WO2020057185A1 - 阵列基板及显示面板 - Google Patents

阵列基板及显示面板 Download PDF

Info

Publication number
WO2020057185A1
WO2020057185A1 PCT/CN2019/090928 CN2019090928W WO2020057185A1 WO 2020057185 A1 WO2020057185 A1 WO 2020057185A1 CN 2019090928 W CN2019090928 W CN 2019090928W WO 2020057185 A1 WO2020057185 A1 WO 2020057185A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
conversion unit
organic electroluminescence
photoelectric conversion
array substrate
Prior art date
Application number
PCT/CN2019/090928
Other languages
English (en)
French (fr)
Inventor
袁广才
郭康
谷新
李海旭
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/620,572 priority Critical patent/US11222930B2/en
Publication of WO2020057185A1 publication Critical patent/WO2020057185A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/20Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising components having an active region that includes an inorganic semiconductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K65/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element and at least one organic radiation-sensitive element, e.g. organic opto-couplers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an array substrate and a display panel.
  • all colors of light in various display panels are composed of three colors of red R (red) light, green G (green) light, and blue B (blue) light according to different proportions.
  • a set of red, green, and blue sub-pixels that can emit red, green, and blue light forms a minimum display unit. Any color on the display panel can be recorded and expressed by a set of RGB values, so this red light, green light, and blue light are also called three primary colors.
  • OLED Organic electroluminescence display
  • LCD liquid crystal display
  • OLED display panel has a wider color gamut and more Wide viewing angle.
  • the wide color gamut of OLED display panels comes from the light-emitting characteristics of its materials.
  • Organic light-emitting materials of different materials can emit three primary color spectra of pure red, green, and blue light; the wide viewing angle of OLED panels benefits from the A surface light source composed of a light emitting device included in a pixel emits light to the surroundings.
  • the utilization rate of self-emission of OLED display panels is low.
  • Embodiments of the present disclosure provide an array substrate and a display panel, which are used to convert light in a second waveband of the display panel's self-luminescence, which has nothing to do with brightness and purity of hue, into electrical energy, so as to improve the utilization rate of the OLED display panel's self-emission and Display effect; At the same time, self-charging can be achieved by using the converted electric energy to save energy consumption.
  • An embodiment of the present disclosure provides an array substrate, including:
  • An organic electroluminescence unit the organic electroluminescence units are located on the base substrate and arranged in an array, and the light emission spectrum of the organic electroluminescence unit is composed of a first waveband and a second waveband; wherein the first waveband Determined by the emission peak of the light emission spectrum and used to determine the brightness and hue purity of the light emitted by the organic electroluminescence unit;
  • At least one photoelectric conversion unit the photoelectric conversion unit corresponding to the organic electroluminescence unit, and at least used to convert light of a second wavelength band emitted by the corresponding organic electroluminescence unit into electrical energy.
  • the photoelectric conversion unit is located at an edge corresponding to a region where the organic electroluminescence unit is located, or is located at a gap between two adjacent organic electroluminescence units.
  • the photoelectric conversion unit is located on a side of the organic electroluminescence unit facing away from the base substrate; further comprising: located between the photoelectric conversion unit and the organic electroluminescence unit.
  • Thermoelectric / piezoelectric conversion unit for converting the thermal energy emitted by the photoelectric conversion unit and the pressure on the thermoelectric / piezoelectric conversion unit into electric energy, the thermoelectric / piezoelectric conversion unit
  • the conversion unit and the organic electroluminescence unit are insulated from each other.
  • thermoelectric / piezoelectric conversion unit on the base substrate an orthographic projection of the thermoelectric / piezoelectric conversion unit on the base substrate and an orthographic projection of the photoelectric conversion unit on the base substrate overlap.
  • the thermoelectric / piezoelectric conversion unit includes a first transparent electrode, a thermoelectric / piezoelectric material layer, and a second transparent electrode that are sequentially stacked in a stack, wherein the second transparent electrode is located at The side of the thermoelectric / piezoelectric material layer facing the photoelectric conversion unit.
  • the photoelectric conversion unit includes a poly-3-hexylthiophene layer, a zinc oxide layer, and a third transparent layer that are sequentially located on a side of the second transparent electrode facing away from the thermoelectric / piezoelectric material layer. electrode.
  • the photoelectric conversion unit is located between the base substrate and a layer where the organic electroluminescence unit is located, and the photoelectric conversion unit is specifically configured to emit the organic electroluminescence unit. And the light irradiated in the first wave band and the second wave band toward the substrate is converted into electric energy.
  • the method further includes: a pixel defining layer for defining a region where each of the organic electroluminescence units is located, wherein the pixel defining layer is in contact with the substrate on a side facing away from the substrate
  • a groove is provided at the corresponding position of the photoelectric conversion unit, and a light guide layer is provided on the side of the groove, and the groove is used to irradiate the light from the organic electroluminescence unit to the light guide layer and the outside.
  • the light to the bottom surface of the groove is guided to the photoelectric conversion unit; the photoelectric conversion unit is further configured to convert the light guided by the groove and the received external light into electrical energy.
  • a cross-sectional view of the groove in a direction perpendicular to the base substrate is a trapezoidal structure having a wide width and a narrow width.
  • an included angle between a side surface of the groove and a surface of the pixel defining layer facing away from the base substrate is 10 degrees to 80 degrees.
  • a depth of the groove is two thirds of a thickness of the pixel defining layer.
  • a material of the light guide layer is a metal having a reflective property.
  • an orthographic projection of the groove on the base substrate and an orthographic projection of the photoelectric conversion unit on the base substrate overlap.
  • the method further includes: a transistor layer located between the base substrate and a layer where the organic electroluminescence unit is located, wherein the photoelectric conversion unit is located between the base substrate and the substrate Between the transistor layers.
  • the photoelectric conversion unit is located on a side of the organic electroluminescence unit facing away from the base substrate, and the photoelectric conversion unit is specifically configured to emit the organic electroluminescence unit and The light irradiated to the second wavelength band on the display side is converted into electric energy.
  • the photoelectric conversion unit includes a fourth transparent electrode, a P-type semiconductor layer, an intrinsic semiconductor layer, an N-type semiconductor layer, and a fifth transparent electrode that are disposed in a stack.
  • a material of the intrinsic semiconductor layer corresponding to the organic electroluminescence unit emitting red light is amorphous silicon; a material corresponding to the organic electroluminescence unit emitting green light
  • the material of the intrinsic semiconductor layer is amorphous silicon doped with 5 * 10 14 carbon particles; the material of the intrinsic semiconductor layer corresponding to the organic electroluminescent unit emitting blue light is doped with 9 * 10 13 carbon particles of amorphous silicon.
  • the method further includes a first insulating layer and a trace on a side of the fifth transparent electrode facing away from the N-type semiconductor layer;
  • the first insulating layer covers the fourth transparent electrode, the P-type semiconductor layer, the intrinsic semiconductor layer, the N-type semiconductor layer, and the fifth transparent electrode, respectively, which are perpendicular to the base substrate. Lateral surface
  • the trace is connected to the fifth transparent electrode through a via hole penetrating through the first insulating layer.
  • an encapsulation layer is further provided between the organic electroluminescence unit and the photoelectric conversion unit.
  • the method further includes: a touch unit located at a gap between the organic electroluminescence units.
  • the touch unit includes a first touch electrode, a second insulation layer, and a second touch electrode that are arranged in a stack.
  • the touch unit is located on a side of the organic light emitting unit facing away from the base substrate; and the photoelectric conversion unit is located on a side of the organic electroluminescent unit facing away from the base substrate.
  • the first touch electrode and the fourth transparent electrode are disposed on the same layer, the first insulation layer is reused as the second insulation layer, and the second touch electrode is the same as the wiring Layer settings.
  • an embodiment of the present disclosure further provides a display panel including an array substrate and a protective cover plate opposite to each other, wherein the array substrate is the array substrate according to the embodiment of the present disclosure.
  • An embodiment of the present disclosure provides an array substrate and a display panel.
  • the array substrate includes a base substrate, organic electroluminescence units arranged in an array on the base substrate, and at least one and each organic electroluminescence unit.
  • Corresponding photoelectric conversion unit the emission spectrum of the organic electroluminescence unit is composed of the first waveband and the second waveband; wherein the first waveband is determined by the emission peak of the emission spectrum and is used to determine the brightness of the light emitted by the organic electroluminescence unit And hue purity; the photoelectric conversion unit is at least used to convert light of the second wavelength band emitted by the corresponding organic electroluminescence unit into electrical energy.
  • the present disclosure adds a photoelectric conversion unit corresponding to the organic electroluminescence unit on the array substrate, the second waveband light emitted by the organic electroluminescence unit and independent of brightness and hue purity can be converted into the corresponding photoelectric conversion unit into Electric energy and electric energy can be used for self-charging, so the utilization rate of the self-luminous of the display panel is improved, and the display effect of the display panel can be improved, while the energy consumption is saved.
  • FIG. 1 is a schematic structural diagram of an array substrate provided by an embodiment of the present disclosure
  • 2 is a light emission spectrum chart of a red light emitting unit
  • 3 is a light emission spectrum chart of a green light emitting unit
  • Embodiment 1 of the present disclosure is a schematic structural diagram of an array substrate provided by Embodiment 1 of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an array substrate provided in Embodiment 2 of the present disclosure.
