WO2020053918A1 - 過電流継電器 - Google Patents

過電流継電器 Download PDF

Info

Publication number
WO2020053918A1
WO2020053918A1 PCT/JP2018/033370 JP2018033370W WO2020053918A1 WO 2020053918 A1 WO2020053918 A1 WO 2020053918A1 JP 2018033370 W JP2018033370 W JP 2018033370W WO 2020053918 A1 WO2020053918 A1 WO 2020053918A1
Authority
WO
WIPO (PCT)
Prior art keywords
overcurrent
output
effective value
value
unit
Prior art date
Application number
PCT/JP2018/033370
Other languages
English (en)
French (fr)
Inventor
一磨 村田
尾田 重遠
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020217006703A priority Critical patent/KR102611859B1/ko
Priority to GB2102981.4A priority patent/GB2593052B/en
Priority to PCT/JP2018/033370 priority patent/WO2020053918A1/ja
Priority to JP2018566467A priority patent/JP6548841B1/ja
Publication of WO2020053918A1 publication Critical patent/WO2020053918A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/02Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/06Details with automatic reconnection

Definitions

  • the present disclosure relates to an overcurrent relay.
  • the overcurrent relay detects a system fault and outputs an operation.
  • a circuit breaker (CB: Circuit Breaker) provided in the power system is opened to eliminate the system accident.
  • the overcurrent relay is configured to output a return when the secondary current becomes smaller than the set value (ie, to turn off the operation output).
  • Patent Document 1 discloses an overcurrent relay including a first overcurrent determination unit and a second overcurrent determination unit.
  • the first overcurrent determination unit makes a return determination by comparing an effective value calculated using current data for a predetermined period with a first set value.
  • the second overcurrent determination unit returns by comparing an effective value calculated using current data of a period shorter than a predetermined period with a second set value lower than the first set value. Make a decision.
  • the overcurrent relay generates a return output at an earlier timing among the return determination results of each of the first overcurrent determination unit and the second overcurrent determination unit.
  • the second set value is changed to a value lower than the first set value in synchronization with the output timing of the operation output, and the second set value is changed in synchronization with the output timing of the return output.
  • the second set value is changed to a value higher than the first set value.
  • the error of the effective value calculation result by the second overcurrent determination unit greatly affects the accuracy of the return determination.
  • An object of an aspect of the present disclosure is to provide an overcurrent relay capable of achieving both appropriate recovery and faster recovery time.
  • An overcurrent relay includes an overcurrent detection unit that detects an overcurrent by comparing an effective value of an input current input from a power system with a set value, and a drop that detects a decrease in an effective value.
  • a detection unit an output control unit that generates an operation output and a return output based on a detection result of the overcurrent detection unit, a detection result of the drop detection unit, and a predetermined condition regarding a current waveform of the input current.
  • the output control unit generates a return output regardless of the detection result of the overcurrent detection unit when a decrease in the effective value is detected and a predetermined condition is satisfied.
  • An overcurrent relay includes: a first overcurrent detection unit including a first digital filter that generates first current data that extracts a rated frequency component of an input current input from a power system; A second overcurrent detection unit including a second digital filter that has a filter characteristic faster than the filter and generates second current data in which a rated frequency component of the input current is extracted.
  • the first overcurrent detection unit outputs a first detection result of the overcurrent by comparing the first effective value calculated using the first current data in the first period with the first set value.
  • the second overcurrent detection unit compares a second effective value calculated using the second current data of the second period shorter than the first period with a second set value larger than the first set value.
  • the overcurrent relay outputs an operation output and a return output based on the decrease detection unit that detects that the first effective value has decreased, the first to third detection results, and the detection result of the decrease detection unit.
  • a control unit When a decrease in the first effective value is detected, the output control unit outputs a first detection result indicating that the overcurrent has not been detected and a third detection result indicating that the overcurrent has not been detected.
  • the return output is generated at the earlier output timing.
  • FIG. 3 is a diagram illustrating an example of a hardware configuration of an overcurrent relay.
  • FIG. 3 is a block diagram showing an example of a functional configuration of the overcurrent relay according to the first embodiment.
  • FIG. 4 is a schematic diagram showing an input current and an effective value from the occurrence of a failure until the breaker is opened.
  • FIG. 4 is a diagram for describing a method of detecting a decrease in an effective value according to the first embodiment.
  • FIG. 3 is a diagram for illustrating a zero-cross detection method according to the first embodiment.
  • FIG. 5 shows an example of an operation in the overcurrent relay according to the first embodiment.
  • FIG. 13 is a block diagram showing an example of a functional configuration of an overcurrent relay according to a second embodiment.
  • FIG. 13 is a block diagram showing an example of a functional configuration of a DC determination unit according to a second embodiment.
  • FIG. 13 is a diagram showing an example of an operation in the overcurrent relay according to the second embodiment.
  • FIG. 14 is a block diagram showing an example of a functional configuration of an overcurrent relay according to a third embodiment.
  • FIG. 13 is a diagram showing an example of an operation in the overcurrent relay according to the third embodiment.
  • FIG. 1 is a diagram schematically illustrating an example of the entire configuration of a power system in which a protection relay system is installed.
  • an electric wire 1 is connected to buses 2 and 3. Further, the electric wire 1 is provided with circuit breakers 4, 5, 6 and a current transformer 7.
  • the circuit breakers 4, 5, 6 and the current transformer 7 are provided on each phase electric wire.
  • the protection relay system 10 includes a protection relay 20 and an overcurrent relay 30.
  • the protection relay 20 functions as a protection relay that detects an accident in the power system
  • the overcurrent relay 30 functions as a CBF relay for preventing circuit breaker failure (CBF: Circuit Breaker Failure).
  • the protection relay 20 includes a main protection relay and a back-up protection relay for a relay failure of the main protection relay.
  • the CBF relay includes an overcurrent relay element for detecting that the fault current has not been interrupted due to the circuit breaker non-operation.
  • the CBF relay receives a trip signal from a protection relay that detects an accident in a power system, and outputs a trip signal for opening an adjacent circuit breaker when current detection by an overcurrent relay element continues for a certain amount or more. Output.
  • the protection relay 20 detects the occurrence of an accident in the power system based on the input current from the current transformer 7 provided on the electric wire 1, outputs a trip signal TR ⁇ b> 1 as an open command to the circuit breaker 4, and outputs an overcurrent relay.
  • the trip signal TR2 is output to the terminal 30. Note that the trip signal output from the common digital output circuit may be branched, and the branched signal may be input to the circuit breaker 4 and the overcurrent relay 30, respectively.
  • the accident determination method using the protection relay 20 is not particularly limited.
  • the protection relay 20 may include, for example, a current differential relay element or a distance relay element.
  • a current differential relay element a current detected by another current transformer provided on the electric wire 1 is also input to the protection relay 20.
  • the voltage detected by the voltage transformer provided on the bus 2 is also input to the protection relay 20.
  • the overcurrent relay 30 determines the presence or absence of a fault current based on the input current from the current transformer 7. The overcurrent relay 30 determines that the circuit breaker 4 is inoperative when the fault current is detected even after the time required to open the circuit breaker 4 has elapsed after receiving the trip signal TR2 from the protection relay 20; The trip signal TR3 is output to the peripheral circuit breakers 5 and 6. Trip signal TR3 is branched and input to circuit breakers 5 and 6, respectively. Note that the trip signals output from different digital output circuits may be input to the circuit breakers 5 and 6, respectively.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of the overcurrent relay 30.
  • overcurrent relay 30 includes an auxiliary transformer 51, an AD (Analog to Digital) converter 52, and an arithmetic processing unit 70.
  • the overcurrent relay 30 is configured as a digital protection relay.
  • the hardware configuration of the protection relay 20 is the same as the hardware configuration shown in FIG.
  • the auxiliary transformer 51 takes in the input current from the current transformer 7, converts it into a voltage signal suitable for signal processing in the relay internal circuit, and outputs it.
  • the AD converter 52 takes in the voltage signal output from the auxiliary transformer 51 and converts it into digital data.
  • the AD converter 52 includes an analog filter, a sample and hold circuit, a multiplexer, and an AD converter.
  • the analog filter removes high frequency noise components from the signal output from the auxiliary transformer 51.
  • the sample hold circuit samples a signal output from the analog filter at a predetermined sampling cycle.
  • the multiplexer sequentially switches the waveform signal input from the sample and hold circuit in a time series based on the timing signal input from the arithmetic processing unit 70 and inputs the signal to the AD converter.
  • the A / D converter converts a signal input from the multiplexer from analog data to digital data.
  • the AD converter outputs the digitally converted signal (that is, digital data) to the arithmetic processing unit 70.
  • analog-digital conversion is performed at 12 sampling periods during one cycle of the electrical angle at the rated frequency (that is, 360 °). In this case, one sampling interval is a time interval corresponding to an electrical angle of 30 ° at the rated frequency.
  • the arithmetic processing unit 70 includes a CPU (Central Processing Unit) 72, a ROM 73, a RAM 74, a DI (digital input) circuit 75, a DO (digital output) circuit 76, and an input interface (I / F) 77. . These are connected by a bus 71.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • DI digital input
  • DO digital output
  • I / F input interface
  • the CPU 72 controls the operation of the overcurrent relay 30 by reading and executing a program stored in the ROM 73 in advance.
  • the ROM 73 stores various information used by the CPU 72.
  • CPU 72 is, for example, a microprocessor.
  • the hardware may be an FPGA (Field Programmable Gate Array) other than the CPU, an ASIC (Application Specific Integrated Circuit), a circuit having other arithmetic functions, or the like.
  • the CPU 72 takes in digital data from the AD converter 52 via the bus 71.
  • the CPU 72 executes a control operation using the captured digital data according to a program stored in the ROM 73.
  • DO circuit 76 outputs a trip signal for opening the circuit breaker.
  • the trip signal TR2 output from the DO circuit 76 of the protection relay 20 is input to the DI circuit 75 of the overcurrent relay 30.
  • the input interface 77 is typically buttons or the like, and receives various setting operations from the system operator.
  • FIG. 3 is a block diagram showing an example of a functional configuration of the overcurrent relay 30 according to the first embodiment.
  • overcurrent relay 30 includes, as main functional components, overcurrent detection section 100, drop detection section 110, zero-crossing determination section 120, and output control section 130.
  • each of these functions is realized by CPU 72 executing a program stored in ROM 73.
  • a part or all of these functions may be configured to be realized by using a dedicated circuit.
  • the overcurrent detection unit 100 detects an overcurrent by comparing the effective value of the input current input from the power system with the set value.
  • the overcurrent detection unit 100 includes a digital filter 101, an effective value calculation unit 102, and an overcurrent determination unit 103.
  • the digital filter 101 generates current data obtained by extracting the rated frequency component (that is, the fundamental wave component) of the input current. Specifically, the digital filter 101 removes the harmonic component, the DC component, and the distortion component of the input current converted into digital data by the AD converter 52, and generates current data from which a rated frequency component is extracted.
  • the rated frequency component that is, the fundamental wave component
  • the digital filter 101 uses, for example, data of a period T1 corresponding to a half cycle (that is, 180 °) of the electrical angle of the rated frequency. This corresponds to data of 6 sampling lengths, for example, when the number of samplings of the AD converter 52 is 12 in one cycle.
  • the effective value calculation unit 102 performs an effective value calculation of the input current from which the rated frequency component has been extracted. Specifically, the effective value calculation unit 102 calculates the effective value using the current data input from the digital filter 101. The effective value calculating unit 102 calculates the effective value using, for example, the following equation (1).
  • Ir (t) sqrt (
  • Ir (t) indicates the effective value at time t.
  • I (t) indicates a current instantaneous value of the input current from which the rated frequency component has been extracted at time t
  • I (t-90) indicates a current instantaneous value 90 electrical degrees before the time t.
  • I (t-180) indicates the instantaneous current value 180 electrical degrees before the time t.
  • the time required to obtain data used for calculating the effective value is a time corresponding to a half cycle of the electrical angle.
  • the overcurrent determination unit 103 determines whether there is an overcurrent by comparing the effective value Ir calculated by the effective value calculation unit 102 with a predetermined set value Is.
  • FIG. 4 is a schematic diagram showing an input current and an effective value from the occurrence of a failure until the circuit breaker is opened.
  • effective value Ir becomes equal to or greater than set value Is. Therefore, at time tx, the overcurrent determination unit 103 performs an operation determination (that is, determines that overcurrent has been detected) and outputs an output value “1”.
  • overcurrent determination section 103 makes a non-operation or return determination (that is, a determination that overcurrent has not been detected), and outputs an output value “0”.
  • the output value of the overcurrent determination unit 103 is the output value of the overcurrent detection unit 100.
  • the output value corresponds to the detection result Dx of the overcurrent detection unit 100.
  • the overcurrent detection unit 100 generates current data by extracting the rated frequency component of the input current using data of a relatively long period, calculates an effective value Ir using the current data, and calculates the effective value Ir.
  • the overcurrent detection is executed using the set value Is. Therefore, the overcurrent detection unit 100 is hardly affected by harmonics and distortion waves, and does not return when a fault current occurs, and thus has high stability.
