WO2020056865A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2020056865A1
WO2020056865A1 PCT/CN2018/113272 CN2018113272W WO2020056865A1 WO 2020056865 A1 WO2020056865 A1 WO 2020056865A1 CN 2018113272 W CN2018113272 W CN 2018113272W WO 2020056865 A1 WO2020056865 A1 WO 2020056865A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
electrode
display panel
sub
Prior art date
Application number
PCT/CN2018/113272
Other languages
English (en)
French (fr)
Inventor
樊勇
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/301,870 priority Critical patent/US20200091378A1/en
Publication of WO2020056865A1 publication Critical patent/WO2020056865A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a display device.
  • the metal electrode In traditional self-light-emitting devices, such as the currently mass-produced organic light-emitting diode display devices, because the metal electrode has a high reflectivity, the metal electrode can reflect the light from an external light source, and the light from the external light source reflected by the display panel will seriously affect Display quality of self-luminous devices.
  • a polarizer with a 1/4 wavelength phase delay is added to the self-emitting device, so that the reflectivity of the metal electrode can be reduced, thereby improving the display quality of the self-emitting device.
  • the purpose of the embodiments of the present application is to provide a display panel and a display device, which can reduce the influence on the display panel caused by the light reflected from the external light source by the metal electrode in the display panel, thereby improving the display quality.
  • An embodiment of the present application provides a display panel, including:
  • a substrate including a first surface and a second surface opposite to each other;
  • An electrode layer disposed on a first surface of the substrate.
  • a reflective functional layer which is disposed on the electrode layer and is used to reduce the reflectivity of the electrode layer
  • the reflective functional layer includes a first metal sub-layer, a transparent non-metal sub-layer, and a second metal sub-layer;
  • the materials of the first metal sublayer and the second metal sublayer each include at least one of a molybdenum metal material, a chromium metal material, and a tungsten metal material; and the transparent non-metal sublayer includes a nano-indium tin metal. At least one of an oxide material, a transparent conductive oxide material, an indium gallium zinc oxide material, a silicon oxide material, and a silicon nitride material;
  • the second surface of the substrate is provided with a black light-shielding glue.
  • the thickness of the first metal sub-layer is between 12 nm and 40 nm, and the thickness of the second metal sub-layer is between 2 nm and 15 nm.
  • the thickness of the transparent non-metallic sub-layer is between 3 nanometers and 7 nanometers.
  • the display panel further includes a light emitting device layer and a packaging layer, the light emitting device layer is disposed on the reflective function layer, and the packaging layer is disposed on the light emitting device layer. And covering the reflective functional layer; wherein the surface of the encapsulation layer is provided with a nano-embossed microstructure.
  • the nano-imprinted microstructure includes a plurality of hemispherical nano-level protrusions that are distributed in an array on the surface of the packaging layer.
  • the light emitting device layer includes a plurality of micro light emitting diodes arranged in an array, and the micro light emitting diodes are disposed on the reflective light energy layer.
  • the electrode layer includes a first sub-electrode layer and a second sub-electrode layer; the first sub-electrode layer includes a source metal electrode, a drain metal electrode, and a common electrode that are disposed at intervals.
  • the second sub-electrode layer includes a gate metal electrode; wherein the reflective functional layer covers the source metal electrode, the drain metal electrode, the common electrode, and the gate metal electrode.
  • the reflective functional layer includes a plurality of reflective blocks, the plurality of reflective blocks and the source metal electrode, the drain metal electrode, the common electrode, and the gate
  • the pole metal electrodes correspond one-to-one.
  • the projections of the plurality of reflection blocks on the substrate are located on a non-light emitting area.
  • An embodiment of the present application further provides a display panel, including:
  • a substrate including a first surface and a second surface opposite to each other;
  • An electrode layer disposed on a first surface of the substrate.
  • a reflective functional layer which is disposed on the electrode layer and is used to reduce the reflectivity of the electrode layer.
  • the reflective functional layer includes a first metal sub-layer, a transparent non-metal sub-layer, and a second metal sub-layer, which are arranged in a stack;
  • Materials of the first metal sublayer and the second metal sublayer each include at least one of a molybdenum metal material, a chromium metal material, and a tungsten metal material;
  • the transparent non-metal sublayer includes a nano-indium tin metal oxide At least one of a material, a transparent conductive oxide material, an indium gallium zinc oxide material, a silicon oxide material, and a silicon nitride material.
  • the thickness of the first metal sub-layer is between 12 nm and 40 nm, and the thickness of the second metal sub-layer is between 2 nm and 15 nm.
  • the thickness of the transparent non-metallic sub-layer is between 3 nanometers and 7 nanometers.
  • the display panel further includes a light emitting device layer and a packaging layer, the light emitting device layer is disposed on the reflective function layer, and the packaging layer is disposed on the light emitting device layer. And covering the reflective functional layer; wherein the surface of the encapsulation layer is provided with a nano-embossed microstructure.
  • the nano-imprinted microstructure includes a plurality of hemispherical nano-level protrusions that are distributed in an array on the surface of the packaging layer.
  • the light emitting device layer includes a plurality of micro light emitting diodes arranged in an array, and the micro light emitting diodes are disposed on the reflective light energy layer.
