WO2021093439A1 - 显示基板及其制作方法、电子装置 - Google Patents

显示基板及其制作方法、电子装置 Download PDF

Info

Publication number
WO2021093439A1
WO2021093439A1 PCT/CN2020/114546 CN2020114546W WO2021093439A1 WO 2021093439 A1 WO2021093439 A1 WO 2021093439A1 CN 2020114546 W CN2020114546 W CN 2020114546W WO 2021093439 A1 WO2021093439 A1 WO 2021093439A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
display area
light
electrode portion
Prior art date
Application number
PCT/CN2020/114546
Other languages
English (en)
French (fr)
Inventor
黄炜赟
张微
蔡建畅
薛龙辉
肖星亮
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/285,590 priority Critical patent/US11985842B2/en
Publication of WO2021093439A1 publication Critical patent/WO2021093439A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the embodiments of the present disclosure relate to a display substrate, a manufacturing method thereof, and an electronic device.
  • OLED display panels have the characteristics of self-luminescence, high contrast, low energy consumption, wide viewing angle, fast response speed, can be used for flexible panels, wide operating temperature range, and simple manufacturing. Prospects.
  • components with other functions such as imaging elements with photosensitive functions, are usually integrated to realize functions such as camera and fingerprint recognition.
  • At least some embodiments of the present disclosure provide a display substrate including a display area including a first display area and a second display area, and the pixel density of the first display area is higher than that of the second display area.
  • the display area includes a base substrate, and a first electrode layer, a light-emitting function layer, and a second electrode layer are sequentially arranged on the base substrate.
  • the second electrode layer is located on a side of the light-emitting function layer away from the base substrate, and the first electrode layer and the second electrode layer are configured to apply a voltage to the light-emitting function layer to cause the light-emitting function layer to emit light.
  • the functional layer emits light
  • the second electrode layer includes a first electrode portion located in the first display area and a second electrode portion located in the second display area, the first electrode portion and the second electrode portion Electrically connected to each other, the light transmittance of the second electrode portion is higher than the light transmittance of the first electrode portion.
  • the thickness of the first electrode portion is greater than the thickness of the second electrode portion.
  • the first electrode portion includes a first sub-layer and a second sub-layer stacked on the light-emitting function layer in sequence, the first sub-layer is closer to the light-emitting function layer, and the first sub-layer is closer to the light-emitting function layer.
  • the material of the first sublayer and the second sublayer are the same.
  • the first sublayer and the second electrode part are an integral structure and the material is a metal or a metal alloy.
  • the materials of the first sublayer and the second sublayer are different, and the work function of the material of the first sublayer is lower than the work function of the material of the second sublayer.
  • the material of the first sub-layer includes metal or metal alloy
  • the material of the second sub-layer includes a transparent conductive material
  • the second sub-layer and the second electrode part are an integral structure.
  • the first electrode part and the second electrode part are respectively an integral structure with an interface between each other, and the materials of the first electrode part and the second electrode part are different.
  • the thickness of the first electrode portion and the second electrode portion are the same.
  • the material of the first electrode part includes a metal or a metal alloy
  • the material of the second electrode part includes a transparent conductive material
  • the second electrode layer further includes a third electrode part located between the first electrode part and the second electrode part, and the third electrode part is connected to the first electrode part and the second electrode part respectively.
  • the second electrode part is electrically connected, and the thickness of the third electrode part is not uniform.
  • the thickness of the third electrode portion gradually decreases.
  • the thickness of the third electrode portion first decreases and then increases.
  • At least some embodiments of the present disclosure further provide an electronic device, including the above-mentioned display substrate and an imaging element, the imaging element being disposed in the second display area and located on a side of the second electrode layer close to the base substrate ,
  • the imaging element includes a photosensitive surface, and the photosensitive surface faces the second electrode layer.
  • At least some embodiments of the present disclosure further provide a method for manufacturing a display substrate, including: forming a display area on a base substrate, the display area including a first display area and a second display area, and the pixel density of the first display area Higher than the pixel density of the second display area.
  • Forming the display area includes: sequentially forming a first electrode layer, a light-emitting function layer, and a second electrode layer on the base substrate, and the first electrode layer and the second electrode layer are configured to interfere with the light-emitting function.
  • the second electrode layer includes a first electrode portion located in the first display area and a second electrode portion located in the second display area, the first electrode The portion and the second electrode portion are electrically connected to each other, and the light transmittance of the second electrode portion is higher than the light transmittance of the first electrode portion.
  • the first electrode part includes a first sublayer and a second sublayer stacked on the light-emitting function layer in sequence, and the first sublayer is closer to the light-emitting function layer; forming the The second electrode layer includes: using a first mask to form the first sub-layer in the first display area and forming the second electrode portion in the second display area, and using a second mask to form the first sub-layer in the first display area.
  • a display area forms the second sub-layer.
  • the first electrode part includes a first sublayer and a second sublayer stacked on the light-emitting function layer in sequence, and the first sublayer is closer to the light-emitting function layer; forming the The second electrode layer includes: using a first mask to form the first sub-layer in the first display area, using a second mask to form the second sub-layer in the first display area, and forming the second sub-layer in the first display area.
  • the second display area forms the second electrode part.
  • FIG. 1 is a schematic plan view of a display substrate provided by an embodiment of the disclosure
  • FIGS. 2A and 2B are schematic diagrams of the distribution of sub-pixels of a display substrate provided by an embodiment of the present disclosure
  • FIG. 3 is a cross-sectional view of a display substrate provided by an embodiment of the disclosure.
  • FIGS. 4A-4C are schematic diagrams of the second electrode layer of the display substrate provided by the embodiments of the disclosure.
  • Figure 5 is a schematic diagram of the evaporation process
  • FIG. 6A is a schematic diagram of an electronic device provided by an embodiment of the disclosure.
  • 6B is a cross-sectional view of an electronic device provided by an embodiment of the disclosure.
  • FIGS 7A-7C are schematic diagrams of the mask used in the manufacturing method of the display substrate provided by the embodiments of the disclosure.
  • arranging the imaging element in the display area of the display device is beneficial to realize a narrow frame display.
  • the display device since the display device is fabricated in the display area, it will affect the light transmittance of the imaging element.
  • the light-emitting elements and opaque traces in the sub-pixels may block the light taken by the imaging element and affect the imaging quality.
  • the light transmittance of the area where the imaging element is provided can be increased by reducing the density of the sub-pixels in the area.
  • At least some embodiments of the present disclosure provide a display substrate including a display area including a first display area and a second display area.
  • the pixel density of the first display area is higher than that of the second display area.
  • the zone includes a base substrate and a first electrode layer, a light-emitting function layer and a second electrode layer sequentially arranged on the base substrate.
  • the second electrode layer is located on a side of the light-emitting functional layer away from the base substrate, the first electrode layer and the second electrode layer are configured to apply a voltage to the light-emitting functional layer to make the light-emitting functional layer emit light, and the second The electrode layer includes a first electrode portion located in the first display area and a second electrode portion located in the second display area, the first electrode portion and the second electrode portion are electrically connected to each other, and the second electrode portion is light-transmissive The rate is higher than the light transmittance of the first electrode part.
  • the light transmittance of the second display area is further improved.
  • FIG. 1 is a schematic plan view of a display substrate provided by an embodiment of the disclosure.
  • the display substrate 20 includes a plurality of gate lines 11 and a plurality of data lines 12.
  • the plurality of gate lines 11 and the plurality of data lines 12 cross each other to define a plurality of sub-pixel regions arranged in an array in the display region 110.
  • Each sub-pixel area is provided with a sub-pixel 100, and each sub-pixel includes a light-emitting element and a driving circuit for driving the light-emitting element to emit light.
  • the driving circuit is, for example, a conventional pixel circuit.
  • the driving circuit includes a conventional 2T1C (ie, two transistors and a capacitor) pixel circuit, 4T2C, 5T1C, 7T1C and other nTmC (n, m are positive integers) pixel circuits, and in different embodiments, the driving circuit also It may further include a compensation circuit, the compensation circuit including an internal compensation circuit or an external compensation circuit, and the compensation circuit may include a transistor, a capacitor, and the like.
  • the driving circuit may further include a reset circuit, a light-emitting control circuit, a detection circuit, etc., as required.
  • the display substrate may further include a data driving circuit 6 and a gate driving circuit 7 located in the non-display area 111 outside the display area 110.
  • the data driving circuit and the gate driving circuit are connected to each other through the data line 12 and the gate line 11, respectively.
  • the driving circuit of the light-emitting element is connected to provide an electric signal.
  • the data driving circuit is used to provide data signals
  • the gate driving circuit is used to provide scanning signals, and can be further used to provide various control signals, power signals, and the like.
  • the display substrate adopts a silicon substrate as the base substrate, and both the gate driving circuit 6 and the data driving circuit 7 can be integrated on the silicon substrate.
  • the gate drive circuit 6 and the data drive circuit 7 can also be formed in the area corresponding to the display area of the display substrate, for example, instead of Must be in the non-display area.
  • the display area 110 includes a first display area 21 and a second display area 22.
  • the pixel density (the number of sub-pixels per unit area) in the first display area 21 is higher than that of the pixels in the second display area 22.
  • the density for example, the resolution of the first display area 21 is higher than that of the second display area 22.
  • the pixel density in the present disclosure refers to the density of sub-pixels that actually exist, rather than the density of sub-pixels participating in display. Since the pixel density in the second display area 22 is relatively low, the light shielding of the wiring and devices in the sub-pixels is reduced, which is beneficial to increase the light transmittance of the second display area 22.
  • the second display area 22 is located near the center of the display area 110, or may be located near the edges of the display area 110 (such as the upper left corner, the upper right corner, the center area of the upper edge, etc.).
  • the shape of the second display area 22 may be a regular shape such as a rectangle, a circle, or an ellipse, or an irregular shape such as a drop shape.
  • the size (side length or diameter) of the second display area 22 is 2-8 mm, for example, 4-6 mm.
  • FIGS. 2A and 2B respectively show schematic diagrams of two sub-pixel distributions in an embodiment of the present disclosure.
  • three adjacent sub-pixels in the same row constitute a pixel unit 200, and the three sub-pixels are respectively configured to emit light of three primary colors (R, G, B).
  • R, G, B three primary colors
  • the embodiment of the present disclosure does not limit the specific structure of the pixel unit.
  • the distribution density of pixel units in the first display area 21 is higher than the distribution density of pixel units in the second display area 22.
  • the structure of the pixel unit 200 in the second display area 22 is the same as the structure of the pixel unit 200 in the first display area 21.
  • the pitch of adjacent sub-pixels 100 in the pixel unit 200 in the second display area 22 is the same as that of the first display area 21.
  • This arrangement does not change the structure of the pixel unit 200 (minimum repeating unit) in the second display area 22, but only increases the spacing between the pixel units 200, so the design of the driving circuit is relatively simple.
  • the structure of the pixel unit 200 in the second display area 22 is different from the structure of the pixel unit 200 in the first display area 21.
  • the distance between adjacent sub-pixels 100 in the pixel unit 200 in the second display area 22 is greater than the distance between adjacent sub-pixels 100 in the pixel unit 200 in the first display area 21.
  • Fig. 3 shows an example of a cross-sectional view of the display substrate shown in Fig. 1 along the A-A' direction.
  • the display substrate is an organic light emitting diode (OLED) display substrate or a micro OLED (Micro OLED) display substrate.