  • drop detecting section 110 detects a drop in effective value Ir. Specifically, the decrease detection unit 110 detects a decrease in the effective value Ir when the decrease rate of the effective value Ir is equal to or more than the reference decrease rate.
  • FIG. 5 is a diagram for explaining a method of detecting a decrease in the effective value according to the first embodiment.
  • decrease detection section 110 detects a decrease in effective value Ir using the following equations (2) and (3).
  • Ir (t) indicates the effective value at time t.
  • Ir (t ⁇ 180) indicates an effective value 180 electrical degrees before the time t.
  • the drop detecting unit 110 outputs an output value “1” when detecting a drop in the effective value Ir, and outputs an output value “0” when not detecting a drop in the effective value Ir.
  • the output value corresponds to a detection result of the drop detection unit 110.
  • zero-crossing determining section 120 determines whether or not a zero-crossing point of the current waveform of the input current converted into digital data by AD converting section 52 is detected.
  • the zero-cross determining unit 120 includes a zero-cross detecting unit 121 and a return timer 122.
  • FIG. 6 is a diagram for describing a zero-cross detection method according to the first embodiment.
  • zero-crossing detecting section 121 is formed of, for example, a comparator with hysteresis, and detects a zero-crossing point of the input current by comparing with thresholds H and L set near the ground level. .
  • thresholds H and L set near the ground level.
  • a zero cross point is detected every half cycle.
  • the return timer 122 maintains the output value for the return time Tre.
  • the return time Tre is, for example, a time corresponding to / cycle (that is, an electrical angle of 240 °).
  • the output of the return timer 122 is the output of the zero crossing determination unit 120.
  • Zero-crossing determining section 120 outputs an output value “1” when determining that a zero-crossing point has been detected, and outputs an output value “0” when determining that a zero-crossing point has not been detected. This output value corresponds to the determination result of the zero cross determination unit 120.
  • the output control unit 130 generates an operation output and a return output based on the detection result of the overcurrent detection unit 100, the detection result of the drop detection unit 110, and the determination result of the zero-cross determination unit 120.
  • the output control unit 130 includes a NOT gate 131, AND gates 132 and 134, and an OR gate 133.
  • the output control unit 130 generates an operation output (ie, output value “1”) and a return output (ie, output value “0”) of the overcurrent relay 30 by using these logic gates.
  • NOT gate 131 performs NOT operation on the output value of drop detection section 110.
  • AND gate 132 performs an AND operation on the output value of drop detection unit 110 and the output value of zero-crossing determination unit 120.
  • OR gate 133 performs an OR operation on the output value of NOT gate 131 and the output value of AND gate 132.
  • the AND gate 134 performs an AND operation on the output value of the overcurrent detection unit 100 and the output value of the OR gate 133.
  • the output value of the AND gate 134 becomes the output value of the output control unit 130.
  • FIG. 7 shows an example of an operation in overcurrent relay 30 according to the first embodiment. Note that the example shown in FIG. 7 illustrates an example in which the input current sharply increases due to the occurrence of a failure or the like at time t1, and the input current decreases at time t4 due to the breaker 4 being opened.
  • FIG. 7 shows the current waveform of the input current, the output value of the overcurrent detection unit 100, the output value of the zero-crossing determination unit 120, the output value of the drop detection unit 110, and the output value of the output control unit 130. Have been.
  • the zero-crossing determination unit 120 detects a zero-crossing point of the input current and outputs an output value “1”.
  • the overcurrent detection unit 100 outputs the output value “1”.
  • the output value of the zero-crossing determination unit 120 is “1”, but the output value of the drop detection unit 110 is “0”, so that the output control unit 130 outputs the output value “1”.
  • the output control unit 130 outputs the operation output when the decrease in the effective value is not detected by the decrease detection unit 110 and the overcurrent is detected by the overcurrent detection unit 100.
  • the overcurrent relay 30 outputs an operation output.
  • the operation time corresponds to the time from time t1 to time t3.
  • the input current sharply decreases.
  • drop detection section 110 detects the sudden decrease in the input current and outputs an output value “1”. Further, when the input current sharply decreases, a zero-cross point unique to the AC waveform is not detected. Therefore, at time t6, zero-crossing determining section 120 determines that the zero-crossing point is no longer detected, and outputs output value “0”.
  • the output control unit 130 outputs the output value “0” in response to the establishment of the output value “1” of the drop detection unit 110 and the output value “0” of the zero-cross determination unit 120. That is, the overcurrent relay 30 outputs a return signal.
  • the return time corresponds to the time from time t4 to time t6.
  • the output value of the overcurrent detector 100 is “1”, and at time t7, the output value becomes “0”. Therefore, as shown in FIG. 7, the output value of the drop detection unit 110 is “1” and the output value is “1”, It can be seen that the return time is shorter when the return output is performed based on the establishment of the output value “0” of the zero-crossing determination unit 120. Hereinafter, this reason will be specifically described.
  • the overcurrent detection unit 100 uses current data from which a rated frequency component from which harmonic components, distortion components, and the like have been removed by the digital filter 101 is extracted in order to accurately perform overcurrent determination. Therefore, a phase shift occurs with respect to the rated frequency component.
  • the effective value calculation by the effective value calculation unit 102 as shown in Expression (1), the effective value is calculated based on the current instantaneous value and the current instantaneous value in the past. Later, the effective value does not drop instantaneously but drops transiently. Therefore, the timing at which the effective value Ir is determined to be less than the set value Is is delayed, and it takes time for the output value of the overcurrent detection unit 100 to change from "1" to "0" even when the circuit breaker 4 is opened.
  • the drop detection unit 110 also uses the effective value based on the current instantaneous value and the current instantaneous value in the past. Therefore, the drop detector 110 detects a drop in the effective value at an early stage (for example, at time t5) after the circuit breaker 4 is opened, and outputs an output value “1”.
  • the zero-crossing determination unit 120 performs the zero-crossing determination based on the current data of the input current from which the harmonic component, the distortion component, and the like have not been removed by the digital filter 101, as described above. Therefore, there is no processing delay due to the digital filter 101. Further, since the zero-crossing determination is performed based on the current instantaneous value instead of the effective value using the past current instantaneous value, there is no delay in the determination timing.
  • the zero-crossing determination unit 120 does not erroneously detect a zero-crossing point unique to the AC waveform.
  • the first embodiment is configured to perform the return output by combining the detection result of the drop detection unit 110 and the determination result of the zero-cross determination unit 120.
  • the output control unit 130 determines that the overcurrent has occurred when the decrease in the effective value Ir has been detected by the decrease detection unit 110 and the zero-cross point has not been detected by the zero-cross determination unit 120.
  • a return output is generated regardless of the detection result of the detection unit 100. In other words, when it is determined that the zero-cross point is not detected during the period in which the effective value Ir is reduced and the zero-cross determination accuracy is high, a return output is generated. Note that a return output is not generated even if the zero-cross point has not been detected in the period Ta during which the decrease in the effective value Ir has not been detected.
  • the energy stored in the inductance of the excitation circuit of the current transformer 7 is converted into the current.
  • the decay current of the DC component flows for a certain time by discharging to the secondary side of the vessel 7.
  • the recovery time can be shortened in the overcurrent relay 30 according to the first embodiment.
  • FIG. 8 is a diagram illustrating an example of a DC (Direct Current) attenuation wave.
  • a DC attenuation wave is generated even after the circuit breaker 4 is opened.
  • the DC attenuation wave does not affect the determination accuracy of the zero-crossing determination unit 120 when the reduction in the effective value Ir is detected by the reduction detection unit 110.
  • the zero-crossing determination unit 120 can appropriately determine whether a zero-crossing point has not been detected when the effective value Ir decreases. Therefore, even in the case where a DC attenuation wave is generated, the return time can be shortened by performing the return output by combining the detection result of the drop detection unit 110 and the determination result of the zero-cross determination unit 120.
  • ⁇ Advantages> by combining the detection result of the decrease in the effective value Ir and the result of the zero-cross determination, a case where a harmonic component, a distortion component, or the like is superimposed on the fault current, and a DC attenuation wave are generated. Even in such a case, appropriate return of the overcurrent relay 30 can be realized, and the return time can be shortened.
  • Embodiment 2 FIG.
  • the configuration has been described in which, when a decrease in the effective value Ir is detected, a return output is generated when a condition that a zero-cross point of the current waveform of the input current is not detected is satisfied.
  • the configuration is such that when a decrease in the effective value Ir is detected, a return output is generated when the condition that the DC component of the current waveform of the input current is more dominant than the AC component is satisfied.
  • the configuration of the power system and the hardware configuration of the protection relay 20 and the overcurrent relay 30 in the second embodiment are the same as those in the first embodiment.
  • FIG. 9 is a block diagram showing an example of a functional configuration of overcurrent relay 30A according to the second embodiment.
  • the overcurrent relay 30A corresponds to the overcurrent relay 30 shown in FIG. 1, but is added with an additional symbol such as "A" for convenience to distinguish it from the other embodiments. This is the same in the following third embodiment.
  • overcurrent relay 30A includes, as main functional components, overcurrent detection section 100, drop detection section 110, DC determination section 150, and output control section 170.
  • each of these functions is realized by CPU 72 executing a program stored in ROM 73.
  • a part or all of these functions may be configured to be realized by using a dedicated circuit. Since the configurations of overcurrent detecting section 100 and drop detecting section 110 are the same as those in the first embodiment, detailed description thereof will not be repeated.
  • the DC determination unit 150 determines whether or not the DC component of the current waveform of the input current converted into digital data by the AD conversion unit 52 is more dominant than the AC component of the current waveform.
  • FIG. 10 is a block diagram showing an example of a functional configuration of DC determining section 150 according to the second embodiment.
  • DC determination section 150 includes a fundamental wave detection filter 151, an AC effective value calculation section 152, a DC detection filter 153, and a comparison section 154.
  • the fundamental wave detection filter 151 generates current data obtained by extracting the rated frequency component (that is, the fundamental wave component) of the input current.
  • the fundamental wave detection filter 151 uses, for example, data corresponding to ⁇ ⁇ ⁇ ⁇ cycle (that is, 180 °) of the electrical angle at the rated frequency.
  • the fundamental wave detection filter 151 has the same function as the digital filter 101.
  • the AC effective value calculator 152 performs an AC effective value calculation of the input current from which the rated frequency component has been extracted. Specifically, the AC effective value calculation unit 152 calculates the effective value of the AC component (hereinafter, also referred to as “AC effective value”) using the current data input from the fundamental wave detection filter 151. The AC effective value calculation unit 152 calculates the AC effective value using, for example, the following equation (4).
  • Ira (t) sqrt (
  • Ira (t) indicates the effective value at time t.
  • Ia (t) indicates the current instantaneous value of the AC component of the input current at the time t
  • Ia (t-90) indicates the current instantaneous value 90 electrical degrees before the time t
  • Ia (T-180) indicates the instantaneous current value 180 electrical degrees before the time t.
  • AC effective value calculation section 152 has the same function as effective value calculation section 102.
  • the DC detection filter 153 generates current data obtained by extracting the DC component of the input current.
  • the DC detection filter 153 uses, for example, data for a half cycle (that is, 180 °) of the electrical angle at the rated frequency.
  • the DC component of the extracted input current at time t is defined as Idc (t).
  • the comparing unit 154 compares the AC effective value Ira (t) with the DC component Idc (t), and the DC component Idc (t) is significantly larger and dominant than the AC effective value Ira (t). In this case, the output value "1" is output.
  • the DC component Idc (t) is larger than the AC effective value Ira (t)
  • the comparison unit 154 outputs an output value “0” when Idc (t) ⁇ Th2 * Ira is satisfied.
  • the output of the comparison unit 154 is the output of the DC determination unit 150. That is, the DC determination unit 150 outputs the output value “1” when determining that the DC component is more dominant than the AC component, and outputs the output value “0” when determining that it is not. I do. This output value corresponds to the determination result of DC determining section 150.
  • output control section 170 outputs an operation output and a return based on the detection result of overcurrent detection section 100, the detection result of drop detection section 110, and the determination result of DC determination section 150. Generate output.
  • output control section 170 includes AND gates 171 and 172.
  • the AND gate 171 performs an AND operation on the output value of the drop detection unit 110 and the output value of the DC determination unit 150.
  • the AND gate 172 performs an AND operation on the output value of the overcurrent detection unit 100 and a value obtained by inverting the output value of the AND gate 171.
  • the output value of the AND gate 172 becomes the output value of the output control unit 170.
  • FIG. 11 shows an example of an operation in overcurrent relay 30A according to the second embodiment. Note that the example illustrated in FIG. 11 illustrates an example in which the input current rapidly increases due to the occurrence of a failure or the like at time t1a, and the input current decreases due to the opening of the circuit breaker 4 at time t3a.
  • FIG. 11 shows the current waveform of the input current, the output value of the overcurrent detection unit 100, the output value of the DC determination unit 150, the output value of the drop detection unit 110, and the output value of the output control unit 170. Have been.
