WO2020135686A1 - 一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用 - Google Patents

一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用 Download PDF

Info

Publication number
WO2020135686A1
WO2020135686A1 PCT/CN2019/129068 CN2019129068W WO2020135686A1 WO 2020135686 A1 WO2020135686 A1 WO 2020135686A1 CN 2019129068 W CN2019129068 W CN 2019129068W WO 2020135686 A1 WO2020135686 A1 WO 2020135686A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
organic compound
atom
Prior art date
Application number
PCT/CN2019/129068
Other languages
English (en)
French (fr)
Inventor
李崇
叶中华
梁丽
王芳
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2020135686A1 publication Critical patent/WO2020135686A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/153Ortho-condensed systems the condensed system containing two rings with oxygen as ring hetero atom and one ring with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/94[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/052Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the invention relates to the technical field of semiconductors, in particular to an organic compound with a carbazole derivative as a core and its application in an organic electroluminescent device.
  • OLED Organic Light Emission Diodes
  • the OLED light emitting device is like a sandwich structure, including an electrode material film layer and an organic functional material sandwiched between different electrode film layers. Various different functional materials are superimposed on each other to form an OLED light emitting device.
  • an OLED light emitting device when a voltage is applied to the electrodes at both ends, and the positive and negative charges in the functional material film layer of the organic layer are applied by the electric field, the positive and negative charges are further recombined in the light emitting layer, that is, OLED electroluminescence is generated.
  • OLED display technology has been applied in the fields of smartphones and tablets, and will be further expanded to large-scale applications such as TVs.
  • the performance of OLED devices such as luminous efficiency and service life It needs further improvement.
  • Current research on improving the performance of OLED light-emitting devices includes: reducing the driving voltage of the device, improving the luminous efficiency of the device, and increasing the service life of the device.
  • OLED optoelectronic functional materials are needed to create higher performance OLED functional materials.
  • OLED optoelectronic functional materials used in OLED devices can be divided into two categories from their uses, namely charge injection transport materials and luminescent materials. Further, the charge injection transport material can be divided into electron injection transport material, electron blocking material, hole injection transport material and hole blocking material, and the light emitting material can also be divided into host light emitting material and doping material. In order to produce high-performance OLED light-emitting devices, various organic functional materials are required to have good optoelectronic properties, for example, as charge transport materials, good carrier mobility, high glass transition temperature, etc. are required as the main body of the light-emitting layer The material has good bipolarity, proper HOMO/LUMO energy level, etc.
  • the OLED photoelectric functional material film layer constituting the OLED device includes at least two or more layers, and the industrially applied OLED device structure includes a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, and electron transport Various film layers such as layers, electron injection layers, that is to say, the photoelectric functional materials used in OLED devices include at least hole injection materials, hole transport materials, luminescent materials, electron transport materials, etc. The types of materials and matching forms are rich And diversity. In addition, for the matching of OLED devices with different structures, the optoelectronic functional materials used have strong selectivity, and the performance of the same materials in devices with different structures may also be completely different.
  • the object of the present invention is to provide a carbazole derivative structure compound.
  • the compound of the present invention has a carbazole derivative as the core.
  • the compound has a high glass transition temperature and molecular thermal stability, which effectively guarantees the stability of the material and prevents the separation of the material film phase state and material decomposition during long-term operation of the device.
  • the material also has suitable HOMO, LUMO energy level and carrier mobility, and can achieve good device energy level matching with EB and ET materials, reducing device driving, thereby reducing device thermal efficiency and increasing device life.
  • L represents a single bond, substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted terphenylene, substituted or unsubstituted naphthalene Group, substituted or unsubstituted pyridylene, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted carbazolylene, substituted or unsubstituted dibenzothienylene, substituted as unsubstituted Naphthyridinyl;
  • R 1 is represented by the structure represented by the general formula (2);
  • i 0 or 1
  • Z represents a nitrogen atom or CR 4
  • Z when bonded to the group L, Z is a carbon atom; the group L is connected to both of the general formula (2) On any carbon atom on the side;
  • R 2 and R 3 are each independently represented by the structure represented by the general formula (3);
  • R 2 is connected to the general formula (1) through the L 3 -L 4 bond
  • R 3 is connected to the general formula (1) through the L 1 -L 2 bond
  • X, X 1 and X 2 are independently expressed as single bonds, -O-, -S-, -C(R 5 )(R 6 )- or -N(R 7 )-; X 1 and X 2 are not simultaneously Is a single key;
  • the Z 1 is represented as a nitrogen atom or CR 8 ;
  • the R 4 and R 8 are independently represented as hydrogen atom, deuterium, cyano group, halogen atom, C 1-10 alkyl group, substituted or unsubstituted C 6-30 aryl group, and one or more hetero atoms One of substituted or unsubstituted 5-30 membered heteroaryl;
  • R 5 -R 7 are independently represented as C 1-10 alkyl, substituted or unsubstituted C 6-30 aryl, substituted or unsubstituted 5-30 membered heteroaryl containing one or more heteroatoms
  • R 5 -R 7 are independently represented as C 1-10 alkyl, substituted or unsubstituted C 6-30 aryl, substituted or unsubstituted 5-30 membered heteroaryl containing one or more heteroatoms
  • the substituents of the substituted C 6-30 aryl group and the substituted 5-30 membered heteroaryl group are optionally deuterium, cyano group, halogen, C 1-10 alkyl group, C 6-30 aryl group, containing one One or more of 5-30 membered heteroaryl groups of multiple heteroatoms;
  • the hetero atom is optionally selected from one or more of oxygen atom, sulfur atom or nitrogen atom.
  • the R 4 and R 8 are independently represented as hydrogen atom, deuterium, cyano group, fluorine atom, methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, pent Group, hexyl, substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted naphthyridinyl, substituted or unsubstituted biphenyl, substituted or unsubstituted terphenyl, substituted or Unsubstituted dibenzofuranyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted pyridyl;
  • the R 5 -R 7 are independently represented as methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, hexyl, substituted or unsubstituted phenyl, substituted or unsubstituted Naphthyl, substituted or unsubstituted naphthyridyl, substituted or unsubstituted biphenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted carbazolyl , Substituted or unsubstituted pyridyl;
  • the substituent of the substitutable group is optionally selected from methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, hexyl, phenyl, naphthyl, naphthyridyl, pyridyl, One or more of biphenyl, terphenyl, carbazolyl, furanyl, or dibenzofuranyl.
  • X 2 represents a single bond.
  • the i represents 1, and X represents a single bond or an oxygen atom.
  • R 1 is represented as:
  • the specific structural formula of the organic compound is any one of the following structures:
  • the preparation method of the compound of the present invention is:
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under an atmosphere of nitrogen, add intermediate A, intermediate B or raw material I, potassium tert-butoxide, Pd 2 (dba) 3 , triphenylphosphine and 150ml of solvent toluene , Heating to reflux for 12 hours, sampling the spot, the reaction is complete; natural cooling, filtering, filtrate rotary evaporation, passing through a silica gel column to obtain the target product;
  • the molar ratio of the intermediate B (or raw material I) to the intermediate A is 1.0-3.0:1, the molar ratio of potassium tert-butoxide to the intermediate A is 1-5:1, Pd 2 (dba) 3 and intermediate
  • the molar ratio of body A is 0.01-0.03:1, and the molar ratio of triphenylphosphine to intermediate A is 0.01-0.03:1.
  • an organic electroluminescent device comprising a light-emitting layer, the light-emitting layer of the organic electroluminescent device containing the above-mentioned organic compound with carbazole as the core.
  • an illumination or display element is provided, the illumination or display element including the organic electroluminescent device.
  • the compound structure molecule of the present invention contains an electron donor (donor, D) and an electron acceptor (acceptor, A).