  • the light-emitting element may be an organic light-emitting diode (OLED) or a quantum dot light-emitting diode (QLED), etc.
  • the embodiment of the present disclosure does not limit the type of the light-emitting element.
  • the light-emitting layer of the OLED can be a small molecular organic material or a high molecular organic material.
  • FIG. 3 schematically shows only one sub-pixel 100 in the first display area 21 and the second display area 22, and for each sub-pixel, only the light-emitting element 201 and the driving circuit are shown.
  • the transistor 203 is directly connected to the light-emitting element 201.
  • the transistor 203 may be a driving transistor configured to work in a saturated state and control the magnitude of the current for driving the light-emitting element 201 to emit light.
  • the transistor 203 may also be a light-emitting control transistor, which is used to control whether the current for driving the light-emitting element 201 to emit light flows. The embodiment of the present disclosure does not limit this.
  • the first electrode layer 204, the light-emitting function layer 205, and the second electrode layer 206 are sequentially stacked on the side of the driving circuit away from the base substrate 101, and the second electrode layer 206 is located on the light-emitting function layer 205 away from the substrate.
  • the first electrode layer 204 and the second electrode layer 206 are configured to apply a voltage to the light-emitting function layer 205 to make the light-emitting function layer 205 emit light.
  • the first electrode layer 204 includes a plurality of first electrodes 211 arranged at intervals and insulated from each other, and the plurality of first electrodes 211 are respectively located in a plurality of sub-pixels and used to form a light-emitting element 201 in the sub-pixel.
  • the second electrode layer 206 includes second electrodes respectively located in a plurality of sub-pixels, and the plurality of second electrodes are electrically connected to each other.
  • the light-emitting functional layer 205 includes light-emitting functional layer portions 213 respectively located in a plurality of sub-pixels.
  • the first electrode 211, the light-emitting functional layer portion 213, and the second electrode of each sub-pixel 100 constitute the light-emitting element 201 in the sub-pixel.
  • the light-emitting function layer portions 213 in adjacent sub-pixels 100 are spaced apart from each other by the pixel defining layer 220.
  • the transistor 203 includes an active layer 121, a gate insulating layer 125, a gate 122, a first electrode 123, and a second electrode 124.
  • the embodiments of the present disclosure do not limit the type, material, and structure of the transistor 203.
  • it may be a top-gate type, a bottom-gate type, etc.
  • the active layer of the transistor 203 may be microcrystalline silicon, amorphous silicon, or polysilicon (low temperature polysilicon).
  • oxide semiconductor such as IGZO
  • other inorganic semiconductor materials can also be organic materials, such as PBTTT, PDBT-co-TT, PDQT, PDVT-10, dinaphtho-dithiophene (DNTT) Or organic semiconductor materials such as pentacene.
  • the transistor 203 may be N-type or P-type.
  • the first electrode 123 of the transistor 203 is electrically connected to the first electrode 211 of the light-emitting element 201.
  • the transistors used in the embodiments of the present disclosure may all be thin film transistors, field effect transistors, or other switching devices with the same characteristics.
  • thin film transistors are used as examples for description.
  • the source and drain of the transistor used here can be symmetrical in structure, so there can be no difference in structure between the source and drain.
  • one pole can be directly described as the first pole and the other pole is the second pole.
  • the first electrode layer 204 is configured as an anode layer, and the material of the first electrode layer 204 has a high work function.
  • the material of the first electrode layer 204 also has a high reflectivity.
  • the first electrode layer 204 may include magnesium (Mg), lithium (Li), calcium (Ca), strontium (Sr), cesium (Cs), silver (Ag), copper (Cu), aluminum (Al), Molybdenum (Mo), tungsten (W), titanium (Ti) and other metals and alloy materials combined with the above metals; or conductive metal oxide materials, such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), zinc aluminum oxide (AZO), etc.
  • the first electrode layer 204 has a laminated structure, such as an ITO/Ag/ITO laminated structure or a Ti/Al/Ti/Mo laminated structure.
  • the second electrode layer 206 is configured as a cathode layer, and the material of the second electrode layer 206 is a material having a low work function and a high transmittance.
  • the material of the second electrode layer 206 may be a semi-transmissive metal or metal alloy material, a transparent conductive metal oxide material (such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), zinc oxide). Aluminum (AZO), etc.), transparent nano-electrode materials, etc.
  • a high work function metal and a low work function metal can be used to form an alloyed second electrode layer 206.
  • the material of the second electrode layer 206 is Ca/Al, Mg/Ag, Gd/Al, Al/Li, Sn/Li, Sn/Al, Ag/Al and other alloy materials.
  • the material of the second electrode layer 206 is an alloy Mg/Ag formed by co-evaporating a low work function metal Mg and a high work function metal Ag with relatively stable chemical properties.
  • the light-emitting function layer 205 may include at least one light-emitting layer, and may further include an electron/hole injection layer, an electron/hole transport layer, an electron/hole blocking layer, a charge generation layer, and the like as needed.
  • the light-emitting functional layer 205 has a tandem structure, and includes multiple light-emitting layers connected in series by a charge generation layer (CGL).
  • the second electrode layer 206 includes a first electrode portion 212 located in the first display area 21 and a second electrode portion 222 located in the second display area 22.
  • the first electrode portion 212 and the second electrode portion 222 are connected to each other. Electric connection.
  • the light transmittance of the second electrode part 222 is higher than that of the first electrode part 212.
  • the light transmittance of the second electrode portion 222 can be higher than the light transmittance 212 of the first electrode portion by selecting the material or thickness of the first electrode portion 212 and the second electrode portion 222.
  • the thickness of the first electrode portion 212 is greater than the thickness of the second electrode portion 222.
  • the thickness of the second electrode part 222 is 60%-95% of the thickness of the first electrode part 212.
  • the thickness of the second electrode portion 222 should not be too small, otherwise the resistance of the second electrode portion 222 will increase, thereby affecting the driving ability of the driving circuit in the second display area 22, resulting in the light-emitting brightness of the sub-pixels in the second display area 22 not enough.
  • the thickness of the first electrode part 212 is 10 nm-20 nm
  • the thickness of the second electrode part 222 is in the range of 6 nm-18 nm, for example, 6 nm-12 nm or 10 nm-15 nm.
  • the first electrode part 212 and the second electrode part 222 are integrally formed, that is, an integral structure; at the same time, in the direction perpendicular to the base substrate 101, the thickness of the first electrode part 212 is greater than that of the first electrode part 212.
  • the “integrated structure” in the present disclosure refers to a structure in which multiple structures are connected to each other formed in the same deposition process, and thus the multiple structures do not have an interface with each other and have the same material.
  • the second electrode layer 206 of the integrated structure can be obtained by forming a conductive layer on the light-emitting function layer 205 and selectively etching the portion of the conductive layer located in the second display area 22.
  • the thickness of the first electrode portion 212 may be the same as the thickness of the second electrode portion 222, and the transmittance of the material of the first electrode portion 212 is lower than the transmittance of the material of the second electrode portion 222.
  • the second electrode layer 206 can be formed through multiple deposition processes (for example, evaporation process) without introducing a photolithography process.
  • FIGS 4A-4C show several examples of the second electrode layer provided by the embodiment of the present disclosure.
  • the first electrode part 212 includes a first sublayer 301 and a second sublayer 302 stacked on the light emitting function layer 205 in sequence, and the first sublayer 301 is closer to the light emitting function layer 205, for example, the first sublayer 301 is in direct contact with the light-emitting function layer 205.
  • the first sub-layer 301 or the second sub-layer 302 of the first electrode part 212 and the second electrode part 222 are an integral structure.
  • the materials of the first sublayer 301 and the second sublayer 302 are different, and the work function of the material of the first sublayer 301 is lower than the work function of the material of the second sublayer 302.
  • the material of the first sub-layer 301 includes the above-mentioned metal or metal alloy material
  • the material of the second sub-layer 302 includes the above-mentioned transparent conductive material, such as indium tin oxide (ITO), indium zinc oxide (IZO), and zinc oxide (ZnO). , Zinc Aluminum Oxide (AZO), etc.
  • Arranging the first sub-layer 301 with a low work function closer to the light-emitting function layer 205 can improve the electron injection capability.
  • arranging the high work function second sub-layer 302 on the outside of the first sub-layer 301 helps to protect the first sub-layer 301 and prevent water and oxygen. Invasion.
  • the materials of the first sub-layer 301 and the second sub-layer 302 can also be the same, which can simplify the process.
  • the second sub-layer 302 of the first electrode part 212 and the second electrode part 222 are an integral structure.
  • the second sub-layer 302 of the first electrode portion 212 and the second electrode portion 222 are both transparent conductive materials, so that the second display area 22 has a higher light transmittance.
  • the second sub-layer 302 is made of a transparent conductive material, its thickness can be appropriately thick to reduce resistance.
  • the thickness of the second sub-layer is greater than that of the first sub-layer.
  • the thickness of the first sub-layer 301 is 10 nm-20 nm, and the thickness of the second electrode portion 222 and the second sub-layer 302 is 50-100 nm.
  • the second sub-layer 302 is overlapped on the first sub-layer 301, which can effectively reduce the resistance of the first electrode portion 212.
  • the first sub-layer 301 of the first electrode part 212 and the second electrode part 222 are an integral structure.
  • the materials of the first sub-layer 301 and the second sub-layer 302 are both metal or metal alloy materials, such as semi-transmissive metal or metal alloy materials. Since metal or metal alloy materials generally have a relatively low work function, using metal or metal alloy materials for both the first sublayer and the second sublayer can simultaneously improve the electron injection capability in the first display area and the second display area.
  • the material of the second sub-layer 302 may be a metal or a metal alloy material, or a transparent conductive material.
  • the thickness of the second electrode portion 222 cannot be too small, otherwise the resistance of the second electrode portion 222 will increase, thereby affecting the driving capability of the driving circuit in the second display area 22 and causing the sub-pixels in the second display area to emit light.
  • the brightness is not enough.
  • the thickness of the first sub-layer 301 is greater than that of the second sub-layer 302. thickness.
  • the thickness of the first sublayer 301 and the second electrode portion 222 is in the range of 6nm-18nm, and the thickness of the second sublayer 302 is 6nm-12nm.
  • the first electrode portion 212 and the second electrode portion 222 are formed separately and have different materials, and the transmittance of the material of the second electrode portion 222 is higher than that of the material of the first electrode portion 212. Transmittance.
  • the first electrode part 212 and the second electrode part 222 are each an integral structure, and there is an interface between each other.
  • the material of the first electrode part 212 is the aforementioned metal or metal alloy material
  • the material of the second electrode part 222 is the aforementioned transparent conductive material.
  • the thickness of the first electrode portion 212 and the second electrode portion 222 are the same, so that the overlapping area of the first electrode portion 212 and the second electrode portion 222 has a relatively flat surface, and the second electrode is reduced. Fracture risk of the layer.
  • the second electrode layer 206 further includes a third electrode portion 232 located between the first electrode portion 212 and the second electrode portion 222, and the third electrode portion 232 is connected to the first electrode portion 212 and the second electrode portion 212, respectively.
  • the two electrode parts 222 are electrically connected.
  • the third electrode portion 232 here is used to distinguish the second electrode layer 206 from the relatively uniform body portions of the first display area 21 and the second display area 22 (that is, the first electrode portion 212 and the second electrode portion 222). ).
  • the thickness of the third electrode part 232 is not uniform. This is due to the shadow effect during the evaporation process.
  • the third electrode portion 232 includes a first portion 232a and a second portion 232b.
  • the first portion 232a and the first electrode portion 212 are an integral structure, and the second portion 232b and the second electrode portion 222 As a one-piece structure. Due to the shadow effect, the thickness of the first portion 232a gradually decreases along the direction D1 from the first display area 21 to the second display area 22, and the thickness of the two portions 232b gradually increases along the direction D1 from the first display area 21 to the second display area 22. Big.
  • the second portion 232b overlaps the first portion 232a, and the two have an interface. The interface is inclined with respect to the base substrate, that is, the included angle with the base substrate is an acute angle.
