WO2021238343A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2021238343A1
WO2021238343A1 PCT/CN2021/080865 CN2021080865W WO2021238343A1 WO 2021238343 A1 WO2021238343 A1 WO 2021238343A1 CN 2021080865 W CN2021080865 W CN 2021080865W WO 2021238343 A1 WO2021238343 A1 WO 2021238343A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
base substrate
opening
reflective structure
Prior art date
Application number
PCT/CN2021/080865
Other languages
English (en)
French (fr)
Inventor
陈登云
刘运进
田雪雁
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010466036.4A external-priority patent/CN111584603B/zh
Priority claimed from CN202011062894.9A external-priority patent/CN112186019B/zh
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/922,406 priority Critical patent/US20230200188A1/en
Priority to EP21812847.8A priority patent/EP4131407A4/en
Priority to CN202180000479.7A priority patent/CN114026698B/zh
Publication of WO2021238343A1 publication Critical patent/WO2021238343A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display panel and a display device.
  • OLED Organic Light Emitting Diode
  • the specular reflection layer has a plurality of opening areas, the opening areas can transmit light emitted by the light emitting device to realize picture display, and the non-opening area in the specular reflection layer can be used as a mirror.
  • the surface of the display panel is not flat.
  • a film layer such as optical glue is attached to the specular reflection layer, air bubbles are likely to be generated, resulting in the display panel The yield rate is low.
  • the display panel provided by the implementation of the present disclosure includes:
  • a plurality of light-emitting devices located on the base substrate;
  • the mirror layer is located on the side of the packaging layer away from the base substrate; the mirror layer includes: a plurality of first openings; the orthographic projection of the first openings on the base substrate and at least one of the The orthographic projection of the light emitting device on the base substrate has an overlapping area;
  • the transparent filling layer is located on the side of the packaging layer away from the base substrate;
  • the first opening in the mirror layer has at least part of the transparent filling layer.
  • the transparent filling layer includes: a first transparent filling layer and a second transparent filling layer, and the second transparent filling layer is located on a side of the mirror layer away from the base substrate. side;
  • the first transparent filling layer includes: a plurality of discrete filling parts
  • a part of the filling part is located in the first opening, and the filling part faces away from the surface of the base substrate and is approximately flush with the surface of the second transparent filling layer away from the base substrate .
  • the transparent filling layer includes: an organic material.
  • the transparent filling layer includes: a plurality of discrete filling parts
  • the filling part is located in the first opening, and the surface of the filling part facing away from the base substrate is substantially flush with the surface of the mirror layer facing away from the base substrate.
  • the filling part includes: an inorganic material.
  • the transmittance of the transparent filling layer is greater than 90%.
  • the encapsulation layer includes: an inorganic film layer and an organic film layer that are stacked;
  • the organic film layer is located between two adjacent inorganic film layers
  • the thickness of the inorganic film layer at the first opening position is smaller than the thickness of the inorganic film layer at the pattern position of the mirror layer.
  • the cross-sectional area of the first opening in a direction parallel to the base substrate gradually increases trend.
  • it further includes: a pixel defining layer located between the base substrate and the packaging layer;
  • the pixel defining layer includes: a plurality of second openings corresponding to each of the light-emitting devices one-to-one;
  • the plurality of first openings in the mirror layer correspond to each of the second openings one-to-one.
  • the orthographic projection of the second opening on the base substrate is within the range of the orthographic projection of the corresponding first opening on the base substrate.
  • it further includes: a touch electrode layer formed on a side of the transparent filling layer away from the base substrate.
  • the touch electrode layer includes: a plurality of touch electrodes composed of a metal mesh;
  • the orthographic projection of the touch electrode on the base substrate is located within the range of the orthographic projection of the pattern of the pixel defining layer on the base substrate.
  • it further includes: a touch module located on the side of the transparent filling layer away from the base substrate, and a touch module located between the touch module and the transparent filling layer Bonding layer.
  • the display panel includes: a plurality of repeating units arranged in an array in a first direction and a second direction; the first direction and the second direction cross each other;
  • the repeating unit includes four sub-pixels, namely: a first sub-pixel, a second sub-pixel, and two third sub-pixels; each of the sub-pixels is provided with one light-emitting device;
  • the first sub-pixel and the second sub-pixel extend along the first direction and are arranged along the second direction, and the third sub-pixel is located in the first sub-pixel. Between the pixel and the second sub-pixel.
  • a plurality of the first openings in the mirror layer correspond to each of the repeating units in a one-to-one correspondence.
  • it further includes: a transparent protective layer located between the mirror layer and the encapsulation layer.
  • it further includes: at least one static electricity protection part located on the base substrate and coupled to the mirror layer;
  • the static electricity protection part is configured to discharge static electricity in the mirror layer
  • the display panel is divided into a display area and a peripheral area; the mirror layer is located in the display area, and the static electricity protection part is located in the peripheral area.
  • the static electricity protection part includes: a conductive connection part
  • a fixed voltage signal terminal is provided in the peripheral area, the conductive connection portion is coupled to the fixed voltage signal line, and the conductive connection portion is coupled to the fixed voltage signal terminal.
  • it further includes: a fixed voltage signal line on the base substrate;
  • the conductive connection part is coupled to the fixed voltage signal line.
  • the mirror layer includes: a metal material
  • the conductive connection part and the mirror layer are an integral structure.
  • it further includes: a first voltage signal terminal and a second voltage signal terminal;
  • the static electricity protection part includes: a first transistor, and a second transistor;
  • the control terminal of the first transistor is coupled to the first terminal, the first terminal of the first transistor is coupled to the first voltage signal terminal, and the second terminal of the first transistor is coupled to the second transistor Is coupled to the first end;
  • the control terminal of the second transistor is coupled to the first terminal, and the second terminal of the second transistor is coupled to the second voltage signal terminal;
  • the mirror layer is coupled to the second terminal of the first transistor.
  • the display panel includes a plurality of the static electricity protection parts, and each of the static electricity protection parts is evenly distributed around the mirror layer.
  • an embodiment of the present disclosure also provides a display panel, which includes:
  • a plurality of light-emitting devices located on the base substrate;
  • the reflective structure layer is located on the side of the packaging layer away from the base substrate; the reflective structure layer includes: a plurality of first openings; the orthographic projection of the first openings on the base substrate and at least one The orthographic projection of the light-emitting device on the base substrate has an overlapping area;
  • the transparent filling layer is located on the side of the packaging layer away from the base substrate;
  • the first opening in the reflective structure layer has at least part of the transparent filling layer.
  • the transparent filling layer includes: a first transparent filling layer and a second transparent filling layer, and the second transparent filling layer is located on the reflective structure layer away from the base substrate.
  • the first transparent filling layer includes: a plurality of discrete filling parts
  • a part of the filling part is located in the first opening, and the filling part faces away from the surface of the base substrate and is approximately flush with the surface of the second transparent filling layer away from the base substrate .
  • the transparent filling layer includes: an organic material.
  • the transparent filling layer includes: a plurality of discrete filling parts
  • the filling part is located in the first opening, and the surface of the filling part facing away from the base substrate is substantially flush with the surface of the reflective structure layer facing away from the base substrate.
  • the filling part includes: an inorganic material.
  • the transmittance of the transparent filling layer is greater than 90%.
  • the encapsulation layer includes: an inorganic film layer and an organic film layer that are stacked;
  • the organic film layer is located between two adjacent inorganic film layers
  • the thickness of the inorganic film layer at the first opening position is smaller than the thickness of the inorganic film layer at the pattern position of the reflective structure layer.
  • the cross-sectional area of the first opening in a direction parallel to the base substrate gradually increases the trend of.
  • it further includes: a pixel defining layer located between the base substrate and the packaging layer;
  • the pixel defining layer includes: a plurality of second openings corresponding to each of the light-emitting devices one-to-one;
  • the plurality of first openings in the reflective structure layer correspond to each of the second openings one-to-one.
  • the orthographic projection of the second opening on the base substrate is within the range of the orthographic projection of the corresponding first opening on the base substrate.
  • it further includes: a transparent protective layer located between the reflective structure layer and the encapsulation layer.
  • it further includes: at least one static electricity protection portion located on the base substrate and coupled to the reflective structure layer;
  • the static electricity protection part is configured to discharge static electricity in the reflective structure layer
  • the display panel is divided into a display area and a peripheral area; the reflective structure layer is located in the display area, and the static electricity protection part is located in the peripheral area.
  • the static electricity protection part includes: a conductive connection part
  • a fixed voltage signal terminal is provided in the peripheral area, and the conductive connection portion is coupled to the fixed voltage signal terminal.
  • it further includes: a fixed voltage signal line on the base substrate;
  • the conductive connection part is coupled to the fixed voltage signal line.
  • the reflective structure layer includes: a metal material
  • the conductive connecting portion and the reflective structure layer are an integral structure.
  • it further includes: a first voltage signal terminal and a second voltage signal terminal;
  • the static electricity protection part includes: a first transistor, and a second transistor;
  • the control terminal of the first transistor is coupled to the first terminal, the first terminal of the first transistor is coupled to the first voltage signal terminal, and the second terminal of the first transistor is coupled to the second transistor Is coupled to the first end;
  • the control terminal of the second transistor is coupled to the first terminal, and the second terminal of the second transistor is coupled to the second voltage signal terminal;
  • the reflective structure layer is coupled to the second terminal of the first transistor.
  • the display panel includes a plurality of the static electricity protection parts, and each of the static electricity protection parts is evenly distributed around the reflective structure layer.
  • an embodiment of the present disclosure also provides a display device, which includes: any of the above-mentioned display panels.
  • FIG. 1 is a schematic diagram of the structure of an OLED mirror display panel in the related art during the manufacturing process
  • FIG. 2 is a schematic structural diagram of a display panel provided by an embodiment of the disclosure.
  • FIG. 3 is a schematic structural diagram of a display panel provided by an embodiment of the disclosure during the manufacturing process
  • FIG. 4 is a schematic diagram of another structure of a display panel provided by an embodiment of the present disclosure.
  • Fig. 5 is a partial enlarged schematic diagram of Fig. 2;
  • FIG. 6 is a schematic diagram of the corresponding relationship between the first opening and the second opening in the embodiments of the disclosure.
  • FIG. 7 is a schematic diagram of the correspondence relationship between the aperture ratio of the mirror layer and the specular reflectance of the display panel
  • FIG. 8 is a schematic diagram of another structure of a display panel provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic top view of a structure of a display panel provided by an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of pixel arrangement of a display panel provided by an embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of another structure of a display panel provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic top view of the structure of a display panel provided by an embodiment of the disclosure.
  • FIG. 13 is a schematic diagram of another top view structure of a display panel provided by an embodiment of the disclosure.
  • FIG. 15 is a schematic diagram of another top view structure of a display panel provided by an embodiment of the disclosure.
  • FIG. 1 is a schematic diagram of the structure of an OLED mirror display panel in the related art during the manufacturing process.
  • an encapsulation layer is used to encapsulate the light-emitting device, and a mirror reflection layer 11 is formed above the encapsulation layer.
  • the specular reflection layer 11 is formed above the encapsulation layer.
  • four open areas U are taken as an example for illustration, and the shape, size, and number of the open areas U are not limited.
  • the light emitted by the light-emitting device can be emitted through the opening area U of the mirror reflection layer 11 to realize image display, and the non-open area in the mirror reflection layer 11 can be used as a mirror surface.
  • the optical glue 12 and the cover plate After the mirror reflection layer 11 is made, it is necessary to attach the optical glue 12 and the cover plate to the surface of the mirror reflection layer 11.
  • a roller 13 can be used to remove the optical glue 12 pave. Since the specular reflection layer 11 has a plurality of opening regions U, the step difference between the opening region U and the non-opening region is relatively large, which makes the surface of the display panel uneven. During the attaching process of the optical glue 12, some air will remain in the opening area U, so that after the attachment is completed, the surface of the optical glue 12 will be wrinkled.
  • the optical glue 12 is suspended at the opening area U, causing the display panel to be easily deformed when a finger presses on the surface of the display panel.
  • bubbles q are prone to appear on the surface of the display panel, which affects the display yield.
  • embodiments of the present disclosure provide a display panel and a display device.
  • FIG. 2 is a schematic structural diagram of a display panel provided by an embodiment of the present disclosure. As shown in FIG. 2, the display panel provided by an embodiment of the present disclosure may include:
  • a plurality of light-emitting devices 21 are located on the base substrate 20;
  • the encapsulation layer 22 covers each light-emitting device 21;
  • the mirror layer 23 is located on the side of the encapsulation layer 22 away from the base substrate 20; the mirror layer 23 includes: a plurality of first openings U1; the orthographic projection of the first openings U1 on the base substrate 20 and at least one light-emitting device 21 in line The orthographic projection on the base substrate 20 has an overlapping area;
  • the transparent filling layer 24 is located on the side of the packaging layer 22 away from the base substrate 20;
  • the first opening U1 in the mirror layer 23 has an at least partially transparent filling layer 24 in it.
  • a transparent filling layer is provided on the side of the encapsulation layer away from the base substrate, and the first opening in the mirror layer has at least a part of the transparent filling layer, thereby reducing the first opening in the mirror layer.
  • the level difference between the opening and the non-opening area makes the surface of the display panel relatively flat. Therefore, when the adhesive layer (such as optical glue) and the cover plate are attached to the mirror layer later, the film layer on the surface of the display panel (For example, the adhesive layer) is not prone to defects such as wrinkles or bubbles, which improves the display yield of the display panel.
  • the display panel provided by the embodiment of the present disclosure may be an organic light-emitting diode display panel.
  • the display panel in the embodiment of the present disclosure may include a plurality of light-emitting devices 21, in order to clearly illustrate the structure of each film layer in the embodiment of the present disclosure.
  • Fig. 2 shows only one light-emitting device 21.
  • the number and distribution of the light-emitting devices 21 can be set according to actual needs, which is not limited here.
  • the light emitting device 21 may include: a first electrode 211, a second electrode 212 located on a side of the first electrode 211 away from the base substrate 20, and an organic light emitting layer 213 located between the first electrode 211 and the second electrode 212; wherein, The first electrode 211 is an anode, and the second electrode 212 is a cathode; or, the first electrode 211 is a cathode, and the second electrode 212 is an anode.
  • the first electrode 211 in each light-emitting device 21 can be provided separately, that is, each light-emitting device 21 can be provided with an independent first electrode 211, and each light-emitting device 21 can share a second electrode 212, that is, the second electrode 212.
  • the electrode 212 may be provided on the entire surface.
  • the display panel provided by the embodiment of the present disclosure may further include: an encapsulation layer 22 on the side of the light-emitting device 21 facing away from the base substrate 20.
  • the encapsulation layer 22 covers a plurality of light-emitting devices 21 in the display panel to prevent the light-emitting devices 21 Corroded by water vapor and oxygen.
  • the distance between the mirror layer 23 and the display surface of the display panel is relatively short, which can achieve better The mirror effect.
  • the mirror layer 23 includes a plurality of first openings U1, and the orthographic projection of the first opening U1 on the base substrate 20 and the orthographic projection of the at least one light-emitting device 21 on the base substrate 20 have an overlapping area, so that light can be emitted. The light emitted by the device 21 is emitted through the first opening U1 to realize image display.
  • the area (ie, non-opening area) of the mirror layer 23 other than the first opening U1 can reflect light, and therefore, the non-opening area of the mirror layer 23 can be used as a mirror surface.
  • the display panel can realize the functions of display and mirror surface at the same time, and the user can observe the reflected image of the display panel while watching the display screen, thereby satisfying various needs of the user.
  • the display panel provided by the embodiments of the present disclosure can be applied to a variety of scenarios, for example, it can be applied to scenarios such as advertising screens in public places, car rearview mirrors, and teller machine display screens.
  • the external light cannot pass through the mirror layer 23 to be emitted to the inside of the display panel. Therefore, the light emitted by the light emitting device 21 is not affected by the external light, which improves the contrast of the display panel.
  • the above-mentioned mirror layer 23 can be made of a metal material with high reflectivity.
  • the above-mentioned mirror layer 23 can be made of aluminum or silver.
  • the mirror layer 23 can also include at least one laminated layer.
  • Two metal layers, for example, the mirror layer 23 may include a titanium/aluminum/titanium metal layer.
  • a low-temperature sputtering process can be used to deposit a metal layer on the packaging layer 22, and then a patterning process is used to pattern the metal layer to form a mirror layer 23 with a plurality of first openings U1.
  • the thickness of the mirror layer 23 may be between 200 nm and 500 nm, preferably between 200 nm and 350 nm.
  • the thickness of the mirror layer 23 may be about 310 nm.
  • FIG. 3 is a schematic diagram of the structure of the display panel provided by an embodiment of the disclosure during the manufacturing process.
  • the first opening U1 in the mirror layer 23 has an at least partially transparent filling layer 24, thereby reducing the step difference between the first opening U1 in the mirror layer 23 and the non-opening area, and making the surface of the display panel relatively flat.
  • the film layer such as the adhesive layer 27 is not prone to defects such as wrinkles or bubbles.
  • the roller 13 can be used to flatten the adhesive layer 27. It can be clearly seen from FIG. 3 that the surface of the adhesive layer 27 is relatively flat, and there are no defects such as wrinkles or bubbles.
  • the transparent filling layer 24 is transparent, the light emitted by the light emitting device 21 can pass through the transparent filling layer 24. Therefore, the transparent filling layer 24 will not affect the display effect of the display panel.
  • the transparent filling layer 24 may include: a first transparent filling layer 241 and a second transparent filling layer 242, and the second transparent filling layer 242 is located away from the mirror layer 23.
  • the first transparent filling layer 241 may include a plurality of discrete filling portions 241'. In order to clearly illustrate the structure of the transparent filling layer 24, only one filling portion 241' is shown in the figure. In practical applications, multiple A filling portion 241' is provided at the position of the first opening U1;
  • the partially filled portion 241' is located in the first opening U1, and the surface of the filled portion 241' facing away from the base substrate 20 is substantially flush with the surface of the second transparent filling layer 242 facing away from the base substrate 20.
  • Flush refers to: the surface of the filling portion 241' facing away from the base substrate 20, and the distance from the surface of the second transparent filling layer 242 facing away from the base substrate 20 can be within a certain deviation range, for example, the distance between the two It may be less than 30 nm, that is, the surface of the transparent filling layer 24 facing away from the base substrate 20 is substantially flat, and may have undulations within a range of less than 30 nm.
  • the first transparent filling layer 241 has multiple filling portions 241', and the filling portion 241' can fill the first opening U1.
  • the multiple filling portions 241' in the first transparent filling layer 241 It can be in one-to-one correspondence with the multiple first openings U1 in the mirror layer 23, so that each first opening U1 in the mirror layer 23 is filled by the transparent filling layer 24, and the filling portion 241' is in a direction perpendicular to the base substrate 20
  • the thickness can be consistent with the total thickness of the mirror layer 23 and the second transparent filling layer 242 in the direction perpendicular to the base substrate 20, so that the filling effect of the filling portion 241' is better, and the transparent filling layer 24 can be deviated from
  • the surface on one side of the base substrate 20 is a flat surface. In this way, the transparent filling layer 24 can also have a flattening effect and make the surface of the display panel more flat.
  • the transparent filling layer 24 can also protect the mirror layer 23 and prevent
  • the above-mentioned transparent filling layer 24 may include an organic material, for example, the organic material may be a resin material.
  • the first transparent filling layer 241 and the second transparent filling layer 242 in the transparent filling layer 24 may be arranged as an integral structure, so that the transparent filling layer 24 is easier to manufacture.
  • organic materials are coated on the mirror layer 23. Since the organic materials have a good leveling effect, they can fill the first openings U1 in the mirror layer 23 and cover the non-opening areas of the mirror layer 23. To form a transparent filling layer 24.
  • the organic material has a better planarization effect, so that the surface of the transparent filling layer 24 that is formed away from the base substrate 20 is a flat surface.
  • the thickness of the first transparent filling layer 241 may be in the range of 200 nm to 1000 nm, preferably in the range of 300 nm to 600 nm.
  • the thickness of the first transparent filling layer 241 may be about 560 nm
  • the thickness of the second transparent filling layer 241 may be about 560 nm.
  • the thickness of the layer 242 may be between 200 nm and 400 nm.
  • the thickness of the second transparent filling layer 242 may be about 310 nm.
  • FIG. 4 is another schematic structural diagram of the display panel provided by the embodiment of the present disclosure.
  • the transparent filling layer 24 may include: a plurality of discrete filling portions 241' ;
  • the filling portion 241 ′ is located in the first opening U1, and the surface of the filling portion 241 ′ facing away from the base substrate 20 is substantially flush with the surface of the mirror layer 23 facing away from the base substrate 20.
  • roughly flush refers to: the surface of the filling portion 241' on the side facing away from the base substrate 20, and the distance between the surface of the mirror layer 23 on the side facing away from the base substrate 20 and the surface of the base substrate 20 may be within a certain deviation range, for example, the distance between the two It can be less than 30nm.
  • the transparent filling layer 24 may include a plurality of discrete filling parts 241', and the filling part 241' may fill the first opening U1.
  • the multiple filling portions 241' in the transparent filling layer 24 may correspond to the multiple first openings U1 in the mirror layer 23, so that each first opening U1 in the mirror layer 23 is filled by the transparent filling layer 24 .
  • the surface of the filling portion 241' on the side facing away from the base substrate 20 is substantially flush with the surface of the mirror layer 23 facing away from the base substrate 20, so that the surface of the mirror layer 23 facing away from the base substrate 20 is relatively flat.
  • the thickness of the filling portion 241' can be set according to the thickness of the mirror layer 23, so that the filling portion 241' can fill the first opening U1.
  • the filling portion 241' may include an inorganic material, for example, the inorganic material may be a silicon dioxide material or a silicon nitride material.
  • a chemical vapor deposition process can be used to deposit an inorganic layer with the same thickness as the mirror layer 23 on the mirror layer 23, and then use a patterning process to pattern the inorganic layer to remove the inorganic layer in the non-open area , Thereby forming a plurality of filling portions 241' in each first opening U1.
  • the transmittance of the transparent filling layer is greater than 90%, and the transparent filling layer is made of a material with high transmittance, which can ensure that the light emitted by the light emitting device can pass through Transparent filling layer, the transparent filling layer will not affect the display effect of the display panel.
  • the transmittance of the transparent filling layer can also be less than 90%, and it can be set according to actual needs, which is not limited here.
  • FIG. 5 is a partial enlarged schematic diagram of FIG. 2.
  • the encapsulation layer 22 may include an inorganic film layer 221 and an organic film layer 222 that are stacked, wherein the inorganic film layer 221 can block water vapor and oxygen, and the organic film layer 222 may be located Between two adjacent inorganic film layers 221, it can play a role in stress relief and planarization.
  • the thickness h1 of the inorganic film layer 221 at the position of the first opening U1 is smaller than the thickness h2 of the inorganic film layer 221 at the pattern position of the mirror layer 23, that is, the inorganic film layer 221
  • the thickness h1 of the film layer 221 at the position of the light emitting device 21 is relatively thin. In this way, the inorganic film layer 221 has less influence on the light emitted by the light emitting device 21 and can improve the light transmittance of the display panel. In the actual process, the process parameters of the mirror layer 23 can be adjusted.
  • over-etching can occur at the position of the first opening U1, so that the inorganic film layer 221 is in the light-emitting device.
  • the thickness h1 at the position of 21 is thin.
  • the total thickness of the packaging layer 22 may be in the range of 500 nm to 800 nm, wherein the thickness of the packaging layer 22 at the position of the first opening U1 may be about 540 nm, and the thickness of the packaging layer 22 at the pattern position of the mirror layer 23 The thickness can be around 610nm.
  • the thickness of the inorganic film layer 221 is shown to be relatively thick.
  • each of the encapsulation layer 22 can be set according to actual needs.
  • the thickness of the inorganic film layer 221 is not limited here.
  • the transparent filling layer 24 is the structure of the above-mentioned mode one as an example.
  • the inorganic film layer 221 closest to the mirror layer 23 can also be set as :
  • the thickness h1 of the inorganic film layer 221 at the position of the first opening U1 is smaller than the thickness h2 of the inorganic film layer 221 at the pattern position of the mirror layer 23.
  • the first opening U1 is positioned parallel to the base substrate 20.
  • the cross-sectional area in the direction is gradually increasing, that is, the side wall of the first opening U1 is inclined, so that the light emitted by the light emitting device 21 can be reflected by the side wall of the first opening U1 and then emitted, which improves the display The light output efficiency of the panel.
  • the above-mentioned display panel provided by an embodiment of the present disclosure may further include: a pixel defining layer 25 located between the base substrate 20 and the packaging layer 22;
  • the pixel defining layer 25 may include: a plurality of second openings U2 corresponding to each light emitting device 21 in a one-to-one manner;
  • the multiple first openings U1 in the mirror layer 23 correspond to each second opening U2 one-to-one.
