WO2020050505A1 - 근관 충전재 조성물 및 그의 제조방법 - Google Patents

근관 충전재 조성물 및 그의 제조방법 Download PDF

Info

Publication number
WO2020050505A1
WO2020050505A1 PCT/KR2019/009591 KR2019009591W WO2020050505A1 WO 2020050505 A1 WO2020050505 A1 WO 2020050505A1 KR 2019009591 W KR2019009591 W KR 2019009591W WO 2020050505 A1 WO2020050505 A1 WO 2020050505A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
soluted
root canal
cement
filler composition
Prior art date
Application number
PCT/KR2019/009591
Other languages
English (en)
French (fr)
Inventor
오명환
김도현
강종호
서지연
김윤기
Original Assignee
(주) 베리콤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 베리콤 filed Critical (주) 베리콤
Priority to JP2020558580A priority Critical patent/JP7462954B2/ja
Priority to US17/273,165 priority patent/US11964030B2/en
Publication of WO2020050505A1 publication Critical patent/WO2020050505A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/50Preparations specially adapted for dental root treatment
    • A61K6/54Filling; Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/838Phosphorus compounds, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/849Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
    • A61K6/853Silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/849Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
    • A61K6/86Al-cements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/891Compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a root canal filler composition and a method for manufacturing the same, and more particularly, to a root canal filler composition comprising cement and hygroscopic liquid in which aluminum atoms or silicon atoms are employed, and a method for manufacturing the same.
  • the endodontic treatment is performed by removing the dimension and filling the root canal with hydraulic cement to seal it. Since these root canal fillers are in direct contact with living tissue, they have high biocompatibility, high sealing and antibacterial properties to prevent infection by residual bacteria, workability to completely fill cement in the root canal, and loss of fillers during hydroponics within the root canal. It is desirable to have fast curing properties so as not to be. In addition, after cement is hardened in the root canal, when cracks or fractures occur due to external stress, the sealing properties are poor and cause proper infection.
  • MTA Mineral Trioxide Aggregate
  • Case Aggregate which includes calcium silicate cement and radiopaque material bismuth oxide
  • Calcium silicate cement in the MTA forms a C-S-H gel (Calcium-silicate-hydrate gel) during the water-curing process, shows high strength, forms calcium hydroxide as a by-product in the process, and creates an alkaline pH environment to impart antibacterial properties.
  • the object of the present invention is to provide a root canal filler composition that can secure a sufficient working time and improved storage stability.
  • cement there to one aspect of the invention, cement; And a hygroscopic liquid; wherein the cement includes aluminum solid solution (tricalcium silicate (3CaO ⁇ SiO 2 ) (Al solid-soluted C3S); Dicalcium silicate in which aluminum atoms are dissolved (2CaO.SiO 2 ) (Al solid-soluted C2S); And at least one selected from the group consisting of the tricalcium silicate in which aluminum atoms are employed (Al solid-soluted C3S) and the dicalcium silicate in which aluminum atoms are employed (Al solid-soluted C2S), and silicon (Si) atoms are employed.
  • Tricalcium aluminate (3CaO ⁇ Al 2 O 3 ) (Si solid-soluted C3A); to provide a root canal filler composition.
  • the tricalcium silicate in which aluminum atoms are employed may be a portion of the silicon atom of the tricalcium silicate substituted with the aluminum atom, or the aluminum atom interspersed with the crystal lattice of the tricalcium silicate.
  • the dicalcium silicate in which aluminum atoms are dissolved may be a part of the silicon atoms of the dicalcium silicate substituted with the aluminum atoms, or the aluminum atoms may have penetrated the crystal lattice of the dicalcium silicate.
  • the tricalcium aluminate in which silicon atoms are employed may be a portion of the aluminum atom of the tricalcium aluminate replaced with the silicon atom, or the silicon atom may have entered the crystal lattice of the tricalcium aluminate.
  • silicon In the tricalcium aluminate in which silicon is an atom, silicon (Si) may be employed in an amount of 0.1 to 5% by weight.
  • the tricalcium silicate in which aluminum atoms are employed or the dicalcium silicate in which aluminum atoms are employed may be 0.1 to 5% by weight of aluminum.
  • the root canal filler composition may further include at least one selected from a radiopaque material, a calcium phosphate compound, and a curing regulator.
  • the root canal filler composition is 100 parts by weight of the cement; 10 to 100 parts by weight of the hygroscopic liquid; And 20 to 200 parts by weight of the radiopaque material, and 1 to 50 parts by weight of the calcium phosphate compound. And 0.1 to 20 parts by weight of the curing regulator.
  • the cement is the sum of the weights of the tricalcium silicate (Al solid-soluted C3S) in which aluminum atoms are employed and the dicalcium silicate (Al solid-soluted C2S) in which aluminum atoms are employed (Al solid-soluted C3S + Al solid-soluted C2S) , C) and the weight ratio (C: A) of the tricalcium aluminate (Si solid-soluted C3A, A) in which silicon atoms are employed may be 99: 1 to 70:30.
  • the cement may be a material prepared by reacting a mixture containing calcium oxide, silicon dioxide, and aluminum oxide by heat treatment, followed by rapid cooling.
  • the hygroscopic liquid may include polypropylene glycol.
  • the hygroscopic liquid includes polypropylene glycol, and may further include at least one selected from ethanol, propanol, vegetable oil, animal oil, ethylene glycol, propylene glycol, polyethylene glycol, and glycerin.
  • the calcium phosphate compound is calcium phosphate, calcium diphosphate, calcium triphosphate, calcium tetraphosphate, hydroxyapatite, apatite, octacalcium phosphate, biphasic calcium phosphate, amorphous calcium phosphate phosphate), caseinphosphopeptide-amorphous calcium phosphate, and bioactive glass.
  • the radiopaque material may include one or more selected from zinc oxide, barium sulfate, zirconium oxide, bismuth oxide, barium oxide, iodine form, tantalum oxide, and calcium tungstate.
  • the curing modifier may include one or more selected from calcium sulfate dihydrate, calcium sulfate hemihydrate, calcium chloride, and calcium formate.
  • Step (a) (a-1) calcining a mixture comprising calcium oxide, silicon dioxide, and aluminum oxide; And (a-2) quenching the fired mixture.
  • the quench may be performed at a cooling rate of 100 o C / min to 200 o C / min.
  • the present invention is to prepare a cement comprising tricalcium silicate in which aluminum is employed, dicalcium silicate in which aluminum is employed, and tricalcium aluminate in which silicon is employed, and use it as a root canal filler composition to improve curing time and compressive strength. There is.
  • the root canal filler of the present invention has the effect of securing sufficient working time and improving workability and storage stability.
  • 2A is an X-ray diffraction (XRD) analysis result of cement prepared according to Preparation Example 1.
  • 2B is an X-ray diffraction (XRD) analysis result of cement prepared according to Preparation Example 2.
  • 2c is an X-ray diffraction (XRD) analysis result of cement prepared according to Preparation Example 3.
  • 2d is an X-ray diffraction (XRD) analysis result of cement prepared according to Preparation Example 4.
  • Figure 2e is an X-ray diffraction (XRD) analysis results of the cement prepared according to Comparative Preparation Example 1.
  • Figure 2f is an X-ray diffraction (XRD) analysis results of the cement prepared according to Comparative Preparation Example 2.
  • Figure 2g is the result of X-ray diffraction (XRD) analysis of the cement prepared according to Comparative Preparation Example 3.
  • Figure 2h is the X-ray diffraction (XRD) analysis results of the cement prepared according to Comparative Preparation Example 4.
  • Figure 2i shows the main peak of C3S in the XRD pattern of the cement prepared according to Preparation Example 2, Preparation Example 3 and Comparative Preparation Example 2.
  • Figure 2j shows the peak of C3A in the XRD pattern of the cement prepared according to Preparation Example 2 and Preparation Example 3.
  • Figure 3 shows the Raman spectrum of the cement and C3S prepared according to Preparation Example 2.
  • FIG. 4 is an image of observing the interface between dentin and GP (glycerol phosphate disodium salt) after root canal filling of the composition prepared according to Example 5.
  • Figure 5 is a radiographic image to confirm the filling state after the root canal filling with the composition of Example 5 of the invention.
  • the present invention is cement; And a hygroscopic liquid; wherein the cement includes aluminum solid solution (tricalcium silicate (3CaO ⁇ SiO 2 ) (Al solid-soluted C3S); Dicalcium silicate in which aluminum atoms are dissolved (2CaO ⁇ SiO 2 ) (Al solid-soluted C2S); And at least one selected from the group consisting of the tricalcium silicate in which aluminum atoms are employed (Al solid-soluted C3S) and the dicalcium silicate in which aluminum atoms are employed (Al solid-soluted C2S), and silicon (Si) atoms are employed.
  • the solid solution means that atoms of other elements are mixed and distributed in the crystal structure without destroying the existing crystal structure, so that the solution becomes a solid solution.
  • the tricalcium silicate in which aluminum atoms are employed may be a portion of the silicon atom of the tricalcium silicate substituted with the aluminum atom, or the aluminum atom interspersed with the crystal lattice of the tricalcium silicate.
  • the dicalcium silicate in which aluminum atoms are dissolved may be a part of the silicon atoms of the dicalcium silicate substituted with the aluminum atoms, or the aluminum atoms may have penetrated the crystal lattice of the dicalcium silicate.
  • the tricalcium aluminate in which silicon atoms are employed may be a portion of the aluminum atom of the tricalcium aluminate replaced with the silicon atom, or the silicon atom may have entered the crystal lattice of the tricalcium aluminate.
  • the tricalcium aluminate in which silicon atoms are employed may have 0.1 to 5% by weight of silicon (Si), preferably 0.1 to 4.0% by weight, more preferably 0.1 to 2% by weight of silicon.
  • the tricalcium silicate in which aluminum atoms are employed or the dicalcium silicate in which aluminum atoms are employed may be 0.10 to 5% by weight of aluminum, preferably 0.1 to 4.0% by weight, more preferably 0.1 to 2% by weight of aluminum.
  • the root canal filler composition may further include a radiopaque material, a calcium phosphate compound, a curing modifier, and the like.
  • the root canal filler composition is 100 parts by weight of the cement; 10 to 100 parts by weight of the hygroscopic liquid; And 20 to 200 parts by weight of the radiopaque material, and 1 to 50 parts by weight of the calcium phosphate compound. And 0.1 to 20 parts by weight of the curing regulator.
  • the cement is the sum of the weights of the tricalcium silicate (Al solid-soluted C3S) in which aluminum atoms are employed and the dicalcium silicate (Al solid-soluted C2S) in which aluminum atoms are employed (Al solid-soluted C3S + Al solid-soluted C2S) , C) and the weight ratio (C: A) of the tricalcium aluminate (Si solid-soluted C3A, A) in which silicon atoms are employed may be 99: 1 to 70:30.
  • the cement may be a material prepared by reacting a mixture containing calcium oxide, silicon dioxide, and aluminum oxide by heat treatment, followed by rapid cooling.
  • the heat treatment may include firing, and the rapid cooling may be performed at a cooling rate of 100 ° C./min or more at the firing temperature.
  • the hygroscopic liquid has hygroscopicity, and may include polypropylene glycol.
  • the hygroscopic liquid contains polypropylene glycol, ethanol, propanol, vegetable oil, animal oil, ethylene glycol, propylene glycol, polyethylene glycol, Glycerin, etc. may be further included.
  • the calcium phosphate compound is calcium phosphate, calcium diphosphate, calcium triphosphate, calcium tetraphosphate, hydroxyapatite, apatite, octacalcium phosphate, biphasic calcium phosphate, amorphous calcium phosphate phosphate), caseinphosphopeptide-amorhpous calcium phosphate, bioactive glass, and the like.
  • the radiopaque material may be zinc oxide, barium sulfate, zirconium oxide, bismuth oxide, barium oxide, iodine form, tantalum oxide, calcium tungstate, or the like.
  • the curing regulator may be calcium sulfate dihydrate, calcium sulfate hemihydrate, calcium chloride, calcium formate, or the like.
  • cement is prepared (step a).
  • the cement may be prepared by reacting a mixture containing calcium oxide, silicon dioxide, and aluminum oxide by heat treatment, followed by rapid cooling.
  • step (a) can be performed in two steps.
  • step a-1 a mixture comprising calcium oxide, silicon dioxide, and aluminum oxide is calcined (step a-1).
  • the firing temperature may be 1200 ° C to 1550 ° C, preferably 1300 ° C to 1500 ° C, more preferably 1400 ° C to 1500 ° C.
  • dicalcium silicate is predominantly lower than that of tricalcium silicate, and thus the cement strength is low, which is undesirable, and at temperatures above 1550 ° C, tricalcium silicate is formed, but during calcination, dicalcium silicate, tricalcium among the components of cement The silicate decomposes and the cement strength is lowered, which is undesirable.
  • Cement having a structure of tricalcium silicate in which the aluminum atom is employed (Al solid-soluted C3S), dicalcium silicate in which the aluminum atom is employed (Al solid-soluted C2S), and tricalcium aluminate (Si solid-soluted C3A) in which silicon atoms are employed.
  • the heating rate up to the firing temperature of 1 ° C / min ⁇ 20 ° C / min, preferably 2 ° C / min ⁇ 10 ° C / min. When the heating rate is below 1 °C / min, it takes too long and productivity is not desirable. Above 20 °C / min, there is not enough time to react between the mixed raw materials. Can not do it.
  • the firing time within the forming temperature range of may be 0.5 hours to 24 hours, preferably 1 hour to 12 hours. Less than 0.5 hours, there is not enough time to react between the mixed raw materials, so some raw materials of calcium oxide, silicon dioxide, and aluminum oxide remain undesirably because the cement strength is lowered, and more than 24 hours require excessive energy consumption. This is not desirable.
  • step a-2 the calcined mixture is quenched.
  • the quench may be performed at a cooling rate of 100 o C / min to 200 o C / min.
  • the cooling rate of the cement having a solid-soluted C3A) structure is preferably quenched to maintain the Al solid-soluted C3S or Al solid-soluted C2S and Si solid-soluted C3A structures at normal temperature at the firing temperature.
  • the rapid cooling of the cement production step is performed at a firing temperature at a cooling rate of 100 o C / min or more.
  • the speed is slower than 100 o C / min, the aluminum atom or silicon atom may not maintain a solid state in the lattice structure, and aluminum oxide or silicon dioxide may be formed to degrade cement strength.
  • the cement is a tri-calcium silicate (3CaO.SiO 2 ) in which aluminum atoms are solid solution (Al solid-soluted C3S); Dicalcium silicate in which aluminum atoms are dissolved (2CaO.SiO 2 ) (Al solid-soluted C2S); And at least one selected from the group consisting of the tricalcium silicate in which aluminum atoms are employed (Al solid-soluted C3S) and the dicalcium silicate in which aluminum atoms are employed (Al solid-soluted C2S), and silicon (Si) atoms are employed.
  • Tricalcium aluminate (3CaO ⁇ Al 2 O 3 ) (Si solid-soluted C3A) (Si solid-soluted C3A); may be included.
  • a composition may be prepared by further mixing a radiopaque material, a calcium phosphate compound, and a curing modifier.
  • the moisture was evaporated by maintaining it at 100 ° C. for 24 hours or more before mixing with calcium oxide 72.0 wt%, silicon dioxide 26.3 wt%, aluminum oxide 1.0 wt%, iron oxide 0.4 wt%, and magnesium oxide 0.3 wt%.
  • 10-mm, 5-mm and 1-mm ceramic balls were placed in the same volume as the raw material volume in a V-type mixer, and then mixed at 50 rpm for 4 hours.
  • the ceramic balls were removed and the raw materials were prepared in a tube-shaped green compact in a platinum crucible and fired at 1,500 o C for 1 hour and 30 minutes so that the reaction was uniform throughout the raw materials. After firing, the sample was immediately collected and quenched to 25 o C at a rate of 150 o C / min using a cooling fan in air. After the primary dry grinding of the calcined cement, the primary crushed cement was pulverized for 24 hours using ceramic balls having sizes of 10 mm, 5 mm and 1 mm. Cement powder having an average particle size of 10 ⁇ m was prepared through sieving the crushed raw materials.
  • the prepared cement powder was subjected to XRD analysis under the conditions of CuK ⁇ 1 wavelength (1.54056 ⁇ ), 2 ⁇ of 25-50 o and scan rate of 5 o / min.
  • Manufacturing example 2 Aluminum hired Tricalcium silicate Hired, aluminum Dicalcium silicate And silicon employed Tricalcium alumina art Including cement manufacturing
  • Calcium oxide 72.0wt%, silicon dioxide 26.3wt%, aluminum oxide 1.0wt%, iron oxide 0.4wt%, magnesium oxide 0.3wt% of Preparation Example 1 instead of using calcium oxide 70.5wt%, silicon dioxide 22.5wt% and oxidation Cement was prepared in the same manner as in Production Example 1, except that a powder having a ratio of 7.0 wt% of aluminum was used.
  • the cement powder of Preparation Example 4 was also analyzed in the same manner as Preparation Example 1.
  • Comparative manufacturing example 1 Cement containing silicon dioxide
  • Comparative manufacturing example 2 Aluminic acid Cement without calcium
  • Table 1 shows the components, contents, calcination temperature, and cooling method of cement prepared according to Preparation Examples 1 to 4 and Comparative Preparation Examples 1 to 4.
  • Example One Manufacturing example 2, containing cement Root canal Preparation of filler composition
  • the container was filled with the composition to prepare a root canal filler composition.
  • Example 2 Manufacturing example 3, containing cement Root canal Filler composition
  • a root canal filler composition was prepared in the same manner as in Example 1, except that the cement prepared according to Preparation Example 3 was used instead of the cement prepared according to Preparation Example 2.
  • Example 3 Manufacturing example 4, containing cement Root canal Preparation of filler composition
  • a root canal filler composition was prepared in the same manner as in Example 1, except that cement prepared according to Preparation Example 4 was used instead of cement prepared according to Preparation Example 2.
  • Root canal filler composition in the same manner as in Example 1, except that 60 wt% of cement prepared according to Preparation Example 2 and 10 wt% of polypropylene glycol were used instead of 50 wt% of cement prepared according to Preparation Example 2 and 20 wt% of polypropylene glycol. Was prepared.
  • a root canal filler composition was prepared in the same manner as in Example 1, except that 2 wt% was used.
  • a root canal filler composition was prepared in the same manner as in Example 1 except that instead of 50 wt% of the cement prepared according to Preparation Example 2, 48 wt% of the cement prepared according to Preparation Example 2 and 2 wt% of calcium triphosphate were used. .
  • Comparative example One Manufacturing example 1, containing cement Root canal Filler composition
  • a root canal filler composition was prepared in the same manner as in Example 1, except that cement prepared according to Preparation Example 1 was used instead of cement prepared according to Preparation Example 2.
  • Comparative example 2 Comparative manufacturing example 2, containing cement Root canal Filler composition
  • a root canal filler composition was prepared in the same manner as in Example 1, except that the cement of Comparative Production Example 2 was used instead of the cement prepared according to Production Example 2.
  • Comparative example 3 Comparative manufacturing example 3, containing cement Root canal Preparation of filler composition
  • a root canal filler composition was prepared in the same manner as in Example 1, except that cement prepared according to Comparative Preparation Example 3 was used instead of cement prepared according to Preparation Example 2.
  • Comparative example 4 Comparative manufacturing example 4, containing cement Root canal Preparation of filler composition
  • a root canal filler composition was prepared in the same manner as in Example 1, except that cement prepared according to Comparative Production Example 4 was used instead of cement prepared according to Preparation Example 2.
  • Comparative example 5 Comparative manufacturing example 1, containing cement Root canal Preparation of filler composition
  • a root canal filler composition was prepared in the same manner as in Example 1, except that cement prepared according to Comparative Production Example 1 was used instead of cement prepared according to Production Example 2.
  • Table 2 below shows the composition and content of the root canal filler compositions prepared according to Examples 1 to 6 and Comparative Examples 1 to 5.
  • Example 1 Preparation Example 2 50 20 27 3 - - Example 2 Preparation Example 3 50 20 27 3 - - Example 3 Preparation Example 4 50 20 27 3 - - Example 4 Preparation Example 2 60 10 27 3 - - Example 5 Preparation Example 2 58 20 27 3 - 2 Example 6 Preparation Example 2 58 20 27 3 2 - Comparative Example 1 Preparation Example 1 50 20 27 3 - - Comparative Example 2 Comparative Production Example 2 50 20 27 3 - - Comparative Example 3 Comparative Production Example 3 50 20 27 3 - - Comparative Example 4 Comparative Production Example 4 50 20 27 3 - - Comparative Example 5 Comparative Production Example 1 50 20 27 3 - - -
  • FIG. 1 shows an SEM image of a cross section of a cement prepared according to Preparation Example 2, and Table 3 below shows the EDS analysis results.
  • tricalcium silicate in which aluminum is employed Al solid-soluted C3S
  • dicalcium silicate in which aluminum is employed Al solid-soluted C2S
  • tricalcium aluminate employed in silicon Si solid-soluted C3A
  • the cross-section of the cement prepared according to Preparation Example 2 is composed of tricalcium aluminate employing silicon atoms filling between a tricalcium silicate employing a solid aluminum atom and a dicalcium silicate employing another aluminum atom. I knew it was there.
  • the cement prepared according to Preparation Example 2 is composed of Al solid-soluted C3S, Al solid-soluted C2S, and Si solid-soluted C3A.
  • the atomic ratios of calcium, silicon, and oxygen are stoichiometrically in agreement with C3S and C2S, so it can be confirmed that the extra aluminum does not form an equilibrium compound and is dissolved in the C3S and C2S structures. there was.
  • Test Example 2 cement XRD analysis
  • FIGS. 2E to 2H show XRD patterns prepared according to Comparative Preparation Examples 1 to 4.
  • Figure 2i is an enlarged C3S peak in the XRD pattern of the cement prepared according to Preparation Example 2, Preparation Example 3 and Comparative Preparation Example 2
  • FIG. 2j is from the XRD pattern of the cement prepared according to Preparation Example 2 and Preparation Example 3. This is an enlarged C3A peak.
  • Comparative Preparation Example 2 except for aluminum oxide, was calcined cement using only calcium oxide and silicon dioxide, and after calcination, C3S and C2S could be sufficiently formed.
  • the cement of Production Example 2 and Production Example 3 was quenched after firing, the driving force for generating the complete crystal structure of C3A was not maintained, and the C3S main peaks of Comparative Production Example 2 and Rapid Production Example 2 and Production Example 3 were It was found that they did not match.
  • Figure 3 shows the Raman spectrum of the cement and C3S powder prepared according to Preparation Example 2.
  • Table 4 shows the results of analyzing the curing time, flowability, and compressive strength of the dental compositions prepared according to Examples 1 to 6 and Comparative Examples 1 to 5.
  • Test Example 4-1 curing time analysis
  • Curing time was evaluated according to ISO 6876: 2012 criteria for root canal fillers. Before evaluation, the grooved gypsum mold having a diameter of 10 mm and a depth of 1 mm was stored for 24 hours in a 37 ⁇ 1 o C oven with a humidity of 95% or more. After filling the grooves and flattening the surface, curing time was evaluated while storing in a 37 ⁇ 1 o C oven with a humidity of 95% or higher. To this end, a Gilmore needle with a weight of 100 ⁇ 5 g and a needle diameter of 2 ⁇ 0.1 mm was used, and it was placed on the sample surface for 15 seconds to evaluate whether it was cured. The average value measured three times using the storage time at which the indentation does not appear on the surface of the composition as the curing time is shown in Table 4 above.
  • the root canal filler compositions of Examples 1 to 6 showed faster curing times than Comparative Examples.
  • the root canal filler composition prepared in Comparative Example 2 has a high content of C2S, and it can be determined that the curing time is delayed because C3A does not exist, and the root canal filler composition prepared in Comparative Example 3 is water-cured in C3S, C2S, and C3A. It can be determined that CSH gel formation was impeded because silicon dioxide and aluminum oxide, which do not participate in the reaction, are present in the cement.
  • the cements of Examples 1 to 3 extend the CSH gel spacing because some of the aluminum atoms dissolved in the tricalcium silicate (C3S) or dicalcium silicate (C2S) can be replaced with silicon in the Dreierketten chain when CSH gel is formed.
  • the length of the gel can be increased to accelerate the curing reaction and improve the compressive strength.
  • the CSH gel formation was hindered by silicon dioxide and aluminum oxide remaining in the cement despite the use of aluminum and silicon atoms, resulting in a curing reaction compared to Example 1. It can progress slowly.
  • the compressive strength specimen of the root canal filler composition was prepared by filling the sample into a hole having a diameter of 4 mm and a depth of 6 mm of the gypsum mold according to ISO 6876: 2012 standards and storing it in a 37 ⁇ 1 o C oven with a humidity of 95% or higher for 7 days to separate it.
  • the separated specimens were subjected to a compressive strength test at a rate of 1 mm / min using an Instron type universal tester, and the average values measured 5 times are shown in Table 4 above.
  • the compressive strength test results showed that the root canal filler composition prepared according to the embodiment having a high content of cement compared to the root canal filler composition prepared under different conditions.
  • Figure 4 is an image of the composition of Example 5 after observation of the interface between the root canal composition and Dentin and GP
  • Figure 5 is a composition of Example 5 of the invention showing a radiographic image to confirm the filling state after the root canal filling will be.
  • the root canal filler composition prepared by Example 5 of the present invention was injected into a syringe, and the dispensing tip was mounted to fill the root canal. Referring to FIG. 4, it can be seen that the root canal filler composition of Example 5 is densely attached between the dentin layer of the tooth and the guttaffer tea to form an interface. If the root canal filler composition does not form a strong interface between dentin and guttaffer tea, there is a possibility of secondary caries by causing microleakage after the procedure.
  • Example 5 is an X-ray image taken by filling the root canal filler composition prepared in Example 5 into the root canal. It was confirmed that the composition was well filled up to the minute portion of the root canal.
  • the present invention is to prepare a cement comprising tricalcium silicate in which aluminum is employed, dicalcium silicate in which aluminum is employed, and tricalcium aluminate in which silicon is employed, and use it as a root canal filler composition to improve curing time and compressive strength. There is.
  • the root canal filler of the present invention has the effect of securing sufficient working time and improving workability and storage stability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dental Preparations (AREA)