  • the output value of the drop detection unit 110 is “0”, so that the output control unit 170 outputs the output value “1” as the overcurrent detection unit 100 outputs the output value “1”. . That is, the overcurrent relay 30A outputs an operation output.
  • the operation time corresponds to the time from time t1a to time t2a.
  • the output control unit 170 outputs the output value “0” in response to the establishment of the output value “1” of the drop detection unit 110 and the output value “1” of the DC determination unit 150. That is, the overcurrent relay 30A outputs a return signal.
  • the return time corresponds to the time from time t4a to time t5a.
  • the output value of the overcurrent detection unit 100 is “1”, and at time t6a, the output value becomes “0”. Therefore, as shown in FIG. 11, the output value of the drop detection unit 110 is “1” and the output value of the drop detection unit 110 is smaller than the case where the return output is performed based on the output value of the overcurrent detection unit 100 becoming “0”. It can be seen that the return time is shortened when the return output is performed based on the establishment of the output value “1” of the DC determination unit 150.
  • the DC determination unit 150 also performs the filtering process and the effective value calculation process in the same manner as the overcurrent detection unit 100. However, unlike the overcurrent determination, the DC determination unit 150 only needs to be able to determine that the DC component has become dominant. Therefore, the DC determination unit 150 determines that the DC component has become dominant early (for example, at time t4a) after the circuit breaker 4 is opened, and outputs an output value “1”. Further, as described above, the drop detection unit 110 also detects a drop in the effective value at an early stage (for example, time t5a) after the circuit breaker 4 is opened, and outputs an output value “1”.
  • the DC The unit 150 can execute the above determination with high accuracy.
  • the second embodiment is configured to perform a return output by combining the detection result of the drop detection unit 110 and the determination result of the DC determination unit 150. More specifically, the output control unit 170 is configured to perform the operation when the decrease in the effective value Ir is detected by the decrease detection unit 110 and when the DC determination unit 150 determines that the DC component is more dominant than the AC component. Then, a return output is generated regardless of the detection result of the overcurrent detection unit 100.
  • the DC attenuation wave shown in FIG. 8 is an attenuation wave containing almost no AC component. Therefore, even when a DC attenuation wave is generated after the circuit breaker 4 is opened, the DC determination unit 150 can accurately detect the DC attenuation wave. Therefore, also in this case, the return time can be shortened by performing the return output by combining the detection result of the drop detection unit 110 and the determination result of the DC determination unit 150.
  • the second embodiment has the same advantages as the first embodiment.
  • Embodiment 3 FIG. In Embodiments 1 and 2 described above, the configuration using one overcurrent detection unit 100 has been described. In Embodiment 3, a configuration using two overcurrent detection units will be described. Note that the configuration of the power system and the hardware configuration of the protection relay 20 and the overcurrent relay 30 in the third embodiment are the same as those in the first embodiment.
  • FIG. 12 is a block diagram showing an example of a functional configuration of overcurrent relay 30B according to the third embodiment.
  • overcurrent relay 30 ⁇ / b> B includes, as main functional components, overcurrent detection section 100, drop detection section 110, overcurrent detection section 200, and output control section 210.
  • each of these functions is realized by CPU 72 executing a program stored in ROM 73.
  • a part or all of these functions may be configured to be realized by using a dedicated circuit. Since the configurations of overcurrent detecting section 100 and drop detecting section 110 are the same as those in the first embodiment, detailed description thereof will not be repeated.
  • the overcurrent detection unit 200 includes a digital filter 201, an effective value calculation unit 202, an overcurrent determination unit 203, and an overcurrent determination unit 204.
  • the digital filter 201 generates current data obtained by extracting the rated frequency component of the input current.
  • the digital filter 201 has high-speed filter characteristics with a shorter sampling data length than the digital filter 101.
  • data of a period T2 for 1/4 cycle (that is, 90 °) of the electrical angle of the rated frequency is used. This corresponds to data for three sampling lengths, for example, when the number of times of sampling of the AD conversion unit 52 is 12 in one cycle. That is, the period T2 is shorter than the period T1 of the data used by the digital filter 101.
  • the effective value calculation unit 202 performs an effective value calculation of the input current from which the rated frequency component has been extracted. Specifically, the effective value calculation unit 202 calculates the effective value using the current data input from the digital filter 201.
  • the effective value calculation unit 202 uses an effective value calculation expression having a transient characteristic that more quickly follows a change in the input current than the expression (1) used in the effective value calculation unit 102. For example, the effective value calculation unit 202 calculates the effective value using, for example, the following equation (5).
  • Irb (t) sqrt (
  • Irb (t) indicates the effective value at time t.
  • Ib (t) indicates a current instantaneous value of the input current at the time t from which the rated frequency component is extracted
  • Ib (t ⁇ 30) indicates a current instantaneous value 30 electrical degrees before the time t.
  • Ib (t ⁇ 60) indicate the current instantaneous value 60 electrical degrees before the time t
  • Ib (t ⁇ 90) indicates the current instantaneous value 90 electrical degrees before the time t.
  • the time required to obtain data used for calculating the effective value is a time equivalent to 1/4 cycle of the electrical angle. Therefore, the dynamic response is high, and the speed can be increased by a time corresponding to 1/4 cycle of the electrical angle as compared with the equation (1) used in the effective value calculation unit 102.
  • the overcurrent determining unit 203 compares the effective value Irb calculated by the effective value calculating unit 202 with the set value Is1 to determine whether there is an overcurrent.
  • the overcurrent determining unit 203 outputs an output value “1” when the effective value Irb is equal to or more than the set value Is1, and outputs an output value “0” when the effective value Irb is less than the set value Is1.
  • the output value of the overcurrent determination unit 203 corresponds to the overcurrent detection result Dy output by the overcurrent detection unit 200.
  • the overcurrent determining unit 204 compares the effective value Irb calculated by the effective value calculating unit 202 with the set value Is2 to determine the presence or absence of an overcurrent.
  • the overcurrent determination unit 204 outputs an output value “1” when the effective value Irb is equal to or more than the set value Is2, and outputs an output value “0” when the effective value Irb is less than the set value Is2.
  • the output value of the overcurrent determination unit 204 corresponds to the overcurrent detection result Dz output by the overcurrent detection unit 200.
  • the overcurrent detection unit 200 compares the effective value Irb calculated using the current data of the period T2 shorter than the period T1 with the set value Is1 larger than the set value Is, thereby detecting the overcurrent.
  • the detection result Dy is output.
  • the overcurrent detection unit 200 outputs an overcurrent detection result Dz by comparing the effective value Irb with a set value Is2 smaller than the set value Is.
  • the overcurrent detection unit 200 uses data of a relatively short period, it is possible to execute a higher-speed operation than the overcurrent detection unit 100.
  • the error of the effective value calculation result of the overcurrent detection unit 200 is larger than that of the effective value calculation result of the overcurrent detection unit 100. Therefore, the output control unit 210 is configured to suppress the error of the effective value calculation result from affecting the operation and return accuracy of the overcurrent relay 30B.
  • the output control unit 210 outputs an operation output based on the detection result Dx output from the overcurrent detection unit 100, the detection results Dy and Dz output from the overcurrent detection unit 200, and the detection result of the drop detection unit 110. And generate a return output.
  • the output control unit 210 includes OR gates 211 and 215 and AND gates 212, 213 and 214.
  • OR gate 211 performs an OR operation on the output value of overcurrent determination section 103 (ie, detection result Dx) and the output value of overcurrent determination section 203 (ie, detection result Dy).
  • AND gate 212 performs an AND operation on the output value of overcurrent determination section 103 (ie, detection result Dx) and the output value of overcurrent determination section 204 (ie, detection result Dz).
  • the AND gate 213 performs an AND operation on the output value of the OR gate 211 and a value obtained by inverting the output value of the drop detection unit 110.
  • the AND gate 214 performs an AND operation on the output value of the AND gate 212 and the output value of the drop detection unit 110.
  • OR gate 215 performs an OR operation on the output value of AND gate 213 and the output value of AND gate 214.
  • the output value of the OR gate 215 becomes the output value of the output control unit 210.
  • the output value of the overcurrent determination unit 103 (that is, the detection result Dx) and the output value of the overcurrent determination unit 203 (that is, the output value)
  • the OR operation with the detection result Dy becomes the output value of the output control unit 210.
  • the output control unit 210 outputs the operation output at the earlier output timing of the detection result Dx indicating that the overcurrent has been detected and the detection result Dy indicating that the overcurrent has been detected. Generate.
  • the output value of the overcurrent determination unit 103 (that is, the detection result Dx) and the output value of the overcurrent determination unit 204 (that is, the detection result An AND operation with Dz) is an output value of the output control unit 210.
  • the output control unit 210 returns at the earlier output timing of the detection result Dx indicating that the overcurrent has not been detected and the detection result Dz indicating that the overcurrent has not been detected. Generate output.
  • both the operation time and the recovery time can be shortened while suppressing the error of the effective value calculation result by the overcurrent detection unit 200 from affecting the operation and recovery accuracy of the overcurrent relay 30B.
  • the output value of the overcurrent determination unit 103 and the output value of the overcurrent determination unit 204 A return output is generated. Therefore, even when the fault current includes many harmonic components and distortion components, it is necessary to change the set value Is2 used in the overcurrent determination unit 204 to a value significantly lower than the set value Is. Therefore, the return time can be shortened.
  • FIG. 13 shows an example of an operation in overcurrent relay 30B according to the third embodiment. Note that the example shown in FIG. 13 shows an example in which the input current suddenly increases due to the occurrence of a failure or the like at time t1b, and the input current decreases due to the opening of the circuit breaker 4 at time t5b.
  • FIG. 13 illustrates the current waveform of the input current, the output value of the overcurrent detection unit 100 (that is, the detection result Dx), the output value of the overcurrent determination unit 203 (that is, the detection result Dy), and the overcurrent determination unit.
  • the output value of 204 that is, the detection result Dz
  • the output value of the drop detection unit 110 the output value of the output control unit 210 are shown.
  • the overcurrent determination unit 204 outputs an output value “1” in accordance with the establishment of the effective value Irb ⁇ Is2. At this point, no operation output is generated by the output control unit 210. Subsequently, at time t3b, the overcurrent determination unit 203 outputs an output value “1” in accordance with the establishment of the effective value Irb ⁇ Is1. At this time, the output control unit 210 outputs an output value “1”. That is, the overcurrent relay 30B outputs an operation. The operation time corresponds to the time from time t1b to time t3b.
  • the output value of the overcurrent detection unit 100 is “0”, and at time t4b, the output value becomes “1”. Therefore, as shown in FIG. 13, the output values “0” and “0” of the drop detection unit 110 are smaller than the case where the operation output is performed based on the output value of the overcurrent detection unit 100 being “1”. When the operation output is performed based on the establishment of the output value “1” of the overcurrent determination unit 203, the operation time is reduced.
  • the circuit breaker 4 opens at the time t5b, the input current sharply decreases.
  • drop detection section 110 detects the sudden decrease in the input current and outputs an output value “1”.
  • the overcurrent determination unit 203 outputs an output value “0” in response to the establishment of the effective value Irb ⁇ Is1.
  • the output control unit 210 does not generate a return output.
  • the overcurrent determination unit 204 outputs an output value “0” according to the establishment of the effective value Irb ⁇ Is2.
  • the output control unit 210 outputs an output value “0”. That is, the overcurrent relay 30B outputs a return signal.
  • the return time corresponds to the time from time t5b to time t8b.
  • the output value of the overcurrent detection unit 100 is “1”, and at time t9b, the output value becomes “0”. Therefore, as shown in FIG. 13, the output value “1” of the drop detection unit 110 and the output value “1” of the drop detection unit 110 are smaller than the case where the return output is performed based on the output value of the overcurrent detection unit 100 becoming “0”. It can be seen that the return time is shorter when the return output is performed based on the establishment of the output value “0” of the overcurrent determination unit 204.
  • the overcurrent relay 30B operates and outputs at the timing when the output value “1” is output by the overcurrent determination unit 203 when the input current suddenly increases due to a failure or the like, and when the input current sharply decreases. Returns at the timing when the output value “0” is output by the overcurrent determination unit 204. Therefore, it is possible to operate and return at high speed based on the effective value calculation result obtained by the overcurrent detection unit 200 using the high-speed effective value calculation formula (5).
  • the operation time and the recovery time are suppressed while suppressing the error of the effective value calculation result by the overcurrent detection unit 200 using a relatively short data length from affecting the operation and the recovery accuracy of the overcurrent relay 30B. Can be accelerated together. Further, even when the fault current includes many harmonic components and distortion components, the recovery time can be shortened.
  • the overcurrent relay may be configured to be used as a protection relay that detects a fault current flowing in a power system (for example, a transmission line) and outputs a trip signal to a circuit breaker.
  • the configuration illustrated as the above-described embodiment is an example of the configuration of the present invention, and can be combined with another known technology, and a part is omitted without departing from the gist of the present invention. It is also possible to change and configure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

