WO2020057480A1 - 一种以苯并[1,2-b:5,4-b']二苯并呋喃为核心的化合物及其应用 - Google Patents

一种以苯并[1,2-b:5,4-b']二苯并呋喃为核心的化合物及其应用 Download PDF

Info

Publication number
WO2020057480A1
WO2020057480A1 PCT/CN2019/106091 CN2019106091W WO2020057480A1 WO 2020057480 A1 WO2020057480 A1 WO 2020057480A1 CN 2019106091 W CN2019106091 W CN 2019106091W WO 2020057480 A1 WO2020057480 A1 WO 2020057480A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
substituted
unsubstituted
benzo
Prior art date
Application number
PCT/CN2019/106091
Other languages
English (en)
French (fr)
Inventor
李崇
唐丹丹
谢丹丹
张兆超
赵四杰
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2020057480A1 publication Critical patent/WO2020057480A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the invention relates to a compound using benzo [1,2-b: 5,4-b '] dibenzofuran as a core and its application to an organic electroluminescent device, and belongs to the field of semiconductor technology.
  • OLED display technology has been applied in smart phones, tablet computers and other fields, and will further expand to large-scale applications such as televisions.
  • the OLED device's luminous efficiency and service life performance Need to be further improved.
  • Current research on improving the performance of OLED light-emitting devices includes: reducing the driving voltage of the device, improving the light-emitting efficiency of the device, and increasing the service life of the device.
  • OLED photoelectric functional materials In order to continuously improve the performance of OLED devices, it is necessary not only to innovate the structure and manufacturing process of OLED devices, but also to continuously research and innovate OLED photoelectric functional materials to create higher-performance OLED functional materials.
  • OLED optoelectronic functional materials used in OLED devices can be divided into two major categories from the uses, which are charge injection transport materials and light emitting materials. Further, the charge injection transport material can be divided into an electron injection transport material, an electron blocking material, a hole injection transport material, and a hole blocking material, and the light emitting material can also be divided into a host light emitting material and a doped material.
  • organic functional materials are required to have good photoelectric properties.
  • a charge transport material good carrier mobility and high glass transition temperature are required as the main body of the light-emitting layer.
  • the material has good bipolarity, appropriate HOMO / LUMO energy level, etc.
  • the OLED photoelectric functional material film layer constituting the OLED device includes at least two layers of structures, and the industrially applied OLED device structure includes a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, and electron transport Layers, electron injection layers, etc., that is to say, the optoelectronic functional materials used in OLED devices include at least hole injection materials, hole transport materials, light emitting materials, electron transport materials, etc.
  • the material types and matching forms are rich And diversity.
  • the optoelectronic functional materials used have strong selectivity, and the performance of the same materials in devices with different structures may also be completely different.
  • the present invention aims to provide a compound with benzo [1,2-b: 5,4-b '] dibenzofuran as the core and its application.
  • the compound of the present invention uses benzo [1,2-b: 5,4-b '] dibenzofuran as the core, has a higher glass transition temperature and molecular thermal stability, and has appropriate HOMO and LUMO energy levels.
  • High Eg which can be used as a hole-transporting layer / electron-blocking layer material or a light-emitting layer material of an organic electroluminescent device through the optimization of the device structure, thereby effectively improving the photoelectric performance of the OLED device and the lifetime of the OLED device.
  • L represents a single bond, a substituted or unsubstituted C6-30 arylene group, and a substituted or unsubstituted 5 to 30 membered heteroarylene group containing one or more heteroatoms;
  • R represents a structure represented by the general formula (2)
  • R 1, R 2 each independently represent a hydrogen atom, the formula (3) or the general formula (4) shown in the structure; the same or different from R 1 and R 2; R 1 and R 2 are not Also a hydrogen atom;
  • R 3 to R 9 are each independently represented by a hydrogen atom, a C1-20 linear alkyl group, a C3-20 branched alkyl group, a C1-20 linear alkyl substituted silyl group, and a C3-20 branched alkyl group
  • a substituted silyl group a substituted or unsubstituted C6-30 aryl group, and a substituted or unsubstituted 5- to 30-membered heteroaryl group containing one or more heteroatoms
  • R 3 and R 4 , R 5 and R 6 can also be bonded to each other to form a 5- to 30-membered alicyclic, aromatic or heteroaryl ring;
  • the substituent is selected from one or more of a halogen, a cyano group, a C6-30 aryl group, and a 5- to 30-membered heteroaryl group containing one or more heteroatoms; the heteroatom is selected from an oxygen atom, a sulfur atom Or nitrogen atom.
  • the present invention can also be improved as follows.
  • L is represented by the general formula (1), and L is represented by a single bond (L-1),
  • each of Z in L-2 to L-20 is identically or differently represented as CR 10 or N; each occurrence of R 10 is identically or differently represented as hydrogen atom, halogen, cyano, C1-20
  • R 10 is identically or differently represented as hydrogen atom, halogen, cyano, C1-20
  • L represents any one of L-1 to L-20; wherein each of Z in L-2 to L-20 is identically or differently represented as CR 10 Or N; each occurrence of R 10 is the same or differently represented as a hydrogen atom, halogen, cyano, methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, phenyl, tolyl, Xylyl, tricyl, isopropylphenyl, t-butylphenyl, biphenyl, naphthyl, pyridyl, pyridazinyl, pyrazinyl, pyrimidinyl, triazinyl, dibenzofuranyl
  • One of cyanophenyl or carbazolyl; two or more adjacent R 10 may be bonded to each other to form a ring;
  • each of R 3 to R 9 is independently represented by a hydrogen atom, methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, substituted or unsubstituted phenyl, substituted or unsubstituted Naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted pyridyl;
  • the R 10 is represented by a hydrogen atom, a fluorine atom, a cyano group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a substituted or unsubstituted phenyl group, or a substituted or unsubstituted naphthyl group. , Substituted or unsubstituted biphenyl, substituted or unsubstituted pyridyl;
  • the substituent is selected from the group consisting of fluorine atom, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, phenyl, naphthyl, biphenyl, pyridyl, furyl, carbazole Or thienyl.
  • the present invention also provides a method for preparing the above-mentioned organic compound using benzo [1,2-b: 5,4-b '] dibenzofuran as a core.
  • the preparation method of the compound of the invention is simple, and the market prospect is broad, which is suitable for large-scale popularization and application.
  • reaction equation for preparing the organic compound is:
  • the specific preparation method is:
  • the molar ratio of the Pd2 (dba) 3 to the intermediate D is 0.006 to 0.02: 1, and the molar ratio of the tri-tert-butylphosphine to the intermediate D is 0.006 to 0.02: 1.
  • the molar ratio of the sodium tert-butoxide to the intermediate D is 2.0 to 3.0: 1; the amount of toluene is 0.01 mol, and 150 ml of toluene is added.
  • the present invention also provides an organic electroluminescent device.
  • the compound of the present invention is applied to an OLED device, the device structure can be optimized to maintain high film stability, which can effectively improve the photoelectric performance of the OLED device and the life of the OLED device. Application effect and industrialization prospect.
