WO2020054593A1 - 光学装置 - Google Patents
光学装置 Download PDFInfo
- Publication number
- WO2020054593A1 WO2020054593A1 PCT/JP2019/035127 JP2019035127W WO2020054593A1 WO 2020054593 A1 WO2020054593 A1 WO 2020054593A1 JP 2019035127 W JP2019035127 W JP 2019035127W WO 2020054593 A1 WO2020054593 A1 WO 2020054593A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical device
- gas
- semiconductor laser
- optical
- case
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/1462—Nozzles; Features related to nozzles
- B23K26/1464—Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02218—Material of the housings; Filling of the housings
- H01S5/0222—Gas-filled housings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02218—Material of the housings; Filling of the housings
- H01S5/0222—Gas-filled housings
- H01S5/02224—Gas-filled housings the gas comprising oxygen, e.g. for avoiding contamination of the light emitting facets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/023—Mount members, e.g. sub-mount members
- H01S5/02315—Support members, e.g. bases or carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0239—Combinations of electrical or optical elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02208—Mountings; Housings characterised by the shape of the housings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02253—Out-coupling of light using lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0235—Method for mounting laser chips
- H01S5/02355—Fixing laser chips on mounts
- H01S5/02365—Fixing laser chips on mounts by clamping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02476—Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
- H01S5/02492—CuW heat spreaders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/32308—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
- H01S5/32341—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
Definitions
- the present disclosure relates to an optical device including a semiconductor laser element.
- laser processing uses laser light
- non-contact processing and fine processing can be realized as compared with conventional methods.
- a direct diode laser system using a semiconductor laser element as a light source is highly efficient because it does not convert laser light.
- the output of the semiconductor laser device is several watts per emitter as a light emitting unit.
- an optical output of several hundred watts to several kilowatts is required. Therefore, when laser light is used for processing, for example, an array structure in which a large number of emitters are arranged is adopted for a semiconductor laser device.
- the semiconductor laser device having a plurality of multi-emitter structures a high-power laser beam can be obtained by combining laser beams output from the respective emitters.
- GaN GaN nitride
- the GaN-based semiconductor laser device suppresses contamination of the end face of the semiconductor laser device by hermetically sealing the inside of the package.
- the size of the semiconductor laser device having the multi-emitter structure is about 80 times as large as the size of the semiconductor laser device having the single-emitter structure. Therefore, it is costly to hermetically seal the entire semiconductor laser device. Therefore, a technique has been disclosed in which a gas is caused to flow in a package accommodating a semiconductor laser element to prevent contaminants from adhering to an end face of the semiconductor laser element (for example, see Patent Document 1).
- Patent Literature 1 when an optical component such as a lens is arranged at a position facing a light emitting surface of a semiconductor laser device at an interval of about 30 ⁇ m to 200 ⁇ m, the light of the semiconductor laser It is difficult to flow gas near the exit surface. Further, in the vicinity of the light emission surface of the semiconductor laser device, the gas is stagnant, so that contaminants are likely to accumulate.
- an optical component such as a lens
- the present disclosure provides an optical device capable of suppressing adhesion of a contaminant to an end face of a semiconductor laser element.
- An optical device includes a semiconductor laser element that emits laser light, and an optical device that is arranged to face a light emission surface from which the laser light is emitted and to be separated from the light emission surface.
- a semiconductor laser element that emits laser light
- an optical device that is arranged to face a light emission surface from which the laser light is emitted and to be separated from the light emission surface.
- a channel portion having a blowing port for blowing the gas.
- optical device According to the optical device according to the present disclosure, it is possible to suppress the attachment of contaminants to the end face of the semiconductor laser element.
- FIG. 1A is a top view showing the internal configuration of the optical device according to Embodiment 1.
- FIG. 1B is a side view showing the internal configuration of the optical device according to Embodiment 1.
- FIG. 1C is a partial side view illustrating the optical device according to the first embodiment.
- FIG. 1D is a partial front view showing the optical device according to the first embodiment.
- FIG. 2 is a graph showing a change in optical characteristics of the optical device according to the first embodiment.
- FIG. 3A is a partial side view showing the optical device according to the first modification of the first embodiment.
- FIG. 3B is a partial front view showing the optical device according to the first modification of the first embodiment.
- FIG. 4A is a partial side view showing an optical device according to Modification 2 of Embodiment 1.
- FIG. 1A is a top view showing the internal configuration of the optical device according to Embodiment 1.
- FIG. 1B is a side view showing the internal configuration of the optical device according to Embodiment 1.
- FIG. 4B is a partial front view illustrating the optical device according to the second modification of the first embodiment.
- FIG. 5A is a partial side view showing the optical device according to the third modification of the first embodiment.
- FIG. 5B is a partial front view showing the optical device according to the third modification of the first embodiment.
- FIG. 6 is a top view showing the internal configuration of the optical device according to the fourth modification of the first embodiment.
- FIG. 7 is a top view showing the internal configuration of the optical device according to the fifth modification of the first embodiment.
- FIG. 8 is a top view showing the internal configuration of the optical device according to the second embodiment.
- FIG. 9 is a partial top view showing the internal configuration of an optical device according to a modification of the second embodiment.
- FIG. 10 is a partial top view showing the internal configuration of the optical device according to the third embodiment.
- FIG. 11A is a partial side view illustrating the optical device according to the fourth embodiment.
- FIG. 11B is a partial perspective view showing the optical device according to Embodiment 4.
- FIG. 12A is a partial side view showing an optical device according to a first modification of the fourth embodiment.
- FIG. 12B is a partial perspective view showing the optical device according to the first modification of the fourth embodiment.
- FIG. 13A is a partial side view illustrating an optical device according to a second modification of the fourth embodiment.
- FIG. 13B is a partial perspective view showing the optical device according to the second modification of the fourth embodiment.
- FIG. 14A is a partial side view showing an optical device according to Modification 3 of Embodiment 4.
- FIG. 14B is a partial perspective view illustrating the optical device according to the third modification of the fourth embodiment.
- each figure is a schematic diagram, and is not necessarily strictly illustrated. In addition, redundant description of substantially the same configuration may be omitted.
- the X axis, the Y axis, and the Z axis indicate three axes of a three-dimensional orthogonal coordinate system.
- the positive direction of the Z axis is defined as the upper direction
- the negative direction of the Z axis is defined as the lower direction.
- the "thickness direction” means the thickness direction of the optical device, is a direction perpendicular to the mounting surface on which the semiconductor laser element is mounted in the case
- the plan view means It refers to the direction when viewed from a direction perpendicular to the mounting surface.
- front view refers to when the light emitting surface is viewed from a direction perpendicular to the light emitting surface of the semiconductor laser device.
- the terms “above” and “below” do not refer to an upward direction (vertically upward) and a downward direction (vertically downward) in absolute spatial recognition.
- the terms “upper” and “lower” refer not only to the case where two components are spaced apart from each other and there is another component between the two components, but also It is also applied to a case where two components are arranged in close contact with each other and come into contact with each other.
- parallel includes substantially parallel, that is, includes a manufacturing error.
- a rectangular parallelepiped includes a substantially rectangular parallelepiped, that is, a manufacturing error.
- FIG. 1A is a top view illustrating an internal configuration of the optical device 100 according to the first embodiment.
- FIG. 1B is a side view showing the internal configuration of the optical device 100 according to the first embodiment.
- FIG. 1C is a partial side view showing the optical device 100 according to the first embodiment.
- FIG. 1D is a partial front view showing the optical device 100 according to the first embodiment. 1C and 1D show only some of the components of the optical device 100.
- the optical device 100 is a laser module that emits a laser beam 210.
- the optical device 100 is used, for example, as a laser light source of a processing device for laser processing.
- the optical device 100 is a so-called CAN package laser diode module.
- the optical device 100 includes an optical device 220, an optical component 130, a case 140, a flow path (cylindrical body) 150, and a gas supply device 190.
- the optical device 220 emits the laser light 210.
- the optical device 220 includes the semiconductor laser element 110, the submount substrate 120, and the support members 160 and 161.
- the semiconductor laser element 110 is a semiconductor element that emits the laser light 210.
- the semiconductor laser element 110 emits, for example, blue light to ultraviolet light having a wavelength of about 350 nm to 450 nm.
- the semiconductor laser element 110 may be a single-emitter laser diode having a single light-emitting point, or may be a multi-emitter laser diode having a plurality of light-emitting points.
- the semiconductor laser device 110 is, for example, a GaN-based or InGaN-based semiconductor.
- the submount substrate 120 is a substrate on which the semiconductor laser device 110 is mounted.
- the material used for the submount substrate 120 is not particularly limited, but is, for example, a metal material such as CuW or a ceramic material such as AlN.
- the support members 160 and 161 are members that support the semiconductor laser device 110 mounted on the submount substrate 120 on the case 140.
- the support members 160 and 161 are arranged in the case 140 so as to sandwich the semiconductor laser device 110 mounted on the submount substrate 120 from above and below.
- the material used for the support members 160 and 161 is not particularly limited, but is, for example, a metal material such as Cu. Note that a material having high thermal conductivity is preferably used for the support members 160 and 161. Thereby, heat generated in the semiconductor laser element 110 is easily radiated to the case 140.
- the sub-mount substrate 120 and the support members 160 and 161 may be formed with a metal wiring electrically connected to the semiconductor laser element 110.
- power is supplied to the semiconductor laser element 110 via the metal wiring and a wiring (not shown) formed in the case 140.
- the optical component 130 controls the light distribution of the laser light 210 emitted from the semiconductor laser element 110 and transmits the laser light 210.
- the optical component 130 is disposed on the case 140 so as to face the light emitting surface 111 of the semiconductor laser device 110 and to be separated therefrom.
- the optical component 130 is, for example, a lens.
- the optical component 130 is a collimating lens.
- the optical component 130 is a plano-convex lens having one flat surface, but may be a biconvex lens or a concave lens, and has a light-transmitting property to transmit the laser light 210, and It is sufficient that the light distribution of the laser light 210 can be controlled, and the shape is not particularly limited.
- the material used for the optical component 130 may be arbitrarily selected, such as a glass material and a resin material. Further, the optical component 130 may be fixed to the case 140 in a state where the optical component 130 is arranged on a lens holder or the like.
- the case 140 is a housing that houses the semiconductor laser element 110 and the optical component 130.
- the shape of the case 140 is not particularly limited, but is, for example, a rectangular parallelepiped shape, a cylindrical shape, or the like.
- a light-transmitting window 230 that transmits the laser light 210 is formed on a surface of the case 140 that faces the semiconductor laser element 110 (the surface on the X-axis positive direction side in the present embodiment).
- the light transmitting window 230 is a light transmitting member that transmits the laser light 210, and is fixed to the case 140 by being fitted into a through hole formed in the case 140, for example.
- the material used for the case 140 is not particularly limited, but is, for example, metal.
- the case 140 has an inlet 141 for introducing gas into the case 140 and an exhaust port 142 for discharging gas inside the case 140 to the outside of the case 140.
- case 140 has one inlet 141 and one outlet 142, but may have a plurality of inlets 141 and outlets 142, respectively.
- the introduction port 141 and the exhaust port 142 may be formed at arbitrary positions of the case 140, respectively.
- the case 140 has, for example, an inlet 141 behind the case 140 (in the X-axis negative direction side in the present embodiment) and an exhaust port 142 in front of the case 140 (in the present embodiment, the X-axis positive direction).
- the inlet 141 may be provided in front of the case 140 and the exhaust port 142 may be provided behind the case 140.