  • the second surface of the substrate is provided with a black light-shielding adhesive.
  • the electrode layer includes a first sub-electrode layer and a second sub-electrode layer; the first sub-electrode layer includes a source metal electrode, a drain metal electrode, and a common electrode that are disposed at intervals.
  • the second sub-electrode layer includes a gate metal electrode; wherein the reflective functional layer covers the source metal electrode, the drain metal electrode, the common electrode, and the gate metal electrode.
  • the reflective functional layer includes a plurality of reflective blocks, the plurality of reflective blocks and the source metal electrode, the drain metal electrode, the common electrode, and the gate
  • the pole metal electrodes correspond one-to-one.
  • the projections of the plurality of reflection blocks on the substrate are located on a non-light emitting area.
  • An embodiment of the present application further provides a display device including a display panel, where the display panel includes:
  • a substrate including a first surface and a second surface opposite to each other;
  • An electrode layer disposed on a first surface of the substrate.
  • a reflective functional layer which is disposed on the electrode layer and is used to reduce the reflectivity of the electrode layer.
  • the reflective functional layer includes a first metal sub-layer, a transparent non-metal sub-layer, and a second metal sub-layer, which are arranged in a stack;
  • Materials of the first metal sublayer and the second metal sublayer each include at least one of a molybdenum metal material, a chromium metal material, and a tungsten metal material;
  • the transparent non-metal sublayer includes a nano-indium tin metal oxide At least one of a material, a transparent conductive oxide material, an indium gallium zinc oxide material, a silicon oxide material, and a silicon nitride material.
  • the display panel in the embodiment of the present application is provided with a reflective function layer on the electrode layer, and the reflective function layer is used to reduce the reflectivity of the electrode layer.
  • the reflection function layer can reduce the influence of the metal electrode in the display panel reflecting the light from the external light source on the display panel, thereby improving the display quality; and the display panel in the embodiment of the present application does not need to use a polarizer to reduce the metal electrode's
  • the reflectivity can improve the light energy utilization rate of the display panel.
  • FIG. 1 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a reflective function layer of a display panel according to an embodiment of the present application
  • FIG. 3 is another schematic structural diagram of a display panel in an embodiment of the present application.
  • FIG. 4 is another schematic structural diagram of a display panel in an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, the meaning of "a plurality" is two or more, unless specifically defined otherwise.
  • the "first" or “under” of the second feature may include the first and second features in direct contact, and may also include the first and second features. Not directly, but through another characteristic contact between them.
  • the first feature is “above”, “above”, and “above” the second feature, including that the first feature is directly above and obliquely above the second feature, or merely indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature, including the fact that the first feature is directly below and obliquely below the second feature, or merely indicates that the first feature is less horizontal than the second feature.
  • FIG. 1 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • a display panel 10 according to an embodiment of the present application includes: a substrate 100, an electrode layer 200, and a reflective function layer 300; wherein the substrate 100 includes a first surface 101 and a second surface 102 opposite to each other, and the electrode layer 200 is disposed on the first surface 101 of the substrate 100, and the reflective functional layer 300 is disposed on the electrode layer 200.
  • a reflective function layer 300 is provided on the electrode layer 200, and the reflective function layer 300 is used to reduce the reflectivity of the electrode layer 200. It should be noted that, because the electrode layer 200 has a high reflectivity, that is, when light from an external light source enters the display panel 10, light from the external light source can reflect the light through the electrode layer 200.
  • the light from the external light source when the light from the external light source enters the display panel 10, the light from the external light source needs to pass through the reflective function layer 300 instead of directly entering the electrode layer 200, thereby reducing the reflection of the electrode layer 200 in the display panel 10.
  • Light from external light sources thereby improving display quality.
  • the reflective functional layer 300 includes a first metal sub-layer 301, a transparent non-metal sub-layer 302, and a second metal sub-layer 303.
  • the first metal sub-layer 301 and the transparent non-metal sub-layer are stacked.
  • 302 and the second metal sublayer 303 are sequentially stacked on the electrode layer 200. That is, when light from an external light source enters the display panel 10, the light passes through the first metal sub-layer 301, the transparent non-metal sub-layer 302, the second metal sub-layer 303, and the electrode layer 200 in this order.
  • the materials of the first metal sub-layer 301 and the second metal sub-layer 303 each include at least one of a molybdenum metal material, a chromium metal material, and a tungsten metal material; and the transparent non-metal sub-layer 302 includes nano-indium tin metal oxide. At least one of a material, a transparent conductive oxide material, an indium gallium zinc oxide material, a silicon oxide material, and a silicon nitride material.
  • the thickness of the first metal sub-layer 301 is between 12 nanometers and 40 nanometers
  • the thickness of the second metal sub-layer 303 is between 2 nanometers and 15 nanometers
  • the thickness of the transparent non-metallic sublayer 302 is between 3 nanometers- 7 nm.
  • the thickness of the second metal sub-layer 303 is smaller than the thickness of the first metal sub-layer 301.
  • the electrode layer 200 includes a first sub-electrode layer 201 and a second sub-electrode layer 202.