  • An organic electroluminescent device at least one functional layer containing the above-mentioned benzo [1,2-b: 5,4-b '] dibenzofuran as the core Compound.
  • the present invention can also be improved as follows.
  • the functional layer is an electron blocking layer and / or a hole transporting layer.
  • the functional layer is a light-emitting layer material.
  • a lighting or display element comprising an organic electroluminescent device as described above.
  • the compound of the present invention is a compound in which a benzo [1,2-b: 5,4-b '] dibenzofuran core is connected to a rigid ⁇ -conjugated cyclic ring branch, and the compound of the present invention contains benzo [1,2-b: 5,4-b '] Dibenzofuran structure, has strong rigidity, it is difficult to be intermolecular after connecting a five-membered ring or a six-membered ring or a seven-membered ring and a ring. It is crystalline, not easy to aggregate, and has good film-forming properties; the mother core of the compound of the invention has bipolarity, and the branched chain is an electron-donating group.
  • the HOMO energy level of the material is somewhat different. Different, they can be used as materials for different functional layers.
  • the compound of the present invention has a high triplet energy level, which can effectively block energy loss and facilitate energy transfer. Therefore, after the compound of the present invention is used as an organic electroluminescent functional layer material in an OLED device, the current efficiency, power efficiency, and external quantum efficiency of the device are greatly improved; meanwhile, the device lifetime is significantly improved.
  • the compound of the present invention is applied to an OLED device, through optimization of the device structure, high film layer stability can be maintained, and the photoelectric performance of the OLED device and the life of the OLED device can be effectively improved.
  • the compound of the present invention is used in an OLED light-emitting device. Has a good application effect and industrial prospects.
  • the organic electroluminescence device of the present invention can be applied to lighting or display elements, which greatly improves the current efficiency, power efficiency, and external quantum efficiency of the device; at the same time, the device lifetime is significantly improved.
  • OLED light-emitting devices It has good application effect and good industrialization prospect.
  • FIG. 1 is a schematic structural diagram of a device to which the compound of the present invention is applied, wherein the components represented by each reference number are as follows:
  • Transparent substrate layer 2. ITO anode layer, 3. Hole injection layer, 4. Hole transport layer, 5. Electron blocking layer, 6. Light emitting layer, 7. Hole blocking / electron transport layer, 8. Electron. Injection layer, 9, cathode layer, 10, CPL layer.
  • FIG. 2 is a curve of the current efficiency of an OLED device according to the present invention as a function of temperature.
  • FIG. 3 is a graph of a leakage current test curve of a device manufactured in Example 1 and Comparative Example 3 of the device under reverse voltage.
  • the triplet energy level T1 is tested by Hitachi's F4600 fluorescence spectrometer.
  • the test conditions of the material are 2 * 10 -5 mol / L toluene solution;
  • Glass transition temperature Tg measured by differential scanning calorimetry (DSC, DSC204F1 Differential Scanning Calorimeter, Germany), and the heating rate was 10 ° C / min.
  • Thermal weight loss temperature Td This is a temperature of 0.5% of weight loss in a nitrogen atmosphere, and was measured on a TGA-50H thermogravimetric analyzer by Shimadzu Corporation, and the nitrogen flow rate was 20 mL / min.
  • the highest occupied molecular orbital HOMO energy level It is tested by the ionization energy test system (IPS3), and the test is the atmospheric environment.
  • IPS3 ionization energy test system
  • Cyclic voltammetry stability identified by cyclic voltammetry to observe the redox characteristics of the material.
  • Test conditions dissolve the test sample in a mixed solvent of dichloromethane and acetonitrile with a volume ratio of 2: 1 at a concentration of 1 mg / mL
  • the electrolyte is an organic solution of 0.1M tetrabutylammonium tetrafluoroborate
  • the reference electrode is an Ag / Ag + electrode
  • the counter electrode is a titanium plate
  • the working electrode is an ITO electrode. The number of cycles is 20 times.
  • Hole mobility The material was made into a single charge device and measured by the SCLC method.
  • the molar ratio of the raw material E to the raw material G was 1: 1.5 to 3.0; the molar ratio of the Pd (PPh 3 ) 4 to the raw material E is 0.006 to 0.02: 1; the molar ratio of the Na 2 CO 3 to the raw material E is 2.0 to 3.0: 1; the toluene-ethanol mixed solvent
  • the dosage is 0.01mol of raw material E. 30-40ml toluene and 15-20ml ethanol are added;
  • intermediate D the molar ratio of intermediate H to p-toluenesulfonic acid is 1: 1 to 1.5; the amount of toluene is 0.01 mol; intermediate H is added with 30-40 ml toluene; the saturated sodium carbonate solution 5-15 ml of saturated sodium carbonate solution was added to 0.01 mol of intermediate H; 30-45 ml of ethyl acetate was added to 0.01 mol of intermediate H;
  • Elemental analysis structure (molecular formula C 18 H 11 BrO 3 ): theoretical value C, 60.87; H, 3.12; Br, 22.50; O, 13.51; test value: C, 60.85; H, 3.14; Br, 22.51; O, 13.50.
  • Elemental analysis structure (Molecular formula C 18 H 9 BrO 2 ): Theoretical value C, 64.12; H, 2.69; Br, 23.70; O, 9.49; Test value: C, 64.10; H, 2.67; Br, 23.73; O, 9.50.
  • the intermediate D is synthesized according to the preparation method of the intermediate D-1.
  • the synthesis of the intermediate D is divided into two steps: the raw material E and the raw material G are formed by the Suzuki reaction to form the intermediate H; the intermediate H is reduced to form a ring reaction to form the intermediate D, specifically
  • the structure is shown in Table 1.
  • the obtained substance was purified through a silica gel column (petroleum ether as eluent) to obtain the target product, with a purity of 99.6% and a yield of 76.5%.
  • Elemental analysis structure (molecular formula C 36 H 19 NO 3 ): theoretical value: C, 84.20; H, 3.73; N, 2.73; O, 9.35; test value: C, 84.22; H, 3.71; N, 2.72; O, 9.35 .
  • Elemental analysis structure (Molecular formula C 41 H 22 N 2 O 3 ): Theoretical value: C, 83.38; H, 3.75; N, 4.74; O, 8.13; Test value: C, 83.37; H, 3.74; N, 4.73; O , 8.16.
  • Elemental analysis structure (Molecular formula C 42 H 23 NO 3 ): Theoretical value: C, 85.55; H, 3.93; N, 2.38; O, 8.14; Test value: C, 85.54; H, 3.94; N, 2.37; O, 8.15 .
  • Elemental analysis structure (Molecular formula C 42 H 23 NO 3 ): Theoretical value: C, 85.55; H, 3.93; N, 2.38; O, 8.14; Test value: C, 85.56; H, 3.92; N, 2.36; O, 8.16 .
  • Elemental analysis structure (Molecular formula C 39 H 25 NO 2 ): Theoretical value: C, 86.80; H, 4.67; N, 2.60; O, 5.93; Test value: C, 86.81; H, 4.65; N, 2.61; O, 5.93 .
  • Elemental analysis structure (molecular formula C 45 H 29 NO 2 ): Theoretical value: C, 87.78; H, 4.75; N, 2.27; O, 5.20; Test value: C, 87.76; H, 4.77; N, 2.25; O, 5.22 .
  • Elemental analysis structure (Molecular formula C 42 H 24 N 2 O 2 ): Theoretical value: C, 85.70; H, 4.11; N, 4.76; O, 5.44; Test value: C, 85.71; H, 4.12; N, 4.75; O , 5.42.
  • Elemental analysis structure (Molecular formula C 48 H 28 N 2 O 2 ): Theoretical value: C, 86.73; H, 4.25; N, 4.21; O, 4.81; Test value: C, 86.71; H, 4.24; N, 4.23; O , 4.82.
  • Elemental analysis structure (molecular formula C 48 H 28 N 2 O 2 ): Theoretical value: C, 86.73; H, 4.25; N, 4.21; O, 4.81; Test value: C, 86.72; H, 4.24; N, 4.22; O , 4.82.