- the case 140 has, for example, an inlet 141 above the case 140 (in this embodiment, on the positive side of the Z-axis), and an exhaust port 142 below the case 140 (in this embodiment, the Z-axis). (Negative direction side), or the introduction port 141 may be provided below the case 140 and the exhaust port 142 may be provided above the case 140. Further, the introduction port 141 and the exhaust port 142 may be formed on opposing surfaces of the case 140.
- the flow path (cylindrical body) 150 has a flow path 152 that guides the gas introduced from the inlet 141 of the case 140 to the semiconductor laser element 110. More specifically, the flow path section 150 has a flow path 152 that guides the gas introduced from the inlet 141 of the case 140 to the light emitting surface 111 of the semiconductor laser device 110.
- the gas introduced from the introduction port 141 passes through a flow path 152 formed inside the cylinder 150, is blown out from the blowing port 151, and is blown to the light emitting surface 111.
- the blowing port 151 is provided in the cylindrical body 150 for blowing gas onto the light emitting surface 111 of the semiconductor laser device 110.
- the flow path (cylindrical body) 150 provided in the optical device 100 has the blowing port 151.
- the blowing port 151 is located between the semiconductor laser element 110 and the optical component 130.
- the emission direction of the gas emitted from the blowing port 151 is a direction crossing the light emission surface 111.
- the tubular body 150 is formed with a flow path 152 that connects the introduction port 141 and the blowing port 151 and through which gas passes.
- the cylindrical body 150 has a blowing port 151 and is connected to the introduction port 141.
- one end of the cylinder 150 is connected to a gas supply device 190 which is a device for supplying gas.
- the gas supplied from the gas supply device 190 passes through the introduction port 141 and the flow path 152 and is discharged from the blowing port 151 located on the other end side of the cylindrical body 150, so that the light emission of the semiconductor laser element 110 is performed. It is sprayed on the surface 111.
- the cylindrical body 150 extends from the inlet 141 located on the X-axis negative direction side of the case 140 beyond the light-emitting surface 111 to the X-axis positive direction side, and further has a light-emitting surface. It is bent toward X-axis negative direction side and Z-axis negative direction side toward 111.
- the gas supply device 190 supplies the gas to the blowing port 151 through the inlet 141, specifically, the inlet 141 and the channel 152 of the cylindrical body 150 in order to introduce the gas into the case 140. It is.
- the gas supply device 190 is, for example, a pump that supplies gas.
- the blowing port 151 may be formed directly on the case 140. In this case, the introduction port 141 and the blowing port 151 may be the same.
- cylindrical body 150 may be formed integrally with case 140 or may be formed separately from case 140.
- FIG. 2 is a graph showing a change in optical characteristics of the optical device 100 according to the first embodiment. Specifically, the graph shown in FIG. 2 shows an example of a change in light output with respect to elapsed time.
- the experimental results of the optical characteristics of the optical device 100 according to the first embodiment are indicated by solid lines, and the experiment of the comparative example in which the case 140 is hermetically sealed with dry air without blowing the gas onto the light emitting surface 111. The result is indicated by a broken line.
- the experimental results of the comparative example in which the case 140 is not hermetically sealed and the gas is not blown to the light emitting surface 111 are indicated by the two-dot chain line.
- dry air which is a gas used in the optical device 100 indicated by a solid line in the graph of FIG. 2, is air from which moisture in the air has been removed, that is, gas containing N 2 and O 2 .
- Each experimental result shows a value normalized by the optical output when the elapsed time is 0.
- the optical device 100 can obtain the same optical characteristics as those of the hermetically sealed comparative example without hermetically sealing. This is considered to be because the light exit surface 111 of the optical device 100 was sprayed with gas, so that dirt did not adhere and the end face was kept clean.
- the gas blown to the light emitting surface 111 may further include at least one of nitrogen, hydrogen, helium, argon, a halogen-based gas, and a halogen compound gas in addition to oxygen.
- the optical device 100 includes the semiconductor laser element 110 that emits the laser light 210 and the light emission surface 111 that faces the light emission surface 111 from which the laser light 210 is emitted.
- An optical component 130 spaced apart from the semiconductor device 110, a case 140 containing the semiconductor laser element 110 and the optical component 130, and having an inlet 141 for introducing a gas and an exhaust port 142 for discharging a gas, and a semiconductor 140.
- the laser device 110 includes a flow path (cylindrical body) 150 having a blowing port 151 for blowing the gas introduced from the introducing port 141. More specifically, the flow path unit 150 has a blowing port 151 for blowing the gas introduced from the inlet port 141 onto the light emitting surface 111 of the semiconductor laser element 1110.
- the components such as the optical device 220 and the optical component 130 of the optical apparatus 100 may be fixed to the case 140 by a resin material containing Si, such as a silicone resin.
- a resin material containing Si such as a silicone resin.
- the semiconductor laser element 110 emits a short-wavelength laser beam 210 such as blue-violet
- a substance such as siloxane made of Si vaporized in the case 140 may react with the laser beam 210 and be solidified. If these contaminants adhere to the light emitting surface 111, the optical characteristics of the semiconductor laser device 110 deteriorate. Therefore, the optical device 100 is provided with a blowing port 151 for blowing gas to the light emitting surface 111.
- the gas can be blown onto the light emitting surface 111 directly or jointly, for example, by blowing the gas blown to the semiconductor laser element 110 around the light emitting surface 111.
- the flow path unit 150 has a blowing port 151 for blowing the gas introduced from the inlet port 141 on the light emitting surface 111 of the semiconductor laser element 1110, so that the semiconductor laser element 110 and the optical component 130 Can be directly blown onto the end face of the semiconductor laser element 110, that is, the light emission surface 111, when the semiconductor laser device is disposed close to the case 140 with an interval of about 30 ⁇ m to 200 ⁇ m.
- the adhesion of the contaminant to the end face of the semiconductor laser element 110, that is, the light emitting face 111 can be further suppressed. Therefore, a decrease in the optical characteristics of the semiconductor laser element 110, specifically, a decrease in the optical output with respect to the time shown in FIG. 2 can be suppressed.
- the blowing port 151 is located between the semiconductor laser element 110 and the optical component 130.
- the cylindrical body 150 connects the introduction port 141 and the blowing port 151 and has a flow path 152 through which gas passes.
- the gas introduced from the inlet 141 can be effectively guided to the light emitting surface 111 of the semiconductor laser device 110. Therefore, the attachment of contaminants to the light emitting surface 111 of the semiconductor laser device 110 can be further suppressed.
- the gas blown to the light emitting surface 111 of the semiconductor laser element 110 contains oxygen.
- the gas blown to the light emitting surface 111 of the semiconductor laser element 110 further includes at least one of nitrogen, hydrogen, helium, argon, a halogen-based gas, and a halogen compound gas in addition to the acid element. .
- FIG. 3A is a partial side view showing an optical device 100a according to a first modification of the first embodiment.
- FIG. 3B is a partial front view showing the optical device 100a according to the first modification of the first embodiment.
- 3A and 3B show components corresponding to FIGS. 1C and 1D, and some components such as the case 140 are omitted.
- the blowing port 151 is disposed on the lower side.
- the location where the blowing port 151 is arranged may be any position as long as the gas can be blown onto the light emitting surface 111.
- FIG. 4A is a partial side view showing an optical device 100b according to a second modification of the first embodiment.
- FIG. 4B is a partial front view showing the optical device 100b according to the second modification of the first embodiment.
- 4A and 4B show components corresponding to FIGS. 1C and 1D, and some components such as the case 140 are omitted.
- the optical device 100b has a plurality of spray ports 151.
- the optical device 100b includes a plurality of cylindrical bodies 150 having the blowing ports 151.
- a plurality of spray ports 151 may be provided in the optical device 100b.
- FIG. 5A is a partial side view showing an optical device 100c according to a third modification of the first embodiment.
- FIG. 5B is a partial front view showing the optical device according to the third modification of the first embodiment.
- 5A and 5B show components corresponding to FIGS. 1C and 1D, and some components such as the case 140 are omitted.
- the blowing port 151 is disposed on the lower side.
- the optical device 100c has a plurality of spray ports 151.
- the optical device 100c has a plurality of cylindrical bodies (not shown) having the blowing ports 151.
- FIG. 6 is a top view showing the internal configuration of the optical device according to the fourth modification of the first embodiment.
- FIG. 6 is a top view corresponding to FIG. 1A.
- the cylindrical body 150 provided in the optical device 100d does not pass above the optical device 220 but extends so as to pass laterally of the optical device (in the present embodiment, in the Y-axis direction). are doing.
- the blowing port 151 is arranged on the side. As described above, the position and posture at which the cylinder 150 is provided in the case 140 may be arbitrarily selected.
- FIG. 7 is a top view showing the internal configuration of the optical device according to the fifth modification of the first embodiment.
- FIG. 7 is a top view corresponding to FIG. 1A.
- the cylindrical body 150a provided in the optical device 100e has two blowing ports 151. Specifically, one end of the cylindrical body 150a is connected to the gas supply device 190, extends in two branches from the gas supply device 190, each does not pass above the optical device 220, and It extends so as to pass on different sides of the optical device 220. As described above, the cylindrical body 150a may have a plurality of spray ports 151.
- the gas is directly blown onto a wider area of the light emitting surface 111 of the semiconductor laser device 110.
- the attachment of contaminants to the light emitting surface 111 of the semiconductor laser element 110 can be further suppressed.
- the provision of the plurality of blowing ports 151 makes it easier to blow gas to each of the plurality of light emitting points. Therefore, for example, even when the semiconductor laser element 110 is a multi-emitter, it is possible to suppress the attachment of contaminants to each of a plurality of light emitting points.
- the position where the plurality of spray ports 151 are provided in each case 140 may be arbitrarily selected.
- the same reference numerals are given to substantially the same components as those of the optical device 100 according to the first embodiment, and the overlapping description will be omitted or simplified. May be.
- FIG. 8 is a top view showing the internal configuration of the optical device 101 according to the second embodiment.
- FIG. 8 is a top view corresponding to FIG. 1A.
- the optical device 101 is a laser module that emits a laser beam 210.
- the optical device 101 is used, for example, as a laser light source of a processing device for laser processing.
- the optical device 101 is a so-called CAN package laser diode module.
- the optical device 101 includes a plurality of optical devices 220, a plurality of optical components 130, an optical component 131, a case 140, and a cylindrical body 150b having a plurality of blowing ports 151.
- the optical device 101 according to the second embodiment is different from the optical device 100 according to the first embodiment in that it includes a plurality of optical devices 220, that is, a plurality of semiconductor laser elements 110, and each of the plurality of semiconductor laser elements 110 The difference is that the optical component 130 and the blowing port 151 are provided corresponding to the above.
- Each of the plurality of optical components 130 corresponds to each of the plurality of optical devices 220, specifically, each of the plurality of semiconductor laser elements 110, and faces the light emitting surface 111 and is spaced apart from the light emitting surface 111. It is arranged in case 140.
- Each of the plurality of blowing ports 151 has a one-to-one correspondence with each of the plurality of optical devices 220, specifically, each of the plurality of semiconductor laser elements 110, and is provided on the cylindrical body 150 b in order to blow gas onto the light emitting surface 111. Is provided. That is, the cylindrical body 150b has a plurality of blowing ports 151. Further, the plurality of blowing ports 151 are arranged so as to correspond to the plurality of semiconductor laser elements 110 one by one. In the present embodiment, one cylindrical body 150 b of the optical device 101 has the blowing port 151.
- the cylindrical body 150b connects the introduction port 141 and the plurality of spray ports 151, and has a flow passage through which gas passes. Specifically, the cylindrical body 150b has a plurality of spray ports 151, and a part thereof is disposed at the inlet port 141.