  • the DA structure can increase orbital overlap and improve luminous efficiency, while connecting aromatic heterocyclic groups to obtain HOMO, LUMO spatial separation
  • the material of the charge transfer state realizes a small energy level difference between the S1 state and the T1 state, so that it is easy to achieve reverse intersystem crossing under thermal stimulation conditions.
  • the compound of the present invention uses a carbazole derivative as a core, and then connects an aromatic heterocyclic group, which has strong rigidity, destroys the symmetry of the molecule, thereby destroys the crystallinity of the molecule, and avoids the aggregation between molecules.
  • the compound structure molecule contains a carbo derivative as an electron donor (donor, D), which is beneficial to the transport of holes in the light-emitting layer.
  • the connected heterocyclic group is an electron acceptor (acceptor, A), which facilitates the transmission of electrons in the light-emitting layer.
  • acceptor, A an electron acceptor
  • the nitrogen atom inside the carbazole derivative is a saturated atom, which has a strong rigidity, and is also beneficial to increase the triplet energy level of the parent compound.
  • the combination of electron donor and electron acceptor can improve the recombination efficiency of excitons and reduce the starting voltage. To improve device performance.
  • the nucleus core with carbazole derivatives as the skeleton has a higher triplet energy level, so that the compound triplet excitons are confined in the light-emitting layer, and the light-emitting efficiency is improved.
  • the organic electroluminescent device of the present invention can be applied to lighting or display originals, which greatly improves the current efficiency, power efficiency and external quantum efficiency of the device; at the same time, it is very obvious for the improvement of device life and has good performance in OLED light-emitting devices Application effect, has good industrialization prospects.
  • FIG. 1 is a schematic structural view of the materials listed in the present invention applied to an OLED device
  • 1 is a transparent substrate layer
  • 2 is an ITO anode layer
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is an electron blocking layer
  • 6 is a light emitting layer
  • 7 is an electron transport layer
  • 8 is an electron injection layer
  • 9 is the cathode reflective electrode layer.
  • FIG. 2 is the current efficiency of the OLED devices of the device examples of the present invention and Comparative Example 1 in the range of -10 to 80°C.
  • Elemental analysis structure (molecular formula C 24 H 13 NO 4 ): theoretical value C, 75.98; H, 3.45; N, 3.69; O, 16.87; test value: C, 75.96; H, 3.44; N, 3.67; O, 16.88.
  • Elemental analysis structure (molecular formula C 24 H 13 NO 2 ): theoretical value C, 82.98; H, 3.77; N, 4.03; O, 9.21; test value: C, 82.96; H, 3.75; N, 4.01; O, 9.23.
  • intermediate A-1 The synthesis of intermediate A-1 is divided into two steps: synthesis of intermediate C-1 from raw material D-1 and raw material E-1; intermediate C-1 forms intermediate A-1 through a ring-forming reaction.
  • the preparation method of other intermediate A is similar to the preparation method of intermediate A-1.
  • the specific structure of intermediate A used in the present invention is shown in Table 1.
  • Elemental analysis structure (molecular formula C 18 H 20 BClO 2 ): theoretical value C, 68.72; H, 6.41; B, 3.44; Cl, 11.27; O, 10.17; test value: C, 68.75; H, 6.42; B, 3.46; Cl, 11.25; O, 10.18.
  • Elemental analysis structure (molecular formula C 28 H 21 ClO): theoretical value C, 82.24; H, 5.18; Cl, 8.67; O, 3.91; test value: C, 82.25; H, 5.17; Cl, 8.65; O, 3.93.
  • intermediate B-11 The synthesis of intermediate B-11 is divided into two steps: synthesis of intermediate H-2 from raw material F-2 and raw material G-1; synthesis of intermediate B-11 from intermediate H-2 and raw material I-11.
  • the preparation method of other intermediate B is similar to the preparation method of intermediate B-11.
  • the specific structure of intermediate B used in the present invention is shown in Table 2.
  • DETAILED prepared as follows: 250ml of three bottles, under an atmosphere of nitrogen gas, the raw material I-1,0.03mol was added potassium tert-butoxide 0.01mol of Intermediate A-1,0.012mol, 1 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.7%, yield 85.9%; elemental analysis structure (molecular formula C 37 H 21 NO 3 ): theoretical value C, 84.24; H, 4.01; N, 2.65; O, 9.10; test value: C, 84.26; H, 4.02; N, 2.64; O, 9.11.
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under a nitrogen atmosphere, add 0.01mol of intermediate A-2, 0.015mol of raw material I-2, 0.03mol of potassium tert-butoxide, 1.5 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.2 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.9%, yield 85.8%; elemental analysis structure (molecular formula C 40 H 25 NOS 2 ): theoretical value C, 80.10; H, 4.20; N, 2.34; O, 2.67; S, 10.69; test value: C, 80.11; H, 4.22; N, 2.35; O, 2.64; S, 10.66.
  • the specific preparation method is as follows: in a 250ml three-neck flask, under a nitrogen atmosphere, add 0.01mol of intermediate A-3, 0.016mol of raw material I-2, 0.03mol of potassium tert-butoxide, 1.6 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.4 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.9%, yield 86.9%; elemental analysis structure (molecular formula C 46 H 37 NO): theoretical value C, 89.14; H, 6.02; N, 2.26; O, 2.58; test value: C, 89.15; H, 6.03; N , 2.28; O, 2.54.
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under a nitrogen atmosphere, add 0.01mol of intermediate A-4, 0.018mol of raw material I-3, 0.03mol of potassium tert-butoxide, 1.8 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.6 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.7%, yield 86.7%; elemental analysis structure (molecular formula C 53 H 32 N 6 O): theoretical value C, 82.63; H, 4.62; N, 10.71; O, 2.04; test value: C, 82.65; H, 4.64 ; N, 10.73; O, 2.06.
  • ESI-MS (m/z) (M+) The theoretical value is 768.
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under a nitrogen atmosphere, add 0.01mol of intermediate A-5, 0.014mol of raw material I-4, 0.03mol of potassium tert-butoxide, 1.4 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.3 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.6%, yield 86.5%; elemental analysis structure (molecular formula C 48 H 37 N 3 O): theoretical value C, 85.81; H, 5.55; N, 6.25; O, 2.38; test value: C, 85.83; H, 5.56 ; N, 6.27; O, 2.34.
  • DETAILED prepared as follows: 250ml of three bottles, under an atmosphere of nitrogen gas, the raw material I-5,0.03mol was added potassium tert-butoxide 0.01mol Intermediate A-6,0.015mol is, 1.5 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.2 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.5%, yield 86.2%; elemental analysis structure (molecular formula C 49 H 27 NO 4 ): theoretical value C, 84.83; H, 3.92; N, 2.02; O, 9.22; test value: C, 84.85; H, 3.93; N, 2.03; O, 9.24.
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under a nitrogen atmosphere, add 0.01mol of intermediate A-7, 0.016mol of raw material I-6, 0.03mol of potassium tert-butoxide, 1.6 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.4 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.2%, yield 86.1%; elemental analysis structure (molecular formula C 50 H 29 NO 3 ): theoretical value C, 86.81; H, 4.23; N, 2.02; O, 6.94; test value: C, 86.82; H, 4.24; N, 2.05; O, 6.91.
  • DETAILED prepared as follows: 250ml of three bottles, under an atmosphere of nitrogen gas, the raw material I-7,0.03mol was added potassium tert-butoxide 0.01mol Intermediate A-8,0.015mol is, 1.5 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.3 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.6%, yield 86.3%; elemental analysis structure (molecular formula C 48 H 35 N 3 O): theoretical value C, 86.07; H, 5.27; N, 6.27; O, 2.39; test value: C, 86.05; H, 5.24 ; N, 6.25; O, 2.41.
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under a nitrogen atmosphere, 0.01mol of intermediate A-9, 0.014mol of raw material I-8, 0.03mol of potassium tert-butoxide, 1.4 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.2 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.4%, yield 85.7%; elemental analysis structure (molecular formula C 50 H 32 N 2 O 2 ): theoretical value C, 86.68; H, 4.66; N, 4.04; O, 4.62; test value: C, 86.65; H, 4.64; N, 4.03; O, 4.64.
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under a nitrogen atmosphere, add 0.01mol of intermediate A-10, 0.012mol of raw material I-8, 0.03mol of potassium tert-butoxide, 1.2 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.1 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling spot, complete reaction; natural cooling, filtration, filtrate rotary evaporation, passing through silica gel column to obtain the target product; HPLC purity 98.6%, yield 85.4%; elemental analysis structure (molecular formula C 47 H 26 N 2 O 4 ): theoretical value C, 82.68; H, 3.84; N, 4.10; O, 9.37; test value: C, 82.65; H, 3.82; N, 4.08; O, 9.39.
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under a nitrogen atmosphere, 0.01mol intermediate A-11, 0.014mol raw material I-8, 0.03mol potassium tert-butoxide, 1.4 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.2 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.5%, yield 85.7%; elemental analysis structure (molecular formula C 43 H 24 N 2 O 4 ): theoretical value C, 81.63; H, 3.82; N, 4.43; O, 10.12; test value: C, 81.65; H, 3.83; N, 4.45; O, 10.10.