過電流継電器(30)は、電力系統から入力された入力電流の実効値と、整定値とを比較することにより過電流を検出する過電流検出部(100)と、実効値の低下を検出する低下検出部(110)と、過電流検出部(100)の検出結果と、低下検出部(110)の検出結果と、入力電流の電流波形に関する予め定められた条件とに基づいて、動作出力および復帰出力を生成する出力制御部(130)とを備える。出力制御部(130)は、実効値の低下が検出された場合であって、かつ予め定められた条件が成立した場合には、過電流検出部(100)による検出結果に関わらず復帰出力を生成する。

Description

過電流継電器
 本開示は、過電流継電器に関する。
 過電流継電器は、電力系統に設けられた電流変成器(CT:Current Transformer)からの二次電流が整定値より大きいとき、系統事故を検出して動作出力する。これにより、電力系統に設けられた遮断器(CB:Circuit Breaker)を開放して系統事故が除去される。また、過電流継電器は、二次電流が整定値より小さくなったとき復帰出力する(すなわち、動作出力をOFFにする)ように構成されている。
 例えば、特開2011-250518号公報(特許文献1)は、第1の過電流判定部および第2の過電流判定部を含む過電流継電器を開示している。第1の過電流判定部は、予め定められた期間の電流データを用いて計算した実効値と第1の設定値とを比較して復帰判定を行なう。第2の過電流判定部は、予め定められた期間よりも短い期間の電流データを用いて計算した実効値と、第1の設定値よりも低い第2の設定値とを比較することにより復帰判定を行う。過電流継電器は、第1の過電流判定部および第2の過電流判定部の各々の復帰判定結果のうち早いほうのタイミングで復帰出力を生成する。
特開2011-250518号公報
 特許文献1に係る過電流継電器では、動作出力の出力タイミングに同期して、第2の設定値を第1の設定値よりも低い値に変更し、復帰出力の出力タイミングに同期して、第2の設定値を第1の設定値よりも高い値に変更している。これにより、第2の過電流判定部による実効値演算結果の誤差が動作判定および復帰判定の精度に影響することを抑えつつ、動作時間および復帰時間の高速化を図っている。
 しかしながら、例えば、故障電流に高調波成分、および歪波成分が多く含まれている場合には、第2の過電流判定部による実効値演算結果の誤差が復帰判定の精度に大きく影響する。この影響を抑制するためには、動作出力の出力タイミングに同期して、第2の設定値を第1の設定値よりもかなり低い値に変更する必要があるが、そうすると復帰時間が長くなってしまい、結果として復帰時間の高速化を実現できないという問題があった。
 本開示のある局面における目的は、適切な復帰と復帰時間の高速化とを両立することが可能な過電流継電器を提供することである。
 ある実施の形態に従う過電流継電器は、電力系統から入力された入力電流の実効値と、整定値とを比較することにより過電流を検出する過電流検出部と、実効値の低下を検出する低下検出部と、過電流検出部の検出結果と、低下検出部の検出結果と、入力電流の電流波形に関する予め定められた条件とに基づいて、動作出力および復帰出力を生成する出力制御部とを備える。出力制御部は、実効値の低下が検出された場合であって、かつ予め定められた条件が成立した場合には、過電流検出部による検出結果に関わらず復帰出力を生成する。
 他の実施の形態に従う過電流継電器は、電力系統から入力された入力電流の定格周波数成分を抽出した第1電流データを生成する第1デジタルフィルタを含む第1過電流検出部と、第1デジタルフィルタよりも高速なフィルタ特性を有し、入力電流の定格周波数成分を抽出した第2電流データを生成する第2デジタルフィルタを含む第2過電流検出部とを備える。第1過電流検出部は、第1期間の第1電流データを用いて演算された第1実効値と、第1整定値とを比較することにより過電流の第1検出結果を出力する。第2過電流検出部は、第1期間よりも短い第2期間の第2電流データを用いて演算された第2実効値と、第1整定値よりも大きい第2整定値とを比較することにより過電流の第2検出結果を出力し、第2実効値と第1整定値よりも小さい第3整定値との比較することにより過電流の第3検出結果を出力する。過電流継電器は、第1実効値が低下したことを検出する低下検出部と、第1~第3検出結果と、低下検出部の検出結果とに基づいて、動作出力および復帰出力を生成する出力制御部とをさらに備える。出力制御部は、第1実効値の低下が検出された場合には、過電流が未検出であることを示す第1検出結果、および過電流が未検出であることを示す第3検出結果のうち、いずれか早い方の出力タイミングで復帰出力を生成する。
 本開示によると、適切な復帰と復帰時間の高速化とを両立することが可能な過電流継電器を提供することである。
保護継電システムが設置された電力系統の全体構成を模式的に示す図である。 過電流継電器のハードウェア構成の一例を示す図である。 実施の形態1に従う過電流継電器の機能構成の一例を示すブロック図である。 故障発生から遮断器が開放されるまでの入力電流および実効値を示す模式図である。 実施の形態1に従う実効値の低下検出方式を説明するための図である。 実施の形態1に従うゼロクロス検出方式を説明するための図である。 実施の形態1に従う過電流継電器における動作の一例を示す図である。 DC(Direct Current)減衰波の一例を示す図である。 実施の形態2に従う過電流継電器の機能構成の一例を示すブロック図である。 実施の形態2に従う直流判定部の機能構成の一例を示すブロック図である。 実施の形態2に従う過電流継電器における動作の一例を示す図である。 実施の形態3に従う過電流継電器の機能構成の一例を示すブロック図である。 実施の形態3に従う過電流継電器における動作の一例を示す図である。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 実施の形態1.
 <電力系統の構成>
 図1は、保護継電システムが設置された電力系統の全体構成の一例を模式的に示す図である。図1に示す電力系統では、電線1が母線2,3に接続されている。さらに、電線1には、遮断器4,5,6および電流変成器7が設けられている。図1の電力系統が三相交流用の場合には、遮断器4,5,6および電流変成器7は各相の電線に設けられる。
 保護継電システム10は、保護継電器20と、過電流継電器30とを含む。本実施の形態では、保護継電器20は電力系統の事故を検出する保護リレーとして機能し、過電流継電器30は遮断器不動作(CBF:Circuit Breaker Failure)の対策のためのCBFリレーとして機能するものとする。なお、保護継電器20は、主保護リレーと、主保護リレーのリレー不良に対する後備保護リレーとを含んでいる。
 なお、CBFリレーは、遮断器不動作によって事故電流が遮断されなかったことを検出するための過電流リレー要素を含む。CBFリレーは、電力系統の事故を検出する保護リレーからのトリップ信号を受信し、かつ、過電流リレー要素による電流検出が一定以上続いた場合に、隣接する遮断器を開放するためのトリップ信号を出力する。
 保護継電器20は、電線1に設けられた電流変成器7からの入力電流に基づいて電力系統での事故発生を検出し、遮断器4に開放指令であるトリップ信号TR1を出力するとともに過電流継電器30にトリップ信号TR2を出力する。なお、共通のディジタル出力回路から出力されたトリップ信号が分岐され、分岐後の信号が遮断器4と過電流継電器30とにそれぞれ入力されてもよい。
 保護継電器20による事故判定方式は特に限定されない。保護継電器20は、例えば、電流差動リレー要素を含んでもよいし、距離リレー要素を含んでもよい。電流差動リレー要素の場合には、電線1に設けられた他の電流変成器で検出された電流も保護継電器20に入力される。距離リレー要素の場合は、母線2に設けられた電圧変成器で検出された電圧も保護継電器20に入力される。
 過電流継電器30は、電流変成器7からの入力電流に基づいて事故電流の有無を判定する。過電流継電器30は、保護継電器20からトリップ信号TR2を受けた後に遮断器4の開放に要する時間が経過しても事故電流が検出されている場合に、遮断器4の不動作と判定し、周辺の遮断器5,6にトリップ信号TR3を出力する。トリップ信号TR3は分岐されて遮断器5,6にそれぞれ入力される。なお、異なるディジタル出力回路から出力されたトリップ信号が遮断器5,6にそれぞれ入力されてもよい。
 <ハードウェア構成>
 図2は、過電流継電器30のハードウェア構成の一例を示す図である。図2を参照して、過電流継電器30は、補助変成器51と、AD(Analog to Digital)変換部52と、演算処理部70とを含む。過電流継電器30は、ディジタル保護継電装置として構成されている。なお、保護継電器20のハードウェア構成は、図2に示すハードウェア構成と同様である。
 補助変成器51は、電流変成器7からの入力電流を取り込み、リレー内部回路での信号処理に適した電圧信号に変換して出力する。AD変換部52は、補助変成器51から出力される電圧信号を取り込んでディジタルデータに変換する。具体的には、AD変換部52は、アナログフィルタと、サンプルホールド回路と、マルチプレクサと、AD変換器とを含む。
 アナログフィルタは、補助変成器51から出力される信号から高周波のノイズ成分を除去する。サンプルホールド回路は、アナログフィルタから出力される信号を予め定められたサンプリング周期でサンプリングする。マルチプレクサは、演算処理部70から入力されるタイミング信号に基づいて、サンプルホールド回路から入力される波形信号を時系列で順次切り替えてAD変換器に入力する。
 AD変換器は、マルチプレクサから入力される信号をアナログデータからディジタルデータに変換する。AD変換器は、ディジタル変換した信号(すなわち、ディジタルデータ)を演算処理部70へ出力する。AD変換器では、例えば、定格周波数の電気角の1サイクル(すなわち、360°)中において、12回のサンプリング周期でアナログデジタル変換を行なう。この場合、1サンプリング間隔は、定格周波数において電気角30°に相当する時間間隔となる。
 演算処理部70は、CPU(Central Processing Unit)72と、ROM73と、RAM74と、DI(digital input)回路75と、DO(digital output)回路76と、入力インターフェイス(I/F)77とを含む。これらは、バス71で結合されている。
 CPU72は、予めROM73に格納されたプログラムを読み出して実行することによって、過電流継電器30の動作を制御する。なお、ROM73には、CPU72によって用いられる各種情報が格納されている。CPU72は、たとえば、マイクロプロセッサである。なお、当該ハードウェアは、CPU以外のFPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)およびその他の演算機能を有する回路などであってもよい。
 CPU72は、バス71を介して、AD変換部52からディジタルデータを取り込む。CPU72は、ROM73に格納されているプログラムに従って、取り込んだディジタルデータを用いて制御演算を実行する。
 DO回路76は、遮断器を開放するためのトリップ信号を出力する。例えば、過電流継電器30のDI回路75には、保護継電器20のDO回路76から出力されたトリップ信号TR2が入力される。入力インターフェイス77は、典型的には、各種ボタン等であり、系統運用者からの各種設定操作を受け付ける。
 <機能構成>
 図3は、実施の形態1に従う過電流継電器30の機能構成の一例を示すブロック図である。図3を参照して、過電流継電器30は、主たる機能構成として、過電流検出部100と、低下検出部110と、ゼロクロス判定部120と、出力制御部130とを含む。典型的には、これらの各機能は、CPU72がROM73に格納されたプログラムを実行することによって実現される。なお、これらの機能の一部または全部は専用の回路を用いることによって実現されるように構成されていてもよい。
