the same as those of the positive electrode active material layer and the insulating layer in the positive electrode layer, and thus the description thereof will be omitted.
  • the negative electrode current collector is also generally made of a metal foil like the positive electrode current collector, and its thickness is not particularly limited, but is preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m. When the thickness of the negative electrode current collector is 1 to 50 ⁇ m, the handling of the negative electrode current collector can be facilitated and the decrease in energy density can be suppressed.
  • the non-aqueous electrolyte secondary battery according to an embodiment of the present invention preferably further includes a separator arranged between the positive electrode and the negative electrode.
  • a separator By providing the separator, a short circuit between the positive electrode and the negative electrode is more effectively prevented. Further, the separator may retain an electrolyte described later.
  • the separator When the insulating layer is provided on the positive electrode or the negative electrode, the insulating layer may or may not be in contact with the separator, but it is preferable that the insulating layer is in contact with the separator.
  • the separator include a porous polymer film, a non-woven fabric, and glass fiber, and among these, a porous polymer film is preferable.
  • porous polymer film examples include an olefin-based porous film.
  • the separator may be heated by heat generated when the non-aqueous electrolyte secondary battery is driven and may undergo heat shrinkage. Even during such heat shrinkage, the provision of the above-mentioned insulating layer makes it easier to suppress a short circuit. Further, in the non-aqueous electrolyte secondary battery according to the embodiment of the present invention, the separator may be omitted. Even if the separator is omitted, it is preferable that the insulating layer provided on at least one of the negative electrode and the positive electrode ensures the insulating property between the negative electrode and the positive electrode.
  • the electrolyte used in the non-aqueous electrolyte secondary battery according to the embodiment of the present invention is not particularly limited, and if a known non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery is used, Good.
  • a known non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery is used, Good.
  • the electrolyte for example, an electrolytic solution is used.
  • the electrolytic solution include an organic solvent and an electrolytic solution containing an electrolyte salt.
  • organic solvent examples include ethylene carbonate (EC), propylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate, ⁇ -butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1 , 2-Dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methylacetamide and other polar solvents, or mixtures of two or more of these solvents can be mentioned.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • ethyl methyl carbonate ⁇ -butyrolactone
  • sulfolane dimethyl sulfoxide
  • acetonitrile dimethylformamide
  • dimethylacetamide 1
  • 2-Dimethoxyethane
  • Electrolyte salts include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 CO 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ).
  • Examples thereof include salts containing lithium such as 2 and LiN (COCF 2 CF 3 ) 2 and lithium bisoxalate boronate (LiB (C 2 O 4 ) 2 ).
  • a complex such as a lithium organic acid salt-boron trifluoride complex and a complex hydride such as LiBH 4 can be mentioned. These salts or complexes may be used alone or as a mixture of two or more.
  • the electrolyte may be a gel-like electrolyte in which the above-mentioned electrolyte solution further contains a polymer compound.
  • the polymer compound include a fluorine-based polymer such as polyvinylidene fluoride and a polyacrylic polymer such as methyl poly (meth) acrylate.
  • the gel electrolyte may be used as a separator.
  • the non-aqueous electrolyte secondary battery preferably has a multilayer structure in which a plurality of negative electrodes and a plurality of positive electrodes are laminated.
  • the negative electrode and the positive electrode may be provided alternately along the stacking direction.
  • the separator may be arranged between each negative electrode and each positive electrode.
  • each positive electrode may be the positive electrode for the non-aqueous electrolyte secondary battery described above, and in that case, the positive electrode for the non-aqueous electrolyte secondary battery is a positive electrode on both sides of the positive electrode current collector. It is preferable that a layer is provided, and a groove of the embodiment described above may be formed in each positive electrode layer.
  • the negative electrode may be provided with a negative electrode layer on both sides of the negative electrode current collector.
  • the ends of the positive electrode current collectors of the plurality of positive electrodes one end portion 10A, see FIGS. 4 to 9 are collectively attached to the positive electrode tab or the like and connected to the positive electrode terminal via the positive electrode tab or the like. Good.
  • the ends of the negative electrode current collectors of the plurality of negative electrodes are also collectively attached to the negative electrode tab or the like, and connected to the negative electrode terminal via the negative electrode tab or the like.
  • any of the non-aqueous electrolyte secondary battery, the wound type and the laminated type according to the embodiment of the present invention may be used, but the laminated type is preferable.
  • the laminated type is preferable.
  • the separator may be arranged between each negative electrode and each positive electrode.
  • the non-aqueous electrolyte secondary battery usually has a casing, and the positive electrode and the negative electrode described above may be housed in the casing.
  • the casing is not particularly limited, but may be an outer can or the like, or may be an outer film.
  • As the exterior film it is preferable that the negative electrode, the separator and the positive electrode are arranged between the two exterior films or one exterior film is folded in half, for example.
  • an electrode structure prepared by laminating a positive electrode, a separator, and a negative electrode by a crimping process or the like is housed in an exterior body, and an electrolytic solution is sealed. After that, it can be manufactured by sealing it so as to be in a sealed state.
  • the electrode for a non-aqueous electrolyte secondary battery according to the embodiment of the present invention has been described above by taking the positive electrode as an example.
  • the electrode for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention may be used as a negative electrode. That is, in the electrode for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention, a groove may be provided in the negative electrode layer instead of the positive electrode layer.
  • the positive electrode layer preferably has no groove. That is, when the positive electrode layer is composed of a single positive electrode active material layer, it is preferable that no groove is formed in the positive electrode active material layer. Further, when the positive electrode layer is composed of the positive electrode active material layer and the insulating layer, it is preferable that no groove is formed in any of the positive electrode active material layer and the insulating layer.
  • the impregnation time of the produced non-aqueous electrolyte secondary battery was defined as the time during which the change in AC resistance at 1 kHz was less than 1% / min with reference to immediately after sealing. HIOKI BT3562 was used for the measurement of AC resistance.
  • acetylene black as a conductive aid
  • polyvinylidene fluoride # 7200 manufactured by Kureha
  • NMP N-methylpyrrolidone
  • This slurry was applied to an aluminum foil having a thickness of 12 ⁇ m as a positive electrode current collector, pre-dried, and then vacuum dried at 120 ° C. for 1 hour. Then, the pressure was pressed at 30 MPa to form a positive electrode active material layer having a thickness of 130 ⁇ m per side on the positive electrode current collector.
  • the density of each positive electrode active material layer was 2.0 mg / cm 2 .
  • the coated insulating layer composition is pressed against a roll (pressing roll) having a convex portion formed on the surface to form a groove, and then the insulating layer composition is dried at 120 ° C. for 10 minutes.
  • An insulating layer having a groove formed on each positive electrode active material layer was formed. The thickness of each of the insulating layers after drying was 4 ⁇ m.
  • the positive electrode current collector on which the insulating layer and the positive electrode active material layer are formed is punched so that the electrode size is 200 ⁇ 420 mm square (the positive electrode active material layer is 200 ⁇ 400 mm square), and is shown in FIG.
  • a positive electrode in which the grooves were arranged was prepared as described above.
  • the groove was an inclined groove, the inclination angle R with respect to the longitudinal direction L was 60 °, and the details of the other grooves were as shown in Table 1.
  • Formation of negative electrode 98 parts by mass of graphite (D50: 15 ⁇ m) as a negative electrode active material, 1 part by mass of styrene butadiene rubber (SBR) as a binder for a negative electrode, 1 part by mass of carboxymethyl cellulose Na (CMC), and water as a solvent are mixed. Then, a slurry adjusted to have a solid content of 50% by mass was obtained. This slurry was applied to a copper foil having a thickness of 10 ⁇ m as a negative electrode current collector, and vacuum dried at 100 ° C.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose Na
  • a negative electrode having a 90 ⁇ m negative electrode active material layer was prepared.
  • the density of each negative electrode active material layer was 1.4 mg / cm 2 .
  • a non-aqueous electrolyte solution was prepared by dissolving LiPF 6 as an electrolyte in a solvent mixed with ethylene carbonate (EC): dimethyl carbonate (DMC) at a volume ratio of 3: 7 so as to be 1 mol / liter.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the electrode structure was sandwiched between aluminum laminated films so that the terminal tabs protruded to the outside, and the three sides were sealed by laminating.
  • a 20 Ah non-aqueous electrolyte secondary battery was manufactured by injecting an electrolytic solution from one side left unsealed and vacuum-sealing.
  • Examples 2 and 3 The same procedure as in Example 1 was carried out except that the shape of the convex portion on the surface of the pressing roll for forming the groove was adjusted and the number of grooves was changed as shown in Table 1.
  • Example 4 The same procedure as in Example 1 was carried out except that the position where the groove was formed was changed from the surface of the insulating layer to the surface of the positive electrode active material layer. Specifically, before the composition for the positive electrode active material layer was applied and dried, grooves were formed in each positive electrode active material layer provided on both sides of the positive electrode current collector by the same method as in Example 1. ..
  • Examples 5 to 18 Performed except that the shape of the pressing roll surface for forming the groove was adjusted and the average width of the groove, the average depth of the groove, the average length of the groove, and the shape of the groove were changed as shown in Table 1. It was carried out in the same manner as in Example 4. As shown in FIG. 7, the groove of Example 17 was a parallel groove parallel to the longitudinal direction L. Further, as shown in FIG. 5, the groove of Example 18 was a vertical groove parallel to the direction perpendicular to the longitudinal direction L (the lateral direction S).
  • Examples 19 and 20 Performed except that the shape of the pressing roll surface for forming the groove was adjusted and the average width of the groove, the average depth of the groove, the average length of the groove, and the shape of the groove were changed as shown in Table 1. It was carried out in the same manner as in Example 1. As shown in FIG. 7, the groove of Example 20 was a parallel groove parallel to the longitudinal direction L.
  • Example 1 The procedure was carried out in the same manner as in Example 1 except that no groove was formed in the positive electrode layer.
  • Comparative Example 2 The same procedure as in Example 1 was carried out except that the shape of the convex portion on the surface of the pressing roll for forming the groove was adjusted and the number of grooves was changed as shown in Table 1.
  • the average width is represented by "A ⁇ B", and "A” indicates the average value.
  • B indicates the absolute value of the difference between the average value and the average value of the widths of the grooves having the largest difference. The same applies to the depth average.
  • the average length is the average value of the ratio (%) of the groove length B to the length A in the portion of the positive electrode layer where the groove exists.
  • the capacity retention rate in a low temperature environment is kept good, and the electrolytic solution is transferred to the positive electrode.
  • I was able to increase the impregnation rate of.
  • the impregnation rate of the electrolytic solution into the positive electrode could not be increased because the grooves were not formed in the electrodes, or the number of grooves was too large even if the grooves were formed.
  • the capacity retention rate in a low temperature environment could not be improved.
  • Positive electrode for non-aqueous electrolyte secondary battery 10A One end 11 Positive electrode current collector 12 Positive electrode layer 13 Positive electrode active material layer 13A Surface of positive electrode active material layer 14 Insulation layer 14A Surface of insulation layer 15 Groove A Groove of positive electrode layer exists Length in the part B Groove length D Groove depth L Longitudinal direction S Short side direction W Groove width