  • the specific preparation method is as follows: in a 250ml three-neck flask, under a nitrogen atmosphere, add 0.01mol of intermediate A-15, 0.013mol of intermediate B-17, 0.03mol of potassium tert-butoxide, 1.3 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.1 ⁇ 10 -4 mol triphenylphosphine, 150 ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC Purity 98.5%, yield 86.5%; elemental analysis structure (molecular formula C 55 H 31 NO 4 S): theoretical value C, 82.38; H, 3.90; N, 1.75; O, 7.98; S, 4.00; test value: C, 82.39; H, 3.91; N, 1.78; O, 7.96; S, 4.01. ESI-MS (m/z) (M+
  • DETAILED prepared as follows: 250ml of three bottles, under an atmosphere of nitrogen gas, the raw material I-1,0.03mol was added potassium tert-butoxide 0.01mol Intermediate A-16,0.012mol is, 1.2 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.0 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.8%, yield 86.5%; elemental analysis structure (molecular formula C 43 H 26 N 2 O 2 ): theoretical value C, 85.69; H, 4.35; N, 4.65; O, 5.31; test value: C, 85.68; H, 4.33; N, 4.66; O, 5.33.
  • DETAILED prepared as follows: 250ml of three bottles, under an atmosphere of nitrogen gas, the raw material I-8,0.03mol was added potassium tert-butoxide 0.01mol Intermediate A-17,0.014mol is, 1.4 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.2 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.5%, yield 86.2%; elemental analysis structure (molecular formula C 49 H 29 N 3 O 2 ): theoretical value C, 85.07; H, 4.23; N, 6.07; O, 4.63; test value: C, 85.09; H, 4.25; N, 6.09; O, 4.61.
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under a nitrogen atmosphere, add 0.01mol of intermediate A-17, 0.015mol of raw material I-18, 0.03mol of potassium tert-butoxide, 1.5 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.3 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.7%, yield 86.3%; elemental analysis structure (molecular formula C 48 H 28 N 4 O 2 ): theoretical value C, 83.22; H, 4.07; N, 8.09; O, 4.62; test value: C, 83.23; H, 4.09; N, 8.11; O, 4.60.
  • ESI-MS (m/z) (M+) The theoretical value is 69
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under a nitrogen atmosphere, 0.01mol of intermediate A-18, 0.013mol of raw material I-8, 0.03mol of potassium tert-butoxide, 1.3 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.2 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.9%, yield 86.7%; elemental analysis structure (molecular formula C 43 H 24 N 2 O 3 ): theoretical value C, 83.75; H, 3.92; N, 4.54; O, 7.78; test value: C, 83.77; H, 3.93; N, 4.56; O, 7.75.
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under a nitrogen atmosphere, add 0.01 mol of intermediate A-19, 0.015 mol of intermediate B-18, 0.03 mol of potassium tert-butoxide, 1.5 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.2 ⁇ 10 -4 mol triphenylphosphine, 150 ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC Purity 98.6%, yield 86.1%; elemental analysis structure (molecular formula C 68 H 40 N 2 O 3 ): theoretical value C, 87.53; H, 4.32; N, 3.00; O, 5.14; test value: C, 87.55; H , 4.33; N, 3.03; O, 5.11. ESI-MS (m/z) (M+): The theoretical
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under a nitrogen atmosphere, add 0.01mol of intermediate A-15, 0.014mol of raw material I-6, 0.03mol of potassium tert-butoxide, 1.4 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.2 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.6%, yield 86.2%; elemental analysis structure (molecular formula C 50 H 29 NO 3 ): theoretical value C, 86.81; H, 4.23; N, 2.02; O, 6.94; test value: C, 86.83; H, 4.24; N, 2.04; O, 6.93.
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under a nitrogen atmosphere, add 0.01mol of intermediate A-21, 0.012mol of raw material I-21, 0.03mol of potassium tert-butoxide, 1.2 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.0 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.5%, yield 86.6%; elemental analysis structure (molecular formula C 41 H 22 N 4 O 2 S): theoretical value C, 77.59; H, 3.49; N, 8.83; O, 5.04; S, 5.05; test value: C , 77.61; H, 3.52; N, 8.84; O, 5.02; S, 5.03. ESI-MS (m/z) (
  • the specific preparation method is as follows: in a 250ml three-necked bottle, under a nitrogen atmosphere, add 0.01mol of intermediate A-22, 0.013mol of raw material I-8, 0.03mol of potassium tert-butoxide, 1.3 ⁇ 10 -4 mol Pd 2 (dba) 3 , 1.2 ⁇ 10 -4 mol triphenylphosphine, 150ml toluene, heated to reflux for 12 hours, sampling point plate, the reaction is complete; natural cooling, filtration, filtrate rotary evaporation, passing through a silica gel column to obtain the target product; HPLC purity 98.9%, yield 86.7%; elemental analysis structure (molecular formula C 42 H 23 N 3 O 3 ): theoretical value C, 81.67; H, 3.75; N, 6.80; O, 7.77; test value: 81.68; H, 3.77; N, 6.82; O, 7.75.
  • Organic compounds are used in light-emitting devices, have high glass transition temperature (Tg) and triplet energy level (T1), suitable HOMO, LUMO energy levels, and can be used as the host material of the light-emitting layer.
  • Tg glass transition temperature
  • T1 triplet energy level
  • HOMO HOMO
  • LUMO LUMO energy levels
  • the triplet energy level T1 is tested by Hitachi's F4600 fluorescence spectrometer, and the test condition of the material is 2*10 -5 toluene solution; the glass transition temperature Tg is determined by differential scanning calorimetry (DSC, DSC204F1 by the German Netsch company) Scanning calorimeter), the heating rate is 10 °C/min; the highest occupied molecular orbital HOMO energy level is tested by the ionization energy test system (IPS-3), and the test is atmospheric environment.
  • DSC differential scanning calorimetry
  • IPS-3 ionization energy test system
  • the compound of the present invention has a high glass transition temperature, which can improve the phase stability of the material film and further improve the service life of the device; at the same time, it has a smaller singlet-triplet energy level difference, which makes the application
  • the compound of the present invention as a host material has more sufficient energy transmission; the compound of the present invention contains an electron donor and an electron acceptor, which makes the electron and hole of the OLED device using the compound of the present invention reach a balanced state, ensuring the recombination rate of electrons and holes, Thereby improving the efficiency and life of the OLED device.
  • the material of the present invention has an appropriate HOMO energy level, which can solve the problem of carrier injection and can reduce the device voltage; therefore, the organic material of the present invention can effectively improve the luminous efficiency and use of the device after it is applied to the light-emitting layer of the OLED device life.
  • the device examples 2 to 27 and the device comparative example 1 of the present invention have the same manufacturing process, and the same substrate material and electrode material are used, and the film thickness of the electrode material is also Keep the same, the difference is that the device examples 2 to 27 are applied using the material of the invention as the host material of the light-emitting layer.
  • Table 4 shows the structural composition of the device obtained in each example. The test results of the current efficiency and life of the device obtained in each example are shown in Table 5. Efficiency attenuation coefficient of the resulting device The test results are shown in Table 6.
  • a vacuum evaporation apparatus was used to deposit HAT-CN with a thickness of 10 nm as the hole injection layer 3.
  • HAT-CN with a thickness of 10 nm as the hole injection layer 3.
  • HT-1 with a thickness of 60 nm was vapor-deposited as the hole transport layer 4.
  • EB-1 with a thickness of 10 nm was vapor-deposited as the electron blocking layer 5.
  • the anode and the cathode are connected by a well-known drive circuit, and the current efficiency of the device, the light emission spectrum, and the life of the device are measured.
  • the device examples and comparative examples prepared by the same method are shown in Table 4; the test results of the current efficiency, voltage and life of the obtained device are shown in Table 5. Efficiency attenuation coefficient of the resulting device The test results are shown in Table 6.
  • the life test system is an OLED device life tester jointly studied by the owner of the present invention and Shanghai University.
  • the efficiency attenuation coefficient represents the ratio between the difference between the maximum efficiency ⁇ 100 of the device and the maximum efficiency ⁇ m of the device and the maximum efficiency when the drive current is 100 mA/cm 2 , The larger the value, the more serious the device's efficiency roll-off. On the contrary, it indicates that the problem of rapid decay of the device at high current density is controlled.
  • Efficiency attenuation coefficients of device examples 1-24 and comparative example 1 The test results are shown in Table 6:
  • the efficiency of the OLED device prepared by the material of the present invention is relatively stable at low temperature.
  • the device examples 3, 7, 21 and device comparative example 1 were tested in the range of -10 ⁇ 80 °C, the results are shown in Table 7 and Figure 2 shows.
  • device examples 3, 7, and 21 are device structures in which the materials of the present invention are matched with known materials. Compared with device comparative example 1, not only is the low temperature efficiency high, but also the temperature rise process In the meantime, the efficiency has increased steadily.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种以咔唑衍生物为核心的有机化合物及其制备方法和应用,属于半导体技术领域,本发明提供的化合物结构如通式(1)所示,本发明还公开了上述化合物的制备方法及其应用。本发明提供的化合物具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,较高的Eg;通过器件结构优化,可有效提升OLED器件的光电性能以及OLED器件的寿命。

