WO2020056935A1 - 用于乙肝病毒感染的原代肝细胞来源的肝前体样细胞模型、制备方法及应用 - Google Patents

用于乙肝病毒感染的原代肝细胞来源的肝前体样细胞模型、制备方法及应用 Download PDF

Info

Publication number
WO2020056935A1
WO2020056935A1 PCT/CN2018/120207 CN2018120207W WO2020056935A1 WO 2020056935 A1 WO2020056935 A1 WO 2020056935A1 CN 2018120207 W CN2018120207 W CN 2018120207W WO 2020056935 A1 WO2020056935 A1 WO 2020056935A1
Authority
WO
WIPO (PCT)
Prior art keywords
liver
cell
medium
hbv
cells
Prior art date
Application number
PCT/CN2018/120207
Other languages
English (en)
French (fr)
Inventor
鄢和新
曾敏
傅恭博
周徐
黄伟健
吴红平
王红阳
Original Assignee
中国人民解放军第二军医大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军第二军医大学 filed Critical 中国人民解放军第二军医大学
Publication of WO2020056935A1 publication Critical patent/WO2020056935A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/12Hepatocyte growth factor [HGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/237Oncostatin M [OSM]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/405Cell cycle regulated proteins, e.g. cyclins, cyclin-dependant kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/73Hydrolases (EC 3.)
    • C12N2501/734Proteases (EC 3.4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Definitions