  • the display panel may include a plurality of sub-pixels, and the pixel defining layer is used to define an area of each sub-pixel, that is, the position of the second opening U2 corresponds to one sub-pixel.
  • the multiple first openings U1 in the mirror layer 23 are arranged in a one-to-one correspondence with each of the second openings U2. On the one hand, it can be ensured that the light emitted by each light-emitting device 21 can pass through the corresponding first opening U1 to ensure that the display panel It has a better display effect.
  • the area of the non-opening area of the mirror layer 23 can be made larger, so that the mirror effect of the display panel is better.
  • FIG. 6 is a schematic diagram of the corresponding relationship between the first opening and the second opening in the embodiment of the present disclosure.
  • the orthographic projection on the substrate is within the range of the orthographic projection of the corresponding first opening U1 on the base substrate, that is, the size of the first opening U1 in the mirror layer is larger than the size of the corresponding second opening U2, or The size of the first opening U1 in the mirror layer is the same as the size of the corresponding second opening U2. In this way, the light emitted by the light-emitting device will not be blocked by the mirror layer. Therefore, the mirror layer will not affect the aperture ratio of the display panel. The display effect of the panel is better.
  • the orthographic projection of the first opening U1 on the base substrate can also be set as the orthographic projection of the corresponding second opening U2 on the base substrate, that is, the mirror
  • the size of the first opening U1 in the layer is smaller than the size of the corresponding second opening U2. In this way, although the edge of each first opening U1 in the mirror layer will block part of the light emitted by the light emitting device, the reflectivity of the display panel can be improved. That is to improve the mirror effect of the display panel.
  • the shape of the first opening U1 can be set to be the same as the shape of the second opening U2.
  • the shapes of the first opening U1 and the second opening U2 are both hexagons.
  • the first opening U1 and the second opening U2 can also have other shapes, which are not limited here.
  • FIG. 7 is a schematic diagram of the corresponding relationship between the aperture ratio of the mirror layer and the specular reflectance of the display panel.
  • the curve L1 is the corresponding relationship curve of the display panel with the mirror layer
  • the curve L2 is the display panel without the mirror layer.
  • the aperture ratio of the mirror layer refers to the ratio of the area of the first opening in the mirror layer to the total area of the corresponding sub-pixels. It can be seen from FIG. 7 that for a display panel provided with a mirror layer, as the aperture ratio of the mirror layer increases, the total area of the first opening in the mirror layer increases, and the total area of the non-aperture area of the mirror layer decreases. Therefore, the specular reflectance of the display panel gradually decreases. For display panels that are not provided with a mirror layer, the specular reflectance of the display panels is relatively low.
  • a test light source and a luminance meter can be used to detect the specular reflectance of the display panel.
  • the test light source and the luminance meter can be set at a set position on the display surface of the display panel so that the test light source can emit The light radiates toward the display surface of the display panel and is reflected by the display surface of the display panel to the luminance meter.
  • the specular reflectance of the display panel is determined according to the brightness of the light emitted by the test light source and the luminance value detected by the luminance meter.
  • the specular reflectance of the display panel can be set to be greater than 50%, for example, it can be set to be between 85% and 97%, and the transmittance of the display panel can be set to be between 46% and 81%.
  • the size of the first opening in the specular reflection layer is set according to the actual scene, that is, according to the size of the specular reflectance required by the display panel.
  • the aperture ratio of the pixel defining layer can be in the range of 15% to 30%, preferably 20% to 26%.
  • the aperture ratio of the pixel defining layer can be set to about 21%.
  • the ratio can be understood as the ratio of the area of the second opening in the pixel defining layer to the total area of the corresponding sub-pixels.
  • the width of the second opening in the pixel defining layer can be set in the range of 8 ⁇ m to 25 ⁇ m, preferably in the range of 10 ⁇ m to 20 ⁇ m.
  • the width of the second opening can be set to about 15 ⁇ m
  • the width of the first opening in the mirror layer can be set In the range of 7 ⁇ m to 23 ⁇ m.
  • the ratio of the area of the first opening to the area of the second opening may be set in the range of 0.38 to 1.89.
  • the above-mentioned display panel may also include components such as thin film transistors TFT and capacitor structures (not shown in the figure), wherein the thin film transistors TFT may include: The active layer Ac, the source S, the drain D, and the gate Ga.
  • the drain D of the thin film transistor TFT is coupled to the first electrode 211.
  • the above-mentioned display panel may further include: a first gate insulating layer GI1 located between the active layer Ac and the gate Ga, and located between the gate Ga and the source S The second gate insulating layer GI2 and the interlayer insulating layer ILD, the flat layer PLN between the source S and the first electrode 211, and the buffer layer 29 between the active layer Ac and the base substrate 20.
  • the display panel may further include a passivation layer (not shown in the figure) between the source S and the flat layer PLN to protect the source S and the drain D and prevent the source S and the drain D from being oxidized.
  • FIG. 8 is another schematic structural diagram of the display panel provided by the embodiment of the present disclosure.
  • the above-mentioned display panel provided by the embodiment of the present disclosure may further include: a transparent filling layer 24 formed on the transparent filling layer 24 facing away from the base substrate 20
  • the touch electrode layer 26' on the side.
  • the display panel can realize the touch function, and the touch electrode layer 26' is closer to the display surface of the display panel, and the touch effect of the display panel is better.
  • the touch electrode layer 26' can be directly formed on the transparent filling layer 24, and a plurality of touch electrodes can be formed through a patterning process.
  • the above-mentioned display panel may further include: a cover plate 28, and an adhesive layer 27 between the cover plate 28 and the touch electrode layer 26'.
  • the cover plate 28 can protect the internal structure of the display panel, and the adhesive layer 27 can adhere the cover plate 28 to the surface of the touch electrode layer 26'.
  • FIG. 9 is a schematic diagram of a top view structure of a display panel provided by an embodiment of the present disclosure.
  • the touch electrode layer may include: Electrode 261;
  • the orthographic projection of the touch electrode 261 on the base substrate is within the range of the orthographic projection of the pattern of the pixel defining layer 25 on the base substrate, that is, the orthographic projection of the metal grid in the touch electrode 261 on the base substrate , And the orthographic projections of the second openings U2 in the pixel defining layer 25 on the base substrate do not overlap each other.
  • the touch electrode will not block the light emitted by the light emitting device, and will not affect the display effect of the display panel.
  • the above-mentioned display panel may further include: a touch module 26 on the side of the transparent filling layer 24 away from the base substrate 20, and a touch module 26 on the touch module 26 and the transparent filling layer.
  • the adhesive layer 27 between 24, for example, the adhesive layer 27 may be an optical glue.
  • the adhesive layer 27 can be attached to the surface of the transparent filling layer 24, and then the touch module 26 can be attached to the surface of the adhesive layer 27, and the touch module can be attached through the adhesive layer 27. 26 is bonded to the surface of the transparent filling layer 24.
  • the adhesive layer 27 formed on the transparent filling layer 24 will not have defects such as wrinkles or bubbles.
  • the yield rate of the display panel is relatively high.
  • the touch module 26 may include a plurality of touch electrodes, and the touch electrodes may be made of a transparent conductive material, for example, an indium tin oxide (ITO) material, so that the touch module will not Blocking the light emitted by the light-emitting device will not affect the display effect of the display panel.
  • ITO indium tin oxide
  • the above-mentioned display panel provided by the embodiment of the present disclosure may further include a cover plate 28 and an adhesive layer 27 located between the cover plate 28 and the touch module 26.
  • the cover 28 can protect the internal structure of the display panel, and the adhesive layer 27 can bond the cover 28 to the surface of the touch module 26.
  • FIG. 10 is a schematic diagram of the pixel arrangement of the display panel provided by the embodiment of the present disclosure.
  • the above-mentioned display panel provided by the embodiment of the present disclosure may include: arrays arranged in a first direction F1 and a second direction F2 A plurality of repeating units W; the first direction F1 and the second direction F2 cross each other, for example, the first direction F1 and the second direction F2 may be perpendicular to each other;
  • the repeating unit W may include four sub-pixels, namely: a first sub-pixel P1, a second sub-pixel P2, and two third sub-pixels P3; each sub-pixel is provided with a light-emitting device;
  • the first sub-pixel P1 and the second sub-pixel P2 extend along the first direction F1 and are arranged along the second direction F2, and the third sub-pixel P3 is located in the first sub-pixel P1 and the second sub-pixel P2 between.
  • the first sub-pixel P1 may be a blue sub-pixel
  • the second sub-pixel P2 may be a red sub-pixel
  • the third sub-pixel P3 may be a green sub-pixel.
  • the color of the pixel is adjusted, and the color of each sub-pixel is not limited here.
  • the sub-pixels in the same repeating unit W can correspond to one display pixel, or the sub-pixels in different repeating units W can correspond to one display pixel, which can be set according to actual display needs, and there is no limitation here.
  • the shape of the first sub-pixel P1 and the second sub-pixel P2 may be a hexagon, and the shape of the third sub-pixel P3 may be a pentagon, or the first sub-pixel P1,
  • the second sub-pixel P2 and the third sub-pixel P3 may also have other shapes, which are not limited here.
  • the shape of the second opening in the above-mentioned pixel defining layer may be consistent with the shape of the corresponding sub-pixel.
  • the shape of the corresponding second opening may be set according to the shape of the sub-pixel.
  • the plurality of first openings in the above-mentioned mirror layer correspond to each repeating unit one-to-one. In this way, the mirror layer does not block the emitted light of each sub-pixel in the repeating unit, so that the display effect of the display panel is better.
  • FIG. 11 is another schematic diagram of the structure of the display panel provided by the embodiment of the present disclosure.
  • the above-mentioned display panel provided by the embodiment of the present disclosure may further include: a transparent layer located between the mirror layer 23 and the encapsulation layer 22.
  • Protective layer 30 During the production process, the transparent protective layer 30 can protect the underlying film layer, avoiding damage to the underlying film layer during the patterning of the mirror layer 23, and the light emitted by the light emitting device 21 can pass through the transparent protective layer 30 without Affect the display effect of the display panel.
  • the edge of the transparent protective layer may extend beyond the edges of the encapsulation layer and the mirror layer to effectively protect the underlying film layer.
  • the display panel further includes a plurality of signal leads, and the pads can be coupled to the light emitting device or the touch electrode through the signal leads.
  • the transparent protective layer may cover the signal leads and expose the pads to protect the signal leads and prevent the signal leads from being over-etched and damaged during the patterning of the mirror layer.
  • the transparent protective layer 30 can be made of silicon nitride SiNx, silicon oxide SiOx, or SiNx/SiOx composite material, or the transparent protective layer 30 can also be made of other transparent materials, which is not limited here.
  • the thickness of the transparent protective layer 30 may be set in the range of 0.2 ⁇ m to 0.4 ⁇ m, or the thickness of the transparent protective layer 30 may also be set in other ranges, which is not limited here.
  • the mirror layer is usually made of metal materials with high reflectivity, the mirror layer in the display panel is prone to generate and accumulate static electricity during the production, assembly, testing or transportation of the display panel, which is prone to electrostatic discharge. Furthermore, it is easy to cause damage to the internal structure of the display panel (such as light-emitting devices or driving circuits, etc.), which affects the normal use of the display panel. Based on this, the display panel provided by the embodiment of the present disclosure is provided with an electrostatic protection part to discharge the static electricity in the mirror layer, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 12 is a schematic diagram of a top view structure of a display panel provided by an embodiment of the present disclosure. As shown in FIG. 12, the above-mentioned display panel provided by an embodiment of the present disclosure may further include: located on the base substrate 20 and coupled with the mirror layer 23 At least one electrostatic protection part 40 connected;
  • the static electricity protection part 40 is configured to discharge static electricity in the mirror layer 23;
  • the display panel is divided into a display area A and a peripheral area B; the mirror layer 23 is located in the display area A, and the static electricity protection part 40 is located in the peripheral area B.
  • the static electricity protection part 40 can release the static electricity in the mirror layer 23, thereby avoiding the mirror layer 23. Accumulation of static electricity is generated in 23, and further, the phenomenon of electrostatic discharge can be avoided, and the internal structure of the display panel can be prevented from being damaged by the electrostatic discharge process.
  • the static electricity protection part 40 is arranged in the peripheral area B, and the static electricity protection part 40 does not occupy the area of the display area A of the display panel, so that the display panel has a larger screen-to-body ratio.
  • the mirror layer 23 is arranged in the display area A, which can make the mirror effect of the display panel better. Of course, the edge of the mirror layer 23 can also slightly extend beyond the display area A, which is not limited here.
  • the above-mentioned static electricity protection part may have multiple implementation modes, which will be described in detail below with reference to the accompanying drawings.
  • the static electricity protection part 40 may include: a conductive connection part 401;
  • a fixed voltage signal terminal 411 is provided in the peripheral area B, and the conductive connection portion 401 is coupled to the fixed voltage signal terminal 411.
  • the conductive connecting portion 401 can transmit the static electricity generated by the mirror layer 23 to the fixed voltage signal terminal 411 to conduct the static electricity in the mirror layer 23 away.
  • the above-mentioned display panel may further include a fixed voltage signal line 41 located on the base substrate 20, for example, the fixed voltage signal line 41 may be a low potential voltage signal line.
  • the fixed voltage signal line 41 may surround the display area A, or the fixed voltage signal line 41 may be located at one side of the display area A, and the conductive connection portion 401 is coupled to the fixed voltage signal line 41. In this way, the conductive connection portion 401 can transmit the static electricity generated by the mirror layer 23 to the fixed voltage signal line 41 to conduct the static electricity in the mirror layer 23 away.
  • the peripheral area B includes a bonding area B1, and a plurality of bonding pads 42 are provided in the bonding area B1.
  • the bonding pads 42 are used for bonding and connecting with devices such as flexible circuit boards and integrated chips.
  • the above-mentioned conductive connection portion 401 may be arranged in the bonding area B1.
  • the mirror layer 23 may include: a metal material.
  • the pattern of the connection portion 401 is continuous, and the mirror layer 23 and the conductive connection portion 401 do not need to be coupled by overlapping or other methods. Therefore, the connection effect between the mirror layer 23 and the conductive connection portion 401 is better.
  • the mirror layer 23 and the conductive connecting portion 401 can be manufactured by the same patterning process, which reduces the manufacturing cost.
  • FIG. 13 is another schematic top view of the structure of the display panel provided by the embodiments of the present disclosure.
  • FIG. 14 is a schematic view of the structure of the electrostatic protection part in the embodiments of the disclosure.
  • the above-mentioned display panel provided by the disclosed embodiment may further include: a first voltage signal terminal K1 and a second voltage signal terminal K2.
  • the first voltage signal terminal K1 and the second voltage signal terminal K2 may be arranged on the periphery In area B.
  • the first voltage signal terminal K1 is used to transmit a first voltage signal
  • the second voltage signal terminal K2 is used to transmit a second voltage signal
  • the voltage of the first voltage signal is higher than the voltage of the second voltage signal
  • the first voltage The voltage of the signal is lower than the voltage of the second voltage signal.
  • the voltage of the first voltage signal is higher than the voltage of the second voltage signal as an example
  • VGH is used to represent the first voltage signal.
  • VGL represents the second voltage signal;
  • the static electricity protection section 40 may include a first transistor TFT1 and a second transistor TFT2.
  • the first transistor TFT1 and the second transistor TFT2 may be P-type transistors or N-type transistors. In the embodiments of the present disclosure, both the first transistor TFT1 and the second transistor TFT2 are both P-type transistors for description.
  • the control terminal Ga1 of the first transistor TFT1 is coupled to the first terminal S1, the first terminal S1 of the first transistor TFT1 is coupled to the first voltage signal terminal K1, and the second terminal D1 of the first transistor TFT1 is connected to the first terminal S1 of the second transistor TFT2.
  • the first terminal S2 is coupled;
  • the control terminal Ga2 of the second transistor TFT2 is coupled to the first terminal S2, and the second terminal D2 of the second transistor TFT2 is coupled to the second voltage signal terminal K2;
  • the mirror layer 23 is coupled to the second terminal D1 of the first transistor TFT1.
  • the control terminal Ga1 of the first transistor TFT1 is coupled to the first terminal S1, and the first transistor TFT1 can be equivalent to a diode, that is, the first diode, the control terminal of the first transistor TFT1 Ga1 and the first terminal S1 are jointly equivalent to the cathode of the first diode, and the second terminal D1 of the first transistor TFT1 is equivalent to the anode of the first diode.
  • the control terminal Ga2 of the second transistor TFT2 is coupled to the first terminal S2, and the second transistor TFT2 can be equivalent to a diode, that is, a second diode.
  • the control terminal Ga2 and the first terminal S2 of the second transistor TFT2 are both equivalent It is the cathode of the second diode, and the second terminal D2 of the second transistor TFT2 is equivalent to the anode of the second diode.
  • the static electricity generated in the mirror layer 23 may be positive static electricity or negative static electricity.
  • the first transistor TFT1 When the static electricity generated in the mirror layer 23 is positive static electricity, and the voltage of the static electricity generated in the electrostatic layer 23 is higher than the voltage of the first voltage signal VGH, at this time, the first transistor TFT1 is turned on, the second transistor TFT2 is turned off, and the second transistor TFT2 is turned off.
  • a transistor TFT1 transfers static electricity to the first voltage signal terminal K1.
  • the static electricity generated in the mirror layer 23 is negative static electricity, and the voltage of the static electricity generated in the static electricity layer 23 is lower than the voltage of the second voltage signal VGL, the first transistor TFT1 is turned off, the second transistor TFT2 is turned on, and the second transistor TFT2 is turned on.
  • the static electricity is transferred to the second voltage signal terminal K2. In this way, regardless of whether the static electricity generated in the mirror layer 23 is positive static electricity or negative static electricity, the static electricity protection part 40 can discharge the static electricity to prevent static discharge from damaging the
  • the display panel includes a plurality of static electricity protection parts 40, and each static electricity protection part 40 is evenly distributed around the mirror layer 23.
  • the display area A is rectangular, and the display panel includes four static electricity protection parts 40, and each static electricity protection part 40 is located at a position corresponding to the four corners of the display area A.
  • the number of static electricity protection parts 40 in the display panel may also be other numbers, and the distribution of the static electricity protection parts 40 may be set according to actual conditions, which is not limited here.
  • FIG. 15 is another schematic top view of the structure of the display panel provided by the embodiment of the disclosure.
  • a conductive connection portion 401 coupled to the mirror layer 23 is provided in the peripheral area B, and an electrostatic protection portion 40 coupled to the first voltage terminal K1 and the second voltage terminal K2 is provided in the peripheral area B.
  • an electrostatic protection portion 40 coupled to the first voltage terminal K1 and the second voltage terminal K2 is provided in the peripheral area B.
  • FIG. 2 is a schematic structural diagram of the display panel provided by the embodiment of the present disclosure. As shown in FIG. 2, the display panel provided by the embodiment of the present disclosure may include :
  • a plurality of light-emitting devices 21 are located on the base substrate 20;
  • the encapsulation layer 22 covers each light-emitting device 21;
  • the reflective structure layer 23' is located on the side of the packaging layer 22 away from the base substrate 20; the reflective structure layer 23' includes: a plurality of first openings U1; the orthographic projection of the first openings U1 on the base substrate 20 and at least one light emitting The orthographic projection of the device 21 on the base substrate 20 has an overlapping area;
  • the transparent filling layer 24 is located on the side of the packaging layer 22 away from the base substrate 20;
  • the first opening U1 in the reflective structure layer 23' has an at least partially transparent filling layer 24 in it.
  • a transparent filling layer is provided on the side of the encapsulation layer away from the base substrate, and the first opening in the reflective structure layer has at least a part of the transparent filling layer, which reduces The level difference between the first opening and the non-opening area makes the surface of the display panel relatively flat. Therefore, when the adhesive layer (such as optical glue) and the cover plate are attached to the reflective structure layer later, the surface of the display panel The film layer (such as the adhesive layer) is not prone to defects such as wrinkles or bubbles, which improves the display yield of the display panel.
  • the display panel provided by the embodiment of the present disclosure may be an organic light-emitting diode display panel.
  • the display panel in the embodiment of the present disclosure may include a plurality of light-emitting devices 21, in order to clearly illustrate the structure of each film layer in the embodiment of the present disclosure.
  • Fig. 2 shows only one light-emitting device 21.
  • the number and distribution of the light-emitting devices 21 can be set according to actual needs, which is not limited here.
  • the light emitting device 21 may include: a first electrode 211, a second electrode 212 located on a side of the first electrode 211 away from the base substrate 20, and an organic light emitting layer 213 located between the first electrode 211 and the second electrode 212; wherein, The first electrode 211 is an anode, and the second electrode 212 is a cathode; or, the first electrode 211 is a cathode, and the second electrode 212 is an anode.
  • the first electrode 211 in each light-emitting device 21 can be provided separately, that is, each light-emitting device 21 can be provided with an independent first electrode 211, and each light-emitting device 21 can share a second electrode 212, that is, the second electrode 212.
  • the electrode 212 may be provided on the entire surface.
  • the display panel provided by the embodiment of the present disclosure may further include: an encapsulation layer 22 on the side of the light-emitting device 21 facing away from the base substrate 20.
  • the encapsulation layer 22 covers a plurality of light-emitting devices 21 in the display panel to prevent the light-emitting devices 21 Corroded by water vapor and oxygen.
  • the distance between the reflective structure layer 23' and the display surface of the display panel is relatively short.
  • a better mirror effect can be achieved.
  • the reflective structure layer 23' includes a plurality of first openings U1, and the orthographic projection of the first opening U1 on the base substrate 20 and the orthographic projection of the at least one light-emitting device 21 on the base substrate 20 have an overlapping area, so that The light emitted by the light-emitting device 21 is emitted through the first opening U1 to realize image display.
  • the area (ie, the non-opening area) of the reflective structure layer 23' excluding the first opening U1 can reflect light.
  • the non-opening area of the reflective structure layer 23' can be used as a mirror surface.
  • the display panel can realize the functions of display and mirror surface at the same time, and the user can watch the reflected image of the display panel while watching the display screen, thereby satisfying various needs of the user.
  • the display panel provided by the embodiments of the present disclosure can be applied to a variety of scenarios, for example, it can be applied to scenarios such as advertising screens in public places, car rearview mirrors, and teller machine display screens.
  • the external light cannot pass through the reflective structure layer 23' and is directed to the inside of the display panel. Therefore, the light emitted by the light emitting device 21 is not affected by external light, which improves the contrast of the display panel.
  • the reflective structure layer 23' can be made of a metal material with high reflectivity.
  • aluminum or silver can be used to make the reflective structure layer 23'.
  • the reflective structure layer 23' can also be used. It includes at least two metal layers arranged in a stack.
  • the reflective structure layer 23' may include a titanium/aluminum/titanium metal layer.
  • a low-temperature sputtering process can be used to deposit a metal layer on the encapsulation layer 22, and then a patterning process is used to pattern the metal layer to form a reflective structure layer 23' with a plurality of first openings U1 .
  • the thickness of the reflective structure layer 23' can be between 200 nm and 500 nm, preferably between 200 nm and 350 nm.
  • the thickness of the reflective structure layer 23' can be about 310 nm.
  • FIG. 3 is a schematic diagram of the structure of the display panel provided by an embodiment of the disclosure during the manufacturing process.
  • the first opening U1 in the reflective structure layer 23' has an at least partially transparent filling layer 24, thereby reducing the step difference between the first opening U1 and the non-opening area in the reflective structure layer 23', so that the surface of the display panel can be compared smooth.
  • the film layer such as the adhesive layer 27 is not prone to defects such as wrinkles or bubbles.
  • the roller 13 can be used to flatten the adhesive layer 27. It can be clearly seen from FIG. 3 that the surface of the adhesive layer 27 is relatively flat, and there are no defects such as wrinkles or bubbles.
  • the transparent filling layer 24 is transparent, the light emitted by the light emitting device 21 can pass through the transparent filling layer 24. Therefore, the transparent filling layer 24 will not affect the display effect of the display panel.
  • the transparent filling layer 24 may include: a first transparent filling layer 241 and a second transparent filling layer 242, and the second transparent filling layer 242 is located on the reflective structure layer 23' The side away from the base substrate 20;
  • the first transparent filling layer 241 may include a plurality of discrete filling portions 241'. In order to clearly illustrate the structure of the transparent filling layer 24, only one filling portion 241' is shown in the figure. In practical applications, multiple A filling portion 241' is provided at the position of the first opening U1;
  • the partially filled portion 241' is located in the first opening U1, and the surface of the filled portion 241' facing away from the base substrate 20 is substantially flush with the surface of the second transparent filling layer 242 facing away from the base substrate 20.
  • Flush refers to: the surface of the filling portion 241' facing away from the base substrate 20, and the distance from the surface of the second transparent filling layer 242 facing away from the base substrate 20 can be within a certain deviation range, for example, the distance between the two It may be less than 30 nm, that is, the surface of the transparent filling layer 24 facing away from the base substrate 20 is substantially flat, and may have undulations within a range of less than 30 nm.
  • the first transparent filling layer 241 has multiple filling portions 241', and the filling portion 241' can fill the first opening U1.
  • the multiple filling portions 241' in the first transparent filling layer 241 The first openings U1 in the reflective structure layer 23' can be in one-to-one correspondence, so that each first opening U1 in the reflective structure layer 23' is filled by the transparent filling layer 24, and the filling portion 241' is perpendicular to the substrate
  • the thickness in the direction of the substrate 20 can be consistent with the total thickness of the reflective structure layer 23' and the second transparent filling layer 242 in the direction perpendicular to the base substrate 20, so that the filling effect of the filling portion 241' is better, and
  • the surface of the transparent filling layer 24 facing away from the base substrate 20 is a flat surface.