  • the first sub-electrode layer 201 and the second sub-electrode layer 202 are located in different layers. It should be noted that the first sub-electrode layer 201 and the second sub-electrode layer 202 are each provided with a reflective function layer 300, and the first sub-electrode layer 201 is used to form a source, a drain, and a common electrode of a transistor, etc.
  • a metal electrode, and the second sub-electrode layer 202 is used to form a metal electrode such as a gate of a transistor.
  • the first sub-electrode layer 201 includes a source metal electrode 2011, a drain metal electrode 2012, and a common electrode 2013 which are disposed at intervals.
  • the second sub-electrode layer 202 includes a gate metal electrode 2021.
  • the reflective functional layer 300 covers the source metal electrode 2011, the drain metal electrode 2012, the common electrode 2013, and the gate metal electrode 2021.
  • the reflective functional layer 300 includes a plurality of reflective blocks 310, and the plurality of reflective blocks 310 correspond to the source metal electrode 2011, the drain metal electrode 2012, the common electrode 2013, and the gate metal electrode 2021 one by one.
  • a reflective block 310 is provided on the source metal electrode 2011, a reflective block 310 is provided on the drain metal electrode 2012, a reflective block 310 is provided on the common electrode 2013, and a reflective block is provided on the gate metal electrode 2021.
  • each reflection block 310 corresponds to a corresponding electrode one-to-one.
  • each reflective block 310 is consistent with the corresponding electrode. In other embodiments, each reflection block 310 only needs to cover the corresponding electrode, that is, the area of each reflection block 310 may be larger than that of the corresponding electrode.
  • the projections of the plurality of reflection blocks 310 on the substrate 100 are located on a non-light emitting area.
  • the light-emitting area of the display panel accounts for a small proportion of the entire display panel, and most of the rest are non-light-emitting areas.
  • the display panel 10 may be a micro light emitting diode display panel. Since the light emitting area of the micro light emitting diode display panel occupies a small proportion of the entire pixel, and the remaining part is a non-light emitting area, by reducing the non-light emitting area of the micro light emitting diode display panel, The reflectance can further greatly reduce the reflectance of the micro light emitting diode display panel and improve the display quality.
  • the display panel 10 includes: a substrate 100, an electrode layer 200, a reflective functional layer 300, a light-shielding metal layer 400, a buffer layer 500, an interlayer dielectric layer 600, a light emitting device layer 700, and a packaging layer 800.
  • the substrate 100 may be a transparent glass substrate or a sapphire substrate.
  • the light shielding metal layer 400 is disposed on the substrate 100.
  • the buffer layer 500 is disposed on the substrate 100 and covers the light-shielding metal layer 400.
  • the buffer layer 500 may be formed by depositing an insulating material such as silicon dioxide or silicon nitride.
  • the buffer layer 500 is further provided with a conductive channel layer 901, an insulating layer 902 on the conductive channel layer 901, and a second sub-electrode layer 202 on the insulating layer 902.
  • the interlayer dielectric layer 600 is formed by depositing an insulating material such as silicon dioxide or silicon nitride.
  • the interlayer dielectric layer 600 is deposited on the conductive channel layer 901, the insulating layer 902, the second sub-electrode layer 202, and The buffer layer 500 is on.
  • the light emitting device layer 700 is disposed on the first sub-electrode layer 201.
  • the light emitting device layer 700 includes a cathode layer 701, an anode layer 703, and a light emitting material layer 702.
  • the luminescent material layer 702 is located between the cathode layer 701 and the anode layer 703. That is, the light emitting device layer includes a plurality of micro light emitting diodes arranged in an array.
  • the light-emitting device layer 700 is further provided with an encapsulation layer 800 to protect the light-emitting device layer 700.
  • the reflective function layer 300 is provided on the electrode layer 200, the influence of the metal electrode in the display panel reflecting light from an external light source on the display panel can be reduced, so the display in the implementation of the present application
  • the panel does not need an additional polarizer to reduce the influence of the metal electrode in the display panel reflecting the light from the external light source on the display panel, thereby improving the light source utilization rate of the display panel.
  • the display panel in the embodiment of the present application is provided with a reflective function layer on the electrode layer, and the reflective function layer is used to reduce the reflectivity of the electrode layer, that is, when light from an external light source enters the display panel, the light needs to be
  • the reflection function layer can reduce the influence of the metal electrode in the display panel reflecting the light from the external light source on the display panel, thereby improving the display quality; and the display panel in the embodiment of the present application does not need to use a polarizer to reduce the metal electrode's
  • the reflectivity can improve the light energy utilization rate of the display panel.
  • FIG. 3 is a schematic diagram of another structure of a display panel according to an embodiment of the present application.
  • the display panel shown in FIG. 3 is different from the display panel shown in FIG. 1 in that the surface of the packaging layer 800 in the display panel 20 shown in FIG. 3 is provided with a nano-imprinted microstructure 900.
  • the nano-imprinted microstructure 900 on the surface of the packaging layer 800, the luminous efficiency of the display panel 20 can be improved and the specular reflection image can be suppressed from being generated.
  • the surface of the packaging layer 800 is further provided with a nano-embossed microstructure 900.