 過電流検出部100は、電力系統から入力された入力電流の実効値と、整定値とを比較することにより過電流を検出する。具体的には、過電流検出部100は、ディジタルフィルタ101と、実効値演算部102と、過電流判定部103とを含む。
 ディジタルフィルタ101は、入力電流の定格周波数成分(すなわち、基本波成分)を抽出した電流データを生成する。具体的には、ディジタルフィルタ101は、AD変換部52によってディジタルデータに変換された入力電流の高調波成分、直流成分、および歪波成分を除去し定格周波数成分を抽出した電流データを生成する。
 ディジタルフィルタ101は、例えば、定格周波数の電気角の1/2サイクル(すなわち、180°)分の期間T1のデータを用いる。これは、例えば、AD変換部52のサンプリング回数が1サイクル中で12回である場合には、6サンプリング長分のデータに対応する。
 実効値演算部102は、定格周波数成分が抽出された入力電流の実効値演算を実行する。具体的には、実効値演算部102は、ディジタルフィルタ101から入力された電流データを用いて実効値を演算する。実効値演算部102は、例えば、以下の式(1)を用いて実効値を演算する。
 Ir(t)=sqrt(|I(t-90)2-I(t)*(t-180)2|)・・・(1)
 ここで、Ir(t)は、時刻tにおける実効値を示している。また、I(t)は、時刻tにおける、定格周波数成分が抽出された入力電流の電流瞬時値を示し、I(t-90)は、時刻tより電気角90°前の電流瞬時値を示しており、I(t-180)は、時刻tより電気角180°前の電流瞬時値を示している。なお、式(1)では、実効値演算に用いるデータを得るために必要な時間は電気角の1/2サイクル分の時間である。
 過電流判定部103は、実効値演算部102により演算された実効値Irと、予め定められた整定値Isとを比較して、過電流の有無を判定する。
 図4は、故障発生から遮断器が開放されるまでの入力電流および実効値を示す模式図である。図4を参照して、故障発生後の時刻txにおいて、実効値Irが整定値Is以上となる。そのため、過電流判定部103は、時刻txにおいて、動作判定(すなわち、過電流検出との判定)を行ない、出力値“1”を出力する。
 また、遮断器4の開放後の時刻tyにおいて、実効値Irが整定値Is未満となる。過電流判定部103は、時刻tyにおいて、不動作または復帰判定(すなわち、過電流未検出との判定)を行ない、出力値“0”を出力する。過電流判定部103の出力値は、過電流検出部100の出力値となる。当該出力値は、過電流検出部100の検出結果Dxに対応する。
 なお、過電流検出部100は、比較的長い期間のデータを用いて入力電流の定格周波数成分を抽出した電流データを生成し、当該電流データを用いて実効値Irを演算し、当該実効値Irと整定値Isとを用いて過電流検出を実行する。そのため、過電流検出部100は、高調波および歪み波に対する影響を受けにくく、故障電流が発生しているときに復帰することがなく安定性が高い。
 再び、図3を参照して、低下検出部110は、実効値Irの低下を検出する。具体的には、低下検出部110は、実効値Irの低下率が基準低下率以上である場合に、実効値Irの低下を検出する。
 図5は、実施の形態1に従う実効値の低下検出方式を説明するための図である。図5を参照して、低下検出部110は、以下の式(2)および式(3)を用いて実効値Irの低下検出を実行する。
 Ir(t)<Ir(t-180)・・・(2)
 |Ir(t)-Ir(t-180)|≧Th1*Ir(t-180)・・・(3)
 ここで、Ir(t)は、時刻tにおける実効値を示している。また、Ir(t-180)は、時刻tより電気角180°前の実効値を示している。
 低下検出部110は、上記の式(2)および(3)が成立する場合に、実効値Irの低下を検出する。すなわち、現在の実効値Ir(t)が電気角180°前の実効値Ir(t-180)よりも小さいとの条件、および実効値Ir(t-180)に対する、実効値Ir(t)と実効値Ir(t-180)との差分の絶対値の比率(すなわち、低下率)が閾値Th1(例えば、Th1=0.15~0.5)以上であるとの条件が成立する場合に、低下検出部110は実効値Irの低下を検出する。低下検出部110は、実効値Irの低下を検出した場合には出力値“1”を出力し、実効値Irの低下を検出していない場合には出力値“0”を出力する。当該出力値は、低下検出部110の検出結果に対応する。
 再び、図3を参照して、ゼロクロス判定部120は、AD変換部52によってディジタルデータに変換された入力電流の電流波形のゼロクロス点が検出されたか否かを判定する。具体的には、ゼロクロス判定部120は、ゼロクロス検出部121と、復帰タイマ122とを含む。
 図6は、実施の形態1に従うゼロクロス検出方式を説明するための図である。図6を参照して、ゼロクロス検出部121は、例えば、ヒステリシス付きのコンパレータで構成されており、グランドレベル付近に設定された閾値H,Lと比較することで、入力電流のゼロクロス点を検出する。このように、コンパレータの閾値にヒステリシス特性を持たせることにより、ディジタル変換後のノイズによるゼロクロス点の誤検出を防止する。典型的には、半周期ごとにゼロクロス点が検出される。
 再び、図3を参照して、復帰タイマ122は、ゼロクロス検出部121が出力値“1”を出力した場合、その値を復帰時間Treの間維持する。復帰時間Treは、例えば、2/3サイクル(すなわち、電気角240°)に相当する時間である。復帰タイマ122の出力は、ゼロクロス判定部120の出力となる。ゼロクロス判定部120は、ゼロクロス点が検出されたと判定した場合には出力値“1”を出力し、ゼロクロス点が検出されていないと判定した場合には出力値“0”を出力する。この出力値は、ゼロクロス判定部120の判定結果に対応する。
 出力制御部130は、過電流検出部100の検出結果と、低下検出部110の検出結果と、ゼロクロス判定部120の判定結果とに基づいて、動作出力および復帰出力を生成する。具体的には、出力制御部130は、NOTゲート131と、ANDゲート132,134と、ORゲート133とを含む。出力制御部130は、これらの論理ゲートを用いることで、過電流継電器30の動作出力(すなわち、出力値“1”)および復帰出力(すなわち、出力値“0”)を生成する。
 NOTゲート131は、低下検出部110の出力値のNOT演算を行なう。ANDゲート132は、低下検出部110の出力値と、ゼロクロス判定部120の出力値とのAND演算を行なう。ORゲート133は、NOTゲート131の出力値と、ANDゲート132の出力値とのOR演算を行なう。ANDゲート134は、過電流検出部100の出力値と、ORゲート133の出力値とのAND演算を行なう。ANDゲート134の出力値は、出力制御部130の出力値となる。
 <動作例>
 図7は、実施の形態1に従う過電流継電器30における動作の一例を示す図である。なお、図7に示す例では、時刻t1において故障等が発生することで入力電流が急増し、時刻t4において、遮断器4が開放することで入力電流が減少した例を示している。図7には、入力電流の電流波形と、過電流検出部100の出力値と、ゼロクロス判定部120の出力値と、低下検出部110の出力値と、出力制御部130の出力値とが示されている。
 時刻t2において、ゼロクロス判定部120は、入力電流のゼロクロス点を検出して出力値“1”を出力する。時刻t3において、過電流検出部100が出力値“1”を出力する。このとき、ゼロクロス判定部120の出力値は“1”であるが、低下検出部110の出力値は“0”であるため、出力制御部130は出力値“1”を出力する。具体的には、出力制御部130は、低下検出部110により実効値の低下が検出されていない場合であって、かつ過電流検出部100により過電流が検出された場合には、動作出力を生成する。すなわち、過電流継電器30は動作出力する。動作時間は、時刻t1から時刻t3までの時間に対応する。
 時刻t4において遮断器4が開放すると、入力電流が急減する。低下検出部110は、時刻t5において、この入力電流の急減を検出して出力値“1”を出力する。また、入力電流が急減すると、交流波形特有のゼロクロス点が検出されなくなる。そのため、ゼロクロス判定部120は、時刻t6において、ゼロクロス点が検出されなくなったと判定して、出力値“0”を出力する。時刻t6において、低下検出部110の出力値“1”およびゼロクロス判定部120の出力値“0”が成立したことに伴い、出力制御部130は出力値“0”を出力する。すなわち、過電流継電器30は復帰出力する。復帰時間は、時刻t4から時刻t6までの時間に対応する。
 時刻t6の時点では過電流検出部100の出力値は“1”であり、時刻t7になると、当該出力値は“0”となる。このことから、過電流検出部100の出力値が“0”になったことに基づいて復帰出力が行なわれる場合よりも、図7に示すように、低下検出部110の出力値“1”およびゼロクロス判定部120の出力値“0”の成立に基づいて復帰出力が行なわれる方が、復帰時間が短縮されていることがわかる。以下、この理由について具体的に説明する。
 まず、過電流検出部100では精度よく過電流判定を行なうため、ディジタルフィルタ101により高調波成分、歪波成分等が除去された定格周波数成分が抽出された電流データが用いられる。そのため、定格周波数成分に対する位相ずれが発生する。また、実効値演算部102による実効値演算では、式(1)に示すように、現在の電流瞬時値と過去の電流瞬時値とに基づいて実効値が演算されるため、遮断器4の開放後において実効値は瞬時に低下するのではなく過渡的に低下していく。したがって、実効値Irが整定値Is未満と判定されるタイミングが遅れ、遮断器4が開放されても過電流検出部100の出力値が“1”から“0”になるまでに時間がかかる。
 また、低下検出部110でも現在の電流瞬時値と過去の電流瞬時値とに基づく実効値が用いられるが、過電流判定とは異なり実効値の低下を検出できればよい。そのため、低下検出部110は、遮断器4の開放後早い段階(例えば、時刻t5)で実効値の低下を検出し、出力値“1”を出力する。
 ここで、ゼロクロス判定部120では、上述したように、ディジタルフィルタ101により高調波成分、歪波成分等が除去されていない入力電流の電流データに基づいて、ゼロクロス判定が行なわれる。そのため、ディジタルフィルタ101による処理遅れがない。また、過去の電流瞬時値を用いる実効値ではなく、電流瞬時値によりゼロクロス判定が行なわれるため、判定タイミングに遅れが生じることもない。
 なお、ゼロクロス判定では、高調波成分等が除去されていない入力電流の電流データが用いられるため、遮断器4が開放されるまでの入力電流が大きい期間においては、高調波等の影響を受けて、ゼロクロス点が検出されてから復帰時間Tre以上電流がゼロ点と交差しないことにより一時的に出力値が“0”になる期間Taが発生する場合がある。
 一方、遮断器4の開放後の入力電流が小さくなり、交流波形特有のゼロクロス点が検出されなくなる期間においては、高調波等の影響をほぼ受けることがないため、ゼロクロス判定は高精度に実行することができる。したがって、この期間において、ゼロクロス判定部120が、誤って、交流波形特有のゼロクロス点を検出してしまうことはない。
 そこで、実施の形態1では、低下検出部110の検出結果と、ゼロクロス判定部120の判定結果とを組み合わせて、復帰出力を行なうように構成されている。具体的には、出力制御部130は、低下検出部110により実効値Irの低下が検出された場合であって、かつゼロクロス判定部120によりゼロクロス点が検出されないと判定された場合に、過電流検出部100の検出結果に関わらず復帰出力を生成する。すなわち、実効値Irが低下した、ゼロクロス判定精度が高い期間において、ゼロクロス点が検出されないとの判定がなされた場合に、復帰出力が生成される。なお、実効値Irの低下が検出されていない期間Taにおいてゼロクロス点を未検出であっても復帰出力は生成されない。