  • the overlapping portion of the first portion 232a and the second portion 232b has a flat surface.
  • the surface is parallel to the surface of the base substrate and is recessed with respect to the surface of the first electrode part 212 or the second electrode part 222. In other examples, the surface may also be flush with the first electrode portion 212 or the second electrode portion 222, and the third electrode portion 232 has a uniform thickness in this case.
  • Figure 5 is a schematic diagram of the evaporation process. As shown in FIG.
  • the evaporation material from the evaporation source 500 will diffuse at the edge of the opening area 320 of the mask 310, causing the actually formed film to extend beyond the opening area 320, forming a shadow outside the edge of the opening area 320 District SH.
  • the edge of the film layer is not a right angle, but has a slope, that is, in the shadow area, the thickness of the film layer is not uniform, but gradual. In the direction away from the main region of the film layer, the thickness of the film layer in the shaded area gradually decreases. Due to the shadow effect, the opening area of the mask can be designed to be smaller than the actual film forming area, so that evaporation materials can be saved and costs can be reduced.
  • the thickness of the third electrode portion 232 gradually decreases.
  • the first sub-layer 301 of the first electrode portion 212 when the first sub-layer 301 of the first electrode portion 212 is formed by evaporation, the first sub-layer 301 forms a shadow area near the edge of the second display area 22.
  • the second sub-layer 302 of the first electrode portion 212 when the second sub-layer 302 of the first electrode portion 212 is formed by evaporation, the second sub-layer 302 forms a shadow area near the edge of the second display area 22.
  • the thickness of the third electrode portion 232 first decreases and then increases. This is because the first electrode portion 212 and the second electrode portion 222 are respectively formed by an evaporation process, and a shadow area is formed at the edge of the first electrode portion 212 near the second display area 22, that is, the third electrode portion 232 is formed.
  • the first part 232a also forms a shadow area at the edge of the second electrode part 222 near the first display area 21, that is, forms the second part 232b of the third electrode part 232, and the two shadow areas are connected or overlapped with each other to form
  • the third electrode part 232 in which there is an interface between the first electrode part 212 and the second electrode part 222.
  • the formation process of the third electrode portion 232 will be specifically described in the following embodiment of the manufacturing method.
  • An embodiment of the present disclosure further provides an electronic device, including the above-mentioned display substrate 20 and an imaging element, the imaging element is disposed in the second display area 22 of the display substrate 20 and located on the side of the second electrode layer close to the base substrate,
  • the imaging element includes a photosensitive surface, and the photosensitive surface faces the second electrode layer of the display substrate 20.
  • the imaging element 401 includes a photosensor configured to receive light that passes through the second electrode layer 206 and reaches the imaging element 401 and converts the light into an electrical signal for forming an image.
  • FIG. 6A shows a schematic structural diagram of an electronic device 40 provided by some embodiments of the present disclosure
  • FIG. 6B is a cross-sectional view of the electronic device shown in FIG. 6A along B-B'.
  • the electronic device 40 further includes an encapsulation layer 207 and a cover plate 208 disposed on the display substrate 20, and the encapsulation 207 is configured to seal the light-emitting element in the display substrate 20 to prevent external moisture and oxygen from entering the light-emitting element. And the penetration of the drive circuit causes damage to the device.
  • the encapsulation layer 207 includes an organic thin film or a structure in which an organic thin film and an inorganic thin film are alternately stacked.
  • a water absorption layer (not shown) may be further provided between the encapsulation layer 207 and the display substrate 20, configured to absorb residual water vapor or sol in the preliminary manufacturing process of the light-emitting element.
  • the cover plate 208 is, for example, a glass cover plate.
  • the cover plate 208 and the packaging layer 207 may be an integral structure.
  • the imaging element 401 may be attached to the back surface of the display substrate 20 (the surface opposite to the display surface). As shown in FIG. 6B, the imaging element 401 is attached to the side of the base substrate 101 away from the second electrode layer 206. In other examples, the imaging element 401 may also be formed inside the display substrate 20, for example, formed on the side of the base substrate 101 close to the second electrode layer 206. For example, the imaging element 401 may be formed together with the pixel circuit in the display substrate 20.
  • the imaging element 401 is a camera. In other examples, the imaging element 401 may also be a fingerprint recognition element, configured to receive light reflected by the finger and passing through the second electrode layer when the finger approaches or touches the cover plate 208, and converts the light into electricity. Signal, used to form a fingerprint image of a finger.
  • the electronic device can be, for example, a digital photo frame, a smart bracelet, a smart watch, a mobile phone, a tablet computer, a display, a notebook computer, a navigator, and other products or components with any display function.
  • the embodiments of the present disclosure also provide a method for manufacturing the above-mentioned display substrate.
  • the manufacturing method at least includes: sequentially forming a first electrode layer, a light-emitting function layer, and a second electrode layer on the base substrate.
  • a first electrode portion in a display area and a second electrode portion in the second display area, the first electrode portion and the second electrode portion are electrically connected to each other, and the light transmittance of the second electrode portion is higher than that of the first electrode portion.
  • the light transmittance of the electrode part is provided by sequentially forming a first electrode layer, a light-emitting function layer, and a second electrode layer on the base substrate.
  • FIG. 7A-7C show several examples of masks used in the manufacturing method provided by the embodiments of the present disclosure.
  • the manufacturing method of the display substrate provided by the embodiment of the present disclosure will be exemplarily described below with reference to Figs. 3, 4A-4C, and Figs. 7A-7C.
  • the manufacturing method at least includes the following steps S701-S702.
  • Step S701 forming a driving circuit of the light-emitting element 201 on the base substrate 101.
  • forming the driving circuit includes forming a transistor 203, for example, including forming an active layer 121, a gate insulating layer 125, a gate 122, an interlayer insulating layer, and an interlayer insulating layer of the transistor 203 sequentially on the base substrate 101.
  • the source and drain electrode layers including the first electrode 123 and the second electrode 124).
  • the material of the active layer 121 may be a simple semiconductor material or a compound semiconductor material.
  • it may include amorphous silicon, polysilicon (low temperature polysilicon or high temperature polysilicon), metal oxide semiconductor (such as IGZO, AZO), and the like.
  • the material of the gate electrode 122 and the source and drain electrode layers includes gold (Au), silver (Ag), copper (Cu), aluminum (Al), molybdenum (Mo), magnesium (Mg), tungsten (W) and the above Alloy materials made of combinations of metals; or conductive metal oxide materials, such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), zinc aluminum oxide (AZO), etc.
  • the gate insulating layer 125 and the interlayer insulating layer may be a single-layer structure of silicon nitride or silicon oxide or a multilayer structure formed by stacking silicon nitride and silicon oxide.
  • the conductive material layer may be formed by a physical vapor deposition process such as sputtering, and the insulating material layer may be formed by a process such as chemical vapor deposition.
  • Step S702 forming a light-emitting element 201 on the driving circuit.
  • forming the light-emitting element 201 includes sequentially forming a first electrode layer 204, a light-emitting function layer 205, and a second electrode layer 206.
  • a physical vapor deposition (for example, sputtering) process is used to form the first conductive layer, and a patterning process is performed on the first conductive layer to form a plurality of first electrodes 211 spaced apart from each other.
  • the light-emitting function layer 205 and the second electrode layer 206 are sequentially formed by an evaporation process.
  • forming the second electrode layer 206 includes: using the first mask 51 to form the first sublayer 301 of the first electrode portion 212 in the first display area 21, and using the second mask 52 in the first display The area 21 forms the second sub-layer 302 of the first electrode portion 212 and the second electrode portion 222 is formed in the second display area 22.
  • the first mask and the second mask may both be open masks.
  • the open mask has a lower cost than a fine metal mask (FFM), and can avoid the limitation of the precision of the fine metal mask on the structure of the display substrate.
  • FAM fine metal mask
  • FIG. 7A shows an example of the first mask 51 and the second mask 52.
  • the opening area 510 of the first mask 51 corresponds to the first display area 21.
  • the vapor deposition material will spread out of the area exposed by the opening area 510 at the edge of the opening area 510, so the opening area 510 may be smaller than the first display area 21.
  • the opening area 520 of the second mask 52 corresponds to the first display area 21 and the second display area 22.
  • the first mask 51 is used to form the first sub-layer 301 of the first electrode portion 212 in the first display area 21, and then the second mask 52 is used to form the second sub-layer in the first display area 21. 302 and the second electrode portion 222 located in the second display area 22, thereby forming the second electrode layer 206 as shown in FIG. 4A.
  • a metal or a metal alloy is used as an evaporation source to form the first sub-layer 301 on the light-emitting functional layer 205
  • a transparent conductive material is used as an evaporation source to form the second sub-layer 302 and the second electrode portion 222.
  • metal or metal alloy is used as the evaporation source to form the first sub-layer 301 and the second electrode portion 222 on the light-emitting functional layer 206, and the metal or metal alloy is still used as the evaporation source to form the second sub-layer 302, or transparent conductive
  • the material serves as an evaporation source to form the second sub-layer 302.
  • the shape of the second display area 22 is a regular shape, such as a rectangle, a circle, and the like.
  • the opening area 510 of the first mask 51 is rectangular.
  • the second display area 22 may also have an irregular shape. As shown in FIG. 6A, the shape of the second display area 22 is a circle (that is, a part of a circle).
  • FIG. 7B shows the formation of the first mask 51 and the second mask 52 corresponding to the display substrate.
  • forming the second electrode layer 206 includes: using a first mask to form the first electrode portion 212 in the first display area 21, and using a second mask to form the second electrode portion in the second display area 22 222.
  • FIG. 7C shows the first mask 51 and the second mask 52 in this example.
  • the opening area 510 of the first mask plate 51 corresponds to the first display area 21, and the opening area 520 of the second mask plate 52 corresponds to the second display area 22. Due to the shadow effect, the opening area 510 may be smaller than the first display area 21, and the opening area 520 may be smaller than the second display area 22.
  • the opening area 510 of the first mask 51 and the first electrode portion 212 overlap in a direction perpendicular to the base substrate, and the opening area 520 of the second mask 52 and the second electrode portion 222 are perpendicular to each other. Overlap in the direction of the base substrate.
  • the third electrode part 232 corresponds to the shaded area SH.
  • the diaphragm 52 forms the second electrode portion 222 in the second display area 22, and then uses the first mask 51 to form the first electrode portion 212 in the first display area 21.
  • a shadow area SH is formed at the edge of the first electrode portion 212 near the second display area 22, and the second electrode portion 222 is formed at the same time when the second electrode portion 222 is near the first display area.
  • the edge of the area 21 forms a shadow area SH, and the two shadow areas overlap so that the first electrode part 212 and the second electrode part 222 are electrically connected, and a third electrode part 232 is formed.
  • metal or metal alloy is used as the evaporation source to form the first electrode portion 212 on the light-emitting functional layer 206, and a transparent conductive material is used to form the second electrode portion 222 on the light-emitting functional layer 206; that is, the third electrode portion 232 includes the Metal material and the transparent conductive material.
  • an encapsulation layer may be formed on the second electrode layer 206, a polarizing layer may be provided, and a cover plate may be attached.
  • the imaging element 401 is attached to the second display area 22 on the back of the display substrate (the surface opposite to the display surface), thereby forming an electronic device as shown in FIGS. 6A-6B.
  • the imaging element 401 may also be formed in the process of forming the driving circuit, which is not limited in the embodiment of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开实施例提供一种显示基板(20)及其制作方法、电子装置(40)。该显示基板(20)包括显示区(110),该显示区(110)包括第一显示区(21)和第二显示区(22),该第一显示区(21)的像素密度高于该第二显示区(22)的像素密度,该显示区(110)包括衬底基板(101)以及依次设置于该衬底基板(101)上的第一电极层(204)、发光功能层(205)和第二电极层(206),该第二电极层(206)位于该发光功能层(205)远离该衬底基板(101)的一侧,该第一电极层(204)和所述第二电极层(206)配置为对该发光功能层(205)施加电压以使该发光功能层(205)发光。该第二电极层(206)包括位于该第一显示区(21)的第一电极部分(212)和位于该第二显示区(22)的第二电极部分(222),该第一电极部分(212)与该第二电极部分(222)彼此电连接,该第二电极部分(222)的透光率高于该第一电极部分(212)的透光率。该显示基板(20)可以有效提高第二显示区(22)的透光率。