  • the nano-imprinted microstructure 900 includes a plurality of hemispherical nano-level protrusions 910 that are spaced in an array on the upper surface of the packaging layer 800.
  • FIG. 4 is another schematic structural diagram of a display panel according to an embodiment of the present application.
  • the display panel shown in FIG. 4 is different from the display panel shown in FIG. 1 in that the second surface 102 of the substrate 100 in the display panel 30 shown in FIG. 4 is provided with a black light-shielding adhesive 110.
  • a black light-shielding adhesive 110 on the second surface 102 of the substrate 100, the luminous efficiency of the display panel 30 can be improved and the specular reflection image can be suppressed from being generated.
  • the black light-shielding adhesive 110 covers the second surface 102 of the substrate 100.
  • An embodiment of the present application further provides a display device including the display panel in any of the above embodiments.
  • a display device including the display panel in any of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供了一种显示面板,其包括:基板,基板包括相对设置的第一表面和第二表面;电极层,电极层设置在基板的第一表面上;反射功能层,反射功能层设置在电极层上,用于降低电极层的反射率。

Description

显示面板及显示装置 技术领域
本申请涉及显示技术领域,特别涉及一种显示面板及显示装置。
背景技术
在传统的自发光器件中,例如目前量产的有机发光二极管显示装置,由于金属电极具有很高的反射率,使得金属电极可反射外界光源的光线,且显示面板反射的外界光源光线会严重影响自发光器件的显示品质。通常采用在自发光器件上增加一具有1/4波长相位延迟的偏光片,从而可以降低金属电极的反射率,进而提高自发光器件的显示质量。
然而,由于偏光片成本高,且由于偏光片会使自发光器件的发光效率降低50%-60%左右,进而降低光能利用率。
技术问题
本申请实施例的目的是提供一种显示面板及显示装置,可以减弱显示面板中金属电极反射外界光源的光线对显示面板造成的影响,进而提高显示质量。
技术解决方案
本申请实施例提供一种显示面板,包括:
基板,所述基板包括相对设置的第一表面和第二表面;
电极层,所述电极层设置在所述基板的第一表面上;以及
反射功能层,所述反射功能层设置在所述电极层上,用于降低所述电极层的反射率;
所述反射功能层包括层叠设置的第一金属子层、透明非金属子层、第二金属子层;
其中,所述第一金属子层和所述第二金属子层的材料均包括钼金属材料、铬金属材料以及钨金属材料中的至少一种;所述透明非金属子层包括纳米铟锡金属氧化物材料、透明导电氧化物材料、铟镓锌氧化物材料、氧化硅材料以及氮化硅材料中的至少一种;
所述基板的第二表面设置有黑色遮光胶。
在本申请所述的显示面板中,所述第一金属子层的厚度介于12纳米-40纳米之间,所述第二金属子层的厚度介于2纳米-15纳米之间,所述透明非金属子层的厚度介于3纳米-7纳米之间。
在本申请所述的显示面板中,所述显示面板还包括:发光器件层以及封装层,所述发光器件层设置在所述反射功能层上,所述封装层设置在所述发光器件层上并覆盖所述反射功能层;其中,所述封装层的表面设置有纳米压印微结构。
在本申请所述的显示面板中,所述纳米压印微结构包括多个呈阵列式间隔分布于所述封装层表面的多个半球形状的纳米级凸起。
在本申请所述的显示面板中,所述发光器件层包括多个呈阵列排布的微型发光二极管,所述微型发光二极管设置在所述反射光能层上。
在本申请所述的显示面板中,所述电极层包括第一子电极层和第二子电极层;所述第一子电极层包括间隔设置的源极金属电极、漏极金属电极以及公共电极,所述第二子电极层包括栅极金属电极;其中,所述反射功能层覆盖所述源极金属电极、所述漏极金属电极、所述公共电极以及所述栅极金属电极。
在本申请所述的显示面板中,所述反射功能层包括多个反射块,所述多个反射块与所述源极金属电极、所述漏极金属电极、所述公共电极以及所述栅极金属电极一一对应。
在本申请所述的显示面板中,所述多个反射块在所述基板上的投影位于非发光区域上。
本申请实施例还提供一种显示面板,包括:
基板,所述基板包括相对设置的第一表面和第二表面;
电极层,所述电极层设置在所述基板的第一表面上;以及
反射功能层,所述反射功能层设置在所述电极层上,用于降低所述电极层的反射率。
在本申请所述的显示面板中,所述反射功能层包括层叠设置的第一金属子层、透明非金属子层、第二金属子层;其中,