 これにより、入力電流に高調波成分が多く含まれている場合であっても、遮断器4が開放されたことを精度よく高速に検出することができる。そのため、過電流継電器30の適切な復帰と、その復帰時間を高速化することが可能となる。
 なお、遮断器4が開放して、過電流継電器30が接続されている電流変成器7の一次側で電流が急減したときに、電流変成器7の励磁回路のインダクタンスに蓄積したエネルギーが電流変成器7の二次側に放電することによって直流成分の減衰電流が一定時間流れる場合がある。このような場合にも、実施の形態1に係る過電流継電器30では、復帰時間を高速化することができる。
 図8は、DC(Direct Current)減衰波の一例を示す図である。図8を参照して、遮断器4の開放後においてもDC減衰波が発生していることがわかる。DC減衰波は、低下検出部110により実効値Irの低下が検出されたときのゼロクロス判定部120の判定精度には影響を及ぼさない。具体的には、ゼロクロス判定部120は、実効値Irの低下時におけるゼロクロス点の未検出を適切に判定することができる。そのため、DC減衰波が生じている場合であっても、低下検出部110の検出結果と、ゼロクロス判定部120の判定結果とを組み合わせて、復帰出力を行なうことで復帰時間を高速化できる。
 なお、一般的には、DC減衰波の影響を除去するためには、現時点の電流データから一定時間前の電流データを差し引く差分フィルタなどの演算が必要だが、実施の形態1によると、当該演算の必要もなくなる。
 <利点>
 実施の形態1によると、実効値Irの低下検出結果と、ゼロクロス判定結果とを組み合わせることにより、故障電流に高調波成分、歪み成分等が重畳している場合およびDC減衰波が発生している場合であっても、過電流継電器30の適切な復帰を実現できるとともに、その復帰時間を高速化することができる。
 実施の形態2.
 実施の形態1では、実効値Irの低下が検出された場合に、入力電流の電流波形のゼロクロス点が検出されないとの条件が成立した場合に、復帰出力を生成する構成について説明した。実施の形態2では、実効値Irの低下が検出された場合に、入力電流の電流波形の直流成分が交流成分よりも支配的であるとの条件が成立した場合に、復帰出力を生成する構成について説明する。なお、実施の形態2における電力系統の構成と、保護継電器20ならびに過電流継電器30のハードウェア構成とは、実施の形態1の当該構成と同様である。
 <機能構成>
 図9は、実施の形態2に従う過電流継電器30Aの機能構成の一例を示すブロック図である。過電流継電器30Aは図1に示す過電流継電器30に対応するが、他の実施の形態との区別のため、便宜上「A」といった追加の符号を付している。これは、以下の実施の形態3でも同様である。
 図9を参照して、過電流継電器30Aは、主たる機能構成として、過電流検出部100と、低下検出部110と、直流判定部150と、出力制御部170とを含む。典型的には、これらの各機能は、CPU72がROM73に格納されたプログラムを実行することによって実現される。なお、これらの機能の一部または全部は専用の回路を用いることによって実現されるように構成されていてもよい。過電流検出部100および低下検出部110の構成は、実施の形態1と同様であるため、その詳細な説明は繰り返さない。
 直流判定部150は、AD変換部52によってディジタルデータに変換された入力電流の電流波形の直流成分が当該電流波形の交流成分よりも支配的であるか否かを判定する。
 図10は、実施の形態2に従う直流判定部150の機能構成の一例を示すブロック図である。図10を参照して、直流判定部150は、基本波検出フィルタ151と、交流実効値演算部152と、DC検出フィルタ153と、比較部154とを含む。
 基本波検出フィルタ151は、入力電流の定格周波数成分(すなわち、基本波成分)を抽出した電流データを生成する。基本波検出フィルタ151は、例えば、定格周波数の電気角の1/2サイクル(すなわち、180°)分のデータを用いる。典型的には、基本波検出フィルタ151は、ディジタルフィルタ101と同様の機能を有する。
 交流実効値演算部152は、定格周波数成分が抽出された入力電流の交流実効値演算を実行する。具体的には、交流実効値演算部152は、基本波検出フィルタ151から入力された電流データを用いて交流成分の実効値(以下、「交流実効値」とも称する。)を演算する。交流実効値演算部152は、例えば、以下の式(4)を用いて交流実効値を演算する。
 Ira(t)=sqrt(|Ia(t-90)2-Ia(t)*Ia(t-180)2|)・・・(4)
 ここで、Ira(t)は、時刻tにおける実効値を示している。また、Ia(t)は、時刻tにおける、入力電流の交流成分の電流瞬時値を示し、Ia(t-90)は、時刻tより電気角90°前の電流瞬時値を示しており、Ia(t-180)は、時刻tより電気角180°前の電流瞬時値を示している。典型的には、交流実効値演算部152は、実効値演算部102と同様の機能を有する。
 DC検出フィルタ153は、入力電流の直流成分を抽出した電流データを生成する。DC検出フィルタ153は、例えば、定格周波数の電気角の1/2サイクル(すなわち、180°)分のデータを用いる。ここで、時刻tにおける、抽出された入力電流の直流成分をIdc(t)と定義する。
 比較部154は、交流実効値Ira(t)と、直流成分Idc(t)とを比較して、直流成分Idc(t)の方が交流実効値Ira(t)よりもかなり大きく支配的である場合に出力値“1”を出力する。例えば、直流成分Idc(t)が交流実効値Ira(t)よりも大きく、かつ交流実効値Ira(t)に対する直流成分Idc(t)の比率が閾値Th2(例えば、Th2=5)以上である場合(すなわち、Idc(t)>5*Ira(t)が成立する場合)に、比較部154は、直流成分Idc(t)の方が交流実効値Ira(t)よりも支配的であると判定する。
 一方、比較部154は、Idc(t)≦Th2*Iraが成立する場合には出力値“0”を出力する。比較部154の出力は、直流判定部150の出力となる。すなわち、直流判定部150は、直流成分が交流成分よりも支配的であると判定した場合には出力値“1”を出力し、そうではないと判定した場合には出力値“0”を出力する。この出力値は、直流判定部150の判定結果に対応する。
 再び、図9を参照して、出力制御部170は、過電流検出部100の検出結果と、低下検出部110の検出結果と、直流判定部150の判定結果とに基づいて、動作出力および復帰出力を生成する。具体的には、出力制御部170は、ANDゲート171,172を含む。
 ANDゲート171は、低下検出部110の出力値と、直流判定部150の出力値とのAND演算を行なう。ANDゲート172は、過電流検出部100の出力値と、ANDゲート171の出力値を反転した値とのAND演算を行なう。ANDゲート172の出力値は、出力制御部170の出力値となる。
 <動作例>
 図11は、実施の形態2に従う過電流継電器30Aにおける動作の一例を示す図である。なお、図11に示す例では、時刻t1aにおいて故障等が発生することで入力電流が急増し、時刻t3aにおいて、遮断器4が開放することで入力電流が減少した例を示している。図11には、入力電流の電流波形と、過電流検出部100の出力値と、直流判定部150の出力値と、低下検出部110の出力値と、出力制御部170の出力値とが示されている。
 時刻t2aにおいて、低下検出部110の出力値は“0”であるため、過電流検出部100が出力値“1”を出力することに伴い、出力制御部170は出力値“1”を出力する。すなわち、過電流継電器30Aは動作出力する。動作時間は、時刻t1aから時刻t2aまでの時間に対応する。
 時刻t3aにおいて遮断器4が開放すると入力電流が急減する。入力電流が急減すると、交流成分よりも直流成分の方が支配的になる。典型的には、上述したDC減衰波が発生する。そのため、直流判定部150は、時刻t4aにおいて、直流成分が交流成分よりも支配的になったと判定して、出力値“1”を出力する。また、低下検出部110は、時刻t5aにおいて、この入力電流の急減を検出して出力値“1”を出力する。
 時刻t5aにおいて、低下検出部110の出力値“1”および直流判定部150の出力値“1”が成立したことに伴い、出力制御部170は出力値“0”を出力する。すなわち、過電流継電器30Aは復帰出力する。復帰時間は、時刻t4aから時刻t5aまでの時間に対応する。
 時刻t5aの時点では過電流検出部100の出力値は“1”であり、時刻t6aになると、当該出力値は“0”となる。このことから、過電流検出部100の出力値が“0”になったことに基づいて復帰出力が行なわれる場合よりも、図11に示すように、低下検出部110の出力値“1”および直流判定部150の出力値“1”の成立に基づいて復帰出力が行なわれる方が、復帰時間が短縮されていることがわかる。
 なお、直流判定部150でも、過電流検出部100と同様に、フィルタ処理および実効値演算処理を実行している。しかしながら、直流判定部150では、過電流判定とは異なり直流成分が支配的になったことを判定できればよい。そのため、直流判定部150は、遮断器4の開放後早い段階(例えば、時刻t4a)で直流成分が支配的になったと判定し、出力値“1”を出力する。また、上述したように、低下検出部110でも、遮断器4の開放後早い段階(例えば、時刻t5a)で実効値の低下を検出し、出力値“1”を出力する。
 ここで、遮断器4の開放後の入力電流が小さくなり、直流成分よりも交流成分が相対的に小さくなる期間においては、高調波および歪み波等の影響をほぼ受けることがないため、直流判定部150は高精度に上記判定を実行することができる。
 そこで、実施の形態2では、低下検出部110の検出結果と、直流判定部150の判定結果とを組み合わせて、復帰出力を行なうように構成されている。具体的には、出力制御部170は、低下検出部110により実効値Irの低下が検出された場合であって、かつ直流判定部150により直流成分が交流成分よりも支配的と判定された場合に、過電流検出部100の検出結果に関わらず復帰出力を生成する。
 実施の形態2でも、入力電流に高調波成分が多く含まれている場合であっても、遮断器4が開放されたことを精度よく高速に検出することができる。そのため、過電流継電器30Aの適切な復帰と、その復帰時間を高速化することが可能となる。
 また、図8に示すDC減衰波は、交流成分がほとんど含まれない減衰波である。そのため、遮断器4の開放後にDC減衰波が発生した場合であっても、直流判定部150により精度よく検出できる。したがって、この場合にも、低下検出部110の検出結果と、直流判定部150の判定結果とを組み合わせて、復帰出力を行なうことで復帰時間を高速化できる。
 <利点>
 実施の形態2によると、実施の形態1と同様の利点を有する。
 実施の形態3.
 上述した実施の形態1,2では、1つの過電流検出部100を用いる構成について説明したが、実施の形態3では2つの過電流検出部を用いる構成について説明する。なお、実施の形態3における電力系統の構成と、保護継電器20および過電流継電器30のハードウェア構成とは、実施の形態1の当該構成と同様である。
 <機能構成>
 図12は、実施の形態3に従う過電流継電器30Bの機能構成の一例を示すブロック図である。図12を参照して、過電流継電器30Bは、主たる機能構成として、過電流検出部100と、低下検出部110と、過電流検出部200と、出力制御部210とを含む。典型的には、これらの各機能は、CPU72がROM73に格納されたプログラムを実行することによって実現される。なお、これらの機能の一部または全部は専用の回路を用いることによって実現されるように構成されていてもよい。過電流検出部100および低下検出部110の構成は、実施の形態1と同様であるため、その詳細な説明は繰り返さない。