  • the invention relates to the technical field of cell transformation, in particular to a human primary liver cell-derived hepatocyte-derived liver progenitor-like cells (HepLPCs), and particularly relates to the use of the cells for three-dimensional culture in vitro for B
  • HepLPCs human primary liver cell-derived hepatocyte-derived liver progenitor-like cells
  • the research and preparation method of hepatitis B virus (HBV) infection belongs to the field of hepatitis B virus infection cell model in life science and medicine.
  • Viral hepatitis B (hepatitis B) is an infectious disease mainly caused by liver disease caused by HBV. It is a global public health problem and one of the important infectious diseases in China. Because the life cycle of HBV is more complicated, a clear understanding of HBV infection and replication rules is of great significance for the prevention and treatment of hepatitis B virus. In-depth medical research on the HBV life cycle depends on good cell infection models.
  • the cells that can be used for HBV research are mainly human or tree shrew primary liver cells and a few human liver cancer cell lines.
  • Human or tree shrew primary liver cells are sensitive to HBV, but the source is scarce, the isolation and culture conditions are high, and it is difficult to maintain the culture in vitro for a long time.
  • Human liver cancer cell lines are not sensitive to HBV in the natural state.
  • scientists have found that some human liver cancer cell lines can be over-expressed NTCP (HepG2-NTCP) or long-term small molecule liver differentiation (HepRG, 20-30 days liver differentiation) ) Conditions to achieve HBV infection.
  • the above two conditions have the disadvantages of exogenous gene introduction and high time cost, respectively.
  • the human liver cancer cell line has a single genetic background and cannot simulate the heterogeneity of HBV infected cells.
  • the purpose of the present invention is to provide a human liver cell-derived hepatic precursor-like cell model for the study of hepatitis B virus infection, a method for establishing the same, and a method for preparing a cell model of hepatitis B virus application.
  • Another object of the present invention is to provide a HBV infection cell model, a preparation method thereof, and use of the HBV infection cell model in the preparation of anti-HBV drugs.
  • a hepatic precursor-like cell model is provided.
  • the hepatic precursor-like cell model is composed of three-dimensionally differentiated functional hepatic cells (Three-dimensionally differentiated HepLPCs, 3D-HepLPCs-Hep).
  • Differentiated functional hepatocytes are obtained from three-dimensional culture and hepatic mature culture of hepatic precursor-like cells (HepLPCs) obtained from human primary hepatocytes (PHCs) transformed in vitro.
  • a method for preparing the liver precursor-like cell model including the following steps:
  • Human primary hepatocytes were inoculated into collagen I or Matrigel-coated culture supports (culture dishes or plates), and adhered to the WE-culture medium containing serum, and then replaced with hepatocyte transformation and proliferation medium ( Transition and Expansion Medium (TEM), after a certain period of induction culture, transform human primary hepatocytes into hepatic precursor-like cells (HepLPCs) that can be expanded and passaged in vitro.
  • TEM Transition and Expansion Medium
  • Hepatocytes proliferating liver precursor-like cells obtained in step A are digested into single cells in trypsin TrypLE Express, resuspended in a mixed medium, and inoculated into a low-adhesion cell culture support for a period of time Hepatocyte spheres are formed afterwards; then the medium is changed to Hepatic Medium (HMM), which is further matured for a certain period of time to obtain three-dimensionally differentiated functional hepatocytes.
  • HMM Hepatic Medium
  • the mixed culture medium is prepared by mixing a hepatocyte transformation and proliferation medium and a hepatocyte differentiation medium at a volume ratio of 1: 1.
  • the liver cell differentiation medium includes two parts: a basal support and a small molecule supplement.
  • the basal support is a DMEM / F12 medium supplemented with an N2 additive and a B27 additive.
  • the small molecule supplement is composed of 7 to 15 ⁇ mol / L ⁇ secretase inhibitor DAPT, 17-23 ng / mL onostatin OSM, 7-15 ⁇ mol / L dexamethasone, and 7-15 ⁇ mol / L ATP competitive ALK5 inhibitor SB431542.
  • the human primary hepatocytes used in the present invention can be purchased through commercial channels. For example, they can be purchased from Invitrogen, or they can be separated by the classic two-step perfusion method. Please refer to the literature (Maurel P., Hepatocytes-Methods and Protocols, METHODS IN MOLECULAR BIOLOGY, ISSN 1064-3745).
  • the volume percentage of the serum in the WE medium is 8% to 12%.
  • the cell morphology changed in 3 to 5 days.
  • the cells were elongated and there could be many outwardly extending protrusions, and the nucleus volume increased; the cells showed typical epithelial cell morphology in 5 to 7 days. And began to proliferate rapidly; cells can be passaged and continue to proliferate in 7-10 days.
  • the liver cell transformation and proliferation medium includes two parts, a basic support and a small molecule supplement.
  • the basic support is a modified DMEM / F12 medium, and the modified DMEM / F12 medium is supplemented with N2 additive, B27 additive, 0.5 ⁇ 1.5mmol / L sodium pyruvate and 5 ⁇ 50 ⁇ g / mL ascorbic acid vitamin C; small molecule additives include 5-25ng / mL hepatocyte growth factor HGF, 5-25ng / mL epidermal cell growth factor EGF, 5 ⁇ 20 ⁇ mol / L ROCK kinase inhibitor Y27632, 1 ⁇ 5 ⁇ mol / L Wnt signaling pathway agonist CHIR99021, 0.5 ⁇ 2 ⁇ mol / L TGF- ⁇ signal inhibitor A83-01, 0.5 ⁇ 2 ⁇ mol / L sphingosine monophosphate S1P, and 2 ⁇ 10 ⁇ mol / L Composition of indole acetate LPA.
  • the components of the TEM medium used for the induction culture of liver precursor-like cells in step A and the three-dimensional culture of liver precursor-like cells in step B and the small-molecule additives in the mature HMM medium for liver are The inventors obtained through experimental screening that the components that are essential for the induction culture of hepatic precursor-like cells and the three-dimensional transformation of hepatic precursor-like cells, respectively, can not achieve the corresponding function without any of them, in order to minimize Cell culture costs.
  • the component content of the two small molecule additives it should be fluctuated within the small range shown above, and the fluctuation range is too large, which can easily lead to situations where it cannot play a corresponding role or produce toxic and side effects on cells.
  • Hepatocyte differentiation medium includes two parts, a basic support and a small molecule supplement.
  • the basic support is a DMEM / F12 medium supplemented with N2 and B27 additives; the small molecule supplement consists of 10 ⁇ mol / L gamma secretase inhibitor.
  • DAPT 20 ng / mL oncostatin OSM, 10 ⁇ mol / L dexamethasone and 10 ⁇ mol / L ATP competitive ALK5 inhibitor SB431542.
  • Hepatocyte transformation and proliferation medium includes two parts, a basic support and a small molecule supplement.
  • the basic support is a modified DMEM / F12 medium, which is supplemented with N2 additives, B27 additives, 1mmol / L sodium pyruvate and 10 ⁇ g / mL ascorbic acid vitamin C; small molecule additives include 20ng / mL hepatocyte growth factor HGF, 20ng / mL epidermal cell growth factor EGF, 10 ⁇ mol / L ROCK kinase inhibitor Y27632, 3 ⁇ mol / L Wnt Signal pathway agonist CHIR99021, 1 ⁇ mol / L TGF- ⁇ signal inhibitor A83-01, 1 ⁇ mol / L sphingosine monophosphate S1P, and 5 ⁇ mol / L indole acetate LPA.
  • the adherent human primary hepatocytes are induced and cultured in a hepatocyte transformation and proliferation medium for 7 to 14 days to obtain hepatic precursor-like cells, and the fluid is changed every other day during the culture process.
  • a single cell is seeded into a low-adhesion cell culture support to form a hepatocyte sphere after 48 hours, and a three-dimensionally differentiated functional hepatocyte is obtained after 8 to 10 days of culture in a hepatocyte differentiation medium. Change fluids daily during the procedure.
  • TRIzol reagent was used to extract total RNA from six different donor-derived primary hepatocytes (PHCs), liver precursor-like cells (HepLPCs), and three-dimensionally differentiated functional hepatocytes (3D-HepLPCs-Hep).
  • PLCs donor-derived primary hepatocytes
  • HepLPCs liver precursor-like cells
  • 3D-HepLPCs-Hep three-dimensionally differentiated functional hepatocytes
  • the third aspect of the present invention provides the application of a liver precursor-like cell model in the preparation of a HBV-infected cell model.
  • a cell model of hepatitis B virus infection is provided.
  • the model is a co-culture of a liver precursor-like cell model and HBV virus, which is derived from the serum of a hepatitis B patient or a HepG2.2.15 cell culture supernatant.
  • the concentrated solution has a multiplicity of infection of 300 to 350, preferably 300.
  • a method for preparing a HBV-infected cell model comprises the following steps: A. Co-existing a liver precursor-like cell model with a serum of a hepatitis B patient or a HepG2.2.15 cell culture supernatant concentrate Cultured in hepatocyte transformation and proliferation medium supplemented with 1% dimethyl sulfoxide and 4% polyethylene glycol 8000; B. After 24 hours of infection, wash the medium with three to four Then, the solution was changed every 24 hours, and the supernatant was collected and stored in -80 ° C for future use.
  • HBV-DNA virus titers in the supernatant collected at different time points were detected, and the HBeAg and HBsAg secreted in the supernatant were detected.
  • Southern blot was used to detect the presence of cccDNA in the cells to determine whether the cells were infected with HBV.
  • 3D-HepLPCs-Hep (differentiated for 10 days) could be infected with HBV, and with time, HBV-DNA, HBsAg and HBeAg in the supernatant gradually increased and stabilized.
  • This process can be reverse transcription inhibitors Entecavir (ETV) or NTCP competitive inhibitor taurodeoxycholic acid (TUDC) blocks.
  • ETV Entecavir
  • TUDC NTCP competitive inhibitor taurodeoxycholic acid
  • 3D-HepLPCs-Hep can be infected with HBV secreted by serum HBV or HepG2.2.15 cells of HBV patients in vitro, and can be used to explore HBV cccDNA gene-specific sgRNA-guided CRISPR / Cas9 gene editing technology to treat HBV infection.
  • an anti-HBV pharmaceutical composition which comprises an anti-HBV active component and a pharmaceutically acceptable drug carrier, and the anti-HBV active component is Cas9 for HBV CCcDNA. / sgRNAs adenovirus or Cas9 / sgRNAs adenovirus combined with entecavir.
  • liver precursor-like cell model, preparation method and application of the primary liver cell source for hepatitis B virus infection provided by the present invention have the following technical effects:
  • the hepatic precursor-like cell model of the present invention is composed of three-dimensionally differentiated functional hepatocytes (3D-HepLPCs-Hep).
  • the three-dimensionally differentiated functional hepatocytes are obtained from human primary hepatocytes after in vitro transformation and culture.