- One end of the cylinder 150b is connected to a gas supply device 190 which is a device for supplying gas.
- the gas supplied from the gas supply device 190 passes through a flow path formed inside the cylindrical body 150b, and is discharged from a plurality of blowing ports 151 located on the other end side of the cylindrical body 150b. Are sprayed on the light emitting surface 111 of the semiconductor laser element 110 included in each of the optical devices 220.
- One end of the cylindrical body 150 b is connected to the gas supply device 190, branches from the gas supply device 190 into a plurality of optical devices 220, and extends so that each passes through the side of the optical device 220. are doing.
- the optical device 101 may include a single cylinder 150b having a plurality of blowing ports 151 like the cylinder 150b, or a plurality of cylinders such as the optical device 100c illustrated in FIGS. 5A and 5B. May be provided, and a gas may be blown from the blowing port 151 of each cylindrical body 150 to the light emitting surface 111 of the semiconductor laser element 110 provided in each optical device 220.
- the optical component 131 is a lens that condenses the laser light 210 that has passed through the plurality of optical components 130 and emits the condensed laser light 210a toward the light transmitting window 230.
- the optical component 131 is a plano-convex lens having one flat surface, but may be a biconvex lens or a concave lens, has a light transmitting property to transmit the laser light 210, and has a light distribution of the laser light 210. Can be controlled, and the shape is not particularly limited.
- the material used for the optical component 130 may be arbitrarily selected, such as a glass material and a resin material.
- the optical component 131 may be fixed to the case 140 in a state where the optical component 131 is disposed on a lens holder or the like.
- the optical device 101 includes the plurality of semiconductor laser elements 110, and the plurality of blowing ports 151 correspond to the plurality of semiconductor laser elements 110 one by one. Are located.
- a gas can be blown onto each light emitting surface 111 of the plurality of semiconductor laser elements 110.
- the plurality of semiconductor laser elements 110 are provided as in the optical device 101, it is possible to suppress the attachment of contaminants to the light emitting surfaces 111 of the plurality of semiconductor laser elements 110.
- FIG. 9 is a partial top view showing the internal configuration of an optical device 101a according to a modification of the second embodiment.
- FIG. 9 is a top view corresponding to FIG. 1A.
- the optical device 101a includes a plurality of optical devices 220, a plurality of optical components 130, an optical component 131, a case 140, and a plurality of blowing ports 151, like the optical device 101.
- the optical device 101a includes a plurality of optical devices 220, that is, a plurality of semiconductor laser elements 110 (see, for example, FIG. 1B), and corresponds to each of the plurality of semiconductor laser elements 110.
- the optical component 130 and the blowing port 151 are provided.
- Each of the plurality of blowing ports 151 corresponds to each of the plurality of optical devices 220, specifically, each of the plurality of semiconductor laser elements 110, and is a hole for blowing gas to the light emitting surface 111. That is, the plurality of blowing ports 151 are arranged so as to correspond to the plurality of semiconductor laser elements 110a one by one.
- one cylinder 150c provided in the optical device 101 includes a plurality of blowing ports 151.
- the cylindrical body 150c connects the introduction port 141 and the plurality of spray ports 151, and has a flow passage through which gas passes. Specifically, the cylindrical body 150 c has a plurality of spray ports 151, and a part is arranged in the inlet port 141.
- One end of the cylindrical body 150c is connected to a gas supply device 190 which is a device for supplying gas.
- the gas supplied from the gas supply device 190 passes through a flow path formed inside the cylindrical body 150c, and is discharged from a plurality of blowing ports 151 located on the other end side of the cylindrical body 150c, so that a plurality of gases are discharged.
- One end of the cylindrical body 150 c is connected to the gas supply device 190, the number of the optical devices 220 is diverged from the gas supply device 190 to a plurality of optical devices 220, and each extends so as to pass above the optical device 220. ing. With such a configuration, it is also possible to blow a gas onto each of the light emitting surfaces 111 of the plurality of semiconductor laser elements 110.
- the same components as those of the optical device 100 according to the first embodiment are denoted by the same reference numerals, and redundant description is omitted or simplified. May be.
- FIG. 10 is a partial top view showing the internal configuration of the optical device 102 according to the third embodiment.
- the optical device 102 includes an optical device 220, an optical component 130, a case 140, and a cylinder 150 having a blowing port 151. Further, the optical device 102 includes a circulation device 180.
- the circulation device 180 is connected to the introduction port 141 and the exhaust port 142 outside the case 140, exhausts gas from the exhaust port 142, and introduces the gas exhausted from the exhaust port 142 from the introduction port 141.
- the gas in 140 is circulated.
- the circulation device 180 includes, for example, a gas supply device 180a, a cylinder 180b, and a cylinder 180c.
- the gas supply device 180a circulates the gas in the case 140 by supplying the gas supplied from the cylinder 180c to the cylinder 180b.
- the gas supply device 180a includes, for example, a pump for circulating gas and a filter for removing dust in the gas.
- the cylindrical body 180b has a passage through which gas passes, one end of which is connected to the gas supply device 180a, and the other end of which is connected to the inlet 141.
- the cylinder 180b extends from the introduction port 141 and is connected to the blowing port 151.
- the cylindrical body 180c has a channel through which gas passes, one end of which is connected to the exhaust port 142 of the case 140, and the other end of which is connected to the gas supply device 180a.
- the optical device 102 includes the semiconductor laser element 110, the optical component 130, the case 140, the flow path 150, the inlet 141, the outlet 142, And a circulating device 180 for circulating the gas inside the case 140 by exhausting the gas from the exhaust port 142 and introducing the gas exhausted from the exhaust port 142 through the introduction port 141.
- gas is directly blown onto the light emitting surface 111 of the semiconductor laser device 110.
- the concentration of the component such as the oxygen concentration in the gas
- the concentration of the adjusted concentration is adjusted by performing the concentration adjustment of the component in the gas once. Gas can be continuously blown to the light emitting surface 111.
- the same components as those of the optical device 100 according to the first embodiment are denoted by the same reference numerals, and redundant description is omitted or simplified. May be.
- FIG. 11A is a partial side view showing the optical device 103 according to the fourth embodiment.
- FIG. 11B is a partial perspective view showing the optical device 103 according to the fourth embodiment.
- FIG. 11A shows components corresponding to FIG. 1C, and some components such as the case 140 are omitted. Also, in FIG. 11B, some of the components such as the case 140 are not shown.
- the optical device 103 is a laser module that emits a laser beam 210.
- the optical device 100 is used, for example, as a laser light source of a processing device for laser processing.
- the optical device 103 is a so-called CAN package laser diode module.
- the optical device 103 includes an optical device 220, an optical component 130, a case 140, and a plurality of cylinders 150 having a blowing port 151.
- the optical device 103 is, like the optical device 100, a case 140 (for example, see FIG. 1A) that houses the optical device 220 and the optical component 130, and a gas supply device that supplies gas to the cylinder 150. 190.
- the optical component 130 included in the optical device 103 is fixed to the support member 160 by the fixing member 170.
- the fixing member 170 fixes the optical component 130 to the support member 160.
- the fixing member 170 is, for example, a resin material.
- the fixing member 170 has, for example, a through hole 171 formed therein.
- the gas blown out from the blowing port 151 passes through the through hole 171. Further, the through hole 171 is located between the light emitting surface 111 of the semiconductor laser device 110 and the blowing port 151.
- the optical device 103 includes a plurality of cylindrical bodies 150, that is, a plurality of blowing ports 151 and a fixing member 170 in which a plurality of through holes 171 are formed corresponding to the plurality of blowing ports 151.
- the optical device 103 may include one cylinder 150, that is, one blowing port 151, and a fixing member 170 in which one through hole is formed.
- the optical device 103 includes a plurality of cylindrical bodies 150, that is, a plurality of blowing ports 151, and a fixing member in which one long through hole 171 is formed in a top view corresponding to the plurality of blowing ports 151. 170 may be provided.
- the through-hole 171 and the cylindrical body 150 may be connected.
- the opening on the light emission surface 111 side of the through hole 171 may be the blowing port 151.
- the optical device 103 includes the semiconductor laser element 110, the optical component 130, the case 140, and the flow path 150, and further includes the semiconductor laser element 110, the case 140 And a fixing member 170 for fixing the optical component 130 to the supporting member 160.
- the relative position between the semiconductor laser element 110 and the optical component 130 is relatively small. Positional relationship is less likely to shift. Therefore, according to the optical device 103, it becomes easy to manufacture the laser light 210 emitted from the optical device 103 so that the light distribution characteristics of the laser light 210 have desired light distribution characteristics.
- the fixing member 170 is formed with a through hole 171 through which the gas blown out from the blowing port 151 passes, and the through hole 171 is located between the light emitting surface 111 and the blowing port 151. .
- a gas can be directly blown through the through hole 171 to the light emitting surface 111 of the semiconductor laser element 110 regardless of where the blowing port 151 and the fixing member 170 are arranged.
- FIG. 12A is a partial side view showing an optical device 103a according to a first modification of the fourth embodiment.
- FIG. 12B is a partial perspective view showing the optical device 103a according to the first modification of the fourth embodiment.
- FIG. 12A shows components corresponding to FIG. 1C, and some components such as the case 140 are omitted. Also, in FIG. 12B, some of the components such as the case 140 are not shown.
- the optical device 103a includes an optical device 220, an optical component 130, a case 140, and a cylindrical body 150 having a blowing port 151.
- the optical device 103a has a case 140 (for example, see FIG. 1A) that accommodates the optical device 220 and the optical component 130 and a gas supply device that supplies gas to the cylinder 150, like the optical device 100. 190.
- the optical component 130 included in the optical device 103a is fixed to the support member 160 by the fixing member 170a.
- the fixing member 170a fixes the optical component 130 to the support member 160.
- the fixing member 170a is, for example, a resin material.
- the fixing member 170a does not have a through hole.
- the blowing port 151 is arranged on the side of the semiconductor laser element 110, and a gas is blown from the side to the light emitting surface 111 of the semiconductor laser element 110. According to such a configuration, even when a through hole is not formed in fixing member 170, gas can be blown onto light emitting surface 111 of semiconductor laser element 110.
- FIG. 13A is a partial side view showing an optical device 103b according to a second modification of the fourth embodiment.
- FIG. 13B is a partial perspective view showing an optical device 103b according to a second modification of the fourth embodiment.
- FIG. 13A shows components corresponding to FIG. 1C, and some components such as the case 140 are omitted. Also, in FIG. 13B, some of the components such as the case 140 are not shown.
- the optical device 103b includes an optical device 220, an optical component 130, a case 140, and a cylindrical body 150 having a blowing port 151.
- the optical device 103b includes a case 140 (for example, see FIG. 1A) that accommodates the optical device 220 and the optical component 130 and a gas supply device that supplies gas to the cylinder 150, similarly to the optical device 100. 190 (see, for example, FIG. 1A).
- the optical component 130 included in the optical device 103b is fixed to the support member 161 by the fixing member 170b. As described above, the optical component 130 may be fixed to either the support member 160 or the support member 161. Of course, the optical component 130 may be fixed to both the support member 160 and the support member 161.
- the fixing member 170b fixes the optical component 130 to the support member 161.
- the fixing member 170b is, for example, a resin material.
- the fixing member 170b does not have a through hole.
- the blowing port 151 is arranged on the side of the semiconductor laser element 110, and a gas is blown from the side to the light emitting surface 111 of the semiconductor laser element 110. According to such a configuration, gas can be blown onto the light emitting surface 111 of the semiconductor laser element 110 even when no through hole is formed in the fixing member 170a.