  • FIG. 7 and 8 are schematic wiring diagrams of the traces provided in Embodiment 2 of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an array substrate provided in Embodiment 3 of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an array substrate provided in Embodiment 4 of the present disclosure.
  • FIG. 11 is a schematic structural diagram of an array substrate provided in Embodiment 5 of the present disclosure.
  • An array substrate provided by an embodiment of the present disclosure, as shown in FIG. 1, includes:
  • An organic electroluminescence unit 102 which is arranged in an array on a base substrate 101;
  • At least one photoelectric conversion unit 103 corresponds to the organic electroluminescence unit 102, and is at least used to convert light of a second wavelength band emitted by the corresponding organic electroluminescence unit 102 into electrical energy.
  • each organic electroluminescence unit 102 may correspond to at least one photoelectric conversion unit 103; the light emission spectrum of the organic electroluminescence unit 102 is composed of a first waveband and a second waveband; wherein the first waveband is emitted by the light emission spectrum Peak determination is used to determine the brightness and hue purity of the light emitted by the organic electroluminescent unit.
  • the organic electroluminescent unit 102 may be a red light emitting unit R, a green light emitting unit G, or a blue light emitting unit B; of course, in specific implementation, the organic electroluminescent unit 102 may also be yellow
  • the light emitting unit is not limited herein.
  • the organic electroluminescent unit 102 is a red light emitting unit R, its corresponding emission spectrum is shown in FIG. 2.
  • the emission peak EL Peak of the red light emitting unit R is 618 nm, and the half-peak width FWHM is 40 nm. It is well known that the emission peak EL Peak of the light emission spectrum determines the brightness and hue purity of the organic electroluminescence unit 102.
  • the first band of the red light emitting unit R may be a band near the emission peak EL Peak.
  • the second wavelength band may be 639nm-730nm.
  • the photoelectric conversion unit 103 provided corresponding to the red light emitting unit R converts light in a second wavelength band of 639nm-730nm into electric energy. In this way, the utilization ratio of the self-emission of the red light emitting unit R is improved, and the brightness and the purity of the hue of the self-emission of the red light emitting unit R are also ensured, and the display effect is improved.
  • the converted electric energy can also be used for self-charging, thereby saving energy consumption.
  • the organic electroluminescent unit 102 is a green light emitting unit G
  • the corresponding light emission spectrum is shown in FIG. 3.
  • the emission peak EL Peak of the green light emitting unit G is 532 nm
  • the half-width FWHM It is 40nm.
  • the first wave band of the green light emitting unit G may be a band near the emission peak EL Peak, for example, 480 nm-552 nm
  • the second wave band may accordingly be 553 nm-630 nm.
  • the photoelectric conversion unit 103 provided corresponding to the green light emitting unit G converts light in a second wavelength band of 553 nm-630 nm into electrical energy. In this way, the utilization rate of self-emission of the green light-emitting unit G is improved, and the brightness and color purity of the self-emission of the green-light emitting unit G are also ensured, and the display effect is improved. In addition, the converted electric energy can also be used for self-charging, thereby saving energy consumption.
  • the organic electroluminescent unit 102 is a blue light emitting unit B
  • its corresponding emission spectrum is shown in FIG. 4.
  • the emission peak EL peak of the blue light emitting unit B is 460 nm and the half-width FWHM is 20 nm .
  • the first wave band of the blue light emitting unit B may be a band near the emission peak EL Peak, for example, 430nm-470nm, and the second waveband may accordingly be 471nm-530nm.
  • the photoelectric conversion unit 103 provided corresponding to the blue light emitting unit B converts light in the second wavelength band 471nm-530nm into electric energy.
  • the utilization ratio of the self-emission of the blue light-emitting unit B is improved, and the brightness and the purity of the hue of the self-emission of the blue-light emitting unit B are also ensured, and the display effect is improved.
  • the converted electric energy can also be used for self-charging, thereby saving energy consumption.
  • the ranges of the first and second bands of the red light emitting unit R, the green light emitting unit G, and the blue light emitting unit B can be flexibly set according to requirements, and are not limited to the above-mentioned example ranges.
  • the organic electroluminescent unit 102 generally includes an anode 1021, a light-emitting layer 1022, and a cathode 1023.
  • the light-emitting layer 1022 may include a hole injection layer, a hole transport layer, and a light-emitting material layer. , Electron transport layer and electron injection layer. It is specifically divided into an organic electroluminescent unit 102 with a top emission structure and an organic electroluminescent unit 102 with a bottom emission structure.
  • an organic electroluminescence unit 102 having a top emission structure is used in the embodiment provided in the present disclosure.
  • the anode 1021 is an opaque total reflection electrode and is located at the anode 1021.
  • the upper cathode 1023 is a transparent or translucent electrode.
  • the photoelectric conversion unit 103 can also be disposed on the base substrate 101, and the photoelectric conversion unit 103 can be used to emit the organic electroluminescence unit 102 and be reflected by the cathode 1023. After the light is guided, all the light (that is, the light including the first wave band and the second wave band) that is irradiated to the substrate 101 is converted into electric energy, so as to improve the utilization ratio of the organic electroluminescence unit 102 to emit light, while avoiding the bottom and sides Light leakage improves the stability of the display panel without affecting the display performance.
  • the organic electroluminescence unit 102 emits light with a brightness
  • the light in the second wavelength band that has nothing to do with the hue purity can be converted into electric energy by the corresponding photoelectric conversion unit 103, so the utilization rate of the self-emission of the display panel is improved, and the display performance of the display panel is not affected.
  • the electric energy converted by the photoelectric conversion unit 103 can be charged to the battery at any time, thereby saving energy consumption.
  • the array substrate provided by the embodiment of the present disclosure includes a base substrate 101, an organic electroluminescence unit 102 on the base substrate 101, and at least one corresponding to each organic electroluminescence unit 102.
  • the photoelectric conversion unit 103 wherein the emission spectrum of the organic electroluminescence unit 102 is composed of a first wavelength band and a second wavelength band; wherein the first wavelength band is determined by the emission peak of the emission spectrum, and is used to determine the light emission of the organic electroluminescence unit. Brightness and hue purity;
  • the photoelectric conversion unit 103 is specifically configured to convert light of the second wavelength band emitted by the corresponding organic electroluminescence unit 102 and irradiated to the display side (ie, the side of the organic electroluminescence unit 102 facing away from the substrate 101) into electrical energy.
  • the photoelectric conversion unit 103 is located at the edge of the area corresponding to the organic electroluminescence unit 102 (as shown in FIG. 1), or is located at the phase A gap between two adjacent organic electroluminescent units 102.
  • the above-mentioned array substrate provided by the embodiment of the present disclosure generally further includes a packaging layer 104 located on the side of the organic electroluminescent unit 102 facing away from the substrate substrate 101, and the photoelectric conversion unit 103 is specifically located on the package.
  • the side of the layer 104 facing away from the organic electroluminescent unit 102 is located on the upper surface of the encapsulation layer 104 in FIG. 2.
  • the photoelectric conversion unit 103 converts light corresponding to the organic electroluminescence unit 102 upward and irradiates the second wavelength band of the photoelectric conversion unit 103 into electrical energy;
  • the existing manufacturing process of the array substrate can be maintained, and only the process of preparing the photoelectric conversion unit 103 is added, and the manufacturing method is relatively simple.
  • the above-mentioned array substrate provided in the embodiment of the present disclosure generally further includes: a polyimide layer disposed between the substrate 101 and the layer where the organic electroluminescent unit 102 is located. 105.
  • the transistor layer 107 includes an active layer 1071, a first gate insulating layer 1072, a first gate 1073, a second gate insulating layer 1074, a second gate 1075, an interlayer dielectric layer 1076, and a source and drain 1077.
  • the photoelectric conversion unit 103 includes a fourth transparent electrode 1031, a P-type semiconductor layer 1032, an intrinsic semiconductor layer 1033, and an N-type semiconductor layer. 1034 and a fifth transparent electrode 1035.
  • the array substrate may further be provided with a first insulating layer 1036 and a trace 1037 on a side of the fifth transparent electrode 1035 facing away from the N-type semiconductor layer 1034, and the trace 1037 is connected to the fifth transparent electrode through a through hole penetrating the first insulating layer 1036. 1035 connection.
  • the first insulating layer 1036 specifically covers the fourth transparent electrode 1031, the P-type semiconductor layer 1032, the intrinsic semiconductor layer 1033, the N-type semiconductor layer 1034, and the fifth transparent electrode 1035, respectively, at the side surfaces perpendicular to the base substrate 101, And the surface of the packaging layer 104 facing away from the organic electroluminescent unit 102.
  • the P-type semiconductor layer 1032, the intrinsic semiconductor layer 1033, and the N-type semiconductor layer 1034 may be semiconductor layers based on materials such as gallium nitride, copper indium gallium selenium, or silicon-based materials, which are not specifically limited herein.
  • the materials of the fourth transparent electrode 1031, the fifth transparent electrode 1036, and the trace 1037 may be ITO, IZO, or the like.
  • the intrinsic semiconductor layer 1033 such as a silicon-based amorphous silicon ( ⁇ -Si) semiconductor layer itself, has a low absorption rate of red light (less than 5%) Therefore, when the organic electroluminescent unit 102 is a red light emitting unit R, the intrinsic semiconductor layer 1033 need not be doped.
  • the organic electroluminescent unit 102 is a green light emitting unit G or a blue light emitting unit B, in order for the corresponding photoelectric conversion unit 103 to absorb light in the second wavelength band, a predetermined amount of the intrinsic semiconductor layer 1033 needs to be doped. Carbon particles.
  • the organic electroluminescent unit 102 when the organic electroluminescent unit 102 is a green light emitting unit G, 5 * 10 14 carbon particles can be doped into the ⁇ -Si semiconductor layer to increase ⁇ .
  • -Si's forbidden band width realizes the absorption and conversion of light in the second wave band of the blue light emitting unit B;
  • 9 * 10 13 carbons can be doped into the ⁇ -Si semiconductor layer Particles to increase the forbidden band width of ⁇ -Si and realize the absorption and conversion of light in the second wavelength band of the blue light emitting unit B.