  • Elemental analysis structure (molecular formula C 46 H 25 NO 3 ): Theoretical value: C, 86.37; H, 3.94; N, 2.19; O, 7.50; Test value: C, 86.35; H, 3.92; N, 2.20; O, 7.53 .
  • Elemental analysis structure (Molecular formula C 42 H 21 NO 4 ): Theoretical value: C, 83.57; H, 3.51; N, 2.32; O, 10.60; Test value: C, 83.54; H, 3.53; N, 2.31; O, 10.62 .
  • Elemental analysis structure (Molecular formula C 36 H 19 NO 4 ): Theoretical value: C, 81.65; H, 3.62; N, 2.65; O, 12.08; Test value: C, 81.64; H, 3.63; N, 2.66; O, 12.07 .
  • Elemental analysis structure (Molecular formula C 49 H 37 NO 3 ): Theoretical value: C, 85.56; H, 5.42; N, 2.04; O, 6.98; Test value: C, 85.55; H, 5.43; N, 2.05; O, 6.97 .
  • Elemental analysis structure (molecular formula C 40 H 27 NO 2 ): Theoretical value: C, 86.78; H, 4.92; N, 2.53; O, 5.78; Test value: C, 86.76; H, 4.94; N, 2.51; O, 5.79 .
  • Elemental analysis structure (Molecular formula C 39 H 25 NO 3 ): Theoretical value: C, 84.31; H, 4.54; N, 2.52; O, 8.64; Test value: C, 84.33; H, 4.51; N, 2.53; O, 8.63 .
  • Elemental analysis structure (molecular formula C 45 H 29 NO 3 ): Theoretical value: C, 85.56; H, 4.63; N, 2.22; O, 7.60; Test value C, 85.54; H, 4.64; N, 2.21; O, 7.61.
  • Elemental analysis structure (molecular formula C 45 H 29 NO 3 ): Theoretical value: C, 85.56; H, 4.63; N, 2.22; O, 7.60; Test value: C, 85.55; H, 4.62; N, 2.21; O, 7.62 .
  • Elemental analysis structure (Molecular formula C 48 H 35 NO 2 ): Theoretical value: C, 87.64; H, 5.36; N, 2.13; O, 4.86; Test value: C, 87.63; H, 5.35; N, 2.14; O, 4.88 .
  • Elemental analysis structure (molecular formula C 45 H 30 N 2 O 2 ): Theoretical value: C, 85.69; H, 4.79; N, 4.44; O, 5.07; Test value: C, 85.67; H, 4.78; N, 4.46; O 5.09. ESI-MS (m / z) (M +): The theoretical value is 630.23, and the measured value is 630.52.
  • Elemental analysis structure (molecular formula C 43 H 27 NO 3 ): Theoretical value: C, 85.27; H, 4.49; N, 2.31; O, 7.92; Test value: C, 85.26; H, 4.48; N, 2.33; O, 7.93 .
  • Elemental analysis structure (Molecular formula C 49 H 29 NO 3 ): Theoretical value: C, 86.58; H, 4.30; N, 2.06; O, 7.06; Test value: C, 86.56; H, 4.32; N, 2.07; O, 7.05 .
  • Elemental analysis structure (Molecular formula C 52 H 35 NO 2 ): Theoretical value: C, 88.48; H, 5.00; N, 1.98; O, 4.53; Test value: C, 88.45; H, 5.02; N, 1.99; O, 4.54 .
  • Elemental analysis structure (Molecular formula C 49 H 27 NO 3 ): Theoretical value: C, 86.84; H, 4.02; N, 2.07; O, 7.08; Test value: C, 86.83; H, 4.02; N, 2.09; O, 7.06 .
  • Elemental analysis structure (molecular formula C 52 H 33 NO 3 ): Theoretical value: C, 86.77; H, 4.62; N, 1.95; O, 6.67; Test value: C, 86.75; H, 4.64; N, 1.96; O, 6.65 .
  • Elemental analysis structure (Molecular formula C 44 H 25 N 3 O 2 ): Theoretical value: C, 84.19; H, 4.01; N, 6.69; O, 5.105; Test value: C, 84.17; H, 4.02; N, 6.70; O , 5.11.
  • Elemental analysis structure (Molecular formula C 36 H 19 NO 3 S): Theoretical value: C, 79.25; H, 3.51; N, 2.57; O, 8.80; S, 5.88; Test value: C, 79.26; H, 3.52; N, 2.56; O, 8.81; S, 5.85.
  • the organic compound is used in a light emitting device, and has a high glass transition temperature (Tg) and a triplet energy level (T1), suitable HOMO and LUMO energy levels, and can be used as a hole transport / electron blocking material, and can also be used as light emitting Layer material used.
  • Tg glass transition temperature
  • T1 triplet energy level
  • suitable HOMO and LUMO energy levels can be used as a hole transport / electron blocking material, and can also be used as light emitting Layer material used.
  • the compounds prepared in the examples of the present invention and the existing materials were tested for thermal properties, T1 level and HOMO level, respectively. The results are shown in Table 2.
  • the organic compound prepared by the present invention has a high glass transition temperature, which can improve the phase stability of the material film and further improve the service life of the device; while the material of the present invention is suitable for the HOMO energy level, it also has a high triplet state
  • the energy level (T1) can block the energy loss of the light emitting layer, thereby improving the light emitting efficiency of the device. Therefore, the organic material containing benzo [1,2-b: 5,4-b '] dibenzofuran of the present invention can effectively improve the luminous efficiency and service life of the device after being applied to different functional layers of the OLED device.
  • device examples 1-30 and device comparative example 1 are used to describe in detail the application effects of the compound synthesized by the present invention as a hole transport layer material or an electron blocking layer material in a device.
  • Device Examples 2-30 and Device Comparative Example 1 Compared with Device Example 1, the manufacturing process of the device is exactly the same, and the same substrate material and electrode material are used, and the film thickness of the electrode material remains the same. The difference is that the hole transport layer material or the electron blocking layer material and the light emitting layer doping material are changed.
  • the structural composition of the devices obtained in the examples is shown in Table 3.
  • the test results of the obtained devices are shown in Table 4.
  • the transparent substrate layer 1 is a transparent substrate, such as a transparent PI film, glass, or the like.
  • the ITO anode layer 2 (with a film thickness of 150 nm) is washed, that is, alkali washing, pure water washing, drying are performed in that order, and then UV-ozone washing is performed to remove organic residues on the surface of the transparent ITO.
  • a HAT-CN having a film thickness of 10 nm was used as the hole injection layer 3 using a vacuum evaporation device.
  • HTR was then evaporated to a thickness of 60 nm as a hole transport layer.
  • EBR was subsequently evaporated to a thickness of 20 nm as an electron blocking layer.
  • a light-emitting layer 6 of the OLED light-emitting device is manufactured.
  • the structure includes the compound 1 and the compound GHA prepared as the host material, GDA as the doping material, and compound 1, GHA, and GDA.
  • the mass ratio is 45:45:10 and the thickness is 40nm.
  • the materials ETR and Liq of the electron transport layer were vacuum-evaporated, and the ETR and Liq were mixed in a weight ratio of 50:50:10 with a film thickness of 35 nm. This layer was a hole blocking / electron transport layer 7.
  • a lithium fluoride (LiF) layer having a thickness of 1 nm is vapor-deposited, and this layer is an electron injection layer 8.
  • a Mg: Ag electrode layer having a film thickness of 15 nm is evaporated, and this layer is used as the cathode layer 9.
  • a CPR of 70 nm was vacuum-deposited as a CPL layer 10.
  • LT95 refers to the time it takes for the device brightness to decay to 95% at a current density of 20mA / cm 2 ;
  • Life test system is Korea Pulse Science M6000 OLED device life tester.
  • device embodiments 3, 12, 21 are device structures with materials of the present invention and known materials. Compared with device comparative example 1, not only the high-temperature efficiency is high, but also during the temperature rise process The efficiency has increased steadily.
  • a reverse voltage leakage current test was performed on the devices manufactured in Device Example 3 and Device Comparative Example 1 of the present invention.
  • the test data are shown in FIG. 3. It can be seen from FIG. 3 that compared with the device manufactured by the device example 3 using the compound of the present invention, the device has a small leakage current and a stable current curve. Therefore, the material of the present invention has Long life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种以苯并[1,2-b:5,4-b']二苯并呋喃为核心的化合物及其在有机电致发光器件上的应用。化合物含有苯并[1,2-b:5,4-b']二苯并呋喃结构,具有很强的刚性,连接五元环并环或六元环并环或七元环并环后,具有分子间不易结晶、不易聚集、具有良好成膜性的特点;由于支链结构给电子能力强弱不同,因此,材料的HOMO能级有所不同,可作为不同功能层材料使用;另外,化合物具有较高的三线态能级,可有效阻挡能量损失、并利于能量传递。因此,化合物作为有机电致发光功能层材料应用于OLED器件后,器件效率和寿命均得到很大改善。