  • the transparent filling layer 24 can also have a flattening effect and make the surface of the display panel more flat.
  • the transparent filling layer 24 can also play a role in protecting the reflective structure layer 23' and prevent subsequent processes from damaging the surface of the reflective structure layer 23'.
  • the above-mentioned transparent filling layer 24 may include an organic material, for example, the organic material may be a resin material.
  • the first transparent filling layer 241 and the second transparent filling layer 242 in the transparent filling layer 24 may be arranged as an integral structure, so that the transparent filling layer 24 is easier to manufacture.
  • organic material is coated on the reflective structure layer 23'. Since the organic material has a good leveling effect, it can fill each first opening U1 in the reflective structure layer 23' and cover the reflective structure layer 23. The non-open area to form a transparent filling layer 24.
  • the planarization effect of organic materials is better, so that the surface of the formed transparent filling layer 24 facing away from the base substrate 20 is a flat surface.
  • the thickness of the first transparent filling layer 241 may be in the range of 200 nm to 1000 nm, preferably in the range of 300 nm to 600 nm.
  • the thickness of the first transparent filling layer 241 may be about 560 nm
  • the thickness of the second transparent filling layer 241 may be about 560 nm.
  • the thickness of the layer 242 may be between 200 nm and 400 nm.
  • the thickness of the second transparent filling layer 242 may be about 310 nm.
  • FIG. 4 is another schematic structural diagram of the display panel provided by the embodiment of the present disclosure.
  • the transparent filling layer 24 may include: a plurality of discrete filling portions 241' ;
  • the filling portion 241' is located in the first opening U1, and the surface of the filling portion 241' facing away from the base substrate 20 is substantially flush with the surface of the reflective structure layer 23' facing away from the base substrate 20.
  • roughly flush refers to: the distance between the filling portion 241' on the side facing away from the base substrate 20 and the reflective structure layer 23' on the side facing away from the base substrate 20 can be within a certain deviation range, for example, both The distance can be less than 30nm.
  • the transparent filling layer 24 may include a plurality of discrete filling parts 241', and the filling part 241' may fill the first opening U1.
  • the multiple filling portions 241' in the transparent filling layer 24 may correspond to the multiple first openings U1 in the reflective structure layer 23', so that each of the reflective structure layer 23' is filled by the transparent filling layer 24.
  • the surface of the filling portion 241' on the side facing away from the base substrate 20 is substantially flush with the surface of the reflective structure layer 23' on the side facing away from the base substrate 20, so that the reflective structure layer 23' is facing away from the surface on the side of the base substrate 20. It's relatively flat.
  • the thickness of the filling portion 241' can be set according to the thickness of the reflective structure layer 23', so that the filling portion 241' can fill the first opening U1.
  • the filling portion 241' may include an inorganic material, for example, the inorganic material may be a silicon dioxide material or a silicon nitride material.
  • a chemical vapor deposition process can be used to deposit an inorganic layer with the same thickness as the reflective structure layer 23' on the reflective structure layer 23', and then use a patterning process to pattern the inorganic layer to remove non-openings
  • a plurality of filling portions 241' are formed in each first opening U1.
  • the transmittance of the transparent filling layer is greater than 90%, and the transparent filling layer is made of a material with high transmittance, which can ensure that the light emitted by the light emitting device can pass through Transparent filling layer, the transparent filling layer will not affect the display effect of the display panel.
  • the transmittance of the transparent filling layer can also be less than 90%, and it can be set according to actual needs, which is not limited here.
  • FIG. 5 is a partial enlarged schematic diagram of FIG. 2.
  • the encapsulation layer 22 may include an inorganic film layer 221 and an organic film layer 222 that are stacked, wherein the inorganic film layer 221 can block water vapor and oxygen, and the organic film layer 222 may be located Between two adjacent inorganic film layers 221, it can play a role in stress relief and planarization.
  • the thickness h1 of the inorganic film layer 221 at the position of the first opening U1 is smaller than the thickness h2 of the inorganic film layer 221 at the pattern position of the reflective structure layer 23' That is, the thickness h1 of the inorganic film layer 221 at the position of the light emitting device 21 is relatively thin. In this way, the inorganic film layer 221 has less influence on the light emitted by the light emitting device 21 and can improve the light transmittance of the display panel. In the actual process, the process parameters of the reflective structure layer 23' can be adjusted.
  • the total thickness of the encapsulation layer 22 may be in the range of 500 nm to 800 nm, wherein the thickness of the encapsulation layer 22 at the position of the first opening U1 may be about 540 nm, and the encapsulation layer 22 is at the pattern position of the reflective structure layer 23' The thickness can be around 610nm.
  • the thickness of the inorganic film layer 221 is shown to be relatively thick.
  • the encapsulation layer 22 can be provided according to actual needs.
  • the thickness of each inorganic film layer 221 in is not limited here.
  • the transparent filling layer 24 is the structure of the above-mentioned mode 1 as an example.
  • the transparent filling layer 24 is the structure of the above-mentioned mode 2
  • the inorganic film layer 221 that is closest to the reflective structure layer 23' may also be used. It is set that the thickness h1 of the inorganic film layer 221 at the position of the first opening U1 is smaller than the thickness h2 of the inorganic film layer 221 at the pattern position of the reflective structure layer 23'.
  • the first opening U1 is parallel to the base substrate
  • the cross-sectional area in the direction of 20 is gradually increasing, that is, the side wall of the first opening U1 is inclined, so that the light emitted by the light emitting device 21 can be reflected by the side wall of the first opening U1 and then emitted. Improve the light output efficiency of the display panel.
  • the above-mentioned display panel provided by an embodiment of the present disclosure may further include: a pixel defining layer 25 located between the base substrate 20 and the packaging layer 22;
  • the pixel defining layer 25 may include: a plurality of second openings U2 corresponding to each light emitting device 21 in a one-to-one manner;
  • the plurality of first openings U1 in the reflective structure layer 23' corresponds to each second opening U2 in a one-to-one correspondence.
  • the display panel may include a plurality of sub-pixels, and the pixel defining layer is used to define an area of each sub-pixel, that is, the position of the second opening U2 corresponds to one sub-pixel.
  • the multiple first openings U1 in the reflective structure layer 23' are arranged in a one-to-one correspondence with each second opening U2. On the one hand, it can be ensured that the light emitted by each light-emitting device 21 can pass through the corresponding first opening U1.
  • the display panel has a better display effect.
  • the area of the non-opening area of the reflective structure layer 23' can be made larger, so that the mirror effect of the display panel is better.
  • FIG. 6 is a schematic diagram of the corresponding relationship between the first opening and the second opening in the embodiment of the present disclosure.
  • the orthographic projection on the substrate is within the range of the orthographic projection of the corresponding first opening U1 on the base substrate, that is, the size of the first opening U1 in the reflective structure layer is larger than the size of the corresponding second opening U2, Alternatively, the size of the first opening U1 in the reflective structure layer is equivalent to the size of the corresponding second opening U2, so that the light emitted by the light emitting device will not be blocked by the reflective structure layer, and therefore, the reflective structure layer will not affect the display panel.
  • the aperture ratio, the display effect of the display panel is better.
  • the orthographic projection of the first opening U1 on the base substrate can also be set as the orthographic projection of the corresponding second opening U2 on the base substrate, that is to say, reflective
  • the size of the first opening U1 in the structure layer is smaller than the size of the corresponding second opening U2. In this way, although the edge of each first opening U1 in the reflective structure layer will block part of the light emitted by the light emitting device, it can improve the reflection of the display panel. Rate, that is, improve the mirror effect of the display panel.
  • the shape of the first opening U1 can be set to be the same as the shape of the second opening U2.
  • the shapes of the first opening U1 and the second opening U2 are both hexagons.
  • the first opening U1 and the second opening U2 can also have other shapes, which are not limited here.
  • FIG. 7 is a schematic diagram of the corresponding relationship between the aperture ratio of the reflective structure layer and the specular reflectance of the display panel.
  • the curve L1 is the corresponding relationship curve of the display panel provided with the reflective structure layer
  • the curve L2 is the corresponding relationship curve of the display panel without the reflective structure layer.
  • the aperture ratio of the reflective structure layer refers to the ratio of the area of the first opening in the reflective structure layer to the total area of the corresponding sub-pixels. It can be seen from FIG.
  • the specular reflectance of the display panel is relatively low.
  • a test light source and a luminance meter can be used to detect the specular reflectance of the display panel.
  • the test light source and the luminance meter can be set at a set position on the display surface of the display panel so that the test light source can emit The light radiates toward the display surface of the display panel and is reflected by the display surface of the display panel to the luminance meter.
  • the specular reflectance of the display panel is determined according to the brightness of the light emitted by the test light source and the luminance value detected by the luminance meter.
  • the specular reflectance of the display panel can be set to be greater than 50%, for example, it can be set to be between 85% and 97%, and the transmittance of the display panel can be set to be between 46% and 81%.
  • the size of the first opening in the specular reflection layer is set according to the actual scene, that is, according to the size of the specular reflectance required by the display panel.
  • the aperture ratio of the pixel defining layer can be in the range of 15% to 30%, preferably 20% to 26%.
  • the aperture ratio of the pixel defining layer can be set to about 21%.
  • the ratio can be understood as the ratio of the area of the second opening in the pixel defining layer to the total area of the corresponding sub-pixels.
  • the width of the second opening in the pixel defining layer may be set in the range of 8 ⁇ m to 25 ⁇ m, preferably in the range of 10 ⁇ m to 20 ⁇ m.
  • the width of the second opening may be set to about 15 ⁇ m
  • the width of the first opening in the reflective structure layer may be Set in the range of 7 ⁇ m ⁇ 23' ⁇ m.
  • the ratio of the area of the first opening to the area of the second opening may be set in the range of 0.38 to 1.89.
  • the above-mentioned display panel may also include components such as thin film transistors TFT and capacitor structures (not shown in the figure), wherein the thin film transistors TFT may include: The active layer Ac, the source S, the drain D, and the gate Ga.
  • the drain D of the thin film transistor TFT is coupled to the first electrode 211.
  • the above-mentioned display panel may further include: a first gate insulating layer GI1 located between the active layer Ac and the gate Ga, and located between the gate Ga and the source S The second gate insulating layer GI2 and the interlayer insulating layer ILD, the flat layer PLN between the source S and the first electrode 211, and the buffer layer 29 between the active layer Ac and the base substrate 20.
  • the display panel may further include a passivation layer (not shown in the figure) between the source S and the flat layer PLN to protect the source S and the drain D and prevent the source S and the drain D from being oxidized.
  • FIG. 8 is another schematic structural diagram of the display panel provided by the embodiment of the present disclosure.
  • the above-mentioned display panel provided by the embodiment of the present disclosure may further include: a transparent filling layer 24 formed on the transparent filling layer 24 facing away from the base substrate 20
  • the touch electrode layer 26' on the side.
  • the display panel can realize the touch function, and the touch electrode layer 26' is closer to the display surface of the display panel, and the touch effect of the display panel is better.
  • the touch electrode layer 26' can be directly formed on the transparent filling layer 24, and a plurality of touch electrodes can be formed through a patterning process.
  • the above-mentioned display panel may further include: a cover plate 28, and an adhesive layer 27 between the cover plate 28 and the touch electrode layer 26'.
  • the cover plate 28 can protect the internal structure of the display panel, and the adhesive layer 27 can adhere the cover plate 28 to the surface of the touch electrode layer 26'.
  • FIG. 9 is a schematic diagram of a top view structure of a display panel provided by an embodiment of the present disclosure.
  • the touch electrode layer may include: Electrode 261;
  • the orthographic projection of the touch electrode 261 on the base substrate is within the range of the orthographic projection of the pattern of the pixel defining layer 25 on the base substrate, that is, the orthographic projection of the metal grid in the touch electrode 261 on the base substrate , And the orthographic projections of the second openings U2 in the pixel defining layer 25 on the base substrate do not overlap each other.
  • the touch electrode will not block the light emitted by the light emitting device, and will not affect the display effect of the display panel.
  • the above-mentioned display panel may further include: a touch module 26 on the side of the transparent filling layer 24 away from the base substrate 20, and a touch module 26 on the touch module 26 and the transparent filling layer.
  • the adhesive layer 27 between 24, for example, the adhesive layer 27 may be an optical glue.
  • the adhesive layer 27 can be attached to the surface of the transparent filling layer 24, and then the touch module 26 can be attached to the surface of the adhesive layer 27, and the touch module can be attached through the adhesive layer 27. 26 is bonded to the surface of the transparent filling layer 24.
  • the adhesive layer 27 formed on the transparent filling layer 24 will not appear wrinkles or bubbles. Bad, the yield rate of the display panel is higher.
  • the touch module 26 may include a plurality of touch electrodes, and the touch electrodes may be made of a transparent conductive material, for example, an indium tin oxide (ITO) material, so that the touch module will not Blocking the light emitted by the light-emitting device will not affect the display effect of the display panel.
  • ITO indium tin oxide
  • the above-mentioned display panel provided by the embodiment of the present disclosure may further include a cover plate 28 and an adhesive layer 27 located between the cover plate 28 and the touch module 26.
  • the cover 28 can protect the internal structure of the display panel, and the adhesive layer 27 can bond the cover 28 to the surface of the touch module 26.
  • FIG. 10 is a schematic diagram of the pixel arrangement of the display panel provided by the embodiment of the present disclosure.
  • the above-mentioned display panel provided by the embodiment of the present disclosure may include: arrays arranged in a first direction F1 and a second direction F2 A plurality of repeating units W; the first direction F1 and the second direction F2 cross each other, for example, the first direction F1 and the second direction F2 may be perpendicular to each other;
  • the repeating unit W may include four sub-pixels, namely: a first sub-pixel P1, a second sub-pixel P2, and two third sub-pixels P3; each sub-pixel is provided with a light-emitting device;
  • the first sub-pixel P1 and the second sub-pixel P2 extend along the first direction F1 and are arranged along the second direction F2, and the third sub-pixel P3 is located in the first sub-pixel P1 and the second sub-pixel P2 between.
  • the first sub-pixel P1 may be a blue sub-pixel
  • the second sub-pixel P2 may be a red sub-pixel
  • the third sub-pixel P3 may be a green sub-pixel.
  • the color of the pixel is adjusted, and the color of each sub-pixel is not limited here.
  • the sub-pixels in the same repeating unit W can correspond to one display pixel, or the sub-pixels in different repeating units W can correspond to one display pixel, which can be set according to actual display needs, and there is no limitation here.
  • the shape of the first sub-pixel P1 and the second sub-pixel P2 may be a hexagon, and the shape of the third sub-pixel P3 may be a pentagon, or the first sub-pixel P1,
  • the second sub-pixel P2 and the third sub-pixel P3 may also have other shapes, which are not limited here.
  • the shape of the second opening in the above-mentioned pixel defining layer may be consistent with the shape of the corresponding sub-pixel.
  • the shape of the corresponding second opening may be set according to the shape of the sub-pixel.
  • the plurality of first openings in the above-mentioned reflective structure layer correspond to each repeating unit one-to-one.
  • the reflective structure layer does not block the emitted light of each sub-pixel in the repeating unit, so that the display effect of the display panel is better.
  • FIG. 11 is another schematic structural diagram of the display panel provided by the embodiment of the present disclosure.
  • the above-mentioned display panel provided by the embodiment of the present disclosure may further include: located between the reflective structure layer 23' and the encapsulation layer 22 The transparent protective layer 30.
  • the transparent protective layer 30 can protect the underlying film layer to avoid damage to the underlying film layer during the patterning of the reflective structure layer 23', and the light emitted by the light emitting device 21 can pass through the transparent protective layer 30. Will not affect the display effect of the display panel.
  • the edge of the transparent protective layer may extend beyond the edges of the encapsulation layer and the reflective structure layer to effectively protect the underlying film layer.
  • the display panel further includes a plurality of signal leads, and the pads can be coupled to the light emitting device or the touch electrode through the signal leads.
  • the transparent protective layer may cover the signal leads and expose the pads to protect the signal leads and prevent the signal leads from being over-etched and damaged during the patterning of the reflective structure layer.
  • the transparent protective layer 30 can be made of silicon nitride SiNx, silicon oxide SiOx, or SiNx/SiOx composite material, or the transparent protective layer 30 can also be made of other transparent materials, which is not limited here.
  • the thickness of the transparent protective layer 30 may be set in the range of 0.2 ⁇ m to 0.4 ⁇ m, or the thickness of the transparent protective layer 30 may also be set in other ranges, which is not limited here.
  • the reflective structure layer is usually made of high-reflectivity metal materials
  • the reflective structure layer in the display panel is prone to generate and accumulate static electricity during the production, assembly, testing or transportation of the display panel, which is prone to electrostatic discharge. This phenomenon can easily cause damage to the internal structure of the display panel (such as light-emitting devices or driving circuits, etc.), and affect the normal use of the display panel.
  • the display panel provided by the embodiment of the present disclosure is provided with an electrostatic protection part to discharge the static electricity in the reflective structure layer, which will be described in detail below with reference to the accompanying drawings.
  • the above-mentioned display panel provided by an embodiment of the present disclosure may further include: a base substrate 20 and a reflective structure layer 23 'At least one electrostatic protection part 40 coupled;
  • the static electricity protection part 40 is configured to discharge static electricity in the reflective structure layer 23';
  • the display panel is divided into a display area A and a peripheral area B; the reflective structure layer 23' is located in the display area A, and the static electricity protection part 40 is located in the peripheral area B.
  • the static electricity protection portion 40 can release the static electricity in the reflective structure layer 23', thereby, The accumulation of static electricity in the reflective structure layer 23' can be avoided, and furthermore, the phenomenon of electrostatic discharge can be avoided, and the internal structure of the display panel can be prevented from being damaged by the electrostatic discharge process.
  • the static electricity protection part 40 is arranged in the peripheral area B, and the static electricity protection part 40 does not occupy the area of the display area A of the display panel, so that the display panel has a larger screen-to-body ratio.
  • the reflective structure layer 23' is disposed in the display area A, which can make the mirror effect of the display panel better. Of course, the edge of the reflective structure layer 23' can also slightly exceed the display area A, which is not limited here.
  • the above-mentioned static electricity protection part may have multiple implementation modes, which will be described in detail below with reference to the accompanying drawings.
  • the static electricity protection part 40 may include: a conductive connection part 401;
  • a fixed voltage signal terminal 411 is provided in the peripheral area B, and the conductive connection portion 401 is coupled to the fixed voltage signal terminal 411.
  • the conductive connecting portion 401 can transmit the static electricity generated by the reflective structure layer 23' to the fixed voltage signal terminal 411, so as to conduct the static electricity in the reflective structure layer 23' away.
  • the above-mentioned display panel may further include a fixed voltage signal line 41 located on the base substrate 20, for example, the fixed voltage signal line 41 may be a low potential voltage signal line.
  • the fixed voltage signal line 41 may surround the display area A, or the fixed voltage signal line 41 may be located at one side of the display area A, and the conductive connection portion 401 is coupled to the fixed voltage signal line 41. In this way, the conductive connecting portion 401 can transmit the static electricity generated by the reflective structure layer 23' to the fixed voltage signal line 41, so as to conduct the static electricity in the reflective structure layer 23' away.
  • the peripheral area B includes a bonding area B1, and a plurality of bonding pads 42 are provided in the bonding area B1.
  • the bonding pads 42 are used for bonding and connecting with devices such as flexible circuit boards and integrated chips.
  • the above-mentioned conductive connection portion 401 may be arranged in the bonding area B1.
  • the reflective structure layer 23' may include: a metal material, and the conductive connection portion 401 and the reflective structure layer 23' are an integral structure, that is, reflective
  • the pattern of the structural layer 23' and the conductive connection portion 401 is continuous, and the reflective structure layer 23' and the conductive connection portion 401 do not need to be coupled by overlapping or other methods. Therefore, the reflective structure layer 23' is connected to the conductive connection portion 401 The effect is better.
  • the reflective structure layer 23' and the conductive connecting portion 401 can be manufactured by the same patterning process, which reduces the manufacturing cost.
  • FIG. 13 is another schematic top view of the structure of the display panel provided by the embodiments of the present disclosure.
  • FIG. 14 is a schematic view of the structure of the electrostatic protection part in the embodiments of the disclosure.
  • the above-mentioned display panel provided by the disclosed embodiment may further include: a first voltage signal terminal K1 and a second voltage signal terminal K2.
  • the first voltage signal terminal K1 and the second voltage signal terminal K2 may be arranged on the periphery In area B.
  • the first voltage signal terminal K1 is used to transmit a first voltage signal
  • the second voltage signal terminal K2 is used to transmit a second voltage signal
  • the voltage of the first voltage signal is higher than the voltage of the second voltage signal
  • the first voltage The voltage of the signal is lower than the voltage of the second voltage signal.
  • the voltage of the first voltage signal is higher than the voltage of the second voltage signal as an example
  • VGH is used to represent the first voltage signal.
  • VGL represents the second voltage signal;
  • the static electricity protection section 40 may include a first transistor TFT1 and a second transistor TFT2.
  • the first transistor TFT1 and the second transistor TFT2 may be P-type transistors or N-type transistors. In the embodiments of the present disclosure, both the first transistor TFT1 and the second transistor TFT2 are both P-type transistors for description.
  • the control terminal Ga1 of the first transistor TFT1 is coupled to the first terminal S1, the first terminal S1 of the first transistor TFT1 is coupled to the first voltage signal terminal K1, and the second terminal D1 of the first transistor TFT1 is connected to the first terminal S1 of the second transistor TFT2.
  • the first terminal S2 is coupled;
  • the control terminal Ga2 of the second transistor TFT2 is coupled to the first terminal S2, and the second terminal D2 of the second transistor TFT2 is coupled to the second voltage signal terminal K2;
  • the reflective structure layer 23' is coupled to the second terminal D1 of the first transistor TFT1.
  • the control terminal Ga1 of the first transistor TFT1 is coupled to the first terminal S1, and the first transistor TFT1 can be equivalent to a diode, that is, the first diode, the control terminal of the first transistor TFT1 Ga1 and the first terminal S1 are jointly equivalent to the cathode of the first diode, and the second terminal D1 of the first transistor TFT1 is equivalent to the anode of the first diode.
  • the control terminal Ga2 of the second transistor TFT2 is coupled to the first terminal S2, and the second transistor TFT2 can be equivalent to a diode, that is, a second diode.
  • the control terminal Ga2 and the first terminal S2 of the second transistor TFT2 are both equivalent It is the cathode of the second diode, and the second terminal D2 of the second transistor TFT2 is equivalent to the anode of the second diode.
  • the static electricity generated in the reflective structure layer 23' may be positive static electricity or negative static electricity.
  • the first transistor TFT1 When the static electricity generated in the reflective structure layer 23' is positive static electricity, and the voltage of the static electricity generated in the static electricity layer 23' is higher than the voltage of the first voltage signal VGH, at this time, the first transistor TFT1 is turned on, and the second transistor TFT2 is turned on. When turned off, the first transistor TFT1 transfers static electricity to the first voltage signal terminal K1.
  • the static electricity generated in the reflective structure layer 23' is negative static electricity, and the voltage of the static electricity generated in the electrostatic layer 23' is lower than the voltage of the second voltage signal VGL, the first transistor TFT1 is turned off, and the second transistor TFT2 is turned on.
  • the two transistors TFT2 transfer static electricity to the second voltage signal terminal K2. In this way, no matter whether the static electricity generated in the reflective structure layer 23' is positive static electricity or negative static electricity, the static electricity protection part 40 can release static electricity to prevent static electricity from damaging the internal structure of the display panel.
  • the display panel includes a plurality of static electricity protection parts 40, and each static electricity protection part 40 is evenly distributed around the reflective structure layer 23'.
  • the display area A is rectangular, and the display panel includes four static electricity protection parts 40, and each static electricity protection part 40 is located at a position corresponding to the four corners of the display area A.
  • the number of static electricity protection parts 40 in the display panel may also be other numbers, and the distribution of the static electricity protection parts 40 may be set according to actual conditions, which is not limited here.
  • FIG. 15 is another schematic top view of the structure of the display panel provided by the embodiment of the disclosure.
  • a conductive connection portion 401 coupled to the reflective structure layer 23' is provided in the peripheral area B, and an electrostatic protection portion 40 coupled to the first voltage terminal K1 and the second voltage terminal K2 is provided in the peripheral area B. It can be set according to actual needs, so I won’t give an example one by one here.
  • the embodiments of the present disclosure also provide a display device, including the above-mentioned display panel.
  • the display device can be applied to mobile phones, tablet computers, televisions, monitors, notebook computers, digital photo frames, navigators, etc. Functional products or components. Since the principle of solving the problem of the display device is similar to the above-mentioned display panel, the implementation of the display device can refer to the implementation of the above-mentioned display panel, and the repetition will not be repeated.
  • the first opening in the mirror layer can be filled and the first opening and non-opening in the mirror layer can be eliminated
  • the level difference between the regions makes the surface of the display panel relatively flat. Therefore, when the adhesive layer (such as optical glue) and the cover plate are attached to the mirror layer later, the film layer (such as the adhesive layer) on the surface of the display panel The layer) is not prone to defects such as wrinkles or bubbles, which improves the display yield of the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开实施例提供了一种显示面板及显示装置,该显示面板包括:衬底基板;多个发光器件,位于衬底基板之上;封装层,覆盖各发光器件;镜面层,位于封装层背离衬底基板的一侧;镜面层包括:多个第一开口;第一开口在衬底基板上的正投影与至少一个发光器件在衬底基板上的正投影具有交叠区域;透明填充层,位于封装层背离衬底基板的一侧;镜面层中的第一开口内具有至少部分透明填充层。通过在封装层背离衬底基板的一侧设置透明填充层,可以减小镜面层中第一开口与非开口区域之间的段差,使显示面板的表面比较平整,后续在镜面层之上贴附粘合层等膜层时,显示面板表面的膜层不容易出现褶皱或气泡等不良,提高了显示面板的良率。