所述第一金属子层和所述第二金属子层的材料均包括钼金属材料、铬金属材料以及钨金属材料中的至少一种;所述透明非金属子层包括纳米铟锡金属氧化物材料、透明导电氧化物材料、铟镓锌氧化物材料、氧化硅材料以及氮化硅材料中的至少一种。
在本申请所述的显示面板中,所述第一金属子层的厚度介于12纳米-40纳米之间,所述第二金属子层的厚度介于2纳米-15纳米之间,所述透明非金属子层的厚度介于3纳米-7纳米之间。
在本申请所述的显示面板中,所述显示面板还包括:发光器件层以及封装层,所述发光器件层设置在所述反射功能层上,所述封装层设置在所述发光器件层上并覆盖所述反射功能层;其中,所述封装层的表面设置有纳米压印微结构。
在本申请所述的显示面板中,所述纳米压印微结构包括多个呈阵列式间隔分布于所述封装层表面的多个半球形状的纳米级凸起。
在本申请所述的显示面板中,所述发光器件层包括多个呈阵列排布的微型发光二极管,所述微型发光二极管设置在所述反射光能层上。
在本申请所述的显示面板中,所述基板的第二表面设置有黑色遮光胶。
在本申请所述的显示面板中,所述电极层包括第一子电极层和第二子电极层;所述第一子电极层包括间隔设置的源极金属电极、漏极金属电极以及公共电极,所述第二子电极层包括栅极金属电极;其中,所述反射功能层覆盖所述源极金属电极、所述漏极金属电极、所述公共电极以及所述栅极金属电极。
在本申请所述的显示面板中,所述反射功能层包括多个反射块,所述多个反射块与所述源极金属电极、所述漏极金属电极、所述公共电极以及所述栅极金属电极一一对应。
在本申请所述的显示面板中,所述多个反射块在所述基板上的投影位于非发光区域上。
本申请实施例还提供一种显示装置,其包括显示面板,所述显示面板包括:
基板,所述基板包括相对设置的第一表面和第二表面;
电极层,所述电极层设置在所述基板的第一表面上;以及
反射功能层,所述反射功能层设置在所述电极层上,用于降低所述电极层的反射率。
在本申请所述的显示装置中,所述反射功能层包括层叠设置的第一金属子层、透明非金属子层、第二金属子层;其中,
所述第一金属子层和所述第二金属子层的材料均包括钼金属材料、铬金属材料以及钨金属材料中的至少一种;所述透明非金属子层包括纳米铟锡金属氧化物材料、透明导电氧化物材料、铟镓锌氧化物材料、氧化硅材料以及氮化硅材料中的至少一种。
有益效果
由上可知,本申请实施例的显示面板通过在电极层上设置反射功能层,该反射功能层用于降低该电极层的反射率,即,当外界光源的光线射入显示面板时,光线需经过反射功能层,从而可以减弱显示面板中金属电极反射外界光源的光线对显示面板造成的影响,进而提高显示质量;并且本申请实施例中的显示面板并不需要使用偏光片来降低金属电极的反射率,从而可以提高显示面板的光能利用率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面对实施例中所需要使用的附图作简单的介绍。下面描述中的附图仅为本申请的部分实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获取其他的附图。
图1为本申请实施例中的显示面板的一种结构示意图;
图2为本申请实施例中的显示面板的反射功能层的一种结构示意图;
图3为本申请实施例中的显示面板的另一种结构示意图;
图4为本申请实施例中的显示面板的再一种结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,图1为本申请实施例中的显示面板的一种结构示意图。如图1所示,本申请实施例的显示面板10包括:基板100、电极层200以及反射功能层300;其中,该基板100包括相对设置的第一表面101和第二表面102,该电极层200设置在基板100的第一表面101上,该反射功能层300设置在电极层200上。
本申请实施例的显示面板通过在电极层200上设置反射功能层300,该反射功能层300用于降低电极层200的反射率。需要说明的是,由于电极层200具有很高的反射率,即当外界光源的光线射入显示面板10时,外界光源的光线能够通过电极层200将光线反射出去。
在本申请实施例中,当外界光源的光线射入显示面板10时,外界光源的光线需经过反射功能层300,而不是直接射入电极层200,从而可以减弱显示面板10中电极层200反射外界光源的光线,进而提高显示质量。
在一些实施例中,请参阅图2,图2为本申请实施例中的显示面板的反射功能层的一种结构示意图。结合图1、图2,该反射功能层300包括层叠设置的第一金属子层301、透明非金属子层302、第二金属子层303,该第一金属子层301、透明非金属子层302以及第二金属子层303依次层叠设置在电极层200上。也即,当外界光源的光线射入显示面板10时,光线依次经过第一金属子层301、透明非金属子层302、第二金属子层303和电极层200。
其中,该第一金属子层301和第二金属子层303的材料均包括钼金属材料、铬金属材料以及钨金属材料中的至少一种;该透明非金属子层302包括纳米铟锡金属氧化物材料、透明导电氧化物材料、铟镓锌氧化物材料、氧化硅材料以及氮化硅材料中的至少一种。
其中,该第一金属子层301的厚度介于12纳米-40纳米,该第二金属子层303的厚度介于2纳米-15纳米,该透明非金属子层302的厚度介于3纳米-7纳米。
在一些实施例中,第二金属子层303的厚度小于第一金属子层301的厚度。
在一些实施例中,请继续参阅图1,该电极层200包括第一子电极层201和第二子电极层202,该第一子电极层201和第二子电极层202位于不同层。需要说明的是,第一子电极层201和第二子电极层202上均设置有反射功能层300,且该第一子电极层201用于形成晶体管的源极、晶体管漏极以及公共电极等金属电极,该第二子电极层202用于形成晶体管的栅极等金属电极。
其中,该第一子电极层201包括间隔设置的源极金属电极2011、漏极金属电极2012以及公共电极2013;该第二子电极层202包括栅极金属电极2021。该反射功能层300覆盖源极金属电极2011、漏极金属电极2012、公共电极2013以及栅极金属电极2021。