Description

一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用 技术领域
本发明涉及半导体技术领域,尤其涉及一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用。
背景技术
有机电致发光(OLED:Organic Light Emission Diodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。OLED发光器件犹如三明治的结构,包括电极材料膜层以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。OLED发光器件作为电流器件,当对其两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷时,正负电荷进一步在发光层中复合,即产生OLED电致发光。
当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,OLED器件的发光效率和使用寿命等性能还需要进一步提升。目前对OLED发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能的OLED功能材料。
应用于OLED器件的OLED光电功能材料从用途上可划分为两大类,分别为电荷注入传输材料和发光材料。进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。为了制作高性能的OLED发光器件,要求各种有机功能材料具备良好的光电性能,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻璃化转化温度等,作为发光层的主体材料具有良好双极性,适当的HOMO/LUMO能阶等。
构成OLED器件的OLED光电功能材料膜层至少包括两层以上结构,产业上应用的OLED器件结构则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于OLED器件的光电功能材料至少包括空穴注入材料、空穴传输材料、发光材料、电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的OLED器件搭配而言,所使用的光电功能材料具有较强的选择性,相同的材料在不同结构器件中的性能表现也可能完全迥异。
因此,针对当前OLED器件的产业应用要求以及OLED器件的不同功能膜层,器件的光电特性需求,必须选择更适合、性能更高的OLED功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前的OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。
发明内容
本发明的目的是提供一种咔唑衍生物结构的化合物。本发明的化合物以咔唑衍生物为核心,化合物具有较高的玻璃化温度和分子热稳定性,有效的保证了材料的稳定性,防止器件长时间工作发生材料膜相态分离和材料分解。该材料还具有合适的HOMO、LUMO能级和载流子迁移率,能够和EB、ET材料进行良好的器件能级匹配,降低器件驱动,从而降低器件的热效率,提升器件寿命。
本发明的技术方案如下:一种以咔唑为核心的有机化合物,该化合物的结构如通式(1)所示:
Figure PCTCN2019129068-appb-000001
通式(1)中,L表示为单键、取代或未取代的亚苯基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚萘基、取代或未取代的亚吡啶基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚咔唑基、取代或未取代的亚二苯并噻吩基、取代为未取代的亚萘啶基;
R 1表示为通式(2)所示结构;
通式(2)中,i表示为0或1;Z表示为氮原子或C-R 4;且与基团L键合的情况下,Z为碳原子;基团L连接在通式(2)两侧任意碳原子上;
R 2、R 3分别独立的表示为通式(3)所示结构;
R 2通过L 3-L 4键与通式(1)并环连接;R 3通过L 1-L 2键与通式(1)并环连接;
X、X 1、X 2分别独立的表示为单键、-O-、-S-、-C(R 5)(R 6)-或-N(R 7)-;X 1、X 2不同时为单键;
所述Z 1表示为氮原子或C-R 8
所述R 4、R 8分别独立的表示为氢原子、氘、氰基、卤素原子、C 1-10烷基、取代或未取代的C 6-30芳基、含有一个或多个杂原子的取代或未取代的5~30元杂芳基中的一种;
R 5-R 7分别独立的表示为C 1-10烷基、取代或未取代的C 6-30芳基、含有一个或多个杂原子的取代或未取代的5~30元杂芳基中的一种;
所述取代的C 6-30芳基和取代的5~30元杂芳基的取代基任选为氘、氰基、卤素、C 1-10的烷基、C 6-30芳基、含有一个或多个杂原子的5~30元杂芳基中的一种或几种;
所述杂原子任选自氧原子、硫原子或氮原子中的一种或多种。
作为本发明进一步改进,所述R 4、R 8分别独立的表示为氢原子、氘、氰基、氟原子、甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、己基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的萘啶基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的二苯并呋喃基、取代或未取代的咔唑基、取代或未取代的吡啶基;
所述R 5-R 7分别独立的表示为甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、己基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的萘啶基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的二苯并呋喃基、取代或未取代的咔唑基、取代或未取代的吡啶基;
所述可取代基团的取代基任选自甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、己基、苯基、萘基、萘啶基、吡啶基、二联苯基、三联苯基、咔唑基、呋喃基或二苯并呋喃基中的一种或多种。
进一步优选,所述X 2表示为单键。
进一步优选,所述i表示为1,X表示为单键或氧原子。
进一步优选,所述R 1分别表示为:
Figure PCTCN2019129068-appb-000002
Figure PCTCN2019129068-appb-000003
Figure PCTCN2019129068-appb-000004
中的一种。进一步优选,所述有机化合物的具体结构式为以下结构中的任一种:
Figure PCTCN2019129068-appb-000005
Figure PCTCN2019129068-appb-000006
Figure PCTCN2019129068-appb-000007
Figure PCTCN2019129068-appb-000008
中的一种。
作为本发明进一步改进,本发明所述化合物的制备方法为:
Figure PCTCN2019129068-appb-000009
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入中间体A、中间体B或原料I、叔丁醇钾、Pd 2(dba) 3、三苯基膦及150ml溶剂甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到中目标产物;
所述中间体B(或原料I)和中间体A的摩尔比为1.0-3.0:1,叔丁醇钾与中间体A的摩尔比为1-5:1,Pd 2(dba) 3与中间体A的摩尔比为0.01~0.03:1,三苯基膦与中间体A摩尔比为0.01-0.03:1。
作为本发明的进一步改进是提供上述以咔唑为核心的有机化合物在有机电致发光器件中的应用。
作为本发明的进一步改进是提供一种有机电致发光器件,包含发光层,所述有机电致发光器件的发光层含有上述以咔唑为核心的有机化合物。
作为本发明的进一步改进是提供一种照明或显示元件,所述照明或显示元件包括所述的有机电致发光器件。
本发明有益的技术效果在于:
本发明化合物结构分子内包含电子给体(donor,D)与电子受体(acceptor,A),D-A结构可以增加轨道重叠、提高发光效率,同时连接芳香杂环基团以获得HOMO、LUMO空间分离的电荷转移态材料,实现小的S1态和T1态的能级差,从而在热刺激条件下易于实现反向系间窜越。本发明化合物以咔唑衍生物为母核,再连接芳香杂环基团,具备很强的刚性,破坏了分子对称性,从而破坏分子的结晶性,避免了分子间的聚集作用。所述化合物结构分子内包含咔衍生物作为电子给体(donor,D),有利于空穴在发光层中的传输。连接的杂环基团是电子受体(acceptor,A),它有利于电子在发光层中的传输。咔唑衍生物内部的氮原子是饱和原子,具有很强的刚性,还有利于提高母核化合物三重态能级,电子给体和电子受体的组合可以提高激子的复合效率,降低启动电压,提高器件性能。
以咔唑衍生物为骨架的母核具有较高的三重态能级,使化合物三重态激子局限在发光层中,提高发光效率,本发明化合物适合作为发光层材料使用。
本发明的有机电致发光器件可以应用在照明或显示原件,使器件的电流效率,功率效率和外量子效率均得到很大改善;同时,对于器件寿命提升非常明显,在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。
附图说明
图1为本发明所列举的材料应用于OLED器件的结构示意图;
其中,1为透明基板层,2为ITO阳极层,3为空穴注入层,4为空穴传输层,5为电子阻挡层,6为发 光层,7为电子传输层,8为电子注入层,9为阴极反射电极层。
图2为本发明器件实施例与比较例1的OLED器件在-10至80℃区间的电流效率。
具体实施方式
下面结合附图和实施例,对本发明进行具体描述。
实施例1:中间体A的合成
中间体A-1的合成
Figure PCTCN2019129068-appb-000010
(1)在250mL的三口瓶中,在氮气保护下,加入0.01mol原料D-1,0.015mol原料E-1,用甲苯和乙醇的混合溶剂溶解(其中甲苯90mL,乙醇45mL),然后加入含有0.03mol Na 2CO 3水溶液(2M),通氮气搅拌1h,然后加入0.0001mol Pd(PPh 3) 4,加热回流15h,取样点板,反应完全。自然冷却、过滤、滤液旋蒸、残余物过硅胶柱,得中间体C-1;HPLC纯度97.7%,收率85.9%;
元素分析结构(分子式C 24H 13NO 4):理论值C,75.98;H,3.45;N,3.69;O,16.87;测试值:C,75.96;H,3.44;N,3.67;O,16.88。ESI-MS(m/z)(M+):理论值为379.08,实测值为379.05。
(2)在250mL的三口瓶中,在氮气保护下,加入0.02mol中间体C-1,用100mL邻二氯苯溶解,加入0.03mol三苯基膦,在170~190℃下搅拌反应12~16h,反应结束后冷却至室温,过滤,滤液减压旋蒸,过中性硅胶柱,得中间体A-1;HPLC纯度96.5%,收率78.6%;
元素分析结构(分子式C 24H 13NO 2):理论值C,82.98;H,3.77;N,4.03;O,9.21;测试值:C,82.96;H,3.75;N,4.01;O,9.23。ESI-MS(m/z)(M+):理论值为347.09,实测值为347.11。
中间体A-1的合成分为两步:由原料D-1和原料E-1合成中间体C-1;中间体C-1经成环反应形成中间体A-1。其他中间体A的制备方法与中间体A-1的制备方法类似,本发明用到的中间体A的具体结构如表1所示。
表1
Figure PCTCN2019129068-appb-000011
Figure PCTCN2019129068-appb-000012
Figure PCTCN2019129068-appb-000013
实施例2:中间体B的合成
中间体B-11的合成
Figure PCTCN2019129068-appb-000014