  • Precursor-like cells (HepLPCs) were obtained after three-dimensional culture and liver-to-maturity culture.
  • the source of the cells is brand new, which is completely different from the differentiation of functional liver cells from liver cancer cells in the past. Not only is the chromosome stable, but it also completely avoids the risk of tumorigenicity;
  • Hepatic precursor-like cells have high transformation efficiency, which can realize the establishment of lines of individual cells and the construction of HepLPCs heterogeneous cell bank;
  • HepLPCs can form three-dimensional hepatocyte spheres in a low-adhesion state, and quickly obtain liver function under the action of a hepatocyte differentiation medium, saving time and cost;
  • the present invention provides a new direction for the study of hepatitis B virus infection, replication law, and life cycle, and furthermore provides a favorable theoretical research basis for the prevention and treatment of hepatitis B virus, and has broad clinical application prospects.
  • FIG. 1 shows the primary hepatocytes (PHCs) in a commercial hepatocyte proliferation medium (Hepatocyte growth medium, HGM, purchased from Lonza) and in a modified hepatocyte transformation proliferation medium (Transition and Expansion Medium, TEM). Bright field photos on days 0 and 10 of the culture, the scale bar indicates 200 ⁇ m;
  • HGM Hepatocyte growth medium
  • TEM Transition and Expansion Medium
  • FIG. 2 is the growth curve of hepatic precursor-like cells (HepLPCs). Hepatic precursor-like cells (HepLPCs) were from three different donors;
  • FIG 3 is the result of doubling time of hepatic precursor cells (HepLPCs). HepLPCs also come from three different donors;
  • Fig. 4 is a graph showing the proliferative potential of the 10th generation of hepatic precursor cells (HepLPCs) in the Edu experiment, and the scale bar indicates 50 ⁇ m;
  • Figure 5 is a typical karyotype image of hepatic precursor cells (HepLPCs). The data comes from three different donors, two of which maintain normal diploid karyotypes, and one of the third cells appears on chromosome 5 Have triploid
  • FIG. 6 is a schematic diagram of the formation of functional liver cells (3D-HepLPCs-Hep) after three-dimensional differentiation, and the scale bar indicates 50 ⁇ m;
  • Figure 7 is the time change of three-dimensional spheroid formation and hepatic differentiation of hepatic precursor-like cells (HepLPCs).
  • the scale bar represents 200 ⁇ m;
  • Figure 8 shows the analysis of the expression of RXRA, HNF4A and NTCP in planar or three-dimensional differentiation by QPCR method.
  • N.s. means non-significant, * means P is less than 0.05, ** means P is less than 0.01, *** P is less than 0.001;
  • FIG 9 shows the expression of NTCP in primary hepatocytes (PHCs), hepatic precursor-like cells (HepLPCs), and three-dimensionally differentiated functional hepatocytes (3D-HepLPCs-Hep) using QPCR.
  • PLCs primary hepatocytes
  • HepLPCs hepatic precursor-like cells
  • 3D-HepLPCs-Hep three-dimensionally differentiated functional hepatocytes
  • Figure 10 shows the secretion of HBV-DNA, HBsAg, and HBeAg in the cell supernatant after infection with HBV by three-dimensionally differentiated functional hepatocytes (3D-HepLPCs-Hep);
  • Figure 11 shows the cccDNA expression in 3D-HepLPCs-Hep cell samples after infection with HBV by Southern blot experiment
  • Figure 12 is a schematic diagram of HBV-sgRNAs CRISPR / Cas9 adenovirus vector
  • Figure 13 shows the secretion of HBV-DNA, HBsAg, and HBeAg in the cell supernatant after treatment.
  • N.s. means non-significant
  • reagents are commercially available, as follows: Matrigel matrix (Corning), WE medium (Invitrogen) with 10% serum, modified DMEM / F12 medium (Invitrogen), N2 and B27 additives (both from Invitrogen), sodium pyruvate (from Invitrogen), ascorbic acid C (ascorbic, from Sigma-Aldrich); hepatocyte growth factor HGF, epidermal cell growth factor EGF (both purchased from Peprotech), ROCK kinase inhibitor Y27632, Wnt signaling pathway agonist CHIR99021, TGF- ⁇ signal inhibitor A83-01 (three purchased from TargetMol), sphingosine monophosphate S1P and indole LPA acetate (both from Santa Cruz), TrypExpress (from Invitrogen), gamma secretase inhibitor DAPT (from TargetMol), oncostatin OSM (from Peprotech), and dexamethasone (from (From Sigma-Al
  • Example 1 Obtaining HepLPCs of liver precursor-like cells and identifying related characteristics
  • Matrigel matrix for coating, place the frozen Matrigel matrix at 4 ° C overnight to make it liquid, dilute 1:30 with pre-chilled serum-free medium (such as DMEM), and add it to the culture well to cover the bottom surface as It should be used after being left at 37 ° C for one hour.
  • pre-chilled serum-free medium such as DMEM
  • PLCs Primary hepatocytes
  • the hepatocyte transformation and proliferation medium includes two parts, a basic support and a small molecule supplement.
  • the basic support is a modified DMEM / F12 medium, and the modified DMEM / F12 medium is added with an N2 additive, a B27 additive, and 1 mmol / L.
  • small molecule additives include 20ng / mL hepatocyte growth factor HGF, 20ng / mL epidermal cell growth factor EGF, 10 ⁇ mol / L ROCK kinase inhibitor Y27632, and 3 ⁇ mol / L activation of Wnt signaling pathway Agents CHIR99021, 1 ⁇ mol / L TGF- ⁇ signal inhibitor A83-01, 1 ⁇ mol / L sphingosine monophosphate S1P, and 5 ⁇ mol / L indole acetate LPA.
  • PLCs Primary liver cells donated by three donors were transformed and cultured by the method in step 2 to transform into HepLPCs, which can be subcultured.
  • the HepLPCs passed to the 10th generation were detected using the EdU Cell Proliferation Detection Kit (Cell-Light TM EdU In Vitro Imaging Kit (purchased from RiboBio) for detection.
  • the detection process was performed according to the instructions, and pictures were taken using a fluorescence microscope.
  • the 10th generation HepLPCs in the exponential growth phase were incubated with 100 ng / mL colchicine in a cell incubator at 37 ° C for 40 minutes, and then washed 3 times with PBS, and digested into single cells using Accutase. Subsequent karyotyping experiments and analysis were performed by Biocytogen's karyotyping department, which counted at least 40 chromosomes from metastatic cells.
  • HepLPCs in a proliferating state were digested into single cells in trypsin TrypLE Express, and then resuspended in a mixed medium, which was prepared by mixing TEM medium and HMM medium in equal volumes, and then inoculated In a low-adhesion cell culture 6-well plate (purchased from Corning); after the cells form spheroids, change the medium to Hepatic Maturation Medium (HMM), and continue in HMM medium After 8-10 days of differentiation, they matured further and became three-dimensionally differentiated functional hepatocytes (3D-HepLPCs-Hep). During the cultivation process, photos were recorded with an optical microscope at different time points.
  • Hepatocyte differentiation medium HMM includes two parts, a basic support and a small molecule supplement.
  • the basic support is a DMEM / F12 medium supplemented with N2 and B27 additives;
  • the small molecule supplement includes 10 ⁇ mol / L gamma secretase inhibitor DAPT, 20 ng / mL oncostatin OSM, 10 ⁇ mol / L dexamethasone, and 10 ⁇ mol / L ATP competitive ALK5 inhibitor SB431542.
  • fluid exchange is required every day.
  • HepLPCs cells began to aggregate within 6 hours, formed cell spheres after 48 hours, and differentiated and matured after being inoculated into HMM medium for 10 days. Functional liver cells (3D-HepLPCs-Hep).
  • TRIzol kit purchased from Invitrogen was used to extract the total RNA of planar differentiated (Monor-Diff) and three-dimensionally differentiated (3D-Diff) cells; then, SYBR Green PCR kit (purchased from Roche) was used in Real-time PCR was performed in a 96Real-Time PCR System (purchased from Roche).
  • RNA of 6 different donor-derived primary liver cells (PHCs), HepLPCs, 3D-HepLPCs-Hep were extracted using TRIzol reagent (purchased from Invitrogen).
  • TRIzol reagent purchased from Invitrogen
  • a SYBR Green PCR kit purchased from Roche was used. Real-time PCR was performed in a 96Real-Time PCR System (purchased from Roche).
  • NTCP expression of cells from different donors is individual heterogeneous, but the expression of NTCP in 3D-HepLPCs-Hep is basically stable at 0.5 times the level of PHCs.
  • 3D-HepLPCs-Hep was co-cultured with HBV patient serum or HepG2.2.15 cell culture supernatant concentrate in livers to which 1% dimethyl sulfoxide and 4% polyethylene glycol 8000 were added. Cells were transformed into a proliferation medium; 24 hours after infection, the medium was washed three to four times, and then the solution was changed every 24 hours. The supernatant was collected and stored at -80 ° C for later use.
  • the supernatants collected on the 2nd, 4th, 6th, 8th, and 10th days of the above collection were respectively detected by ABI 7500 (purchased from Life Technologies Corporation) real-time fluorescent PCR method to detect HBV-DNA virus in the supernatants.
  • the titer was measured by Architect i2000SR through the Architect HBeAg Reagent kit (6c32) and the Architect HBsAg Kit (6c36), respectively, to detect HBeAg and HBsAg secreted in the supernatant.
  • 3D-HepLPCs-Hep (differentiated for 10 days) can be infected with HBV, and with time, HBV-DNA, HBsAg, and HBeAg in the supernatant gradually increase and stabilize.
  • This process can be Reverse transcription inhibitor entecavir (ETV) or NTCP competitive inhibitor taurodeoxycholic acid (TUDC) blocked.
  • ETV Reverse transcription inhibitor entecavir
  • TUDC NTCP competitive inhibitor taurodeoxycholic acid
  • Southern blot test for the presence of cccDNA in cells is the gold standard for determining whether a cell is infected with HBV.
  • the cells 10 days after the infection were collected, and virus DNA was extracted by a modified Hirt extraction method.
  • virus DNA was extracted by a modified Hirt extraction method.
  • DNA samples were first heated at 95 ° C for 10 minutes.
  • One group was digested with EcoRI to linearize cccDNA, and one group was not digested.
  • Subsequent gel electrophoresis and Southern blotting steps were performed with reference to the literature (Gao, W, Hu, J. Formation of hepatitis, B virus, covalently closed DNA, removed DNA: removed of gene-linked protein. J, Virol 2007; 81: 6164-6174.).
  • HBV-infected cell models were established as described above, and then treated with ETV, CAS9 / HBV (Adenovirus against Cas9 / sgRNAs of HBV cc cDNA), or ETV combined with CAS9 / HBV for 15 days.
  • Two validated sgRNA sequences are from published literature (Ramanan, Shlomai, A, Cox, DB, et al. CRISPR / Cas9cleavage of viral DNA, efficient pressups, hepatitis, Sci, Rep. 2015; 5: 10833.).
  • Adenovirus backbone plasmid pPE3-GFP was used to package adenovirus (purchased from Obio Technology Co., Ltd.), and then the adenovirus was added to the HBV-infected cell model for 8 hours under the condition of multiple infections of 60. The company) continued to join throughout the 15-day course of treatment.
  • the culture supernatants were collected on the 5th, 10th, and 15th days, and the HBV-DNA virus titers in the supernatants were detected by ABI 7500 (purchased from Life Technologies Corporation) real-time fluorescence PCR method.
  • kit (6c32) and architect HBsAg kit (6c36) detected HBeAg and HBsAg secreted in the supernatant.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Abstract