该反射功能层300包括多个反射块310,该多个反射块310与源极金属电极2011、漏极金属电极2012、公共电极2013以及栅极金属电极2021一一对应。例如,在源极金属电极2011上设置有反射块310,在漏极金属电极2012上设置有反射块310,在公共电极2013上设置有反射块310,在栅极金属电极2021上设置有反射块310,且各个反射块310均与相应的电极一一对应。
在一些实施例中,各个反射块310的面积与相应的电极一致。在另一些实施例中,各个反射块310仅需将相应的电极覆盖即可,也即,各个反射块310的面积可大于相应的电极。
在一些实施例中,该多个反射块310在基板100上的投影位于非发光区域上。在微型显示面板中,显示面板的发光区域占整个显示面板的比例较小,其余大部分为非发光区,为了降低非发光区中的电极层的反射率,可在电极层对应非发光区域上设置电极层300,从而可以极大的降低微型显示面板中电极层的反射率,进而提高显示质量。
该显示面板10可以为微型发光二极管显示面板,由于微型发光二极管显示面板的发光区域占整个像素的比例较小,其余部分为非发光区域,因此,通过降低微型发光二极管显示面板的非发光区域的反射率,进而可以极大的降低微型发光二极管显示面板的反射率,提高显示质量。
请继续参阅图1,该显示面板10包括:基板100、电极层200、反射功能层300、遮光金属层400、缓冲层500、层间介质层600、发光器件层700以及封装层800。
其中,该基板100可以为透明玻璃基板,也可以为蓝宝石基板。
其中,该遮光金属层400设置在基板100上。
其中,该缓冲层500设置在基板100上,并覆盖遮光金属层400;该缓冲层500可采用二氧化硅或者氮化硅等绝缘材料沉积形成。该缓冲层500上还设置有导电沟道层901,位于该导电沟道层901上的绝缘层902,以及位于该绝缘层902上的第二子电极层202。
其中,该层间介质层600采用二氧化硅或者氮化硅等绝缘材料沉积形成,该层间介质层600沉积于该导电沟道层901、该绝缘层902、该第二子电极层202以及该缓冲层500上。
其中,该发光器件层700设置于第一子电极层201上。该发光器件层700包括阴极层701、阳极层703以及发光材料层702。其中,该发光材料层702位于阴极层701和阳极层703之间。也即,该发光器件层包括多个呈阵列排布的微型发光二极管。
其中,该发光器件层700上还设置有封装层800以保护该发光器件层700。
另外,本申请实施例中的显示面板,由于通过在电极层200上设置反射功能层300,可以减弱显示面板中金属电极反射外界光源的光线对显示面板造成的影响,故本申请实施中的显示面板并不需要额外设置偏光片来减弱显示面板中金属电极反射外界光源的光线对显示面板造成的影响,进而可以提高显示面板的光源利用率。
由上可知,本申请实施例的显示面板通过在电极层上设置反射功能层,该反射功能层用于降低该电极层的反射率,即,当外界光源的光线射入显示面板时,光线需经过反射功能层,从而可以减弱显示面板中金属电极反射外界光源的光线对显示面板造成的影响,进而提高显示质量;并且本申请实施例中的显示面板并不需要使用偏光片来降低金属电极的反射率,从而可以提高显示面板的光能利用率。
请参阅图3,图3为本申请实施例中的显示面板的另一种结构示意图。图3所示的显示面板与图1所示的显示面板的区别在于:图3所示的显示面板20中的封装层800的表面设置有纳米压印微结构900。本申请实施例通过在封装层800的表面设置纳米压印微结构900,可以提高显示面板20的发光效率和遏制产生镜面反射影像。
其中,该封装层800的表面还设置有纳米压印微结构900。该纳米压印微结构900包括多个呈阵列式间隔分布于该封装层800的上表面的多个半球形状的纳米级凸起910。
请参阅图4,图4为本申请实施例中的显示面板的再一种结构示意图。图4所示的显示面板与图1所示的显示面板的区别在于:图4所示的显示面板30中的基板100的第二表面102设置有黑色遮光胶110。本申请实施例通过在基板100的第二表面102设置有黑色遮光胶110,可以提高显示面板30的发光效率和遏制产生镜面反射影像。
其中,该黑色遮光胶110覆盖基板100的第二表面102。
本申请实施例还提供了一种显示装置,其包括以上任一实施例中的显示面板。具体可参照以上任一实施例中的显示面板的描述,在此不做赘述。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种显示面板,其包括:
    基板,所述基板包括相对设置的第一表面和第二表面;
    电极层,所述电极层设置在所述基板的第一表面上;以及
    反射功能层,所述反射功能层设置在所述电极层上,用于降低所述电极层的反射率;
    所述反射功能层包括层叠设置的第一金属子层、透明非金属子层、第二金属子层;其中,
    所述第一金属子层和所述第二金属子层的材料均包括钼金属材料、铬金属材料以及钨金属材料中的至少一种;所述透明非金属子层包括纳米铟锡金属氧化物材料、透明导电氧化物材料、铟镓锌氧化物材料、氧化硅材料以及氮化硅材料中的至少一种;
    所述基板的第二表面设置有黑色遮光胶。
  2. 根据权利要求1所述的显示面板,其中,所述第一金属子层的厚度介于12纳米-40纳米之间,所述第二金属子层的厚度介于2纳米-15纳米之间,所述透明非金属子层的厚度介于3纳米-7纳米之间。
  3. 根据权利要求2所述的显示面板,其中,所述显示面板还包括:发光器件层以及封装层,所述发光器件层设置在所述反射功能层上,所述封装层设置在所述发光器件层上并覆盖所述反射功能层;其中,所述封装层的表面设置有纳米压印微结构。
  4. 根据权利要求3所述的显示面板,其中,所述纳米压印微结构包括多个呈阵列式间隔分布于所述封装层表面的多个半球形状的纳米级凸起。
  5. 根据权利要求3所述的显示面板,其中,所述发光器件层包括多个呈阵列排布的微型发光二极管,所述微型发光二极管设置在所述反射光能层上。