  • the fifth transparent electrodes 1031 of each photoelectric conversion unit 103 may be connected to each other, and each photoelectric conversion unit Traces 1037 of 103 are connected to each other.
  • the traces 1037 of the photoelectric conversion units 103 can be connected to each other in a manner as shown in FIGS. 6 and 7.
  • FIG. 8 An array substrate provided by an embodiment of the present disclosure is shown in FIG. 8. Since the array substrate provided by the embodiment of the present disclosure is compared with the array substrate provided by the embodiment corresponding to FIG. 5, only the touch control function is integrated in the array substrate provided by the embodiment of the present disclosure. Therefore, only the array provided by the embodiment of the present disclosure is described below. The content of implementing the touch function on the substrate is described, and the overlap of the embodiment corresponding to FIG. 5 will not be repeated.
  • the array substrate provided by the embodiment of the present disclosure further includes: a touch unit 110 located at a gap between the organic electroluminescent units 102;
  • the touch unit 110 includes a first touch electrode 1101, a second insulating layer 1102, and a second touch electrode 1103, which are sequentially located on a side of the encapsulation layer 104 facing away from the organic electroluminescence unit 102;
  • the first touch electrode 1101 may be provided on the same layer as the fourth transparent electrode 1031 in the photoelectric conversion unit 103, and the second insulating layer 1102 may be the same as the first insulating layer 1036 in the photoelectric conversion unit 103 Multiplexing, the second touch electrode 1103 may be disposed on the same layer as the wiring 1037.
  • FIG. 9 An array substrate provided by an embodiment of the present disclosure is shown in FIG. 9. Compared with the array substrate provided in the embodiment corresponding to FIG. 5, the difference is that the structures of the photoelectric conversion units 103 are different in the two, and the array substrate provided by the embodiment of the present disclosure can realize the functions of thermoelectricity and piezoelectric conversion. Therefore, only the differences between the embodiment of the present disclosure and the embodiment corresponding to FIG. 5 will be described below.
  • the array substrate provided by the embodiment of the present disclosure further includes a thermoelectric / piezoelectric conversion unit 111 and a thermoelectric / piezoelectric conversion unit 111 located between the packaging layer 104 and the photoelectric conversion unit 103. It is used to convert the thermal energy emitted by the photoelectric conversion unit 103 and the pressure on the thermoelectric / piezoelectric conversion unit 111 into electrical energy.
  • thermoelectric / piezoelectric conversion unit 111 on the base substrate 101 overlaps the orthographic projection of the thermoelectric / piezoelectric conversion unit 111 on the base substrate 101 and the orthographic projection of the photoelectric conversion unit 103 on the base substrate 101 overlap.
  • thermoelectric / piezoelectric conversion unit 111 includes a first transparent electrode 1111, which is located on the side of the packaging layer 104 facing the photoelectric conversion unit 103 in sequence, and the thermoelectric / pressure The electric material layer 1112 and the second transparent electrode 1113.
  • the material of the thermoelectric / piezoelectric material layer 1112 can be lead zirconate titanate piezoelectric ceramic (PZT), polyvinylidene fluoride (PVDF), or zinc oxide (ZnO). .
  • the photoelectric conversion unit 103 includes a poly-3-hexylthiophene layer 1031 ′, which is located on the side of the second transparent electrode 1113 facing away from the thermoelectric / piezoelectric material layer 1112, A zinc oxide layer 1032 'and a third transparent electrode 1033'.
  • thermoelectric / piezoelectric conversion unit 111 is made of the same material, which has the advantages of low preparation cost and small overall size.
  • FIG. 10 An array substrate provided by an embodiment of the present disclosure is shown in FIG. 10. Compared with the array substrate provided by the embodiment corresponding to FIG. 5 of the present disclosure, the difference is mainly that the specific setting position and function of the photoelectric conversion unit 103 are different. Therefore, the differences between the embodiment of the present disclosure and the embodiment corresponding to FIG. 5 will be described in detail below, and the overlapping portions will not be described again.
  • the photoelectric conversion unit 103 is disposed between the substrate 101 and the layer where the organic electroluminescence unit 102 is located, and is specifically configured to emit and pass through the organic electroluminescence unit 102.
  • the cathode 1023 of the organic electroluminescence unit 102 of the emission structure reflects and irradiates the first and second bands of light toward the substrate 101 to be converted into electric energy, thereby improving the utilization rate of self-emission of the display panel, saving energy consumption and avoiding Light leakage at the bottom improves the stability of the display panel.
  • the photoelectric conversion units 103 may be evenly distributed on the base substrate 101.
  • the array substrate may further include a transistor layer 107 located between the substrate 101 and the layer where the organic electroluminescence unit 102 is located.
  • the photoelectric conversion unit 103 may be disposed between the base substrate 101 and the transistor layer 107. In this way, after the photoelectric conversion unit 103 is prepared on the base substrate 101, other film layers in the array substrate are formed through the existing preparation process, so that the process variation is small and the production cost is reduced as much as possible.
  • the photoelectric conversion unit 103 includes a fourth metal electrode 1031 ′′, a P-type semiconductor layer 1032, an intrinsic semiconductor layer 1033, an N-type semiconductor layer 1034, a fifth transparent electrode 1035, and a first layer.
  • the insulation layer 1036 and the trace 1037 are connected to the fifth transparent electrode 1035 through a via hole penetrating the first insulation layer 1036.
  • the fourth metal electrode 1031 is in contact with the substrate 101 and the first insulation
  • the layer 1036 also covers the surface of the fourth metal electrode 1031 ′′, the P-type semiconductor layer 1032, the intrinsic semiconductor layer 1033, the N-type semiconductor layer 1034, and the fifth transparent electrode 1035 respectively perpendicular to the base substrate 101, and the base substrate 101 faces A surface on one side of the organic electroluminescence unit 102.
  • the fourth metal electrode 1031 is in contact with the first buffer layer 106, and the first insulating layer 1036 covers the surface of the first buffer layer 106 facing the organic electroluminescent unit 102 side.
  • it may further include: at a layer where the trace 1037 is located
  • the flat layer 112 and the buffer layer 113 are sequentially provided to the transistor layer 107 side.
  • FIG. 11 An array substrate provided by an embodiment of the present disclosure is shown in FIG. 11. Compared with the array substrate provided by the embodiment corresponding to FIG. 10 in the present disclosure, in order to emit more ineffective light (specifically, light emitted from the organic electroluminescence element 102 and irradiating the pixel defining layer 109), and externally incident on the display panel The internal light) is converted into electrical energy, which further saves energy consumption. As shown in FIG. 11, in the pixel defining layer 109 in the fifth embodiment of the present disclosure, the side facing away from the substrate 101 (ie, the upper surface of the pixel defining layer 109 in FIG.
  • a groove is provided at a position corresponding to the photoelectric conversion unit 103, and a light guide layer 114 is provided on the side of the groove.
  • the groove is used to irradiate the light from the organic electroluminescence unit 102 to the light guide layer 114 and the outside.
  • the light reaching the bottom surface of the groove is guided to the photoelectric conversion unit 103; the photoelectric conversion unit 103 is not only used to emit the organic electroluminescence unit 102 and reflect it after being reflected by the cathode 1023 and after being guided by the light guide layer 114 to irradiate the first substrate 101
  • One-band and second-band light is converted into electrical energy, and can also be used to convert the light guided by the groove and the received external light into electrical energy.
  • a cross-sectional view of the groove in a direction perpendicular to the base substrate 101 may be a trapezoidal structure having a wide width and a narrow width.
  • the cross-sectional view of the groove in a direction perpendicular to the substrate 101 may also have other structures, as long as the light from the organic electroluminescent unit 102 to the light guide layer 114 in the pixel defining layer 109 can be guided to the photoelectric conversion unit 103 That is, it is not specifically limited here.
  • the angle ⁇ between the side of the groove and the surface of the pixel defining layer 109 facing away from the substrate 101 is 10 degrees to 80 degrees.
  • the depth d1 of the groove is two thirds of the thickness d2 of the pixel defining layer 109.
  • the material of the light guide layer 114 may be specifically a metal having a reflective property. In order to make the light reflected by the light guide layer 114 enter the photoelectric conversion unit 103 to a large extent, as shown in FIG. 11, the orthographic projection of the groove on the substrate 101 and the orthographic projection of the photoelectric conversion unit 103 on the substrate 101 overlap. .
  • the touch unit 110 in the array substrate provided in the embodiment corresponding to FIG. 8 in the present disclosure can also be applied to the array substrate provided in the embodiments corresponding to FIG. 9, FIG. 10, and FIG. 11. And according to the specific structure of the array substrate provided in the embodiments corresponding to the present disclosure and FIG. 9, FIG. 10, and FIG. 11, it can be known that the touch unit 110 is applied to the embodiments provided in the embodiments corresponding to this disclosure and FIG. 9, 10, and 11.
  • the touch unit 110 is specifically located at a gap between the organic electroluminescent units 102, and includes a first touch electrode 1101 and a second insulating layer 1102 which are sequentially located on a side of the encapsulation layer 104 facing away from the organic electroluminescent unit 102. And the second touch electrode 1103.
  • each film layer of the touch unit 110 does not involve the problem of being multiplexed with or the same layer as the film layer of the photoelectric conversion unit 103.
  • an embodiment of the present disclosure further provides a display panel including an array substrate and a protective cover plate opposite to each other.
  • the array substrate is the above-mentioned array substrate provided by the embodiment of the present disclosure.
  • the display panel may be: Mobile phones, tablets, televisions, monitors, laptops, digital cameras, navigators, smart watches, fitness wristbands, personal digital assistants, self-service deposit / withdrawal machines and any other products or components with display capabilities.
  • Other essential components of the display panel are understood by those of ordinary skill in the art, such as a circular polarizer disposed between the array substrate and the protective cover, which will not be repeated here and should not be used as Limitations on this disclosure.
  • a circular polarizer disposed between the array substrate and the protective cover