Abstract

본 발명은 시멘트; 및 흡습성 액체;를 포함하고, 상기 시멘트는 알루미늄(Al) 원자가 고용(solid solution)된 트리칼슘실리케이트(3CaOㆍSiO2)(Al solid-soluted C3S); 알루미늄(Al) 원자가 고용된 디칼슘실리케이트(2CaOㆍSiO2)(Al solid-soluted C2S); 및 알루미늄 원자가 고용된 상기 트리칼슘실리케이트(Al solid-soluted C3S) 및 알루미늄 원자가 고용된 상기 디칼슘실리케이트(Al solid-soluted C2S)로 이루어진 군에서 선택된 1종 이상 사이에 위치하고, 실리콘(Si) 원자가 고용된 트리칼슘알루미네이트(3CaOㆍAl2O3)(Si solid-soluted C3A);를 포함하는 것인, 근관 충전재 조성물을 제공한다. 본 발명은 알루미늄이 고용된 트리칼슘실리케이트, 알루미늄이 고용된 디칼슘실리케이트 및 실리콘이 고용된 트리칼슘알루미네이트를 포함하는 시멘트를 제조하여 이를 근관 충전재 조성물로 사용함으로써 경화시간과 압축강도를 향상시키는 효과가 있다. 또한, 본 발명의 근관 충전재물은 충분한 작업시간을 확보하여 작업성 및 보관안정성을 향상시킬 수 있는 효과가 있다.