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解質二次電池用電極(10)は、集電体(11)と、集電体(11)の少なくとも一方の面に設けられる電極層(12)とを備え、電極層(12)が、1本以上25本以下の溝(15)を有する。これにより、低温での電池性能を良好に保ちつつ、電解質の電極への含浸速度を速くすることができる。

Description

非水電解質二次電池用電極、及び非水電解質二次電池
 本発明は、非水電解質二次電池用電極、及び非水電解質二次電池用電極を備える非水電解質二次電池に関する。
 非水電解質二次電池、特にリチウムイオン二次電池は、電力貯蔵用の大型定置用電源、電気自動車用等の電源として利用されており、近年では電池の小型化及び薄型化の研究が進展している。一般的に、リチウムイオン二次電池は、金属箔の表面に電極活物質層を形成した両電極と、両電極の間に配置されるセパレータを備える。セパレータは、両電極間の短絡防止や電解液を保持する役割を果たす。また、電極活物質層の表面に多孔質の絶縁層が設けられることもある。絶縁層は、電極間の短絡抑制機能をさらに良好にし、また、セパレータの代わりに電極間の絶縁性を確保するために使用されることもある。
 従来、例えば、特許文献1には、接着層を介してセパレータに接着された正極又は負極の合材表面に、溝が形成されることが開示されている。特許文献1では、合材表面に溝を形成することで、接着剤から溶剤が揮発し易く、また電解液の浸透も容易となることが示されている。
 また、特許文献2には、集電層と、活物質層と、集電層と活物質層とを接着する接着層とを備える電極において、活物質層の集電層が設けられた面とは反対側の面に凹凸が形成されることが示されている。特許文献2では、凹凸が形成されることで、エネルギー密度を維持しつつ、内部抵抗を低減できることが示されている。
特開2001-357836号公報 特開2013-187468号公報
 ところで、大型定置用電源、電気自動車用のリチウムイオン二次電池は、低温環境下で使用されることもあり、低温環境下においても容量維持率などの電池性能を良好にすることが求められている。一方で、特許文献1、2に示されるように、電極に溝を形成すると、電解液の電極への含浸速度が速くなるものの、低温環境下において容量維持率などの電池性能が低下しやすい傾向にある。
 しかし、特許文献1、2では、電解液の含浸速度を速くしつつ、低温環境下における容量維持率などを良好に保持できることが示されていない。
 そこで、本発明は、低温環境下において容量維持率などの電池性能を良好に保ちつつ、電解質の電極への含浸速度を速くすることが可能な非水電解質二次電池用電極、及び非水電解質二次電池を提供することを課題とする。
 本発明者は鋭意検討の結果、非水電解質二次電池用電極に設けられる電極層に所定の溝を形成することで、上記課題を解決できることを見出し、以下の本発明を完成させた。すなわち本発明は、下記のとおりである。
[1]集電体と、前記集電体の少なくとも一方の面に設けられる電極層とを備え、前記電極層が、1本以上25本以下の溝を有する、非水電解質二次電池用電極。
[2]前記電極層が、前記集電体の少なくとも一方の面に、前記集電体側から順に、電極活物質層と、絶縁層とを備え、前記絶縁層の表面に前記溝が形成される上記[1]に記載の非水電解質二次電池用電極。
[3]前記溝の平均深さが、0.5μm以上4μm以下である上記[1]又は[2]に記載の非水電解質二次電池用電極。
[4]前記溝の平均幅が0.2mm以上6.5mm以下である上記[1]~[3]のいずれか1項に記載の非水電解質二次電池用電極。
[5]前記溝の平均長さが、前記電極層の溝が存在する部分における長さに対して、20%以上95%以下である上記[1]~[4]のいずれか1項に記載の非水電解質二次電池用電極。
[6]前記溝は、前記電極層の長手方向に対して平行である平行溝、前記長手方向に対して傾斜する傾斜溝、及び前記長手方向に対して垂直である垂直溝からなる群から選択される少なくとも1種である上記[1]~[5]のいずれか1項に記載の非水電解質二次電池用電極。
[7]リチウムイオン二次電池用電極である上記[1]~[6]のいずれか1項に記載の非水電解質二次電池用電極。
[8]上記[1]~[7]のいずれか1項に記載の非水電解質二次電池用電極を備える非水電解質二次電池。
[9]上記[1]~[7]のいずれか1項に記載の非水電解質二次電池用電極を正極として有し、負極集電体と、前記負極集電体の少なくとも一方の表面に設けられる負極層とを備える負極をさらに有し、前記負極層が溝を有しないか、又は
 上記[1]~[7]のいずれか1項に記載の非水電解質二次電池用電極を負極として有し、正極集電体と、前記正極集電体の少なくとも一方の表面に設けられる正極層とを備える正極をさらに有し、前記正極層が溝を有しない上記[8]に記載の非水電解質二次電池。
 本発明によれば、低温での電池性能を良好に保ちつつ、電解質の電極への含浸速度を速くすることができる。
本発明の一実施形態に係る非水電解質二次電池用正極を示す断面図である。 本発明の別の実施形態に係る非水電解質二次電池用正極を示す断面図である。 本発明のさらに別の実施形態に係る非水電解質二次電池用正極を示す断面図である。 本発明の一実施形態に係る非水電解質二次電池用正極に設けられる溝の形状及び配列の一例を示す平面図である。 本発明の一実施形態に係る非水電解質二次電池用正極に設けられる溝の形状及び配列の一例を示す平面図である。 本発明の一実施形態に係る非水電解質二次電池用正極に設けられる溝の形状及び配列の一例を示す平面図である。 本発明の一実施形態に係る非水電解質二次電池用正極に設けられる溝の形状及び配列の一例を示す平面図である。 本発明の一実施形態に係る非水電解質二次電池用正極に設けられる溝の形状及び配列の一例を示す平面図である。 本発明の一実施形態に係る非水電解質二次電池用正極に設けられる溝の形状及び配列の一例を示す平面図である。
 以下、正極を例として、本発明の一実施形態に係る非水電解質二次電池用電極について詳細に説明する。
<非水電解質二次電池用正極>
 図1に示すように、非水電解質二次電池用正極(以下、単に「正極」ともいう)10は、正極集電体11と、正極集電体11の一方の面に設けられる正極層12とを備える。ここで、正極層12は、図1に示すように、正極活物質層13単独からなるものでもよいが、正極活物質層13の上に他の層が形成されたものでもよい。具体的には、図2、3に示すように、正極集電体11側から順に、正極活物質層13と、絶縁層14とを備えるものでもよい。この場合、通常、正極層12は、正極活物質層13と、絶縁層14からなり、絶縁層14の表面14Aが正極層12の最外面となる。
 正極層12においては、絶縁層14が設けられることが好ましい。絶縁層14を設けることで、正極と負極間の短絡を効果的に防止できる。また、絶縁層14を設けると、電解液が正極層12に含浸しにくくなるが、本発明の一実施形態では後述する溝15によって電解液の含浸速度が速くなり、絶縁層14を設けたことによる含浸速度の低下を抑制できる。
[溝]
 本発明の一実施形態に係る正極10は、正極層12に溝15が設けられる。本発明の一実施形態では、正極層12に溝15が設けられることで、毛細管現象により正極層12に電解液が含浸されやすくなり、正極層12への電解液の含浸速度が速くなる。
 溝15は、例えば、図1に示すように、正極層12が正極活物質層13単独からなる場合には、正極活物質層13の表面13Aに形成されればよい。
 また、正極層12が正極活物質層13と絶縁層14を備える場合には、図2に示すように、正極活物質層13の表面13Aに溝15が形成されてもよいし、図3に示すように、絶縁層14の表面14Aに溝15が形成されてもよい。
 これらの中では、溝15は、絶縁層14の表面14Aに形成されることが好ましい。この場合、表面14Aは、通常、正極層12の最外面となり、すなわち、溝15は正極層12の最外面に設けられることになる。絶縁層14の表面14Aに溝15が形成されることで、電解質の正極層12への含浸速度をより速くしやすくなる。また、低温環境下における容量維持率などが低下しにくくなり、低温環境下における電池性能を良好に維持しやすくなる。