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开实施例提供了一种阵列基板及显示面板,包括:衬底基板,位于衬底基板上呈阵列排布的有机电致发光单元,及与各有机电致发光单元对应的光电转换单元;有机电致发光单元的发光光谱由第一波段和第二波段组成;其中第一波段由发光光谱的发射峰决定,用于确定有机电致发光单元所发出光线的明亮程度和色调纯度;光电转换单元至少用于将对应的有机电致发光单元发出的第二波段的光线转换成电能。由于通过在阵列基板上增设与有机电致发光单元对应的光电转换单元,使得有机电致发光单元发出且与明亮程度、色调纯度无关的第二波段光线可经对应的光电转换单元转换成电能,电能可用于自充电,因此提高了显示面板自发光的利用率,而且节约能耗。

Description

阵列基板及显示面板
相关申请的交叉引用
本申请要求在2018年09月18日提交中国专利局、申请号为201811086394.1、发明名称为“一种阵列基板及显示面板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种阵列基板及显示面板。
背景技术
目前各种显示面板中所有颜色的光,都由红R(red)光、绿G(green)光、蓝B(blue)光三种色光按照不同的比例混合而成。一组可发出红光、绿光、蓝光的红色子像素、绿色子像素和蓝色子像素构成一个最小的显示单位。显示面板上的任何一个颜色都可以由一组RGB值来记录和表达,因此这红光、绿光、蓝光又称为三原色光。
有机电致发光显示面板(OLED,Organic Electroluminescence Display)具有独特的面光源自发光特性,相较于需要背光的液晶显示面板(Liquid Crystal Display,LCD),OLED显示面板拥有更广阔的色域和更宽的视角。具体地,OLED显示面板广阔的色域来源于其材料本身的发光特性,不同材料的有机发光体可以发出色调较纯的红光、绿光、蓝光三原色光谱;OLED面板的宽视角得益于子像素中所含发光器件构成的面光源向四周发光的特性。然而,OLED显示面板自发光的利用率较低。
发明内容
本公开实施例提供了一种阵列基板及显示面板,用以将显示面板的自发光中与明亮程度、色调纯度无关的第二波段光线转换成电能,以提高OLED 显示面板自发光的利用率和显示效果;同时还可采用转换所得的电能进行自充电,节约能耗。
本公开实施例提供了一种阵列基板,包括:
衬底基板;
有机电致发光单元,所述有机电致发光单元位于所述衬底基板上且呈阵列排布,所述有机电致发光单元的发光光谱由第一波段和第二波段组成;其中第一波段由发光光谱的发射峰决定,用于确定所述有机电致发光单元所发出光线的明亮程度和色调纯度;
至少一个光电转换单元,所述光电转换单元与所述有机电致发光单元对应,至少用于将对应的所述有机电致发光单元发出的第二波段的光线转换成电能。
在一种可能的实施方式中,所述光电转换单元位于对应所述有机电致发光单元所在区域的边缘处,或者位于相邻两个所述有机电致发光单元的间隙处。
在一种可能的实施方式中,所述光电转换单元位于所述有机电致发光单元的背离所述衬底基板的一面;还包括:位于所述光电转换单元与所述有机电致发光单元之间的热电/压电转换单元,所述热电/压电转换单元用于将所述光电转换单元散发的热能以及对所述热电/压电转换单元的压力转换成电能,所述热电/压电转换单元与所述有机电致发光单元之间相互绝缘。
在一种可能的实施方式中,所述热电/压电转换单元在所述衬底基板的正投影与所述光电转换单元在所述衬底基板的正投影重叠。
在一种可能的实施方式中,所述热电/压电转换单元包括依次叠层设置的第一透明电极、热电/压电材料层和第二透明电极,其中,所述第二透明电极位于所述热电/压电材料层的面向所述光电转换单元的一面。
在一种可能的实施方式中,所述光电转换单元包括依次位于所述第二透明电极背离所述热电/压电材料层一侧的聚-3-己基噻吩层、氧化锌层和第三透明电极。
在一种可能的实施方式中,所述光电转换单元位于所述衬底基板与所述有机电致发光单元所在层之间,所述光电转换单元具体用于将所述有机电致发光单元发出且照射向所述衬底基板方向第一波段和第二波段的光线转换成电能。
在一种可能的实施方式中,还包括:用于限定各所述有机电致发光单元所在区域的像素界定层,其中,所述像素界定层在背离所述衬底基板的一面在与所述光电转换单元对应的位置处具有凹槽,所述凹槽的侧面设置有导光层,所述凹槽用于将所述有机电致发光单元照射至所述导光层的光线,以及外界照射至所述凹槽底面的光线引导至所述光电转换单元;所述光电转换单元还用于将经所述凹槽引导出的光线以及接收到的外界光线转换成电能。
在一种可能的实施方式中,所述凹槽在垂直于所述衬底基板方向上的剖面图为上宽下窄的梯形结构。
在一种可能的实施方式中,所述凹槽的侧面与所述像素界定层的背离所述衬底基板的表面的夹角为10度~80度。
在一种可能的实施方式中,所述凹槽的深度为所述像素界定层厚度的三分之二。
在一种可能的实施方式中,所述导光层的材质为具有反射性能的金属。
在一种可能的实施方式中,所述凹槽在所述衬底基板的正投影与所述光电转换单元在所述衬底基板的正投影重叠。
在一种可能的实施方式中,还包括:位于所述衬底基板与所述有机电致发光单元所在层之间的晶体管层,其中,所述光电转换单元位于所述衬底基板与所述晶体管层之间。
在一种可能的实施方式中,所述光电转换单元位于所述有机电致发光单元背离所述衬底基板的一面,且所述光电转换单元具体用于将所述有机电致发光单元发出且照射向显示侧的第二波段的光线转换成电能。
在一种可能的实施方式中,所述光电转换单元包括层叠设置的第四透明电极、P型半导体层、本征半导体层、N型半导体层和第五透明电极。
在一种可能的实施方式中,与出射红光的所述有机电致发光单元对应的所述本征半导体层的材质为非晶硅;与出射绿光的所述有机电致发光单元对应的所述本征半导体层的材质为掺杂有5*10 14碳粒子的非晶硅;与出射蓝光的所述有机电致发光单元对应的所述本征半导体层的材质为掺杂有9*10 13碳粒子的非晶硅。
在一种可能的实施方式中,还包括位于所述第五透明电极背离所述N型半导体层一面的第一绝缘层和走线;
所述第一绝缘层覆盖所述第四透明电极、所述P型半导体层、所述本征半导体层、所述N型半导体层、所述第五透明电极的分别与所述衬底基板垂直的侧表面;
所述走线通过贯穿所述第一绝缘层的过孔与所述第五透明电极连接。
在一种可能的实施方式中,所述有机电致发光单元与所述光电转换单元之间还具有封装层。
在一种可能的实施方式中,还包括:位于各所述有机电致发光单元间隙处的触控单元。
在一种可能的实施方式中,所述触控单元包括叠层设置的第一触控电极、第二绝缘层和第二触控电极。
在一种可能的实施方式中,所述触控单元位于所述有机发光单元的背离所述衬底基板的一面;所述光电转换单元位于所述有机电致发光单元背离所述衬底基板的一面时,所述第一触控电极与所述第四透明电极同层设置,所述第一绝缘层复用为所述第二绝缘层,所述第二触控电极与所述走线同层设置。
基于同一发明构思,本公开实施例还提供一种显示面板,包括相对而置的阵列基板和保护盖板,其中,所述阵列基板为本公开实施例所述的阵列基板。
本公开实施例的有益效果包括:
本公开实施例提供了一种阵列基板及显示面板,该阵列基板包括:衬底 基板,位于衬底基板上呈阵列排布的有机电致发光单元,以及至少一个与每一有机电致发光单元对应的光电转换单元;有机电致发光单元的发光光谱由第一波段和第二波段组成;其中第一波段由发光光谱的发射峰决定,用于确定有机电致发光单元所发出光线的明亮程度和色调纯度;光电转换单元至少用于将对应的有机电致发光单元发出的第二波段的光线转换成电能。由于本公开通过在阵列基板上增设与有机电致发光单元对应的光电转换单元,使得有机电致发光单元发出且与明亮程度、色调纯度无关的第二波段光线可经对应的光电转换单元转换成电能,又电能可用于自充电,因此提高了显示面板自发光的利用率,而且可提升显示面板的显示效果,同时节约了能耗。
附图说明
图1为本公开实施例提供的阵列基板的结构示意图;
图2为红光发光单元的发光光谱图;
图3为绿光发光单元的发光光谱图;
图4为蓝光发光单元的发光光谱图;
图5为本公开实施例一提供的阵列基板的结构示意图;
图6为本公开实施例二提供的阵列基板的结构示意图;
图7和图8分别为本公开实施例二提供的走线的布线示意图;
图9为本公开实施例三提供的阵列基板的结构示意图;
图10为本公开实施例四提供的阵列基板的结构示意图;
图11为本公开实施例五提供的阵列基板的结构示意图。
具体实施方式
下面结合附图,对本公开实施例提供的阵列基板及显示面板的具体实施方式进行详细的说明。需要说明的是本说明书所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例;并且在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合;此外,基于本公开中的实施例,本 领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