  6. 根据权利要求1所述的显示面板,其中,所述电极层包括第一子电极层和第二子电极层;所述第一子电极层包括间隔设置的源极金属电极、漏极金属电极以及公共电极,所述第二子电极层包括栅极金属电极;其中,所述反射功能层覆盖所述源极金属电极、所述漏极金属电极、所述公共电极以及所述栅极金属电极。
  7. 根据权利要求6所述的显示面板,其中,所述反射功能层包括多个反射块,所述多个反射块与所述源极金属电极、所述漏极金属电极、所述公共电极以及所述栅极金属电极一一对应。
  8. 根据权利要求7所述的显示面板,其中,所述多个反射块在所述基板上的投影位于非发光区域上。
  9. 一种显示面板,其包括:
    基板,所述基板包括相对设置的第一表面和第二表面;
    电极层,所述电极层设置在所述基板的第一表面上;以及
    反射功能层,所述反射功能层设置在所述电极层上,用于降低所述电极层的反射率。
  10. 根据权利要求9所述的显示面板,其中,所述反射功能层包括层叠设置的第一金属子层、透明非金属子层、第二金属子层;其中,
    所述第一金属子层和所述第二金属子层的材料均包括钼金属材料、铬金属材料以及钨金属材料中的至少一种;所述透明非金属子层包括纳米铟锡金属氧化物材料、透明导电氧化物材料、铟镓锌氧化物材料、氧化硅材料以及氮化硅材料中的至少一种。
  11. 根据权利要求2所述的显示面板,其中,所述第一金属子层的厚度介于12纳米-40纳米之间,所述第二金属子层的厚度介于2纳米-15纳米之间,所述透明非金属子层的厚度介于3纳米-7纳米之间。
  12. 根据权利要求9所述的显示面板,其中,所述显示面板还包括:发光器件层以及封装层,所述发光器件层设置在所述反射功能层上,所述封装层设置在所述发光器件层上并覆盖所述反射功能层;其中,所述封装层的表面设置有纳米压印微结构。
  13. 根据权利要求12所述的显示面板,其中,所述纳米压印微结构包括多个呈阵列式间隔分布于所述封装层表面的多个半球形状的纳米级凸起。
  14. 根据权利要求12所述的显示面板,其中,所述发光器件层包括多个呈阵列排布的微型发光二极管,所述微型发光二极管设置在所述反射光能层上。
  15. 根据权利要求9所述的显示面板,其中,所述基板的第二表面设置有黑色遮光胶。
  16. 根据权利要求9所述的显示面板,其中,所述电极层包括第一子电极层和第二子电极层;所述第一子电极层包括间隔设置的源极金属电极、漏极金属电极以及公共电极,所述第二子电极层包括栅极金属电极;其中,所述反射功能层覆盖所述源极金属电极、所述漏极金属电极、所述公共电极以及所述栅极金属电极。
  17. 根据权利要求16所述的显示面板,其中,所述反射功能层包括多个反射块,所述多个反射块与所述源极金属电极、所述漏极金属电极、所述公共电极以及所述栅极金属电极一一对应。
  18. 根据权利要求17所述的显示面板,其中,所述多个反射块在所述基板上的投影位于非发光区域上。
  19. 一种显示装置,其包括显示面板,所述显示面板包括:
    基板,所述基板包括相对设置的第一表面和第二表面;
    电极层,所述电极层设置在所述基板的第一表面上;以及
    反射功能层,所述反射功能层设置在所述电极层上,用于降低所述电极层的反射率。
  20. 根据权利要求19所述的显示装置,其中,所述反射功能层包括层叠设置的第一金属子层、透明非金属子层、第二金属子层;其中,
    所述第一金属子层和所述第二金属子层的材料均包括钼金属材料、铬金属材料以及钨金属材料中的至少一种;所述透明非金属子层包括纳米铟锡金属氧化物材料、透明导电氧化物材料、铟镓锌氧化物材料、氧化硅材料以及氮化硅材料中的至少一种。
PCT/CN2018/113272 2018-09-18 2018-11-01 显示面板及显示装置 WO2020056865A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/301,870 US20200091378A1 (en) 2018-09-18 2018-11-01 Display panel and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811085514.6A CN109119452A (zh) 2018-09-18 2018-09-18 显示面板及显示装置
CN201811085514.6 2018-09-18

Publications (1)

Publication Number Publication Date
WO2020056865A1 true WO2020056865A1 (zh) 2020-03-26

Family

ID=64858397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113272 WO2020056865A1 (zh) 2018-09-18 2018-11-01 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN109119452A (zh)
WO (1) WO2020056865A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713017B (zh) 2019-01-14 2021-01-22 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN109994533B (zh) * 2019-04-17 2021-01-19 京东方科技集团股份有限公司 阵列基板、显示面板及其制造方法
CN110112141B (zh) * 2019-04-26 2021-02-02 深圳市华星光电技术有限公司 微发光二极管显示面板及制备方法
CN111261658B (zh) * 2020-02-10 2023-02-28 Tcl华星光电技术有限公司 微型发光二极管显示面板及微型发光二极管的转印方法
US11316003B2 (en) 2020-02-25 2022-04-26 Boe Technology Group Co., Ltd. Array substrate, display device, and method for manufacturing same