 図3に示すように、絶縁層14の表面14Aに溝15が設けられる場合、正極活物質層13の表面13Aにも溝が設けられてもよいが、絶縁層14の表面14Aのみに溝15が設けられることが好ましい。同様に、図2に示すように、正極活物質層13の表面13Aに溝15が設けられる場合、絶縁層14の表面14Aにも溝が設けられてもよいが、正極活物質層13の表面13Aのみに溝15が設けられることが好ましい。
 なお、正極活物質層13の表面13Aに溝15が設けられる場合、図2に示すように、溝15には、絶縁層14が溝15の内部に入り込み、溝15が絶縁層によって埋められる。さらに、図2において、絶縁層14の表面14Aは、模式的に平坦面に描かれるが、絶縁層14が溝15の内部に入り込み絶縁層14の表面14Aが凹むことで、絶縁層14の表面14Aにも溝15に対応した位置に凹部が形成されてもよい。なお、そのような凹部は、本明細書では「絶縁層14の表面14Aに設けられた溝」とは呼ばない。
 溝15は、正極層12において、1本以上25本以下設けられる。正極層12において、溝が25本より多くなると、低温環境下における容量維持率などが低下して電池性能を良好にすることができない。また、電解液の含浸速度を速くしにくくなる。正極層12における溝15の本数は、電解質の含浸速度を速くしつつ、低温環境下における電池性能を良好にする観点から好ましくは1本以上20本以下、より好ましくは5本以上18本以下、さらに好ましくは10本以上14本以下である。
 なお、上記した溝の本数は、正極集電体11の片面あたりの溝の本数であり、後述するように、正極集電体11の両面に本発明の一実施形態に係る正極層12が設けられる場合には、正極集電体11の片面それぞれに上記本数の溝が設けられればよい。
 また、絶縁層14の表面14Aと、正極活物質層13の表面13Aの両方に溝15が設けられる場合には、その合計本数である。
 図4~9は、溝15の形状、配列を説明するための正極の具体例である。なお、図4~9に示す正極10は、図3に示す正極層12の平面図である。すなわち、正極層12が正極活物質層13と絶縁層14を備え、絶縁層14の表面14A(正極層12の最外面)に溝が設けられる場合の正極の平面図である。
 ただし、図1に示すように、正極層12が正極活物質層13からなり、正極活物質層13の表面13Aに溝15が形成される場合や、図2に示すように、正極層12が正極活物質層13と絶縁層14を備え、正極活物質層13の表面13Aに溝15が形成される場合も、溝の形状、配列などは同じであるので、その説明は省略する。
 さらに、正極層12が正極活物質層13と絶縁層14を備える場合には、正極活物質層13と絶縁層14の両方に溝15が形成されてもよいが、その場合にも溝15の形状、配列などは以下と同じであるので、その説明は省略する。
 本発明の一実施形態において、溝15の形状は、特に限定されないが、図4~9に示すように直線状でもよいし、曲線状(図示しない)でもよいが、製造容易性の観点からは直線状の溝であることが好ましい。
 また、溝15は、その方向が特に限定されないが、図4に示すように正極層12の長手方向Lに対して傾斜する傾斜溝でもよいし、図5に示すように長手方向Lに対して垂直である垂直溝でもよい。また、図6、7に示すように、正極層12の長手方向Lに対して平行である平行溝でもよい。なお、溝15が傾斜溝である場合、長手方向Lに対する傾斜角度Rは、0°より大きく90°未満であればよいが、45°~75°が好ましい。
 正極層12における溝15同士の平均設置間隔は、0.2cm以上10cm未満が好ましい。溝15同士の平均設置間隔が0.2cmより狭くなると、低温環境下における容量維持率などが低下して電池性能を良好にすることができない。また、電解液の含浸速度を速くしにくくなる。一方、溝15同士の平均設置間隔が10cmより広くなると、正極層12への電解液の十分な含浸がされにくくなる。正極層12における溝15同士の設置間隔は、電解質の含浸速度を速くしつつ、低温環境下における電池性能を良好にする観点から、好ましくは0.3cm以上7cm未満、より好ましくは0.4cm以上5cm未満、さらに好ましくは0.5cm以上3cm未満である。
 なお、溝15同士の設置間隔とは、隣接する溝15同士の最短距離をいい、溝15同士の平均設置間隔とは、正極層12における溝15同士の設置間隔の平均値をいう。
 なお、正極集電体11(すなわち、正極10)、及び正極集電体11の上に設けられる正極層12は、平面視すると一般的に矩形であり、その場合、矩形の長辺方向が正極層12の長手方向Lとなり、矩形の短辺方向が短手方向Sとなる。ただし、正極層12が正方形である場合には、正方形のいずれかの一辺方向を正極層12の長手方向Lとし、別の一辺方向を短手方向Sとする。
 また、図4~9に示すように、正極10の一端部10Aには、正極層12が設けられず、正極集電体11が露出される。正極層12が設けられない一端部10Aは、後述するように正極端子に接続され、正極10にはその一端部10Aより電流が流される。一端部10Aは、通常は、図4~9に示すように、長手方向Lにおける正極10の一方の端部である。
 各正極層12(すなわち、正極集電体11の各面)に設けられる複数の溝15の方向は、互いに異なっていてもよいが、製造容易性などの観点からは、同一であることが好ましい。すなわち、正極集電体11の各面における溝は、全てが同じ方向を向くことが好ましく、したがって、正極集電体11の各面に存在する全ての溝15が、傾斜溝、平行溝、又は垂直溝のいずれかとなることが好ましい。このとき傾斜溝は、製造容易性の観点から、正極集電体11の各面に存在する全ての溝の傾斜角度が同じとなるほうがよい。
 溝15の配列は、特に限定されないが、複数の溝15は縞状模様となるように並べられることが好ましい。縞状模様に並べられることで、毛細管現象により電解液がより含浸されやすくなる。
 具体的には、複数の溝15が所定の方向に沿って一列に並べられるとよい。例えば、図4、5に示すように、傾斜溝、垂直溝などが長手方向Lに沿って一列に並べられてもよいし、図6、7に示すように、平行溝が長手方向Lに垂直な短手方向Sに沿って一列に並べられてもよい。また、図示しないが、傾斜溝が短手方向Sに沿って一列に並べられればよい。
 さらに、例えば、図8に示すように、複数の溝が長手方向Lに対して傾斜する傾斜方向に沿って一列に並べられてもよい。また、複数の溝15は、縞状に一列に並べられる必要はなく、2列に並べられてもよいし、図9に示すようにランダムに並べられてもよい。
 溝15の平均幅は、0.2mm以上6.5mm以下であることが好ましい。平均幅を0.2mm以上とすることで、溝15によって含浸速度を効果的に向上させることができる。平均幅を6.5mm以下とすることで、溝15を設けても低温環境下における電池性能を良好に維持できる。
 含浸速度をより効果的に向上させつつ低温環境下における電池性能を良好に維持する観点から、溝15の平均幅は、0.5mm以上6.0mm以下がより好ましく、0.8mm以上2.0mm以下がさらに好ましい。また、溝15の平均幅を上記上限値以下とすることで、絶縁層14に溝15を設けても絶縁層14により適切に短絡を防止できる。
 なお、溝15の平均幅とは、正極集電体11の片面に設けられる全ての溝15の幅Wの平均値である。
 溝15の深さは、溝が設けられる層(絶縁層14、又は正極活物質層13)の厚さよりも小さくするとよい。具体的な溝15の平均深さは、0.05μm以上4.5μm以下であればよいが、0.3μm以上4.2μm以下であることが好ましく、0.5μm以上4μm以下がより好ましく、1μm以上3.5μm以下であることがさらに好ましい。溝15の平均深さをこれら下限値以上とすることで、含浸速度を効果的に向上させることができる。また、これら上限値以下とすることで、溝15を設けても低温環境下における電池性能を良好に維持できる。さらに、絶縁層14に溝15を設けても絶縁層14により適切に短絡を防止できる。
 なお、溝15の平均深さとは、正極集電体11の片面に設けられる全ての溝の深さDの平均値である。