Description

显示基板及其制作方法、电子装置
本申请要求于2019年11月15日递交的中国专利申请第201911122240.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开实施例涉及一种显示基板及其制作方法、电子装置。
背景技术
在显示领域,有机发光二极管(OLED)显示面板具有自发光、对比度高、能耗低、视角广、响应速度快、可用于挠曲性面板、使用温度范围广、制造简单等特点,具有广阔的发展前景。为了丰富显示面板的功能,通常会集成具有其它功能的组件,如具有感光功能的成像元件等,以实现摄像、指纹识别等功能。
发明内容
本公开至少一些实施例提供一种显示基板,包括显示区,所述显示区包括第一显示区和第二显示区,所述第一显示区的像素密度高于所述第二显示区。所述显示区包括衬底基板,依次设置于所述衬底基板上的第一电极层、发光功能层和第二电极层。所述第二电极层位于所述发光功能层远离所述衬底基板的一侧,所述第一电极层和所述第二电极层配置为对所述发光功能层施加电压以使所述发光功能层发光,所述第二电极层包括位于所述第一显示区的第一电极部分和位于所述第二显示区的第二电极部分,所述第一电极部分与所述第二电极部分彼此电连接,所述第二电极部分的透光率高于所述第一电极部分的透光率。
在一些示例中,在垂直于所述衬底基板的方向上,所述第一电极部分的厚度大于所述第二电极部分的厚度。
在一些示例中,所述第一电极部分包括依次层叠设置于所述发光功能层上的第一子层和第二子层,所述第一子层更靠近所述发光功能层,所述第一子层或所述第二子层与所述第二电极部分为一体的结构。
在一些示例中,所述第一子层与所述第二子层的材料相同。
在一些示例中,所述第一子层与所述第二电极部分为一体的结构且材料为金属或金属合金。
在一些示例中,所述第一子层与所述第二子层的材料不同,且所述第一子层的材料的功函数低于所述第二子层的材料的功函数。
在一些示例中,所述第一子层的材料包括金属或金属合金,所述第二子层的材料包括透明导电材料,所述第二子层和所述第二电极部分为一体的结构。
在一些示例中,所述第一电极部分和所述第二电极部分分别为一体的结构且彼此之间存在界面,所述第一电极部分和所述第二电极部分的材料不同。
在一些示例中,所述第一电极部分与所述第二电极部分的厚度相同。
在一些示例中,所述第一电极部分的材料包括金属或金属合金,所述第二电极部分的材料包括透明导电材料。
在一些示例中,所述第二电极层还包括位于所述第一电极部分和所述第二电极部分之间的第三电极部分,所述第三电极部分分别与所述第一电极部分和所述第二电极部分电连接,第三电极部分厚度不均一。
在一些示例中,沿所述第一显示区指向所述第二显示区的方向,所述第三电极部分的厚度逐渐减小。
在一些示例中,沿所述第一显示区指向所述第二显示区的方向,所述第三电极部分的厚度先减小后增大。
本公开至少一些实施例还提供一种电子装置,包括上述显示基板和成像元件,所述成像元件设置于所述第二显示区且位于所述第二电极层靠近所述衬底基板的一侧,所述成像元件包括感光面,所述感光面朝向所述第二电极层。
本公开至少一些实施例还提供一种显示基板的制作方法,包括:在衬底基板形成显示区,所述显示区包括第一显示区和第二显示区,所述第一 显示区的像素密度高于所述第二显示区的像素密度。形成所述显示区包括:在所述衬底基板上依次形成第一电极层、发光功能层和第二电极层,所述第一电极层和所述第二电极层配置为对所述发光功能层施加电压以使所述发光功能层发光,所述第二电极层包括位于所述第一显示区的第一电极部分和位于所述第二显示区的第二电极部分,所述第一电极部分与所述第二电极部分彼此电连接,所述第二电极部分的透光率高于所述第一电极部分的透光率。
在一些示例中,所述第一电极部分包括依次层叠设置于所述发光功能层上的第一子层和第二子层,所述第一子层更靠近所述发光功能层;形成所述第二电极层包括:采用第一掩模板在所述第一显示区形成所述第一子层及在所述第二显示区形成所述第二电极部分,采用第二掩模板在所述第一显示区形成所述第二子层。
在一些示例中,所述第一电极部分包括依次层叠设置于所述发光功能层上的第一子层和第二子层,所述第一子层更靠近所述发光功能层;形成所述第二电极层包括:采用第一掩膜板在所述第一显示区形成所述第一子层,采用第二掩膜板在所述第一显示区形成所述第二子层及在所述第二显示区形成所述第二电极部分。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,并非对本发明的限制。
图1为本公开实施例提供的显示基板的平面示意图;
图2A和图2B为本公开实施例提供的显示基板的子像素的分布示意图;
图3为本公开实施例提供的显示基板的剖视图;
图4A-4C为本公开实施例提供的显示基板的第二电极层的示意图;
图5为蒸镀工艺示意图;
图6A为本公开实施例提供的电子装置的示意图;
图6B为本公开实施例提供的电子装置的剖视图;
图7A-7C为本公开实施例提供的显示基板的制作方法中使用的掩膜板的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在集成有成像元件的显示装置中,将成像元件设置于显示装置的显示区,有利于实现窄边框显示。然而,由于显示区中制作有显示器件,会影响成像元件的光透过率,例如,子像素中的发光元件、不透光走线等都可能对成像元件摄取光线形成阻挡从而影响成像品质。例如,可以通过将设置有成像元件的区域中的子像素的密度降低来提高该区域的透光率。
本公开至少一些实施例提供一种显示基板,包括显示区,该显示区包括第一显示区和第二显示区,所述第一显示区的像素密度高于所述第二显示区,该显示区包括衬底基板及依次设置于该衬底基板上的第一电极层、发光功能层和第二电极层。该第二电极层位于该发光功能层远离该衬底基 板的一侧,该第一电极层和该第二电极层配置为对该发光功能层施加电压以使该发光功能层发光,该第二电极层包括位于该第一显示区的第一电极部分和位于该第二显示区的第二电极部分,该第一电极部分与该第二电极部分彼此电连接,该第二电极部分的透光率高于该第一电极部分的透光率。
通过提高该第二电极层位于该第二显示区(像素密度较低的显示区)中的部分的透光率,进一步提高了该第二显示区的透光率。
图1为本公开实施例提供的一种显示基板的平面示意图。如图1所示,该显示基板20包括多条栅线11和多条数据线12,多条栅线11和多条数据线12彼此交叉在显示区110中定义出阵列分布的多个子像素区,每个子像素区设置有一个子像素100,每个子像素包括发光元件和驱动该发光元件发光的驱动电路。该驱动电路例如为常规的像素电路。例如,该驱动电路包括常规的2T1C(即两个晶体管和一个电容)像素电路、4T2C、5T1C、7T1C等nTmC(n、m为正整数)像素电路,并且不同的实施例中,该驱动电路还可以进一步包括补偿电路,该补偿电路包括内部补偿电路或外部补偿电路,补偿电路可以包括晶体管、电容等。例如,根据需要,该驱动电路还可以进一步包括复位电路、发光控制电路、检测电路等。例如,该显示基板还可以包括位于显示区110外的非显示区111中的数据驱动电路6和栅极驱动电路7,该数据驱动电路和栅极驱动电路分别通过数据线12和栅线11与发光元件的驱动电路连接以提供电信号。该数据驱动电路用于提供数据信号,该栅极驱动电路用于提供扫描信号,还可以进一步用于提供各种控制信号、电源信号等。
在另一些示例中,例如,该显示基板采用硅基板作为衬底基板,该栅极驱动电路6和数据驱动电路7都可以集成于该硅基板上。在此情形下,由于硅基电路可以实现较高的集成度和精度,该栅极驱动电路6和数据驱动电路7例如也可以形成于对应于该显示基板的显示区的区域中,而并不一定位于非显示区。
如图1所示,显示区110包括第一显示区21和第二显示区22,第一显示区21中的像素密度(单位面积子像素的个数)高于第二显示区22中的像 素密度,例如第一显示区21的分辨率高于第二显示区22。需要说明的是,本公开中的像素密度是指实际存在的子像素的密度,而不是参与显示的子像素的密度。由于第二显示区22中的像素密度较低,因此子像素中走线和器件对于光线的遮挡降低,有利于提高第二显示区22的透光率。
例如,第二显示区22位于显示区110的靠近中心的位置,也可以位于显示区110的靠近边缘(如左上角、右上角、上边缘的中心区域等)的位置。例如,第二显示区22的形状可以是矩形、圆形、椭圆形等规则形状或者水滴形等不规则形状。例如,第二显示区22的尺寸(边长或直径)为2-8mm,例如为4-6mm。
图2A和图2B分别示出了本公开实施例中两种子像素分布的示意图。例如,同一行中相邻的三个子像素构成一个像素单元200,该三个子像素分别配置为发出三原色(R、G、B)的光。然而,本公开实施例对于像素单元的具体结构不作限制。如图所示,第一显示区21中的像素单元的分布密度高于第二显示区22中的像素单元的分布密度。
例如,如图2A所示,第二显示区22中的像素单元200的结构与第一显示区21中的像素单元200的结构相同。第二显示区22中的像素单元200内相邻的子像素100的间距与第一显示区21相同。这种设置并不改变第二显示区22中的像素单元200(最小重复单元)的结构,而只是增加了像素单元200之间的间距,因此驱动电路的设计较为简单。
在另一些示例中,如图2B所示,第二显示区22中像素单元200的结构与第一显示区21中的像素单元200的结构不同。第二显示区22中的像素单元200内相邻的子像素100之间的间距大于第一显示区21中像素单元内200相邻的子像素100之间的间距。
图3示出了图1所示显示基板沿A-A’方向的剖视图的一个示例。例如,该显示基板为有机发光二极管(OLED)显示基板或微型OLED(Micro OLED)显示基板。该发光元件可以是有机发光二极管(OLED)或量子点发光二极管(QLED)等,本公开实施例对于发光元件的类型不作限定。例如,OLED的发光层可以为小分子有机材料或高分子有机材料。
为了清楚起见,图3中仅示意性地分别示出了第一显示区21和第二显示区22中的一个子像素100,并且对于每个子像素,仅示出了发光元件201以及驱动电路中与该发光元件201直接连接的晶体管203。例如,该晶体管203可以是驱动晶体管,配置为工作在饱和状态下并控制驱动发光元件201发光的电流的大小。例如,该晶体管203也可以为发光控制晶体管,用于控制驱动发光元件201发光的电流是否流过。本公开的实施例对此不作限制。