Description

一种以苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物及其应用 技术领域
本发明涉及一种以苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物及其在有机电致发光器件上的应用,属于半导体技术领域。
背景技术
当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,OLED器件的发光效率和使用寿命等性能还需要进一步提升。目前对OLED发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能的OLED功能材料。
应用于OLED器件的OLED光电功能材料从用途上可划分为两大类,分别为电荷注入传输材料和发光材料。进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。
为了制作高性能的OLED发光器件,要求各种有机功能材料具备良好的光电性能,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻璃化转化温度等,作为发光层的主体材料具有良好双极性,适当的HOMO/LUMO能阶等。
构成OLED器件的OLED光电功能材料膜层至少包括两层以上结构,产业上应用的OLED器件结构则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于OLED器件的光电功能材料至少包括空穴注入材料、空穴传输材料、发光材料、电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的OLED器件搭配而言,所使用的光电功能材料具有较强的选择性,相同的材料在不同结构器件中的性能表现也可能完全迥异。
因此,针对当前OLED器件的产业应用要求以及OLED器件的不同功能膜层,器件的光电特性需求,必须选择更适合、性能更高的OLED功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前的OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。
发明内容
鉴于上述,本发明旨在提供一种以苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物及其应用。本发明的化合物以苯并[1,2-b:5,4-b’]二苯并呋喃为核心,具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,较高Eg,通过器件结构优化,可用作有机电致发光器件的空穴传输层/电子阻挡层材料或发光层材料,从而有效提升OLED器件的光电性能以及OLED器件的寿命。
本发明解决上述技术问题的技术方案如下:一种以苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物,所述化合物的结构如通式(1)所示:
Figure PCTCN2019106091-appb-000001
通式(1)中,L表示为单键、取代或未取代的C6-30亚芳基、含有一个或多个杂原子取代或未取代的5至30元亚杂芳基;
通式(1)中,R表示为通式(2)所示结构;
Figure PCTCN2019106091-appb-000002
通式(2)中,R 1、R 2各自独立的表示为氢原子、通式(3)或通式(4)所示结构;R 1与R 2相同或不同;R 1与R 2不同时为氢原子;
Figure PCTCN2019106091-appb-000003
通式(2)和通式(4)中,X 1、X 2、X 3各自独立的表示为单键、氧原子、硫原子、-CR 3=CR 4-、
Figure PCTCN2019106091-appb-000004
-C(R 5)(R 6)-、-Si(R 7)(R 8)-或-N(R 9)-中的一种;
R 3至R 9各自独立的表示为氢原子、C1-20直链烷基、C3-20支链烷基、C1-20的直链烷基取代的硅烷基、C3-20的支链烷基取代的硅烷基、取代或未取代的C6-30芳基、含有一个或多个杂原子取代或未取代的5至30元杂芳基中的一种;R 3与R 4、R 5与R 6还可以相互键结形成5元至30元脂环、芳环或杂芳环;
所述取代基选自卤素、氰基、C6-30芳基、含有一个或多个杂原子5至30元杂芳基中的一种或多种;所述杂原子选自氧原子、硫原子或氮原子。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述通式(1)中,L表示为所述通式(1)中,L表示为单键(L-1)、
Figure PCTCN2019106091-appb-000005
Figure PCTCN2019106091-appb-000006
Figure PCTCN2019106091-appb-000007
其中L-2至L-20中的Z每次出现时相同或不同地表示为C-R 10或N;所述R 10每次出现相同或者不同地表示为氢原子、卤素、氰基、C1-20的烷基、取代或未取代的C6-30芳基、含有一个或多个杂原子取代或未取代的5~30元杂芳基中的一种;相邻两个或多个R 10还可相互键结成环;与
Figure PCTCN2019106091-appb-000008
及R键合的Z为C。
更进一步,所述通式(1)中,L表示L-1至L-20中的任意一种;其中L-2至L-20中的Z每次出现时相同或不同地表示为C-R 10或N;所述R 10每次出现相同或者不同地表示为氢原子、卤素、氰基、甲基、乙基、丙基、异丙基、丁基、叔丁基、苯基、甲苯基、二甲苯基、三甲苯基、异丙基苯基、叔丁基苯基、联苯基、萘基、吡啶基、哒嗪基、吡嗪基、嘧啶基、三嗪基、二苯并呋喃基、氰基苯基或咔唑基中的一种;相邻两个或多个R 10还可相互键结成环;
Figure PCTCN2019106091-appb-000009
及R键合的Z为C;
进一步,所述通式(2)表示为
Figure PCTCN2019106091-appb-000010
Figure PCTCN2019106091-appb-000011
Figure PCTCN2019106091-appb-000012
中的任意一种;
进一步,所述R 3~R 9各自独立的表示为氢原子、甲基、乙基、丙基、异丙基、叔丁基、戊基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的吡啶基;
所述R 10表示为氢原子、氟原子、氰基、甲基、乙基、丙基、异丙基、叔丁基、戊基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的吡啶基;
所述取代基选自氟原子、氰基、甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、萘基、联苯基、吡啶基、呋喃基、咔唑基或噻吩基中的一种或多种。
更进一步,所述通式(1)的具体化合物为:
Figure PCTCN2019106091-appb-000013
Figure PCTCN2019106091-appb-000014
Figure PCTCN2019106091-appb-000015
Figure PCTCN2019106091-appb-000016
Figure PCTCN2019106091-appb-000017
Figure PCTCN2019106091-appb-000018
中的任意一种。
需要说明的是,以上所列的具体化合物只是用于说明本发明,但不意欲限制本发明。
进一步,本发明还提供上述以苯并[1,2-b:5,4-b’]二苯并呋喃为核心的有机化合物的制备方法。本发明的化合物的制备方法简单,市场前景广阔,适合规模化推广应用。
制备所述有机化合物的反应方程式为:
Figure PCTCN2019106091-appb-000019
具体制备方法为:
在氮气保护下,依次称取中间体D、原料F、叔丁醇钠、Pd2(dba)3、三叔丁基膦,加入甲苯搅拌混合,加热至100~120℃,回流反应12~24小时,取样点板,显示无中间体D剩余,反应完全;自然冷却至室温,过滤,滤液减压旋蒸至无馏分,过中性硅胶柱,得到目标产物;所述中间体D与原料F的摩尔比为1:1~2;所述Pd2(dba)3与中间体D的摩尔比为0.006~0.02:1,所述三叔丁基膦与中间体D的摩尔比为0.006~0.02:1;所述叔丁醇钠与中间体D的摩尔比为2.0~3.0:1;所述甲苯用量为0.01mol中间体加入150ml甲苯。
进一步,本发明还提供一种有机电致发光器件。本发明的化合物在OLED器件应用时,通过器件结构优化,可保持高的膜层稳定性,可有效提升OLED器件的光电性能以及OLED器件的寿命,本发明所述化合物在OLED发光器件中具有良好的应用效果和产业化前景。
本发明解决上述技术问题的技术方案如下:一种有机电致发光器件,至少一层功能层含有上述以苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述功能层为电子阻挡层和/或空穴传输层。
进一步,所述功能层为发光层材料。
一种照明或显示元件,包括如上所述的有机电致发光器件。
本发明的有益效果是:
1.本发明的化合物为苯并[1,2-b:5,4-b’]二苯并呋喃类母核与刚性大π共轭并环支链连接的化合物,本发明化合物含有苯并[1,2-b:5,4-b’]二苯并呋喃结构,具有很强的刚性,连接五元环并环或六元环并环或七元环并环后,具有分子间不易结晶、不易聚集、具有良好成膜性的特点;本发明化合物母核具有双极性,支链为给电子基团,由于基团给电子能力强弱不同,因此,材料的HOMO能级有所不同,可作为不同功能层材料使用;另外,本发明化合物具有高的三线态能级,可有效阻挡能量损失、并利于能量传递。因此,本发明化合物作为有机电致发光功能层材料应用于OLED器件后,器件的电流效率,功率效率和外量子效率均得到很大改善;同时,对于器件寿命提升非常明显。
2.本发明的化合物在OLED器件应用时,通过器件结构优化,可保持高的膜层稳定性,可有效提升OLED器件的光电性能以及OLED器件的寿命,本发明所述化合物在OLED发光器件中具有良好的应用效果和产业化前景。