 溝15の平均長さは、溝が存在する部分における正極層12の長さAに対する、溝15の平均長さBavの割合(Bav/A)が例えば10%以上100%以下となるように調整されるとよい。Bav/Aは、好ましくは20%以上95%以下、さらに好ましくは30%以上80%以下、よりさらに好ましくは40%以上70%以下である。割合(Bav/A)をこれら下限値以上とすることで、電解液の含浸速度を効果的に向上させることができる。また、上限値以下とすることで低温環境下における電池性能を良好に維持することができる。
 なお、「溝が存在する部分における正極層の長さA」とは、図4~9に示すように、長手方向L又は短手方向Sにおける、溝が設けられる部分AL、ASの長さのうち、長いほうの長さをいう。また、溝15の平均長さBavは、正極集電体11の片面に設けられる全ての溝15の長さBの平均値である。
 また、図4~9に示すように、正極層12(絶縁層14の表面14A)の長手方向L及び短手方向Sにおける両端部には、溝15が設けられずに、溝15は、正極層12の中央部分に設けられることが好ましい。すなわち、長手方向L及び短手方向Sにおける、溝が設けられる部分AL,ASは、電極層12の長手方向L,短手方向Sの両端部には設けられないほうがよい。したがって、各溝15は、正極層12の端面まで到達しない溝となる。正極層12の中央部分は、電解液が相対的に含浸しにくい部分であるが、その中央部分に溝15が設けられることで、電解液が含浸しやすくなる。
 ただし、溝15は、正極層12の長手方向L及び短手方向Sにおけるいずれかの端部に設けられてもよく、したがって、溝15の少なくとも一部が、正極層12の端面まで到達してもよい。
(正極活物質層)
 正極活物質層13は、正極活物質と正極用バインダーを含む。正極活物質としては、金属酸リチウム化合物が挙げられる。金属酸リチウム化合物としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等が例示できる。また、正極活物質として、オリビン型リン酸鉄リチウム(LiFePO)等を使用してもよい。さらに、正極活物質として、リチウム以外の金属を複数使用したものを使用してもよく、三元系と呼ばれるNCM(ニッケルコバルトマンガン)系酸化物、NCA(ニッケルコバルトアルミニウム系)系酸化物等を使用してもよい。正極活物質として、これらの物質を1種単独で使用してもよいし、2種以上を併用してもよい。
 正極活物質は、特に限定されないが、その平均粒子径が0.5~50μmであることが好ましく、1~30μmであることがより好ましい。なお、平均粒子径は、レーザー回折・散乱法によって求めた粒度分布において、体積積算が50%での粒径(D50)を意味する。
 正極活物質層13における正極活物質の含有量は、正極活物質層全量基準で、50~98.5質量%が好ましく、60~97質量%がより好ましく、70~95質量%がさらに好ましい。
 正極用バインダーは、正極活物質を結着させるために使用される。正極用バインダーの具体例としては、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVdF-HFP)、ポリテトラフルオロエチレン(PTFE)等のフッ素含有樹脂、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、アクリロニトリル・ブタジエンゴム、スチレンブタジエンゴム(SBR)、ポリ(メタ)アクリル酸、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース、及びポリビニルアルコール等が挙げられる。これらバインダーは、1種単独で使用されてもよいし、2種以上が併用されてもよい。また、カルボキシメチルセルロース等は、ナトリウム塩等の塩の態様にて使用されていてもよい。
 正極活物質層13における正極用バインダーの含有量は、正極活物質層全量基準で、1~45質量%であることが好ましく、2~35質量%がより好ましく、3~25質量%であることがさらに好ましい。正極活物質層13の表面13Aに溝15が形成される場合に、正極用バインダーの含有量が上記範囲内であることにより、適切に溝が形成されやすくなる。
 正極活物質層13は、導電助剤をさらに含むことが好ましい。導電助剤は、正極活物質や負極活物質よりも導電性が高い材料が使用され、具体的には、ケッチェンブラック、アセチレンブラック(AB)、カーボンナノチューブ、棒状カーボン等の炭素材料等が挙げられる。導電助剤は1種単独で使用してもよいし、2種以上を併用してもよい。正極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、正極活物質層全量基準で、0.5~20質量%であることが好ましく、1~15質量%であることがより好ましく、2~10質量%であることがさらに好ましい。
 正極活物質層13は、本発明の効果を損なわない範囲内において、正極活物質、導電助剤、及びバインダー以外の他の任意成分を含んでもよい。ただし、正極活物質層の総質量のうち、正極活物質、導電助剤、及びバインダーの総含有量は、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。
 正極活物質層13の密度は、1.6~2.3mg/cm2であることが好ましく、1.9~2.2mg/cm2であることがより好ましい。正極活物質層13の密度を上記範囲内とすることで、電池性能を良好にしやすくなる。また、後述する非水電解質二次電池において、正極活物質層13の密度は、負極活物質層の密度よりも高いことが好ましい。正極活物質層13の密度が高いと電解液が含浸しにくくなるが、本発明の一実施形態では溝15が形成されることで、正極活物質層13の密度が高い場合でも、電解液の含浸速度を速くできる。
 正極活物質層13の厚さは、特に限定されないが、10~200μmが好ましく、20~160μmがより好ましく、50~140μmがさらに好ましい。正極活物質層13の厚さをこれら下限値以上とすることで、溝15が設けられても、低温環境下における容量維持率を高くしやすくなり、電極性能を良好に維持できる。また、正極活物質層の厚さをこれら上限値以下とすることで、電解液を正極に含浸させやすくなる。なお、正極活物質層の厚さとは、正極集電体11の両面に正極活物質層13が設けられる場合には、各面における正極活物質層13の厚さである。また、正極活物質層13の厚さとは、正極活物質層の表面に溝が形成される場合には、溝が形成されない部分における厚さである。
 なお、各正極10の正極層12において正極活物質層13が設けられる部分の面積は、特に限定されないが、例えば400~1200cm、好ましくは600~1000cmである。
(絶縁層)
 上記のとおり、正極層12においては、正極活物質層13の表面に絶縁層14を設けることが好ましい。絶縁層14を設けることで、正極及び負極の間の短絡が効果的に防止できる。絶縁層14は、好ましくは、絶縁性微粒子と絶縁層用バインダーとを含み、絶縁性微粒子が絶縁層用バインダーによって結着されて構成された多孔質構造を有する層である。
 絶縁性微粒子は、絶縁性であれば特に限定されず、有機粒子、無機粒子の何れであってもよい。具体的な有機粒子としては、例えば、架橋ポリメタクリル酸メチル、架橋スチレン-アクリル酸共重合体、架橋アクリロニトリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸リチウム)、ポリアセタール樹脂、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、メラミン樹脂等の有機化合物から構成される粒子が挙げられる。無機粒子としては二酸化ケイ素、窒化ケイ素、アルミナ、ベーマイト、チタニア、ジルコニア、窒化ホウ素、酸化亜鉛、二酸化スズ、酸化ニオブ(Nb)、酸化タンタル(Ta)、フッ化カリウム、フッ化リチウム、クレイ、ゼオライト、炭酸カルシウム等の無機化合物から構成される粒子が挙げられる。また、無機粒子は、ニオブ-タンタル複合酸化物、マグネシウム-タンタル複合酸化物等の公知の複合酸化物から構成される粒子であってもよい。絶縁性粒子は、無機粒子であることが好ましい。絶縁性微粒子は1種を単独で用いてもよいし、複数種を併用してもよい。