提供了一种用于乙肝病毒感染的原代肝细胞来源的肝前体样细胞模型、制备方法及应用,属于生命科学和医学中乙型肝炎病毒感染细胞模型领域。该肝前体样细胞模型由三维分化后的功能肝细胞组成,该三维分化后的功能肝细胞由人原代肝细胞在体外转化培养后得到的肝前体样细胞经三维培养和肝向成熟培养后得到。通过实验验证,该肝前体样细胞模型感染HBV后,能够高表达RXRA、HNF4A、NTCP等HBV感染相关基因,可用于乙肝病毒感染研究或和HBV共培养用于制备乙肝病毒感染细胞模型。

Description

用于乙肝病毒感染的原代肝细胞来源的肝前体样细胞模型、制备方法及应用 技术领域
本发明涉及细胞改造技术领域,具体涉及一种人类原代肝细胞来源的肝前体样细胞(Hepatocyte-derived Liver Progenitor-like Cells,HepLPCs),特别涉及利用该细胞在体外进行三维培养用于乙型肝炎病毒(hepatitis B virus,HBV)感染研究及其制备方法,属于生命科学和医学中乙型肝炎病毒感染细胞模型领域。
背景技术
乙型病毒性肝炎(viral hepatitis type B,简称乙肝)是由HBV引起的以肝脏病变为主的一种传染病,是全球性的公共卫生问题,也是我国的重要传染病之一。由于HBV的生活周期较为复杂,明确认识HBV的感染和复制规律对于防治乙型病毒性肝炎具有重要意义。而深入地对HBV生活周期进行医学研究,有赖于良好的细胞感染模型。
目前,可用于HBV研究的细胞主要有人或树鼩的原代肝细胞及少部分人肝癌细胞系。人或树鼩的原代肝细胞对HBV敏感,但是来源稀缺,分离及培养条件要求高,且难以在体外长期维持培养。人肝癌细胞系自然状态下对HBV不敏感,经过长期研究,科学家发现部分人肝癌细胞系可以通过过表达NTCP(HepG2-NTCP)或长期小分子肝向分化(HepRG,20-30天肝向分化)条件下实现HBV感染。但上述两种条件分别存在外源基因导入和时间成本高昂等缺点,且人肝癌细胞系遗传背景单一,无法模拟HBV感染细胞的异质性。
鉴于上述情况,迫切需要一种个体来源的,可长时间体外扩增培养,且在自然条件下能稳定有效感染HBV的细胞模型及其制备方法,以满足对乙型肝炎病毒相关医学研究及其药物开发的需要。
发明内容
本发明的目的在于,依托上述研究背景,提供一种人原代肝细胞来源的,用于乙型肝炎病毒感染研究肝前体样细胞模型、其建立方法以及在制备乙肝病毒感染细胞模型中的应用。
本发明的另一目的在于提供一种乙肝病毒感染细胞模型、其制备方法以及在乙肝病 在制备抗乙肝病毒药物中的用途。
本发明的第一方面,提供了一种肝前体样细胞模型,该肝前体样细胞模型由三维分化后的功能肝细胞(Three dimensional hepatic differentiated HepLPCs,3D-HepLPCs-Hep)组成,该三维分化后的功能肝细胞由人原代肝细胞(PHCs)在体外转化培养后得到的肝前体样细胞(HepLPCs)经三维培养和肝向成熟培养后得到。
本发明的第二方面,提供了上述肝前体样细胞模型的制备方法,包括以下步骤:
A.肝前体样细胞获得
将人原代肝细胞接种于胶原蛋白I或Matrigel基质包被的培养支持物(培养皿或培养板)中,经含血清的WE培养基贴壁培养后,更换成肝细胞转化增殖培养基(Transition and Expansion Medium,TEM),经过一定时间诱导培养后,将人原代肝细胞转化为可在体外扩增并传代的肝前体样细胞(HepLPCs)。
B.肝前体样细胞的三维培养及肝向成熟
将步骤A中得到的处于增殖状态的肝前体样细胞(HepLPCs)在胰蛋白酶TrypLE Express中消化成单个细胞,经混合培养基重悬后,接种入低粘附细胞培养支持物中,一段时间后形成肝细胞球;然后将培养基更换为肝细胞分化培养基(Hepatic Maturation Medium,HMM),培养一定时间进一步成熟,得到三维分化后的功能肝细胞。
其中,混合培养基由肝细胞转化增殖培养基和肝细胞分化培养基以体积比为1:1的比例混合而成。所述肝细胞分化培养基包括基础支持物和小分子添加物两部分,所述基础支持物为添加有N2添加剂和B27添加剂的DMEM/F12培养基,所述小分子添加物由7~15μmol/Lγ分泌酶抑制剂DAPT、17~23ng/mL抑瘤素OSM、7~15μmol/L地塞米松以及7~15μmol/L ATP竞争性ALK5抑制剂SB431542组成。
本发明所采用的人原代肝细胞可通过商业途径购买,如购买自Invitrogen公司,也可采用经典的两步灌流法自行分离,可参考文献(Maurel P.,Hepatocytes-Methods and Protocols,METHODS IN MOLECULAR BIOLOGY,ISSN 1064-3745)。
优选的,步骤A中,WE培养基中血清的体积百分比为8%~12%。人原代肝细胞贴壁后,细胞形态在3~5天发生改变,细胞拉长并可出现多个向外延伸的凸起,细胞核体积增大;5~7天细胞出现典型的上皮细胞形态并开始快速增殖;7~10天细胞可传代并持续增殖。
肝细胞转化增殖培养基包含基础支持物和小分子添加物两部分,所述基础支持物为改良型DMEM/F12培养基,该改良型DMEM/F12培养基中添加有N2添加剂、B27添加剂、 0.5~1.5mmol/L丙酮酸钠以及5~50μg/mL抗坏血酸维生素C;小分子添加物由5~25ng/mL肝细胞生长因子HGF、5~25ng/mL表皮细胞生长因子EGF、5~20μmol/L ROCK激酶抑制剂Y27632、1~5μmol/L Wnt信号通路激动剂CHIR99021、0.5~2μmol/L TGF-β信号抑制剂A83-01、0.5~2μmol/L一磷酸鞘氨酸S1P以及2~10μmol/L吲哚乙酸LPA组成。
本发明中,用于步骤A中肝前体样细胞诱导培养的TEM培养基和步骤B中用于肝前体样细胞的三维培养及肝向成熟的HMM培养基中小分子添加物的组分为发明人通过实验筛选得到,分别为实现肝前体样细胞诱导培养和实现肝前体样细胞的三维转化必不可少的组分,缺少其中任一组分均无法实现相应功能,以最大程度降低细胞培养成本。
关于两种小分子添加物的组分含量,宜在上述所示的小范围内波动,波动范围过大,极容易导致无法起到相应作用或者对细胞产生毒副作用的情况发生。
在本发明中后续的优选实施例中,记载了两种培养基组分的优选情况,如下:
肝细胞分化培养基(TEM)包括基础支持物和小分子添加物两部分,基础支持物为添加有N2添加剂和B27添加剂的DMEM/F12培养基;小分子添加物由10μmol/Lγ分泌酶抑制剂DAPT、20ng/mL抑瘤素OSM、10μmol/L地塞米松以及10μmol/L ATP竞争性ALK5抑制剂SB431542组成。
肝细胞转化增殖培养基(HMM)包含基础支持物和小分子添加物两部分,基础支持物为改良型DMEM/F12培养基,该改良型DMEM/F12培养基中添加有N2添加剂、B27添加剂、1mmol/L丙酮酸钠以及10μg/mL抗坏血酸维生素C;小分子添加物由20ng/mL肝细胞生长因子HGF、20ng/mL表皮细胞生长因子EGF、10μmol/L ROCK激酶抑制剂Y27632、3μmol/L Wnt信号通路激动剂CHIR99021、1μmol/L TGF-β信号抑制剂A83-01、1μmol/L一磷酸鞘氨酸S1P以及5μmol/L吲哚乙酸LPA组成。
优选的,步骤A中,贴壁后的人原代肝细胞在肝细胞转化增殖培养基中诱导培养7~14天得到肝前体样细胞,培养过程中隔天换液。
优选的,步骤B中,单个细胞接种入低粘附细胞培养支持物中48小时后形成肝细胞球,在肝细胞分化培养基培养8~10天后得到三维分化后的功能肝细胞,在分化培养过程中每天进行换液。