Description

显示面板及显示装置
本申请要求在2020年9月30日提交中国专利局、申请号为202011062894.9、申请名称为“显示面板及显示装置”的中国专利申请的优先权,以及要求在2020年5月28日提交中国专利局、申请号为202010466036.4、申请名称为“显示基板及其制备方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤指一种显示面板及显示装置。
背景技术
随着显示技术的迅速发展,镜面显示技术越来越受到人们的推崇。镜面显示器既可以实现显示功能,又可以作为镜面使用,给用户提供了很大的便利。有机发光二极管(Organic Light Emitting Diode,OLED)显示面板具有低能耗、生产成本低、自发光、宽视角及响应速度快等优点,被广泛应用在镜面显示领域中。
在OLED镜面显示面板中,镜面反射层中具有多个开口区域,开口区域可以透射发光器件出射的光线,以实现画面显示,镜面反射层中的非开口区域可以作为镜面使用。然而,由于镜面反射层中开口区域与非开口区域之间的段差较大,使得显示面板的表面不平整,在镜面反射层之上贴附光学胶等膜层时,容易产生气泡,导致显示面板的良率较低。
发明内容
本公开实施提供的显示面板,其中,包括:
衬底基板;
多个发光器件,位于所述衬底基板之上;
封装层,覆盖各所述发光器件;
镜面层,位于所述封装层背离所述衬底基板的一侧;所述镜面层包括:多个第一开口;所述第一开口在所述衬底基板上的正投影与至少一个所述发光器件在所述衬底基板上的正投影具有交叠区域;
透明填充层,位于所述封装层背离所述衬底基板的一侧;
所述镜面层中的所述第一开口内具有至少部分所述透明填充层。
可选地,在本公开实施例中,所述透明填充层包括:第一透明填充层和第二透明填充层,所述第二透明填充层位于所述镜面层背离所述衬底基板的一侧;
所述第一透明填充层包括:多个分立设置的填充部;
部分所述填充部位于所述第一开口内,且所述填充部背离所述衬底基板一侧的表面,与所述第二透明填充层背离所述衬底基板一侧的表面大致平齐。
可选地,在本公开实施例中,所述透明填充层包括:有机材料。
可选地,在本公开实施例中,所述透明填充层包括:多个分立设置的填充部;
所述填充部位于所述第一开口内,且所述填充部背离所述衬底基板一侧的表面与所述镜面层背离所述衬底基板一侧的表面大致平齐。
可选地,在本公开实施例中,所述填充部包括:无机材料。
可选地,在本公开实施例中,所述透明填充层的透过率大于90%。
可选地,在本公开实施例中,所述封装层包括:层叠设置的无机膜层及有机膜层;
所述有机膜层位于相邻的两层所述无机膜层之间;
与所述镜面层距离最近的所述无机膜层中,该无机膜层在所述第一开口位置处的厚度,小于该无机膜层在所述镜面层的图形位置处的厚度。
可选地,在本公开实施例中,在所述衬底基板指向所述镜面层的方向上,所述第一开口在平行于所述衬底基板的方向上的截面面积呈逐渐增大的趋势。
可选地,在本公开实施例中,还包括:位于所述衬底基板与所述封装层 之间的像素界定层;
所述像素界定层包括:与各所述发光器件一一对应的多个第二开口;
所述镜面层中的多个所述第一开口与各所述第二开口一一对应。
可选地,在本公开实施例中,所述第二开口在所述衬底基板上的正投影,位于对应的所述第一开口在所述衬底基板上的正投影的范围内。
可选地,在本公开实施例中,还包括:形成于所述透明填充层背离所述衬底基板一侧的触控电极层。
可选地,在本公开实施例中,所述触控电极层包括:由金属网格构成的多个触控电极;
所述触控电极在所述衬底基板上的正投影,位于所述像素界定层的图形在所述衬底基板上的正投影的范围内。
可选地,在本公开实施例中,还包括:位于所述透明填充层背离所述衬底基板一侧的触控模组,以及位于所述触摸模组与所述透明填充层之间的粘合层。
可选地,在本公开实施例中,所述显示面板包括:在第一方向和第二方向呈阵列排布的多个重复单元;所述第一方向与所述第二方向相互交叉;
所述重复单元包括四个子像素,分别为:一个第一子像素、一个第二子像素,以及两个第三子像素;每一个所述子像素内设有一个所述发光器件;
在每一个所述重复单元中,所述第一子像素与所述第二子像素沿所述第一方向延伸且沿所述第二方向排列,所述第三子像素位于所述第一子像素与所述第二子像素之间。
可选地,在本公开实施例中,所述镜面层中的多个所述第一开口与各所述重复单元一一对应。
可选地,在本公开实施例中,还包括:位于所述镜面层与所述封装层之间的透明保护层。
可选地,在本公开实施例中,还包括:位于所述衬底基板之上且与所述镜面层耦接的至少一个静电防护部;
所述静电防护部被配置为对所述镜面层中的静电进行释放;
所述显示面板分为显示区域及周边区域;所述镜面层位于所述显示区域内,所述静电防护部位于所述周边区域内。
可选地,在本公开实施例中,所述静电防护部包括:导电连接部;
所述周边区域内设有固定电压信号端,所述导电连接部与所述固定电压信号线耦接,且所述导电连接部与所述固定电压信号端耦接。
可选地,在本公开实施例中,还包括:位于所述衬底基板之上的固定电压信号线;
所述导电连接部与所述固定电压信号线耦接。
可选地,在本公开实施例中,所述镜面层包括:金属材料;
所述导电连接部与所述镜面层为一体结构。
可选地,在本公开实施例中,还包括:第一电压信号端,以及第二电压信号端;
所述静电防护部包括:第一晶体管,以及第二晶体管;
所述第一晶体管的控制端与第一端耦接,所述第一晶体管的第一端与所述第一电压信号端耦接,所述第一晶体管的第二端与所述第二晶体管的第一端耦接;
所述第二晶体管的控制端与第一端耦接,所述第二晶体管的第二端与所述第二电压信号端耦接;
所述镜面层与所述第一晶体管的第二端耦接。
可选地,在本公开实施例中,所述显示面板包括多个所述静电防护部,各所述静电防护部均匀分布于所述镜面层的四周。
相应地,本公开实施例还提供了一种显示面板,其中,包括:
衬底基板;
多个发光器件,位于所述衬底基板之上;
封装层,覆盖各所述发光器件;
反射结构层,位于所述封装层背离所述衬底基板的一侧;所述反射结构 层包括:多个第一开口;所述第一开口在所述衬底基板上的正投影与至少一个所述发光器件在所述衬底基板上的正投影具有交叠区域;
透明填充层,位于所述封装层背离所述衬底基板的一侧;
所述反射结构层中的所述第一开口内具有至少部分所述透明填充层。
可选地,在本公开实施例中,所述透明填充层包括:第一透明填充层和第二透明填充层,所述第二透明填充层位于所述反射结构层背离所述衬底基板的一侧;
所述第一透明填充层包括:多个分立设置的填充部;
部分所述填充部位于所述第一开口内,且所述填充部背离所述衬底基板一侧的表面,与所述第二透明填充层背离所述衬底基板一侧的表面大致平齐。
可选地,在本公开实施例中,所述透明填充层包括:有机材料。
可选地,在本公开实施例中,所述透明填充层包括:多个分立设置的填充部;
所述填充部位于所述第一开口内,且所述填充部背离所述衬底基板一侧的表面与所述反射结构层背离所述衬底基板一侧的表面大致平齐。
可选地,在本公开实施例中,所述填充部包括:无机材料。
可选地,在本公开实施例中,所述透明填充层的透过率大于90%。
可选地,在本公开实施例中,所述封装层包括:层叠设置的无机膜层及有机膜层;
所述有机膜层位于相邻的两层所述无机膜层之间;
与所述反射结构层距离最近的所述无机膜层中,该无机膜层在所述第一开口位置处的厚度,小于该无机膜层在所述反射结构层的图形位置处的厚度。
可选地,在本公开实施例中,在所述衬底基板指向所述反射结构层的方向上,所述第一开口在平行于所述衬底基板的方向上的截面面积呈逐渐增大的趋势。
可选地,在本公开实施例中,还包括:位于所述衬底基板与所述封装层之间的像素界定层;
所述像素界定层包括:与各所述发光器件一一对应的多个第二开口;
所述反射结构层中的多个所述第一开口与各所述第二开口一一对应。
可选地,在本公开实施例中,所述第二开口在所述衬底基板上的正投影,位于对应的所述第一开口在所述衬底基板上的正投影的范围内。
可选地,在本公开实施例中,还包括:位于所述反射结构层与所述封装层之间的透明保护层。
可选地,在本公开实施例中,还包括:位于所述衬底基板之上且与所述反射结构层耦接的至少一个静电防护部;
所述静电防护部被配置为对所述反射结构层中的静电进行释放;
所述显示面板分为显示区域及周边区域;所述反射结构层位于所述显示区域内,所述静电防护部位于所述周边区域内。
可选地,在本公开实施例中,所述静电防护部包括:导电连接部;
所述周边区域内设有固定电压信号端,所述导电连接部与所述固定电压信号端耦接。
可选地,在本公开实施例中,还包括:位于所述衬底基板之上的固定电压信号线;
所述导电连接部与所述固定电压信号线耦接。
可选地,在本公开实施例中,所述反射结构层包括:金属材料;
所述导电连接部与所述反射结构层为一体结构。
可选地,在本公开实施例中,还包括:第一电压信号端,以及第二电压信号端;
所述静电防护部包括:第一晶体管,以及第二晶体管;
所述第一晶体管的控制端与第一端耦接,所述第一晶体管的第一端与所述第一电压信号端耦接,所述第一晶体管的第二端与所述第二晶体管的第一端耦接;
所述第二晶体管的控制端与第一端耦接,所述第二晶体管的第二端与所述第二电压信号端耦接;
所述反射结构层与所述第一晶体管的第二端耦接。
可选地,在本公开实施例中,所述显示面板包括多个所述静电防护部,各所述静电防护部均匀分布于所述反射结构层的四周。
相应地,本公开实施例还提供了一种显示装置,其中,包括:上述任一显示面板。
附图说明
图1为相关技术中OLED镜面显示面板在制作过程中的结构示意图;
图2为本公开实施例提供的显示面板的结构示意图;
图3为本公开实施例提供的显示面板在制作过程中的结构示意图;
图4为本公开实施例提供的显示面板的另一结构示意图;
图5为图2的局部放大示意图;
图6为本公开实施例中第一开口与第二开口的对应关系示意图;
图7为镜面层的开口率与显示面板的镜面反射率的对应关系示意图;
图8为本公开实施例提供的显示面板的另一结构示意图;
图9为本公开实施例提供的显示面板的俯视结构示意图;
图10为本公开实施例提供的显示面板的像素排布示意图;
图11为本公开实施例提供的显示面板的另一结构示意图;
图12为本公开实施例提供的显示面板的俯视结构示意图;
图13为本公开实施例提供的显示面板的另一俯视结构示意图;
图14为本公开实施例中静电防护部的结构示意图;
图15为本公开实施例提供的显示面板的另一俯视结构示意图。
具体实施方式
图1为相关技术中OLED镜面显示面板在制作过程中的结构示意图,参照图1,在OLED镜面显示面板的制作过程中,采用封装层对发光器件进行封装,在封装层上方形成镜面反射层11,并对镜面反射层11进行图形化形成 多个开口区域U。为了更清楚的示意,图1中以四个开口区域U为例进行示意,不对开口区域U的形状、尺寸和数量进行限定。发光器件出射的光线可以通过镜面反射层11的开口区域U射出,以实现画面显示,镜面反射层11中的非开口区域可以作为镜面。
在镜面反射层11制作完成后,需要在镜面反射层11的表面贴附光学胶12及盖板等膜层,例如,在贴附光学胶12的过程中,可以采用辊轮13将光学胶12铺平。由于镜面反射层11中具有多个开口区域U,开口区域U与非开口区域之间的段差较大,使得显示面板的表面不平整。在光学胶12的贴附过程中,开口区域U中会残留一些空气,使得贴附完成后,光学胶12表面出现褶皱。并且,由于开口区域U的边缘对光学胶12的支撑作用,使得光学胶12在开口区域U处悬空,导致手指按压在显示面板的表面时,显示面板容易出现形变。此外,在后续进行信赖性测试时,在高温高湿的环境下,显示面板的表面容易出现气泡q,影响显示良率。
基于此,本公开实施例提供了一种显示面板及显示装置。
下面结合附图,对本公开实施例提供的显示面板及显示装置的具体实施方式进行详细地说明。附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本发明内容。
图2为本公开实施例提供的显示面板的结构示意图,如图2所示,本公开实施例提供的显示面板,可以包括:
衬底基板20;
多个发光器件21,位于衬底基板20之上;
封装层22,覆盖各发光器件21;
镜面层23,位于封装层22背离衬底基板20的一侧;镜面层23包括:多个第一开口U1;第一开口U1在衬底基板20上的正投影与至少一个发光器件21在衬底基板20上的正投影具有交叠区域;
透明填充层24,位于封装层22背离衬底基板20的一侧;
镜面层23中的第一开口U1内具有至少部分透明填充层24。
本公开实施例提供的显示面板中,通过在封装层背离衬底基板的一侧设置透明填充层,并且镜面层中的第一开口内具有至少部分透明填充层,减小了镜面层中第一开口与非开口区域之间的段差,使显示面板的表面比较平整,因而,后续在镜面层之上贴附粘合层(例如光学胶)及盖板等膜层时,显示面板表面的膜层(例如粘合层)不容易出现褶皱或气泡等不良,提高了显示面板的显示良率。
本公开实施例提供的显示面板可以为有机发光二极管显示面板,参照图2,本公开实施例中的显示面板可以包括多个发光器件21,为了清楚的示意本公开实施例中各膜层的结构,图2中仅示出了一个发光器件21,在具体实施时,可以根据实际需要设置发光器件21的数量及分布,此处不做限定。发光器件21可以包括:第一电极211、位于第一电极211背离衬底基板20一侧的第二电极212,以及位于第一电极211与第二电极212之间的有机发光层213;其中,第一电极211为阳极,第二电极212为阴极;或者,第一电极211为阴极,第二电极212为阳极。可选地,各发光器件21中的第一电极211可以分立设置,即每一个发光器件21中可以设置一个独立的第一电极211,各发光器件21可以共用一个第二电极212,即第二电极212可以为整面设置。
继续参照图2,本公开实施例提供的显示面板还可以包括:位于发光器件21背离衬底基板20一侧的封装层22,封装层22覆盖显示面板中的多个发光器件21,防止发光器件21被水汽和氧气侵蚀。
本公开实施例中,如图2所示,通过在封装层22背离衬底基板20的一侧设置镜面层23,镜面层23与显示面板的显示面之间的距离较近,可以实现较好的镜面效果。镜面层23包括多个第一开口U1,且第一开口U1在衬底基板20上的正投影与至少一个发光器件21在衬底基板20上的正投影具有交叠区域,从而,可以使发光器件21出射的光线通过第一开口U1射出,以实现画面显示。镜面层23中除第一开口U1以外的区域(即非开口区域)可以反射光线,因而,镜面层23的非开口区域可以作为镜面使用。这样,可以使显示面板同时实现显示和镜面的作用,用户在观看显示画面的同时,也可以观 看到显示面板反射的画面,从而满足用户的多种需求。本公开实施例提供的显示面板可以应用于多种场景中,例如,可以应用在公共场所广告屏、车载后视镜、取款机显示屏等场景中。此外,外界光线无法穿过镜面层23射向显示面板内部,因而,发光器件21出射的光线不受外界光线的影响,提高了显示面板的对比度。
在实际应用中,继续参照图2,可以采用高反射率的金属材料制作上述镜面层23,例如,可以采用铝或银制作上述镜面层23,此外,镜面层23也可以包括叠层设置的至少两层金属层,例如镜面层23可以包括钛/铝/钛金属层。在实际工艺过程中,可以采用低温溅射工艺在封装层22之上沉积金属层,然后采用一道构图工艺,对该金属层进行图形化,形成具有多个第一开口U1的镜面层23。当然,也可以采用其他高反射率的材料制作上述镜面层23,此处不做限定。可选地,镜面层23的厚度可以在200nm~500nm之间,优选为在200nm~350nm之间,例如镜面层23的厚度可以在310nm左右。
图3为本公开实施例提供的显示面板在制作过程中的结构示意图,结合图2和图3,本公开实施例中,通过在封装层22背离衬底基板20的一侧设置透明填充层24,并且镜面层23中的第一开口U1内具有至少部分透明填充层24,从而减小镜面层23中第一开口U1与非开口区域之间的段差,使显示面板的表面比较平整。后续在镜面层23的表面贴附粘合层27等膜层时,粘合层27等膜层不容易出现褶皱或气泡等不良。如图3所示,可以采用辊轮13将粘合层27铺平,从图3可以明显看出,粘合层27的表面比较平整,没有出现褶皱或气泡等不良。
此外,如图2所示,由于透明填充层24是透明的,发光器件21出射的光线能够穿过透明填充层24,因而,透明填充层24不会影响显示面板的显示效果。
在本公开实施例中,透明填充层至少存在以下两种设置方式,以下结合附图进行详细说明。
方式一:
如图2所示,本公开实施例提供的上述显示面板中,透明填充层24可以包括:第一透明填充层241和第二透明填充层242,第二透明填充层242位于镜面层23背离衬底基板20的一侧;
第一透明填充层241可以包括:多个分立设置的填充部241',图中为了清楚的示意透明填充层24的结构,仅示意出一个填充部241',在实际应用中,可以在多个第一开口U1的位置处设置填充部241';
部分填充部241'位于第一开口U1内,且填充部241'背离衬底基板20一侧的表面,与第二透明填充层242背离衬底基板20一侧的表面大致平齐,其中,大致平齐指的是:填充部241'背离衬底基板20一侧的表面,与第二透明填充层242背离衬底基板20一侧的表面的距离可以在一定偏差范围内,例如二者的距离可以小于30nm,也就是说,透明填充层24背离衬底基板20一侧的表面大致平坦,可以具有小于30nm的范围内起伏。
本公开实施例中,第一透明填充层241中具有多个填充部241',填充部241'可以填充第一开口U1,可选地,第一透明填充层241中的多个填充部241'可以与镜面层23中的多个第一开口U1一一对应,从而通过透明填充层24填充镜面层23中的各第一开口U1,并且,填充部241'在垂直于衬底基板20方向上的厚度,可以与镜面层23和第二透明填充层242在垂直于衬底基板20方向上的总厚度一致,从而使填充部241'的填充效果较好,并且,可以使透明填充层24背离衬底基板20一侧的表面为平坦面,这样,透明填充层24还可以起到平坦化的作用,使显示面板的表面更加平坦。此外,透明填充层24还可以起到保护镜面层23的作用,防止后续工艺对镜面层23的表面造成损伤。
在具体实施时,本公开实施例提供的上述显示面板中,继续参照图2,上述透明填充层24可以包括:有机材料,例如该有机材料可以为树脂材料。可选地,可以将透明填充层24中的第一透明填充层241与第二透明填充层242设置为一体结构,这样透明填充层24更容易制作。在制作过程中,在镜面层23之上涂布有机材料,由于有机材料具有较好的流平效果,能够填充镜面层 23中的各第一开口U1,并覆盖镜面层23的非开口区域,以形成透明填充层24。并且,有机材料的平坦化效果较好,从而使形成的透明填充层24背离衬底基板20一侧的表面为平坦面。
可选地,第一透明填充层241的厚度可以在200nm~1000nm的范围内,优选为在300nm~600nm的范围内,例如,第一透明填充层241的厚度可以在560nm左右,第二透明填充层242的厚度可以在200nm~400nm之间,例如第二透明填充层242的厚度可以在310nm左右。
方式二:
图4为本公开实施例提供的显示面板的另一结构示意图,如图4所示,本公开实施例提供的上述显示面板中,透明填充层24可以包括:多个分立设置的填充部241';
填充部241'位于第一开口U1内,且填充部241'背离衬底基板20一侧的表面与镜面层23背离衬底基板20一侧的表面大致平齐。其中,大致平齐指的是:填充部241'背离衬底基板20一侧的表面,与镜面层23背离衬底基板20一侧的表面的距离可以在一定偏差范围内,例如二者的距离可以小于30nm。
本公开实施例中,透明填充层24可以包括多个分立设置的填充部241',填充部241'可以填充第一开口U1。可选地,透明填充层24中的多个填充部241'可以与镜面层23中的多个第一开口U1一一对应,从而通过透明填充层24填充镜面层23中的各第一开口U1。并且,填充部241'背离衬底基板20一侧的表面与镜面层23背离衬底基板20一侧的表面大致平齐,从而使镜面层23背离衬底基板20一侧的表面比较平整。在具体实施时,可以根据镜面层23的厚度设置填充部241'的厚度,以使填充部241'能够填平第一开口U1。
在具体实施时,本公开实施例提供的上述显示面板中,继续参照图4,填充部241'可以包括:无机材料,例如该无机材料可以为二氧化硅材料或氮化硅材料。在制作过程中,可以采用化学气相沉积工艺,在镜面层23之上沉积 与镜面层23的厚度一致的无机层,然后采用一道构图工艺对该无机层进行图形化,去除非开口区域的无机层,从而在各第一开口U1内形成多个填充部241'。
在实际应用中,本公开实施例提供的上述显示面板中,上述透明填充层的透过率大于90%,采用高透过率的材料制作透明填充层,可以保证发光器件出射的光线能够穿过透明填充层,透明填充层不会影响显示面板的显示效果。当然,透明填充层的透过率也可以小于90%,可以根据实际需要进行设置,此处不做限定。
图5为图2的局部放大示意图,为了清楚的示意封装层的结构,图5中仅示意出封装层、镜面层及透明填充层,省略了其他膜层。如图2和图5所示,封装层22可以包括:层叠设置的无机膜层221及有机膜层222,其中,无机膜层221可以起到阻隔水汽和氧气的作用,有机膜层222可以位于相邻的两层无机膜层221之间,可以起到释放应力及平坦化的作用。与镜面层23距离最近的无机膜层221中,该无机膜层221在第一开口U1位置处的厚度h1,小于该无机膜层221在镜面层23的图形位置处的厚度h2,即该无机膜层221在发光器件21的位置处的厚度h1较薄,这样,该无机膜层221对发光器件21出射的光线的影响较小,可以提高显示面板的光透过率。在实际工艺过程中,可以调整镜面层23的工艺参数,在对镜面层23进行刻蚀的过程中,可在第一开口U1的位置处发生过刻,以使该无机膜层221在发光器件21的位置处的厚度h1较薄。可选地,封装层22的总厚度可以在500nm~800nm的范围内,其中,封装层22在第一开口U1位置处的厚度可以在540nm左右,封装层22在镜面层23的图形位置处的厚度可以在610nm左右。
图5中为了清楚的示意与镜面层23距离最近的无机膜层221的结构,将该无机膜层221的厚度示意的较厚,在具体实施时,可以根据实际需要来设置封装层22中各无机膜层221的厚度,此处不做限定。并且,图5中以透明填充层24为上述方式一的结构为例进行示意,当透明填充层24为上述方式二的结构时,也可以将与镜面层23距离最近的无机膜层221设置为:该无机 膜层221在第一开口U1位置处的厚度h1,小于该无机膜层221在镜面层23的图形位置处的厚度h2。