本公开实施例提供的一种阵列基板,如图1所示,包括:
衬底基板101;
有机电致发光单元102,有机电致发光单元102位于衬底基板101上呈阵列排布;
至少一个光电转换单元103,光电转换单元103与有机电致发光单元102对应,至少用于将对应的有机电致发光单元102发出的第二波段的光线转换成电能。具体地,每个有机电致发光单元102可以与至少一个光电转换单元103相对应;有机电致发光单元102的发光光谱由第一波段和第二波段组成;其中第一波段由发光光谱的发射峰决定,用于确定有机电致发光单元所发出光线的明亮程度和色调纯度。
具体地,如图1所示,有机电致发光单元102可以为红光发光单元R、绿光发光单元G或蓝光发光单元B;当然在具体实施时,有机电致发光单元102还可以为黄光发光单元,在此不做限定。并且在有机电致发光单元102为红光发光单元R时,其对应的发光光谱如图2所示,由图2可以看出,红光发光单元R的发射峰EL Peak为618nm,半峰宽FWHM为40nm。众所周知,发光光谱的发射峰EL Peak决定着有机电致发光单元102发光的明亮程度以及色调纯度,在本公开中,红光发光单元R第一波段即可以为在发射峰EL Peak附近的波段,例如580nm-638nm,相应地第二波段可以为639nm-730nm。与红光发光单元R对应设置的光电转换单元103将第二波段639nm-730nm的光线转换为电能。如此,则提高了红光发光单元R自发光的利用率,同时还保证了红光发光单元R自发光的明亮程度和色调纯度,提高了显示效果。并且,转换所得的电能还可以用于自充电,从而节约了能耗。
在有机电致发光单元102为绿光发光单元G时,其对应的发光光谱如图3所示,由图3可以看出,绿光发光单元G的发射峰EL Peak为532nm,半峰宽FWHM为40nm。基于前述红光发光单元R相似的原理,绿光发光单元G 第一波段即可以为在发射峰EL Peak附近的波段,例如480nm-552nm,相应地第二波段可以为553nm-630nm。与绿光发光单元G对应设置的光电转换单元103将第二波段553nm-630nm的光线转换为电能。如此,则提高了绿光发光单元G自发光的利用率,同时还保证了绿光发光单元G自发光的明亮程度和色调纯度,提高了显示效果。并且,转换所得的电能还可以用于自充电,从而节约了能耗。
在有机电致发光单元102为蓝光发光单元B时,其对应的发光光谱如图4所示,由图4可以看出,蓝光发光单元B的发射峰EL Peak为460nm,半峰宽FWHM为20nm。基于前述红光发光单元R相似的原理,蓝光发光单元B第一波段即可以为在发射峰EL Peak附近的波段,例如430nm-470nm,相应地第二波段可以为471nm-530nm。与蓝光发光单元B对应设置的光电转换单元103将第二波段471nm-530nm的光线转换为电能。如此,则提高了蓝光发光单元B自发光的利用率,同时还保证了蓝光发光单元B自发光的明亮程度和色调纯度,提高了显示效果。并且,转换所得的电能还可以用于自充电,从而节约了能耗。
需要说明的是,在实际应用时,红光发光单元R、绿光发光单元G和蓝光发光单元B的第一波段和第二波段的范围可以根据需要灵活设置,并不局限于上述示例范围。
以上仅是示例性地说明了光电转换单元103将对应有机电致发光单元102出射至显示侧的光线中的第二波段光线转换成电能。而在现有技术中,如图5所示,有机电致发光单元102一般包括阳极1021、发光层1022和阴极1023,其中发光层1022可以包括空穴注入层、空穴传输层、发光材料层、电子传输层和电子注入层。具体分为顶发射结构的有机电致发光单元102和底发射结构的有机电致发光单元102。并且,为保证开口率,在本公开提供的实施例中采用顶发射结构的有机电致发光单元102,这种结构的有机电致发光单元102中阳极1021为不透明的全反射电极,位于阳极1021上方的阴极1023为透明或半透明的电极。在对顶发射结构的有机电致发光单元102施加电压时,光 从顶部的透明或半透明的电极(即阴极1023)射出。然而因阴极1023的光线透过率有限,会有一部分光线被阴极1023反射至衬底基板101方向,造成底部漏光。此外,有机电致发光单元102发出的光线还会有一部分照射至用于限定有机电致发光单元102所在区域的像素界定层,导致显示面板侧边漏光,因此还可将该部分光线引导至衬底基板101方向。因此,在具体应用时,还可以将光电转换单元103设置在衬底基板101上,并采用光电转换单元103将有机电致发光单元102发出且经阴极1023反射后和将照射至像素界定层的光线引导后照射向衬底基板101的光线全部(即包括第一波段和第二波段的光线)转换成电能,来提高有机电致发光单元102自发光的利用率,同时避免了底部和侧边漏光,提高了显示面板的稳定性,且不会影响显示性能。
由上述描述可知,在本公开实施例提供的上述阵列基板中,通过在阵列基板中增设与有机电致发光单元102对应的光电转换单元103,使得有机电致发光单元102发出且与明亮程度、色调纯度无关的第二波段光线可经对应的光电转换单元103转换成电能,因此提高了显示面板自发光的利用率,而且不会影响显示面板的显示性能。且由光电转换单元103转换得到的电能可以随时向电池进行充电,从而可以节约能耗。
为了更好地理解本公开的技术方案,以下给出了五个具体实施例进行说明。
在一种具体的实施例中
本公开实施例提供的阵列基板,如图5所示,包括衬底基板101、位于衬底基板101上的有机电致发光单元102,以及至少一个与每一各有机电致发光单元102对应的光电转换单元103,其中,有机电致发光单元102的发光光谱由第一波段和第二波段组成;其中第一波段由发光光谱的发射峰决定,用于确定有机电致发光单元所发出光线的明亮程度和色调纯度;
光电转换单元103具体用于将对应的有机电致发光单元102发出且照射向显示侧(即有机电致发光单元102背离衬底基板101的一侧)的第二波段的光线转换成电能。
由上述分析可知,在光电转换单元103将对应有机电致发光单元102发出且照射向显示侧的第二波段的光线转换成电能时,不仅可以提高显示面板自发光的利用率,节约能耗,而且可以提高发光亮度和色调纯度,从而提高显示效果。
在具体实施时,在本公开实施例提供的上述阵列基板中,为保证开口率,光电转换单元103位于对应有机电致发光单元102所在区域的边缘处(如图1所示),或者位于相邻两个有机电致发光单元102的间隙处。
进一步地,在本公开实施例提供的上述阵列基板中,如图5所示,一般还包括位于有机电致发光单元102背离衬底基板101一侧的封装层104,光电转换单元103具体位于封装层104背离有机电致发光单元102的一侧,即位于图2中封装层104的上表面。这样通过在现有阵列基板的上方增设光电转换单元103,一方面可以保证光电转换单元103将对应有机电致发光单元102向上发出且照射至光电转换单元103的第二波段的光线转换成电能;另一方面可以保持现有阵列基板的制备工艺,仅增加制备光电转换单元103的工艺,制备方法比较简单。
可以理解的是,本公开实施例提供的上述阵列基板中,如图5所示,一般还会包括:设置于衬底基板101与有机电致发光单元102所在层之间的聚酰亚胺层105、第一缓冲层106、晶体管层107和第一平坦层108,以及用于限定有机电致发光单元103所在区域的像素界定层109。进一步地,晶体管层107包括:有源层1071、第一栅绝缘层1072、第一栅极1073、第二栅绝缘层1074、第二栅极1075、层间介质层1076和源漏极1077。
此外,在本公开实施例提供的上述阵列基板中,如图5所示,光电转换单元103包括层叠设置的第四透明电极1031、P型半导体层1032、本征半导体层1033、N型半导体层1034和第五透明电极1035。阵列基板在第五透明电极1035的背离N型半导体层1034的一面还可以设置有第一绝缘层1036和走线1037,且走线1037通过贯穿第一绝缘层1036的过孔与第五透明电极1035连接。并且,第一绝缘层1036具体还覆盖第四透明电极1031、P型半导体层 1032、本征半导体层1033、N型半导体层1034、第五透明电极1035分别与衬底基板101垂直的侧表面、以及封装层104背离有机电致发光单元102一侧的表面。且在实际应用时,P型半导体层1032、本征半导体层1033和N型半导体层1034可以是基于氮化镓、铜铟镓硒或硅基等材料的半导体层,在此具体不做限定。此外,第四透明电极1031、第五透明电极1036和走线1037的材料可以为ITO、IZO等。
进一步地,在本公开实施例提供的上述阵列基板中,由于本征半导体层1033例如基于硅基的非晶硅(α-Si)半导体层本身对红光的吸收率较低(小于5%),故在有机电致发光单元102为红光发光单元R时,可以不必对本征半导体层1033做掺杂。而在有机电致发光单元102为绿光发光单元G或蓝光发光单元B时,为使得对应的光电转换单元103可以吸收第二波段的光线,则需对本征半导体层1033掺杂预设数量的碳粒子。以本征半导体层1033为α-Si半导体层为例,在有机电致发光单元102为绿光发光单元G时,可向α-Si半导体层掺杂5*10 14个碳粒子,以增加α-Si的禁带宽度,实现对蓝光发光单元B第二波段光线的吸收转换;在有机电致发光单元102为蓝光发光单元B时,可向α-Si半导体层掺杂9*10 13个碳粒子,以增加α-Si的禁带宽度,实现对蓝光发光单元B第二波段光线的吸收转换。