(1)在250mL三口瓶中,通入氮气,将10.0mol原料F-2,12.0mol原料G-1,0.3g Pd(dppf)Cl 2,30.0mmol醋酸钾加入100mL的1,4-二恶烷中,在130℃下,反应5小时。通过硅胶柱层析分离纯化得到中间体H-2,HPLC纯度99.8%,收率60.5%。元素分析结构(分子式C 18H 20BClO 2):理论值C,68.72;H,6.41;B,3.44;Cl,11.27;O,10.17;测试值:C,68.75;H,6.42;B,3.46;Cl,11.25;O,10.18。ESI-MS(m/z)(M +):理论值为314.12,实测值为314.16。
(2)称取11.11mol中间体H-2和7.40mol原料I-11,用体积比为3:1:1的甲苯/水/乙醇混合溶液溶解;再加入0.012mol Pd(OAc) 2、7.21mmol Cs 2CO 3和14.42mmol Xphos;在氮气保护、120℃条件下,微波反 应3小时。反应结束后,用二氯甲烷萃取得到有机层,再用无水MgSO 4干燥,进一步通过柱层析方法分离纯化得到中间体B-11,HPLC纯度99.8%,收率66%。元素分析结构(分子式C 28H 21ClO):理论值C,82.24;H,5.18;Cl,8.67;O,3.91;测试值:C,82.25;H,5.17;Cl,8.65;O,3.93。ESI-MS(m/z)(M +):理论值为408.13,实测值为408.15。
中间体B-11的合成分为两步:由原料F-2和原料G-1合成中间体H-2;中间体H-2和原料I-11合成中间体B-11。其他中间体B的制备方法与中间体B-11的制备方法类似,本发明用到的中间体B的具体结构如表2所示。
表2
Figure PCTCN2019129068-appb-000015
实施例3:化合物1的合成
Figure PCTCN2019129068-appb-000016
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-1,0.012mol的原料I-1,0.03mol叔丁醇钾,1×10 -4mol Pd 2(dba) 3,1×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.7%,收率85.9%;元素分析结构(分子式C 37H 21NO 3):理论值C,84.24;H,4.01;N,2.65;O,9.10;测试值:C,84.26;H,4.02;N,2.64;O,9.11。ESI-MS(m/z)(M+):理论值为527.15,实测值为527.18。
实施例4:化合物4的合成
Figure PCTCN2019129068-appb-000017
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-2,0.015mol的原料I-2,0.03mol叔丁醇钾,1.5×10 -4mol Pd 2(dba) 3,1.2×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.9%,收率85.8%;元素分析结构(分子式C 40H 25NOS 2):理论值C,80.10;H,4.20;N,2.34;O,2.67;S,10.69;测试值:C,80.11;H,4.22;N,2.35;O,2.64;S,10.66。ESI-MS(m/z)(M+):理论值为599.14,实测值为599.18。
实施例5:化合物8的合成
Figure PCTCN2019129068-appb-000018
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-3,0.016mol的原料I-2,0.03mol叔丁醇钾,1.6×10 -4mol Pd 2(dba) 3,1.4×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.9%,收率86.9%;元素分析结构(分子式C 46H 37NO):理论值C,89.14;H,6.02;N,2.26;O,2.58;测试值:C,89.15;H,6.03;N,2.28;O,2.54。ESI-MS(m/z)(M+):理论值为619.29,实测值为619.25。
实施例6:化合物10的合成
Figure PCTCN2019129068-appb-000019
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-4,0.018mol的原料I-3,0.03mol叔丁醇钾,1.8×10 -4mol Pd 2(dba) 3,1.6×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.7%,收率86.7%;元素分析结构(分子式C 53H 32N 6O):理论值C,82.63;H,4.62;N,10.71;O,2.04;测试值:C,82.65;H,4.64;N,10.73;O,2.06。ESI-MS(m/z)(M+):理论值为768.26,实测值为768.35。
实施例7:化合物18的合成
Figure PCTCN2019129068-appb-000020
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-5,0.014mol的原料I-4,0.03mol叔丁醇钾,1.4×10 -4mol Pd 2(dba) 3,1.3×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.6%,收率86.5%;元素分析结构(分子式C 48H 37N 3O):理论值C,85.81;H,5.55;N,6.25;O,2.38;测试值:C,85.83;H,5.56;N,6.27;O,2.34。ESI-MS(m/z)(M+):理论值为671.29,实测值为671.25。
实施例8:化合物31的合成
Figure PCTCN2019129068-appb-000021
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-6,0.015mol的原料I-5,0.03mol叔丁醇钾,1.5×10 -4mol Pd 2(dba) 3,1.2×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.5%,收率86.2%;元素分析结构(分子式C 49H 27NO 4):理论值C,84.83;H,3.92;N,2.02;O,9.22;测试值:C,84.85;H,3.93;N,2.03;O,9.24。ESI-MS(m/z)(M+):理论值为693.19,实测值为693.22。
实施例9:化合物47的合成
Figure PCTCN2019129068-appb-000022
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-7,0.016mol的原料I-6,0.03mol叔丁醇钾,1.6×10 -4mol Pd 2(dba) 3,1.4×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.2%,收率86.1%;元素分析结构(分子式C 50H 29NO 3):理论值C,86.81;H,4.23;N,2.02;O,6.94;测试值:C,86.82;H,4.24;N,2.05;O,6.91。ESI-MS(m/z)(M+):理论值为691.21,实测值为691.22。
实施例10:化合物55的合成
Figure PCTCN2019129068-appb-000023
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-8,0.015mol的原料I-7,0.03mol叔丁醇钾,1.5×10 -4mol Pd 2(dba) 3,1.3×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.6%,收率86.3%;元素分析结构(分子式C 48H 35N 3O):理论值C,86.07;H,5.27;N,6.27;O,2.39;测试值:C,86.05;H,5.24;N,6.25;O,2.41。ESI-MS(m/z)(M+):理论值为669.28,实测值为669.22。
实施例11:化合物101的合成
Figure PCTCN2019129068-appb-000024
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-9,0.014mol的原料I-8,0.03mol叔丁醇钾,1.4×10 -4mol Pd 2(dba) 3,1.2×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.4%,收率85.7%;元素分析结构(分子式C 50H 32N 2O 2):理论值C,86.68;H,4.66;N,4.04;O,4.62;测试值:C,86.65;H,4.64;N,4.03;O,4.64。ESI-MS(m/z)(M+):理论值为692.25,实测值为692.22。
实施例12:化合物102的合成
Figure PCTCN2019129068-appb-000025
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-10,0.012mol的原料I-8,0.03mol叔丁醇钾,1.2×10 -4mol Pd 2(dba) 3,1.1×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.6%,收率85.4%;元素分析结构(分子式C 47H 26N 2O 4):理论值C,82.68;H,3.84;N,4.10;O,9.37;测试值:C,82.65;H,3.82;N,4.08;O,9.39。ESI-MS(m/z)(M+):理论值为682.19,实测值为682.22。
实施例13:化合物105的合成
Figure PCTCN2019129068-appb-000026
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-11,0.014mol的原料I-8,0.03mol叔丁醇钾,1.4×10 -4mol Pd 2(dba) 3,1.2×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.5%,收率85.7%;元素分析结构(分子式C 43H 24N 2O 4):理论值C,81.63;H,3.82;N,4.43;O,10.12;测试值:C,81.65;H,3.83;N,4.45;O,10.10。ESI-MS(m/z)(M+):理论值为632.17,实测值为632.22。
实施例14:化合物161的合成
Figure PCTCN2019129068-appb-000027
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-13,0.015mol的中间体B-13,0.03mol叔丁醇钾,1.5×10 -4mol Pd 2(dba) 3,1.2×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.8%,收率86.1%;元素分析结构(分子式C 50H 31NO 3):理论值C,86.56;H,4.50;N,2.02;O,6.92;测试值:C,86.55;H,4.48;N,2.05;O,6.90。ESI-MS(m/z)(M+):理论值为693.23,实测值为693.22。
实施例15:化合物170的合成
Figure PCTCN2019129068-appb-000028
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-14,0.012mol的中间体B-14,0.03mol叔丁醇钾,1.2×10 -4mol Pd 2(dba) 3,1.1×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.6%,收率86.3%;元素分析结构(分子式C 60H 38N 4O):理论值C,86.72;H,4.61;N,6.74;O,1.93;测试值:C,86.71;H,4.59;N,6.72;O,1.91。ESI-MS(m/z)(M+):理论值为830.30,实测值为830.32。
实施例16:化合物190的合成
Figure PCTCN2019129068-appb-000029