通过实验验证,三维分化后的功能肝细胞高表达RXRA、HNF4A、NTCP等HBV感染相关基因,以NTCP的表达量升高最为明显,参见说明书附图8。此外,采用TRIzol试剂提取六位不同捐献者来源的原代肝细胞(PHCs)、肝前体样细胞(HepLPCs)、三维分化后的功能肝细胞(3D-HepLPCs-Hep)的总RNA。使用SYBR Green PCR kit在
Figure PCTCN2018120207-appb-000001
96 Real-Time PCR System中进行荧光定量PCR。结果显示,不同捐献者来源的细胞NTCP表达具有个体异质性,但3D-HepLPCs-Hep中NTCP表达基本稳定在PHCs的0.5倍水平,参见说明书附图9。说明经三维培养分化后的功能肝细胞可用于乙肝病毒感染研究或用于制备乙肝病毒感染细胞模型。
因此,本发明的第三方面,提供了肝前体样细胞模型在制备乙肝病毒感染细胞模型中的应用。
本发明的第四方面,提供了一种乙肝病毒感染细胞模型,该模型由肝前体样细胞模型和HBV病毒共培养而成,所述HBV病毒来自乙肝患者血清或HepG2.2.15细胞培养上清浓缩液,感染复数为300~350,优选300。
本发明的第五方面,提供了乙肝病毒感染细胞模型的制备方法,其特征在于,包括如下步骤:A.将肝前体样细胞模型与乙肝患者血清或HepG2.2.15细胞培养上清浓缩液共培养于添加有体积分数为1%的二甲基亚砜和体积分数为4%的聚乙二醇8000的肝细胞转化增殖培养基中;B.感染24小时后,使用培养基清洗三至四遍,随后每24小时换液,收集上清液存储于-80℃环境中备用。
通过HBV相关指标检测实验,分别检测不同时间点收集到的上清液中HBV-DNA病毒滴度,并检测上清中分泌的HBeAg和HBsAg。同时采用Southern blot检测细胞中是否存在cccDNA来判断细胞是否被HBV感染。
结果显示,3D-HepLPCs-Hep(分化10天)可被HBV感染,且随着时间增加,上清中的HBV-DNA、HBsAg和HBeAg逐渐升高并达到稳定,该过程可被逆转录抑制剂恩替卡韦(ETV)或者NTCP竞争性抑制剂牛磺脱氧胆酸(TUDC)阻断。同时,不同捐献者来源的3D-HepLPCs-Hep中均能够检测到cccDNA存在,说明细胞被HBV感染。说明本发明中的肝前体样细胞模型能够完全用于制备乙肝病毒感染细胞模型。
本发明的第六方面,提供了乙肝病毒感染细胞模型在制备抗乙肝病毒药物中的用途。3D-HepLPCs-Hep可在体外被乙肝患者血清HBV或者HepG2.2.15细胞分泌的HBV感染,且可用于HBV cccDNA基因特异性sgRNA引导的CRISPR/Cas9基因编辑技术治疗HBV感染的探索。
本发明的第七方面,提供了一种抗乙肝病毒药物组合物,其特征在于,包括抗乙肝病毒活性组分以及药学上可接受的药物载体,抗乙肝病毒活性组分为针对HBV cccDNA的Cas9/sgRNAs腺病毒或Cas9/sgRNAs腺病毒与恩替卡韦的联合。
本发明的有益保障及效果:
本发明提供的用于乙肝病毒感染的原代肝细胞来源的肝前体样细胞模型、制备方法及应用,具有如下技术效果:
(1)本发明肝前体样细胞模型由三维分化后的功能肝细胞(3D-HepLPCs-Hep)组成,该三维分化后的功能肝细胞由人原代肝细胞在体外转化培养后得到的肝前体样细胞(HepLPCs)经三维培养和肝向成熟培养后得到。细胞来源全新,与以往功能肝细胞由肝癌细胞分化而来完全不同,不仅染色体稳定,而且完全避免了致瘤风险;
(2)肝前体样细胞转化效率高,可实现个体细胞来源建系,构建HepLPCs异质性细胞库;
(3)HepLPCs无外源基因导入,为建立自然状态下HBV感染细胞模型提供基础;
(4)HepLPCs在低粘附状态下可形成三维肝细胞球,并在在肝细胞分化培养基的作用下快速获得肝功能,节约了时间成本;
(5)通过该体系运用探索腺病毒介导的HBV cccDNA基因特异性sgRNA引导的CRISPR/Cas9治疗HBV效果明显,并首次发现联合恩替卡效果更佳。
因此,本发明为乙肝病毒的感染、复制规律以及生活周期研究提供了新的方向,进而为乙型病毒肝炎的预防和治疗提供了有利的理论研究基础,具备广阔的临床应用前景。
附图说明
图1为原代肝细胞(PHCs)在商品化的肝细胞增殖培养基(Hepatocyte growth medium,HGM,购自Lonza公司)和在改良的肝细胞转化增殖培养基(Transition and Expansion Medium,TEM)中培养第0天和第10天的明场照片,刻度杆表示200μm;
图2为肝前体样细胞(HepLPCs)的生长曲线,肝前体样细胞(HepLPCs)分别来自于三个不同的捐献者;
图3为肝前体样细胞(HepLPCs)的倍增时间结果,肝前体样细胞(HepLPCs)同样分别来自于三个不同的捐献者;
图4为Edu实验检测第10代肝前体样细胞(HepLPCs)增殖潜能结果图,刻度杆表示50μm;
图5为肝前体样细胞(HepLPCs)的典型核型图像,数据来自三个不同的捐献者,其中两个保持正常的二倍体核型,而第三个中一个细胞出现5号染色体上有三倍体;
图6为三维分化后的功能肝细胞(3D-HepLPCs-Hep)形成示意图,刻度杆表示50μm;
图7为肝前体样细胞(HepLPCs)三维球体形成和肝向分化的时间变化,刻度杆代表200μm;
图8为采用QPCR方法分析RXRA、HNF4A和NTCP在平面分化或三维分化中的表达情况,n.s.表示非显著,*表示P小于0.05,**表示P小于0.01,***P小于0.001;
图9为采用QPCR方法分析NTCP在原代肝细胞(PHCs)、肝前体样细胞(HepLPCs)、三维分化后的功能肝细胞(3D-HepLPCs-Hep)的表达情况,数据来自六个不同的捐献者;
图10为三维分化后的功能肝细胞(3D-HepLPCs-Hep)感染HBV病毒后,细胞上清中HBV-DNA、HBsAg、HBeAg分泌情况;
图11为采用Southern blot实验检测感染HBV病毒后的3D-HepLPCs-Hep细胞样本中cccDNA表达情况;
图12为HBV-sgRNAs CRISPR/Cas9腺病毒载体示意图;
图13为治疗后,细胞上清HBV-DNA、HBsAg、HBeAg分泌情况,n.s.表示非显著,*表示P小于0.05,**表示P小于0.01,***P小于0.001。
具体实施方式
以下实施例、实验例对本发明进行进一步的说明,不应理解为对本发明的限制。实施例不包括对传统方法的详细描述,如那些用于构建载体和质粒的方法,提取总RNA方法、实时荧光PCR法。这样的方法对于本领域中具有普通技术的人员是众所周知的,并且在许多出版物中都有所描述,包括Sambrook,J.,Fritsch,E.F.and Maniais,T.(1989)Molecular Cloning:A Laboratory Manual,2 ndedition,Cold spring Harbor Laboratory Press。
下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商建议的条件。除非另外说明,否则所有的百分比和分数按重量计算。
下列实施例中,所有试剂均可从商业途径获得,如下:Matrigel基质(Corning公司),含10%血清的WE培养基(Invitrogen公司),改良后DMEM/F12培养基(Invitrogen公司),N2和B27添加剂(两者均购自Invitrogen公司),丙酮酸钠(sodium pyruvate,购自Invitrogen公司),抗坏血酸维生素C(ascorbic acid,购自Sigma-Aldrich公司);肝细胞生长因子HGF、表皮细胞生长因子EGF(两者购自Peprotech公司),ROCK激酶抑制剂Y27632、Wnt信号通路激动剂CHIR99021、TGF-β信号抑制剂A83-01(三者购自TargetMol公司),一磷酸鞘氨酸S1P和吲哚乙酸LPA(两者购自Santa Cruz公司),TrypLE Express(购自Invitrogen公司),γ分泌酶抑制剂DAPT(购自TargetMol公司),抑瘤素OSM(购自Peprotech公司),地塞米松(购自Sigma-Aldrich公司),ATP竞争性ALK5抑制剂SB431542(购自TargetMol公司)。