此外,在本公开实施例提供的上述阵列基板中,为便于利用由各光电转换单元103转换得到的电能,可以将各光电转换单元103的第五透明电极1031相互连接,并将各光电转换单元103的走线1037相互连接。具体地,各光电转换单元103的走线1037可以通过如图6和图7所示的方式进行相互连接。
在一种具体的实施例中
本公开实施例提供的阵列基板,如图8所示。由于本公开实施例提供的阵列基板相较于图5对应的实施例提供的阵列基板,仅在于本公开实施例提供的阵列基板中集成了触控功能,因此下面仅对本公开实施例提供的阵列基板实现触控功能的内容进行介绍,与图5对应的实施例的重复之处不再赘述。
具体地,在本公开实施例提供的阵列基板中,如图8所示,还包括:位 于各有机电致发光单元102间隙处的触控单元110;
触控单元110包括依次位于封装层104背离有机电致发光单元102一侧的第一触控电极1101、第二绝缘层1102和第二触控电极1103;
为简化制作工艺,节约制作成本,第一触控电极1101可以与光电转换单元103中的第四透明电极1031同层设置,第二绝缘层1102可以与光电转换单元103中的第一绝缘层1036复用,第二触控电极1103可以与走线1037同层设置。
在一种具体的实施例中
本公开实施例提供的阵列基板,如图9所示。相较于图5对应的实施例提供的阵列基板,其区别在于二者中光电转换单元103的结构不同,且本公开实施例提供的阵列基板可实现热电和压电转换的功能。故以下仅对本公开实施例与图5对应的实施例的不同之处进行叙述,重复之处不再赘述。
具体地,在本公开实施例提供的阵列基板中,如图9所示,还包括:位于封装层104与光电转换单元103之间的热电/压电转换单元111,热电/压电转换单元111用于将光电转换单元103散发的热能以及对热电/压电转换单元111的压力转换成电能。
进一步地,热电/压电转换单元111在衬底基板101的正投影与光电转换单元103在衬底基板101的正投影重叠。
进一步地,在本公开实施例提供的阵列基板中,如图9所示,热电/压电转换单元111包括依次位于封装层104面向光电转换单元103一侧的第一透明电极1111、热电/压电材料层1112和第二透明电极1113。在实际应用中,热电/压电材料层1112的材质可以为锆钛酸铅压电陶瓷(PZT)、聚偏氟乙烯(PVDF)或氧化锌(ZnO)等兼具热电和压电特性的材料。
在具体实施时,在本公开实施例提供的上述阵列基板中,光电转换单元103包括依次位于第二透明电极1113背离热电/压电材料层1112一侧的聚-3-己基噻吩层1031’、氧化锌层1032’和第三透明电极1033’。
本公开实施例提供的阵列基板中,通过集成热电/压电功能,及光电转换 功能,可随时随地对显示面板进行供电。且采用相同材料制作热电/压电转换单元111,具有制备成本低,整机尺寸小的优点。
在一种具体的实施方式中
本公开实施例提供的阵列基板,如图10所示。由于与本公开图5对应的实施例提供的阵列基板相比,其区别主要在于光电转换单元103的具体设置位置与功能不同。故以下详细阐述本公开实施例与图5对应的实施例的不同之处,重复之处不再赘述。
具体地,在本公开实施例提供的阵列基板中,光电转换单元103设置在衬底基板101与有机电致发光单元102所在层之间,具体用于将有机电致发光单元102发出且经顶发射结构的有机电致发光单元102的阴极1023反射后照射向衬底基板101方向的第一波段和第二波段光线转换成电能,从而提高显示面板自发光的利用率,节约能耗,且避免了底部漏光,提高了显示面板的稳定性。具体地,为更好地接收阴极1023反射后照射向衬底基板101的光线,光电转换单元103可以均匀分布在衬底基板101上。
具体地,在本公开实施例提供的阵列基板中,如图10所示,还可以包括:位于衬底基板101与有机电致发光单元102所在层之间的晶体管层107,为保持现有阵列基板的制备工艺,光电转换单元103可以设置在衬底基板101与晶体管层107之间。这样,在衬底基板101上制备光电转换单元103后,再通过现有制备工艺,形成阵列基板中的其他膜层,使得工艺变动较小,尽可能地降低了生产成本。
具体地,如图10所示,光电转换单元103包括层叠设置的第四金属电极1031”、P型半导体层1032、本征半导体层1033、N型半导体层1034、第五透明电极1035、第一绝缘层1036和走线1037,且走线1037通过贯穿第一绝缘层1036的过孔与第五透明电极1035连接。其中,第四金属电极1031”与衬底基板101相接触,且第一绝缘层1036还覆盖第四金属电极1031”、P型半导体层1032、本征半导体层1033、N型半导体层1034、第五透明电极1035分别与衬底基板101垂直的表面,以及衬底基板101面向有机电致发光单元 102一侧的表面。
可以理解的是,在衬底基板101上还依次设置有聚酰亚胺层105和第一缓冲层106时,则第四金属电极1031”与第一缓冲层106相接触,且第一绝缘层1036覆盖第一缓冲层106面向有机电致发光单元102一侧的表面。
在具体实施时,为保证后续晶体管层107的制作所需的承载界面的平整度,在本公开实施例提供的上述阵列基板中,如图10所示,还可以包括:在走线1037所在层面向晶体管层107一侧依次设置的平坦层112和缓冲层113。
在一种具体的实施例中
本公开实施例提供的阵列基板,如图11所示。相较于本公开与图10对应的实施例提供的阵列基板,为了将更多的无效光线(具体为有机电致发光元件102发出且照射向像素界定层109的光线,以及外界入射至显示面板内部的光线)转换成电能,进一步节约能耗,如图11所示,本公开实施例五在像素界定层109中在背离衬底基板101的一面(即图11的像素界定层109的上表面)在与光电转换单元103对应的位置处设置了凹槽,凹槽的侧面设置有导光层114,凹槽用于将有机电致发光单元102照射至导光层114的光线,以及外界照射至凹槽底面的光线引导至光电转换单元103;光电转换单元103不仅用于将有机电致发光单元102发出且经阴极1023反射后和经导光层114引导后照射向衬底基板101的第一波段和第二波段光线转换成电能,还可以用于将经凹槽引导出的光线以及接收到的外界光线转换成电能。
在本公开实施例提供的上述阵列基板中,为了更好地将有机电致发光单元102照射至像素界定层109中导光层114的光线引导至光电转换单元103,如图11所示,凹槽在垂直于衬底基板101方向上的剖面图可以为上宽下窄的梯形结构。当然,凹槽在垂直于衬底基板101方向上的剖面图还可以为其他结构,只要可以将有机电致发光单元102照射至像素界定层109中导光层114的光线引导至光电转换单元103即可,在此不做具体限定。
在本公开实施例提供的上述阵列基板中,为了更好地实现反光,凹槽的侧面与像素界定层109的背离衬底基板101的表面的夹角α为10度~80度。 凹槽的深度d1为像素界定层109厚度d2的三分之二。导光层114的材质具体可以为具有反射性能的金属。为了使导光层114反射的光线较大程度地入射到光电转换单元103,如图11所示,凹槽在衬底基板101的正投影与光电转换单元103在衬底基板101的正投影重叠。
需要说明的是,以上仅对本公开实施例提供的阵列基板与本公开实施例四提供的阵列基板的不同之处进行了介绍,重复之处可参考上述对实施例四的描述,在此不再赘述。
可以理解的是,本公开与图8对应实施例提供的阵列基板中的触控单元110,还可以应用于与本公开与图9、图10、图11对应实施例提供的阵列基板中。且根据与本公开与图9、图10、图11对应实施例提供的阵列基板的具体结构可知,在触控单元110应用于与本公开与图9、图10、图11对应实施例提供的阵列基板中时,触控单元110具体位于各有机电致发光单元102的间隙处,包括依次位于封装层104背离有机电致发光单元102一侧的第一触控电极1101、第二绝缘层1102和第二触控电极1103。并且触控单元110的各膜层不涉及与光电转换单元103的膜层复用或同层的问题。
在一种具体的实施例中
基于同一发明构思,本公开实施例还提供了一种显示面板,包括相对而置的阵列基板和保护盖板,其中该阵列基板为本公开实施例提供的上述阵列基板,该显示面板可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相机、导航仪、智能手表、健身腕带、个人数字助理、自助存/取款机等任何具有显示功能的产品或部件。对于显示面板的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,例如设置在阵列基板与保护盖板之间的圆偏光片,在此不做赘述,也不应作为对本公开的限制。该显示面板的实施可以参见上述阵列基板的实施例,重复之处不再赘述。
需要说明的是,在本文中,诸如第一和第二之类的关系术语仅仅用来将一个实体或操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (23)