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-15,0.013mol的中间体B-17,0.03mol叔丁醇钾,1.3×10 -4mol Pd 2(dba) 3,1.1×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.5%,收率86.5%;元素分析结构(分子式C 55H 31NO 4S):理论值C,82.38;H,3.90;N,1.75;O,7.98;S,4.00;测试值:C,82.39;H,3.91;N,1.78;O,7.96;S,4.01。ESI-MS(m/z)(M+):理论值为801.20,实测值为801.15。
实施例17:化合物192的合成
Figure PCTCN2019129068-appb-000030
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-16,0.012mol的原料I-1,0.03mol叔丁醇钾,1.2×10 -4mol Pd 2(dba) 3,1.0×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.8%,收率86.5%;元素分析结构(分子式C 43H 26N 2O 2):理论值C,85.69;H,4.35;N,4.65;O,5.31;测试值:C,85.68;H,4.33;N,4.66;O,5.33。ESI-MS(m/z)(M+):理论值为602.20,实测值为602.15。
实施例18:化合物193的合成
Figure PCTCN2019129068-appb-000031
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-17,0.014mol的原料I-8,0.03mol叔丁醇钾,1.4×10 -4mol Pd 2(dba) 3,1.2×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.5%,收率86.2%;元素分析结构(分子式C 49H 29N 3O 2):理论值C,85.07;H,4.23;N,6.07;O,4.63;测试值:C,85.09; H,4.25;N,6.09;O,4.61。ESI-MS(m/z)(M+):理论值为691.23,实测值为691.20。
实施例19:化合物194的合成
Figure PCTCN2019129068-appb-000032
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-17,0.015mol的原料I-18,0.03mol叔丁醇钾,1.5×10 -4mol Pd 2(dba) 3,1.3×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.7%,收率86.3%;元素分析结构(分子式C 48H 28N 4O 2):理论值C,83.22;H,4.07;N,8.09;O,4.62;测试值:C,83.23;H,4.09;N,8.11;O,4.60。ESI-MS(m/z)(M+):理论值为692.22,实测值为692.20。
实施例20:化合物195的合成
Figure PCTCN2019129068-appb-000033
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-18,0.013mol的原料I-8,0.03mol叔丁醇钾,1.3×10 -4mol Pd 2(dba) 3,1.2×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.9%,收率86.7%;元素分析结构(分子式C 43H 24N 2O 3):理论值C,83.75;H,3.92;N,4.54;O,7.78;测试值:C,83.77;H,3.93;N,4.56;O,7.75。ESI-MS(m/z)(M+):理论值为616.18,实测值为616.20。
实施例21:化合物196的合成
Figure PCTCN2019129068-appb-000034
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-19,0.015mol的中间体B-18,0.03mol叔丁醇钾,1.5×10 -4mol Pd 2(dba) 3,1.2×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.6%,收率86.1%;元素分析结构(分子式C 68H 40N 2O 3):理论值C,87.53;H,4.32;N,3.00;O,5.14;测试值:C,87.55;H,4.33;N,3.03;O,5.11。ESI-MS(m/z)(M+):理论值为932.30,实测值为932.25。
实施例23:化合物200的合成
Figure PCTCN2019129068-appb-000035
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-15,0.014mol的原料I-6,0.03mol叔丁醇钾,1.4×10 -4mol Pd 2(dba) 3,1.2×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.6%,收 率86.2%;元素分析结构(分子式C 50H 29NO 3):理论值C,86.81;H,4.23;N,2.02;O,6.94;测试值:C,86.83;H,4.24;N,2.04;O,6.93。ESI-MS(m/z)(M+):理论值为691.21,实测值为691.25。
实施例24:化合物201的合成
Figure PCTCN2019129068-appb-000036
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-21,0.012mol的原料I-21,0.03mol叔丁醇钾,1.2×10 -4mol Pd 2(dba) 3,1.0×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.5%,收率86.6%;元素分析结构(分子式C 41H 22N 4O 2S):理论值C,77.59;H,3.49;N,8.83;O,5.04;S,5.05;测试值:C,77.61;H,3.52;N,8.84;O,5.02;S,5.03。ESI-MS(m/z)(M+):理论值为634.15,实测值为634.18。
实施例25:化合物204的合成
Figure PCTCN2019129068-appb-000037
具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A-22,0.013mol的原料I-8,0.03mol叔丁醇钾,1.3×10 -4mol Pd 2(dba) 3,1.2×10 -4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;HPLC纯度98.9%,收率86.7%;元素分析结构(分子式C 42H 23N 3O 3):理论值C,81.67;H,3.75;N,6.80;O,7.77;测试值:81.68;H,3.77;N,6.82;O,7.75。ESI-MS(m/z)(M+):理论值为617.17,实测值为617.20。
有机化合物在发光器件中使用,具有高的玻璃转化温度(Tg)和三线态能级(T1),合适的HOMO、LUMO能级,可作为发光层主体材料使用。对本发明实施例制备的化合物及现有材料分别进行热性能、T1能级以及HOMO能级测试,结果如表3所示。
表3
Figure PCTCN2019129068-appb-000038
注:三线态能级T1是由日立的F4600荧光光谱仪测试,材料的测试条件为2*10 -5的甲苯溶液;玻璃化转变温度Tg由示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;最高占据分子轨道HOMO能级是由电离能量测试系统(IPS-3)测试,测试为大气环境。
由上表数据可知,本发明的化合物具有高的玻璃化转变温度,可提高材料膜相态稳定性,进一步提高器件使用寿命;同时,具有较小的单线态-三线态能级差,这使得应用本发明化合物作为主体材料的能量传递更加充分;本发明化合物含有电子给体与电子受体,使得应用本发明化合物的OLED器件电子和空穴达到平衡状态,保证了电子和空穴的复合率,从而提升了OLED器件的效率和寿命。同时本发明材料具有合适的HOMO能级可以解决载流子的注入问题,可降低器件电压;因此,本发明的有机材料在应用于OLED器件的发光层后,可有效提高器件的发光效率及使用寿命。
以下通过器件实施例1-27和器件比较例1详细说明本发明合成的OLED材料在器件中的应用效果。本发明所述器件实施例2~27、器件比较例1与器件实施例1相比,所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件实施例2~27为使用本发明所述材料作为发光层主体材料应用。各实施例所得器件的结构组成如表4所示。各实施例所得器件的电流效率、寿命的测试结果如表5所示。所得器件的效率衰减系数
Figure PCTCN2019129068-appb-000039
的测试结果如表6所示。
器件实施例1
使用透明玻璃作为基板层1,在其上涂覆厚度为150nm的ITO,作为阳极层2,对其进行洗涤,即依次进行碱洗涤、纯水洗涤,然后干燥,再进行紫外线-臭氧洗涤以清除透明ITO表面的有机残留物。在经洗涤的ITO阳极层2上,利用真空蒸镀装置,蒸镀厚度为10nm的HAT-CN作为空穴注入层3。接着蒸镀厚度为60nm的HT-1作为空穴传输层4。然后蒸镀厚度为10nm的EB-1作为电子阻挡层5。随后,在该电子阻挡层上进行真空蒸镀得到厚度为25nm的发光层6,所述发光层使用主体材料为制备实施例3所制备的化合物1,掺杂材料为BD,化合物1与BD的质量比为95:5。然后,在发光层上继续真空蒸镀厚度为35nm的ET-1和Liq作为电子传输层7,ET-1和Liq的质量比为1:1。接着,在该电子传输层上真空蒸镀厚度为1nm的氟化锂(LiF)作为电子注入层8。最后,在电子注入层上真空蒸镀厚度为100nm的铝(Al)作为阴极层9。相关材料的分子结构式如下所示:
Figure PCTCN2019129068-appb-000040
如上所述地完成OLED发光器件后,用公知的驱动电路将阳极和阴极连接起来,测量器件的电流效率,发光光谱以及器件的寿命。用同样的方法制备的器件实施例和比较例如表4所示;所得器件的电流效率、电压和寿命的测试结果如表5所示。所得器件的效率衰减系数
Figure PCTCN2019129068-appb-000041
的测试结果如表6所示。
表4
Figure PCTCN2019129068-appb-000042
Figure PCTCN2019129068-appb-000043
表5
Figure PCTCN2019129068-appb-000044
Figure PCTCN2019129068-appb-000045
注:寿命测试系统为本发明所有权人与上海大学共同研究的OLED器件寿命测试仪。
由表5的器件数据结果可以看出,与比较例1相比,本发明的有机发光器件无论是在效率还是寿命均相对于已知材料的OLED器件获得较大的提升。
为了比较不同器件在高电流密度下效率衰减的情况,定义效率衰减系数
Figure PCTCN2019129068-appb-000046
进行表示,它表示驱动电流为100mA/cm 2时器件的最大效率μ100与器件的最大效率μm之差与最大效率之间的比值,
Figure PCTCN2019129068-appb-000047
值越大,说明器件的效率滚降越严重,反之,说明器件在高电流密度下快速衰降的问题得到了控制。对器件实施例1-24和比较例1分别进行效率衰减系数
Figure PCTCN2019129068-appb-000048
的测定,检测结果如表6所示:
表6
Figure PCTCN2019129068-appb-000049
从表6的数据来看,通过实施例和比较例的效率衰减系数对比我们可以看出,本发明的有机发光器件能够有效地降低效率滚降。
进一步的本发明材料制备的OLED器件在低温下工作时效率也比较稳定,将器件实施例3、7、21和器件比较例1在-10~80℃区间进行效率测试,所得结果如表7和图2所示。
表7
Figure PCTCN2019129068-appb-000050
从表7和图2的数据可知,器件实施例3、7、21为本发明材料和已知材料搭配的器件结构,和器件比较例1相比,不仅低温效率高,而且在温度升高过程中,效率平稳升高。