在具体实施时,本公开实施例提供的上述显示面板中,如图2和图4所示,在衬底基板20指向镜面层23的方向上,第一开口U1在平行于衬底基板20的方向上的截面面积呈逐渐增大的趋势,也就是说,第一开口U1的侧壁为斜面,这样,可以使发光器件21出射的光线经第一开口U1的侧壁反射后射出,提高显示面板的出光效率。
如图2所示,本公开实施例提供的上述显示面板中,还可以包括:位于衬底基板20与封装层22之间的像素界定层25;
像素界定层25可以包括:与各发光器件21一一对应的多个第二开口U2;
镜面层23中的多个第一开口U1与各第二开口U2一一对应。
在本公开实施例中,显示面板可以包括多个子像素,像素界定层用于界定各子像素的区域,即第二开口U2的位置对应一个子像素。将镜面层23中的多个第一开口U1设置为与各第二开口U2一一对应,一方面,可以保证每一个发光器件21出射的光线可以穿过对应的第一开口U1,保证显示面板具有较好的显示效果,另一方面,可以使镜面层23的非开口区域的面积较大,使显示面板的镜面效果较好。
图6为本公开实施例中第一开口与第二开口的对应关系示意图,如图6中的(1)和(2),本公开实施例提供的显示面板中,第二开口U2在衬底基板上的正投影,位于对应的第一开口U1在衬底基板上的正投影的范围内,也就是说,镜面层中的第一开口U1的尺寸大于对应的第二开口U2的尺寸,或者,镜面层中的第一开口U1的尺寸与对应的第二开口U2的尺寸相当,这样,发光器件出射的光线不会被镜面层遮挡,因而,镜面层不会影响显示面板的开口率,显示面板的显示效果较好。
此外,如图6中的(3),也可以将第一开口U1在衬底基板上的正投影,设置为位于对应的第二开口U2在衬底基板上的正投影,也就是说,镜面层中的第一开口U1的尺寸小于对应的第二开口U2的尺寸,这样,虽然镜面层中 各第一开口U1的边缘会遮挡发光器件出射的部分光线,但是可以提高显示面板的反射率,即提高显示面板的镜面效果。
在具体实施时,可以将第一开口U1的形状设置为与第二开口U2的形状相同,例如图6中,第一开口U1与第二开口U2的形状均为六边形,在具体实施时,第一开口U1和第二开口U2也可以为其他形状,此处不做限定。
图7为镜面层的开口率与显示面板的镜面反射率的对应关系示意图,如图7所示,曲线L1为设置镜面层的显示面板对应的关系曲线,曲线L2为未设置镜面层的显示面板对应的关系曲线。可以理解的是,镜面层的开口率指的是,镜面层中第一开口的面积与对应的子像素的总面积的比值。从图7可以看出,对于设置镜面层的显示面板,随着镜面层的开口率的增大,镜面层中第一开口的总面积增大,镜面层的非开口区域的总面积减小,因而显示面板的镜面反射率逐渐降低。对于未设置镜面层的显示面板,显示面板的镜面反射率均较低。
在实际应用中,可以采用测试光源和亮度计来检测显示面板的镜面反射率,具体地,可以将测试光源和亮度计设置在显示面板的显示面一侧的设定位置,以使测试光源出射的光线射向显示面板的显示面,并经显示面板的显示面反射至亮度计,根据测试光源的出射光亮度及亮度计检测的亮度值,来确定显示面板的镜面反射率。在具体实施时,可以将显示面板的镜面反射率设置为大于50%,例如可以设置为在85%~97%之间,将显示面板的透过率设置在46%~81%之间,可以根据实际场景,即根据显示面板所需的镜面反射率的大小,来设置镜面反射层中第一开口的尺寸。
一般像素界定层的开口率可以在15%~30%的范围内,优选为20%~26%的范围内,例如,可以将像素界定层的开口率设置为21%左右,像素界定层的开口率可以理解为,像素界定层中第二开口的面积与对应的子像素的总面积的比值。像素界定层中第二开口的宽度可以设置在8μm~25μm的范围内,优选为10μm~20μm的范围内,例如第二开口的宽度可以设置为15μm左右,镜面层中第一开口的宽度可以设置在7μm~23μm的范围内。或者,可以将 第一开口的面积与第二开口的面积的比值设置在0.38~1.89的范围内。
在实际应用中,如图2所示,为了驱动各发光器件21发光,上述显示面板还可以包括:薄膜晶体管TFT及电容结构(图中未示出)等部件,其中,薄膜晶体管TFT可以包括:有源层Ac、源极S、漏极D,以及栅极Ga,薄膜晶体管TFT的漏极D与第一电极211耦接。并且,为了使不同膜层的导电部件相互绝缘,上述显示面板还可以包括:位于有源层Ac与栅极Ga之间的第一栅极绝缘层GI1,位于栅极Ga与源极S之间的第二栅极绝缘层GI2及层间绝缘层ILD,位于源极S与第一电极211之间的平坦层PLN,以及位于有源层Ac与衬底基板20之间的缓冲层29。此外,显示面板还可以包括位于源极S与平坦层PLN之间的钝化层(图中未示出),以保护源极S及漏极D,防止源极S及漏极D被氧化。
图8为本公开实施例提供的显示面板的另一结构示意图,如图8所示,本公开实施例提供的上述显示面板中,还可以包括:形成于透明填充层24背离衬底基板20一侧的触控电极层26'。这样,可以使显示面板实现触控功能,且触控电极层26'与显示面板的显示面距离较近,显示面板的触控效果较好。在实际工艺过程中,可以将触控电极层26'直接形成在透明填充层24之上,通过构图工艺形成多个触控电极。此外,上述显示面板还可以包括:盖板28,以及位于盖板28与触控电极层26'之间的粘合层27。盖板28可以保护显示面板的内部结构,粘合层27可以将盖板28粘合在触控电极层26'的表面。
图9为本公开实施例提供的显示面板的俯视结构示意图,如图9所示,本公开实施例提供的上述显示面板中,触控电极层可以包括:由金属网格构成的多个触控电极261;
触控电极261在衬底基板上的正投影,位于像素界定层25的图形在衬底基板上的正投影的范围内,即触控电极261中的金属网格在衬底基板上的正投影,与像素界定层25中的各第二开口U2在衬底基板上的正投影互不交叠。
这样,触控电极不会遮挡发光器件出射的光线,不会影响显示面板的显示效果。
如图2所示,在另一些实施例中,上述显示面板,还可以包括:位于透明填充层24背离衬底基板20一侧的触控模组26,以及位于触摸模组26与透明填充层24之间的粘合层27,例如,粘合层27可以为光学胶。在实际工艺过程中,可以将粘合层27贴附在透明填充层24的表面,然后,在粘合层27的表面贴附触控模组26,通过粘合层27可以将触控模组26粘合在透明填充层24的表面。在本公开实施例中,由于镜面层23中的第一开口U1内具有至少部分透明填充层24,因而,在透明填充层24之上形成的粘合层27不会出现褶皱或气泡等不良,显示面板的良率较高。
可选地,触控模组26可以包括多个触控电极,触控电极可以采用透明导电材料制作,例如可以采用氧化铟锡(Indium tin oxide,ITO)材料,这样,触控模组不会遮挡发光器件出射的光线,不会影响显示面板的显示效果。
此外,继续参照图2,本公开实施例提供的上述显示面板,还可以包括:盖板28,以及位于盖板28与触控模组26之间的粘合层27。盖板28可以保护显示面板的内部结构,粘合层27可以将盖板28粘合在触控模组26的表面。
图10为本公开实施例提供的显示面板的像素排布示意图,如图10所示,本公开实施例提供的上述显示面板可以包括:在第一方向F1和第二方向F2呈阵列排布的多个重复单元W;第一方向F1与第二方向F2相互交叉,例如第一方向F1与第二方向F2可以相互垂直;
重复单元W可以包括四个子像素,分别为:一个第一子像素P1、一个第二子像素P2,以及两个第三子像素P3;每一个子像素内设有一个发光器件;
在每一个重复单元W中,第一子像素P1与第二子像素P2沿第一方向F1延伸且沿第二方向F2排列,第三子像素P3位于第一子像素P1与第二子像素P2之间。可选地,第一子像素P1可以为蓝色子像素,第二子像素P2可以为红色子像素,第三子像素P3可以为绿色子像素,在具体实施时,可以根据实际需要对各子像素的颜色进行调整,此处不对各子像素的颜色进行限定。在实际应用中,同一重复单元W中的子像素可以对应一个显示像素,或者,不同重复单元W中的子像素可以对应一个显示像素,可以根据实际显示需要进 行设置,此处不做限定。
可选地,在重复单元W内,第一子像素P1和第二子像素P2的形状可以为六边形,第三子像素P3的形状可以为五边形,或者,第一子像素P1、第二子像素P2及第三子像素P3也可以为其他形状,此处不做限定。本公开实施例中,上述像素界定层中的第二开口的形状可以与对应的子像素的形状一致,在具体实施时,可以根据子像素的形状,来设置对应的第二开口的形状。
在实际应用中,本公开实施例提供的上述显示面板中,上述镜面层中的多个第一开口与各重复单元一一对应。这样,镜面层不会遮挡重复单元内各子像素的出射光线,使显示面板的显示效果较好。
图11为本公开实施例提供的显示面板的另一结构示意图,如图11所示,本公开实施例提供的上述显示面板中,还可以包括:位于镜面层23与封装层22之间的透明保护层30。在制作过程中,透明保护层30可以保护下层膜层,避免对镜面层23进行图形化的过程中,损伤下层膜层,并且,发光器件21出射的光线可以穿过透明保护层30,不会影响显示面板的显示效果。在具体实施时,在显示面板的边缘处,透明保护层的边缘可以超出封装层及镜面层的边缘,以对下层膜层进行有效的保护。
一般在显示面板的边缘设有绑定区域,绑定区域内设有多个焊盘,可以通过焊盘与柔性电路板、集成芯片等器件绑定连接,以实现显示面板与柔性电路板或集成芯片等器件之间的信号传输。并且,显示面板还包括:多条信号引线,焊盘可以通过信号引线与发光器件或触控电极耦接。然而,在显示面板的边缘处,部分信号引线没有被封装层覆盖,这部分信号引线之上仅设有绝缘薄膜,因而,在镜面层的图形化过程中,存在损伤这部分信号引线的风险。本公开实施例中,透明保护层可以覆盖信号引线,并露出焊盘,以对信号引线进行保护,防止镜面层图形化的过程中,发生过刻而损伤信号引线。
可选地,透明保护层30可以采用氮化硅SiNx、氧化硅SiOx或SiNx/SiOx的复合材料制作,或者,透明保护层30也可以采用其他透明材料制作,此处不做限定。透明保护层30的厚度可以设置在0.2μm~0.4μm的范围内,或者, 透明保护层30的厚度也可以设置在其他范围内,此处不做限定。
由于镜面层通常采用高反射率的金属材料制作,因而,在对显示面板进行生产、组装、测试或搬运过程中,显示面板内的镜面层容易产生并积累静电,这样容易出现静电放电的现象,进而容易对显示面板的内部结构(例如发光器件或驱动电路等)造成损伤,影响显示面板的正常使用。基于此,本公开实施例提供的显示面板中设置了静电防护部,以对镜面层中的静电进行释放,以下结合附图进行详细说明。
图12为本公开实施例提供的显示面板的俯视结构示意图,如图12所示,本公开实施例提供的上述显示面板中,还可以包括:位于衬底基板20之上且与镜面层23耦接的至少一个静电防护部40;
静电防护部40被配置为对镜面层23中的静电进行释放;
显示面板分为显示区域A及周边区域B;镜面层23位于显示区域A内,静电防护部40位于周边区域B内。
本公开实施例中,通过在衬底基板20之上设置与镜面层23耦接的至少一个静电防护部40,静电防护部40可以对镜面层23中的静电进行释放,从而,可以避免镜面层23中产生静电积累,进而,可以避免出现静电放电现象,防止静电放电过程对显示面板的内部结构造成损伤。并且,将静电防护部40设置在周边区域B内,静电防护部40不会占用显示面板的显示区域A的面积,使得显示面板具有较大的屏占比。此外,镜面层23设置在显示区域A内,可以使显示面板的镜面效果较好,当然,镜面层23的边缘也可以稍微超出显示区域A,此处不做限定。
在本公开实施例中,上述静电防护部可以具有多种实现方式,以下结合附图进行详细说明。
实现方式一:
在一些实施例中,如图12所示,本公开实施例提供的上述显示面板中,静电防护部40可以包括:导电连接部401;
周边区域B内设有固定电压信号端411,导电连接部401与固定电压信号 端411耦接。
这样,导电连接部401可以将镜面层23产生的静电传输至固定电压信号端411,以将镜面层23中的静电导走。
此外,同样参照图12,上述显示面板还可以包括:位于衬底基板20之上的固定电压信号线41,例如固定电压信号线41可以为低电位电压信号线。固定电压信号线41可以围绕显示区域A,或者,固定电压信号线41可以位于显示区域A的一侧,导电连接部401与固定电压信号线41耦接。这样,导电连接部401可以将镜面层23产生的静电传输至固定电压信号线41,以将镜面层23中的静电导走。
在具体实施时,周边区域B包括绑定区域B1,绑定区域B1绑定区域内设有多个焊盘42,焊盘42用于与柔性电路板、集成芯片等器件绑定连接。上述导电连接部401可以设置在绑定区域B1内。
可选地,本公开实施例提供的上述显示面板中,继续参照图12,镜面层23可以包括:金属材料,导电连接部401与镜面层23为一体结构,也就是说,镜面层23与导电连接部401的图形是连续的,镜面层23与导电连接部401无需采用搭接方式或其他方式耦接,因而,镜面层23与导电连接部401的连接效果较好。并且,在制作过程中,可以采用同一次构图工艺制作镜面层23和导电连接部401,降低制作成本。
实现方式二:
图13为本公开实施例提供的显示面板的另一俯视结构示意图,图14为本公开实施例中静电防护部的结构示意图,如图13和图14所示,在另一些实施例中,本公开实施例提供的上述显示面板中,还可以包括:第一电压信号端K1,以及第二电压信号端K2,可选地,第一电压信号端K1和第二电压信号端K2可以设置在周边区域B内。其中,第一电压信号端K1用于传输第一电压信号,第二电压信号端K2用于传输第二电压信号,第一电压信号的电压高于第二电压信号的电压;或者,第一电压信号的电压低于第二电压信号的电压,在本公开实施例中,均以第一电压信号的电压高于第二电压信号的 电压为例进行说明,并以VGH表示第一电压信号,以VGL表示第二电压信号;
如图14中的(1),上述静电防护部40可以包括:第一晶体管TFT1,以及第二晶体管TFT2,第一晶体管TFT1和第二晶体管TFT2可以为P型晶体管也可以为N型晶体管,在本公开实施例中以第一晶体管TFT1和第二晶体管TFT2均为P型晶体管为例进行说明。
第一晶体管TFT1的控制端Ga1与第一端S1耦接,第一晶体管TFT1的第一端S1与第一电压信号端K1耦接,第一晶体管TFT1的第二端D1与第二晶体管TFT2的第一端S2耦接;
第二晶体管TFT2的控制端Ga2与第一端S2耦接,第二晶体管TFT2的第二端D2与第二电压信号端K2耦接;
镜面层23与第一晶体管TFT1的第二端D1耦接。
如图14中的(2),第一晶体管TFT1的控制端Ga1与第一端S1耦接,可以将第一晶体管TFT1等效为二极管,即第一二极管,第一晶体管TFT1的控制端Ga1和第一端S1共同等效为第一二极管的阴极,第一晶体管TFT1的第二端D1等效为第一二极管的阳极。第二晶体管TFT2的控制端Ga2与第一端S2耦接,可以将第二晶体管TFT2等效为二极管,即第二二极管,第二晶体管TFT2的控制端Ga2和第一端S2共同等效为第二二极管的阴极,第二晶体管TFT2的第二端D2等效为第二二极管的阳极。
在具体实施时,镜面层23中产生的静电可能是正静电,也可能是负静电。当镜面层23中产生的静电为正静电,且静电层23中产生的静电的电压高于第一电压信号VGH的电压时,此时,第一晶体管TFT1导通,第二晶体管TFT2截止,第一晶体管TFT1将静电传输至第一电压信号端K1。当镜面层23中产生的静电为负静电,且静电层23中产生的静电的电压低于第二电压信号VGL的电压时,第一晶体管TFT1截止,第二晶体管TFT2导通,第二晶体管TFT2将静电传输至第二电压信号端K2。这样,无论镜面层23中产生的静电为正静电还是负静电,静电防护部40均可以将静电释放,防止静电放电损伤显示 面板的内部结构。
在实际应用中,本公开实施例提供的上述显示面板中,如图13所示,显示面板包括多个静电防护部40,各静电防护部40均匀分布于镜面层23的四周。例如,图13中,显示区域A为矩形,显示面板包括四个静电防护部40,各静电防护部40分别位于显示区域A的四个角对应的位置处。此外,显示面板中的静电防护部40也可以为其他数量,并且,可以根据实际情况,设置各静电防护部40的分布情况,此处不做限定。
实现方式三:
图15为本公开实施例提供的显示面板的另一俯视结构示意图,如图15所示,本公开实施例中,还可以将上述实现方式一与实现方式二进行结合,也就是说,可以在周边区域B内设置与镜面层23耦接的导电连接部401,并且,在周边区域B内设置与第一电压端K1、第二电压端K2耦接的静电防护部40,在具体实施时,可以根据实际需要进行设置,此处不再一一举例。
基于同一发明构思,本公开实施例还提供了另一种显示面板,图2为本公开实施例提供的显示面板的结构示意图,如图2所示,本公开实施例提供的显示面板,可以包括:
衬底基板20;
多个发光器件21,位于衬底基板20之上;
封装层22,覆盖各发光器件21;
反射结构层23',位于封装层22背离衬底基板20的一侧;反射结构层23'包括:多个第一开口U1;第一开口U1在衬底基板20上的正投影与至少一个发光器件21在衬底基板20上的正投影具有交叠区域;
透明填充层24,位于封装层22背离衬底基板20的一侧;
反射结构层23'中的第一开口U1内具有至少部分透明填充层24。
本公开实施例提供的显示面板中,通过在封装层背离衬底基板的一侧设置透明填充层,并且反射结构层中的第一开口内具有至少部分透明填充层,减小了反射结构层中第一开口与非开口区域之间的段差,使显示面板的表面 比较平整,因而,后续在反射结构层之上贴附粘合层(例如光学胶)及盖板等膜层时,显示面板表面的膜层(例如粘合层)不容易出现褶皱或气泡等不良,提高了显示面板的显示良率。
本公开实施例提供的显示面板可以为有机发光二极管显示面板,参照图2,本公开实施例中的显示面板可以包括多个发光器件21,为了清楚的示意本公开实施例中各膜层的结构,图2中仅示出了一个发光器件21,在具体实施时,可以根据实际需要设置发光器件21的数量及分布,此处不做限定。发光器件21可以包括:第一电极211、位于第一电极211背离衬底基板20一侧的第二电极212,以及位于第一电极211与第二电极212之间的有机发光层213;其中,第一电极211为阳极,第二电极212为阴极;或者,第一电极211为阴极,第二电极212为阳极。可选地,各发光器件21中的第一电极211可以分立设置,即每一个发光器件21中可以设置一个独立的第一电极211,各发光器件21可以共用一个第二电极212,即第二电极212可以为整面设置。
继续参照图2,本公开实施例提供的显示面板还可以包括:位于发光器件21背离衬底基板20一侧的封装层22,封装层22覆盖显示面板中的多个发光器件21,防止发光器件21被水汽和氧气侵蚀。
本公开实施例中,如图2所示,通过在封装层22背离衬底基板20的一侧设置反射结构层23',反射结构层23'与显示面板的显示面之间的距离较近,可以实现较好的镜面效果。反射结构层23'包括多个第一开口U1,且第一开口U1在衬底基板20上的正投影与至少一个发光器件21在衬底基板20上的正投影具有交叠区域,从而,可以使发光器件21出射的光线通过第一开口U1射出,以实现画面显示。反射结构层23'中除第一开口U1以外的区域(即非开口区域)可以反射光线,因而,反射结构层23'的非开口区域可以作为镜面使用。这样,可以使显示面板同时实现显示和镜面的作用,用户在观看显示画面的同时,也可以观看到显示面板反射的画面,从而满足用户的多种需求。本公开实施例提供的显示面板可以应用于多种场景中,例如,可以应用在公共场所广告屏、车载后视镜、取款机显示屏等场景中。此外,外 界光线无法穿过反射结构层23'射向显示面板内部,因而,发光器件21出射的光线不受外界光线的影响,提高了显示面板的对比度。
在实际应用中,继续参照图2,可以采用高反射率的金属材料制作上述反射结构层23',例如,可以采用铝或银制作上述反射结构层23',此外,反射结构层23'也可以包括叠层设置的至少两层金属层,例如反射结构层23'可以包括钛/铝/钛金属层。在实际工艺过程中,可以采用低温溅射工艺在封装层22之上沉积金属层,然后采用一道构图工艺,对该金属层进行图形化,形成具有多个第一开口U1的反射结构层23'。当然,也可以采用其他高反射率的材料制作上述反射结构层23',此处不做限定。可选地,反射结构层23'的厚度可以在200nm~500nm之间,优选为在200nm~350nm之间,例如反射结构层23'的厚度可以在310nm左右。
图3为本公开实施例提供的显示面板在制作过程中的结构示意图,结合图2和图3,本公开实施例中,通过在封装层22背离衬底基板20的一侧设置透明填充层24,并且反射结构层23'中的第一开口U1内具有至少部分透明填充层24,从而减小反射结构层23'中第一开口U1与非开口区域之间的段差,使显示面板的表面比较平整。后续在反射结构层23'的表面贴附粘合层27等膜层时,粘合层27等膜层不容易出现褶皱或气泡等不良。如图3所示,可以采用辊轮13将粘合层27铺平,从图3可以明显看出,粘合层27的表面比较平整,没有出现褶皱或气泡等不良。
此外,如图2所示,由于透明填充层24是透明的,发光器件21出射的光线能够穿过透明填充层24,因而,透明填充层24不会影响显示面板的显示效果。
在本公开实施例中,透明填充层至少存在以下两种设置方式,以下结合附图进行详细说明。
方式一:
如图2所示,本公开实施例提供的上述显示面板中,透明填充层24可以包括:第一透明填充层241和第二透明填充层242,第二透明填充层242位于 反射结构层23'背离衬底基板20的一侧;
第一透明填充层241可以包括:多个分立设置的填充部241',图中为了清楚的示意透明填充层24的结构,仅示意出一个填充部241',在实际应用中,可以在多个第一开口U1的位置处设置填充部241';
部分填充部241'位于第一开口U1内,且填充部241'背离衬底基板20一侧的表面,与第二透明填充层242背离衬底基板20一侧的表面大致平齐,其中,大致平齐指的是:填充部241'背离衬底基板20一侧的表面,与第二透明填充层242背离衬底基板20一侧的表面的距离可以在一定偏差范围内,例如二者的距离可以小于30nm,也就是说,透明填充层24背离衬底基板20一侧的表面大致平坦,可以具有小于30nm的范围内起伏。
本公开实施例中,第一透明填充层241中具有多个填充部241',填充部241'可以填充第一开口U1,可选地,第一透明填充层241中的多个填充部241'可以与反射结构层23'中的多个第一开口U1一一对应,从而通过透明填充层24填充反射结构层23'中的各第一开口U1,并且,填充部241'在垂直于衬底基板20方向上的厚度,可以与反射结构层23'和第二透明填充层242在垂直于衬底基板20方向上的总厚度一致,从而使填充部241'的填充效果较好,并且,可以使透明填充层24背离衬底基板20一侧的表面为平坦面,这样,透明填充层24还可以起到平坦化的作用,使显示面板的表面更加平坦。此外,透明填充层24还可以起到保护反射结构层23'的作用,防止后续工艺对反射结构层23'的表面造成损伤。