 過電流検出部200は、ディジタルフィルタ201と、実効値演算部202と、過電流判定部203と、過電流判定部204とを含む。
 ディジタルフィルタ201は、入力電流の定格周波数成分を抽出した電流データを生成する。具体的には、ディジタルフィルタ201は、ディジタルフィルタ101よりもサンプリングデータ長の短い高速なフィルタ特性を有する。ここでは、例えば定格周波数の電気角の1/4サイクル(すなわち、90°)分の期間T2のデータを用いる。これは、例えば、AD変換部52のサンプリング回数が1サイクル中に12回である場合には、3サンプリング長分のデータに対応する。すなわち、期間T2は、ディジタルフィルタ101によって用いられるデータの期間T1よりも短い。
 実効値演算部202は、定格周波数成分が抽出された入力電流の実効値演算を実行する。具体的には、実効値演算部202は、ディジタルフィルタ201から入力された電流データを用いて実効値を演算する。実効値演算部202は、実効値演算部102で用いられる式(1)よりも入力電流の変化に対して速やかに追随する過渡特性を有する実効値演算式を用いる。例えば、実効値演算部202は、例えば、以下の式(5)を用いて実効値を演算する。
 Irb(t)=sqrt(|Ib(t-30)*Ib(t-60)-Ib(t)*Ib(t-90)|)・・・(5)
 ここで、Irb(t)は、時刻tにおける実効値を示している。また、Ib(t)は、時刻tにおける、定格周波数成分が抽出された入力電流の電流瞬時値を示し、Ib(t-30)は、時刻tより電気角30°前の電流瞬時値を示し、Ib(t-60)は、時刻tより電気角60°前の電流瞬時値を示し、Ib(t-90)は、時刻tより電気角90°前の電流瞬時値を示している。
 なお、式(5)では、実効値演算に用いるデータを得るために必要な時間は電気角の1/4サイクル分の時間である。そのため、動的な応答性が高く、実効値演算部102で用いられる式(1)と比較して、電気角の1/4サイクル分の時間だけ高速化できる。
 過電流判定部203は、実効値演算部202により演算された実効値Irbと、整定値Is1とを比較して、過電流の有無を判定する。整定値Is1は、整定値Isよりも大きい値(例えば、Is1=1.05*Is)に設定される。過電流判定部203は、実効値Irbが整定値Is1以上の場合に出力値“1”を出力し、実効値Irbが整定値Is1未満の場合に出力値“0”を出力する。過電流判定部203の出力値は、過電流検出部200により出力される過電流の検出結果Dyに対応する。
 過電流判定部204は、実効値演算部202により演算された実効値Irbと、整定値Is2とを比較して、過電流の有無を判定する。整定値Is2は、整定値Isよりも小さい値(例えば、Is2=0.95*Is)に設定される。過電流判定部204は、実効値Irbが整定値Is2以上の場合に出力値“1”を出力し、実効値Irbが整定値Is2未満の場合に出力値“0”を出力する。過電流判定部204の出力値は、過電流検出部200により出力される過電流の検出結果Dzに対応する。
 このように、過電流検出部200は、期間T1よりも短い期間T2の電流データを用いて演算された実効値Irbと、整定値Isよりも大きい整定値Is1とを比較することにより過電流の検出結果Dyを出力する。過電流検出部200は、実効値Irbと、整定値Isよりも小さい整定値Is2とを比較することにより過電流の検出結果Dzを出力する。
 なお、過電流検出部200は、比較的短い期間のデータを用いるため、過電流検出部100と比較して高速な演算を実行することができる。一方、過電流検出部100の実効値演算結果よりも、過電流検出部200の実効値演算結果の方が誤差が大きくなる。そのため、出力制御部210は、この実効値演算結果の誤差が過電流継電器30Bの動作および復帰の精度に影響することを抑制するように構成される。
 出力制御部210は、過電流検出部100から出力される検出結果Dxと、過電流検出部200から出力される検出結果Dy,Dzと、低下検出部110の検出結果とに基づいて、動作出力および復帰出力を生成する。具体的には、出力制御部210は、ORゲート211,215と、ANDゲート212,213,214とを含む。
 ORゲート211は、過電流判定部103の出力値(すなわち、検出結果Dx)と、過電流判定部203の出力値(すなわち、検出結果Dy)とのOR演算を行なう。ANDゲート212は、過電流判定部103の出力値(すなわち、検出結果Dx)と、過電流判定部204の出力値(すなわち、検出結果Dz)とのAND演算を行なう。
 ANDゲート213は、ORゲート211の出力値と、低下検出部110の出力値を反転した値とのAND演算を行なう。ANDゲート214は、ANDゲート212の出力値と、低下検出部110の出力値とのAND演算を行なう。ORゲート215は、ANDゲート213の出力値と、ANDゲート214の出力値とのOR演算を行なう。ORゲート215の出力値は、出力制御部210の出力値となる。
 上記によると、低下検出部110により実効値Irの低下が検出されていない場合には、過電流判定部103の出力値(すなわち、検出結果Dx)と過電流判定部203の出力値(すなわち、検出結果Dy)とのOR演算が出力制御部210の出力値となる。具体的には、出力制御部210は、過電流が検出されたことを示す検出結果Dxおよび過電流が検出されたことを示す検出結果Dyのうち、いずれか早い方の出力タイミングで動作出力を生成する。
 一方、低下検出部110により実効値Irの低下が検出されている場合には、過電流判定部103の出力値(すなわち、検出結果Dx)と過電流判定部204の出力値(すなわち、検出結果Dz)とのAND演算が出力制御部210の出力値となる。具体的には、出力制御部210は、過電流が未検出であることを示す検出結果Dxおよび過電流が未検出であることを示す検出結果Dzのうち、いずれか早い方の出力タイミングで復帰出力を生成する。
 これにより、過電流検出部200による実効値演算結果の誤差が過電流継電器30Bの動作および復帰の精度に影響することを抑えつつ、動作時間および復帰時間をともに高速化することができる。
 さらに、遮断器4の開放後の入力電流が小さくなり、高調波および歪み波等の影響をほぼ受けることがない期間において、過電流判定部103の出力値と過電流判定部204の出力値とのAND演算により、復帰出力が生成される。したがって、故障電流に高調波成分、および歪波成分が多く含まれている場合であっても、過電流判定部204で用いられる整定値Is2を整定値Isよりも大幅に低い値に変更する必要がないため、復帰時間の高速化を実現することができる。
 <動作例>
 図13は、実施の形態3に従う過電流継電器30Bにおける動作の一例を示す図である。なお、図13に示す例では、時刻t1bにおいて故障等が発生することで入力電流が急増し、時刻t5bにおいて、遮断器4が開放することで入力電流が減少した例を示している。図13には、入力電流の電流波形と、過電流検出部100の出力値(すなわち、検出結果Dx)と、過電流判定部203の出力値(すなわち、検出結果Dy)と、過電流判定部204の出力値(すなわち、検出結果Dz)と、低下検出部110の出力値と、出力制御部210の出力値とが示されている。
 時刻t2bにおいて、過電流判定部204は、実効値Irb≧Is2の成立に応じて出力値“1”を出力する。この時点では、出力制御部210により動作出力は生成されない。続いて、時刻t3bにおいて、過電流判定部203は、実効値Irb≧Is1の成立に応じて出力値“1”を出力する。このとき、出力制御部210は出力値“1”を出力する。すなわち、過電流継電器30Bは動作出力する。動作時間は、時刻t1bから時刻t3bまでの時間に対応する。
 時刻t3bの時点では過電流検出部100の出力値は“0”であり、時刻t4bになると、当該出力値は“1”となる。このことから、過電流検出部100の出力値が“1”になったことに基づいて動作出力が行なわれる場合よりも、図13に示すように、低下検出部110の出力値“0”および過電流判定部203の出力値“1”の成立に基づいて動作出力が行なわれる方が、動作時間が短縮される。
 次に、時刻t5bにおいて遮断器4が開放すると、入力電流が急減する。時刻t6bにおいて、低下検出部110は、この入力電流の急減を検出して出力値“1”を出力する。時刻t7bにおいて、過電流判定部203は、実効値Irb<Is1の成立に応じて出力値“0”を出力する。この時点では、出力制御部210により復帰出力は生成されない。続いて、時刻t8bにおいて、過電流判定部204は、実効値Irb<Is2の成立に応じて出力値“0”を出力する。このとき、出力制御部210は出力値“0”を出力する。すなわち、過電流継電器30Bは復帰出力する。復帰時間は、時刻t5bから時刻t8bまでの時間に対応する。
 時刻t8bの時点では過電流検出部100の出力値は“1”であり、時刻t9bになると、当該出力値は“0”となる。このことから、過電流検出部100の出力値が“0”になったことに基づいて復帰出力が行なわれる場合よりも、図13に示すように、低下検出部110の出力値“1”および過電流判定部204の出力値“0”の成立に基づいて復帰出力が行なわれる方が、復帰時間が短縮されていることがわかる。
 このように、過電流継電器30Bは、故障等によって入力電流が急増した場合には、過電流判定部203によって出力値“1”が出力されたタイミングで動作出力し、入力電流が急減した場合には、過電流判定部204によって出力値“0”が出力されたタイミングで復帰出力する。そのため、過電流検出部200による高速な実効値演算式である式(5)により得られる実効値演算結果に基づいて、高速に動作および復帰することができる。
 <利点>
 実施の形態3によると、比較的短いデータ長を用いる過電流検出部200による実効値演算結果の誤差が過電流継電器30Bの動作および復帰の精度に影響することを抑えつつ、動作時間および復帰時間をともに高速化することができる。また、故障電流に高調波成分、および歪波成分が多く含まれている場合であっても、復帰時間の高速化を実現することができる。
 その他の実施の形態.
 上述した実施の形態では、過電流継電器がCBFリレーとして機能する構成について説明したが、当該構成に限られない。過電流継電器は、電力系統(例えば、送電線)に流れる事故電流を検出して遮断器へトリップ信号を出力するような保護継電器として用いる構成であってもよい。
 上述の実施の形態として例示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能である。
 また、上述した実施の形態において、その他の実施の形態で説明した処理や構成を適宜採用して実施する場合であってもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 電線、2,3 母線、4,5,6 遮断器、7 電流変成器、10 保護継電システム、20 保護継電器、30,30A,30B 過電流継電器、51 補助変成器、52 AD変換部、70 演算処理部、71 バス、72 CPU、73 ROM、74 RAM、75 DI回路、76 DO回路、77 入力インターフェイス、100,200 過電流検出部、101,201 ディジタルフィルタ、102,202 実効値演算部、103,203,204 過電流判定部、110 低下検出部、120 ゼロクロス判定部、121 ゼロクロス検出部、122 復帰タイマ、130,170,210 出力制御部、131 NOTゲート、132,134,171,172,212,213,214 ANDゲート、133,211,215 ORゲート、150 直流判定部、151 基本波検出フィルタ、152 交流実効値演算部、153 DC検出フィルタ、154 比較部。