Claims (10)

  1. 一种以咔唑为核心的有机化合物,其特征在于,所述有机化合物的结构如通式(1)所示:
    Figure PCTCN2019129068-appb-100001
    通式(1)中,L表示为单键、取代或未取代的亚苯基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚萘基、取代或未取代的亚吡啶基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚咔唑基、取代或未取代的亚二苯并噻吩基、取代为未取代的亚萘啶基;
    R 1表示为通式(2)所示结构:
    Figure PCTCN2019129068-appb-100002
    通式(2)中,i表示为0或1;Z表示为氮原子或C-R 4;且与基团L键合的情况下,Z为碳原子;基团L连接在通式(2)两侧任意碳原子上;
    R 2、R 3分别独立的表示为通式(3)所示结构:
    Figure PCTCN2019129068-appb-100003
    R 2通过L 3-L 4键与通式(1)并环连接;R 3通过L 1-L 2键与通式(1)并环连接;
    X、X 1、X 2分别独立的表示为单键、-O-、-S-、-C(R 5)(R 6)-或-N(R 7)-;X 1、X 2不同时为单键;
    所述Z 1表示为氮原子或C-R 8
    所述R 4、R 8分别独立的表示为氢原子、氘、氰基、卤素原子、C 1-10烷基、取代或未取代的C 6-30芳基、含有一个或多个杂原子的取代或未取代的5~30元杂芳基中的一种;
    R 5-R 7分别独立的表示为C 1-10烷基、取代或未取代的C 6-30芳基、含有一个或多个杂原子的取代或未取代的5~30元杂芳基中的一种;
    所述取代的C 6-30芳基和取代的5~30元杂芳基的取代基任选为氘、氰基、卤素、C 1-10的烷基、C 6-30芳基、含有一个或多个杂原子的5~30元杂芳基中的一种或几种;
    所述杂原子任选自氧原子、硫原子或氮原子中的一种或多种。
  2. 根据权利要求1所述的以咔唑为核心的有机化合物,其特征在于,所述R 4、R 8分别独立的表示为氢原子、氘、氰基、氟原子、甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、己基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的萘啶基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的二苯并呋喃基、取代或未取代的咔唑基、取代或未取代的吡啶基;
    所述R 5-R 7分别独立的表示为甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、己基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的萘啶基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的二苯并呋喃基、取代或未取代的咔唑基、取代或未取代的吡啶基;
    所述可取代基团的取代基任选自甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、己基、苯基、萘基、萘啶基、吡啶基、二联苯基、三联苯基、咔唑基、呋喃基或二苯并呋喃基中的一种或多种。
  3. 根据权利要求1所述的以咔唑为核心的有机化合物,其特征在于,所述X 2表示为单键。
  4. 根据权利要求1所述的以咔唑为核心的有机化合物,其特征在于,所述i表示为1,X表示为单键或氧原子。
  5. 根据权利要求1所述的以咔唑为核心的有机化合物,其特征在于,所述R 1分别表示为:
    Figure PCTCN2019129068-appb-100004
    Figure PCTCN2019129068-appb-100005
    中的一种。
  6. 根据权利要求1所述的有机化合物,其特征在于,所述有机化合物的具体结构式为以下结构中的任一种:
    Figure PCTCN2019129068-appb-100006
    Figure PCTCN2019129068-appb-100007
    Figure PCTCN2019129068-appb-100008
    Figure PCTCN2019129068-appb-100009
    中的一种。
  7. 一种权利要求1-6任一项所述有机化合物的制备方法,其特征在于,制备过程的反应方程式为:
    Figure PCTCN2019129068-appb-100010
    具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入中间体A、中间体B或原料I、叔丁醇钾、Pd 2(dba) 3、三苯基膦及150ml溶剂甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到中目标产物;
    所述中间体B(或原料I)和中间体A的摩尔比为1.0-3.0:1,叔丁醇钾与中间体A的摩尔比为1-5:1,Pd 2(dba) 3与中间体A的摩尔比为0.01-0.03:1,三苯基膦与中间体A摩尔比为0.01-0.03:1。
  8. 一种有机电致发光器件,其特征在于,所述有机电致发光器件包括至少一层功能层含有权利要求1-6任一项所述的以咔唑衍生物为核心的有机化合物。
  9. 根据权利要求8所述的一种有机电致发光器件,所述功能层包括发光层,其特征在于,所述发光层含有权利要求1-6任一项所述的以咔唑衍生物为核心的有机化合物。
  10. 一种照明或显示元件,其特征在于,所述照明或显示元件含有权利要求8或9所述的有机发光器件。
PCT/CN2019/129068 2018-12-29 2019-12-27 一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用 WO2020135686A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811639156.9A CN111377937B (zh) 2018-12-29 2018-12-29 一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用
CN201811639156.9 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135686A1 true WO2020135686A1 (zh) 2020-07-02

Family

ID=71125922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129068 WO2020135686A1 (zh) 2018-12-29 2019-12-27 一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用

Country Status (2)