 絶縁性微粒子の平均粒子径は、絶縁層の厚さよりも小さければ特に限定されず、例えば0.001~1μm、好ましくは0.05~0.8μm、より好ましくは0.1~0.6μmである。
 絶縁層に含有される絶縁性微粒子の含有量は、絶縁層全量基準で、好ましくは50~98質量%、より好ましくは60~97質量%、更に好ましくは70~96質量%である。絶縁性微粒子の含有量が上記範囲内であると、絶縁層は、均一な多孔質構造が形成でき、かつ適切な絶縁性が付与される。
 絶縁層用バインダーとしては、上記した正極用バインダーとして列挙したものから適宜選択して使用できる。絶縁層用バインダーは、正極用バインダーと同じものを使用してもよいし、異なるものを使用してもよい。絶縁層用バインダーは、1種単独で使用されてもよいし、2種以上が併用されてもよい。
 絶縁層における絶縁層用バインダーの含有量は、絶縁層全量基準で、2~50質量%であることが好ましく、3~40質量%がより好ましく、4~30質量%が更に好ましい。絶縁層14の表面14Aに溝15が形成される場合に、絶縁層用バインダーの含有量が上記範囲内であることにより、適切に溝15が形成されやすくなる。
 絶縁層14の厚さは、1~15μmが好ましく、2~12μmがより好ましく、3~9μmが更に好ましい。絶縁層14は、厚さをこれら下限値以上とすることで、その表面14Aに溝15が設けられても、電極間の短絡を適切に防止できる。また、絶縁層の厚さをこれら上限値以下とすることで、絶縁層14を設けたことによる電池性能の低下を抑制できる。また、電解液を正極層12に含浸させやすくなる。なお、絶縁層14の厚さとは、溝15が形成されない部分における絶縁層の厚さである。
(正極集電体)
 正極集電体11となる材料は、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が挙げられる。これらの中では、アルミニウム、チタン、ニッケル及びステンレス鋼が好ましく、アルミニウムがより好ましい。正極集電体は、一般的に金属箔からなり、その厚さは、特に限定されないが、1~50μmが好ましく、5~20μmがより好ましい。正極集電体の厚さを1~50μmとすると、正極集電体のハンドリングが容易になるとともに、エネルギー密度の低下を抑制できる。
 なお、以上の説明において、正極10は、正極集電体11の一方の面のみに正極層12が設けられる構成を示したが、正極集電体11の両面に正極層12が設けられてもよい。両面に正極層12が設けられると、負極及び正極を複数積層して多層構造としても、各負極と各正極の間にてイオンを移動させて充放電させることができる。
 正極集電体11の両面に正極層12が設けられる場合、その両面の正極層12に上記した態様にて溝15が設けられることが好ましいが、一方の面の正極層12のみに溝15が設けられてもよい。
[正極の作製]
 本発明の一実施形態に係る正極は、正極集電体に表面に正極活物質層を形成し、好ましくは正極活物質層の上に絶縁層などの他の層を形成することで正極層を製造できる。また、正極層のいずれかの位置に、好ましくは正極活物質層又は絶縁層のいずれかの表面に溝を形成すればよい。
(正極活物質層の形成)
 正極活物質層の形成においては、まず、正極活物質と、正極用バインダーと、溶媒とを含む正極活物質層用組成物を用意する。正極活物質層用組成物は、必要に応じて配合される導電助剤などのその他成分を含んでもよい。正極活物質、正極用バインダー、導電助剤などは上記で説明したとおりである。
 正極活物質層組成物における溶媒は、水または有機溶剤を使用する。有機溶剤の具体例としては、N-メチルピロリドン、N-エチルピロリドン、ジメチルアセトアミド、及びジメチルホルムアミドから選択される1種又は2種以上が挙げられる。これらの中では、N-メチルピロリドンが好ましい。正極活物質層用組成物はスラリーとなる。
 正極活物質層用組成物の固形分濃度は、好ましくは10~75質量%、より好ましくは25~65質量%である。
 正極活物質層は、上記正極活物質層用組成物を使用して公知の方法で形成すればよく、例えば、上記正極活物質層用組成物を正極集電体の上に塗布し、乾燥することによって形成することができる。正極活物質層用組成物を塗布する方法は特に限定されず、例えば、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、バーコート法、グラビアコート法、スクリーン印刷法、ダイコート法等が挙げられる。
 また、乾燥温度は、上記溶媒を除去できれば特に限定されないが、例えば40~150℃、好ましくは50~130℃である。また、乾燥時間は、特に限定されないが、例えば、30秒~2時間、好ましくは10~90分である。正極活物質層用組成物は、必要に応じて真空乾燥により乾燥されてもよい。
 また、正極活物質層は、正極活物質層用組成物を、正極集電体以外の基材上に塗布し、乾燥することにより形成してもよい。正極集電体以外の基材としては、公知の剥離シートが挙げられる。基材の上に形成した正極活物質層は、好ましくは絶縁層を正極活物質層上に形成した後、基材から正極活物質層を剥がして正極集電体の上に転写すればよい。
 正極集電体又は基材の上に形成した正極活物質層は、好ましくは加圧プレスする。加圧プレスすることで、電極密度を高めることが可能になる。加圧プレスは、ロールプレスなどにより行えばよい。
(絶縁層の形成)
 正極活物質層の形成においては、まず、絶縁層用組成物を用意する。絶縁層用組成物は、絶縁性粒子と、絶縁層用バインダーと、溶媒とを含む。絶縁層用組成物は、必要に応じて配合されるその他の任意成分を含んでいてもよい。絶縁性粒子、絶縁層用バインダーなどの詳細は上記で説明したとおりである。絶縁層用組成物はスラリーとなる。溶媒としては、水又は有機溶剤を使用すればよく、有機溶剤の詳細は、正極活物質層組成物における有機溶剤と同様のものが挙げられる。絶縁層用組成物の固形分濃度は、好ましくは10~75質量%、より好ましくは15~50質量%である。
 絶縁層は、絶縁層用組成物を、正極活物質層の上に塗布して乾燥することによって形成することができる。絶縁層用組成物を正極活物質層の表面に塗布する方法は特に限定されず、例えば、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、バーコート法、グラビアコート法、スクリーン印刷法、ダイコート法等が挙げられる。
 また、乾燥温度は、上記溶媒を除去できれば特に限定されないが、例えば40~150℃、好ましくは50~130℃である。また、乾燥時間は、特に限定されないが、例えば、30秒~20分間である。絶縁層用組成物は、必要に応じて真空乾燥により乾燥されてもよい。
(溝の形成)
 本発明の一実施形態においては、正極層のいずれかの位置に、好ましくは絶縁層、及び正極活物質層の表面のいずれかに溝を形成する。溝の形成方法は、特に限定されないが、正極活物質用組成物又は絶縁層用組成物などの塗布液を塗布し、その塗布液が乾燥する前に、塗布された組成物に対して、溝に対応した形状を有する押し当てロールなどの押し当て手段に押し当てることにより形成すればよい。組成物は、完全に乾燥する前に押し当て手段に押し当てればよく、乾燥途中に押し当てロールなどの押し当て手段に押し当ててもよい。
 また、溝は、塗布液(絶縁層用組成物、又は正極活物質用組成物など)を塗布する際に形成してもよい。例えば、グラビアコート法においては、正極集電体を、被塗布材として、バックロールとグラビアロールの間を通過させつつ、グラビアロールにより塗布液を塗布するが、その場合にはバックロールにより溝を形成してよい。例えば、バックロールに溝に対応した凸部を設け、塗布液を塗布する際、被塗布材の裏面(塗布液が塗布される面とは反対側の面)にその凸部を押し当てると、凸部に押し当てられた部分は、被塗布材の表面(塗布液が塗布される面)側に膨らむので、その部分における塗布量が少なくなって溝が形成される。