CN111952331A (zh) * 2020-09-01 2020-11-17 深圳市华星光电半导体显示技术有限公司 微发光二极管显示基板及其制作方法
CN112768590A (zh) * 2020-12-30 2021-05-07 深圳市华星光电半导体显示技术有限公司 一种显示面板的制备方法及显示面板
CN112802905A (zh) * 2021-02-04 2021-05-14 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
CN112993117A (zh) * 2021-02-09 2021-06-18 深圳市华星光电半导体显示技术有限公司 微发光二极管显示面板及其制备方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118982A (ja) * 2013-12-17 2015-06-25 三菱電機株式会社 導電膜構造およびそれを用いた半導体装置、アクティブマトリックス基板、タッチパネル基板およびタッチパネル付表示装置、並びに配線または電極の形成方法
CN104952901A (zh) * 2014-03-26 2015-09-30 乐金显示有限公司 有机发光显示器
CN107850811A (zh) * 2015-05-06 2018-03-27 株式会社Lg化学 液晶显示装置
CN108139638A (zh) * 2015-10-27 2018-06-08 株式会社Lg化学 导电结构体、包括该导电结构体的电极以及显示装置
CN108336144A (zh) * 2018-01-22 2018-07-27 惠州市华星光电技术有限公司 一种用于显示面板中的薄膜晶体管及显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118982A (ja) * 2013-12-17 2015-06-25 三菱電機株式会社 導電膜構造およびそれを用いた半導体装置、アクティブマトリックス基板、タッチパネル基板およびタッチパネル付表示装置、並びに配線または電極の形成方法
CN104952901A (zh) * 2014-03-26 2015-09-30 乐金显示有限公司 有机发光显示器
CN107850811A (zh) * 2015-05-06 2018-03-27 株式会社Lg化学 液晶显示装置
CN108139638A (zh) * 2015-10-27 2018-06-08 株式会社Lg化学 导电结构体、包括该导电结构体的电极以及显示装置
CN108336144A (zh) * 2018-01-22 2018-07-27 惠州市华星光电技术有限公司 一种用于显示面板中的薄膜晶体管及显示面板

Also Published As

Publication number Publication date
CN109119452A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2020056865A1 (zh) 显示面板及显示装置
US20220223658A1 (en) Electronic device
US10269777B2 (en) Display apparatus comprising reflection structure
US9954035B2 (en) Organic light emitting diode with a plurality composite electrode having different thicknesses
WO2018119926A1 (zh) Oled显示单元及其制作方法
US10651427B2 (en) Organic light emitting diode display device
WO2021120314A1 (zh) 一种显示面板
WO2019014973A1 (zh) 有机发光显示面板及其制作方法
TW201926676A (zh) 有機發光二極體顯示器
TWI695364B (zh) 有機發光二極體顯示裝置
KR100741129B1 (ko) 백라이트 유닛 및 이를 구비한 액정 표시장치
WO2021093439A1 (zh) 显示基板及其制作方法、电子装置
KR102666873B1 (ko) 유기 발광 표시 장치 및 그의 제조 방법
US10868092B2 (en) Display device having dummy and reflective regions
US20240049575A1 (en) Display panel and mobile terminal
WO2021239127A1 (zh) 柔性显示面板及其制备方法和显示装置
KR20110003201A (ko) 유기전계발광표시장치 및 그의 제조방법
CN211743193U (zh) 一种阵列基板及显示装置
JP7366756B2 (ja) 画素構造、表示装置及び画素構造の製造方法
WO2021139657A1 (zh) 有机电致发光结构及其制作方法、显示装置
WO2020224141A1 (zh) 显示面板及其制作方法
WO2021238343A1 (zh) 显示面板及显示装置
WO2024022126A1 (zh) 触控面板及显示装置
US20200091378A1 (en) Display panel and display apparatus
CN108511623B (zh) 光取出结构、显示屏体及其制作方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934505

Country of ref document: EP

Kind code of ref document: A1