Description

근관 충전재 조성물 및 그의 제조방법
본 발명은 근관 충전재 조성물 및 그의 제조방법에 관한 것으로, 상세하게는 알루미늄 원자 또는 실리콘 원자가 고용된 시멘트 및 흡습성 액체를 포함하는 근관 충전재 조성물 및 그의 제조방법에 관한 것이다.
치아의 우식이 치아 가장 내부의 치수까지 진행된 경우, 치수를 제거하고 근관에 수경성 시멘트를 채워 밀폐하는 형태의 근관 치료를 진행하게 된다. 이러한 근관 충전재는 생조직에 직접 접촉하기 때문에 높은 생체적합성, 잔존 세균에 의한 감염을 막기 위한 높은 밀폐성 및 항균성, 근관 내 시멘트를 완전하게 충전하기 위한 작업성 및 근관 내에서 수경화하는 동안 충전재가 소실되지 않도록 빠른 경화 특성을 가지는 것이 바람직하다. 또한 근관 내에서 시멘트가 경화한 이후, 외부 응력에 의해 균열이 발생하거나 파단되는 경우, 밀폐성이 떨어져 감염의 원인이 되므로 적절한 압축 강도를 나타내야 한다.
이러한 생체적합성, 밀폐성 및 항균성 등을 만족시키는 근관 충전재 재료로서 규산칼슘 시멘트와 방사선 불투과성 물질인 산화비스무스가 포함된 형태인 MTA(Mineral Trioxide Aggregate)가 널리 사용되고 있다. MTA 내의 규산칼슘 시멘트가 수경화 과정 중에 C-S-H겔(Calcium-silicate-hydrate gel)을 형성하며 높은 강도를 나타내고, 그 과정에서 부산물로 수산화칼슘을 형성하며 알칼리성 pH 환경을 만들어 항균성을 부여한다.
그러나 MTA의 이러한 장점에도 불구하고 3시간 이상의 긴 경화 시간을 가지는 단점이 있어 경화 과정 중, 충전재 일부가 구강 내 체액에 의해 씻겨질 가능성이 있다. 이로 인해 밀폐 효과가 감소하여 세균 감염이 발생할 수 있고, 경화된 충전재의 겉보기 밀도가 감소함에 따라 외부 응력에 의해 쉽게 균열이 발생할 수 있어 감염의 위험이 있다.
따라서, 기존 근관 충전재 조성물의 문제를 해결하기 위해 충분한 작업 시간과 빠른 경화 시간을 가지면서 높은 압축강도를 보이는 근관 충전재 조성물의 개발이 요구되고 있는 실정이다.
본 발명의 목적은 알루미늄이 고용된 트리칼슘실리케이트, 알루미늄이 고용된 디칼슘실리케이트 및 실리콘이 고용된 트리칼슘알루미네이트를 포함하는 시멘트를 제조함으로써, 경화시간과 압축강도가 향상된 근관 충전재 조성물을 제공하는데 있다.
또한, 본 발명의 목적은 충분한 작업시간을 확보할 수 있으며, 보관안정성이 향상된 근관 충전재 조성물을 제공하는데 있다.
본 발명의 일 측면에 따르면, 시멘트; 및 흡습성 액체;를 포함하고, 상기 시멘트는 알루미늄 원자가 고용(solid solution)된 트리칼슘실리케이트(3CaOㆍSiO2)(Al solid-soluted C3S); 알루미늄 원자가 고용된 디칼슘실리케이트(2CaOㆍSiO2)(Al solid-soluted C2S); 및 알루미늄 원자가 고용된 상기 트리칼슘실리케이트(Al solid-soluted C3S) 및 알루미늄 원자가 고용된 상기 디칼슘실리케이트(Al solid-soluted C2S)로 이루어진 군에서 선택된 1종 이상 사이에 위치하고, 실리콘(Si) 원자가 고용된 트리칼슘알루미네이트(3CaOㆍAl2O3)(Si solid-soluted C3A);를 포함하는 것인, 근관 충전재 조성물을 제공한다.
알루미늄 원자가 고용된 상기 트리칼슘실리케이트는 상기 트리칼슘실리케이트의 실리콘 원자의 일부가 상기 알루미늄 원자로 치환(substitution)된 것이거나 또는 상기 알루미늄 원자가 상기 트리칼슘실리케이트의 결정 격자에 침입(interstition)한 것일 수 있다.
알루미늄 원자가 고용된 상기 디칼슘실리케이트는 상기 디칼슘실리케이트의 실리콘 원자의 일부가 상기 알루미늄 원자로 치환된 것이거나 또는 상기 알루미늄 원자가 상기 디칼슘실리케이트의 결정 격자에 침입한 것일 수 있다.
실리콘 원자가 고용된 상기 트리칼슘알루미네이트는 상기 트리칼슘알루미네이트의 알루미늄 원자의 일부가 상기 실리콘 원자로 치환된 것이거나 또는 상기 실리콘 원자가 트리칼슘알루미네이트의 결정 격자에 침입한 것일 수 있다.
실리콘이 원자가 고용된 상기 트리칼슘알루미네이트는 실리콘(Si)이 0.1 내지 5중량% 고용될 수 있다.
알루미늄 원자가 고용된 상기 트리칼슘실리케이트 또는 알루미늄 원자가 고용된 상기 디칼슘실리케이트는 알루미늄이 0.1 내지 5중량% 고용될 수 있다.
상기 근관 충전재 조성물이 방사선 불투과성 물질, 인산칼슘 화합물, 및 경화조절제 중에서 선택된 1종 이상을 추가로 포함할 수 있다.
상기 근관 충전재 조성물이 상기 시멘트 100중량부; 상기 흡습성 액체 10 내지 100중량부; 및 상기 방사선 불투과성 물질 20 내지 200중량부, 상기 인산칼슘 화합물 1 내지 50중량부; 및 상기 경화조절제 0.1 내지 20중량부 중 1종 이상;을 포함할 수 있다.
상기 시멘트는 알루미늄 원자가 고용된 상기 트리칼슘실리케이트(Al solid-soluted C3S)와 알루미늄 원자가 고용된 상기 디칼슘실리케이트(Al solid-soluted C2S)의 중량의 합(Al solid-soluted C3S + Al solid-soluted C2S, C)과 실리콘 원자가 고용된 상기 트리칼슘알루미네이트(Si solid-soluted C3A, A)의 중량비(C:A)가 99:1 내지 70:30일 수 있다.
상기 시멘트가 산화칼슘, 이산화규소, 및 산화알루미늄을 포함하는 혼합물을 열처리로 반응시킨 후, 급랭하여 제조한 물질일 수 있다.
상기 흡습성 액체가 폴리프로필렌글리콜을 포함할 수 있다.
상기 흡습성 액체가 폴리프로필렌글리콜을 포함하고, 에탄올, 프로판올, 식물성유지, 동물성유지, 에틸렌글리콜, 프로필렌글리콜, 폴리에틸렌글리콜, 및 글리세린 중에서 선택된 1종 이상을 추가로 포함할 수 있다.
상기 인산칼슘 화합물이 인산칼슘, 제이인산칼슘, 제삼인산칼슘, 제사인산칼슘, 수산화인회석, 인회석, 옥타칼슘포스페이트(octacalcium phosphate), 바이페이직칼슘포스페이트(biphasic calcium phosphate), 무정형 칼슘포스페이트(amorphous calcium phosphate), 카제인포스포펩타이드-무정형 칼슘포스페이트(caseinphosphopeptide-amorhpous calcium phosphate), 및 바이오액티브글라스 중에서 선택된 1종 이상을 포함할 수 있다.
상기 방사선 불투과성 물질이 산화아연, 황산바륨, 산화지르코니움, 산화비스무스, 산화바륨, 요오드포름, 산화탄탈륨, 및 텅스텐산칼슘에서 선택된 1종 이상을 포함할 수 있다.
상기 경화 조절제가 황산칼슘 이수화물, 황산칼슘 반수화물, 염화칼슘, 및 포름산칼슘에서 선택된 1종 이상을 포함할 수 있다.
본 발명의 다른 일 측면에 있어서, (a) 시멘트를 제조하는 단계; 및 (b) 상기 시멘트 및 흡습성 액체를 포함하는 조성물을 제조하는 단계;를 포함하고, 상기 시멘트는 알루미늄 원자가 고용(solid solution)된 트리칼슘실리케이트(3CaOㆍSiO2)(Al solid-soluted C3S); 알루미늄 원자가 고용된 디칼슘실리케이트(2CaOㆍSiO2)(Al solid-soluted C2S); 및 알루미늄 원자가 고용된 상기 트리칼슘실리케이트(Al solid-soluted C3S) 및 알루미늄 원자가 고용된 상기 디칼슘실리케이트(Al solid-soluted C2S)로 이루어진 군에서 선택된 1종 이상 사이에 위치하고, 실리콘(Si) 원자가 고용된 트리칼슘알루미네이트(3CaOㆍAl2O3)(Si solid-soluted C3A);를 포함하는 것인, 근관 충전재 조성물의 제조방법을 제공한다.
단계 (a)가, (a-1) 산화칼슘, 이산화규소, 및 산화알루미늄을 포함하는 혼합물을 소성시키는 단계; 및 (a-2) 소성된 혼합물을 급랭시키는 단계;를 포함할 수 있다.
단계 (a-2) 에서, 상기 급랭은 100oC/분 내지 200oC/분의 냉각 속도로 수행될 수 있다.
본 발명은 알루미늄이 고용된 트리칼슘실리케이트, 알루미늄이 고용된 디칼슘실리케이트 및 실리콘이 고용된 트리칼슘알루미네이트를 포함하는 시멘트를 제조하여 이를 근관 충전재 조성물로 사용함으로써 경화시간과 압축강도를 향상시키는 효과가 있다.
또한, 본 발명의 근관 충전재물은 충분한 작업시간을 확보하여 작업성 및 보관안정성을 향상시킬 수 있는 효과가 있다.
도 1은 본 발명의 제조예 2에 따라 제조된 시멘트의 SEM 이미지이다.
도 2a는 제조예 1에 따라 제조된 시멘트의 X-ray diffraction(XRD) 분석 결과이다.
도 2b은 제조예 2에 따라 제조된 시멘트의 X-ray diffraction(XRD) 분석 결과이다.
도 2c는 제조예 3에 따라 제조된 시멘트의 X-ray diffraction(XRD) 분석 결과이다.
도 2d는 제조예 4에 따라 제조된 시멘트의 X-ray diffraction(XRD) 분석 결과이다.
도 2e는 비교제조예 1에 따라 제조된 시멘트의 X-ray diffraction(XRD) 분석 결과이다.
도 2f는 비교제조예 2에 따라 제조된 시멘트의 X-ray diffraction(XRD) 분석 결과이다.
도 2g는 비교제조예 3에 따라 제조된 시멘트의 X-ray diffraction(XRD) 분석 결과이다.
도 2h는 비교제조예 4에 따라 제조된 시멘트의 X-ray diffraction(XRD) 분석 결과이다.
도 2i는 제조예 2, 제조예 3 및 비교제조예 2에 따라 제조된 시멘트의 XRD 패턴 중 C3S 주요 피크를 나타낸 것이다.
도 2j는 제조예 2와 제조예 3에 따라 제조된 시멘트의 XRD 패턴 중 C3A의 피크를 나타낸 것이다.
도 3은 제조예 2에 따라 제조된 시멘트와 C3S의 라만 스펙트럼을 나타낸 것이다.
도 4는 실시예 5에 따라 제조된 조성물의 근관 충진 후의 상아질(Dentin) 및 GP(glycerol phosphate disodium salt)와의 계면을 관찰한 이미지이다.
도 5는 발명의 실시예 5의 조성물로 근관 충진 후의 충진 상태를 확인 하기 위해 방사선 촬영한 이미지이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하도록 한다.
그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세성상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명의 근관 충전재 조성물에 대해 설명하도록 한다.
본 발명은 시멘트; 및 흡습성 액체;를 포함하고, 상기 시멘트는 알루미늄 원자가 고용(solid solution)된 트리칼슘실리케이트(3CaO·SiO2)(Al solid-soluted C3S); 알루미늄 원자가 고용된 디칼슘실리케이트(2CaO·SiO2)(Al solid-soluted C2S); 및 알루미늄 원자가 고용된 상기 트리칼슘실리케이트(Al solid-soluted C3S) 및 알루미늄 원자가 고용된 상기 디칼슘실리케이트(Al solid-soluted C2S)로 이루어진 군에서 선택된 1종 이상 사이에 위치하고, 실리콘(Si) 원자가 고용된 트리칼슘알루미네이트(3CaO·Al2O3)(Si solid-soluted C3A);를 포함하는 것인, 근관 충전재 조성물을 제공한다.