 また、グラビアロールに溝に対応した凸部を設けてもよい。例えば、グラビアロールには傾斜溝が設けられるので、その傾斜溝の間に凸部を形成してもよい。
 さらに、例えば、ダイコート法などでは、ダイヘッドの吐出口において、形成させる溝に対応して、吐出口の一部を遮蔽してもよい。吐出口の一部を遮蔽すると、その部分の塗布量が少なくなり、それにより溝を形成できる。
[非水電解質二次電池]
 上記した正極は、非水電解質二次電池の正極として使用され、好ましくはリチウムイオン二次電池用の正極として使用される。
 非水電解質二次電池は、正極と、負極とを備え、正極として上記した正極を使用すればよい。負極は、負極集電体と、負極集電体の少なくとも一方の面に設けられる負極層とを備える。負極層は、負極活物質層単独からなるものでもよいが、負極活物質層の上に他の層が形成されたものでもよい。具体的には、負極活物質層と、負極活物質層の上に形成された絶縁層から構成されたものでもよいが、正極の正極層に絶縁層が設けられ、負極層には絶縁層が設けられないほうが好ましい。負極層に絶縁層が設けられなくても、正極の絶縁層により、正極と負極の間の短絡を防止できるためである。
 本発明の一実施形態において負極層は、溝を有しないことが好ましい。すなわち、上記のように負極層が負極活物質層単体からなる場合には、負極活物質層に溝が形成されないことが好ましい。また、負極層が負極活物質層及び絶縁層から構成される場合には、これら負極活物質層及び絶縁層のいずれにも溝が形成されないことが好ましい。
 負極層は、溝が形成されないことで、溝により厚みが薄くなった部分ができないので、厚みの薄くなった部分における正極からのリチウムイオンの析出を防止できる。
(負極活物質層)
 負極活物質層は、典型的には、負極活物質と、負極用バインダーとを含む。負極活物質としては、グラファイト(黒鉛)、ハードカーボンなどの炭素材料、スズ化合物とシリコンと炭素の複合体、リチウムなどが挙げられるが、これら中では炭素材料が好ましく、グラファイトがより好ましい。負極活物質として、これらの物質を1種単独で使用してもよいし、2種以上を併用してもよい。
 負極活物質は、特に限定されないが、その平均粒子径が0.5~50μmであることが好ましく、1~30μmであることがより好ましい。
 負極活物質層における負極活物質の含有量は、負極活物質層全量基準で、50~99質量%が好ましく、60~98.5質量%がより好ましい。
 負極用バインダーは、正極用バインダーにおいて例示したバインダーから適宜選択して使用できる。負極用バインダーは、1種単独で使用されてもよいし、2種以上が併用されてもよい。
 負極活物質層におけるバインダーの含有量は、負極活物質層全量基準で、1~50質量%であることが好ましく、1.5~40質量%がさらに好ましい。
 負極活物質層は、導電助剤を含有してもよい。導電助剤の具体例は、正極活物質層の場合と同じものが挙げられる。導電助剤は1種単独で使用してもよいし、2種以上を併用してもよい。
 負極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、負極活物質層全量基準で、0.5~20質量%であることが好ましく、1~15質量%であることがより好ましく、2~10質量%であることがさらに好ましい。
 なお、負極活物質層において、本発明の効果を損なわない範囲内において、負極活物質、導電助剤、及びバインダー以外の他の任意成分を含んでもよいことは、正極活物質層の場合と同じであり、その含有量も同様である。
 負極活物質層の密度は、1.2~1.7mg/cm2であることが好ましく、1.35~1.65mg/cm2であることがより好ましい。負極活物質層の密度を上記範囲内とすることで、電池性能を良好にしやすくなる。また、上記したとおり、負極活物質層の密度は、正極活物質層の密度よりも低いことが好ましい。そのため、負極層には溝を設けなくても電解液の含浸速度が遅くなることを防止できる。
 負極活物質層の厚さは、特に限定されないが、10~200μmが好ましく、20~150μmがより好ましく、40~100μmがさらに好ましい。負極集電体の両面に負極活物質層が設けられる場合には、各面における負極活物質層の厚さである。
 負極層において、絶縁層が設けられる場合、負極層における絶縁層の詳細は、上記のように、正極層における絶縁層にて説明したとおりである。なお、負極層には絶縁層は設けられなくてよいが、その場合、上記のとおり正極層に絶縁層が形成されることが好ましい。負極層に絶縁層が設けられなくても、正極層が有する絶縁層により、負極及び正極間の短絡を防止できる。
 負極層における負極活物質層、及び絶縁層の形成方法の詳細は、正極層における正極活物質層、及び絶縁層と同様であるのでその説明は省略する。
(負極集電体)
 負極集電体を構成する材料としては、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が挙げられる。これらの中では、銅、チタン、ニッケル及びステンレス鋼が好ましく、銅がより好ましい。負極集電体も、正極集電体と同様に一般的には金属箔からなり、その厚さは、特に限定されないが、1~50μmが好ましく、5~20μmがより好ましい。負極集電体の厚さが1~50μmであると、負極集電体のハンドリングが容易になるとともに、エネルギー密度の低下を抑制できる。
(セパレータ)
 本発明の一実施形態に係る非水電解質二次電池は、好ましくは正極及び負極の間に配置されるセパレータをさらに備える。セパレータが設けられることで、正極及び負極の間の短絡がより一層効果的に防止される。また、セパレータは、後述する電解質を保持してもよい。正極又は負極に絶縁層が設けられる場合は、絶縁層はセパレータに接触していてもよいし、接触していなくてもよいが、接触することが好ましい。
 セパレータとしては、多孔性の高分子膜、不織布、ガラスファイバー等が挙げられ、これらの中では多孔性の高分子膜が好ましい。多孔性の高分子膜としては、オレフィン系多孔質フィルムが例示される。セパレータは、非水電解質二次電池駆動時の発熱により加熱されて熱収縮などすることがあるが、そのような熱収縮時でも、上記した絶縁層が設けられることで短絡が抑制しやすくなる。
 また、本発明の一実施形態に係る非水電解質二次電池では、セパレータが省略されてもよい。セパレータが省略されても、負極又は正極の少なくともいずれか一方に設けられた絶縁層により、負極と正極の間の絶縁性が確保されるとよい。
(電解質)
 本発明の一実施形態に係る非水電解質二次電池に用いられる電解質は特に限定されず、リチウムイオン二次電池など非水電解質二次電池にて使用される公知の非水電解質を使用すればよい。電解質としては例えば電解液を使用する。
 電解液としては、有機溶媒と、電解質塩を含む電解液が例示できる。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、メチルアセテート等の極性溶媒、又はこれら溶媒の2種類以上の混合物が挙げられる。
 電解質塩としては、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFCO、LiN(SOCF、LiN(SOCFCF、LiN(COCF及びLiN(COCFCF、リチウムビスオキサレートボラート(LiB(C)等のリチウムを含む塩が挙げられる。また、有機酸リチウム塩-三フッ化ホウ素錯体、LiBH等の錯体水素化物等の錯体が挙げられる。これらの塩又は錯体は、1種単独で使用してもよいが、2種以上の混合物であってもよい。
 また、電解質は、上記電解液に更に高分子化合物を含むゲル状電解質であってもよい。高分子化合物としては、例えば、ポリフッ化ビニリデン等のフッ素系ポリマー、ポリ(メタ)アクリル酸メチル等のポリアクリル系ポリマーが挙げられる。なお、ゲル状電解質は、セパレータとして使用されてもよい。
 非水電解質二次電池は、負極、正極がそれぞれ複数積層された多層構造であることが好ましい。この場合、負極及び正極は、積層方向に沿って交互に設けられればよい。また、セパレータが使用される場合、セパレータは各負極と各正極の間に配置されればよい。