实施例1.肝前体样细胞HepLPCs的获得及相关特性鉴定
1、细胞培养板预包被
采用Matrigel基质进行包被,将冷冻保存的Matrigel基质放置4℃过夜,使其成为液态,用预冷的无血清培养基(如DMEM)按1:30稀释,加入培养孔中,以覆盖底面为宜,放置37℃一小时后即可使用。
2、肝前体样细胞HepLPCs获得
以2×10 4个细胞/cm 2的密度将原代肝细胞(PHCs)接种于Matrigel包被的细胞培养6孔板(购自Corning公司)中,经含10%血清的WE培养基贴壁后,实验组更换成改良的肝细胞转化增殖培养基(Transition and Expansion Medium,TEM)培养,对照组更换成商品化的肝细胞增殖培养基(Hepatocyte growth medium,HGM,购自Lonza公司)。
肝细胞转化增殖培养基包含基础支持物和小分子添加物两部分,基础支持物为改良型DMEM/F12培养基,该改良型DMEM/F12培养基中添加有N2添加剂、B27添加剂、1mmol/L丙酮酸钠以及10μg/mL抗坏血酸维生素C;小分子添加物包括20ng/mL肝细胞生长因子HGF、20ng/mL表皮细胞生长因子EGF、10μmol/L ROCK激酶抑制剂Y27632、3μmol/L Wnt信号通路激动剂CHIR99021、1μmol/L TGF-β信号抑制剂A83-01、1μmol/L一磷酸鞘氨酸S1P以及5μmol/L吲哚乙酸LPA。
培养过程中隔天换液,在细胞培养箱中培养10天,于第10天在显微镜下观察细胞生长情况。实验结果如图1所示,TEM培养条件下细胞扩增,而HGM培养条件下细胞大部分死亡(见图1)。
3、HepLPCs的生长曲线和倍增时间测定
将三个捐献者捐献的原代肝细胞(PHCs)采用步骤2中的方法进行转化增殖培养,转化成能够传代培养的肝前体样细胞HepLPCs。
将传代过程中的1000个HepLPCs接种于Matrigel包被的细胞培养6孔板中,加入TEM培养。分别于培养后第1天,第2天,第3天,第4天,第5天用TrypLE Express消化成单个细胞,血球技术板计数并绘制生长曲线,用在线倍增时间计算工具http://www.doubling-time.com/compute.php.计算倍增时间。
结果如图2和图3所示,转化自三个捐献者原代肝细胞的HepLPCs均生长迅速,无明显个体差异(见图2),倍增时间均约为24小时,也不存在个体差异(见图3)。
4、EdU细胞增殖实验检测HepLPCs增殖潜能
将传至第10代的HepLPCs,用EdU细胞增殖检测试剂盒(Cell-Light TMEdU
Figure PCTCN2018120207-appb-000002
In Vitro Imaging Kit,购自RiboBio公司)检测,检测过程按照说明书进行操作,使用荧光 显微镜拍照。
结果如图4所示,HepLPCs在第10代时依然能够保持旺盛的增殖能力,可实现个体细胞来源建系。
5、HepLPCs核型分析
将处于指数生长期的第10代的HepLPCs与100ng/mL秋水仙素在细胞培养箱中37℃温育40分钟,然后PBS清洗3遍,使用Accutase消化成单细胞。后续核型操作实验及分析由Biocytogen公司核型分析部门完成,至少计数来自40个中期停滞细胞的染色体。
结果如图5显示,HepLPCs具有稳定的核型,仅有第三位捐献者来源的细胞出现少部分异常,其5号染色体增加1条。
实施例2 HepLPCs的三维培养及肝向成熟
1、HepLPCs三维成球培养
将2×10 6个处于增殖状态的HepLPCs在胰蛋白酶TrypLE Express中消化成单个细胞,然后经混合培养基重悬,该混合培养基由TEM培养基与HMM培养基等体积混合而成,而后接种于低粘附的细胞培养6孔板(购自Corning公司)中;待细胞形成细胞球后,将培养基改为肝细胞分化培养基(Hepatic Maturation Medium,HMM),在HMM培养基中继续进行分化8-10天进一步成熟,成为三维分化后的功能肝细胞(3D-HepLPCs-Hep)。在培养过程中,于不同时间点用光学显微镜拍照记录。
肝细胞分化培养基HMM包括基础支持物和小分子添加物两部分,基础支持物为添加有N2添加剂和B27添加剂的DMEM/F12培养基;小分子添加物包括10μmol/Lγ分泌酶抑制剂DAPT、20ng/mL抑瘤素OSM、10μmol/L地塞米松以及10μmol/L ATP竞争性ALK5抑制剂SB431542。在分化培养过程中需每天进行换液。
三维成球培养的示意图如图6所示,实际结果如图7所示,HepLPCs细胞6小时内开始聚集,48小时后形成细胞球,接种入HMM培养基10天后分化成熟,成为三维分化后的功能肝细胞(3D-HepLPCs-Hep)。
2、三维肝向分化过程中HBV感染相关基因变化
采用TRIzol试剂盒(购自Invitrogen公司)分别提取平面分化(Monor-Diff)和三维分化(3D-Diff)细胞的总RNA;然后使用SYBR Green PCR kit(购自Roche公司)在
Figure PCTCN2018120207-appb-000003
96Real-Time PCR System(购自Roche公司)中进行荧光定量PCR。
结果如图8所示,HBV感染相关基因RXRA、HNF4A和NTCP表达在三维分化条件下都有所上升,以NTCP的升高最为明显。
3、不同捐献者来源3D-HepLPCs-Hep的NTCP表达情况
采用TRIzol试剂(购自Invitrogen公司)提取6位不同捐献者来源的原代肝细胞(PHCs),HepLPCs,3D-HepLPCs-Hep的总RNA。使用SYBR Green PCR kit(购自Roche公司)在
Figure PCTCN2018120207-appb-000004
96Real-Time PCR System(购自Roche公司)中进行荧光定量PCR。
结果如图9所示,不同捐献者来源的细胞NTCP表达具有个体异质性,但3D-HepLPCs-Hep中NTCP表达基本稳定在PHCs的0.5倍水平。
实施例3 3D-HepLPCs-Hep感染HBV及应用研究
1、乙肝病毒感染细胞模型的制备
将3D-HepLPCs-Hep与乙肝患者血清或HepG2.2.15细胞培养上清浓缩液共培养于添加有体积分数为1%的二甲基亚砜和体积分数为4%的聚乙二醇8000的肝细胞转化增殖培养基中;感染24小时后,使用培养基清洗三至四遍,随后每24小时换液,收集上清液存储于-80℃环境中备用。
2、HBV相关指标检测
分别取上述收集的第2天、第4天、第6天、第8天、第10天的上清,用ABI 7500(购自Life Technologies Corporation)实时荧光PCR法检测上清中HBV-DNA病毒滴度,用Architect i2000SR分别通过architect HBeAg Reagent kit(6c32)和architect HBsAg Kit(6c36)检测上清中分泌的HBeAg和HBsAg。
结果如图10所示,3D-HepLPCs-Hep(分化10天)可被HBV感染,且随着时间增加,上清中的HBV-DNA、HBsAg和HBeAg逐渐升高并达到稳定,该过程可被逆转录抑制剂恩替卡韦(ETV)或者NTCP竞争性抑制剂牛磺脱氧胆酸(TUDC)阻断。