如图3所示,第一电极层204、发光功能层205和第二电极层206依次层叠设置于驱动电路远离衬底基板101的一侧,第二电极层206位于发光功能层205远离衬底基板101的一侧,第一电极层204和第二电极层206配置为对发光功能层205施加电压以使发光功能层205发光。第一电极层204包括间隔设置、彼此绝缘的多个第一电极211,多个第一电极211分别位于多个子像素中,用于构成该子像素中的发光元件201。第二电极层206包括分别位于多个子像素中的第二电极,该多个第二电极彼此电连接。发光功能层205包括分别位于多个子像素中的发光功能层部分213。每个子像素100的第一电极211、发光功能层部分213及第二电极构成该子像素中的发光元件201。相邻子像素100中的发光功能层部分213通过像素界定层220彼此间隔。
例如,晶体管203包括有源层121、栅极绝缘层125、栅极122、第一极123和第二极124。本公开的实施例对于晶体管203的类型、材料、结构不作限制,例如其可以为顶栅型、底栅型等,晶体管203的有源层可以为微晶硅、非晶硅、多晶硅(低温多晶硅或高温多晶硅)、氧化物半导体(例如IGZO)等无机半导体材料,或者还可以为有机材料,例如为PBTTT、PDBT-co-TT、PDQT、PDVT-10、二萘并-并二噻吩(DNTT)或并五苯等有机半导体材料。例如,晶体管203可以为N型或P型。
例如,晶体管203的第一极123与发光元件201的第一电极211电连接。
需要说明的是,本公开实施例中采用的晶体管均可以为薄膜晶体管、场效应晶体管或其他特性相同的开关器件,本公开的实施例中均以薄膜晶体管为例进行说明。这里采用的晶体管的源极、漏极在结构上可以是对称 的,所以其源极、漏极在结构上可以是没有区别的。在本公开的实施例中,为了区分晶体管除栅极之外的两极,例如,可直接描述了其中一极为第一极,另一极为第二极。
例如,第一电极层204配置为阳极层,第一电极层204的材料具有高功函数,在发光元件201为顶发射结构的情形,该第一电极层204的材料还具有高反射率。例如,该第一电极层204可以包括镁(Mg)、锂(Li)、钙(Ca)、锶(Sr)、铯(Cs)、银(Ag)、铜(Cu)、铝(Al)、钼(Mo)、钨(W)、钛(Ti)等金属以及以上金属组合而成的合金材料;或者导电金属氧化物材料,例如氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化锌铝(AZO)等。例如,第一电极层204为层叠结构,例如为ITO/Ag/ITO叠层结构、或者Ti/Al/Ti/Mo层叠结构。
例如,第二电极层206配置为阴极层,第二电极层206的材料为具有低功函数和高透射率的材料。例如,第二电极层206的材料可以是半透射的金属或金属合金材料、透明导电金属氧化物材料(例如氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化锌铝(AZO)等)、透明纳米电极材料等。
例如,为了防止水和氧气对于低功函数金属阴极产生不利影响,可以采用高功函数的金属与低功函数的金属形成合金性质的第二电极层206,例如,第二电极层206的材料为Ca/Al、Mg/Ag、Gd/Al、Al/Li、Sn/Li、Sn/Al、Ag/Al等合金材料。例如,第二电极层206的材料为低功函数的金属Mg和高功函数且化学性能比较稳定的金属Ag共蒸形成的合金Mg/Ag。
例如,发光功能层205可以包括至少一个发光层,并且根据需要还可以包括电子/空穴注入层、电子/空穴传输层、电子/空穴阻挡层、电荷生成层等。例如,发光功能层205为串联(tandem)结构,包括由电荷生成层(Charge Generation Layer,CGL)串联的多个发光层。
如图3所示,第二电极层206包括位于第一显示区21的第一电极部分212和位于第二显示区22的第二电极部分222,第一电极部分212与第二电极部分222彼此电连接。第二电极部分222的透光率高于第一电极部分212 的透光率。
例如,可以通过对第一电极部分212和第二电极部分222进行材料或厚度等的选择使得第二电极部分222的透光率高于第一电极部分的透光率212。
例如,垂直于衬底基板101的方向上,第一电极部分212的厚度大于第二电极部分222的厚度。例如,第二电极部分222的厚度为第一电极部分212的60%-95%。第二电极部分222的厚度不能过小,否则会使得第二电极部分222的电阻增大,从而影响第二显示区22中驱动电路的驱动能力导致第二显示区22中的子像素的发光亮度不够。例如,第一电极部分212的厚度为10nm-20nm,第二电极部分222的厚度范围为6nm-18nm,例如为6nm-12nm或10nm-15nm。
例如,如图3所示,第一电极部分212和第二电极部分222一体成型,也即为一体的结构;同时在垂直于衬底基板101的方向上,第一电极部分212的厚度大于第二电极部分222的厚度。本公开中“一体的结构”是指多个结构由在同一沉积工艺中形成的彼此连接的结构,因而该多个结构彼此之间不存在界面并且具有相同的材料。例如,可以通过在发光功能层205上形成导电层,并选择性地对该导电层位于该第二显示区22的部分进行刻蚀得到该一体结构的第二电极层206。
例如,第一电极部分212的厚度也可以与第二电极部分222的厚度相同,且第一电极部分212的材料的透过率低于第二电极部分222的材料的透过率。
由于发光功能层205对温度以及黄光制程敏感,因此可以通过多次沉积工艺(例如蒸镀工艺)来形成第二电极层206而避免引入光刻工艺。
图4A-4C示出了本公开实施例提供的第二电极层的几种示例。
在一些示例中,第一电极部分212包括依次层叠设置于发光功能层205上的第一子层301和第二子层302,第一子层301更靠近发光功能层205,例如第一子层301与发光功能层205直接接触。第一电极部分212的第一子层301或第二子层302与第二电极部分222为一体的结构。
例如,第一子层301和第二子层302的材料不同,第一子层301的材料的功函数低于第二子层302的材料的功函数。例如,第一子层301的材料包括上述金属或金属合金材料,第二子层302的材料包括上述透明导电材料,例如氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化锌铝(AZO)等。将低功函数的第一子层301设置为更靠近发光功能层205,可以提高电子的注入能力。此外,由于高功函数材料化学性能相对较稳定,将高功函数的第二子层302设置于第一子层301的外侧,有助于对第一子层301形成保护,并防止水和氧气的入侵。
例如,第一子层301和第二子层302的材料也可以相同,这样可以简化工艺。
例如,在一些示例中,如图4A所示,第一电极部分212的第二子层302与第二电极部分222为一体的结构。例如,第一电极部分212的第二子层302与第二电极部分222均为透明导电材料,从而使得第二显示区22具有较高的透光率。
由于第二子层302为透明导电材料,可以适当将其厚度做厚以降低电阻,例如,第二子层的厚度大于第一子层。例如,第一子层301的厚度为10nm-20nm,第二电极部分222和第二子层302的厚度为50-100nm。第二子层302搭接在第一子层301上,可以有效降低第一电极部分212的电阻。
例如,在另一些示例中,如图4B所示,第一电极部分212的第一子层301与第二电极部分222为一体的结构。例如,第一子层301和第二子层302的材料均为金属或金属合金材料,例如为半透射的金属或金属合金材料。由于金属或金属合金材料通常具有较低的功函数,将第一子层和第二子层均采用金属或金属合金材料可以同时提高第一显示区与第二显示区中的电子注入能力。
例如,第二子层302的材料可以是金属或金属合金材料,或者透明导电材料。
例如,第二电极部分222的厚度不能过小,否则会使得第二电极部分222的电阻增大,从而影响第二显示区22中驱动电路的驱动能力导致第二 显示区中的子像素的发光亮度不够。
例如,在第一子层301和第二子层302的材料均为金属或金属合金的情形,第一子层301的厚度(也即第二电极部分222的厚度)大于第二子层302的厚度。例如,第一子层301和第二电极部分222的厚度范围为6nm-18nm,第二子层302的厚度为6nm-12nm。
在另一些示例中,如图4C所示,第一电极部分212和第二电极部分222分别形成并具有不同的材料,第二电极部分222材料的透过率高于第一电极部分212材料的透过率。第一电极部分212与第二电极部分222各自为一体的结构,且彼此之间存在界面。例如,第一电极部分212的材料为上述金属或金属合金材料,第二电极部分222的材料为上述透明导电材料。
例如,如图4C所示,第一电极部分212和第二电极部分222的厚度相同,从而使得该第一电极部分212与第二电极部分222的重叠区域具有相对平整的表面,降低第二电极层的断裂风险。
如图4A-4C所示,第二电极层206还包括位于第一电极部分212和第二电极部分222之间的第三电极部分232,第三电极部分232分别与第一电极部分212和第二电极部分222电连接。这里的第三电极部分232是为了区别于该第二电极层206分别位于第一显示区21和第二显示区22的具有相对均一的主体部分(也即第一电极部分212第二电极部分222)。例如,第三电极部分232的厚度不均一。这是由于在蒸镀工艺过程中的阴影效应所导致的。
如图4C所示,该第三电极部分232包括第一部分232a和第二部分232b,该第一部分232a与该第一电极部分212为一体的结构,该第二部分232b与该第二电极部分222为一体的结构。由于阴影效应,该第一部分232a沿第一显示区21指向第二显示区22的方向D1厚度逐渐减小,该二部分232b沿第一显示区21指向第二显示区22的方向D1厚度逐渐增大。如图4C所示,第二部分232b搭接在该第一部分232a上,二者具有分界面,该分界面相对于衬底基板为斜面,也即与衬底基板的夹角为锐角。