- FIG. 14A is a partial side view showing an optical device 103c according to a third modification of the fourth embodiment.
- FIG. 14B is a partial perspective view showing the optical device 103c according to the third modification of the fourth embodiment.
- FIG. 14A shows components corresponding to FIG. 1C, and some components such as the case 140 are omitted. Also in FIG. 14B, some of the components such as the case 140 are not shown.
- the optical device 103c includes an optical device 220, an optical component 130, a case 140, and a cylindrical body 150 having a blowing port 151.
- the optical device 103c has a case 140 (for example, see FIG. 1A) that accommodates the optical device 220 and the optical component 130 and a gas supply device that supplies gas to the cylinder 150, similarly to the optical device 100. 190 (see, for example, FIG. 1A).
- the optical component 130 included in the optical device 103c is fixed to the support member 160 by two fixing members 170c.
- the optical component 130 may be fixed by the plurality of fixing members 170c.
- the two fixing members 170c are arranged apart from each other. Thus, gas can be blown to the light emitting surface 111 through the through hole 171a which is a gap formed between the two fixing members 170c.
- the fixing member 170c is, for example, a resin material.
- optical device As described above, the optical device according to one or more aspects has been described based on the embodiment, but the present disclosure is not limited to this embodiment. Unless departing from the gist of the present disclosure, various modifications conceivable to those skilled in the art may be applied to the present embodiment, or a form constructed by combining components in different embodiments may be implemented in one or more aspects. It may be included in the range.
- the flow path having the blowing port is described as a cylindrical body, but the shape of the flow path is not particularly limited.
- the flow path portion may be formed by combining one or more plate bodies formed inside the case.
- the flow path portion may be not a cylindrical shape but a tub shape, and may have any shape as long as the gas can be guided from the inlet of the case to the light emitting surface of the semiconductor laser element.
- the light emitting surface has been described as the light emitting surface of the semiconductor laser device.
- a light transmitting member that transmits laser light is further provided between the semiconductor laser device and the optical component.
- the light emitting surface may be a surface of the light transmitting member facing the optical component.
- the optical device of the present disclosure is used, for example, as a laser light source used for laser processing.
- Optical device 110 Semiconductor laser element 111 End face (light emitting face) 120 Submount substrate 130, 131 Optical component 140 Case 141 Inlet 142 Exhaust 150, 150a, 150b, 150c, 180b, 180c Channel (cylindrical body) 151 spray port 152 flow path 160, 161 support member 170, 170a, 170b, 170c fixing member 171, 171a through hole 180 circulation device 180a, 190 gas supply device 210, 210a laser light 220 optical device 230 light transmitting window
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Semiconductor Lasers (AREA)
- Laser Beam Processing (AREA)
Abstract
光学装置(100)は、レーザ光(210)が射出される光出射面(111)に対向して、且つ、光出射面(111)と離間して配置された光学部品(130)と、半導体レーザ素子(110)及び光学部品(130)を収容し、気体を導入するための導入口(141)及び気体を排出するための排気口(142)を有するケース(140)と、半導体レーザ素子(110)に、導入口(141)から導入された気体を吹き付けるための吹付口(151)を有する流路部(筒体)(150)と、を備える。
Description
本開示は、半導体レーザ素子を備える光学装置に関する。
なお、本開示は、平成28年度、国立研究開発法人新エネルギー・産業技術総合開発機構 「高輝度・高効率次世代レーザー技術開発/次々世代加工に向けた新規光源・要素技術開発/高効率加工用GaN系高出力・高ビーム品質半導体レーザーの開発」委託研究、産業技術力強化法第17条の適用を受ける特許出願である。
レーザ加工は、レーザ光を用いるため、従来工法と比較して非接触加工、微細加工を実現することができる。特に、半導体レーザ素子を光源として用いるダイレクトダイオードレーザ方式は、レーザ光を変換しないため高効率である。しかしながら、半導体レーザ素子の出力は、発光部であるエミッタ1個あたり、数ワットである。また、加工用途としてレーザ光を用いるためには、数百ワット~数キロワットの光出力が必要である。そのため、加工用途としてレーザ光を用いる場合、例えば、半導体レーザ素子には、複数のエミッタを多数並べたアレイ構造が採用される。複数のマルチエミッタ構造の半導体レーザ素子によれば、それぞれのエミッタから出力されるレーザ光を合成することで、大出力のレーザ光を得ることができる。
例えば、GaN(Gallium Nitride)系半導体レーザ素子を用いた光学装置において、GaN系半導体レーザ素子を収容しているパッケージ内に存在する低分子シロキサンがレーザ光と反応し、半導体レーザ素子の端面に付着することで、レーザ特性を劣化させる問題がある。そのため、GaN系半導体レーザ素子は、パッケージ内を気密封止することによって、半導体レーザ素子端面の汚染を抑制している。
しかしながら、マルチエミッタ構造の半導体レーザ素子のサイズは、シングルエミッタ構造の半導体レーザ素子のサイズと比較して、80倍程度の大きさとなる。そのため、半導体レーザ素子全体を気密封止するためには、コストがかかる。そこで、半導体レーザ素子を収容しているパッケージ内に気体を流すことで、汚染物質が半導体レーザ素子端面に付着することを抑制する技術が開示されている(例えば、特許文献1参照)。
しかしながら、特許文献1に開示されている技術では、半導体レーザ素子の光出射面に対向する位置にレンズ等の光学部品を30μm~200μm程度の間を空けて配置した場合に、半導体レーザ素子の光出射面近傍に気体を流すことは困難である。さらに、半導体レーザ素子の光出射面近傍では、気体が停滞するために、汚染物質が溜まりやすい。
本開示は、半導体レーザ素子端面への汚染物質の付着を抑制できる光学装置を提供する。
本開示の一態様に係る光学装置は、レーザ光を射出する半導体レーザ素子と、前記レーザ光が射出される光出射面に対向して、且つ、前記光出射面と離間して配置された光学部品と、前記半導体レーザ素子及び前記光学部品を収容し、気体を導入するための導入口及び前記気体を排出するための排気口を有するケースと、前記半導体レーザ素子に、前記導入口から導入された前記気体を吹き付けるための吹付口を有する流路部と、を備える。
本開示に係る光学装置によれば、半導体レーザ素子端面への汚染物質の付着を抑制できる。
以下、本開示の実施の形態について図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。本開示は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素について説明される。
なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、実質的に同一の構成に対する重複説明は省略する場合がある。
また、本明細書及び図面において、X軸、Y軸及びZ軸は、三次元直交座標系の三軸を示している。各実施の形態では、Z軸正方向を上方とし、Z軸負方向を下方としている。また、本明細書において、「厚み方向」とは、光学装置の厚み方向を意味し、ケースにおける半導体レーザ素子が実装される実装面に垂直な方向のことであり、「平面視」とは、当該実装面に対して垂直な方向から見たときのことをいう。また、「正面視」とは、半導体レーザ素子の光出射面に垂直な方向から、当該光出射面を見たときのことをいう。
また、各図において、気体の流れを破線矢印で模式的に示している。
また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではない。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。
なお、本明細書において、平行、直方体等の位置関係、形状等を示す場合、完全な平行、完全な直方体を含むだけでなく、製造上の誤差を含むことを意味する。例えば、平行とは、略平行すなわち製造上の誤差を含む。また、例えば、直方体とは、略直方体すなわち製造上の誤差を含む。
(実施の形態1)
[構成]
図1Aは、実施の形態1に係る光学装置100の内部構成を示す上面図である。図1Bは、実施の形態1に係る光学装置100の内部構成を示す側面図である。図1Cは、実施の形態1に係る光学装置100を示す部分側面図である。図1Dは、実施の形態1に係る光学装置100を示す部分正面図である。なお、図1C及び図1Dには、光学装置100の構成要素のうちの一部のみを図示している。
[構成]
図1Aは、実施の形態1に係る光学装置100の内部構成を示す上面図である。図1Bは、実施の形態1に係る光学装置100の内部構成を示す側面図である。図1Cは、実施の形態1に係る光学装置100を示す部分側面図である。図1Dは、実施の形態1に係る光学装置100を示す部分正面図である。なお、図1C及び図1Dには、光学装置100の構成要素のうちの一部のみを図示している。
光学装置100は、レーザ光210を射出するレーザモジュールである。光学装置100は、例えば、レーザ加工用の加工装置のレーザ光源として用いられる。本実施の形態では、光学装置100は、いわゆるCANパッケージのレーザダイオードモジュールである。
光学装置100は、光学デバイス220と、光学部品130と、ケース140と、流路部(筒体)150と、気体供給装置190と、を備える。
光学デバイス220は、レーザ光210を射出する。具体的には、光学デバイス220は、半導体レーザ素子110と、サブマウント基板120と、支持部材160、161と、を備える。
半導体レーザ素子110は、レーザ光210を射出する半導体素子である。半導体レーザ素子110は、例えば、波長が350nm~450nm程度の青色光~紫外光を射出する。半導体レーザ素子110は、発光点が1つのシングルエミッタレーザダイオードでもよいし、発光点が複数のマルチエミッタレーザダイオードでもよい。半導体レーザ素子110は、例えば、GaN系、InGaN系の半導体である。