상기 고용(solid solution)은 기존 결정 구조를 파괴하지 않고 결정 구조 내에 다른 원소의 원자가 혼입해서 분포하여, 고체 상태의 용액과 같은 상태로 된 것을 의미한다. 원자 사이의 틈에 다른 원소의 원자가 끼어들어가 있는 형태의 침입형(Interstition)과 정연하게 늘어서 있는 고체의 원자를 밀어내고 그 자리로 대신 들어가는 형태의 치환형(Substitution)이 있다.
알루미늄 원자가 고용된 상기 트리칼슘실리케이트는 상기 트리칼슘실리케이트의 실리콘 원자의 일부가 상기 알루미늄 원자로 치환(substitution)된 것이거나 또는 상기 알루미늄 원자가 상기 트리칼슘실리케이트의 결정 격자에 침입(interstition)한 것일 수 있다.
알루미늄 원자가 고용된 상기 디칼슘실리케이트는 상기 디칼슘실리케이트의 실리콘 원자의 일부가 상기 알루미늄 원자로 치환된 것이거나 또는 상기 알루미늄 원자가 상기 디칼슘실리케이트의 결정 격자에 침입한 것일 수 있다.
실리콘 원자가 고용된 상기 트리칼슘알루미네이트는 상기 트리칼슘알루미네이트의 알루미늄 원자의 일부가 상기 실리콘 원자로 치환된 것이거나 또는 상기 실리콘 원자가 트리칼슘알루미네이트의 결정 격자에 침입한 것일 수 있다.
실리콘 원자가 고용된 상기 트리칼슘알루미네이트는 실리콘(Si)이 0.1 내지 5중량%, 바람직하게는 0.1 내지 4.0중량%, 더욱 바람직하게는 0.1 내지 2중량% 고용될 수 있다.
알루미늄 원자가 고용된 상기 트리칼슘실리케이트 또는 알루미늄 원자가 고용된 상기 디칼슘실리케이트는 알루미늄이 0.10 내지 5중량%, 바람직하게는 0.1 내지 4.0중량%, 더욱 바람직하게는 0.1 내지 2중량% 고용될 수 있다.
상기 근관 충전재 조성물이 방사선 불투과성 물질, 인산칼슘 화합물, 경화조절제 등을 추가로 포함할 수 있다.
상기 근관 충전재 조성물이 상기 시멘트 100중량부; 상기 흡습성 액체 10 내지 100중량부; 및 상기 방사선 불투과성 물질 20 내지 200중량부, 상기 인산칼슘 화합물 1 내지 50중량부; 및 상기 경화조절제 0.1 내지 20중량부 중 1종 이상;을 포함할 수 있다.
상기 시멘트는 알루미늄 원자가 고용된 상기 트리칼슘실리케이트(Al solid-soluted C3S)와 알루미늄 원자가 고용된 상기 디칼슘실리케이트(Al solid-soluted C2S)의 중량의 합(Al solid-soluted C3S + Al solid-soluted C2S, C)과 실리콘 원자가 고용된 상기 트리칼슘알루미네이트(Si solid-soluted C3A, A)의 중량비(C:A)가 99:1 내지 70:30일 수 있다.
상기 시멘트가 산화칼슘, 이산화규소, 및 산화알루미늄을 포함하는 혼합물을 열처리로 반응시킨 후, 급랭하여 제조한 물질일 수 있다.
상기 열처리 하는 것이 소성하는 것을 포함할 수 있으며, 상기 급랭이 소성 온도에서 100℃/분 이상의 냉각 속도로 수행될 수 있다.
상기 흡습성 액체는 흡습성을 가지며, 폴리프로필렌글리콜을 포함할 수 있으며, 바람직하게는 상기 흡습성 액체는 폴리프로필렌글리콜을 포함하고, 에탄올, 프로판올, 식물성유지, 동물성유지, 에틸렌글리콜, 프로필렌글리콜, 폴리에틸렌글리콜, 글리세린 등을 추가로 포함할 수 있다.
상기 인산칼슘 화합물은 인산칼슘, 제이인산칼슘, 제삼인산칼슘, 제사인산칼슘, 수산화인회석, 인회석, 옥타칼슘포스페이트(octacalcium phosphate), 바이페이직칼슘포스페이트(biphasic calcium phosphate), 무정형 칼슘포스페이트(amorphous calcium phosphate), 카제인포스포펩타이드-무정형 칼슘포스페이트(caseinphosphopeptide-amorhpous calcium phosphate), 바이오액티브글라스 등을 사용할 수 있다.
상기 방사선 불투과성 물질은 산화아연, 황산바륨, 산화지르코니움, 산화비스무스, 산화바륨, 요오드포름, 산화탄탈륨, 텅스텐산칼슘 등을 사용할 수 있다.
상기 경화 조절제는 황산칼슘 이수화물, 황산칼슘 반수화물, 염화칼슘, 포름산칼슘 등을 사용할 수 있다.
또한, 본 발명의 근관 충전재 조성물의 제조방법에 대해서 설명하도록 한다.
먼저, 시멘트를 제조한다(단계 a).
상기 시멘트는 산화칼슘, 이산화규소, 및 산화알루미늄을 포함하는 혼합물을 열처리로 반응시킨 후, 급랭하여 제조될 수 있다.
상세하게는 단계 (a)는 두 단계로 수행될 수 있다.
먼저, 산화칼슘, 이산화규소, 및 산화알루미늄을 포함하는 혼합물을 소성시킨다(단계 a-1).
상기 알루미늄 원자가 고용된 트리칼슘실리케이트(Al solid-soluted C3S), 알루미늄 원자가 고용된 디칼슘실리케이트(Al solid-soluted C2S) 및 실리콘 원자가 고용된 트리칼슘알루미네이트(Si solid-soluted C3A) 구조를 가지는 시멘트의 소성 온도는 1200℃ 내지 1550℃, 바람직하게는 1300℃ 내지 1500℃, 보다 바람직하게 1400℃ 내지 1500℃ 일 수 있다. 1200℃ 이하의 온도에서는 트리칼슘실리케이트보다는 디칼슘실리케이트의 형성이 주가 되어 시멘트 강도가 낮아져 바람직하지 않으며, 1550℃ 이상의 온도에서는 트리칼슘실리케이트 형성은 되지만, 소성 중에 시멘트의 성분 중 디칼슘실리케이트, 트리칼슘실리케이트가 분해되어 시멘트 강도가 낮아져 바람직하지 못하다.
상기 알루미늄 원자가 고용된 트리칼슘실리케이트(Al solid-soluted C3S), 알루미늄 원자가 고용된 디칼슘실리케이트(Al solid-soluted C2S) 및 실리콘 원자가 고용된 트리칼슘알루미네이트(Si solid-soluted C3A) 구조를 가지는 시멘트의 소성 온도까지의 승온 속도는 1℃/min ~ 20℃/min, 바람직하게는 2℃/min ~ 10℃/min 일 수 있다. 소성 승온 속도가 1℃/min 이하에는 시간이 너무 오래 걸려 생산성이 떨어져 바람직하지 않으며, 20℃/min 이상에서는 혼합 원료들간의 반응할 시간이 충분하지 않아서 일부 원료 물질 그대로 남아서 시멘트 강도가 낮아져 바람직하지 못하다.
상기 알루미늄 원자가 고용된 트리칼슘실리케이트(Al solid-soluted C3S), 알루미늄 원자가 고용된 디칼슘실리케이트(Al solid-soluted C2S) 및 실리콘 원자가 고용된 트리칼슘알루미네이트(Si solid-soluted C3A) 구조를 가지는 시멘트의 형성 온도 범위 내에서의 소성 시간은 0.5시간 내지 24시간, 바람직하게는 1시간 내지 12시간 일 수 있다. 0.5시간 이하에서는 혼합 원료들간의 반응할 시간이 충분하지 않아서 산화칼슘, 이산화규소 및 산화알루미늄의 일부 원료 물질이 그대로 남아서 시멘트 강도가 낮아져서 바람직하지 않으며, 24시간 이상에서는 과도한 에너지의 소모가 필요하므로 경제적이지 못해 바람직하지 못하다.
이후, 소성된 혼합물을 급랭시킨다(단계 a-2).
상기 급랭은 100oC/분 내지 200oC/분의 냉각 속도로 수행될 수 있다.
상기 급랭에 대해서 구체적으로 설명하면, 상기 알루미늄 원자가 고용된 트리칼슘실리케이트(Al solid-soluted C3S), 알루미늄 원자가 고용된 디칼슘실리케이트(Al solid-soluted C2S) 및 실리콘 원자가 고용된 트리칼슘알루미네이트(Si solid-soluted C3A) 구조를 가지는 시멘트의 냉각 속도는 소성 온도에서의 Al solid-soluted C3S 또는 Al solid-soluted C2S 및 Si solid-soluted C3A 구조를 상온에서 유지하기 위하여 급랭하는 것이 바람직하다. 이를 위해 상기 시멘트 제조 단계의 급랭이 소성 온도에서 100oC/분 이상의 냉각 속도로 수행되는 것이 바람직할 수 있다. 속도가 100oC/분 미만으로 느린 경우, 알루미늄 원자 또는 실리콘 원자가 격자 구조 내에 고용된 상태를 유지하지 못하고 산화알루미늄 또는 이산화규소를 형성하여 시멘트 강도를 저하시킬 수 있다.
상기 시멘트는 알루미늄 원자가 고용(solid solution)된 트리칼슘실리케이트(3CaOㆍSiO2)(Al solid-soluted C3S); 알루미늄 원자가 고용된 디칼슘실리케이트(2CaOㆍSiO2)(Al solid-soluted C2S); 및 알루미늄 원자가 고용된 상기 트리칼슘실리케이트(Al solid-soluted C3S) 및 알루미늄 원자가 고용된 상기 디칼슘실리케이트(Al solid-soluted C2S)로 이루어진 군에서 선택된 1종 이상 사이에 위치하고, 실리콘(Si) 원자가 고용된 트리칼슘알루미네이트(3CaOㆍAl2O3)(Si solid-soluted C3A);를 포함할 수 있다.
마지막으로, 상기 시멘트 및 흡습성 액체를 포함하는 조성물을 제조한다(단계 b).
단계 (b)에서, 방사선 불투과성 물질, 인산칼슘 화합물, 경화조절제을 추가로 혼합하여 조성물을 제조할 수 있다.
[실시예]
이하, 본 발명의 바람직한 실시예를 들어 설명하도록 한다. 그러나 이는 예시를 위한 것으로서 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.
제조예 1: 합성 포틀랜드 시멘트(Ordinary Portland Cement, OPC )
산화칼슘 72.0wt%, 이산화규소 26.3wt%, 산화알루미늄 1.0wt%, 산화철 0.4wt%, 산화마그네슘 0.3wt%로 혼합 전 100℃ 조건에서 24시간 이상 유지하여 수분을 증발시켰다. 원료들을 균일하게 혼합 분쇄하기 위하여 V-형 믹서에 10mm, 5mm와 1mm 크기의 세라믹 볼을 원료 부피와 동일하게 넣은 후, 50rpm으로 4시간 혼합 하였다.
혼합 후, 세라믹 볼을 제거하고 원료 전체적으로 반응이 일정하게 나타나게 하기 위해 원료를 튜브 형태의 그린 컴팩트로 제조하여 백금 도가니에 넣고, 1,500oC에서 1시간 30분 동안 소성하였다. 소성 후, 시료를 바로 수거하여 공기 중에서 냉각 팬을 이용하여 150oC/분의 속도로 25oC까지 급랭하였다. 소성된 시멘트를 1차 건식 분쇄 후, 1차 분쇄된 시멘트를 10mm, 5mm와 1mm 크기의 세라믹 볼을 이용하여 24시간 동안 분쇄하였다. 분쇄한 원료를 체가름을 통하여 평균 입도가 10νm인 시멘트 분말을 제조하였다.
제조된 시멘트 분말에 대하여 CuKα1 파장 (1.54056 Å), 2ρ는 25 - 50o, 스캔 속도 5o/분 의 조건으로 XRD 분석을 실시하였다.
제조예 2: 알루미늄 고용된 트리칼슘실리케이트 , 알루미늄 고용된 디칼슘실리케이트 및 실리콘이 고용된 트리칼슘알루미네아트를 포함하는 시멘트 제조