当该第一电极部分212的厚度与第二电极部分222的厚度相同时,该第 一部分232a和第二部分232b重叠部具有平坦的表面。例如,该表面与衬底基板的板面平行,且相对于该第一电极部分212或第二电极部分222的表面凹陷。在另一些示例中,该表面也可以与该第一电极部分212或第二电极部分222齐平,此时该第三电极部分232具有均一厚度。图5为蒸镀工艺示意图。如图5所示,来自蒸发源500的蒸镀材料会在掩膜板310的开口区320的边缘发生扩散,导致实际形成的膜层会超出开口区320,在开口区320的边缘外侧形成阴影区SH。并且,膜层的边缘不是直角,而是具有一个坡度,也即在该阴影区(shadow),膜层的厚度不是均一的,而是渐变的。在远离该膜层的主体区域的方向上,该阴影区的膜层的厚度逐渐减小。由于阴影效应的存在,可以将掩膜板的开口区设计为小于实际成膜的区域,从而可以节省蒸镀材料,降低成本。
如图4A和4B所示,沿第一显示区21指向第二显示区22的方向D1,第三电极部分232的厚度逐渐减小。如图4A所示,在蒸镀形成第一电极部分212的第一子层301时,第一子层301靠近第二显示区22的边缘处形成了阴影区。如图4B所示,在蒸镀形成第一电极部分212的第二子层302时,第二子层302靠近第二显示区22的边缘处形成了阴影区。
如图4C所示,沿第一显示区21指向第二显示区22的方向D1,第三电极部分232的厚度先减小后增大。这是由于第一电极部分212和第二电极部分222分别通过蒸镀工艺形成,在第一电极部分212靠近第二显示区22的边缘处形成阴影区,也即形成该第三电极部分232的第一部分232a,在第二电极部分222靠近第一显示区21的边缘处也形成阴影区,也即形成该第三电极部分232的第二部分232b,两个阴影区彼此连接或交叠从而形成第三电极部分232,该第三电极部分232中存在第一电极部分212和第二电极部分222之间的界面。在下面制作方法的实施例中将具体说明该第三电极部分232的形成过程。
本公开实施例还提供一种电子装置,包括上述显示基板20和成像元件,该成像元件设置于显示基板20的第二显示区22并位于该第二电极层靠近该衬底基板的一侧,该成像元件包括感光面,该感光面朝向显示基板20的第二电极层。该成像元件401包括光电传感器,配置为接收穿过第二电极 层206到达该成像元件401光线并将该光线转换成电信号并用于形成图像。
图6A示出了本公开一些实施例提供的电子装置40的结构示意图,图6B为图6A所示电子装置沿B-B’的剖视图。例如,该电子装置40还包括设置于显示基板20上的封装层207和盖板208,该封装207配置为对显示基板20中的发光元件进行密封以防止外界的湿气和氧向该发光元件及驱动电路的渗透而造成对器件的损坏。例如,封装层207包括有机薄膜或者包括有机薄膜及无机薄膜交替层叠的结构。例如,该封装层207与显示基板20之间还可以设置吸水层(未示出),配置为吸收发光元件在前期制作工艺中残余的水汽或者溶胶。盖板208例如为玻璃盖板。例如,盖板208和封装层207可以为一体的结构。
例如,成像元件401可以贴附于显示基板20的背面(与显示面相对的一面)。如图6B所示,成像元件401贴附在衬底基板101远离第二电极层206的一侧。在另一些示例中,成像元件401也可以形成于显示基板20的内部,例如形成于衬底基板101靠近第二电极层206的一侧。例如,成像元件401可以和显示基板20中的像素电路一起形成。
在一些示例中,该成像元件401为摄像头。在另一些示例中,该成像元件401也可以为指纹识别元件,配置为在手指靠近或接触盖板208时、接收经手指反射并穿过第二电极层的光线,并将该光线转换为电信号,用于形成手指的指纹图像。
该电子装置例如可以数码相框、智能手环、智能手表、手机、平板电脑、显示器、笔记本电脑、导航仪等具有任何显示功能的产品或者部件。
本公开实施例还提供上述显示基板的制作方法,该制作方法至少包括:在该衬底基板上依次形成第一电极层、发光功能层和第二电极层,该第二电极层包括位于该第一显示区的第一电极部分和位于该第二显示区的第二电极部分,该第一电极部分与该第二电极部分彼此电连接,该第二电极部分的透光率高于该第一电极部分的透光率。
图7A-7C示出了本公开实施例提供的制作方法中所用到的掩膜板的几种示例。以下将结合图3、图4A-4C、图7A-7C对本公开实施例提供的显示 基板的制作方法进行示例性说明。参照图3,该制作方法至少包括如下步骤S701-S702。
步骤S701:在衬底基板101上形成发光元件201的驱动电路。
例如,如图3所示,形成该驱动电路包括形成晶体管203,例如包括在衬底基板101上依次形成晶体管203的有源层121、栅极绝缘层125、栅极122、层间绝缘层及源漏电极层(包括第一极123和第二极124)。
例如,该有源层121的材料可以为单质半导体材料或化合物半导体材料,例如可以包括非晶硅、多晶硅(低温多晶硅或高温多晶硅)、金属氧化物半导体(如IGZO、AZO)等。
例如,该栅极122和源漏电极层的材料包括金(Au)、银(Ag)、铜(Cu)、铝(Al)、钼(Mo)、镁(Mg)、钨(W)以及以上金属组合而成的合金材料;或者导电金属氧化物材料,例如氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化锌铝(AZO)等。
例如,该栅极绝缘层125和该层间绝缘层可以为氮化硅或氧化硅的单层结构或者由氮化硅和氧化硅堆叠形成的多层结构。
例如,可以通过溅射等物理气相淀积工艺形成上述导电材料层,可以通过化学气相淀积等工艺形成上述绝缘材料层。
步骤S702:在该驱动电路上形成发光元件201。
例如,如图3所示,形成该发光元件201包括依次形成第一电极层204、发光功能层205和第二电极层206。
例如,采用物理气相淀积(例如溅射)工艺形成第一导电层,并对该第一导电层进行构图工艺形成彼此间隔的多个第一电极211。
例如,采用蒸镀工艺依次形成发光功能层205和第二电极层206。
在一些示例中,形成第二电极层206包括:采用第一掩膜板51在第一显示区21形成第一电极部分212的第一子层301,采用第二掩膜板52在第一显示区21形成第一电极部分212的第二子层302及在第二显示区22形成第二电极部分222。
例如,第一掩膜板和第二掩膜板可以均为开放式掩膜板(Open Mask)。开放式掩膜板相较于精细金属掩膜板(Fine Metal Mask,FFM)成本更低,并且可以避免精细金属掩膜板的精度对显示基板的结构所造成的限制。
图7A示出了第一掩膜板51和第二掩膜板52的一个示例。如图7A所示,该第一掩膜板51的开口区510对应于第一显示区21。例如,由于阴影效应的存在,蒸镀材料会在开口区510的边缘扩散至开口区510所暴露的区域之外,因此该开口区510可以小于第一显示区21。第二掩膜板52的开口区520对应于第一显示区21和第二显示区22。
例如,先使用第一掩膜板51在第一显示区21形成第一电极部分212的第一子层301,然后使用第二掩膜板52一体形成位于第一显示区21的第二子层302及位于第二显示区22的第二电极部分222,从而形成如图4A所示的第二电极层206。
例如,采用金属或金属合金作为蒸发源在发光功能层205上形成第一子层301,采用透明导电材料作为蒸发源形成第二子层302和第二电极部分222。
例如,先使用第二掩膜板52一体形成位于第一显示区21的第一子层301以及位于第二显示区22的第二电极部分222,然后使用第一掩膜板51在第一显示区21形成第二子层302,从而形成如图4B所示的第二电极层206。
例如,采用金属或金属合金作为蒸发源在发光功能层206上形成第一子层301和第二电极部分222,仍然采用金属或金属合金作为蒸发源形成第二子层302,也可以采用透明导电材料作为蒸发源形成第二子层302。
例如,第二显示区22的形状为规则形状,如矩形、圆形等。相应地,如图7A所示,第一掩膜板51的开口区510为矩形。
在另一些示例中,第二显示区22也可以为不规则形状。如图6A所示,第二显示区22的形状为圆缺(即圆形的一部分)。图7B示出了形成该显示基板所对应的第一掩膜板51和第二掩膜板52。
在另一些示例中,形成第二电极层206包括:采用第一掩膜板在第一显 示区21形成第一电极部分212,采用第二掩膜板在第二显示区22形成第二电极部分222。
图7C示出了该示例中的第一掩膜板51和第二掩膜板52。如图7C所示,第一掩膜板51的开口区510对应于第一显示区21,第二掩膜板52的开口区520对应于第二显示区22。由于阴影效应的存在,开口区510可以小于第一显示区21,开口区520可以小于第二显示区22。例如,该第一掩膜板51的开口区510与该第一电极部分212在垂直于衬底基板的方向上重合,该第二掩模板52的开口区520与该第二电极部分222在垂直于衬底基板的方向上重合。该第三电极部分232对应于该阴影区SH。
例如,先使用第一掩膜板51在第一显示区21形成第一电极部分212,然后使用第二掩膜板52在第二显示区22形成第二电极部分222;或者先使用第二掩膜板52在第二显示区22形成第二电极部分222,然后使用第一掩膜板51在第一显示区21形成第一电极部分212。结合参照图4C,形成第一电极部分212的同时在第一电极部分212靠近第二显示区22的边缘形成阴影区SH,形成第二电极部分222的同时在第二电极部分222靠近第一显示区21的边缘形成阴影区SH,两个阴影区搭接使得第一电极部分212和第二电极部分222电连接,并形成第三电极部分232。
例如,采用金属或金属合金作为蒸发源在发光功能层206上形成第一电极部分212,采用透明导电材料在发光功能层206上形成第二电极部分222;也即该第三电极部分232包括该金属材料及该透明导电材料。
例如,还可以在该第二电极层206上形成封装层、提供偏光层、并贴上盖板。
例如,在显示基板20的制作完成后,在显示基板的背面(与显示面相对的表面)对应第二显示区22贴附成像元件401,从而形成如图6A-6B所示的电子装置。在另一些示例中,也可以在形成驱动电路的过程中形成该成像元件401,本公开实施例对此不作限制。
本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。为了清晰起见,在用于描述本公开的实施例的附图中, 层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
虽然上文中已经用一般性说明及具体实施方式,对本公开作了详尽的描述,但在本公开实施例基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (17)