サブマウント基板120は、半導体レーザ素子110が実装される基板である。サブマウント基板120に採用される材料は、特に限定されないが、例えば、CuW等の金属材料または、AlN等のセラミクス材料である。
支持部材160、161は、サブマウント基板120に実装された半導体レーザ素子110をケース140に支持する部材である。支持部材160、161は、サブマウント基板120に実装された半導体レーザ素子110を上下方向から挟むようにケース140に配置されている。支持部材160、161に採用される材料は、特に限定されないが、例えば、Cu等の金属材料である。なお、支持部材160、161には、熱伝導性の高い材料が採用されるとよい。これにより、半導体レーザ素子110で発生した熱が、ケース140へ放熱されやすくなる。
また、サブマウント基板120及び支持部材160、161には、半導体レーザ素子110と電気的に接続する金属配線が形成されていてもよい。例えば、半導体レーザ素子110には、当該金属配線及びケース140に形成された図示しない配線等を介して、電力が供給される。
光学部品130は、半導体レーザ素子110が射出したレーザ光210の配光を制御して透過する。光学部品130は、半導体レーザ素子110の光出射面111に対向して、且つ、離間してケース140に配置されている。光学部品130は、例えば、レンズである。本実施の形態では、光学部品130は、コリメートレンズである。なお、本実施の形態では、光学部品130は、一方の面が平坦な平凸レンズであるが、両凸レンズでもよいし、凹レンズでもよく、レーザ光210を透過する光透過性を有し、且つ、レーザ光210の配光を制御できればよく、形状は特に限定されない。また、光学部品130に採用される材料は、ガラス材料、樹脂材料等、任意に選択されてよい。また、光学部品130は、レンズホルダ等に配置された状態でケース140に固定されてもよい。
ケース140は、半導体レーザ素子110及び光学部品130を収容する筐体である。ケース140の形状は、特に限定されないが、例えば、直方体形状、円筒形状等である。ケース140における、半導体レーザ素子110と対向する面(本実施の形態では、X軸正方向側の面)には、レーザ光210を透過する透光窓230が形成されている。透光窓230は、レーザ光210を透過する透光部材であり、例えば、ケース140に形成された貫通孔に嵌め込まれてケース140に固定されている。ケース140に採用される材料は、特に限定されないが、例えば、金属である。
また、ケース140には、ケース140の内部に気体を導入するための導入口141と、ケース140の内部の気体をケース140の外部に排出するための排気口142とを有する。なお、本実施の形態では、ケース140は、導入口141と排気口142とをそれぞれ1つずつ有するが、導入口141と排気口142とをそれぞれ複数有してもよい。また、導入口141と排気口142とは、それぞれケース140の任意の位置に形成されていてもよい。ケース140は、例えば、導入口141をケース140の後方(本実施の形態では、X軸負方向側)に有し、排気口142をケース140の前方(本実施の形態では、X軸正方向側)に有してもよいし、或いは、導入口141をケース140の前方に有し、排気口142をケース140の後方に有してもよい。また、ケース140は、例えば、導入口141をケース140の上方(本実施の形態では、Z軸正方向側)に有し、排気口142をケース140の下方(本実施の形態では、Z軸負方向側)に有してもよいし、或いは、導入口141をケース140の下方に有し、排気口142をケース140の上方に有してもよい。また、導入口141及び排気口142は、ケース140の対向する面に形成されてもよい。
流路部(筒体)150は、ケース140が有する導入口141から導入された気体を半導体レーザ素子110に導く流路152を有する。より具体的には、流路部150は、ケース140が有する導入口141から導入された気体を半導体レーザ素子110における光出射面111に導く流路152を有する。導入口141から導入された気体は、筒体150の内部に形成された流路152を通過して吹付口151から噴き出されて光出射面111に吹き付けられる。吹付口151は、半導体レーザ素子110の光出射面111に気体を吹き付けるために筒体150に設けられている。本実施の形態では、光学装置100が備える流路部(筒体)150が吹付口151を有する。図1B及び図1Cに示すように、吹付口151は、例えば、光出射面111に平行な方向から見た場合に、半導体レーザ素子110と光学部品130との間に位置する。例えば、吹付口151から出射される気体の出射方向は、光出射面111と交差する方向である。
筒体150には、導入口141と吹付口151とを接続し、気体が通過する流路152が形成されている。具体的には、筒体150は、吹付口151を有し、導入口141に接続されている。より具体的には、筒体150の一端は、気体を供給する装置である気体供給装置190に接続されている。気体供給装置190から供給された気体は、導入口141及び流路152を通過して、筒体150の他端側に位置する吹付口151から排出されることで、半導体レーザ素子110の光出射面111に吹き付けられる。本実施の形態では、筒体150は、ケース140のX軸負方向側に位置する導入口141からX軸正方向側に光出射面111を超えて延在しており、さらに、光出射面111に向けてX軸負方向側且つZ軸負方向側に折れ曲がっている。
気体供給装置190は、ケース140の内部に気体を導入させるために、導入口141、具体的には、導入口141及び筒体150の流路152を介して吹付口151に気体を供給する装置である。気体供給装置190は、例えば、気体を供給するポンプである。
なお、吹付口151は、ケース140に直接形成されていてもよい。この場合、導入口141と、吹付口151とは、同一でもよい。
また、筒体150は、ケース140と一体に形成されていてもよいし、ケース140とは別体として形成されていてもよい。
[光学特性]
続いて、光学装置100の光学特性について、比較例とともに説明する。
続いて、光学装置100の光学特性について、比較例とともに説明する。
図2は、実施の形態1に係る光学装置100の光学特性の変化を示すグラフである。具体的には、図2に示すグラフは、経過時間に対する光出力の変化の一例を示している。また、図2には、実施の形態1に係る光学装置100の光学特性の実験結果を実線で示し、気体を光出射面111に吹き付けず、ケース140をドライエアで気密封止した比較例の実験結果を破線で示している。またケース140を気密封止せず、且つ、光出射面111に気体を吹き付けない比較例の実験結果を二点鎖線で示している。なお、図2のグラフに実線で示す光学装置100に用いられる気体であるドライエアは、空気中の水分を取り除いた大気、つまり、N2とO2とを含む気体である。なお、各実験結果は、それぞれ経過時間が0のときの光出力で規格化した値を示している。
図2に示す結果から、光学装置100によれば、気密封止することなく、気密封止した比較例と同様の光学特性を得られていることが分かる。これは、光学装置100が備える光出射面111が気体を吹き付けることで、汚れが付着しないために端面がきれいに保たれていたためと考えられる。光出射面111に吹き付けられる気体は、酸素に加えて、さらに、窒素、水素、ヘリウム、アルゴン、ハロゲン系ガス、及び、ハロゲン化合物ガスのうち少なくとも1種を含むとよい。
[効果等]
以上のように、実施の形態1に係る光学装置100は、レーザ光210を射出する半導体レーザ素子110と、レーザ光210が射出される光出射面111に対向して、且つ、光出射面111と離間して配置された光学部品130と、半導体レーザ素子110及び光学部品130を収容し、気体を導入するための導入口141及び気体を排出するための排気口142を有するケース140と、半導体レーザ素子110に、導入口141から導入された気体を吹き付けるための吹付口151を有する流路部(筒体)150と、を備える。より具体的には、流路部150は、半導体レーザ素子1110における光出射面111に、導入口141から導入された気体を吹き付けるための吹付口151を有する。
以上のように、実施の形態1に係る光学装置100は、レーザ光210を射出する半導体レーザ素子110と、レーザ光210が射出される光出射面111に対向して、且つ、光出射面111と離間して配置された光学部品130と、半導体レーザ素子110及び光学部品130を収容し、気体を導入するための導入口141及び気体を排出するための排気口142を有するケース140と、半導体レーザ素子110に、導入口141から導入された気体を吹き付けるための吹付口151を有する流路部(筒体)150と、を備える。より具体的には、流路部150は、半導体レーザ素子1110における光出射面111に、導入口141から導入された気体を吹き付けるための吹付口151を有する。
光学装置100の光学デバイス220、光学部品130等の構成要素は、例えば、シリコーン樹脂等のSiを含む樹脂材料によって、ケース140に固定される場合がある。また、半導体レーザ素子110が青紫色等の短波長のレーザ光210を射出する場合、ケース140内で気化したSiからなるシロキサン等の物質が、レーザ光210と反応して固化する場合がある。これら、光出射面111に汚染物質として付着すると、半導体レーザ素子110の光学特性が劣化する。そこで、光学装置100は、光出射面111に気体を吹き付ける吹付口151を備える。
このような構成によれば、例えば、半導体レーザ素子110と光学部品130とが30μm~200μm程度の間を空けて近接してケース140内に配置される場合において、半導体レーザ素子110端面、つまり、光出射面111に気体を直接又は関節的に、例えば、半導体レーザ素子110に吹き付けられた気体が光出射面111に回り込む等して、吹き付けることができる。これにより、半導体レーザ素子110端面、つまり、光出射面111への汚染物質の付着を抑制できる。そのため、半導体レーザ素子110の光学特性、具体的には、図2に示す時間に対する光出力の低下を抑制できる。また、半導体レーザ素子110に気体が吹き付けられることで、半導体レーザ素子110の温度の上昇を抑制、つまり、半導体レーザ素子110の温度を下げることができる。そのため、半導体レーザ素子110の光出力が安定する等、光特性の変化を抑制できる。
また、例えば、流路部150が、半導体レーザ素子1110における光出射面111に、導入口141から導入された気体を吹き付けるための吹付口151を有することで、半導体レーザ素子110と光学部品130とが30μm~200μm程度の間を空けて近接してケース140内に配置される場合において、半導体レーザ素子110端面、つまり、光出射面111に気体を直接吹き付けることができる。これにより、半導体レーザ素子110端面、つまり、光出射面111への汚染物質の付着をさらに抑制できる。そのため、半導体レーザ素子110の光学特性、具体的には、図2に示す時間に対する光出力の低下を抑制できる。
また、例えば、光出射面111に平行な方向から見た場合に、吹付口151は、半導体レーザ素子110と光学部品130との間に位置する。
このような構成によれば、半導体レーザ素子110の光出射面111に効果的に吹き付けることができる。これにより、半導体レーザ素子110の光出射面111への汚染物質の付着をより抑制できる。
また、例えば、筒体150は、導入口141と吹付口151とを接続し、気体が通過する流路152を有する。
このような構成によれば、導入口141から導入された気体を効果的に半導体レーザ素子110の光出射面111まで導くことができる。そのため、半導体レーザ素子110の光出射面111への汚染物質の付着をより抑制できる。
また、例えば、半導体レーザ素子110の光出射面111に吹き付けられる気体は、酸素を含む。
これにより、光学装置100における時間に対する光出力の劣化を抑制することができる。
また、例えば、半導体レーザ素子110の光出射面111に吹き付けられる気体は、酸素子加えて、さらに、窒素、水素、ヘリウム、アルゴン、ハロゲン系ガス、及び、ハロゲン化合物ガスの内少なくとも1種を含む。
これらのように、酸素の他に、不活性ガスが採用されることで、光学装置100における時間に対する光出力の劣化を抑制することができる。また、これらの気体は、熱伝導性も高い。熱伝導性の高い気体が採用されることで、半導体レーザ素子110の光出射面111への汚染物質の付着を抑制し、且つ、半導体レーザ素子110で発生した熱を、半導体レーザ素子110から放熱させやすくすることができる。
[変形例1]
図3Aは、実施の形態1の変形例1に係る光学装置100aを示す部分側面図である。図3Bは、実施の形態1の変形例1に係る光学装置100aを示す部分正面図である。なお、図3A及び図3Bには、図1C及び図1Dに対応する構成要素を示しており、ケース140等の構成要素の一部を省略して示している。
図3Aは、実施の形態1の変形例1に係る光学装置100aを示す部分側面図である。図3Bは、実施の形態1の変形例1に係る光学装置100aを示す部分正面図である。なお、図3A及び図3Bには、図1C及び図1Dに対応する構成要素を示しており、ケース140等の構成要素の一部を省略して示している。
図3A及び図3Bに示すように、光学装置100aにおいては、吹付口151は下方側に配置されている。このように、吹付口151が配置される箇所は、光出射面111に気体を吹き付けられる位置であればよい。
[変形例2]
図4Aは、実施の形態1の変形例2に係る光学装置100bを示す部分側面図である。図4Bは、実施の形態1の変形例2に係る光学装置100bを示す部分正面図である。なお、図4A及び図4Bには、図1C及び図1Dに対応する構成要素を示しており、ケース140等の構成要素の一部を省略して示している。
図4Aは、実施の形態1の変形例2に係る光学装置100bを示す部分側面図である。図4Bは、実施の形態1の変形例2に係る光学装置100bを示す部分正面図である。なお、図4A及び図4Bには、図1C及び図1Dに対応する構成要素を示しており、ケース140等の構成要素の一部を省略して示している。
図4A及び図4Bに示すように、光学装置100bは、吹付口151を複数有する。例えば、光学装置100bは、吹付口151を有する筒体150を複数有する。このように、吹付口151は、光学装置100bに複数設けられてもよい。
[変形例3]
図5Aは、実施の形態1の変形例3に係る光学装置100cを示す部分側面図である。図5Bは、実施の形態1の変形例3に係る光学装置を示す部分正面図である。なお、図5A及び図5Bには、図1C及び図1Dに対応する構成要素を示しており、ケース140等の構成要素の一部を省略して示している。
図5Aは、実施の形態1の変形例3に係る光学装置100cを示す部分側面図である。図5Bは、実施の形態1の変形例3に係る光学装置を示す部分正面図である。なお、図5A及び図5Bには、図1C及び図1Dに対応する構成要素を示しており、ケース140等の構成要素の一部を省略して示している。