在具体实施时,本公开实施例提供的上述显示面板中,继续参照图2,上述透明填充层24可以包括:有机材料,例如该有机材料可以为树脂材料。可选地,可以将透明填充层24中的第一透明填充层241与第二透明填充层242设置为一体结构,这样透明填充层24更容易制作。在制作过程中,在反射结构层23'之上涂布有机材料,由于有机材料具有较好的流平效果,能够填充反射结构层23'中的各第一开口U1,并覆盖反射结构层23'的非开口区域,以形成透明填充层24。并且,有机材料的平坦化效果较好,从而使形成的透 明填充层24背离衬底基板20一侧的表面为平坦面。
可选地,第一透明填充层241的厚度可以在200nm~1000nm的范围内,优选为在300nm~600nm的范围内,例如,第一透明填充层241的厚度可以在560nm左右,第二透明填充层242的厚度可以在200nm~400nm之间,例如第二透明填充层242的厚度可以在310nm左右。
方式二:
图4为本公开实施例提供的显示面板的另一结构示意图,如图4所示,本公开实施例提供的上述显示面板中,透明填充层24可以包括:多个分立设置的填充部241';
填充部241'位于第一开口U1内,且填充部241'背离衬底基板20一侧的表面与反射结构层23'背离衬底基板20一侧的表面大致平齐。其中,大致平齐指的是:填充部241'背离衬底基板20一侧的表面,与反射结构层23'背离衬底基板20一侧的表面的距离可以在一定偏差范围内,例如二者的距离可以小于30nm。
本公开实施例中,透明填充层24可以包括多个分立设置的填充部241',填充部241'可以填充第一开口U1。可选地,透明填充层24中的多个填充部241'可以与反射结构层23'中的多个第一开口U1一一对应,从而通过透明填充层24填充反射结构层23'中的各第一开口U1。并且,填充部241'背离衬底基板20一侧的表面与反射结构层23'背离衬底基板20一侧的表面大致平齐,从而使反射结构层23'背离衬底基板20一侧的表面比较平整。在具体实施时,可以根据反射结构层23'的厚度设置填充部241'的厚度,以使填充部241'能够填平第一开口U1。
在具体实施时,本公开实施例提供的上述显示面板中,继续参照图4,填充部241'可以包括:无机材料,例如该无机材料可以为二氧化硅材料或氮化硅材料。在制作过程中,可以采用化学气相沉积工艺,在反射结构层23'之上沉积与反射结构层23'的厚度一致的无机层,然后采用一道构图工艺对该无机层进行图形化,去除非开口区域的无机层,从而在各第一开口U1内形成 多个填充部241'。
在实际应用中,本公开实施例提供的上述显示面板中,上述透明填充层的透过率大于90%,采用高透过率的材料制作透明填充层,可以保证发光器件出射的光线能够穿过透明填充层,透明填充层不会影响显示面板的显示效果。当然,透明填充层的透过率也可以小于90%,可以根据实际需要进行设置,此处不做限定。
图5为图2的局部放大示意图,为了清楚的示意封装层的结构,图5中仅示意出封装层、反射结构层及透明填充层,省略了其他膜层。如图2和图5所示,封装层22可以包括:层叠设置的无机膜层221及有机膜层222,其中,无机膜层221可以起到阻隔水汽和氧气的作用,有机膜层222可以位于相邻的两层无机膜层221之间,可以起到释放应力及平坦化的作用。与反射结构层23'距离最近的无机膜层221中,该无机膜层221在第一开口U1位置处的厚度h1,小于该无机膜层221在反射结构层23'的图形位置处的厚度h2,即该无机膜层221在发光器件21的位置处的厚度h1较薄,这样,该无机膜层221对发光器件21出射的光线的影响较小,可以提高显示面板的光透过率。在实际工艺过程中,可以调整反射结构层23'的工艺参数,在对反射结构层23'进行刻蚀的过程中,可在第一开口U1的位置处发生过刻,以使该无机膜层221在发光器件21的位置处的厚度h1较薄。可选地,封装层22的总厚度可以在500nm~800nm的范围内,其中,封装层22在第一开口U1位置处的厚度可以在540nm左右,封装层22在反射结构层23'的图形位置处的厚度可以在610nm左右。
图5中为了清楚的示意与反射结构层23'距离最近的无机膜层221的结构,将该无机膜层221的厚度示意的较厚,在具体实施时,可以根据实际需要来设置封装层22中各无机膜层221的厚度,此处不做限定。并且,图5中以透明填充层24为上述方式一的结构为例进行示意,当透明填充层24为上述方式二的结构时,也可以将与反射结构层23'距离最近的无机膜层221设置为:该无机膜层221在第一开口U1位置处的厚度h1,小于该无机膜层221 在反射结构层23'的图形位置处的厚度h2。
在具体实施时,本公开实施例提供的上述显示面板中,如图2和图4所示,在衬底基板20指向反射结构层23'的方向上,第一开口U1在平行于衬底基板20的方向上的截面面积呈逐渐增大的趋势,也就是说,第一开口U1的侧壁为斜面,这样,可以使发光器件21出射的光线经第一开口U1的侧壁反射后射出,提高显示面板的出光效率。
如图2所示,本公开实施例提供的上述显示面板中,还可以包括:位于衬底基板20与封装层22之间的像素界定层25;
像素界定层25可以包括:与各发光器件21一一对应的多个第二开口U2;
反射结构层23'中的多个第一开口U1与各第二开口U2一一对应。
在本公开实施例中,显示面板可以包括多个子像素,像素界定层用于界定各子像素的区域,即第二开口U2的位置对应一个子像素。将反射结构层23'中的多个第一开口U1设置为与各第二开口U2一一对应,一方面,可以保证每一个发光器件21出射的光线可以穿过对应的第一开口U1,保证显示面板具有较好的显示效果,另一方面,可以使反射结构层23'的非开口区域的面积较大,使显示面板的镜面效果较好。
图6为本公开实施例中第一开口与第二开口的对应关系示意图,如图6中的(1)和(2),本公开实施例提供的显示面板中,第二开口U2在衬底基板上的正投影,位于对应的第一开口U1在衬底基板上的正投影的范围内,也就是说,反射结构层中的第一开口U1的尺寸大于对应的第二开口U2的尺寸,或者,反射结构层中的第一开口U1的尺寸与对应的第二开口U2的尺寸相当,这样,发光器件出射的光线不会被反射结构层遮挡,因而,反射结构层不会影响显示面板的开口率,显示面板的显示效果较好。
此外,如图6中的(3),也可以将第一开口U1在衬底基板上的正投影,设置为位于对应的第二开口U2在衬底基板上的正投影,也就是说,反射结构层中的第一开口U1的尺寸小于对应的第二开口U2的尺寸,这样,虽然反射结构层中各第一开口U1的边缘会遮挡发光器件出射的部分光线,但是可以提 高显示面板的反射率,即提高显示面板的镜面效果。
在具体实施时,可以将第一开口U1的形状设置为与第二开口U2的形状相同,例如图6中,第一开口U1与第二开口U2的形状均为六边形,在具体实施时,第一开口U1和第二开口U2也可以为其他形状,此处不做限定。
图7为反射结构层的开口率与显示面板的镜面反射率的对应关系示意图,如图7所示,曲线L1为设置反射结构层的显示面板对应的关系曲线,曲线L2为未设置反射结构层的显示面板对应的关系曲线。可以理解的是,反射结构层的开口率指的是,反射结构层中第一开口的面积与对应的子像素的总面积的比值。从图7可以看出,对于设置反射结构层的显示面板,随着反射结构层的开口率的增大,反射结构层中第一开口的总面积增大,反射结构层的非开口区域的总面积减小,因而显示面板的镜面反射率逐渐降低。对于未设置反射结构层的显示面板,显示面板的镜面反射率均较低。
在实际应用中,可以采用测试光源和亮度计来检测显示面板的镜面反射率,具体地,可以将测试光源和亮度计设置在显示面板的显示面一侧的设定位置,以使测试光源出射的光线射向显示面板的显示面,并经显示面板的显示面反射至亮度计,根据测试光源的出射光亮度及亮度计检测的亮度值,来确定显示面板的镜面反射率。在具体实施时,可以将显示面板的镜面反射率设置为大于50%,例如可以设置为在85%~97%之间,将显示面板的透过率设置在46%~81%之间,可以根据实际场景,即根据显示面板所需的镜面反射率的大小,来设置镜面反射层中第一开口的尺寸。
一般像素界定层的开口率可以在15%~30%的范围内,优选为20%~26%的范围内,例如,可以将像素界定层的开口率设置为21%左右,像素界定层的开口率可以理解为,像素界定层中第二开口的面积与对应的子像素的总面积的比值。像素界定层中第二开口的宽度可以设置在8μm~25μm的范围内,优选为10μm~20μm的范围内,例如第二开口的宽度可以设置为15μm左右,反射结构层中第一开口的宽度可以设置在7μm~23'μm的范围内。或者,可以将第一开口的面积与第二开口的面积的比值设置在0.38~1.89的范围内。
在实际应用中,如图2所示,为了驱动各发光器件21发光,上述显示面板还可以包括:薄膜晶体管TFT及电容结构(图中未示出)等部件,其中,薄膜晶体管TFT可以包括:有源层Ac、源极S、漏极D,以及栅极Ga,薄膜晶体管TFT的漏极D与第一电极211耦接。并且,为了使不同膜层的导电部件相互绝缘,上述显示面板还可以包括:位于有源层Ac与栅极Ga之间的第一栅极绝缘层GI1,位于栅极Ga与源极S之间的第二栅极绝缘层GI2及层间绝缘层ILD,位于源极S与第一电极211之间的平坦层PLN,以及位于有源层Ac与衬底基板20之间的缓冲层29。此外,显示面板还可以包括位于源极S与平坦层PLN之间的钝化层(图中未示出),以保护源极S及漏极D,防止源极S及漏极D被氧化。
图8为本公开实施例提供的显示面板的另一结构示意图,如图8所示,本公开实施例提供的上述显示面板中,还可以包括:形成于透明填充层24背离衬底基板20一侧的触控电极层26'。这样,可以使显示面板实现触控功能,且触控电极层26'与显示面板的显示面距离较近,显示面板的触控效果较好。在实际工艺过程中,可以将触控电极层26'直接形成在透明填充层24之上,通过构图工艺形成多个触控电极。此外,上述显示面板还可以包括:盖板28,以及位于盖板28与触控电极层26'之间的粘合层27。盖板28可以保护显示面板的内部结构,粘合层27可以将盖板28粘合在触控电极层26'的表面。
图9为本公开实施例提供的显示面板的俯视结构示意图,如图9所示,本公开实施例提供的上述显示面板中,触控电极层可以包括:由金属网格构成的多个触控电极261;
触控电极261在衬底基板上的正投影,位于像素界定层25的图形在衬底基板上的正投影的范围内,即触控电极261中的金属网格在衬底基板上的正投影,与像素界定层25中的各第二开口U2在衬底基板上的正投影互不交叠。
这样,触控电极不会遮挡发光器件出射的光线,不会影响显示面板的显示效果。
如图2所示,在另一些实施例中,上述显示面板,还可以包括:位于透 明填充层24背离衬底基板20一侧的触控模组26,以及位于触摸模组26与透明填充层24之间的粘合层27,例如,粘合层27可以为光学胶。在实际工艺过程中,可以将粘合层27贴附在透明填充层24的表面,然后,在粘合层27的表面贴附触控模组26,通过粘合层27可以将触控模组26粘合在透明填充层24的表面。在本公开实施例中,由于反射结构层23'中的第一开口U1内具有至少部分透明填充层24,因而,在透明填充层24之上形成的粘合层27不会出现褶皱或气泡等不良,显示面板的良率较高。
可选地,触控模组26可以包括多个触控电极,触控电极可以采用透明导电材料制作,例如可以采用氧化铟锡(Indium tin oxide,ITO)材料,这样,触控模组不会遮挡发光器件出射的光线,不会影响显示面板的显示效果。
此外,继续参照图2,本公开实施例提供的上述显示面板,还可以包括:盖板28,以及位于盖板28与触控模组26之间的粘合层27。盖板28可以保护显示面板的内部结构,粘合层27可以将盖板28粘合在触控模组26的表面。
图10为本公开实施例提供的显示面板的像素排布示意图,如图10所示,本公开实施例提供的上述显示面板可以包括:在第一方向F1和第二方向F2呈阵列排布的多个重复单元W;第一方向F1与第二方向F2相互交叉,例如第一方向F1与第二方向F2可以相互垂直;
重复单元W可以包括四个子像素,分别为:一个第一子像素P1、一个第二子像素P2,以及两个第三子像素P3;每一个子像素内设有一个发光器件;
在每一个重复单元W中,第一子像素P1与第二子像素P2沿第一方向F1延伸且沿第二方向F2排列,第三子像素P3位于第一子像素P1与第二子像素P2之间。可选地,第一子像素P1可以为蓝色子像素,第二子像素P2可以为红色子像素,第三子像素P3可以为绿色子像素,在具体实施时,可以根据实际需要对各子像素的颜色进行调整,此处不对各子像素的颜色进行限定。在实际应用中,同一重复单元W中的子像素可以对应一个显示像素,或者,不同重复单元W中的子像素可以对应一个显示像素,可以根据实际显示需要进行设置,此处不做限定。
可选地,在重复单元W内,第一子像素P1和第二子像素P2的形状可以为六边形,第三子像素P3的形状可以为五边形,或者,第一子像素P1、第二子像素P2及第三子像素P3也可以为其他形状,此处不做限定。本公开实施例中,上述像素界定层中的第二开口的形状可以与对应的子像素的形状一致,在具体实施时,可以根据子像素的形状,来设置对应的第二开口的形状。
在实际应用中,本公开实施例提供的上述显示面板中,上述反射结构层中的多个第一开口与各重复单元一一对应。这样,反射结构层不会遮挡重复单元内各子像素的出射光线,使显示面板的显示效果较好。
图11为本公开实施例提供的显示面板的另一结构示意图,如图11所示,本公开实施例提供的上述显示面板中,还可以包括:位于反射结构层23'与封装层22之间的透明保护层30。在制作过程中,透明保护层30可以保护下层膜层,避免对反射结构层23'进行图形化的过程中,损伤下层膜层,并且,发光器件21出射的光线可以穿过透明保护层30,不会影响显示面板的显示效果。在具体实施时,在显示面板的边缘处,透明保护层的边缘可以超出封装层及反射结构层的边缘,以对下层膜层进行有效的保护。
一般在显示面板的边缘设有绑定区域,绑定区域内设有多个焊盘,可以通过焊盘与柔性电路板、集成芯片等器件绑定连接,以实现显示面板与柔性电路板或集成芯片等器件之间的信号传输。并且,显示面板还包括:多条信号引线,焊盘可以通过信号引线与发光器件或触控电极耦接。然而,在显示面板的边缘处,部分信号引线没有被封装层覆盖,这部分信号引线之上仅设有绝缘薄膜,因而,在反射结构层的图形化过程中,存在损伤这部分信号引线的风险。本公开实施例中,透明保护层可以覆盖信号引线,并露出焊盘,以对信号引线进行保护,防止反射结构层图形化的过程中,发生过刻而损伤信号引线。
可选地,透明保护层30可以采用氮化硅SiNx、氧化硅SiOx或SiNx/SiOx的复合材料制作,或者,透明保护层30也可以采用其他透明材料制作,此处不做限定。透明保护层30的厚度可以设置在0.2μm~0.4μm的范围内,或者, 透明保护层30的厚度也可以设置在其他范围内,此处不做限定。
由于反射结构层通常采用高反射率的金属材料制作,因而,在对显示面板进行生产、组装、测试或搬运过程中,显示面板内的反射结构层容易产生并积累静电,这样容易出现静电放电的现象,进而容易对显示面板的内部结构(例如发光器件或驱动电路等)造成损伤,影响显示面板的正常使用。基于此,本公开实施例提供的显示面板中设置了静电防护部,以对反射结构层中的静电进行释放,以下结合附图进行详细说明。
图12为本公开实施例提供的显示面板的俯视结构示意图,如图12所示,本公开实施例提供的上述显示面板中,还可以包括:位于衬底基板20之上且与反射结构层23'耦接的至少一个静电防护部40;
静电防护部40被配置为对反射结构层23'中的静电进行释放;
显示面板分为显示区域A及周边区域B;反射结构层23'位于显示区域A内,静电防护部40位于周边区域B内。
本公开实施例中,通过在衬底基板20之上设置与反射结构层23'耦接的至少一个静电防护部40,静电防护部40可以对反射结构层23'中的静电进行释放,从而,可以避免反射结构层23'中产生静电积累,进而,可以避免出现静电放电现象,防止静电放电过程对显示面板的内部结构造成损伤。并且,将静电防护部40设置在周边区域B内,静电防护部40不会占用显示面板的显示区域A的面积,使得显示面板具有较大的屏占比。此外,反射结构层23'设置在显示区域A内,可以使显示面板的镜面效果较好,当然,反射结构层23'的边缘也可以稍微超出显示区域A,此处不做限定。
在本公开实施例中,上述静电防护部可以具有多种实现方式,以下结合附图进行详细说明。
实现方式一:
在一些实施例中,如图12所示,本公开实施例提供的上述显示面板中,静电防护部40可以包括:导电连接部401;
周边区域B内设有固定电压信号端411,导电连接部401与固定电压信号 端411耦接。
这样,导电连接部401可以将反射结构层23'产生的静电传输至固定电压信号端411,以将反射结构层23'中的静电导走。
此外,同样参照图12,上述显示面板还可以包括:位于衬底基板20之上的固定电压信号线41,例如固定电压信号线41可以为低电位电压信号线。固定电压信号线41可以围绕显示区域A,或者,固定电压信号线41可以位于显示区域A的一侧,导电连接部401与固定电压信号线41耦接。这样,导电连接部401可以将反射结构层23'产生的静电传输至固定电压信号线41,以将反射结构层23'中的静电导走。
在具体实施时,周边区域B包括绑定区域B1,绑定区域B1绑定区域内设有多个焊盘42,焊盘42用于与柔性电路板、集成芯片等器件绑定连接。上述导电连接部401可以设置在绑定区域B1内。
可选地,本公开实施例提供的上述显示面板中,继续参照图12,反射结构层23'可以包括:金属材料,导电连接部401与反射结构层23'为一体结构,也就是说,反射结构层23'与导电连接部401的图形是连续的,反射结构层23'与导电连接部401无需采用搭接方式或其他方式耦接,因而,反射结构层23'与导电连接部401的连接效果较好。并且,在制作过程中,可以采用同一次构图工艺制作反射结构层23'和导电连接部401,降低制作成本。
实现方式二:
图13为本公开实施例提供的显示面板的另一俯视结构示意图,图14为本公开实施例中静电防护部的结构示意图,如图13和图14所示,在另一些实施例中,本公开实施例提供的上述显示面板中,还可以包括:第一电压信号端K1,以及第二电压信号端K2,可选地,第一电压信号端K1和第二电压信号端K2可以设置在周边区域B内。其中,第一电压信号端K1用于传输第一电压信号,第二电压信号端K2用于传输第二电压信号,第一电压信号的电压高于第二电压信号的电压;或者,第一电压信号的电压低于第二电压信号的电压,在本公开实施例中,均以第一电压信号的电压高于第二电压信号的 电压为例进行说明,并以VGH表示第一电压信号,以VGL表示第二电压信号;
如图14中的(1),上述静电防护部40可以包括:第一晶体管TFT1,以及第二晶体管TFT2,第一晶体管TFT1和第二晶体管TFT2可以为P型晶体管也可以为N型晶体管,在本公开实施例中以第一晶体管TFT1和第二晶体管TFT2均为P型晶体管为例进行说明。
第一晶体管TFT1的控制端Ga1与第一端S1耦接,第一晶体管TFT1的第一端S1与第一电压信号端K1耦接,第一晶体管TFT1的第二端D1与第二晶体管TFT2的第一端S2耦接;
第二晶体管TFT2的控制端Ga2与第一端S2耦接,第二晶体管TFT2的第二端D2与第二电压信号端K2耦接;
反射结构层23'与第一晶体管TFT1的第二端D1耦接。
如图14中的(2),第一晶体管TFT1的控制端Ga1与第一端S1耦接,可以将第一晶体管TFT1等效为二极管,即第一二极管,第一晶体管TFT1的控制端Ga1和第一端S1共同等效为第一二极管的阴极,第一晶体管TFT1的第二端D1等效为第一二极管的阳极。第二晶体管TFT2的控制端Ga2与第一端S2耦接,可以将第二晶体管TFT2等效为二极管,即第二二极管,第二晶体管TFT2的控制端Ga2和第一端S2共同等效为第二二极管的阴极,第二晶体管TFT2的第二端D2等效为第二二极管的阳极。
在具体实施时,反射结构层23'中产生的静电可能是正静电,也可能是负静电。当反射结构层23'中产生的静电为正静电,且静电层23'中产生的静电的电压高于第一电压信号VGH的电压时,此时,第一晶体管TFT1导通,第二晶体管TFT2截止,第一晶体管TFT1将静电传输至第一电压信号端K1。当反射结构层23'中产生的静电为负静电,且静电层23'中产生的静电的电压低于第二电压信号VGL的电压时,第一晶体管TFT1截止,第二晶体管TFT2导通,第二晶体管TFT2将静电传输至第二电压信号端K2。这样,无论反射结构层23'中产生的静电为正静电还是负静电,静电防护部40均可以将静电 释放,防止静电放电损伤显示面板的内部结构。
在实际应用中,本公开实施例提供的上述显示面板中,如图13所示,显示面板包括多个静电防护部40,各静电防护部40均匀分布于反射结构层23'的四周。例如,图13中,显示区域A为矩形,显示面板包括四个静电防护部40,各静电防护部40分别位于显示区域A的四个角对应的位置处。此外,显示面板中的静电防护部40也可以为其他数量,并且,可以根据实际情况,设置各静电防护部40的分布情况,此处不做限定。
实现方式三:
图15为本公开实施例提供的显示面板的另一俯视结构示意图,如图15所示,本公开实施例中,还可以将上述实现方式一与实现方式二进行结合,也就是说,可以在周边区域B内设置与反射结构层23'耦接的导电连接部401,并且,在周边区域B内设置与第一电压端K1、第二电压端K2耦接的静电防护部40,在具体实施时,可以根据实际需要进行设置,此处不再一一举例。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括上述显示面板,该显示装置可以应用于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。由于该显示装置解决问题的原理与上述显示面板相似,因此该显示装置的实施可以参见上述显示面板的实施,重复之处不再赘述。
本公开实施例提供的显示面板及显示装置,通过在封装层背离衬底基板的一侧设置透明填充层,可以将镜面层中的第一开口填平,消除镜面层中第一开口与非开口区域之间的段差,使显示面板的表面比较平整,因而,后续在镜面层之上贴附粘合层(例如光学胶)及盖板等膜层时,显示面板表面的膜层(例如粘合层)不容易出现褶皱或气泡等不良,提高了显示面板的显示良率。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (40)