제조예 1의 산화칼슘 72.0wt%, 이산화규소 26.3wt%, 산화알루미늄 1.0wt%, 산화철 0.4wt%, 산화마그네슘 0.3wt%를 사용한 것 대신에 산화칼슘 70.8wt%, 이산화규소 25.2wt% 및 산화알루미늄 4.0wt%를 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 제조예 2의 시멘트를 제조하였다. 상기 제조예 2의 시멘트 분말도 제조예 1과 동일한 방법으로 분석을 수행하였다.
제조예 3: 알루미늄과 실리콘 원자가 과고용된 시멘트
제조예 1의 산화칼슘 72.0wt%, 이산화규소 26.3wt%, 산화알루미늄 1.0wt%, 산화철 0.4wt%, 산화마그네슘 0.3wt%를 사용한 것 대신에 산화칼슘 65.0wt%, 이산화규소 27.7wt% 및 산화알루미늄 7.3wt%의 비율의 분말을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 시멘트를 제조하였다. 상기 제조예 3의 시멘트 분말도 제조예 1과 동일한 방법으로 분석을 수행하였다.
제조예 4: 실리콘 원자가 고용된 시멘트
제조예 1의 산화칼슘 72.0wt%, 이산화규소 26.3wt%, 산화알루미늄 1.0wt%, 산화철 0.4wt%, 산화마그네슘 0.3wt%를 사용한 것 대신에 산화칼슘 70.5wt%, 이산화규소 22.5wt% 및 산화알루미늄 7.0wt%의 비율의 분말을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 시멘트를 제조하였다. 상기 제조예 4의 시멘트 분말도 제조예 1과 동일한 방법으로 분석을 수행하였다.
비교제조예 1: 이산화규소를 포함하는 시멘트
제조예 1의 산화칼슘 72.0wt%, 이산화규소 26.3wt%, 산화알루미늄 1.0wt%, 산화철 0.4wt%, 산화마그네슘 0.3wt%를 사용한 것 대신에 산화칼슘 73.7wt%와 이산화규소 26.3wt%의 비율의 분말을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 시멘트를 제조하였다. 상기 비교제조예 1의 시멘트 분말도 제조예 1과 동일한 방법으로 분석을 수행하였다.
비교제조예 2: 알루민산 칼슘이 제외된 시멘트
제조예 1의 산화칼슘 72.0wt%, 이산화규소 26.3wt%, 산화알루미늄 1.0wt%, 산화철 0.4wt%, 산화마그네슘 0.3wt%를 사용한 것 대신에 산화칼슘 70.8wt% 및 이산화규소 29.2wt%의 비율의 분말을 사용하고, 1,500oC에서 소성 후, 급랭하는 것 대신에 25oC/분의 속도로 공랭하는 것을 제외하고는 제조예 1과 동일한 방법으로 시멘트를 제조하였다. 상기 비교제조예 2의 시멘트 분말도 제조예 1과 동일한 방법으로 분석을 수행하였다.
비교제조예 3: 이산화규소가 포함된 시멘트
제조예 1의 산화칼슘 72.0wt%, 이산화규소 26.3wt%, 산화알루미늄 1.0wt%, 산화철 0.4wt%, 산화마그네슘 0.3wt%를 사용한 것 대신에 산화칼슘 67.5wt%, 이산화규소 25.5wt%, 산화알루미늄 4.5wt% 및 산화철 2.5wt% 비율의 분말을 사용하고, 1,500oC에서 소성 후, 급랭하는 것 대신에 25oC/분의 속도로 공랭하는 것을 제외하고는 제조예 1과 동일한 방법으로 시멘트를 제조하였다. 상기 비교제조예 3의 시멘트 분말도 제조예 1과 동일한 방법으로 분석을 수행하였다.
비교제조예 4: 시멘트
제조예 1의 산화칼슘 72.0wt%, 이산화규소 26.3wt%, 산화알루미늄 1.0wt%, 산화철 0.4wt%, 산화마그네슘 0.3wt%를 사용한 것 대신에 산화칼슘 70.8wt%, 이산화규소 25.2wt% 및 산화알루미늄 4.0wt%를 사용하고, 1,500oC에서 소성 후, 급랭하는 것 대신에 25oC/분의 속도로 공랭하는 것을 제외하고는 제조예 1과 동일한 방법으로 시멘트를 제조하였다. 상기 비교제조예 4의 시멘트 분말도 제조예 1과 동일한 방법으로 분석을 수행하였다.
하기 표 1은 제조예 1 내지 4 및 비교제조예 1 내지 4에 따라 제조된 시멘트의 구성성분, 함량, 소성온도 및 냉각방법을 정리하여 나타낸 것이다.
구분 산화칼슘(wt%) 이산화규소(wt%) 산화알루미늄(wt%) 산화철(wt%) 산화마그네슘(wt%) 소성 온도(oC) 냉각 방법(냉각 속도)
제조예 1 72.0 26.3 1.0 0.4 0.3 1,500 급랭 (150oC/분)
제조예 2 70.8 25.2 4.0 - - 1,500 급랭 (150oC/분)
제조예 3 65.0 27.7 7.3 - - 1,500 급랭 (150oC/분)
제조예 4 70.5 22.5 7.0 - - 1,500 급랭 (150oC/분)
비교제조예1 73.7 26.3 - - - 1,500 급랭 (150oC/분)
비교제조예2 70.8 29.2 - - - 1,500 공랭 (25oC/분)
비교제조예3 67.5 25.5 4.5 2.5 - 1,500 공랭 (25oC/분)
비교제조예 4 70.8 25.2 4.0 - - 1,500 공랭 (25oC/분)
실시예 1: 제조예 2의 시멘트를 포함하는 근관 충전재 조성물의 제조
제조예 2에 따라 제조된 시멘트 50wt%, 폴리프로필렌 글리콜(Mn: 425g/mol, 수분 함량 < 0.05wt%) 20wt%, 산화지르코늄 27wt% 및 황산칼슘 이수화물 3wt%의 총 질량 100g으로 준비하여 100rpm으로 4시간 동안 혼합한 후, 조성물 내부에 형성된 기포 제거 및 충진 밀도를 높이기 위해 진공(-0.095±0.005MPa) 상태에서 30분간 유지하였다.
이후, 용기에 상기 조성물을 충진하여 근관 충전재 조성물을 제조하였다.
실시예 2: 제조예 3의 시멘트를 포함하는 근관 충전재 조성물
제조예 2에 따라 제조된 시멘트 대신에 제조예 3에 의해 제조된 시멘트를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 근관 충전재 조성물을 제조하였다.
실시예 3: 제조예 4의 시멘트를 포함하는 근관 충전재 조성물의 제조
제조예 2에 따라 제조된 시멘트 대신에 제조예 4에 따라 제조된 시멘트를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 근관 충전재 조성물을 제조하였다.
실시예 4: 근관 충전재 조성물의 제조
제조예 2에 따라 제조된 시멘트 50wt%와 폴리프로필렌글리콜 20wt% 대신에 제조예 2에 따라 제조된 시멘트 60wt%와 폴리프로필렌글리콜 10wt%를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 근관 충전재 조성물을 제조하였다.
실시예 5: 근관 충전재 조성물의 제조
제조예 2에 따라 제조된 시멘트 50 wt% 대신에 제조예 2에 따라 제조된 시멘트 48 wt%와 바이오액티브글라스 ((SiO2)9(Na2O)5(CaO)5(P2O5)1) 2wt%를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 근관 충전재 조성물을 제조하였다.
실시예 6: 근관 충전재 조성물의 제조
제조예 2에 따라 제조된 시멘트 50 wt% 대신에 제조예 2에 따라 제조된 시멘트 48 wt%와 제삼인산칼슘 2 wt%를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 근관 충전재 조성물을 제조하였다.
비교예 1: 제조예 1의 시멘트를 포함하는 근관 충전재 조성물
제조예 2에 따라 제조된 시멘트 대신에 제조예 1에 따라 제조된 시멘트를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 근관 충전재 조성물을 제조하였다.
비교예 2: 비교제조예 2의 시멘트를 포함하는 근관 충전재 조성물
제조예 2에 따라 제조된 시멘트를 사용한 것 대신에 비교제조예 2의 시멘트를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 근관 충전재 조성물을 제조하였다.
비교예 3: 비교제조예 3의 시멘트를 포함하는 근관 충전재 조성물의 제조
제조예 2에 따라 제조된 시멘트 대신에 비교제조예 3에 따라 제조된 시멘트를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 근관 충전재 조성물을 제조하였다.
비교예 4: 비교제조예 4의 시멘트를 포함하는 근관 충전재 조성물의 제조
제조예 2에 따라 제조된 시멘트 대신에 비교제조예 4에 따라 제조된 시멘트를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 근관 충전재 조성물을 제조하였다.
비교예 5: 비교제조예 1의 시멘트를 포함하는 근관 충전재 조성물의 제조
제조예 2에 따라 제조된 시멘트 대신에 비교제조예 1에 따라 제조된 시멘트를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 근관 충전재 조성물을 제조하였다.
하기 표 2는 실시예 1 내지 6과 비교예 1 내지 5에 따라 제조된 근관 충전재 조성물의 조성 및 함량을 나타낸 것이다.
구분 시멘트(wt%) 폴리프로필렌글리콜(wt%) 산화지르코늄(wt%) 황산칼슘이수화물(wt%) 제삼인산칼슘(wt%) 바이오액티브글라스(wt%)
실시예1 제조예2 50 20 27 3 - -
실시예2 제조예 3 50 20 27 3 - -
실시예3 제조예4 50 20 27 3 - -
실시예4 제조예2 60 10 27 3 - -
실시예5 제조예2 58 20 27 3 - 2
실시예6 제조예2 58 20 27 3 2 -
비교예1 제조예1 50 20 27 3 - -
비교예2 비교제조예2 50 20 27 3 - -
비교예3 비교제조예3 50 20 27 3 - -
비교예4 비교제조예4 50 20 27 3 - -
비교예5 비교제조예1 50 20 27 3 - -
[시험예]
시험예 1: 시멘트의 구성 확인
도 1은 제조예 2에 따라 제조된 시멘트 단면의 SEM이미지를 나타낸 것이고, 하기 표 3은 EDS 분석 결과를 나타낸 것이다. 도 1에서 알루미늄이 고용된 트리칼슘실리케이트(Al solid-soluted C3S), 알루미늄이 고용된 디칼슘실리케이트(Al solid-soluted C2S)과 실리콘 고용된 트리칼슘알루미네이트(Si solid-soluted C3A)를 각각 C3, C2와 A으로 표시하였다.
도 1을 참조하면, 제조예 2에 따라 제조된 시멘트의 단면은 자형의 알루미늄 원자가 고용된 트리칼슘실리케이트와 타형의 알루미늄 원자가 고용된 디칼슘실리케이트 사이를 채우는 실리콘 원자가 고용된 트리칼슘알루미네이트로 구성되어 있는 것을 알 수 있었다.
또한, 급랭한 제조예 2의 시멘트 단면에서는 공냉(서냉)하면서 생성되는 트리칼슘알루미네이트(C3A) 내의 디칼슘실리케이트(C2S) 석출상 또는 트리칼슘실리케이트(C3S) 내의 트리칼슘알루미네이트(C3A) 석출상 등이 나타나지 않았고, 멜트 상태에서 서냉할 때, 일반적으로 C3A이 결정화 되면서 라멜라 구조를 가지는 것과 달리 라멜라 구조가 나타나지 않았다.