図5A及び図5Bに示すように、光学装置100cにおいては、吹付口151は下方側に配置されている。また、光学装置100cは、吹付口151を複数有する。例えば、光学装置100cは、吹付口151を有する図示しない筒体を複数有する。このように、実施の形態及び変形例に示す構成は、任意に組み合わされてよい。
[変形例4]
図6は、実施の形態1の変形例4に係る光学装置の内部構成を示す上面図である。なお、図6は、図1Aに対応する上面図である。
図6は、実施の形態1の変形例4に係る光学装置の内部構成を示す上面図である。なお、図6は、図1Aに対応する上面図である。
図6に示すように、光学装置100dが備える筒体150は、光学デバイス220の上方を通過せず、光学デバイスの側方(本実施の形態では、Y軸方向)を通過するように延在している。また、光学装置100dにおいては、吹付口151は側方側に配置されている。このように、筒体150がケース140内で設けられる位置及び姿勢は、任意に選択されてよい。
[変形例5]
図7は、実施の形態1の変形例5に係る光学装置の内部構成を示す上面図である。なお、図7は、図1Aに対応する上面図である。
図7は、実施の形態1の変形例5に係る光学装置の内部構成を示す上面図である。なお、図7は、図1Aに対応する上面図である。
図7に示すように、光学装置100eが備える筒体150aは、2つの吹付口151を有する。具体的には、筒体150aは、一端が気体供給装置190と接続し、気体供給装置190から二つ分岐して延在し、それぞれが光学デバイス220の上方を通過せず、且つ、それぞれが光学デバイス220の互いに異なる側方を通過するように延在している。このように、筒体150aは、複数の吹付口151を有してもよい。
このような構成によれば、半導体レーザ素子110の光出射面111のより広い面積に気体が直接吹き付けられることとなる。これにより、半導体レーザ素子110の光出射面111への汚染物質の付着をより抑制できる。特に、半導体レーザ素子110として複数の発光点を有するマルチエミッタが採用される場合、吹付口151が複数設けられることで、複数の発光点のそれぞれに気体を吹き付けやすくすることができる。そのため、例えば、半導体レーザ素子110がマルチエミッタの場合においても、複数の発光点それぞれへの汚染物質の付着を抑制できる。
なお、複数の吹付口151がそれぞれのケース140内で設けられる位置は、任意に選択されてよい。
(実施の形態2)
続いて、図8及び図9を参照して、実施の形態2に係る光学装置について説明する。
続いて、図8及び図9を参照して、実施の形態2に係る光学装置について説明する。
なお、実施の形態2に係る光学装置の説明においては、実施の形態1に係る光学装置100と実質的に同一の構成に関しては同一の符号を付しており、重複する説明は省略又は簡略化する場合がある。
[構成]
図8は、実施の形態2に係る光学装置101の内部構成を示す上面図である。なお、図8は、図1Aに対応する上面図である。
図8は、実施の形態2に係る光学装置101の内部構成を示す上面図である。なお、図8は、図1Aに対応する上面図である。
光学装置101は、レーザ光210を射出するレーザモジュールである。光学装置101は、例えば、レーザ加工用の加工装置のレーザ光源として用いられる。本実施の形態では、光学装置101は、いわゆるCANパッケージのレーザダイオードモジュールである。
光学装置101は、複数の光学デバイス220と、複数の光学部品130と、光学部品131と、ケース140と、複数の吹付口151を有する筒体150bと、を備える。実施の形態2に係る光学装置101は、実施の形態1に係る光学装置100とは、複数の光学デバイス220、つまり、複数の半導体レーザ素子110を備え、且つ、複数の半導体レーザ素子110のそれぞれに対応して光学部品130及び吹付口151が設けられている点が異なる。
複数の光学部品130のそれぞれは、複数の光学デバイス220、具体的には、複数の半導体レーザ素子110のそれぞれに1対1で対応し、光出射面111に対向して、且つ、離間してケース140に配置されている。
複数の吹付口151のそれぞれは、複数の光学デバイス220、具体的には、複数の半導体レーザ素子110のそれぞれに1対1で対応し、光出射面111に気体を吹き付けるために筒体150bに設けられている。つまり、筒体150bは、複数の吹付口151を有する。さらに、複数の吹付口151は、それぞれ複数の半導体レーザ素子110のそれぞれに1対1で対応するように配置されている。本実施の形態では、光学装置101が備える1つの筒体150bが吹付口151を備える。
筒体150bは、導入口141と複数の吹付口151とを接続し、気体が通過する流路を内部に有する。具体的には、筒体150bは、複数の吹付口151を有し、導入口141に一部が配置されている。筒体150bの一端は、気体を供給する装置である気体供給装置190に接続されている。気体供給装置190から供給された気体は、筒体150bの内部に形成された流路を通過して、筒体150bの他端側に位置する複数の吹付口151から排出されることで、複数の光学デバイス220のそれぞれが有する半導体レーザ素子110の光出射面111に吹き付けられる。
筒体150bは、一端が気体供給装置190と接続し、気体供給装置190から光学デバイス220の数だけ複数に分岐して延在し、それぞれが光学デバイス220の側方を通過するように延在している。
なお、光学装置101は、筒体150bのように、複数の吹付口151を有する1つの筒体150bを備えてもよいし、例えば、図5A及び図5Bに示す光学装置100cのように、複数の筒体150を備え、それぞれの筒体150の吹付口151からそれぞれの光学デバイス220が備える半導体レーザ素子110の光出射面111に気体を吹き付けてもよい。
光学部品131は、複数の光学部品130を通過したレーザ光210を集光し、集光したレーザ光210aを透光窓230に向けて出射するレンズである。なお、光学部品131は、一方の面が平坦な平凸レンズであるが、両凸レンズでもよいし、凹レンズでもよく、レーザ光210を透過する光透過性を有し、且つ、レーザ光210の配光を制御できればよく、形状は特に限定されない。また、光学部品130に採用される材料は、ガラス材料、樹脂材料等、任意に選択されてよい。また、光学部品131は、レンズホルダ等に配置された状態でケース140に固定されてもよい。
[効果等]
以上のように、実施の形態2に係る光学装置101は、半導体レーザ素子110を複数有し、複数の吹付口151は、それぞれ複数の半導体レーザ素子110のそれぞれに1対1で対応するように配置されている。
以上のように、実施の形態2に係る光学装置101は、半導体レーザ素子110を複数有し、複数の吹付口151は、それぞれ複数の半導体レーザ素子110のそれぞれに1対1で対応するように配置されている。
このような構成によれば、複数の半導体レーザ素子110のそれぞれの光出射面111に気体を吹き付けることができる。これにより、光学装置101のように、複数の半導体レーザ素子110が備えられる場合においても、複数の半導体レーザ素子110のそれぞれの光出射面111への汚染物質の付着を抑制できる。
[変形例]
図9は、実施の形態2の変形例に係る光学装置101aの内部構成を示す部分上面図である。なお、図9は、図1Aに対応する上面図である。
図9は、実施の形態2の変形例に係る光学装置101aの内部構成を示す部分上面図である。なお、図9は、図1Aに対応する上面図である。
光学装置101aは、光学装置101と同様に、複数の光学デバイス220と、複数の光学部品130と、光学部品131と、ケース140と、複数の吹付口151と、を備える。また、光学装置101aは、光学装置101と同様に、複数の光学デバイス220、つまり、複数の半導体レーザ素子110(例えば、図1B参照)を備え、且つ、複数の半導体レーザ素子110のそれぞれに対応して光学部品130及び吹付口151が設けられている。
複数の吹付口151のそれぞれは、複数の光学デバイス220、具体的には、複数の半導体レーザ素子110のそれぞれに1対1で対応し、光出射面111に気体を吹き付けるための孔である。つまり、複数の吹付口151は、それぞれ複数の半導体レーザ素子110aのそれぞれに1対1で対応するように配置されている。本変形例では、光学装置101が備える1つの筒体150cが複数の吹付口151を備える。
筒体150cは、導入口141と複数の吹付口151とを接続し、気体が通過する流路を内部に有する。具体的には、筒体150cは、複数の吹付口151を有し、導入口141に一部が配置されている。筒体150cの一端は、気体を供給する装置である気体供給装置190に接続されている。気体供給装置190から供給された気体は、筒体150cの内部に形成された流路を通過して、筒体150cの他端側に位置する複数の吹付口151から排出されることで、複数の光学デバイス220のそれぞれが有する半導体レーザ素子110の光出射面111に吹き付けられる。
筒体150cは、一端が気体供給装置190と接続し、気体供給装置190から光学デバイス220の数だけ複数に分岐して延在し、それぞれが光学デバイス220の上方を通過するように延在している。このような構成によってもまた、複数の半導体レーザ素子110のそれぞれの光出射面111に気体を吹き付けることができる。
(実施の形態3)
続いて、図10を参照して、実施の形態3に係る光学装置について説明する。
続いて、図10を参照して、実施の形態3に係る光学装置について説明する。
なお、実施の形態3に係る光学装置の説明においては、実施の形態1に係る光学装置100と実質的に同一の構成に関しては同一の符号を付しており、重複する説明は省略又は簡略化する場合がある。
[構成]
図10は、実施の形態3に係る光学装置102の内部構成を示す部分上面図である。
図10は、実施の形態3に係る光学装置102の内部構成を示す部分上面図である。
光学装置102は、光学デバイス220と、光学部品130と、ケース140と、吹付口151を有する筒体150と、を備える。また、光学装置102は、循環装置180を備える。
循環装置180は、導入口141と排気口142とにケース140の外部で接続し、排気口142から気体を排気させ、排気口142から排気させた気体を導入口141から導入させることで、ケース140内の気体を循環させる。循環装置180は、例えば、気体供給装置180aと、筒体180bと、筒体180cと、を備える。
気体供給装置180aは、筒体180cから供給された気体を筒体180bへ供給させることで、ケース140内の気体を循環させる。気体供給装置180aは、例えば、気体を循環させるためのポンプと気体中のごみを取り除くためのフィルタとを備える。
筒体180bは、内部に気体が通過する流路を有し、一端が気体供給装置180aと接続され、他端が導入口141と接続されている。本実施の形態では、筒体180bは、導入口141から延在して吹付口151と接続されている。
筒体180cは、内部に気体が通過する流路を有し、一端がケース140の排気口142と接続され、他端が気体供給装置180aと接続されている。
[効果等]
以上のように、実施の形態3に係る光学装置102は、半導体レーザ素子110と、光学部品130と、ケース140と、流路部150と、を備え、さらに、導入口141と排気口142とにケース140の外部で接続し、排気口142から気体を排気させ、排気口142から排気させた気体を導入口141から導入させることで、ケース140内の気体を循環させる循環装置180を備える。
以上のように、実施の形態3に係る光学装置102は、半導体レーザ素子110と、光学部品130と、ケース140と、流路部150と、を備え、さらに、導入口141と排気口142とにケース140の外部で接続し、排気口142から気体を排気させ、排気口142から排気させた気体を導入口141から導入させることで、ケース140内の気体を循環させる循環装置180を備える。
このような構成によれば、半導体レーザ素子110の光出射面111に気体が直接吹き付けられる。これにより、半導体レーザ素子110の光出射面111への汚染物質の付着を抑制できる。また、ケース140内の気体を循環して用いることで、例えば、気体中の酸素濃度等の成分濃度を調整する場合には、気体中の成分の濃度調整を一度行うことで、調整した濃度の気体を光出射面111に吹き付け続けることができる。
(実施の形態4)
続いて、図11A~図14Bを参照して、実施の形態4に係る光学装置について説明する。
続いて、図11A~図14Bを参照して、実施の形態4に係る光学装置について説明する。
なお、実施の形態4に係る光学装置の説明においては、実施の形態1に係る光学装置100と実質的に同一の構成に関しては同一の符号を付しており、重複する説明は省略又は簡略化する場合がある。
[構成]
図11Aは、実施の形態4に係る光学装置103を示す部分側面図である。図11Bは、実施の形態4に係る光学装置103を示す部分斜視図である。
図11Aは、実施の形態4に係る光学装置103を示す部分側面図である。図11Bは、実施の形態4に係る光学装置103を示す部分斜視図である。
なお、図11Aには、図1Cに対応する構成要素を示しており、ケース140等の構成要素の一部を省略して示している。また、図11Bにおいても、ケース140等の構成要素の一部の図示を省略して示している。
光学装置103は、レーザ光210を射出するレーザモジュールである。光学装置100は、例えば、レーザ加工用の加工装置のレーザ光源として用いられる。本実施の形態では、光学装置103は、いわゆるCANパッケージのレーザダイオードモジュールである。
光学装置103は、光学デバイス220と、光学部品130と、ケース140と、吹付口151を有する複数の筒体150と、を備える。なお、光学装置103は、図示しないが、光学装置100と同様に、光学デバイス220及び光学部品130を収容するケース140(例えば、図1A参照)と、筒体150に気体を供給する気体供給装置190と、を備えている。
また、光学装置103が備える光学部品130は、固定部材170により支持部材160に固定されている。
固定部材170は、光学部品130を支持部材160に固定する。固定部材170は、例えば、樹脂材料である。
また、固定部材170には、例えば、貫通孔171が形成されている。
貫通孔171は、吹付口151から噴き出された気体が通過する。また、貫通孔171は、半導体レーザ素子110の光出射面111と吹付口151との間に位置する。
なお、図11Bには、光学装置103が、複数の筒体150、つまり、複数の吹付口151と、複数の吹付口151に対応して複数の貫通孔171が形成されている固定部材170について例示している。光学装置103は、1つの筒体150、つまり、1つの吹付口151と、1つの貫通孔が形成されている固定部材170とを備えてもよい。