 多層構造とする場合も、各正極が、上記した非水電解質二次電池用正極であればよく、その際、非水電解質二次電池用正極は、正極集電体の両面のいずれにも正極層が設けられるとよく、各正極層に上記で説明した態様の溝を形成するとよい。同様に、負極は、負極集電体の両面のいずれにも負極層が設けられるとよい。
 また、複数の正極の正極集電体の端部(一端部10A、図4~図9参照)は、纏められて正極タブなどに取り付けられ、正極タブなどを介して正極端子に接続されるとよい。同様に、複数の負極の負極集電体の端部も、纏められて負極タブなどに取り付けられ、負極タブなどを介して負極端子に接続される。
 本発明の一実施形態に係る非水電解質二次電池、巻回型及び積層型のいずれでもよいが、積層型であることが好ましい。負極及び正極は、複数設けられる場合、積層型においては積層方向に沿って交互に設けられればよく、巻回型においては巻回方向に沿って交互に設けられるとよい。また、セパレータは各負極と各正極の間に配置されればよい。
 非水電解質二次電池は、通常、ケーシングを備え、上記した正極及び負極をケーシング内に収納とするとよい。ケーシングとしては、特に限定されないが、外装缶などであってもよいし、外装フィルムであってもよい。外装フィルムは、2枚の外装フィルムの間、或いは、1枚の外装フィルムが例えば2つ折りで折り畳まれ、その外装フィルムの間に負極、セパレータ及び正極を配置するとよい。
 本発明の一実施形態に係る非水電解質二次電池は、例えば、正極、セパレータ、及び負極を、圧着処理などで積層して作製した電極構成体を外装体中に収納し、電解液を封入した後、密閉状態となるようにシールして製造することができる。
(変形例)
 以上、正極を例として、本発明の一実施形態に係る非水電解質二次電池用電極について説明した。しかし、本発明の一実施形態に係る非水電解質二次電池用電極を負極として用いてもよい。すなわち、本発明の一実施形態に係る非水電解質二次電池用電極では、正極層ではなく負極層に溝を設けてもよい。
 この場合において、正極層は溝を有しないことが好ましい。すなわち、正極層が正極活物質層単体からなる場合には、正極活物質層に溝が形成されないことが好ましい。また、正極層が正極活物質層及び絶縁層から構成される場合には、これら正極活物質層及び絶縁層のいずれにも溝が形成されないことが好ましい。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
[評価方法]
 実施例、比較例で作製した非水電解質二次電池は以下の方法により評価した。結果を下記表1に示す。
(容量維持率)
 各実施例、比較例で作製した非水電解質二次電池を0℃の恒温槽に2時間静置後、充電レートを0.2C、放電レートを0.2Cとし3.6Vで、充放電サイクルを繰り返した。500サイクル後の放電容量を10サイクル後の放電容量と比較して容量維持率を求めた。
(電解液の含浸時間)
 作製した非水電解質二次電池を、封止直後を基準として、1kHzでの交流抵抗変化が1%/minを切る時間を含浸時間と定義した。なお、交流抵抗の測定には、HIOKI BT3562を用いた。
[実施例1]
(正極活物質層の形成)
 正極活物質であるオリビン型リン酸鉄リチウム(D50=5.5μm)90質量部と、導電助剤としてアセチレンブラック5質量部と、正極用バインダーとしてポリフッ化ビニリデン(クレハ製#7200)5質量部と、溶媒としてNMP(N-メチルピロリドン)とを混合し、固形分45質量%に調整したスラリー(正極活物質層用組成物)を得た。このスラリーを、正極集電体としての厚さ12μmのアルミニウム箔に塗布し、予備乾燥後、120℃で1時間真空乾燥した。その後、30MPaで加圧プレスして、正極集電体の上に片面あたりの厚さ130μmの正極活物質層を形成した。各正極活物質層の密度は、2.0mg/cm2であった。
(絶縁層の形成)
 絶縁性粒子としてアルミナ(D50=0.5μm)95質量部と、絶縁層用バインダーとしてポリフッ化ビニリデン(クレハ製 #7200)5質量部とを均一に混合してスラリーを得た。このスラリーにNMPを、固形分濃度が15質量%となるようにさらに加え、撹拌機で30分間穏やかに撹拌し、絶縁層用の塗布液(絶縁層用組成物)を得た。得られた絶縁層用組成物を、正極集電体の両面に形成された正極活物質層それぞれの上に塗布した。
 その後、塗布された絶縁層組成物に対して、表面に凸部が形成されたロール(押し当てロール)に押し当てて、溝を形成した後、絶縁層組成物を120℃で10分間乾燥して、各正極活物質層の上に溝が形成された絶縁層を形成した。乾燥後の絶縁層の厚みはそれぞれ4μmであった。
 絶縁層形成後に、絶縁層及び正極活物質層が形成された正極集電体を、電極寸法が200×420mm角(正極活物質層が200×400mm角)になるように打ち抜き、図4に示すように溝が配列された正極を作成した。溝は傾斜溝であり、長手方向Lに対する傾斜角度Rが60°であり、その他の溝の詳細は表1に記載のとおりであった。
(負極の形成)
 負極活物質である黒鉛(D50:15μm)98質量部と、負極用バインダーとしてのスチレンブタジエンゴム(SBR)1質量部と、カルボキシメチルセルロースNa(CMC)1質量部と、溶媒としての水とを混合し、固形分50質量%に調整したスラリーを得た。このスラリーを、負極集電体としての厚さ10μmの銅箔に塗布し、100℃で真空乾燥した。その後、2kN/mの線圧で加圧プレスし、更に電極寸法の204×420mm角(うち負極活物質層は204×402mm角)に打ち抜き、負極集電体の両面それぞれに片面あたりの厚さ90μmの負極活物質層を有する負極を作製した。各負極活物質層の密度は、1.4mg/cm2であった。
(電解液の調製)
 エチレンカーボネート(EC):ジメチルカーボネート(DMC)を3:7の体積比で混合した溶媒に、電解質としてLiPFを1モル/リットルとなるように溶解して、非水電解液を調製した。
(非水電解質二次電池の作製)
 上記のように作製した負極11枚、正極10枚、及びセパレータ20枚を、負極と正極の間にセパレータを配置しつつ負極と正極とが交互になるように積層して電極構成体を得た。セパレータとしては、ポリエチレン製多孔質フィルム(融点128℃)を用いた。
 正極集電体の正極活物質層が形成されない一端部、及び負極集電体の負極活物質層が形成されない一端部それぞれに、端子用タブを電気的に接続した。端子用タブが外部に突出するように、アルミラミネートフィルムで電極構成体を挟み、3辺をラミネート加工によって封止した。封止せずに残した一辺から、電解液を注入し、真空封止することによって20Ahの非水電解質二次電池を製造した。
[実施例2、3]
 溝を形成するための押し当てロール表面の凸部の形状を調整して、溝本数を表1に記載されるとおりに変更した以外は、実施例1と同様に実施した。
[実施例4]
 溝が形成される位置を、絶縁層表面から正極活物質層表面に変更した以外は実施例1と同様に実施した。具体的には、正極活物質層用組成物を塗布して乾燥する前に、実施例1と同様の方法により、正極集電体の両面に設けられた各正極活物質層に溝を形成した。
[実施例5~18]
 溝を形成するための押し当てロール表面の形状を調整して、溝の平均幅、溝の平均深さ、溝の平均長さ、溝の形状を表1に示すとおりに変更した以外は、実施例4と同様に実施した。なお、実施例17の溝は、図7に示すように、長手方向Lに平行な平行溝であった。また実施例18の溝は、図5に示すように、長手方向Lに垂直な方向(短手方向S)に平行な垂直溝であった。
[実施例19,20]
 溝を形成するための押し当てロール表面の形状を調整して、溝の平均幅、溝の平均深さ、溝の平均長さ、溝の形状を表1に示すとおりに変更した以外は、実施例1と同様に実施した。なお、実施例20の溝は、図7に示すように、長手方向Lに平行な平行溝であった。
[比較例1]
 正極層に溝を形成しなかった点を除いて実施例1と同様に実施した。
[比較例2]
 溝を形成するための押し当てロール表面の凸部の形状を調整して、溝本数を表1に記載されるとおりに変更した以外は、実施例1と同様に実施した。
Figure JPOXMLDOC01-appb-T000001