  1. 一种阵列基板,包括:
    衬底基板;
    有机电致发光单元,所述有机电致发光单元位于所述衬底基板上且呈阵列排布,所述有机电致发光单元的发光光谱由第一波段和第二波段组成;其中第一波段由发光光谱的发射峰决定,用于确定所述有机电致发光单元所发出光线的明亮程度和色调纯度;
    至少一个光电转换单元,所述光电转换单元与所述有机电致发光单元对应,至少用于将对应的所述有机电致发光单元发出的第二波段的光线转换成电能。
  2. 如权利要求1所述的阵列基板,其中,所述光电转换单元位于对应所述有机电致发光单元所在区域的边缘处,或者位于相邻两个所述有机电致发光单元的间隙处。
  3. 如权利要求2所述的阵列基板,其中,所述光电转换单元位于所述有机电致发光单元的背离所述衬底基板的一面;所述阵列基板还包括:位于所述光电转换单元与所述有机电致发光单元之间的热电/压电转换单元,所述热电/压电转换单元用于将所述光电转换单元散发的热能以及对所述热电/压电转换单元的压力转换成电能,所述热电/压电转换单元与所述有机电致发光单元之间相互绝缘。
  4. 如权利要求3所述的阵列基板,其中,所述热电/压电转换单元在所述衬底基板的正投影与所述光电转换单元在所述衬底基板的正投影重叠。
  5. 如权利要求4所述的阵列基板,其中,所述热电/压电转换单元包括依次叠层设置的第一透明电极、热电/压电材料层和第二透明电极,其中,所述第二透明电极位于所述热电/压电材料层的面向所述光电转换单元的一面。
  6. 如权利要求5所述的阵列基板,其中,所述光电转换单元包括依次位于所述第二透明电极背离所述热电/压电材料层一侧的聚-3-己基噻吩层、氧化 锌层和第三透明电极。
  7. 如权利要求1所述的阵列基板,其中,所述光电转换单元位于所述衬底基板与所述有机电致发光单元所在层之间,所述光电转换单元具体用于将所述有机电致发光单元发出且照射向所述衬底基板方向第一波段和第二波段的光线转换成电能。
  8. 如权利要求7所述的阵列基板,还包括:用于限定各所述有机电致发光单元所在区域的像素界定层,其中,所述像素界定层在背离所述衬底基板的一面在与所述光电转换单元对应的位置处具有凹槽,所述凹槽的侧面设置有导光层,所述凹槽用于将所述有机电致发光单元照射至所述导光层的光线,以及外界照射至所述凹槽底面的光线引导至所述光电转换单元;所述光电转换单元还用于将经所述凹槽引导出的光线以及接收到的外界光线转换成电能。
  9. 如权利要求8所述的阵列基板,其中,所述凹槽在垂直于所述衬底基板方向上的剖面图为上宽下窄的梯形结构。
  10. 如权利要求9所述的阵列基板,其中,所述凹槽的侧面与所述像素界定层的背离所述衬底基板的表面的夹角为10度~80度。
  11. 如权利要求8所述的阵列基板,其中,所述凹槽的深度为所述像素界定层厚度的三分之二。
  12. 如权利要求8所述的阵列基板,其中,所述导光层的材质为具有反射性能的金属。
  13. 如权利要求8所述的阵列基板,其中,所述凹槽在所述衬底基板的正投影与所述光电转换单元在所述衬底基板的正投影重叠。
  14. 如权利要求7所述的阵列基板,还包括:位于所述衬底基板与所述有机电致发光单元所在层之间的晶体管层,其中,所述光电转换单元位于所述衬底基板与所述晶体管层之间。
  15. 如权利要求2所述的阵列基板,其中,所述光电转换单元位于所述有机电致发光单元背离所述衬底基板的一面,且所述光电转换单元具体用于将所述有机电致发光单元发出且照射向显示侧的第二波段的光线转换成电能。
  16. 如权利要求15所述的阵列基板,其中,所述光电转换单元包括层叠设置的第四透明电极、P型半导体层、本征半导体层、N型半导体层和第五透明电极。
  17. 如权利要求16所述的阵列基板,其中,与出射红光的所述有机电致发光单元对应的所述本征半导体层的材质为非晶硅;与出射绿光的所述有机电致发光单元对应的所述本征半导体层的材质为掺杂有5*10 14碳粒子的非晶硅;与出射蓝光的所述有机电致发光单元对应的所述本征半导体层的材质为掺杂有9*10 13碳粒子的非晶硅。
  18. 如权利要求16所述的阵列基板,其中,还包括位于所述第五透明电极背离所述N型半导体层一面的第一绝缘层和走线;
    所述第一绝缘层覆盖所述第四透明电极、所述P型半导体层、所述本征半导体层、所述N型半导体层、所述第五透明电极的分别与所述衬底基板垂直的侧表面;
    所述走线通过贯穿所述第一绝缘层的过孔与所述第五透明电极连接。
  19. 如权利要求15所述的阵列基板,其特征在于,所述有机电致发光单元与所述光电转换单元之间还具有封装层。
  20. 如权利要求1-19任一项所述的阵列基板,其中,还包括:位于各所述有机电致发光单元间隙处的触控单元。
  21. 如权利要求20所述的阵列基板,其中,所述触控单元包括叠层设置的第一触控电极、第二绝缘层和第二触控电极。
  22. 如权利要求21所述的阵列基板,其中,所述触控单元位于所述有机发光单元的背离所述衬底基板的一面;所述光电转换单元位于所述有机电致发光单元背离所述衬底基板的一面时,所述第一触控电极与所述第四透明电极同层设置,所述第一绝缘层复用为所述第二绝缘层,所述第二触控电极与所述走线同层设置。
  23. 一种显示面板,包括相对而置的阵列基板和保护盖板,其中,所述阵列基板为如权利要求1-22任一项所述的阵列基板。
PCT/CN2019/090928 2018-09-18 2019-06-12 阵列基板及显示面板 WO2020057185A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/620,572 US11222930B2 (en) 2018-09-18 2019-06-12 Array substrate and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811086394.1 2018-09-18
CN201811086394.1A CN109346498B (zh) 2018-09-18 2018-09-18 一种阵列基板及显示面板