3.本发明的有机电致发光器件可以应用在照明或显示原件,使器件的电流效率,功率效率和外量子效率均得到很大改善;同时,对于器件寿命提升非常明显,在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。
附图说明
图1为本发明化合物应用的器件结构示意图,其中,各标号所代表的部件如下:
1、透明基板层,2、ITO阳极层,3、空穴注入层,4、空穴传输层,5、电子阻挡层,6、发光层,7、空穴阻挡/电子传输层,8、电子注入层,9、阴极层,10、CPL层。
图2为本发明OLED器件的电流效率随温度的变化曲线。
图3为本发明器件实施例1与器件对比例3所制作的器件进行反向电压的漏电流测试曲线图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。本文中所涉及的现有材料的结构式如下:
Figure PCTCN2019106091-appb-000020
Figure PCTCN2019106091-appb-000021
本文中所使用的检测方法如下
三线态能级T1是由日立的F4600荧光光谱仪测试,材料的测试条件为2*10 -5mol/L的甲苯溶液;
玻璃化转变温度Tg:通过示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min。
热失重温度Td:其为在氮气气氛中失重0.5%的温度,在日本岛津公司的TGA-50H热重分析仪上进行测定,氮气流量为20mL/min。
最高占据分子轨道HOMO能级:是由电离能量测试系统(IPS3)测试,测试为大气环境。
循环伏安稳定性:通过循环伏安法观测材料的氧化还原特性来鉴定,测试条件:将测试样品溶于体积比为2:1的二氯甲烷和乙腈混合溶剂中,浓度为1mg/mL,电解液是0.1M的四氟硼酸四丁基铵的有机溶液,参比电极是Ag/Ag +电极,对电极为钛板,工作电极为ITO电极,循环次数为20次。
空穴迁移率:将材料制作成单电荷器件,用SCLC方法测定。
中间体D的合成
Figure PCTCN2019106091-appb-000022
(1)称取原料E和原料G,用体积比为1.5~3.0:1的甲苯乙醇混合溶剂溶解;再加入Na 2CO 3水溶液、Pd(PPh 3) 4;在惰性气氛下,将上述混合溶液于90~110℃下,搅拌反应10~24小时,然后冷却至室温、过滤反应溶液,滤液旋蒸,过硅胶柱,得到中间体H;所述原料E与原料G的摩尔比为1:1.5~3.0;所述Pd(PPh 3) 4与原料E的摩尔比为0.006~0.02:1;所述Na 2CO 3与原料E的摩尔比为2.0~3.0:1;所述甲苯乙醇混合溶剂的用量为0.01mol原料E中加入30-40ml甲苯和15-20ml乙醇;
(2)在氮气保护下,称取中间体H和对甲苯磺酸,用甲苯溶解,加热至90~110℃,反应10~24小时;取样点板,显示无中间体H剩余,反应完全;反应结束后,向反应体系中加入饱和碳酸钠溶液淬灭,用乙酸乙酯萃取,分液,有机相用无水硫酸钠干燥后减压旋蒸至无馏分,所得粗产物过中性硅胶柱,得到中间体D;所述中间体H与对甲苯磺酸的摩尔比为1:1~1.5;所述甲苯的用量为0.01mol中间体H中加入30-40ml甲苯;所述饱和碳酸钠溶液的用量为0.01mol中间体H中加入5-15ml饱和碳酸钠溶液;所述乙酸乙酯的用量为0.01mol中间体H中加入30-45ml乙酸乙酯,分三次加入;
此类以中间体D1的合成为例:
Figure PCTCN2019106091-appb-000023
(1)500mL的三口瓶,在氮气保护下,加入0.05mol原料E,0.1mol原料G-1,用混合溶剂溶解(180ml甲苯,90ml乙醇),然后加入0.15mol Na 2CO 3水溶液(2M),通氮气搅拌1小时,然后加入0.0005mol Pd(PPh 3) 4,加热至105℃,反应15小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到中间体H-1,HPLC纯度99.3%,收率61.5%。
元素分析结构(分子式C 18H 11BrO 3):理论值C,60.87;H,3.12;Br,22.50;O,13.51;测试值:C,60.85;H,3.14;Br,22.51;O,13.50。ESI-MS(m/z)(M+):理论值为353.99,实测值为354.21。
(3)250mL的三口瓶,在氮气保护下,加入0.03mol中间体H-1和0.036mol对甲苯磺酸,用100ml甲苯溶解,加热至100℃,反应15小时;取样点板,显示无中间体H-1剩余,反应完全;反应结束后,向反应体系中加入30ml的饱和碳酸钠溶液淬灭,用(30ml*3)乙酸乙酯萃取,分液,有机相用无水硫酸钠干燥后减压旋蒸至无馏分,所得粗产物过中性硅胶柱,得到中间体D-1,HPLC纯度99.2%,收率55.4%。
元素分析结构(分子式C 18H 9BrO 2):理论值C,64.12;H,2.69;Br,23.70;O,9.49;测试值:C,64.10;H,2.67;Br,23.73;O,9.50。ESI-MS(m/z)(M+):理论值为335.98,实测值为336.26。
按中间体D-1的制备方法合成中间体D,中间体D的合成分为两步:原料E和原料G通过铃木反应生成中间体H;中间体H缩水成环反应生成中间体D,具体结构如表1所示。
表1
Figure PCTCN2019106091-appb-000024
Figure PCTCN2019106091-appb-000025
实施例1:制备化合物1
Figure PCTCN2019106091-appb-000026
在氮气气氛下,向500ml三口烧瓶中加入0.01mol中间体D-1、0.015mol原料F-1、0.03mol叔丁醇钠、5×10 -5mol Pd 2(dba) 3和5×10 -5mol三叔丁基磷,然后加入150ml甲苯将其溶解,加热至100℃,回流24小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.6%,收率76.5%。元素分析结构(分子式C 36H 19NO 3):理论值:C,84.20;H,3.73;N,2.73;O,9.35;测试值:C,84.22;H,3.71;N,2.72;O,9.35。ESI-MS(m/z)(M +):理论值为513.14,实测值为513.46。
实施例2:制备化合物17
Figure PCTCN2019106091-appb-000027
按化合物1的合成方法制备,不同在于用中间体D-2代替中间体D-1,用原料F-2代替原料F-1,所得目标产物的纯度为99.7%,收率为72.6%。
元素分析结构(分子式C 41H 22N 2O 3):理论值:C,83.38;H,3.75;N,4.74;O,8.13;测试值:C,83.37;H,3.74;N,4.73;O,8.16。ESI-MS(m/z)(M+):理论值为590.16,实测值为590.44。
实施例3:制备化合物28
Figure PCTCN2019106091-appb-000028
按化合物1的合成方法制备,不同在于用中间体D-3代替中间体D-1,用原料F-3代替原料F-1,所得目标产物的纯度为99.5%,收率为75.9%。
元素分析结构(分子式C 42H 23NO 3):理论值:C,85.55;H,3.93;N,2.38;O,8.14;测试值:C,85.54;H,3.94;N,2.37;O,8.15。ESI-MS(m/z)(M+):理论值为589.17,实测值为589.50。
实施例4:制备化合物35
Figure PCTCN2019106091-appb-000029
按化合物1的合成方法制备,不同在于用用中间体D-4代替中间体D-1,用原料F-4代替原料 F-1,所得目标产物的纯度为99.6%,收率为78.2%。
元素分析结构(分子式C 42H 23NO 3):理论值:C,85.55;H,3.93;N,2.38;O,8.14;测试值:C,85.56;H,3.92;N,2.36;O,8.16。ESI-MS(m/z)(M+):理论值为589.17,实测值为589.53。
实施例5:制备化合物45
Figure PCTCN2019106091-appb-000030
按化合物1的合成方法制备,不同在于用中间体D-5代替中间体D-1,用原料F-5代替原料F-1,所得目标产物的纯度为99.9%,收率为74.4%。
元素分析结构(分子式C 39H 25NO 2):理论值:C,86.80;H,4.67;N,2.60;O,5.93;测试值:C,86.81;H,4.65;N,2.61;O,5.93。ESI-MS(m/z)(M+):理论值为539.19,实测值为539.57。
实施例6:制备化合物56
Figure PCTCN2019106091-appb-000031
按化合物1的合成方法制备,不同在于用中间体D-3代替中间体D-1,用原料F-6代替原料F-1,所得目标产物的纯度为99.7%,收率为76.1%。
元素分析结构(分子式C 45H 29NO 2):理论值:C,87.78;H,4.75;N,2.27;O,5.20;测试值:C,87.76;H,4.77;N,2.25;O,5.22。ESI-MS(m/z)(M+):理论值为615.22,实测值为615.44。
实施例7:制备化合物72
Figure PCTCN2019106091-appb-000032
按化合物1的合成方法制备,不同在于用中间体D-5代替中间体D-1,用原料F-7代替原料F-1,所得目标产物的纯度为99.8%,收率为74.2%。
元素分析结构(分子式C 42H 24N 2O 2):理论值:C,85.70;H,4.11;N,4.76;O,5.44;测试值:C,85.71;H,4.12;N,4.75;O,5.42。ESI-MS(m/z)(M+):理论值为588.18,实测值为588.56。
实施例8:制备化合物84
Figure PCTCN2019106091-appb-000033
按化合物1的合成方法制备,不同在于用中间体D-6代替中间体D-1,用原料F-8代替原料F-1,所得目标产物的纯度为99.6%,收率为75.3%。