3、共价闭合环状DNA(cccDNA)的Southern blot检测
Southern blot检测细胞中是否存在cccDNA是判断细胞被HBV感染的金标准。收集上述被感染后10天的细胞,用改良的Hirt提取法抽提病毒DNA。根据cccDNA的天然特性,DNA样品先在95℃加热10分钟,一组进行EcoRI酶切线性化cccDNA,一组不进行酶切。后续凝胶电泳和Southern blot步骤参照文献方式进行(Gao W,Hu J.Formation of hepatitis B virus covalently closed circular DNA:removal of genome-linked protein.J Virol 2007;81:6164-6174.)。
结果如图11显示,与原代肝细胞相比,三个捐献者来源的3D-HepLPCs-Hep中均能够检测到cccDNA存在。
4、HBV cccDNA基因特异性sgRNA引导的CRISPR/Cas9基因编辑技术治疗HBV感染的 探索
如上所述建立HBV感染细胞模型,然后用ETV、CAS9/HBV(针对HBV cccDNA的Cas9/sgRNAs的腺病毒)或ETV联合CAS9/HBV治疗15天。两个经验证的sgRNA序列来自已发表文献(Ramanan V,Shlomai A,Cox DB et al.CRISPR/Cas9cleavage of viral DNA efficiently suppresses hepatitis B virus.Sci Rep 2015;5:10833.),插入图12所示的载体腺病毒穿梭载体pAdeno-U6-spgRNA v2.0-CMV-3Flag-spCas9/HBV中。
用腺病毒骨架质粒pPE3-GFP包装腺病毒(购自Obio Technology公司),然后将腺病毒加入HBV感染细胞模型中,在感染复数60条件下持续8小时,恩替卡韦(ETV,0.5μM,购自TargetMol公司)在整个15天的治疗过程中继续加入。分别收集第5天、第10天、第15天培养上清,用ABI 7500(购自Life Technologies Corporation)实时荧光PCR法检测上清中HBV-DNA病毒滴度,用Architect i2000SR分别通过architect HBeAg Reagent kit(6c32)和architect HBsAg Kit(6c36)检测上清中分泌的HBeAg和HBsAg。
结果如图13所示,Cas9/sgRNAs组能明显降低三个指标,联合ETV治疗效果更佳,提示Cas9/sgRNAs腺病毒联合ETV是一种很有潜力的HBV治疗手段。
以上已对本发明创造的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可做出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种肝前体样细胞模型,其特征在于,所述肝前体样细胞模型由三维分化后的功能肝细胞组成,该三维分化后的功能肝细胞由人原代肝细胞在体外转化培养后得到的肝前体样细胞经三维培养和肝向成熟培养后得到。
  2. 权利要求1所述的肝前体样细胞模型的建立方法,其特征在于,包括以下步骤:
    A.肝前体样细胞获得
    将人原代肝细胞接种于胶原蛋白I或Matrigel基质包被的培养支持物中,经含血清的WE培养基贴壁培养后,更换成肝细胞转化增殖培养基,经过一定时间诱导培养后,将所述人原代肝细胞转化为可在体外扩增并传代的肝前体样细胞,
    B.肝前体样细胞的三维培养及肝向成熟
    将步骤A中得到的处于增殖状态的所述肝前体样细胞在胰蛋白酶中消化成单个细胞,经混合培养基重悬后,接种入低粘附细胞培养支持物中,一段时间后形成肝细胞球;然后将培养基更换为肝细胞分化培养基,培养一定时间进一步成熟,得到所述三维分化后的功能肝细胞,
    其中,所述混合培养基由所述肝细胞转化增殖培养基和所述肝细胞分化培养基以体积比为1:1的比例混合而成,
    所述肝细胞分化培养基包括基础支持物和小分子添加物两部分,所述基础支持物为添加有N2添加剂和B27添加剂的DMEM/F12培养基,所述小分子添加物由7~15μmol/Lγ分泌酶抑制剂DAPT、17~23ng/mL抑瘤素OSM、7~15μmol/L地塞米松以及7~15μmol/L ATP竞争性ALK5抑制剂SB431542组成。
  3. 根据权利要求2所述的肝前体样细胞模型的建立方法,其特征在于:
    其中,步骤A中,所述WE培养基中血清的体积百分比为8%~12%,
    所述肝细胞转化增殖培养基包含基础支持物和小分子添加物两部分,所述基础支持物为改良型DMEM/F12培养基,该改良型DMEM/F12培养基中添加有N2添加剂、B27添加剂、0.5~1.5mmol/L丙酮酸钠以及5~50μg/mL抗坏血酸维生素C;所述小分子添加物由5~25ng/mL肝细胞生长因子HGF、5~25ng/mL表皮细胞生长因子EGF、5~20μmol/L ROCK激酶抑制剂Y27632、1~5μmol/L Wnt信号通路激动剂CHIR99021、0.5~2μmol/L TGF-β信号抑制剂A83-01、0.5~2μmol/L一磷酸鞘氨酸S1P以及2~10μmol/L吲哚乙酸LPA组成。
  4. 根据权利要求2所述的肝前体样细胞模型的建立方法,其特征在于:
    其中,步骤A中,贴壁后的人原代肝细胞在所述肝细胞转化增殖培养基中诱导培养7~14天得到所述肝前体样细胞,培养过程中隔天换液。
  5. 根据权利要求2所述的肝前体样细胞模型的建立方法,其特征在于:
    其中,步骤B中,所述单个细胞接种入低粘附细胞培养支持物中48小时后形成肝细胞球,在所述肝细胞分化培养基培养8~10天后得到所述三维分化后的功能肝细胞,
    在分化培养过程中每天进行换液。
  6. 权利要求1所述的肝前体样细胞模型在制备乙肝病毒感染细胞模型中的应用。
  7. 一种乙肝病毒感染细胞模型,其特征在于,该模型由权利要求1所述的肝前体样细胞模型和HBV病毒共培养而成,所述HBV病毒来自乙肝患者血清或HepG2.2.15细胞培养上清浓缩液,感染复数为300~350。
  8. 权利要求7所述的乙肝病毒感染细胞模型的制备方法,其特征在于,包括如下步骤:
    A.将所述肝前体样细胞模型与所述乙肝患者血清或HepG2.2.15细胞培养上清浓缩液共培养于添加有体积分数为1%的二甲基亚砜和体积分数为4%的聚乙二醇8000的肝细胞转化增殖培养基中;
    B.感染24小时后,使用培养基清洗三至四遍,随后每24小时换液,收集上清液存储于-80℃环境中备用。
  9. 权利要求7所述的乙肝病毒感染细胞模型在制备抗乙肝病毒药物中的用途。
  10. 一种抗乙肝病毒药物组合物,其特征在于,包括抗乙肝病毒活性组分以及药学上可接受的药物载体,所述抗乙肝病毒活性组分为针对HBV cccDNA的Cas9/sgRNAs腺病毒或Cas9/sgRNAs腺病毒与恩替卡韦的联合。
PCT/CN2018/120207 2018-09-20 2018-12-11 用于乙肝病毒感染的原代肝细胞来源的肝前体样细胞模型、制备方法及应用 WO2020056935A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811098237.2A CN109337858B (zh) 2018-09-20 2018-09-20 用于乙肝病毒感染的原代肝细胞来源的肝前体样细胞模型、制备方法及应用
CN201811098237.2 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020056935A1 true WO2020056935A1 (zh) 2020-03-26