Publications (1)

Publication Number Publication Date
WO2020057185A1 true WO2020057185A1 (zh) 2020-03-26

Family

ID=65305396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090928 WO2020057185A1 (zh) 2018-09-18 2019-06-12 阵列基板及显示面板

Country Status (3)

Country Link
US (1) US11222930B2 (zh)
CN (1) CN109346498B (zh)
WO (1) WO2020057185A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346498B (zh) * 2018-09-18 2020-06-16 京东方科技集团股份有限公司 一种阵列基板及显示面板
CN110286796B (zh) * 2019-06-27 2023-10-27 京东方科技集团股份有限公司 电子基板及其制作方法、显示面板
CN110767726B (zh) * 2019-10-29 2022-07-15 昆山国显光电有限公司 一种改善色偏的方法、显示面板及显示装置
CN111524937B (zh) * 2020-04-23 2021-08-24 深圳市华星光电半导体显示技术有限公司 一种oled显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201187A (zh) * 2014-08-18 2014-12-10 京东方科技集团股份有限公司 一种oled显示装置
CN104752462A (zh) * 2013-12-27 2015-07-01 昆山国显光电有限公司 一种具有触控面板的有机发光二极管显示器
US20160155782A1 (en) * 2014-12-01 2016-06-02 Japan Display Inc. Display device
CN109346498A (zh) * 2018-09-18 2019-02-15 京东方科技集团股份有限公司 一种阵列基板及显示面板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9236408B2 (en) * 2012-04-25 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device including photodiode
TWI656631B (zh) * 2014-03-28 2019-04-11 日商半導體能源研究所股份有限公司 攝像裝置
KR102205856B1 (ko) * 2014-06-11 2021-01-21 삼성디스플레이 주식회사 센서를 포함하는 유기 발광 표시 장치
KR102365543B1 (ko) * 2016-06-10 2022-02-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 정보 단말
KR101779906B1 (ko) * 2016-07-21 2017-09-19 동우 화인켐 주식회사 필름 터치 센서
KR20180023097A (ko) * 2016-08-23 2018-03-07 삼성디스플레이 주식회사 표시 장치
JP2018045034A (ja) * 2016-09-13 2018-03-22 株式会社ジャパンディスプレイ 表示装置
CN107506728B (zh) * 2017-08-23 2021-02-12 京东方科技集团股份有限公司 感光单元、感光模组及感光装置
CN107589576B (zh) * 2017-09-30 2020-11-06 武汉华星光电技术有限公司 阵列基板及其制作方法、触控显示面板
CN110739327B (zh) * 2018-07-20 2022-06-07 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
CN109037293B (zh) * 2018-08-01 2021-08-31 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN109801946B (zh) * 2019-01-30 2021-01-26 京东方科技集团股份有限公司 显示面板及显示装置
US11681395B2 (en) * 2019-10-23 2023-06-20 Boe Technology Group Co., Ltd. Display substrate, display device and detection method by using display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752462A (zh) * 2013-12-27 2015-07-01 昆山国显光电有限公司 一种具有触控面板的有机发光二极管显示器
CN104201187A (zh) * 2014-08-18 2014-12-10 京东方科技集团股份有限公司 一种oled显示装置
US20160155782A1 (en) * 2014-12-01 2016-06-02 Japan Display Inc. Display device
CN109346498A (zh) * 2018-09-18 2019-02-15 京东方科技集团股份有限公司 一种阵列基板及显示面板

Also Published As

Publication number Publication date
CN109346498A (zh) 2019-02-15
CN109346498B (zh) 2020-06-16
US20210057495A1 (en) 2021-02-25
US11222930B2 (en) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2020057185A1 (zh) 阵列基板及显示面板
US11362149B2 (en) Organic light emitting diode display substrate having a band gap layer and manufacturing method thereof
US9825106B2 (en) OLED display substrate and method for manufacturing the same, and display apparatus
US8895974B2 (en) Organic el display device and method for manufacturing the same
CN105097874B (zh) 一种oled显示器件及其制作方法、显示装置
KR101241131B1 (ko) 유기전계 발광소자
US10269777B2 (en) Display apparatus comprising reflection structure
US20060232992A1 (en) Circuit arrangement for ac driving of organic diodes
US10741731B2 (en) Multi-emission quantum dot and quantum dot film, LED package, emitting diode and display device including the same
WO2016095335A1 (zh) Oled显示装置及其制造方法
WO2020056865A1 (zh) 显示面板及显示装置
KR20120044655A (ko) 유기 발광 표시 장치
CN107634084B (zh) 顶发射白光oled显示装置
WO2021097798A1 (zh) 显示基板及其制备方法、显示装置
US10367038B2 (en) Organic light-emitting diode display device and manufacturing method thereof, and organic light-emitting diode display
JP2014086314A (ja) 有機エレクトロルミネッセンス表示装置
KR20220163324A (ko) 백색 유기 발광 소자
TW201639213A (zh) 有機發光二極體顯示器
US20210336236A1 (en) Display panel and manufacturing method thereof
US11950450B2 (en) Display substrate and method of manufacturing the same and electronic device
KR20190046423A (ko) 발광다이오드 및 전계발광 표시장치
WO2019006793A1 (zh) 一种白光oled器件
WO2022227452A1 (zh) 顶发光显示面板及显示装置
US9324770B2 (en) Organic light emitting display devices and methods of manufacturing organic light emitting display devices
KR102023943B1 (ko) 유기 발광 표시 장치 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861806

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19861806

Country of ref document: EP

Kind code of ref document: A1