  1. 一种显示基板,包括显示区,所述显示区包括第一显示区和第二显示区,所述第一显示区的像素密度高于所述第二显示区的像素密度,
    所述显示区包括衬底基板以及依次设置于所述衬底基板上的第一电极层、发光功能层和第二电极层,所述第二电极层位于所述发光功能层远离所述衬底基板的一侧,所述第一电极层和所述第二电极层配置为对所述发光功能层施加电压以使所述发光功能层发光,
    其中,所述第二电极层包括位于所述第一显示区的第一电极部分和位于所述第二显示区的第二电极部分,所述第一电极部分与所述第二电极部分彼此电连接,所述第二电极部分的透光率高于所述第一电极部分的透光率。
  2. 如权利要求1所述的显示基板,其中,在垂直于所述衬底基板的方向上,所述第一电极部分的厚度大于所述第二电极部分的厚度。
  3. 如权利要求2所述的显示基板,其中,所述第一电极部分包括依次层叠设置于所述发光功能层上的第一子层和第二子层,所述第一子层更靠近所述发光功能层,
    所述第一子层或所述第二子层与所述第二电极部分为一体的结构。
  4. 如权利要求3所述的显示基板,其中,所述第一子层与所述第二子层的材料相同。
  5. 如权利要求3或4所述的显示基板,其中,所述第一子层与所述第二电极部分为一体的结构且材料为金属或金属合金。
  6. 如权利要求3所述的显示基板,其中,所述第一子层与所述第二子层的材料不同,且所述第一子层的材料的功函数低于所述第二子层的材料的功函数。
  7. 如权利要求6所述的显示基板,其中,所述第一子层的材料包括金属或金属合金,所述第二子层的材料包括透明导电材料,
    所述第二子层和所述第二电极部分为一体的结构。
  8. 如权利要求1-7任一所述的显示基板,其中,所述第一电极部分和所述第二电极部分分别为一体的结构且彼此之间存在界面,所述第一电极部分和所述第二电极部分的材料不同。
  9. 如权利要求8所述的显示基板,其中,所述第一电极部分与所述第二电极部分的厚度相同。
  10. 如权利要求8或9所述的显示基板,其中,所述第一电极部分的材料包括金属或金属合金,所述第二电极部分的材料包括透明导电材料。
  11. 如权利要求1-10任一所述的显示基板,其中,所述第二电极层还包括位于所述第一电极部分和所述第二电极部分之间的第三电极部分,所述第三电极部分分别与所述第一电极部分和所述第二电极部分电连接,第三电极部分厚度不均一。
  12. 如权利要求11所述的显示基板,其中,沿所述第一显示区指向所述第二显示区的方向,所述第三电极部分的厚度逐渐减小。
  13. 如权利要求11或12所述的显示基板,其中,沿所述第一显示区指向所述第二显示区的方向,所述第三电极部分的厚度先减小后增大。
  14. 一种电子装置,包括如权利要求1-13任一所述的显示基板和成像元件,
    其中,所述成像元件设置于所述第二显示区且位于所述第二电极层靠近所述衬底基板的一侧,所述成像元件包括感光面,所述感光面朝向所述第二电极层。
  15. 一种显示基板的制作方法,包括:
    在衬底基板形成显示区,所述显示区包括第一显示区和第二显示区,所述第一显示区的像素密度高于所述第二显示区的像素密度,
    其中,形成所述显示区包括:
    在所述衬底基板上依次形成第一电极层、发光功能层和第二电极层,所述第一电极层和所述第二电极层配置为对所述发光功能层施加电压以使所述发光功能层发光,
    其中,所述第二电极层包括位于所述第一显示区的第一电极部分和位于所述第二显示区的第二电极部分,所述第一电极部分与所述第二电极部分彼此电连接,所述第二电极部分的透光率高于所述第一电极部分的透光率。
  16. 如权利要求15所述的制作方法,其中,所述第一电极部分包括依次层叠设置于所述发光功能层上的第一子层和第二子层,所述第一子层更靠 近所述发光功能层;
    形成所述第二电极层包括:
    采用第一掩模板在所述第一显示区形成所述第一子层及在所述第二显示区形成所述第二电极部分,
    采用第二掩模板在所述第一显示区形成所述第二子层。
  17. 如权利要求15或16所述的制作方法,其中,所述第一电极部分包括依次层叠设置于所述发光功能层上的第一子层和第二子层,所述第一子层更靠近所述发光功能层;
    形成所述第二电极层包括:
    采用第一掩膜板在所述第一显示区形成所述第一子层,
    采用第二掩膜板在所述第一显示区形成所述第二子层及在所述第二显示区形成所述第二电极部分。
PCT/CN2020/114546 2019-11-15 2020-09-10 显示基板及其制作方法、电子装置 WO2021093439A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/285,590 US11985842B2 (en) 2019-11-15 2020-09-10 Display substrate with display area having different pixel density regions, method of manufacturing the same, and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911122240.8 2019-11-15
CN201911122240.8A CN110729337A (zh) 2019-11-15 2019-11-15 显示基板及其制作方法、电子装置