また、貫通孔171の形状、サイズ、及び、個数は、特に限定されるものではない。例えば、光学装置103は、複数の筒体150、つまり、複数の吹付口151と、複数の吹付口151に対応して、上面視で長尺な1つの貫通孔171が形成されている固定部材170を備えてもよい。
また、貫通孔171と筒体150とは、接続されていてもよい。この場合、貫通孔171における光出射面111側の開口が、吹付口151でもよい。
[効果等]
以上のように、実施の形態4に係る光学装置103は、半導体レーザ素子110と、光学部品130と、ケース140と、流路部150と、を備え、さらに、半導体レーザ素子110とケース140との間に配置され、半導体レーザ素子110を支持する支持部材160と、光学部品130を支持部材160に固定する固定部材170と、を備える。
以上のように、実施の形態4に係る光学装置103は、半導体レーザ素子110と、光学部品130と、ケース140と、流路部150と、を備え、さらに、半導体レーザ素子110とケース140との間に配置され、半導体レーザ素子110を支持する支持部材160と、光学部品130を支持部材160に固定する固定部材170と、を備える。
このような構成によれば、例えば、半導体レーザ素子110を備える光学デバイス220と、光学部品130とをそれぞれケース140内に配置する場合と比較して、半導体レーザ素子110と光学部品130との相対的な位置関係がずれにくくなる。そのため、光学装置103によれば、光学装置103から射出されるレーザ光210の配光特性を所望の配光特性にするように製造し易くなる。
また、例えば、固定部材170には、吹付口151から噴き出された気体が通過する貫通孔171が形成されており、貫通孔171は、光出射面111と吹付口151との間に位置する。
このような構成によれば、吹付口151及び固定部材170がどこに配置されても、貫通孔171を通過して半導体レーザ素子110の光出射面111に気体を直接吹き付けることができる。これにより、半導体レーザ素子110端面、つまり、光出射面111への汚染物質の付着を抑制できる。そのため、半導体レーザ素子110の光学特性、具体的には、図2に示す時間に対する光出力の低下を抑制できる。
[変形例1]
図12Aは、実施の形態4の変形例1に係る光学装置103aを示す部分側面図である。図12Bは、実施の形態4の変形例1に係る光学装置103aを示す部分斜視図である。
図12Aは、実施の形態4の変形例1に係る光学装置103aを示す部分側面図である。図12Bは、実施の形態4の変形例1に係る光学装置103aを示す部分斜視図である。
なお、図12Aには、図1Cに対応する構成要素を示しており、ケース140等の構成要素の一部を省略して示している。また、図12Bにおいても、ケース140等の構成要素の一部の図示を省略して示している。
光学装置103aは、光学デバイス220と、光学部品130と、ケース140と、吹付口151を有する筒体150と、を備える。なお、光学装置103aは、図示しないが、光学装置100と同様に、光学デバイス220及び光学部品130を収容するケース140(例えば、図1A参照)と、筒体150に気体を供給する気体供給装置190と、を備えている。
また、光学装置103aが備える光学部品130は、固定部材170aにより支持部材160に固定されている。
固定部材170aは、光学部品130を支持部材160に固定する。固定部材170aは、例えば、樹脂材料である。
また、固定部材170aには、固定部材170とは異なり、貫通孔が形成されていない。吹付口151は、半導体レーザ素子110の側方に配置されており、側方側から、半導体レーザ素子110の光出射面111に気体が吹き付けられる。このような構成によれば、固定部材170に貫通孔が形成されていな場合においても、半導体レーザ素子110の光出射面111に気体を吹き付けることができる。
[変形例2]
図13Aは、実施の形態4の変形例2に係る光学装置103bを示す部分側面図である。図13Bは、実施の形態4の変形例2に係る光学装置103bを示す部分斜視図である。
図13Aは、実施の形態4の変形例2に係る光学装置103bを示す部分側面図である。図13Bは、実施の形態4の変形例2に係る光学装置103bを示す部分斜視図である。
なお、図13Aには、図1Cに対応する構成要素を示しており、ケース140等の構成要素の一部を省略して示している。また、図13Bにおいても、ケース140等の構成要素の一部の図示を省略して示している。
光学装置103bは、光学デバイス220と、光学部品130と、ケース140と、吹付口151を有する筒体150と、を備える。なお、光学装置103bは、図示しないが、光学装置100と同様に、光学デバイス220及び光学部品130を収容するケース140(例えば、図1A参照)と、筒体150に気体を供給する気体供給装置190(例えば、図1A参照)と、を備えている。
また、光学装置103bが備える光学部品130は、固定部材170bにより支持部材161に固定されている。このように、光学部品130は、支持部材160及び支持部材161のいずれに固定されていてもよい。もちろん、光学部品130は、支持部材160及び支持部材161の両方に固定されていてもよい。
固定部材170bは、光学部品130を支持部材161に固定する。固定部材170bは、例えば、樹脂材料である。
また、固定部材170bには、固定部材170とは異なり、貫通孔が形成されていない。吹付口151は、半導体レーザ素子110の側方に配置されており、側方側から、半導体レーザ素子110の光出射面111に気体が吹き付けられる。このような構成によれば、固定部材170aに貫通孔が形成されていない場合においても、半導体レーザ素子110の光出射面111に気体を吹き付けることができる。
[変形例3]
図14Aは、実施の形態4の変形例3に係る光学装置103cを示す部分側面図である。図14Bは、実施の形態4の変形例3に係る光学装置103cを示す部分斜視図である。
図14Aは、実施の形態4の変形例3に係る光学装置103cを示す部分側面図である。図14Bは、実施の形態4の変形例3に係る光学装置103cを示す部分斜視図である。
なお、図14Aには、図1Cに対応する構成要素を示しており、ケース140等の構成要素の一部を省略して示している。また、図14Bにおいても、ケース140等の構成要素の一部の図示を省略して示している。
光学装置103cは、光学デバイス220と、光学部品130と、ケース140と、吹付口151を有する筒体150と、を備える。なお、光学装置103cは、図示しないが、光学装置100と同様に、光学デバイス220及び光学部品130を収容するケース140(例えば、図1A参照)と、筒体150に気体を供給する気体供給装置190(例えば、図1A参照)と、を備えている。
また、光学装置103cが備える光学部品130は、2つの固定部材170cにより支持部材160に固定されている。このように、光学部品130は、複数の固定部材170cによって固定されていてもよい。
また、2つの固定部材170cは、離間して配置されている。これにより、2つの固定部材170cの間に形成された隙間である貫通孔171aを介して、気体を光出射面111に吹き付けることができる。固定部材170cは、例えば、樹脂材料である。
(その他の実施の形態)
以上、一つ又は複数の態様に係る光学装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、又は、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つ又は複数の態様の範囲内に含まれてもよい。
以上、一つ又は複数の態様に係る光学装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、又は、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つ又は複数の態様の範囲内に含まれてもよい。
例えば、上記実施の形態では、吹付口を有する流路部は、筒体として説明したが、流路部の形状は、特に限定されない。例えば、流路部は、ケースの内部に形成される板体を1又は複数組み合わせることで形成されてもよい。また、流路部は、筒状ではなく、桶状でもよく、ケースの導入口から半導体レーザ素子の光出射面まで気体を導くことができる形状であればよい。
また、例えば、上記実施の形態では、光出射面を、半導体レーザ素子における光出射面として説明したが、例えば、半導体レーザ素子と光学部品との間に、レーザ光を透過する光透過部材がさらに配置される場合、光出射面を当該光透過部材における光学部品と対向する面としてもよい。
本開示の光学装置は、例えば、レーザ加工に用いられるレーザ光源として利用される。
100、100a、100b、100c、100d、100e、101、101a、102、103、103a、103b、103c 光学装置
110 半導体レーザ素子
111 端面(光出射面)
120 サブマウント基板
130、131 光学部品
140 ケース
141 導入口
142 排気口
150、150a、150b、150c、180b、180c 流路部(筒体)
151 吹付口
152 流路
160、161 支持部材
170、170a、170b、170c 固定部材
171、171a 貫通孔
180 循環装置
180a、190 気体供給装置
210、210a レーザ光
220 光学デバイス
230 透光窓
110 半導体レーザ素子
111 端面(光出射面)
120 サブマウント基板
130、131 光学部品
140 ケース
141 導入口
142 排気口
150、150a、150b、150c、180b、180c 流路部(筒体)
151 吹付口
152 流路
160、161 支持部材
170、170a、170b、170c 固定部材
171、171a 貫通孔
180 循環装置
180a、190 気体供給装置
210、210a レーザ光
220 光学デバイス
230 透光窓
Claims (11)
- レーザ光を射出する半導体レーザ素子と、
前記レーザ光が射出される光出射面に対向して、且つ、前記光出射面と離間して配置された光学部品と、
前記半導体レーザ素子及び前記光学部品を収容し、気体を導入するための導入口及び前記気体を排出するための排気口を有するケースと、
前記半導体レーザ素子に、前記導入口から導入された前記気体を吹き付けるための吹付口を有する流路部と、を備える
光学装置。 - 前記流路部は、前記光出射面に、前記導入口から導入された前記気体を吹き付けるための前記吹付口を有する
請求項1に記載の光学装置。 - 前記光出射面に平行な方向から見た場合に、前記吹付口は、前記半導体レーザ素子と前記光学部品との間に位置する
請求項1又は2に記載の光学装置。 - 前記流路部は、前記導入口と前記吹付口とを接続し、前記気体が通過する流路を有する筒体である
請求項1~3のいずれか1項に記載の光学装置。 - さらに、前記半導体レーザ素子と前記ケースとの間に配置され、前記半導体レーザ素子を支持する支持部材と、
前記光学部品を前記支持部材に固定する固定部材と、を備える
請求項1~4のいずれか1項に記載の光学装置。 - 前記固定部材には、前記吹付口から噴き出された前記気体が通過する貫通孔が形成されており、
前記貫通孔は、前記光出射面と前記吹付口との間に位置する
請求項5に記載の光学装置。 - 前記流路部は、前記吹付口を複数有する
請求項1~6のいずれか1項に記載の光学装置。 - 前記光学装置は、
前記半導体レーザ素子を複数有し、
複数の前記吹付口は、それぞれ複数の前記半導体レーザ素子のそれぞれに1対1で対応するように配置されている
請求項7に記載の光学装置。 - 前記気体は、酸素を含む
請求項1~8のいずれか1項に記載の光学装置。 - 前記気体は、さらに、窒素、水素、ヘリウム、アルゴン、ハロゲン系ガス、及び、ハロゲン化合物ガスの内少なくとも1種を含む
請求項9に記載の光学装置。 - さらに、前記導入口と前記排気口とに前記ケースの外部で接続し、前記排気口から前記気体を排気させ、前記排気口から排気させた前記気体を前記導入口から導入させることで、前記ケース内の前記気体を循環させる循環装置を備える
請求項1~10のいずれか1項に記載の光学装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020545981A JP7333330B2 (ja) | 2018-09-13 | 2019-09-06 | 光学装置 |
US17/274,778 US11476639B2 (en) | 2018-09-13 | 2019-09-06 | Optical apparatus |
DE112019004591.1T DE112019004591T5 (de) | 2018-09-13 | 2019-09-06 | Optische vorrichtung |
US17/944,601 US11894653B2 (en) | 2018-09-13 | 2022-09-14 | Optical apparatus |
JP2023131939A JP7494364B2 (ja) | 2018-09-13 | 2023-08-14 | 光学装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-171093 | 2018-09-13 | ||
JP2018171093 | 2018-09-13 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/274,778 A-371-Of-International US11476639B2 (en) | 2018-09-13 | 2019-09-06 | Optical apparatus |
US17/944,601 Continuation US11894653B2 (en) | 2018-09-13 | 2022-09-14 | Optical apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020054593A1 true WO2020054593A1 (ja) | 2020-03-19 |
Family
ID=69778038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/035127 WO2020054593A1 (ja) | 2018-09-13 | 2019-09-06 | 光学装置 |
Country Status (4)
Country | Link |
---|---|
US (2) | US11476639B2 (ja) |
JP (2) | JP7333330B2 (ja) |
DE (1) | DE112019004591T5 (ja) |