Family

ID=65306206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120207 WO2020056935A1 (zh) 2018-09-20 2018-12-11 用于乙肝病毒感染的原代肝细胞来源的肝前体样细胞模型、制备方法及应用

Country Status (2)

Country Link
CN (1) CN109337858B (zh)
WO (1) WO2020056935A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522178A (zh) * 2020-11-27 2021-03-19 上海市东方医院(同济大学附属东方医院) 一种在体外长期培养和扩增成熟肝细胞的方法
CN115109740A (zh) * 2021-03-08 2022-09-27 上海赛立维生物科技有限公司 肝细胞调控制剂及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394391B (zh) * 2019-07-11 2022-12-06 上海赛立维生物科技有限公司 肝祖细胞样细胞库的构建方法及其制备的细胞株与应用
CN110438157B (zh) * 2019-08-05 2020-11-24 上海赛立维生物科技有限公司 肝前体样细胞系、构建方法以及在生物人工肝领域的应用
CN110904026B (zh) * 2019-11-18 2021-10-26 中国人民解放军第二军医大学 一种不同来源肝前体样细胞的制备方法及其应用
CN111206013A (zh) * 2020-02-13 2020-05-29 上海交通大学医学院附属仁济医院 一种长时间维持人原代肝细胞的功能状态的培养方法
CN113388569B (zh) * 2020-08-28 2022-05-17 广东乾晖生物科技有限公司 肝脏类器官的制备方法
CN115011550B (zh) * 2022-07-14 2024-04-26 广东乾晖生物科技有限公司 一种用于悬浮培养条件下诱导肝细胞分化成熟的诱导培养基以及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070148767A1 (en) * 2005-12-28 2007-06-28 Mei-Ju Yang Method of forming multicellular spheroids from the cultured cells
WO2012005760A1 (en) * 2010-06-30 2012-01-12 Miromatrix Medical Inc. Use of perfusion decellularized organs for matched recellularization
CN103097517A (zh) * 2010-06-11 2013-05-08 塞拉帝思股份公司 用于提高多能干细胞分化成肝细胞的3维支架
CN103237888A (zh) * 2010-07-29 2013-08-07 荷兰皇家科学院 肝脏的类器官、其用途以及获得它们的培养方法
CN105121632A (zh) * 2013-02-18 2015-12-02 大学健康网络 由多能干细胞生成肝细胞和胆管细胞的方法
CN105154386A (zh) * 2014-05-30 2015-12-16 中国人民解放军第二军医大学东方肝胆外科医院 人肝细胞长期维持和增殖传代培养的专用培养基和培养方法
CN105561342A (zh) * 2016-01-27 2016-05-11 苏州佰通生物科技有限公司 一种治疗乙肝的基因药物及其制备方法
CN106754636A (zh) * 2015-11-19 2017-05-31 中国人民解放军第二军医大学 体外诱导原代肝细胞胆管化并长期培养、扩增和分化的方法及其应用
CN108431209A (zh) * 2015-06-12 2018-08-21 新加坡科技研究局 肝脏干细胞的衍生和成熟肝细胞类型及其用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330099A (zh) * 2017-03-22 2018-07-27 上海赛立维生物科技有限公司 个性化肝细胞的培养和扩增方法及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070148767A1 (en) * 2005-12-28 2007-06-28 Mei-Ju Yang Method of forming multicellular spheroids from the cultured cells
CN103097517A (zh) * 2010-06-11 2013-05-08 塞拉帝思股份公司 用于提高多能干细胞分化成肝细胞的3维支架
WO2012005760A1 (en) * 2010-06-30 2012-01-12 Miromatrix Medical Inc. Use of perfusion decellularized organs for matched recellularization
CN103237888A (zh) * 2010-07-29 2013-08-07 荷兰皇家科学院 肝脏的类器官、其用途以及获得它们的培养方法
CN105121632A (zh) * 2013-02-18 2015-12-02 大学健康网络 由多能干细胞生成肝细胞和胆管细胞的方法
CN105154386A (zh) * 2014-05-30 2015-12-16 中国人民解放军第二军医大学东方肝胆外科医院 人肝细胞长期维持和增殖传代培养的专用培养基和培养方法
CN108431209A (zh) * 2015-06-12 2018-08-21 新加坡科技研究局 肝脏干细胞的衍生和成熟肝细胞类型及其用途
CN106754636A (zh) * 2015-11-19 2017-05-31 中国人民解放军第二军医大学 体外诱导原代肝细胞胆管化并长期培养、扩增和分化的方法及其应用
CN105561342A (zh) * 2016-01-27 2016-05-11 苏州佰通生物科技有限公司 一种治疗乙肝的基因药物及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FU, G. B. ET AL.: "Expansion and differentiation of human hepatocyte-derived liver progenitor- like cells and their use for the study of hepatotropic pathogens", CELL RESEARCH, vol. 29, no. 1, 25 October 2018 (2018-10-25), pages 8 - 22, XP036667414, ISSN: 1001-0602, DOI: 10.1038/s41422-018-0103-x *
WU, H. ET AL.: "Reversible transition between hepatocytes and liver progenitors for in vitro hepatocyte expansion", CELL RESEARCH, vol. 27, 4 April 2017 (2017-04-04), pages 709 - 712, XP055694181, ISSN: 1001-0602, DOI: 10.1038/cr.2017.47 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522178A (zh) * 2020-11-27 2021-03-19 上海市东方医院(同济大学附属东方医院) 一种在体外长期培养和扩增成熟肝细胞的方法
CN112522178B (zh) * 2020-11-27 2023-05-16 上海市东方医院(同济大学附属东方医院) 一种在体外长期培养和扩增成熟肝细胞的方法
CN115109740A (zh) * 2021-03-08 2022-09-27 上海赛立维生物科技有限公司 肝细胞调控制剂及其制备方法和应用

Also Published As

Publication number Publication date
CN109337858B (zh) 2022-03-15
CN109337858A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2020056935A1 (zh) 用于乙肝病毒感染的原代肝细胞来源的肝前体样细胞模型、制备方法及应用
Fu et al. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens
WO2015180636A1 (zh) 人肝细胞长期维持和增殖传代培养的专用培养基和培养方法
CN109234229B (zh) 从胎盘血管分离间充质干细胞的方法和所用消化酶组合物
CN112111444B (zh) 脐带间充质干细胞重编程为肝脏细胞的方法及所制备的肝脏类器官
Eubanks et al. Tooth storage, dental pulp stem cell isolation, and clinical scale expansion without animal serum
Bai et al. Comparison of human amniotic fluid-derived and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity
Okada et al. Hydrogen sulphide increases hepatic differentiation of human tooth pulp stem cells compared with human bone marrow stem cells
Shafiee et al. Coronavirus disease 2019: a tissue engineering and regenerative medicine perspective
TWI461535B (zh) 經分離之人類肝癌細胞株及化合物篩選方法
WO2011050672A1 (zh) 肝炎病毒体外培养模型及其构建方法与应用
Cai et al. ATP7B gene therapy of autologous reprogrammed hepatocytes alleviates copper accumulation in a mouse model of Wilson’s disease
CN110904026B (zh) 一种不同来源肝前体样细胞的制备方法及其应用
CN112920989A (zh) 一种肝脏类器官模型及其建立方法、用途以及治疗肝细胞铁死亡的药物组合物
CN103396985A (zh) 诱导人脐带间充质干细胞分化为肝细胞的方法与应用
CN103275933A (zh) 一种人肝癌细胞系hlcz01及其应用
BR112019009995A2 (pt) método para induzir a diferenciação de célula tronco em hepatócito, célula, composição, método para tratar um distúrbio, doença, ou malformação, método para produzir hepatócitos diferenciados a partir de células-tronco pluripotentes induzidas e método para produzir células endodermas a partir de células-tronco pluripotentes induzidas
Pettinato et al. Development of a scalable three-dimensional culture of human induced pluripotent stem cells-derived liver organoids
WO2023279826A1 (zh) 体外诱导人胎盘间充质干细胞分化为肝细胞的方法及含五味子乙素的组合物
Yao et al. Brown-like adipocyte progenitors derived from human ips cells: a new tool for anti-obesity drug discovery and cell-based therapy?
Jin et al. Hepatitis B virus infection and replication in primary cultured human granulosa cells
TWI486451B (zh) 經分離之人類肝癌細胞株及化合物篩選方法
CN103305467A (zh) 一种人肝癌细胞系hlcz02及其应用
Xiong et al. Induction of pluripotent stem cells by reprogramming human ocular fibroblasts under xeno-free conditions
RU2343194C2 (ru) Линия диплоидных клеток фибробластов легкого эмбриона человека для выделения, идентификации вирусов и получения диагностических и вакцинных препаратов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934079

Country of ref document: EP

Kind code of ref document: A1