Publications (1)

Publication Number Publication Date
WO2021093439A1 true WO2021093439A1 (zh) 2021-05-20

Family

ID=69224374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114546 WO2021093439A1 (zh) 2019-11-15 2020-09-10 显示基板及其制作方法、电子装置

Country Status (3)

Country Link
US (1) US11985842B2 (zh)
CN (1) CN110729337A (zh)
WO (1) WO2021093439A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729337A (zh) 2019-11-15 2020-01-24 京东方科技集团股份有限公司 显示基板及其制作方法、电子装置
CN111564466B (zh) * 2020-05-25 2023-11-21 京东方科技集团股份有限公司 显示基板、其制作方法和显示装置
CN113871417A (zh) * 2020-06-30 2021-12-31 京东方科技集团股份有限公司 显示基板和显示装置
CN112267092B (zh) 2020-10-27 2023-04-07 京东方科技集团股份有限公司 掩膜板及其制备方法
KR20220091899A (ko) * 2020-12-24 2022-07-01 엘지디스플레이 주식회사 표시패널과 이를 포함하는 표시장치 및 이의 제조방법
CN113690384A (zh) * 2021-08-10 2021-11-23 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109256493A (zh) * 2018-12-07 2019-01-22 京东方科技集团股份有限公司 一种电致发光显示面板、显示装置及显示面板的制备方法
CN109786582A (zh) * 2019-03-08 2019-05-21 京东方科技集团股份有限公司 一种掩膜板、显示背板、显示面板和显示装置
CN110061038A (zh) * 2019-04-26 2019-07-26 武汉天马微电子有限公司 一种显示面板及显示装置
US20190310724A1 (en) * 2018-04-10 2019-10-10 Apple Inc. Electronic Device Display for Through-Display Imaging
CN110729337A (zh) * 2019-11-15 2020-01-24 京东方科技集团股份有限公司 显示基板及其制作方法、电子装置
CN210379053U (zh) * 2019-11-15 2020-04-21 京东方科技集团股份有限公司 显示基板及电子装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102465080B1 (ko) * 2015-08-24 2022-11-10 엘지디스플레이 주식회사 표시장치 및 표시패널
KR20180050473A (ko) * 2016-11-04 2018-05-15 삼성디스플레이 주식회사 표시 장치
CN209487511U (zh) * 2018-12-28 2019-10-11 云谷(固安)科技有限公司 显示面板及显示装置
CN110148621B (zh) * 2019-06-28 2021-07-30 昆山国显光电有限公司 透明显示基板、阵列基板、显示面板及显示装置
CN110189639B (zh) 2019-06-28 2020-12-04 昆山国显光电有限公司 显示基板、显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190310724A1 (en) * 2018-04-10 2019-10-10 Apple Inc. Electronic Device Display for Through-Display Imaging
CN109256493A (zh) * 2018-12-07 2019-01-22 京东方科技集团股份有限公司 一种电致发光显示面板、显示装置及显示面板的制备方法
CN109786582A (zh) * 2019-03-08 2019-05-21 京东方科技集团股份有限公司 一种掩膜板、显示背板、显示面板和显示装置
CN110061038A (zh) * 2019-04-26 2019-07-26 武汉天马微电子有限公司 一种显示面板及显示装置
CN110729337A (zh) * 2019-11-15 2020-01-24 京东方科技集团股份有限公司 显示基板及其制作方法、电子装置
CN210379053U (zh) * 2019-11-15 2020-04-21 京东方科技集团股份有限公司 显示基板及电子装置

Also Published As

Publication number Publication date
CN110729337A (zh) 2020-01-24
US20220020953A1 (en) 2022-01-20
US11985842B2 (en) 2024-05-14

Similar Documents

Publication Publication Date Title
WO2021093439A1 (zh) 显示基板及其制作方法、电子装置
US10937849B2 (en) Array substrate and method of manufacturing the same, display panel and display device
US11152443B2 (en) Display panel having a storage capacitor and method of fabricating same
US20210257581A1 (en) Array substrate and method for manufacturing the same, display panel and display device
JP7482631B2 (ja) 薄膜トランジスタ及びその製造方法、アレイ基板、表示装置
US9070896B2 (en) Organic light emitting diode display
KR102124025B1 (ko) 유기발광다이오드 표시장치 및 그 제조방법
WO2020238912A1 (zh) 阵列基板及其制造方法、光检测方法及组件、显示装置
WO2021093687A1 (zh) 显示基板及其制备方法、显示装置
TWI627744B (zh) 有機發光顯示裝置及製造該有機發光顯示裝置的方法
WO2018149106A1 (zh) 复合透明电极、oled及其制备方法、阵列基板和显示装置
US20150015530A1 (en) Touch sensing organic light emitting diode display and manufacturing method thereof
US20150171153A1 (en) Organic light emitting display device
US11183542B2 (en) Display panel and method for manufacturing display panel
WO2018205587A1 (zh) 显示基板及其制作方法、显示装置
WO2022227518A1 (zh) 发光基板及其制备方法和发光装置
CN210379053U (zh) 显示基板及电子装置
US9437665B2 (en) Organic light-emitting display apparatus
WO2022083429A1 (zh) 一种薄膜晶体管及其制作方法、驱动基板和电子设备
KR20160060835A (ko) 유기발광다이오드 표시장치 및 그 제조방법
CN114335109A (zh) 显示面板及其制备方法
US9029865B2 (en) Organic light emitting diode display and method for manufacturing the same
US11588053B2 (en) Display device and method of fabricating the same
TWI814369B (zh) 感光元件基板及其製造方法
US20220352275A1 (en) Oled display panel and method of manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887822

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20887822

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20887822

Country of ref document: EP

Kind code of ref document: A1