WO (1) | WO2020054593A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023188534A1 (ja) * | 2022-03-30 | 2023-10-05 | パナソニックホールディングス株式会社 | 半導体レーザ装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7333330B2 (ja) * | 2018-09-13 | 2023-08-24 | パナソニックホールディングス株式会社 | 光学装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58128781A (ja) * | 1982-01-27 | 1983-08-01 | Hitachi Ltd | レ−ザ発生装置 |
JPH038259A (ja) * | 1989-06-05 | 1991-01-16 | Komatsu Ltd | 高分子被覆発泡体電極及びその製造方法 |
JPH0366490A (ja) * | 1989-08-03 | 1991-03-22 | Topcon Corp | レーザ装置 |
JPH04196494A (ja) * | 1990-11-28 | 1992-07-16 | Okuma Mach Works Ltd | レーザ発振器 |
JPH08306993A (ja) * | 1995-04-28 | 1996-11-22 | Matsushita Electric Ind Co Ltd | レーザ発振装置 |
US5898522A (en) * | 1995-10-06 | 1999-04-27 | Herpst; Robert D. | Protective window assembly and method of using the same for a laser beam generating apparatus |
JP2000347234A (ja) * | 1999-06-08 | 2000-12-15 | Sony Corp | 紫外線光学装置 |
JP2001024258A (ja) * | 1999-07-06 | 2001-01-26 | Matsushita Electric Ind Co Ltd | レーザ発振装置 |
WO2002038324A1 (fr) * | 2000-11-07 | 2002-05-16 | Matsushita Electric Industrial Co., Ltd. | Dispositif d'usinage optique |
JP2008282965A (ja) * | 2007-05-10 | 2008-11-20 | Sony Corp | 半導体レーザモジュールおよび筐体 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54145492A (en) * | 1978-05-06 | 1979-11-13 | Toshiba Corp | Laser unit |
JPS58105585A (ja) * | 1981-12-18 | 1983-06-23 | Hitachi Ltd | レ−ザ発生装置 |
JPS6143429A (ja) * | 1984-08-08 | 1986-03-03 | Hitachi Ltd | 微小物品洗浄装置 |
JPS6235590A (ja) * | 1985-08-08 | 1987-02-16 | Mitsubishi Electric Corp | レ−ザミラ−装置 |
JPH04105569U (ja) * | 1991-02-22 | 1992-09-10 | 鹿児島日本電気株式会社 | レーザダイオードマウント装置 |
JP2741433B2 (ja) * | 1991-05-15 | 1998-04-15 | 三菱電機株式会社 | レーザ発振器 |
JP2648432B2 (ja) * | 1993-04-02 | 1997-08-27 | 株式会社日立製作所 | ガスレーザ装置 |
JPH10180476A (ja) * | 1996-12-26 | 1998-07-07 | Ishikawajima Harima Heavy Ind Co Ltd | 水中レーザトーチ |
JPH1126854A (ja) * | 1997-07-09 | 1999-01-29 | Sanyo Electric Co Ltd | レーザーアニール装置 |
DE50005527D1 (de) | 2000-08-05 | 2004-04-08 | Trumpf Werkzeugmaschinen Gmbh | Laserbearbeitungsmaschine mit wenigstens einem mit einem Spülmedium beaufschlagbaren optischen Element |
US7110425B2 (en) | 2002-04-03 | 2006-09-19 | Fuji Photo Film Co., Ltd. | Laser module and production process thereof |
JP2004014820A (ja) | 2002-06-07 | 2004-01-15 | Fuji Photo Film Co Ltd | レーザモジュール |
JP2004126001A (ja) | 2002-09-30 | 2004-04-22 | Fuji Photo Film Co Ltd | レーザ装置 |
JP4274409B2 (ja) | 2002-09-30 | 2009-06-10 | 富士フイルム株式会社 | レーザ装置 |
JP2004252425A (ja) | 2003-01-31 | 2004-09-09 | Fuji Photo Film Co Ltd | レーザモジュールおよびその製造方法 |
JP4349209B2 (ja) | 2004-06-01 | 2009-10-21 | パナソニック電工株式会社 | 光照射装置 |
JP2007088066A (ja) | 2005-09-20 | 2007-04-05 | Aisin Seiki Co Ltd | レーザ光源装置 |
US9329465B2 (en) | 2011-09-20 | 2016-05-03 | Nec Display Solutions, Ltd. | Light source device and projection-type display device including first and second light emitting elements and air flow device |
US9548817B1 (en) * | 2015-06-19 | 2017-01-17 | Inphi Corporation | Small form factor transmitting device |
JP7333330B2 (ja) | 2018-09-13 | 2023-08-24 | パナソニックホールディングス株式会社 | 光学装置 |
-
2019
- 2019-09-06 JP JP2020545981A patent/JP7333330B2/ja active Active
- 2019-09-06 WO PCT/JP2019/035127 patent/WO2020054593A1/ja active Application Filing
- 2019-09-06 DE DE112019004591.1T patent/DE112019004591T5/de active Pending
- 2019-09-06 US US17/274,778 patent/US11476639B2/en active Active
-
2022
- 2022-09-14 US US17/944,601 patent/US11894653B2/en active Active
-
2023
- 2023-08-14 JP JP2023131939A patent/JP7494364B2/ja active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58128781A (ja) * | 1982-01-27 | 1983-08-01 | Hitachi Ltd | レ−ザ発生装置 |
JPH038259A (ja) * | 1989-06-05 | 1991-01-16 | Komatsu Ltd | 高分子被覆発泡体電極及びその製造方法 |
JPH0366490A (ja) * | 1989-08-03 | 1991-03-22 | Topcon Corp | レーザ装置 |
JPH04196494A (ja) * | 1990-11-28 | 1992-07-16 | Okuma Mach Works Ltd | レーザ発振器 |
JPH08306993A (ja) * | 1995-04-28 | 1996-11-22 | Matsushita Electric Ind Co Ltd | レーザ発振装置 |
US5898522A (en) * | 1995-10-06 | 1999-04-27 | Herpst; Robert D. | Protective window assembly and method of using the same for a laser beam generating apparatus |
JP2000347234A (ja) * | 1999-06-08 | 2000-12-15 | Sony Corp | 紫外線光学装置 |
JP2001024258A (ja) * | 1999-07-06 | 2001-01-26 | Matsushita Electric Ind Co Ltd | レーザ発振装置 |
WO2002038324A1 (fr) * | 2000-11-07 | 2002-05-16 | Matsushita Electric Industrial Co., Ltd. | Dispositif d'usinage optique |
JP2008282965A (ja) * | 2007-05-10 | 2008-11-20 | Sony Corp | 半導体レーザモジュールおよび筐体 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023188534A1 (ja) * | 2022-03-30 | 2023-10-05 | パナソニックホールディングス株式会社 | 半導体レーザ装置 |
Also Published As
Publication number | Publication date |
---|---|
US11894653B2 (en) | 2024-02-06 |
US20210359491A1 (en) | 2021-11-18 |
JP7494364B2 (ja) | 2024-06-03 |
US20230006413A1 (en) | 2023-01-05 |
US11476639B2 (en) | 2022-10-18 |
JPWO2020054593A1 (ja) | 2021-08-30 |
JP2023145805A (ja) | 2023-10-11 |
JP7333330B2 (ja) | 2023-08-24 |
DE112019004591T5 (de) | 2021-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7494364B2 (ja) | 光学装置 | |
US20230176289A1 (en) | Optical module having multiple laser diode devices and a support member | |
US10627055B1 (en) | Color converting device | |
US20130022064A1 (en) | Laser Package Having Multiple Emitters Configured on a Substrate Member | |
US20120314398A1 (en) | Laser package having multiple emitters with color wheel | |
US10727386B2 (en) | Radiation-emitting component | |
WO2020026730A1 (ja) | 半導体発光装置及び外部共振型レーザ装置 | |
US20220333745A1 (en) | Laser-based light guide-coupled wide-spectrum light system | |
JP2004200634A (ja) | 半導体レーザ装置、および半導体レーザ装置のための半導体レーザモジュール、ならびに半導体レーザ装置を製造するための方法 | |
US20230033309A1 (en) | Semiconductor laser device | |
WO2019163276A1 (ja) | 半導体発光装置 | |
KR101101154B1 (ko) | 반사판 및 이를 이용한 조명 모듈 | |
JP2007095931A (ja) | 半導体レーザ装置の製造方法および製造装置 | |
US20220416500A1 (en) | Method for manufacturing laser package | |
KR20210035733A (ko) | 조사 유닛 및 액정 패널 제조 장치 | |
KR20120097501A (ko) | Led 모듈, 상기 led 모듈 및 상기 led 모듈을 가지는 조명 디바이스를 동작시키기 위한 방법 | |
US20220094136A1 (en) | Semiconductor laser device manufacturing method | |
JP7387077B1 (ja) | レーザ装置およびレーザ加工機 | |
US11835205B2 (en) | Light source device, projector, machining device, light source unit, and light source device adjusting method | |
WO2022220174A1 (ja) | 半導体レーザモジュールおよびレーザ加工装置 | |
KR102650062B1 (ko) | 레이저 빔 공간 필터 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19861114 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020545981 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19861114 Country of ref document: EP Kind code of ref document: A1 |