또한, 표 3의 EDS 분석 결과를 참조하면, 제조예 2에 따라 제조된 시멘트가 Al solid-soluted C3S, Al solid-soluted C2S 및 Si solid-soluted C3A로 구성되어 있음을 알 수 있다. C3과 C2의 경우, 칼슘, 실리콘과 산소의 원자비가 C3S와 C2S와 화학양론적으로 잘 일치하고 있어 여분의 알루미늄은 평형 상태의 화합물을 형성하지 않고, C3S와 C2S 구조 내에 고용되어 있는 것을 확인할 수 있었다.
구분 Ca (wt%) Si (wt%) Al (wt%) O (wt%) Total (wt%)
C3 50.02 12.21 1.83 35.94 100
C2 42.83 16.14 1.98 39.05 100
A 41.18 2.39 19.78 36.65 100
시험예 2: 시멘트 XRD 분석
도 2a 내지 2d는 제조예 1 내지 4에 따라 제조된 XRD 패턴을 나타낸 것이고, 도 2e 내지 2h는 비교제조예 1 내지 4에 따라 제조된 XRD 패턴을 나타낸 것이다. 도 2i는 제조예 2, 제조예 3과 비교제조예 2에 따라 제조된 시멘트의 XRD 패턴에서 C3S 피크를 확대한 것이고, 도 2j는 제조예 2와 제조예 3에 따라 제조된 시멘트의 XRD 패턴에서 C3A 피크를 확대한 것이다.
도 2a 내지 2h를 참조하면, 비교제조예 1과 비교제조예 2를 제외한 모든 시멘트에 대하여 트리칼슘실리케이트(C3S), 디칼슘실리케이트(C2S) 및 트리칼슘알루미네이트(C3A)가 생성되었음을 확인할 수 있었고, 비교제조예 1과 비교제조예 2에 따라 제조된 시멘트는 산화알루미늄을 포함하지 않으므로 C3S와 C2S만 생성되었음을 확인할 수 있었다.
도 2b와 2c를 참조하면, 동일한 방법으로 시멘트 제조 시, 제조예 2와 비교하여 이산화규소와 산화알루미늄을 증량한 제조예 3의 XRD 분석 결과, 이산화규소의 (101)면과 산화알루미늄의 (311)면과 (220)면에 해당하는 피크가 나타났다. 이러한 결과를 볼 때, 시멘트 제조 시, C3S, C2S 및 C3A 형성에 참여하지 못한 여분의 이산화규소 또는 산화알루미늄이 존재한다면 각각의 결정 구조가 XRD 패턴 상에 나타나야 한다. 그러나 제조예 2에 따라 제조된 시멘트의 XRD 패턴에서는 이산화규소와 산화알루미늄의 피크가 나타나지 않은 것을 확인할 수 있었다.
이는 C3S, C2S 및 C3A 형성에 모두 소비되었거나 소성 과정에서 분해되어 산화알루미늄은 트리칼슘실리케이트 및 디칼슘실리케이트 격자 내에 고용되어 알루미늄이 고용된 트리칼슘실리케이트(Al solid-soluted C3S), 알루미늄이 고용된 디칼슘실리케이트(Al solid-soluted C2S)를 형성하는 것으로 분석되며, 이산화규소 중 실리콘 원자는 원자 크기가 비슷한 트리칼슘알루미네이트 매트릭스의 알루미늄 자리에 치환되어 매트릭스 내에 분포하여 실리콘이 고용된 트리칼슘알루미네이트를 형성하는 것으로 판단된다.
또한, 도 2i를 참조하면, 비교제조예 2는 산화알루미늄을 제외하고 산화칼슘과 이산화규소만을 이용하여 시멘트를 소성하였고 소성 후, 천천히 공냉하였기 때문에 C3S 및 C2S가 충분히 형성될 수 있었다. 반면 제조예 2과 제조예 3의 시멘트는 소성 후, 급랭하였기 때문에 C3A의 완전한 결정 구조를 생성하기 위한 구동력이 유지되지 않아 비교제조예 2와 급랭한 제조예 2 및 제조예 3의 C3S 주요 피크가 일치하지 않는 것을 알 수 있었다.
이를 통해 제조예 2과 제조예 3의 시멘트 내의 C3S 격자 변형을 확인할 수 있으며, 첨가된 산화알루미늄의 분율이 증가함에 따라 격자 변형이 커지는 것으로 보아 C3S 격자 구조 내에 알루미늄 원자가 고용되어 알루미늄 원자가 고용된 트리칼슘실리케이트를 형성한 것으로 판단할 수 있다.
도 2j를 참고하면, 제조예 2와 제조예 3을 비교할 때, 이산화규소의 함량이 증가함에 따라 C3A의 주요 피크의 위치가 변화하였다. 즉, C3S 격자 구조 변형과 마찬가지로 C3A 구조에도 격자 변형이 일어났음을 확인할 수 있었다.
시험예 3: 시멘트 라만 분석
도 3은 제조예 2에 따라 제조된 시멘트와 C3S 분말의 라만 스펙트럼을 나타낸 것이다.
시멘트에서 가장 많은 함량을 차지하고 있는 C3S 분말과 시멘트 분말의 라만 스펙트럼을 비교하였다. 그 결과 C3S, C2S와 C3A의 피크가 나타났고, C3S와 C2S 피크에서의 서로 다른 진동수 변화가 확인되었다. 800 - 900 cm-1에서 나타나는 Si-O 스트레칭 바이브레이션 피크에서 가장 많은 변화를 보이며, 특히 C3S의 849 cm-1의 피크가 시멘트에서는 856cm- 1으로 진동수가 증가하여 Si-O의 결합 길이가 감소하는 형태의 변형이 나타났다.
또한 Si-O의 벤딩에 의한 542 cm-1 피크에서는 제조된 시멘트의 경우, 536 cm-1으로 진동수가 감소하여 결합 강도가 약화되는 형태의 변형을 보였다.
이러한 결과에 따라, C3S 구조 내에 알루미늄 원자가 침입함으로써 구조 내에 존재하는 SiO2 분자들의 수축과 팽창이 일어나고 있다고 판단할 수 있었다.
시험예 4: 근관 충전재 조성물의 물성 분석
하기 표 4는 실시예 1 내지 6과 비교예 1 내지 5에 따라 제조된 치과용 조성물의 경화시간, 흐름성 및 압축강도 분석 결과를 정리하여 나타낸 것이다.
구분 경화 시간(분) 흐름성(mm) 압축강도(MPa)
실시예 1 17 23.3 36.8±6.4
실시예 2 20 23.9 30.2±5.9
실시예 3 18 23.1 32.3±2.6
실시예 4 11 9.7 78.1±9.2
실시예 5 10 8.9 95.6±7.3
실시예 6 19 10.1 75.4±3.5
비교예 1 67 22.8 16.9±2.2
비교예 2 39 23.5 13.4±3.1
비교예 3 51 25.7 10.8±2.7
비교예 4 33 21.4 20.7±1.3
비교예 5 26 21.9 15.5±1.8
시험예 4-1: 경화시간 분석
근관 충전재에 대한 ISO 6876:2012 기준을 따라 경화 시간을 평가하였다. 평가 전, 지름 10mm와 깊이 1mm의 홈이 파여진 석고 몰드를 습도 95% 이상의 37±1oC 오븐에서 24시간 동안 보관하였다. 홈에 조성물을 채우고 표면을 편평하게 한 후, 습도 95% 이상의 37±1oC 오븐에서 보관하면서 경화 시간을 평가하였다. 이를 위해 무게 100±5g과 침 직경 2±0.1mm의 길모어 침을 사용하였으며 시료 표면에 15초 동안 올려 경화 여부를 평가하였다. 조성물 표면에 압흔이 나타나지 않는 보관 시간을 경화 시간으로 하여 3번 측정한 평균값은 상기 표 4에 나타난 바와 같다.
상기 표 4에 따르면 실시예 1 내지 6의 근관 충전재 조성물이 비교예보다 빠른 경화 시간을 보였다. 비교예 2로 제조된 근관 충전재 조성물은 C2S의 함량이 높고, C3A이 존재하지 않기 때문에 경화 시간이 지연되었다고 판단할 수 있으며, 비교예 3으로 제조된 근관 충전재 조성물은 C3S, C2S 및 C3A의 수경화 반응에 참여하지 않는 이산화규소와 산화알루미늄이 시멘트 내에 존재하기 때문에 C-S-H 겔 형성이 방해받았다고 판단할 수 있다. 실시예 1 내지 3의 시멘트는 트리칼슘실리케이트(C3S) 또는 디칼슘실리케이트(C2S) 내에 고용되어 있는 알루미늄 원자 일부가 C-S-H 겔 형성 시, Dreierketten chain의 실리콘과 치환될 수 있기 때문에 C-S-H 겔 간격을 확장하고 겔의 길이를 증대하여 경화 반응을 촉진하고 압축 강도를 향상시킬 수 있다. 그러나 실시예 1과 2를 비교할 때, 실시예 2의 경우 알루미늄과 실리콘 원자의 고용에도 불구하고 시멘트 내에 잔존하는 이산화규소 및 산화알루미늄에 의해 C-S-H 겔 형성이 방해 받아 실시예 1과 비교할 때 경화 반응이 느리게 진행될 수 있다.
시험예 4-2: 흐름성 분석
근관 충전재 조성물에 대한 흐름성 평가는 ISO 6876:2012 기준을 따라서 넓이 40mm X 40mm, 두께 5mm와 무게 20g인 유리판 2개를 이용하였다. 0.05±0.005ml의 근관 충전재 조성물을 한 개의 유리판 위에 올린 후, 다른 유리판으로 시료를 덮고 10분간 100g의 추를 올려 놓았다. 추를 제거한 후, 두 유리판 사이의 근관 충전재 조성물의 최대와 최소 직경을 측정하였다. 이 때 최대와 최소 직경의 편차가 1mm 이하인 결과만 선택하여 총 3번 측정한 평균값을 표 4에 나타난 바와 같다.
상기 표 4를 참조하면, 근관 충전재의 흐름성은 시멘트의 함량과 흡습성 액체의 함량에 영향을 받기 때문에 시멘트와 흡습성 액체의 함량이 동일한 실시예 1 내지 3과 비교예 1 내지 5에서는 흐름성에는 큰 차이를 보이지 않은 것으로 나타났다. 그러나 시멘트의 함량을 증가시킨 실시예 4 내지 6의 치과용 조성물은 흐름성이 확연하게 감소하는 것을 확인할 수 있었다.
시험예 4-3: 압축강도 분석
근관 충전재 조성물의 압축강도 시편은 ISO 6876:2012 기준을 따라 석고 몰드의 직경 4mm와 깊이 6mm 구멍에 시료를 채우고 습도 95% 이상의 37±1oC 오븐에서 7일간 보관 후 분리하여 제조하였다. 분리된 시편은 인스트론 타입의 만능시험기를 사용하여 1mm/min의 속도로 압축 강도 시험을 실시하였고, 5회 측정한 평균값을 상기 표 4에 나타난 바와 같다.
상기 표 4를 참조하면, 압축강도 시험 결과는 시멘트의 함량이 높은 실시예에 따라 제조된 근관 충전재 조성물이 다른 조건으로 제조된 근관 충전재 조성물에 비하여 높은 압축강도를 보였다.
시험예 5: 근관 충전 임상시험
도 4는 실시예 5의 조성물로 근관 충진 후의 조성물과 Dentin 및 GP와의 계면을 관찰한 이미지이고, 도 5는 발명의 실시예 5의 조성물로 근관 충진 후의 충진 상태를 확인 하기 위해 방사선 촬영 이미지를 나타낸 것이다.
본 발명의 실시예 5에 의해 제조된 근관 충전재 조성물을 시린지에 주입하고 분배용 팁을 장착하여 근관에 충전하였다. 도 4를 참고하면 치아의 덴틴층과 거타퍼차 사이에 실시예 5의 근관 충전재 조성물이 조밀하게 부착되어 계면을 형성하는 것을 확인할 수 있다. 덴틴과 거타퍼차 사이에서 근관 충전재 조성물이 강한 계면을 형성하지 못하면 시술 후, 미세누출을 야기하여 2차 우식의 발생 가능성이 있다.
도 5는 실시예 5에 의해 제조된 근관 충전재 조성물을 근관에 충전하여 촬영한 엑스레이 이미지이다. 근관의 미세한 부분까지 조성물이 잘 채워진 것을 확인할 수 있었다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 알루미늄이 고용된 트리칼슘실리케이트, 알루미늄이 고용된 디칼슘실리케이트 및 실리콘이 고용된 트리칼슘알루미네이트를 포함하는 시멘트를 제조하여 이를 근관 충전재 조성물로 사용함으로써 경화시간과 압축강도를 향상시키는 효과가 있다.
또한, 본 발명의 근관 충전재물은 충분한 작업시간을 확보하여 작업성 및 보관안정성을 향상시킬 수 있는 효과가 있다.