Claims (9)

  1.  電力系統から入力された入力電流の実効値と、整定値とを比較することにより過電流を検出する過電流検出部と、
     前記実効値の低下を検出する低下検出部と、
     前記過電流検出部の検出結果と、前記低下検出部の検出結果と、前記入力電流の電流波形に関する予め定められた条件とに基づいて、動作出力および復帰出力を生成する出力制御部とを備え、
     前記出力制御部は、前記実効値の低下が検出された場合であって、かつ前記予め定められた条件が成立した場合には、前記過電流検出部による検出結果に関わらず前記復帰出力を生成する、過電流継電器。
  2.  前記出力制御部は、前記実効値の低下が検出されていない場合であって、かつ前記過電流検出部により過電流が検出された場合に、前記動作出力を生成する、請求項1に記載の過電流継電器。
  3.  前記低下検出部は、前記実効値の低下率が第1閾値以上である場合に、前記実効値の低下を検出する、請求項1または請求項2に記載の過電流継電器。
  4.  前記入力電流の電流波形のゼロクロス点が検出されたか否かを判定するゼロクロス判定部をさらに備え、
     前記出力制御部は、前記実効値の低下が検出された場合であって、かつ前記ゼロクロス点が検出されない場合に、前記復帰出力を生成する、請求項1~請求項3のいずれか1項に記載の過電流継電器。
  5.  前記入力電流の電流波形の直流成分が前記電流波形の交流成分よりも支配的であるか否かを判定する判定部をさらに備え、
     前記出力制御部は、前記実効値の低下が検出された場合であって、かつ前記直流成分が前記交流成分よりも支配的である場合に、前記復帰出力を生成する、請求項1~請求項3のいずれか1項に記載の過電流継電器。
  6.  前記判定部は、前記電流波形の直流成分が前記電流波形の交流成分の実効値よりも大きく、かつ前記交流成分の実効値に対する前記直流成分の比率が第2閾値以上である場合に、前記直流成分が前記交流成分よりも支配的であると判定する、請求項5に記載の過電流継電器。
  7.  前記過電流検出部は、
     前記入力電流の定格周波数成分を抽出した電流データを生成するディジタルフィルタと、
     前記電流データを用いて前記実効値を演算する実効値演算部とを含む、請求項1~請求項6のいずれか1項に記載の過電流継電器。
  8.  電力系統から入力された入力電流の定格周波数成分を抽出した第1電流データを生成する第1デジタルフィルタを含む第1過電流検出部と、
     前記第1デジタルフィルタよりも高速なフィルタ特性を有し、前記入力電流の定格周波数成分を抽出した第2電流データを生成する第2デジタルフィルタを含む第2過電流検出部とを備え、
     前記第1過電流検出部は、第1期間の前記第1電流データを用いて演算された第1実効値と、第1整定値とを比較することにより過電流の第1検出結果を出力し、
     前記第2過電流検出部は、前記第1期間よりも短い第2期間の前記第2電流データを用いて演算された第2実効値と、前記第1整定値よりも大きい第2整定値とを比較することにより過電流の第2検出結果を出力し、前記第2実効値と前記第1整定値よりも小さい第3整定値との比較することにより過電流の第3検出結果を出力し、
     前記第1実効値が低下したことを検出する低下検出部と、
     前記第1~第3検出結果と、前記低下検出部の検出結果とに基づいて、動作出力および復帰出力を生成する出力制御部とをさらに備え、
     前記出力制御部は、前記第1実効値の低下が検出された場合には、過電流が未検出であることを示す前記第1検出結果、および過電流が未検出であることを示す前記第3検出結果のうち、いずれか早い方の出力タイミングで前記復帰出力を生成する、過電流継電器。
  9.  前記出力制御部は、前記第1実効値の低下が検出されていない場合には、過電流が検出されたことを示す前記第1検出結果、および過電流が検出されたことを示す前記第2検出結果のうち、いずれか早い方の出力タイミングで前記動作出力を生成する、請求項8に記載の過電流継電器。
PCT/JP2018/033370 2018-09-10 2018-09-10 過電流継電器 WO2020053918A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217006703A KR102611859B1 (ko) 2018-09-10 2018-09-10 과전류 계전기
GB2102981.4A GB2593052B (en) 2018-09-10 2018-09-10 Overcurrent relay Device
PCT/JP2018/033370 WO2020053918A1 (ja) 2018-09-10 2018-09-10 過電流継電器
JP2018566467A JP6548841B1 (ja) 2018-09-10 2018-09-10 過電流継電器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033370 WO2020053918A1 (ja) 2018-09-10 2018-09-10 過電流継電器

Publications (1)

Publication Number Publication Date
WO2020053918A1 true WO2020053918A1 (ja) 2020-03-19

Family

ID=67390290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033370 WO2020053918A1 (ja) 2018-09-10 2018-09-10 過電流継電器

Country Status (4)

Country Link
JP (1) JP6548841B1 (ja)
KR (1) KR102611859B1 (ja)
GB (1) GB2593052B (ja)
WO (1) WO2020053918A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102647481B1 (ko) * 2021-06-14 2024-03-13 한국수력원자력 주식회사 발전기차단기 차단실패 보호 계전기 및 이를 이용한 차단실패 보호 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169543U (ja) * 1983-04-28 1984-11-13 日新電機株式会社 過電流継電器
JP2001177977A (ja) * 1999-12-20 2001-06-29 Meidensha Corp ディジタル形保護継電装置
JP2004064957A (ja) * 2000-07-18 2004-02-26 Sungkyunkwan Univ 送電線路における可変デッドタイム制御を利用した適応的再閉路方法
JP2011250518A (ja) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp 過電流継電器
JP2012161132A (ja) * 2011-01-31 2012-08-23 Mitsubishi Electric Corp 過電流継電器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200196865Y1 (ko) * 2000-04-26 2000-09-15 엘지산전주식회사 퓨즈내장형 계기용변압기의 개폐장치
JP7187379B2 (ja) * 2019-04-25 2022-12-12 ミドリ電子株式会社 絶縁監視装置、絶縁監視装置の精度試験装置、絶縁監視装置の精度試験方法及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169543U (ja) * 1983-04-28 1984-11-13 日新電機株式会社 過電流継電器
JP2001177977A (ja) * 1999-12-20 2001-06-29 Meidensha Corp ディジタル形保護継電装置
JP2004064957A (ja) * 2000-07-18 2004-02-26 Sungkyunkwan Univ 送電線路における可変デッドタイム制御を利用した適応的再閉路方法
JP2011250518A (ja) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp 過電流継電器
JP2012161132A (ja) * 2011-01-31 2012-08-23 Mitsubishi Electric Corp 過電流継電器

Also Published As

Publication number Publication date
JPWO2020053918A1 (ja) 2020-10-22
KR20210039458A (ko) 2021-04-09
GB2593052A (en) 2021-09-15
GB202102981D0 (en) 2021-04-14
KR102611859B1 (ko) 2023-12-11
JP6548841B1 (ja) 2019-07-24
GB2593052B (en) 2022-06-22

Similar Documents

Publication Publication Date Title
CN108183463B (zh) 智能变电站变压器比率差动保护防误动的方法
CN104391221B (zh) 一种利用相电流梯度和的故障选相方法
KR101217440B1 (ko) 과전류 계전기
TWI222257B (en) Distance relay apparatus
WO2020053918A1 (ja) 過電流継電器
Kasztenny et al. Generator protection and CT saturation problems and solutions
JP5298562B2 (ja) ディジタル形保護リレー
US11355919B2 (en) Current differential relay apparatus
JP7292193B2 (ja) 保護リレー装置
JP6832811B2 (ja) 保護制御装置、および保護制御システム
JP2009017738A (ja) 変圧器保護リレー
JP7378273B2 (ja) 保護リレー装置
JP7117963B2 (ja) 保護リレー装置
KR20230117191A (ko) 영상 전류 차동 릴레이
JP5436334B2 (ja) 過電流継電器
JP5664166B2 (ja) 電流差動保護継電装置
JP4272171B2 (ja) 電力系統運用方法
US20210006059A1 (en) Protection relay
KR102006186B1 (ko) 디지털 보호 계전기
JP5924014B2 (ja) 保護継電器
JPH114533A (ja) ディジタル形保護継電器
CN117223183A (zh) 保护继电器
JP2520714B2 (ja) ディジタル型保護継電装置の入力回路の点検監視方式
JP2000354323A (ja) ディジタル演算形保護継電器
JPH0823626A (ja) 距離継電方式

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018566467

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202102981

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180910

ENP Entry into the national phase

Ref document number: 20217006703

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933667

Country of ref document: EP

Kind code of ref document: A1