  1. 一种显示面板,其中,包括:
    衬底基板;
    多个发光器件,位于所述衬底基板之上;
    封装层,覆盖各所述发光器件;
    镜面层,位于所述封装层背离所述衬底基板的一侧;所述镜面层包括:多个第一开口;所述第一开口在所述衬底基板上的正投影与至少一个所述发光器件在所述衬底基板上的正投影具有交叠区域;
    透明填充层,位于所述封装层背离所述衬底基板的一侧;
    所述镜面层中的所述第一开口内具有至少部分所述透明填充层。
  2. 如权利要求1所述的显示面板,其中,所述透明填充层包括:第一透明填充层和第二透明填充层,所述第二透明填充层位于所述镜面层背离所述衬底基板的一侧;
    所述第一透明填充层包括:多个分立设置的填充部;
    部分所述填充部位于所述第一开口内,且所述填充部背离所述衬底基板一侧的表面,与所述第二透明填充层背离所述衬底基板一侧的表面大致平齐。
  3. 如权利要求2所述的显示面板,其中,所述透明填充层包括:有机材料。
  4. 如权利要求1所述的显示面板,其中,所述透明填充层包括:多个分立设置的填充部;
    所述填充部位于所述第一开口内,且所述填充部背离所述衬底基板一侧的表面与所述镜面层背离所述衬底基板一侧的表面大致平齐。
  5. 如权利要求4所述的显示面板,其中,所述填充部包括:无机材料。
  6. 如权利要求1所述的显示面板,其中,所述透明填充层的透过率大于90%。
  7. 如权利要求1~6任一项所述的显示面板,其中,所述封装层包括:层 叠设置的无机膜层及有机膜层;
    所述有机膜层位于相邻的两层所述无机膜层之间;
    与所述镜面层距离最近的所述无机膜层中,该无机膜层在所述第一开口位置处的厚度,小于该无机膜层在所述镜面层的图形位置处的厚度。
  8. 如权利要求1~7任一项所述的显示面板,其中,在所述衬底基板指向所述镜面层的方向上,所述第一开口在平行于所述衬底基板的方向上的截面面积呈逐渐增大的趋势。
  9. 如权利要求1~8任一项所述的显示面板,其中,还包括:位于所述衬底基板与所述封装层之间的像素界定层;
    所述像素界定层包括:与各所述发光器件一一对应的多个第二开口;
    所述镜面层中的多个所述第一开口与各所述第二开口一一对应。
  10. 如权利要求9所述的显示面板,其中,所述第二开口在所述衬底基板上的正投影,位于对应的所述第一开口在所述衬底基板上的正投影的范围内。
  11. 如权利要求9所述的显示面板,其中,还包括:形成于所述透明填充层背离所述衬底基板一侧的触控电极层。
  12. 如权利要求11所述的显示面板,其中,所述触控电极层包括:由金属网格构成的多个触控电极;
    所述触控电极在所述衬底基板上的正投影,位于所述像素界定层的图形在所述衬底基板上的正投影的范围内。
  13. 如权利要求1~12任一项所述的显示面板,其中,还包括:位于所述透明填充层背离所述衬底基板一侧的触控模组,以及位于所述触摸模组与所述透明填充层之间的粘合层。
  14. 如权利要求1~13任一项所述的显示面板,其中,所述显示面板包括:在第一方向和第二方向呈阵列排布的多个重复单元;所述第一方向与所述第二方向相互交叉;
    所述重复单元包括四个子像素,分别为:一个第一子像素、一个第二子 像素,以及两个第三子像素;每一个所述子像素内设有一个所述发光器件;
    在每一个所述重复单元中,所述第一子像素与所述第二子像素沿所述第一方向延伸且沿所述第二方向排列,所述第三子像素位于所述第一子像素与所述第二子像素之间。
  15. 如权利要求14所述的显示面板,其中,所述镜面层中的多个所述第一开口与各所述重复单元一一对应。
  16. 如权利要求1~15任一项所述的显示面板,其中,还包括:位于所述镜面层与所述封装层之间的透明保护层。
  17. 如权利要求1~16任一项所述的显示面板,其中,还包括:位于所述衬底基板之上且与所述镜面层耦接的至少一个静电防护部;
    所述静电防护部被配置为对所述镜面层中的静电进行释放;
    所述显示面板分为显示区域及周边区域;所述镜面层位于所述显示区域内,所述静电防护部位于所述周边区域内。
  18. 如权利要求17所述的显示面板,其中,所述静电防护部包括:导电连接部;
    所述周边区域内设有固定电压信号端,所述导电连接部与所述固定电压信号端耦接。
  19. 如权利要求18所述的显示面板,其中,还包括:位于所述衬底基板之上的固定电压信号线;
    所述导电连接部与所述固定电压信号线耦接。
  20. 如权利要求18所述的显示面板,其中,所述镜面层包括:金属材料;
    所述导电连接部与所述镜面层为一体结构。
  21. 如权利要求17所述的显示面板,其中,还包括:第一电压信号端,以及第二电压信号端;
    所述静电防护部包括:第一晶体管,以及第二晶体管;
    所述第一晶体管的控制端与第一端耦接,所述第一晶体管的第一端与所述第一电压信号端耦接,所述第一晶体管的第二端与所述第二晶体管的第一 端耦接;
    所述第二晶体管的控制端与第一端耦接,所述第二晶体管的第二端与所述第二电压信号端耦接;
    所述镜面层与所述第一晶体管的第二端耦接。
  22. 如权利要求21所述的显示面板,其中,所述显示面板包括多个所述静电防护部,各所述静电防护部均匀分布于所述镜面层的四周。
  23. 一种显示面板,其中,包括:
    衬底基板;
    多个发光器件,位于所述衬底基板之上;
    封装层,覆盖各所述发光器件;
    反射结构层,位于所述封装层背离所述衬底基板的一侧;所述反射结构层包括:多个第一开口;所述第一开口在所述衬底基板上的正投影与至少一个所述发光器件在所述衬底基板上的正投影具有交叠区域;
    透明填充层,位于所述封装层背离所述衬底基板的一侧;
    所述反射结构层中的所述第一开口内具有至少部分所述透明填充层。
  24. 如权利要求23所述的显示面板,其中,所述透明填充层包括:第一透明填充层和第二透明填充层,所述第二透明填充层位于所述反射结构层背离所述衬底基板的一侧;
    所述第一透明填充层包括:多个分立设置的填充部;
    部分所述填充部位于所述第一开口内,且所述填充部背离所述衬底基板一侧的表面,与所述第二透明填充层背离所述衬底基板一侧的表面大致平齐。
  25. 如权利要求24所述的显示面板,其中,所述透明填充层包括:有机材料。
  26. 如权利要求23所述的显示面板,其中,所述透明填充层包括:多个分立设置的填充部;
    所述填充部位于所述第一开口内,且所述填充部背离所述衬底基板一侧的表面与所述反射结构层背离所述衬底基板一侧的表面大致平齐。
  27. 如权利要求26所述的显示面板,其中,所述填充部包括:无机材料。
  28. 如权利要求23所述的显示面板,其中,所述透明填充层的透过率大于90%。
  29. 如权利要求23~28任一项所述的显示面板,其中,所述封装层包括:层叠设置的无机膜层及有机膜层;
    所述有机膜层位于相邻的两层所述无机膜层之间;
    与所述反射结构层距离最近的所述无机膜层中,该无机膜层在所述第一开口位置处的厚度,小于该无机膜层在所述反射结构层的图形位置处的厚度。
  30. 如权利要求23~29任一项所述的显示面板,其中,在所述衬底基板指向所述反射结构层的方向上,所述第一开口在平行于所述衬底基板的方向上的截面面积呈逐渐增大的趋势。
  31. 如权利要求23~30任一项所述的显示面板,其中,还包括:位于所述衬底基板与所述封装层之间的像素界定层;
    所述像素界定层包括:与各所述发光器件一一对应的多个第二开口;
    所述反射结构层中的多个所述第一开口与各所述第二开口一一对应。
  32. 如权利要求31所述的显示面板,其中,所述第二开口在所述衬底基板上的正投影,位于对应的所述第一开口在所述衬底基板上的正投影的范围内。
  33. 如权利要求23~32任一项所述的显示面板,其中,还包括:位于所述反射结构层与所述封装层之间的透明保护层。
  34. 如权利要求23~33任一项所述的显示面板,其中,还包括:位于所述衬底基板之上且与所述反射结构层耦接的至少一个静电防护部;
    所述静电防护部被配置为对所述反射结构层中的静电进行释放;
    所述显示面板分为显示区域及周边区域;所述反射结构层位于所述显示区域内,所述静电防护部位于所述周边区域内。
  35. 如权利要求34所述的显示面板,其中,所述静电防护部包括:导电连接部;
    所述周边区域内设有固定电压信号端,所述导电连接部与所述固定电压信号端耦接。
  36. 如权利要求35所述的显示面板,其中,还包括:位于所述衬底基板之上的固定电压信号线;
    所述导电连接部与所述固定电压信号线耦接。
  37. 如权利要求35所述的显示面板,其中,所述反射结构层包括:金属材料;
    所述导电连接部与所述反射结构层为一体结构。
  38. 如权利要求34所述的显示面板,其中,还包括:第一电压信号端,以及第二电压信号端;
    所述静电防护部包括:第一晶体管,以及第二晶体管;
    所述第一晶体管的控制端与第一端耦接,所述第一晶体管的第一端与所述第一电压信号端耦接,所述第一晶体管的第二端与所述第二晶体管的第一端耦接;
    所述第二晶体管的控制端与第一端耦接,所述第二晶体管的第二端与所述第二电压信号端耦接;
    所述反射结构层与所述第一晶体管的第二端耦接。
  39. 如权利要求38所述的显示面板,其中,所述显示面板包括多个所述静电防护部,各所述静电防护部均匀分布于所述反射结构层的四周。
  40. 一种显示装置,其中,包括:如权利要求1~22任一项所述的显示面板;或者,如权利要求23~39任一项所述的显示面板。
PCT/CN2021/080865 2020-05-28 2021-03-15 显示面板及显示装置 WO2021238343A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/922,406 US20230200188A1 (en) 2020-05-28 2021-03-15 Display panel and display device
EP21812847.8A EP4131407A4 (en) 2020-05-28 2021-03-15 DISPLAY BOARD AND DISPLAY DEVICE
CN202180000479.7A CN114026698B (zh) 2020-05-28 2021-03-15 显示面板及显示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010466036.4A CN111584603B (zh) 2020-05-28 2020-05-28 显示基板及其制备方法、显示装置
CN202010466036.4 2020-05-28
CN202011062894.9A CN112186019B (zh) 2020-09-30 2020-09-30 显示面板及显示装置
CN202011062894.9 2020-09-30