Claims (18)

  1. 시멘트; 및
    흡습성 액체;를 포함하고,
    상기 시멘트는
    알루미늄 원자(Al)가 고용(solid solution)된 트리칼슘실리케이트(3CaOㆍSiO2)(Al solid-soluted C3S);
    알루미늄 원자(Al)가 고용된 디칼슘실리케이트(2CaOㆍSiO2)(Al solid-soluted C2S); 및
    알루미늄 원자가 고용된 상기 트리칼슘실리케이트(Al solid-soluted C3S) 및 알루미늄 원자가 고용된 상기 디칼슘실리케이트(Al solid-soluted C2S)로 이루어진 군에서 선택된 1종 이상 사이에 위치하고, 실리콘(Si) 원자가 고용된 트리칼슘알루미네이트(3CaOㆍAl2O3)(Si solid-soluted C3A);를 포함하는 것인,
    근관 충전재 조성물.
  2. 제1항에 있어서,
    알루미늄 원자가 고용된 상기 트리칼슘실리케이트는 상기 트리칼슘실리케이트의 실리콘 원자의 일부가 상기 알루미늄 원자로 치환(substitution)된 것이거나 또는 상기 알루미늄 원자가 상기 트리칼슘실리케이트의 결정 격자에 침입(interstition)한 것을 특징으로 하는 근관 충전재 조성물.
  3. 제1항에 있어서,
    알루미늄 원자가 고용된 상기 디칼슘실리케이트는 상기 디칼슘실리케이트의 실리콘 원자의 일부가 상기 알루미늄 원자로 치환된 것이거나 또는 상기 알루미늄 원자가 상기 디칼슘실리케이트의 결정 격자에 침입한 것을 특징으로 하는 근관 충전재 조성물.
  4. 제1항에 있어서,
    실리콘 원자가 고용된 상기 트리칼슘알루미네이트는 상기 트리칼슘알루미네이트의 알루미늄 원자의 일부가 상기 실리콘 원자로 치환된 것이거나 또는 상기 실리콘 원자가 트리칼슘알루미네이트의 결정 격자에 침입한 것을 특징으로 하는 근관 충전재 조성물.
  5. 제1항에 있어서,
    실리콘 원자가 고용된 상기 트리칼슘알루미네이트는 실리콘(Si)이 0.1 내지 5중량% 고용된 것을 특징으로 하는 근관 충전재 조성물.
  6. 제1항에 있어서,
    알루미늄 원자가 고용된 상기 트리칼슘실리케이트 또는 알루미늄 원자가 고용된 상기 디칼슘실리케이트는 알루미늄이 0.1 내지 5중량% 고용된 것을 특징으로 하는 근관 충전재 조성물.
  7. 제1항에 있어서,
    상기 근관 충전재 조성물이 방사선 불투과성 물질, 인산칼슘 화합물, 및 경화조절제 중에서 선택된 1종 이상을 추가로 포함하는 것을 특징으로 하는 근관 충전재 조성물.
  8. 제7항에 있어서,
    상기 근관 충전재 조성물이 상기 시멘트 100중량부;
    상기 흡습성 액체 10 내지 100중량부; 및
    상기 방사선 불투과성 물질 20 내지 200중량부, 상기 인산칼슘 화합물 1 내지 50중량부; 및 상기 경화조절제 0.1 내지 20중량부 중 1종 이상;을 포함하는 것을 특징으로 하는 근관 충전재 조성물.
  9. 제1항에 있어서,
    알루미늄 원자가 고용된 상기 트리칼슘실리케이트(Al solid-soluted C3S)와 알루미늄 원자가 고용된 상기 디칼슘실리케이트(Al solid-soluted C2S)의 중량의 합(Al solid-soluted C3S+Al solid-soluted C2S, C)과 실리콘 원자가 고용된 상기 트리칼슘알루미네이트(Si solid-soluted C3A, A)의 중량비(C:A)가 99:1 내지 70:30인 것을 특징으로 하는 근관 충전재 조성물.
  10. 제1항에 있어서,
    상기 시멘트가 산화칼슘, 이산화규소, 및 산화알루미늄을 포함하는 혼합물을 열처리로 반응시킨 후, 급랭하여 제조한 물질인 것을 특징으로 하는 근관 충전재 조성물.
  11. 제1항에 있어서,
    상기 흡습성 액체가 폴리프로필렌글리콜을 포함하는 것을 특징으로 하는 근관 충전재 조성물.
  12. 제1항에 있어서,
    상기 흡습성 액체가 폴리프로필렌글리콜을 포함하고, 에탄올, 프로판올, 식물성유지, 동물성유지, 에틸렌글리콜, 프로필렌글리콜, 폴리에틸렌글리콜, 및 글리세린 중에서 선택된 1종 이상을 추가로 포함하는 것을 특징으로 하는 근관 충전재 조성물.
  13. 제7항에 있어서,
    상기 인산칼슘 화합물이 인산칼슘, 제이인산칼슘, 제삼인산칼슘, 제사인산칼슘, 수산화인회석, 인회석, 옥타칼슘포스페이트(octacalcium phosphate), 바이페이직칼슘포스페이트(biphasic calcium phosphate), 무정형 칼슘포스페이트(amorphous calcium phosphate), 카제인포스포펩타이드-무정형 칼슘포스페이트(caseinphosphopeptide-amorhpous calcium phosphate), 및 바이오액티브글라스 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 근관 충전재 조성물.
  14. 제7항에 있어서,
    상기 방사선 불투과성 물질이 산화아연, 황산바륨, 산화지르코니움, 산화비스무스, 산화바륨, 요오드포름, 산화탄탈륨, 및 텅스텐산칼슘에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 근관 충전재 조성물.
  15. 제7항에 있어서,
    상기 경화 조절제가 황산칼슘 이수화물, 황산칼슘 반수화물, 염화칼슘, 및 포름산칼슘에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 근관 충전재 조성물.
  16. (a) 시멘트를 제조하는 단계; 및
    (b) 상기 시멘트 및 흡습성 액체를 포함하는 조성물을 제조하는 단계;를 포함하고,
    상기 시멘트는
    알루미늄 원자(Al)가 고용(solid solution)된 트리칼슘실리케이트(3CaOㆍSiO2)(Al solid-soluted C3S);
    알루미늄 원자(Al)가 고용된 디칼슘실리케이트(2CaOㆍSiO2)(Al solid-soluted C2S); 및
    알루미늄 원자가 고용된 상기 트리칼슘실리케이트(Al solid-soluted C3S) 및 알루미늄 원자가 고용된 상기 디칼슘실리케이트(Al solid-soluted C2S)로 이루어진 군에서 선택된 1종 이상 사이에 위치하고, 실리콘(Si) 원자가 고용된 트리칼슘알루미네이트(3CaOㆍAl2O3)(Si solid-soluted C3A);를 포함하는 것인,
    근관 충전재 조성물의 제조방법.
  17. 제16항에 있어서,
    단계 (a)가,
    (a-1) 산화칼슘, 이산화규소, 및 산화알루미늄을 포함하는 혼합물을 소성시키는 단계; 및
    (a-2) 소성된 혼합물을 급랭시키는 단계;를 포함하는 것을 특징으로 하는 근관 충전재 조성물 제조방법.
  18. 제17항에 있어서,
    단계(a-2) 에서,
    상기 급랭은 100oC/분 내지 200oC/분의 냉각 속도로 수행되는 것을 특징으로 하는 근관 충전재 조성물 제조 방법.
PCT/KR2019/009591 2018-09-06 2019-08-01 근관 충전재 조성물 및 그의 제조방법 WO2020050505A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020558580A JP7462954B2 (ja) 2018-09-06 2019-08-01 根管充填材組成物及びその製造方法
US17/273,165 US11964030B2 (en) 2018-09-06 2019-08-01 Root canal filler composition and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180106492A KR101956859B1 (ko) 2018-09-06 2018-09-06 근관 충전재 조성물 및 그의 제조방법
KR10-2018-0106492 2018-09-06