元素分析结构(分子式C 48H 28N 2O 2):理论值:C,86.73;H,4.25;N,4.21;O,4.81;测试值:C,86.71; H,4.24;N,4.23;O,4.82。ESI-MS(m/z)(M+):理论值为664.22,实测值为664.58。
实施例9:制备化合物96
Figure PCTCN2019106091-appb-000034
按化合物1的合成方法制备,不同在于用中间体D-5代替中间体D-1,用原料F-9代替原料F-1,所得目标产物的纯度为99.9%,收率为78.2%。
元素分析结构(分子式C 48H 28N 2O 2):理论值:C,86.73;H,4.25;N,4.21;O,4.81;测试值:C,86.72;H,4.24;N,4.22;O,4.82。ESI-MS(m/z)(M+):理论值为664.22,实测值为664.53。。
实施例10:制备化合物111
Figure PCTCN2019106091-appb-000035
按化合物1的合成方法制备,不同在于用中间体D-6代替中间体D-1,用原料F-10代替原料F-1,所得目标产物的纯度为99.5%,收率为73.9%。
元素分析结构(分子式C 46H 25NO 3):理论值:C,86.37;H,3.94;N,2.19;O,7.50;测试值:C,86.35;H,3.92;N,2.20;O,7.53。ESI-MS(m/z)(M+):理论值为639.18,实测值为639.51。
实施例11:制备化合物132
Figure PCTCN2019106091-appb-000036
按化合物1的合成方法制备,不同在于用中间体D-5代替中间体D-1,用原料F-11代替原料F-1,所得目标产物的纯度为99.7%,收率为77.9%。
元素分析结构(分子式C 42H 21NO 4):理论值:C,83.57;H,3.51;N,2.32;O,10.60;测试值:C,83.54;H,3.53;N,2.31;O,10.62。ESI-MS(m/z)(M+):理论值为603.15,实测值为603.47。
实施例12:制备化合物143
Figure PCTCN2019106091-appb-000037
按化合物1的合成方法制备,不同在于用中间体D-5代替中间体D-1,用原料F-12代替原料F-1,所得目标产物的纯度为99.8%,收率为75.9%。
元素分析结构(分子式C 36H 19NO 4):理论值:C,81.65;H,3.62;N,2.65;O,12.08;测试值:C,81.64;H,3.63;N,2.66;O,12.07。ESI-MS(m/z)(M+):理论值为529.13,实测值为529.37。
实施例13:制备化合物163
Figure PCTCN2019106091-appb-000038
按化合物1的合成方法制备,不同在于用中间体D-7代替中间体D-1,用原料F-13代替原料F-1,所得目标产物的纯度为99.8%,收率为77.4%。
元素分析结构(分子式C 49H 37NO 3):理论值:C,85.56;H,5.42;N,2.04;O,6.98;测试值:C,85.55;H,5.43;N,2.05;O,6.97。ESI-MS(m/z)(M+):理论值为687.28,实测值为687.62。
实施例14:制备化合物190
Figure PCTCN2019106091-appb-000039
按化合物1的合成方法制备,不同在于用中间体D-5代替中间体D-1,用原料F-14代替原料F-1,所得目标产物的纯度为99.9%,收率为75.7%。
元素分析结构(分子式C 40H 27NO 2):理论值:C,86.78;H,4.92;N,2.53;O,5.78;测试值:C,86.76;H,4.94;N,2.51;O,5.79。ESI-MS(m/z)(M+):理论值为553.20,实测值为553.44。
实施例15:制备化合物206
Figure PCTCN2019106091-appb-000040
按化合物1的合成方法制备,不同在于用中间体D-8代替中间体D-1,用原料F-15代替原料F-1,所得目标产物的纯度为99.6%,收率为77.7%。
元素分析结构(分子式C 39H 25NO 3):理论值:C,84.31;H,4.54;N,2.52;O,8.64;测试值:C,84.33;H,4.51;N,2.53;O,8.63。ESI-MS(m/z)(M+):理论值为555.18,实测值为555.45。
实施例16:制备化合物220
Figure PCTCN2019106091-appb-000041
按化合物1的合成方法制备,不同在于用中间体D-9代替中间体D-1,用原料F-16代替原料F-1,所得目标产物的纯度为99.8%,收率为78.0%。
元素分析结构(分子式C 45H 29NO 3):理论值:C,85.56;H,4.63;N,2.22;O,7.60;测试值C,85.54;H,4.64;N,2.21;O,7.61。ESI-MS(m/z)(M+):理论值为631.21,实测值为631.55。
实施例17:制备化合物232
Figure PCTCN2019106091-appb-000042
按化合物1的合成方法制备,不同在于用中间体D-6代替中间体D-1,用原料F-16代替原料F-1,所得目标产物的纯度为99.7%,收率为73.3%。
元素分析结构(分子式C 45H 29NO 3):理论值:C,85.56;H,4.63;N,2.22;O,7.60;测试值:C,85.55;H,4.62;N,2.21;O,7.62。ESI-MS(m/z)(M+):理论值为631.21,实测值为631.58。
实施例18:制备化合物258
Figure PCTCN2019106091-appb-000043
按化合物1的合成方法制备,不同在于用中间体D-6代替中间体D-1,用原料F-17代替原料F-1,所得目标产物的纯度为99.8%,收率为76.1%。
元素分析结构(分子式C 48H 35NO 2):理论值:C,87.64;H,5.36;N,2.13;O,4.86;测试值:C,87.63;H,5.35;N,2.14;O,4.88。ESI-MS(m/z)(M+):理论值为657.27,实测值为657.64。
实施例19:制备化合物269
Figure PCTCN2019106091-appb-000044
按化合物1的合成方法制备,不同在于用中间体D-5代替中间体D-1,用原料F-18代替原料F-1,所得目标产物的纯度为99.9%,收率为78.4%。
元素分析结构(分子式C 45H 30N 2O 2):理论值:C,85.69;H,4.79;N,4.44;O,5.07;测试值:C,85.67;H,4.78;N,4.46;O,5.09。ESI-MS(m/z)(M+):理论值为630.23,实测值为630.52。
实施例20:制备化合物293
Figure PCTCN2019106091-appb-000045
按化合物1的合成方法制备,不同在于用中间体D-5代替中间体D-1,用原料F-19代替原料F-1,所得目标产物的纯度为99.6%,收率为74.7%。
元素分析结构(分子式C 43H 27NO 3):理论值:C,85.27;H,4.49;N,2.31;O,7.92;测试值:C,85.26;H,4.48;N,2.33;O,7.93。ESI-MS(m/z)(M+):理论值为605.20,实测值为605.54。
实施例21:制备化合物310
Figure PCTCN2019106091-appb-000046
按化合物1的合成方法制备,不同在于用中间体D-5代替中间体D-1,用原料F-20代替原料F-1,所得目标产物的纯度为99.5%,收率为75.5%。
元素分析结构(分子式C 49H 29NO 3):理论值:C,86.58;H,4.30;N,2.06;O,7.06;测试值:C,86.56; H,4.32;N,2.07;O,7.05。ESI-MS(m/z)(M+):理论值为679.21,实测值为679.46。
实施例22:制备化合物317
Figure PCTCN2019106091-appb-000047
按化合物1的合成方法制备,不同在于用中间体D-5代替中间体D-1,用原料F-21代替原料F-1,所得目标产物的纯度为99.7%,收率为77.2%。
元素分析结构(分子式C 52H 35NO 2):理论值:C,88.48;H,5.00;N,1.98;O,4.53;测试值:C,88.45;H,5.02;N,1.99;O,4.54。ESI-MS(m/z)(M+):理论值为705.27,实测值为705.55。
实施例23:制备化合物333
Figure PCTCN2019106091-appb-000048
按化合物1的合成方法制备,不同在于用中间体D-5代替中间体D-1,用原料F-22代替原料F-1,所得目标产物的纯度为99.8%,收率为78.5%。
元素分析结构(分子式C 49H 27NO 3):理论值:C,86.84;H,4.02;N,2.07;O,7.08;测试值:C,86.83;H,4.02;N,2.09;O,7.06。ESI-MS(m/z)(M+):理论值为677.20,实测值为677.54。
实施例24:制备化合物354
Figure PCTCN2019106091-appb-000049
按化合物1的合成方法制备,不同在于用中间体D-5代替中间体D-1,用原料F-23代替原料F-1,所得目标产物的纯度为99.6%,收率为77.5%。
元素分析结构(分子式C 52H 33NO 3):理论值:C,86.77;H,4.62;N,1.95;O,6.67;测试值:C,86.75;H,4.64;N,1.96;O,6.65。ESI-MS(m/z)(M+):理论值为719.25,实测值为719.55。
实施例25:制备化合物389
Figure PCTCN2019106091-appb-000050
按化合物1的合成方法制备,不同在于用中间体D-10代替中间体D-1,用原料F-24代替原料F-1,所得目标产物的纯度为99.8%,收率为79.8%。
元素分析结构(分子式C 44H 25N 3O 2):理论值:C,84.19;H,4.01;N,6.69;O,5.105;测试值:C,84.17;H,4.02;N,6.70;O,5.11。ESI-MS(m/z)(M+):理论值为627.19,实测值为627.54。
实施例26:制备化合物398
Figure PCTCN2019106091-appb-000051