※表1において、平均幅は、「A±B」で表すが、「A」がそれぞれ平均値を示す。また、Bは平均値に対して、最も差が大きい部分の溝の幅の平均値に対する差の絶対値を示す。深さ平均も同様である。
※※平均長さとは、正極層の溝が存在する部分における長さAに対する、溝の長さBの割合(%)の平均値である。
 表1に示すように、各実施例では、非水電解質二次電池において正極層に所定本数の溝を形成することで、低温環境下における容量維持率を良好に保ちつつ、電解液の正極への含浸速度を速くすることができた。それに対して、比較例では、電極に溝を形成せず、又は、溝を形成しても溝本数を多くしすぎたことにより、電解液の正極への含浸速度を速くすることができず、また、低温環境下における容量維持率を良好にできなかった。
符号の簡単な説明
 10 非水電解質二次電池用正極
 10A 一端部
 11 正極集電体
 12 正極層
 13 正極活物質層
 13A 正極活物質層の表面
 14 絶縁層
 14A 絶縁層の表面
 15 溝
 A 正極層の溝が存在する部分における長さ
 B 溝の長さ
 D 溝の深さ
 L 長手方向
 S 短手方向
 W 溝の幅

Claims (9)

  1.  集電体と、前記集電体の少なくとも一方の面に設けられる電極層とを備え、前記電極層が、1本以上25本以下の溝を有する、非水電解質二次電池用電極。
  2.  前記電極層が、前記集電体の少なくとも一方の面に、前記集電体側から順に、電極活物質層と、絶縁層とを備え、前記絶縁層の表面に前記溝が形成される請求項1に記載の非水電解質二次電池用電極。
  3.  前記溝の平均深さが、0.5μm以上4μm以下である請求項1又は2に記載の非水電解質二次電池用電極。
  4.  前記溝の平均幅が0.2mm以上6.5mm以下である請求項1~3のいずれか1項に記載の非水電解質二次電池用電極。
  5.  前記溝の平均長さが、前記電極層の溝が存在する部分における長さに対して、20%以上95%以下である請求項1~4のいずれか1項に記載の非水電解質二次電池用電極。
  6.  前記溝は、前記電極層の長手方向に対して平行である平行溝、前記長手方向に対して傾斜する傾斜溝、及び前記長手方向に対して垂直である垂直溝からなる群から選択される少なくとも1種である請求項1~5のいずれか1項に記載の非水電解質二次電池用電極。
  7.  リチウムイオン二次電池用電極である請求項1~6のいずれか1項に記載の非水電解質二次電池用電極。
  8.  請求項1~7のいずれか1項に記載の非水電解質二次電池用電極を備える非水電解質二次電池。
  9.  請求項1~7のいずれか1項に記載の非水電解質二次電池用電極を正極として有し、負極集電体と、前記負極集電体の少なくとも一方の表面に設けられる負極層とを備える負極をさらに有し、前記負極層が溝を有しないか、又は
     請求項1~7のいずれか1項に記載の非水電解質二次電池用電極を負極として有し、正極集電体と、前記正極集電体の少なくとも一方の表面に設けられる正極層とを備える正極をさらに有し、前記正極層が溝を有しない請求項8に記載の非水電解質二次電池。
PCT/JP2020/009942 2019-03-08 2020-03-09 非水電解質二次電池用電極、及び非水電解質二次電池 WO2020184502A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021505057A JPWO2020184502A1 (ja) 2019-03-08 2020-03-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019042932 2019-03-08
JP2019-042932 2019-03-08

Publications (1)

Publication Number Publication Date
WO2020184502A1 true WO2020184502A1 (ja) 2020-09-17

Family

ID=72427565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009942 WO2020184502A1 (ja) 2019-03-08 2020-03-09 非水電解質二次電池用電極、及び非水電解質二次電池

Country Status (2)

Country Link
JP (1) JPWO2020184502A1 (ja)
WO (1) WO2020184502A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497445A (zh) * 2022-02-24 2022-05-13 东莞新能安科技有限公司 极片、电化学装置及用电设备
EP4246706A1 (en) * 2022-03-17 2023-09-20 Ricoh Company, Ltd. Electrode, electrode element, electrochemical element, and power storage device
WO2023185252A1 (zh) * 2022-03-30 2023-10-05 宁德时代新能源科技股份有限公司 极片、电极组件、电池单体、电池及用电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197265A (ja) * 2001-12-27 2003-07-11 Sanyo Electric Co Ltd 非水電解液電池
JP2004207253A (ja) * 1997-04-23 2004-07-22 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2006012788A (ja) * 2004-05-25 2006-01-12 Matsushita Electric Ind Co Ltd リチウムイオン二次電池およびその製造方法
JP2013118097A (ja) * 2011-12-02 2013-06-13 Toyota Industries Corp 二次電池用電極及び二次電池並びに車両
JP2013134977A (ja) * 2011-12-27 2013-07-08 Toyota Industries Corp 電極、二次電池、電極の製造方法及び車両
JP2014139888A (ja) * 2013-01-21 2014-07-31 Panasonic Corp 非水系二次電池極板、それを用いた非水系二次電池、非水系二次電池極板の製造方法、及び移動体
JP2019003725A (ja) * 2017-06-12 2019-01-10 株式会社豊田自動織機 電極の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207253A (ja) * 1997-04-23 2004-07-22 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2003197265A (ja) * 2001-12-27 2003-07-11 Sanyo Electric Co Ltd 非水電解液電池
JP2006012788A (ja) * 2004-05-25 2006-01-12 Matsushita Electric Ind Co Ltd リチウムイオン二次電池およびその製造方法
JP2013118097A (ja) * 2011-12-02 2013-06-13 Toyota Industries Corp 二次電池用電極及び二次電池並びに車両
JP2013134977A (ja) * 2011-12-27 2013-07-08 Toyota Industries Corp 電極、二次電池、電極の製造方法及び車両
JP2014139888A (ja) * 2013-01-21 2014-07-31 Panasonic Corp 非水系二次電池極板、それを用いた非水系二次電池、非水系二次電池極板の製造方法、及び移動体
JP2019003725A (ja) * 2017-06-12 2019-01-10 株式会社豊田自動織機 電極の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497445A (zh) * 2022-02-24 2022-05-13 东莞新能安科技有限公司 极片、电化学装置及用电设备
CN114497445B (zh) * 2022-02-24 2024-03-12 东莞新能安科技有限公司 极片、电化学装置及用电设备
EP4246706A1 (en) * 2022-03-17 2023-09-20 Ricoh Company, Ltd. Electrode, electrode element, electrochemical element, and power storage device
WO2023185252A1 (zh) * 2022-03-30 2023-10-05 宁德时代新能源科技股份有限公司 极片、电极组件、电池单体、电池及用电装置

Also Published As

Publication number Publication date
JPWO2020184502A1 (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
JP5156406B2 (ja) リチウム二次電池用正極及びその製造方法、並びにリチウム二次電池
WO2010131401A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6805374B2 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
WO2018155207A1 (ja) 二次電池およびその製造方法
WO2020184502A1 (ja) 非水電解質二次電池用電極、及び非水電解質二次電池
JP2008097879A (ja) リチウムイオン二次電池
JP6876880B2 (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2020162598A1 (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2018025469A1 (ja) リチウムイオン二次電池及びその製造方法
JP7150448B2 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
JP6849863B2 (ja) リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用正極
KR20210120686A (ko) 음극의 제조방법
JP2008027879A (ja) リチウム二次電池用電極およびリチウム二次電池
WO2020050285A1 (ja) リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用電極
JP2020126733A (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2020140896A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6832474B2 (ja) リチウムイオン二次電池用正極材料、正極活物質層、及びリチウムイオン二次電池
JP7160573B2 (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2020155378A (ja) リチウムイオン二次電池用電解液、及びリチウムイオン二次電池
JP6876879B2 (ja) リチウムイオン二次電池用電極、リチウムイオン二次電池及びリチウムイオン二次電池用電極の製造方法
JP6826240B2 (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2019220356A (ja) リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池用正極材料からなる正極活物質層及びそれを用いたリチウムイオン二次電池
JP6878702B2 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
JP5423113B2 (ja) 電池
JP2021157886A (ja) リチウムイオン二次電池用電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021505057

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20770525

Country of ref document: EP

Kind code of ref document: A1