Publications (1)

Publication Number Publication Date
WO2020050505A1 true WO2020050505A1 (ko) 2020-03-12

Family

ID=65758624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009591 WO2020050505A1 (ko) 2018-09-06 2019-08-01 근관 충전재 조성물 및 그의 제조방법

Country Status (4)

Country Link
US (1) US11964030B2 (ko)
JP (1) JP7462954B2 (ko)
KR (1) KR101956859B1 (ko)
WO (1) WO2020050505A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101956859B1 (ko) * 2018-09-06 2019-03-11 (주) 베리콤 근관 충전재 조성물 및 그의 제조방법
IT201900023739A1 (it) * 2019-12-12 2021-06-12 Primi Sorrisi S R L Kit per trattamento odontoiatrico
CN114288192A (zh) * 2022-02-14 2022-04-08 浙江搏谷医疗科技有限公司 牙齿封闭处理的组合物糊剂、制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090054302A (ko) * 2007-11-26 2009-05-29 (주)디오 Mta계 근관 충전재 및 그의 제조 방법
KR20100037979A (ko) * 2008-10-02 2010-04-12 이노베이티브 바이오세라믹스 인코퍼레이티드 미리 혼합된 시멘트 페이스트 및 시멘트 특성 물질 제조방법
JP2010518093A (ja) * 2007-02-09 2010-05-27 デンツプライ インターナショナル インコーポレーテッド 水系材料を用いた歯髄及び充填される根管の処置方法
US20130023601A1 (en) * 2010-01-25 2013-01-24 Ogliari Fabricio Aulo Dental Composition Comprising A Calcium Source
KR20150144028A (ko) * 2014-06-16 2015-12-24 드림소재(주) 치과용 충전재
KR101956859B1 (ko) * 2018-09-06 2019-03-11 (주) 베리콤 근관 충전재 조성물 및 그의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053075A (ja) 2011-09-01 2013-03-21 Gc Corp 歯科用セメント組成物
KR101898702B1 (ko) * 2017-03-07 2018-09-13 (주) 베리콤 치과용 조성물 및 그의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518093A (ja) * 2007-02-09 2010-05-27 デンツプライ インターナショナル インコーポレーテッド 水系材料を用いた歯髄及び充填される根管の処置方法
KR20090054302A (ko) * 2007-11-26 2009-05-29 (주)디오 Mta계 근관 충전재 및 그의 제조 방법
KR20100037979A (ko) * 2008-10-02 2010-04-12 이노베이티브 바이오세라믹스 인코퍼레이티드 미리 혼합된 시멘트 페이스트 및 시멘트 특성 물질 제조방법
US20130023601A1 (en) * 2010-01-25 2013-01-24 Ogliari Fabricio Aulo Dental Composition Comprising A Calcium Source
KR20150144028A (ko) * 2014-06-16 2015-12-24 드림소재(주) 치과용 충전재
KR101956859B1 (ko) * 2018-09-06 2019-03-11 (주) 베리콤 근관 충전재 조성물 및 그의 제조방법

Also Published As

Publication number Publication date
JP7462954B2 (ja) 2024-04-08
JP2021535892A (ja) 2021-12-23
US11964030B2 (en) 2024-04-23
US20210338536A1 (en) 2021-11-04
KR101956859B1 (ko) 2019-03-11

Similar Documents

Publication Publication Date Title
WO2020050505A1 (ko) 근관 충전재 조성물 및 그의 제조방법
WO2018164436A1 (ko) 치과용 조성물 및 그의 제조방법
WO2012091201A1 (ko) 치아용 고강도 결정화유리 및 그 제조방법
WO2011014010A2 (ko) 산질화물계 형광체 분말, 질화물계 형광체 분말, 및 이들의 제조 방법
EP2163233B1 (en) Paste-type dental cement
WO2019198892A1 (ko) 석탄 바닥재를 이용한 속성 고강도 지오폴리머의 제조 방법
JPS636017B2 (ko)
WO2019132595A1 (ko) 치과용 컴포지트 블랭크 및 그의 제조방법
Coleman et al. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement
WO2011090255A2 (ko) 고주입성 칼슘계 골시멘트 조성물
GB2153812A (en) Method for strengthening porcelain teeth
WO2020262814A1 (ko) 치과용 컴포지트 블랭크 및 그의 제조방법
WO2023080428A1 (ko) 콘크리트 조기강도 발현용 나노입자, 이를 포함하는 콘크리트 형성용 조성물 및 이의 제조방법
WO2016171303A1 (ko) 우수한 스캐닝 성능 및 기계적 물성을 갖는 치과용 인상재 조성물 및 그를 포함하는 치과용 인상재
WO2022010051A1 (ko) 디지털스캐닝에 적합한 무광택의 강화 지르코니아 어버트먼트 및 이의 제조방법
WO2020111829A1 (ko) 칼슘 알루미네이트 무기물 및 그 제조방법, 그리고 이를 포함하는 시멘트 조성물
JP7051461B2 (ja) 歯科用ポルトランドセメント粉末
JP2832861B2 (ja) 止水材
JP6368406B1 (ja) 歯科用ポルトランドセメント粉末
WO2024123076A1 (ko) 항균 효과를 가지는 치과용 복합레진 조성물 및 이의 제조방법
KR20150115183A (ko) 치과용 시멘트 조성물 및 이의 제조방법
SU1708788A1 (ru) В жущее
WO2021107325A1 (ko) 휘트록카이트의 제조방법 및 이에 따라 제조된 휘트록카이트
WO2018004029A1 (ko) 폴리아크릴산계 공중합체를 포함하는 치과용 시멘트 조성물
WO2022270973A1 (ko) 치과 보철물 제조를 위한 벌크 블록

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020558580

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858285

Country of ref document: EP

Kind code of ref document: A1