Publications (1)

Publication Number Publication Date
WO2021238343A1 true WO2021238343A1 (zh) 2021-12-02

Family

ID=78722967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080865 WO2021238343A1 (zh) 2020-05-28 2021-03-15 显示面板及显示装置

Country Status (4)

Country Link
US (1) US20230200188A1 (zh)
EP (1) EP4131407A4 (zh)
CN (1) CN114026698B (zh)
WO (1) WO2021238343A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335394A (zh) * 2022-01-04 2022-04-12 京东方科技集团股份有限公司 显示基板和显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115171533B (zh) * 2022-06-29 2024-02-20 昆山国显光电有限公司 盖板、可折叠显示模组以及显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153969A (zh) * 2006-09-30 2008-04-02 中芯国际集成电路制造(上海)有限公司 硅基液晶显示装置反射镜面的制作方法
CN101196658A (zh) * 2006-12-08 2008-06-11 中芯国际集成电路制造(上海)有限公司 硅基液晶显示装置反射镜面的制作方法
US9245936B2 (en) * 2012-11-19 2016-01-26 Samsung Display Co., Ltd. Multi-display apparatus
CN106444135A (zh) * 2016-09-28 2017-02-22 上海天马微电子有限公司 一种显示屏、显示装置以及显示屏制备方法
CN107026245A (zh) * 2016-02-02 2017-08-08 三星显示有限公司 有机发光显示装置
CN108319090A (zh) * 2017-12-25 2018-07-24 友达光电股份有限公司 镜面显示模块
CN110838559A (zh) * 2019-11-26 2020-02-25 京东方科技集团股份有限公司 显示装置、显示面板及其制造方法
CN111584603A (zh) * 2020-05-28 2020-08-25 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN112186019A (zh) * 2020-09-30 2021-01-05 京东方科技集团股份有限公司 显示面板及显示装置
CN112216732A (zh) * 2020-10-13 2021-01-12 京东方科技集团股份有限公司 一种显示面板及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102369498B1 (ko) * 2015-09-07 2022-03-04 삼성디스플레이 주식회사 미러 표시 장치 및 이의 제조 방법
KR102426425B1 (ko) * 2015-10-07 2022-07-29 삼성디스플레이 주식회사 유기 발광 표시 장치
CN107123664B (zh) * 2017-04-14 2019-11-08 上海天马有机发光显示技术有限公司 一种显示面板及显示装置
US10955709B2 (en) * 2017-09-29 2021-03-23 Sharp Kabushiki Kaisha Display device
CN110828695A (zh) * 2019-11-19 2020-02-21 京东方科技集团股份有限公司 镜面阵列基板及其制备方法、镜面显示面板和显示装置
CN110838509A (zh) * 2019-11-20 2020-02-25 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153969A (zh) * 2006-09-30 2008-04-02 中芯国际集成电路制造(上海)有限公司 硅基液晶显示装置反射镜面的制作方法
CN101196658A (zh) * 2006-12-08 2008-06-11 中芯国际集成电路制造(上海)有限公司 硅基液晶显示装置反射镜面的制作方法
US9245936B2 (en) * 2012-11-19 2016-01-26 Samsung Display Co., Ltd. Multi-display apparatus
CN107026245A (zh) * 2016-02-02 2017-08-08 三星显示有限公司 有机发光显示装置
CN106444135A (zh) * 2016-09-28 2017-02-22 上海天马微电子有限公司 一种显示屏、显示装置以及显示屏制备方法
CN108319090A (zh) * 2017-12-25 2018-07-24 友达光电股份有限公司 镜面显示模块
CN110838559A (zh) * 2019-11-26 2020-02-25 京东方科技集团股份有限公司 显示装置、显示面板及其制造方法
CN111584603A (zh) * 2020-05-28 2020-08-25 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN112186019A (zh) * 2020-09-30 2021-01-05 京东方科技集团股份有限公司 显示面板及显示装置
CN112216732A (zh) * 2020-10-13 2021-01-12 京东方科技集团股份有限公司 一种显示面板及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131407A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335394A (zh) * 2022-01-04 2022-04-12 京东方科技集团股份有限公司 显示基板和显示装置
CN114335394B (zh) * 2022-01-04 2023-11-07 京东方科技集团股份有限公司 显示基板和显示装置

Also Published As

Publication number Publication date
CN114026698A (zh) 2022-02-08
EP4131407A4 (en) 2023-09-27
US20230200188A1 (en) 2023-06-22
CN114026698B (zh) 2023-05-26
EP4131407A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
TWI655798B (zh) 顯示裝置及其製造方法
KR102662278B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
TW202245251A (zh) 有機發光二極體裝置
JP2019087267A (ja) 表示装置
WO2022028183A1 (zh) 显示基板及其制备方法、显示装置
WO2020199083A1 (zh) 显示基板及其制作方法和显示装置
WO2021238343A1 (zh) 显示面板及显示装置
WO2022017020A1 (zh) 一种显示装置及其制作方法
CN110767841A (zh) 一种显示基板及其制备方法、显示装置
WO2020056865A1 (zh) 显示面板及显示装置
KR102436562B1 (ko) 터치 센서를 가지는 유기 발광 표시 장치
WO2020015085A1 (zh) 一种柔性显示面板及柔性显示装置
JP2023524325A (ja) 表示基板及び表示装置
JP2021033257A (ja) 表示装置及びこの製造方法
CN215933642U (zh) 显示基板、显示面板和显示装置
WO2018214628A1 (zh) 阵列基板、其制作方法、液晶显示面板及显示装置
WO2024017343A1 (zh) 显示面板及其制作方法、显示装置
CN114023906B (zh) 显示面板、显示装置、待切割基板的制作方法
KR102122528B1 (ko) 플렉서블 유기발광다이오드 표시장치 및 그 제조방법
CN1332253C (zh) 半穿透半反射式液晶显示面板及其像素结构与制造方法
WO2023005595A1 (zh) 显示基板及其制备方法、显示面板和显示装置
US20220093897A1 (en) Display device
WO2023245447A1 (zh) 显示面板及显示装置
CN220755385U (zh) 显示面板和显示装置
US20240105897A1 (en) Display device, method of manufacturing the same and tiled display device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021812847

Country of ref document: EP

Effective date: 20221028

NENP Non-entry into the national phase

Ref country code: DE