按化合物1的合成方法制备,不同在于用中间体D-5代替中间体D-1,用原料F-25代替原料F-1,所得目标产物的纯度为99.7%,收率为76.4%。
元素分析结构(分子式C 36H 19NO 3S):理论值:C,79.25;H,3.51;N,2.57;O,8.80;S,5.88;测试值:C,79.26;H,3.52;N,2.56;O,8.81;S,5.85。ESI-MS(m/z)(M+):理论值为545.11,实测值为545.35。
本有机化合物在发光器件中使用,具有高的玻璃转化温度(Tg)和三线态能级(T1),合适的HOMO、LUMO能级,可作为空穴传输/电子阻挡材料使用,也可作为发光层材料使用。对本发明实施例制备的化合物及现有材料分别进行热性能、T1能级以及HOMO能级测试,结果如表2所示。
表2
Figure PCTCN2019106091-appb-000052
Figure PCTCN2019106091-appb-000053
由上表数据可知,本发明制备的有机化合物具有高的玻璃转化温度,可提高材料膜相态稳定性,进一步提高器件使用寿命;本发明材料合适HOMO能级的同时,还具有高的三线态能级(T1),可以阻挡发光层能量损失,从而提升器件发光效率。因此,本发明含有苯并[1,2-b:5,4-b’]二苯并呋喃的有机材料在应用于OLED器件的不同功能层后,可有效提高器件的发光效率及使用寿命。
制备本发明的有机电致发光器件
以下通过器件实施例1-30和器件对比例1详细说明本发明合成的化合物在器件中作为空穴传输层材料或电子阻挡层材料的应用效果。器件实施例2-30、器件对比例1与器件实施例1相比,所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致。所不同的是对空穴传输层材料或电子阻挡层材料及发光层掺杂材料做了变换。各实施例所得器件的结构组成如表3所示。所得器件的测试结果见表4所示。
器件实施例1
透明基板层/ITO阳极层/空穴注入层(HAT-CN,厚度10nm)/空穴传输层(HTR,厚度60nm)/电子阻挡层(EBR,厚度20nm)/发光层(化合物1和GHA和GDA按照45:45:10的重量比混掺,厚度40nm)/空穴阻挡/电子传输层(ETR和Liq按照1:1的重量比混合,厚度35nm)/电子注入层(LiF,厚度1nm)/阴极层(Mg和Ag,按照9:1的重量比混掺,厚度15nm)/CPL层(化合物CPR,厚度70nm)。
具体制备过程如下:
如图1所示,透明基板层1为透明基材,如透明PI膜、玻璃等。对ITO阳极层2(膜厚为150nm)进行洗涤,即依次进行碱洗涤、纯水洗涤、干燥,再进行紫外线-臭氧洗涤以清除透明ITO表面的有机残留物。在进行了上述洗涤之后的ITO阳极层2上,利用真空蒸镀装置,蒸镀膜厚为10nm的HAT-CN作为空穴注入层3使用。接着蒸镀60nm厚度的HTR作为空穴传输层。随后蒸镀20nm厚度的EBR作为电子阻挡层。上述电子阻挡层材料蒸镀结束后,制作OLED发光器件的发光层6,其结构包括本发明实施例制备的化合物1和化合物GHA作为主体材料,GDA作为掺杂材料,化合物1、GHA和GDA三者质量比为45:45:10,厚度为40nm;。在上述发光层6之后,继续真空蒸镀电子传输层材料ETR和Liq,ETR和Liq按照50:50:10的重量比混合,膜厚为35nm,此层为空穴阻挡/电子传输层7。在空穴阻挡/电子传输层7上,蒸镀膜厚1nm的氟化锂(LiF)层,此层为电子注入层8。在电子注入层8上,蒸镀膜厚为15nm的Mg:Ag电极层,此层为阴极层9使用。在阴极层9上,真空蒸镀70nm的CPR,作为CPL层10。如上完成OLED发光器件后,用公知的驱动电路将阳极和阴极连接起来,测量器件的电流效率以及器件的寿命。
表3
Figure PCTCN2019106091-appb-000054
Figure PCTCN2019106091-appb-000055
注:*代表器件对比例
表4
Figure PCTCN2019106091-appb-000056
注:*代表对比例
LT95指的是在电流密度为20mA/cm 2情况下,器件亮度衰减到95%所用时间;
寿命测试系统为韩国脉科学M6000型OLED器件寿命测试仪。
由表4的结果可以看出,本发明制备的有机化合物可应用于OLED发光器件制作,并且与器件对比例1相比,无论是效率还是寿命均比已知OLED材料获得较大改观,特别是器件的使用寿命获得较大的提升。进一步的本发明材料制备的OLED器件在低温及高温下工作时效率也比较稳定,将器件实施例3、12、21和器件对比例1在-10~80℃区间进行效率测试,所得结果如表5和图2所示。
表5
Figure PCTCN2019106091-appb-000057
从表5和图2的数据可知,器件实施例3、12、21为本发明材料和已知材料搭配的器件结构,和器件对比例1相比,不仅低温效率高,而且在温度升高过程中,效率平稳升高。
为进一步测试本发明化合物所产生的有益效果,将本发明器件实施例3和器件对比例1所制作器件进行反向电压的漏电流测试,测试数据如图3所示。从图3中可得知,应用本发明化合物的器件实施例3和器件对比例1所制作器件相比,漏电流很小,且电流曲线稳定,因此,本发明材料应用于器件制作后,具有较长使用寿命。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种以苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物,其特征在于,该化合物的结构如通式(1)所示:
    Figure PCTCN2019106091-appb-100001
    通式(1)中,L表示为单键、取代或未取代的C6-30亚芳基、含有一个或多个杂原子取代或未取代的5至30元亚杂芳基;
    通式(1)中,R表示为通式(2)所示结构;
    Figure PCTCN2019106091-appb-100002
    通式(2)中,R 1、R 2各自独立的表示为氢原子、通式(3)或通式(4)所示结构;R 1与R 2相同或不同;R 1与R 2不同时为氢原子;
    Figure PCTCN2019106091-appb-100003
    通式(2)和通式(4)中,X 1、X 2、X 3各自独立的表示为单键、氧原子、硫原子、-CR 3=CR 4-、
    Figure PCTCN2019106091-appb-100004
    -C(R 5)(R 6)-、-Si(R 7)(R 8)-或-N(R 9)-中的一种;且X 2、X 3不同时表示为单键;
    R 3至R 9各自独立的表示为氢原子、C1-20直链烷基、C3-20支链烷基、C1-20的直链烷基取代的硅烷基、C3-20的支链烷基取代的硅烷基、取代或未取代的C6-30芳基、含有一个或多个杂原子的取代或未取代的5至30元杂芳基中的一种;R 3与R 4、R 5与R 6还可以相互键结形成5元至30元脂环、芳环或杂芳环;
    取代上述可被取代基团的取代基选自卤素、氰基、C6-30芳基、含有一个或多个杂原子5至30元杂芳基中的一种或多种;
    所述杂原子选自氧原子、硫原子或氮原子。
  2. 根据权利要求1-3所述的一种以苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物,其特征在于,所述R 3~R 9各自独立的表示为氢原子、甲基、乙基、丙基、异丙基、叔丁基、戊基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的吡啶基;
    所述R 10表示为氢原子、氟原子、氰基、甲基、乙基、丙基、异丙基、叔丁基、戊基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的吡啶基;
    所述取代基选自氟原子、氰基、甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、萘基、联苯基、吡啶基、呋喃基、咔唑基或噻吩基中的一种或多种。
  3. 根据权利要求1所述的一种以苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物,其特征在于, 所述通式(1)的具体化合物为:
    Figure PCTCN2019106091-appb-100005
    Figure PCTCN2019106091-appb-100006
    Figure PCTCN2019106091-appb-100007
    Figure PCTCN2019106091-appb-100008
    Figure PCTCN2019106091-appb-100009
    中的任意一种。
  4. 一种有机电致发光器件,其特征在于,至少一层功能层含有权利要求1-5任一项所述的以苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物。
  5. 根据权利要求7所述的一种有机电致发光器件,包括空穴传输层/电子阻挡层,其特征在于,所述空穴传输层或电子阻挡层材料为所述苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物。
  6. 根据权利要求7所述的一种有机电致发光器件,包括发光层,其特征在于,所述发光层材料为所述苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物。
  7. 一种照明或显示元件,其特征在于,包括如权利要求6-9所述的有机电致发光器件。
PCT/CN2019/106091 2018-09-18 2019-09-17 一种以苯并[1,2-b:5,4-b']二苯并呋喃为核心的化合物及其应用 WO2020057480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811086670.4 2018-09-18
CN201811086670.4A CN110903294B (zh) 2018-09-18 2018-09-18 一种以苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物及其应用