Country Link
CN (1) CN111377937B (zh)
WO (1) WO2020135686A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402525A (zh) * 2021-05-21 2021-09-17 吉林奥来德光电材料股份有限公司 含有氰基芳香基的化合物、其合成方法、有机材料、功能层和有机电致发光器件
CN114621203A (zh) * 2020-12-11 2022-06-14 江苏三月科技股份有限公司 一种含酮的tadf有机化合物及其应用
CN114805319A (zh) * 2021-01-28 2022-07-29 江苏三月科技股份有限公司 一种以三嗪衍生物为核心的化合物及包含其的有机电致发光器件
CN114989170A (zh) * 2022-07-06 2022-09-02 西安瑞联新材料股份有限公司 一种以5,10-[1,2]苯吩嗪衍生物为核心的化合物及其应用
CN114989170B (zh) * 2022-07-06 2024-06-04 西安瑞联新材料股份有限公司 一种以5,10-[1,2]苯吩嗪衍生物为核心的化合物及其应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102661527B1 (ko) * 2018-12-19 2024-04-26 솔루스첨단소재 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
CN114249684A (zh) * 2020-09-25 2022-03-29 江苏三月科技股份有限公司 一种基于咔唑、蒽酮类结构的化合物及其应用
CN113061136B (zh) 2021-01-22 2022-03-11 陕西莱特光电材料股份有限公司 一种有机化合物以及使用其的电子元件和电子装置
CN113387875B (zh) * 2021-06-30 2024-02-27 昆山国显光电有限公司 一种多元稠环有机化合物、有机电致发光器件和显示面板

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160036158A (ko) * 2014-09-24 2016-04-04 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20160115580A (ko) * 2015-03-27 2016-10-06 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN106467485A (zh) * 2016-08-24 2017-03-01 江苏三月光电科技有限公司 一种以9‑芴酮为核心的化合物及其应用
CN106467482A (zh) * 2016-07-27 2017-03-01 江苏三月光电科技有限公司 一种基于二芳基酮的化合物及其应用
CN106467542A (zh) * 2016-08-18 2017-03-01 江苏三月光电科技有限公司 一种以蒽酮为核心的化合物及其应用
CN107068910A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种含氧杂蒽酮类化合物的有机电致发光器件及其应用
CN107245079A (zh) * 2016-12-30 2017-10-13 江苏三月光电科技有限公司 一种氮杂氧杂蒽酮类化合物及其在oled器件上的应用
CN107353290A (zh) * 2017-07-05 2017-11-17 江苏三月光电科技有限公司 一种以二甲基蒽酮为核心的化合物及其在有机电致发光器件上的应用
KR20170133127A (ko) * 2016-05-25 2017-12-05 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN107556319A (zh) * 2017-03-04 2018-01-09 机光科技股份有限公司 有机电致发光化合物材料及使用该材料的有机电致发光装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108203427A (zh) * 2016-12-19 2018-06-26 江苏三月光电科技有限公司 一种以咔唑为核心的化合物及其在有机电致发光器件上的应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160036158A (ko) * 2014-09-24 2016-04-04 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20160115580A (ko) * 2015-03-27 2016-10-06 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN107068910A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种含氧杂蒽酮类化合物的有机电致发光器件及其应用
KR20170133127A (ko) * 2016-05-25 2017-12-05 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN106467482A (zh) * 2016-07-27 2017-03-01 江苏三月光电科技有限公司 一种基于二芳基酮的化合物及其应用
CN106467542A (zh) * 2016-08-18 2017-03-01 江苏三月光电科技有限公司 一种以蒽酮为核心的化合物及其应用
CN106467485A (zh) * 2016-08-24 2017-03-01 江苏三月光电科技有限公司 一种以9‑芴酮为核心的化合物及其应用
CN107245079A (zh) * 2016-12-30 2017-10-13 江苏三月光电科技有限公司 一种氮杂氧杂蒽酮类化合物及其在oled器件上的应用
CN107556319A (zh) * 2017-03-04 2018-01-09 机光科技股份有限公司 有机电致发光化合物材料及使用该材料的有机电致发光装置
CN107353290A (zh) * 2017-07-05 2017-11-17 江苏三月光电科技有限公司 一种以二甲基蒽酮为核心的化合物及其在有机电致发光器件上的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANG LIU ET AL: "Triazatruxene-Based Thermally Activated Delayed Fluorescence Small Molecules with Aggregation-Induced Emission Properties for Solution-Processable Nondoped OLEDs with Low Efficiency Roll-off", JOURNAL OF MATERIALS CHEMISTRY, vol. 7, no. 31, 16 July 2019 (2019-07-16), pages 9719 - 9725, XP055714970, ISSN: 2050-7534, DOI: 10.1039/C9TC02927C *
YONGHONG CHEN ET AL: "Triazatruxene-Based Small Molecules with Thermally Activated Delayed Fluorescence, Aggregation-Induced Emission and Mechanochromic Luminescence Properties for Solution-Processable Nondoped OLEDs", JOURNAL OF MATERIALS CHEMISTRY, vol. 6, no. 46, 14 November 2018 (2018-11-14), pages 12503 - 12508, XP055714972, ISSN: 2050-7534, DOI: 10.1039/C8TC04721A *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621203A (zh) * 2020-12-11 2022-06-14 江苏三月科技股份有限公司 一种含酮的tadf有机化合物及其应用
CN114621203B (zh) * 2020-12-11 2024-02-13 江苏三月科技股份有限公司 一种含酮的tadf有机化合物及其应用
CN114805319A (zh) * 2021-01-28 2022-07-29 江苏三月科技股份有限公司 一种以三嗪衍生物为核心的化合物及包含其的有机电致发光器件
CN114805319B (zh) * 2021-01-28 2023-09-19 江苏三月科技股份有限公司 一种以三嗪衍生物为核心的化合物及包含其的有机电致发光器件
CN113402525A (zh) * 2021-05-21 2021-09-17 吉林奥来德光电材料股份有限公司 含有氰基芳香基的化合物、其合成方法、有机材料、功能层和有机电致发光器件
CN113402525B (zh) * 2021-05-21 2023-05-12 吉林奥来德光电材料股份有限公司 含有氰基芳香基的化合物、其合成方法、有机材料、功能层和有机电致发光器件
CN114989170A (zh) * 2022-07-06 2022-09-02 西安瑞联新材料股份有限公司 一种以5,10-[1,2]苯吩嗪衍生物为核心的化合物及其应用
CN114989170B (zh) * 2022-07-06 2024-06-04 西安瑞联新材料股份有限公司 一种以5,10-[1,2]苯吩嗪衍生物为核心的化合物及其应用

Also Published As

Publication number Publication date
CN111377937B (zh) 2022-09-27
CN111377937A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2020135686A1 (zh) 一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用
WO2020135687A1 (zh) 一种含硼化合物及其制备方法和其应用
WO2018033087A1 (zh) 一种以蒽酮为核心的化合物及其应用
CN107586261B (zh) 一种含有螺二苯并环庚烯芴的有机化合物及其应用
WO2018113538A1 (zh) 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用
CN110964007B (zh) 一种以喹啉酮衍生物为核心的化合物及其在有机电致发光器件上的应用
WO2019233429A1 (zh) 一种以三芳胺结构为核心的化合物及其制备方法
CN110964021A (zh) 一种以芴为核心的化合物、制备方法及其应用
CN110885334A (zh) 一种以苯并[1,2-b:3,4-b’]二苯并呋喃为核心的有机化合物及其应用
CN113929709A (zh) 一种含硼氮有机化合物及包含其的有机电致发光器件
WO2020052544A1 (zh) 一种以苯并[1,2-b:5,4-b']二苯并呋喃为核心的化合物及其应用
CN110845393A (zh) 一种以螺芴蒽酮为核心的化合物及其在有机电致发光器件上的应用
WO2020057480A1 (zh) 一种以苯并[1,2-b:5,4-b']二苯并呋喃为核心的化合物及其应用
CN110577488A (zh) 一种以咔唑为核心的化合物及其在有机电致发光器件上的应用
WO2019196948A1 (zh) 一种以芳基酮为核心的化合物、其制备方法及其在oled上的应用
CN110577523B (zh) 一种含三芳胺结构的化合物及其制备的有机电致发光器件
WO2019228430A1 (zh) 一种含酮的化合物及其在有机电致发光器件上的应用
CN109796450B (zh) 一种以吡啶并吲哚为核心的化合物及其在电致发光器件上的应用
CN109574908B (zh) 一种含螺二甲基蒽芴的化合物及其在有机电致发光器件上的应用
CN110845508A (zh) 一种以螺芴蒽酮为核心的化合物、制备方法及其应用
CN110642732A (zh) 一种含螺芴蒽酮结构的有机化合物及其应用
CN112479904B (zh) 一种以茚并蒽衍生物为核心的有机化合物及其应用
CN112479901B (zh) 一种以茚并蒽衍生物为核心的有机化合物及其应用
WO2020135790A1 (zh) 一种含硼的化合物及其在有机电致发光器件上的应用
WO2020015675A1 (zh) 一种以三芳胺为核心的化合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904238

Country of ref document: EP

Kind code of ref document: A1