Publications (1)

Publication Number Publication Date
WO2020057480A1 true WO2020057480A1 (zh) 2020-03-26

Family

ID=69812775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106091 WO2020057480A1 (zh) 2018-09-18 2019-09-17 一种以苯并[1,2-b:5,4-b']二苯并呋喃为核心的化合物及其应用

Country Status (2)

Country Link
CN (1) CN110903294B (zh)
WO (1) WO2020057480A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045583A1 (ko) * 2020-08-25 2022-03-03 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022264857A1 (ja) * 2021-06-15 2022-12-22 株式会社Kyulux 有機発光素子およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111747894A (zh) * 2019-03-28 2020-10-09 江苏三月光电科技有限公司 一种以二苯并含氮六元杂环为核心的化合物及其在有机电致发光器件上的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056899A (zh) * 2008-06-05 2011-05-11 出光兴产株式会社 多环化合物及使用其的有机电致发光元件
CN106467551A (zh) * 2016-08-30 2017-03-01 江苏三月光电科技有限公司 一种以均苯为核心的光电材料及其应用
CN107056807A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种以均苯为核心的化合物及其在有机电致发光器件中的应用
KR20190010499A (ko) * 2017-07-20 2019-01-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
CN110088110A (zh) * 2017-06-14 2019-08-02 株式会社Lg化学 新型化合物及包含其的有机发光元件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2211959A1 (de) * 1972-03-11 1973-09-20 Bayer Ag Indolinfarbstoffe
CN103664995B (zh) * 2012-08-31 2016-10-19 昆山维信诺显示技术有限公司 萘并二噻吩类衍生物有机电致发光材料及其应用
JP2014108940A (ja) * 2012-11-30 2014-06-12 Samsung Display Co Ltd インドロカルバゾール誘導体及びそれを含む有機電界発光素子
CN104650118B (zh) * 2014-07-01 2017-01-11 吉林奥来德光电材料股份有限公司 一种以二苯并呋喃为骨架核心的衍生物制备及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056899A (zh) * 2008-06-05 2011-05-11 出光兴产株式会社 多环化合物及使用其的有机电致发光元件
CN107056807A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种以均苯为核心的化合物及其在有机电致发光器件中的应用
CN106467551A (zh) * 2016-08-30 2017-03-01 江苏三月光电科技有限公司 一种以均苯为核心的光电材料及其应用
CN110088110A (zh) * 2017-06-14 2019-08-02 株式会社Lg化学 新型化合物及包含其的有机发光元件
KR20190010499A (ko) * 2017-07-20 2019-01-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045583A1 (ko) * 2020-08-25 2022-03-03 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022264857A1 (ja) * 2021-06-15 2022-12-22 株式会社Kyulux 有機発光素子およびその製造方法

Also Published As

Publication number Publication date
CN110903294B (zh) 2022-06-03
CN110903294A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
KR101317501B1 (ko) 신규한 화합물, 그 유도체 및 이를 이용한 유기전자소자
CN107586261B (zh) 一种含有螺二苯并环庚烯芴的有机化合物及其应用
WO2020135686A1 (zh) 一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用
CN110467606B (zh) 一种以氧杂蒽酮为核心的杂环化合物、制备方法及其应用
CN104703969A (zh) 荧蒽化合物及包含其的有机电子器件
TW201512086A (zh) 富勒烯(Fullerene)衍生物,使用彼之有機太陽能電池,及彼之製造方法
WO2020057480A1 (zh) 一种以苯并[1,2-b:5,4-b']二苯并呋喃为核心的化合物及其应用
CN110964021A (zh) 一种以芴为核心的化合物、制备方法及其应用
JP7029820B2 (ja) ヘテロ環化合物およびこれを用いた有機発光素子
CN110317140B (zh) 一种以芳胺接双二甲基芴为核心的化合物及其应用
WO2020052544A1 (zh) 一种以苯并[1,2-b:5,4-b']二苯并呋喃为核心的化合物及其应用
KR20100033265A (ko) 카바졸 유도체 및 이를 이용한 유기 발광 소자
CN111377956A (zh) 一种以双硼为核心的有机化合物及其制备方法和在有机电致发光器件上的应用
CN110885334A (zh) 一种以苯并[1,2-b:3,4-b’]二苯并呋喃为核心的有机化合物及其应用
CN110885335A (zh) 一种以苯并[1,2-b:4,5-b’]二苯并呋喃为核心的化合物及其应用
TW202313591A (zh) 雜環化合物、包括其的有機發光裝置、用於有機發光裝置的有機層的組成物
WO2020182070A1 (zh) 一种以含有芘或者氮杂芘的三芳胺为核心的化合物及其应用
WO2019062686A1 (zh) 一种以氰基苯为核心的化合物及其在oled器件上的应用
WO2019228430A1 (zh) 一种含酮的化合物及其在有机电致发光器件上的应用
WO2019196948A1 (zh) 一种以芳基酮为核心的化合物、其制备方法及其在oled上的应用
CN109574908B (zh) 一种含螺二甲基蒽芴的化合物及其在有机电致发光器件上的应用
CN109879793A (zh) 一种蒽类化合物及其制法和应用
CN110963904A (zh) 一种以酮和芴为核心的化合物、制备方法及其应用
CN112479904B (zh) 一种以茚并蒽衍生物为核心的有机化合物及其应用
CN111171045B (zh) 一种稠合多环化合物及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861379

Country of ref document: EP

Kind code of ref document: A1