WO2020050175A1 - 銅系合金材およびその製造方法ならびに銅系合金材で構成された部材または部品 - Google Patents

銅系合金材およびその製造方法ならびに銅系合金材で構成された部材または部品 Download PDF

Info

Publication number
WO2020050175A1
WO2020050175A1 PCT/JP2019/034181 JP2019034181W WO2020050175A1 WO 2020050175 A1 WO2020050175 A1 WO 2020050175A1 JP 2019034181 W JP2019034181 W JP 2019034181W WO 2020050175 A1 WO2020050175 A1 WO 2020050175A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy material
copper
mass
based alloy
temperature range
Prior art date
Application number
PCT/JP2019/034181
Other languages
English (en)
French (fr)
Inventor
純男 喜瀬
史祥 山下
美里 藤井
浩司 石川
貝沼 亮介
大森 俊洋
暢康 松本
Original Assignee
株式会社古河テクノマテリアル
国立大学法人東北大学
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社古河テクノマテリアル, 国立大学法人東北大学, 古河電気工業株式会社 filed Critical 株式会社古河テクノマテリアル
Priority to US17/272,852 priority Critical patent/US11959161B2/en
Priority to EP19857193.7A priority patent/EP3848475A4/en
Priority to KR1020217008793A priority patent/KR102542006B1/ko
Priority to CN201980057440.1A priority patent/CN112639144B/zh
Publication of WO2020050175A1 publication Critical patent/WO2020050175A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor

Definitions

  • the present invention provides a copper-based alloy material having excellent fatigue resistance and rupture resistance even when deformed by repeating a predetermined load, particularly a stress load giving a strain peculiar to a shape memory alloy, and an unloading. And a method of manufacturing the same, and a member or component made of a copper-based alloy material.
  • Shape memory alloy refers to a metal material that can return to its pre-deformed shape by temperature change or unloading of applied stress.
  • the properties of the shape memory alloy include a property of recovering the shape before deformation by heating the deformed material (this property is called “shape memory effect”) and a stress that gives a strain exceeding the maximum elastic strain.
  • shape memory effect a property of recovering the shape before deformation by heating the deformed material
  • stress that gives a strain exceeding the maximum elastic strain can be classified into two types: the characteristic of returning to the shape before deformation by unloading the stress (this characteristic is called “superelasticity”).
  • shape memory alloy is defined as an alloy exhibiting at least superelasticity among the shape memory effect and superelasticity.
  • Shape memory alloys exhibit remarkable shape memory effects and superelastic properties accompanying the reverse transformation of thermoelastic martensitic transformation, and have excellent functions near the living environment temperature, so they have been put to practical use in various fields. ing.
  • Typical materials of the shape memory alloy include, for example, a TiNi alloy and a copper-based alloy.
  • Copper-based shape memory alloys (hereinafter sometimes simply referred to as “copper-based alloys”) generally have inferior characteristics to TiNi alloys in terms of repetition characteristics, corrosion resistance, and the like, but are inexpensive. There is a movement to expand the scope of application.
  • the crystal structure of a shape memory alloy changes from a low-temperature phase parent phase to a high-temperature phase martensite phase even when subjected to deformation due to stress loading and unloading and changes in temperature. By doing so, it is possible to return to the original shape even if a large deformation appears.
  • the crystal structure is ordered structure (e.g., B19 type, DO 19 inch, B2 type, L2 1 type, etc.)
  • the alloy composition having a degree of order higher crystalline structure such as a full-Heusler alloy (L2 1 type) Is considered preferable.
  • a Heusler alloy having a high degree of regularity has a problem that working is difficult.
  • An alloy having a crystal structure having a high degree of regularity is difficult to manufacture by an ordinary working method such as cold working or hot working.
  • a rapid solidification method for example, Patent Document 1 or the like
  • Special manufacturing methods such as the Ralsky method and the Bridgman method (for example, Non-Patent Document 2) are required.
  • the shape that can be manufactured is limited, so that there is a problem that the degree of freedom of the shape that can be manufactured is low.
  • poor workability is a harmful effect, and in many cases, it has not been put to practical use.
  • the Cu—Al—Mn alloy has an L2 type 1 ordered phase ( ⁇ phase and a body-centered cubic (bcc) structure) and an A1 type phase ( ⁇ phase and ⁇
  • L2 type 1 ordered phase ⁇ phase and a body-centered cubic (bcc) structure
  • A1 type phase ⁇ phase and ⁇
  • ⁇ phase and ⁇ This is a copper-based alloy having a workability, which is a problem described above, in a two-phase state having a centered cubic (fcc) structure.
  • fcc centered cubic
  • ⁇ -phase Cu-Al-Mn alloy differ in their crystal structure through the alloy composition, having any of the crystal structure of the A2-type disordered phase, B2 type ordered phase and L2 1 type ordered phase.
  • Non-Patent Document 1 discloses a high-workability Cu-Al-Mn-based shape memory alloy.
  • FIG. 1B shows that Cu-Al-10 at% Mn shows a decrease in Tc with decreasing Al concentration. It has been shown that the ordering temperatures of A2-B2 and Tc B2-L21 drop sharply. From this, it is expected that the addition of 10 at% of Mn expands the ⁇ single-phase region toward the low Al concentration side and reduces the regularity of the ⁇ phase, thereby improving workability. is there.
  • FIG. 2 of Non-Patent Document 1 shows that, within the range of 9 to 13 at% Mn, the cold working ratio does not depend on the Mn concentration but depends on the Al concentration. It has been shown to depend.
  • the shape recovery ratio is reduced in the A2 type irregular region where Al is 16 at% or less, the shape recovery ratio has a high numerical value of 90% or more in the region where Al exceeds 16 at%. Therefore, it has been found that a Cu—Al—Mn-based shape memory alloy can achieve both workability and shape memory characteristics when a specific composition range is set. Various studies have been made for application to alloys.
  • Patent Document 1 discloses a Heusler-type shape memory alloy having a high degree of order
  • Patent Documents 2 to 6 disclose a ⁇ -single-phase structure Cu—Al—Mn-based alloy having excellent cold workability.
  • Patent Document 1 describes a Co-Ni-Ga-based Heusler-type magnetic shape memory alloy, which is a Heusler-type (A 2 BC composition ratio) magnetic shape memory alloy.
  • the shape memory alloy described in Patent Document 1 employs a special manufacturing method called a rapid solidification method.
  • Patent Document 1 does not disclose a copper-based alloy and does not disclose improvement of workability, which has been a problem of a copper-based alloy having an ordered structure.
  • the Cu-Al-Mn-based alloy described in Patent Literature 2 has an orderly treatment after forming a ⁇ -single phase at the time of working, and therefore has excellent cold workability, but in particular, has insufficient superelastic properties. Absent. The reason is considered to be that irreversible defects such as dislocations are introduced because a strong restraining force is generated between crystal grains at the time of deformation due to random crystal orientation. Therefore, good superelasticity cannot be obtained, and the amount of residual strain accumulated due to repeated deformation tends to be large, and it is considered that the superelastic property tends to be deteriorated after repeated deformation. Further, it is expected that sufficient fatigue resistance characteristics will not be obtained when repeatedly deformed, and that the accumulated amount of residual strain will also increase.
  • the shape recovery rate is as high as 95% or more, but the shape recovery rate is such that the deformation strain amount is as small as 2%. This is only a numerical value when stress is applied, and it cannot be said that it has sufficient characteristics depending on parts and members applied as a shape memory alloy, and there is room for improvement.
  • the average crystal grain size is more than half of the wire diameter in the case of a wire.
  • the thickness is equal to or more than the thickness, and the region having such a crystal grain size is set to 30% or more of the entire length of the wire material or the entire area of the sheet material, thereby maintaining excellent workability.
  • a copper-based alloy having high shape memory properties and superelasticity is described.
  • Patent Document 4 discloses that a maximum crystal grain size exceeding 8 mm can realize Cu having a good shape memory characteristic and a structural material having a relatively large cross-sectional size applicable to a structure or the like. -Al-Mn based alloys are described. However, in the method described in Patent Document 4, the control of the particle size distribution of crystal grains having a predetermined large crystal grain size in the Cu—Al—Mn-based alloy is insufficient, and the degree of organization of the structure is low. Therefore, there is a problem that the shape memory effect and the superelastic property are not stable.
  • the Cu—Al—Mn-based alloy described in Patent Document 4 has a maximum value of the maximum crystal grain size of about 150 mm, and thus has a large shape memory such as a building material having a total length of 300 mm or more.
  • both stress resistance which gives strain peculiar to shape memory alloy, and fatigue resistance and rupture resistance when deformed by repeated unloading are stable at a high level. There is a problem that can not be obtained.
  • Patent Document 5 the present applicant has disclosed that a Cu—Al—Mn-based alloy material has a recrystallized structure substantially consisting of a ⁇ single phase, and that the crystal grains existing in the recrystallized structure are large.
  • Patent Document 6 discloses that the crystal grain length in the direction perpendicular to the working direction of the alloy material is equivalent to the width or diameter R of the alloy material.
  • the Cu—Al—Mn-based alloy material described in Patent Document 5 has a residual strain of 2.0% or less after repeating 100 cycles of 5% strain load and unloading with respect to the evaluation of the resistance to repeated deformation. In this case, the cycle resistance is considered to be excellent, but the number of cycles is as small as 100 times.
  • this alloy material is used as a vibration control (vibration control) material or a building material in the future, Since the pass level of the repetitive deformation resistance is expected to be higher, even if the number of cycles is increased to more than 100 times (for example, 1000 times) and the test is performed under more severe test conditions. Therefore, it was necessary to develop a Cu—Al—Mn alloy material capable of maintaining excellent resistance to repeated deformation without deterioration.
  • Patent Document 6 with respect to the evaluation of the resistance to repeated deformation, the number of cycles in which 5% strain loading and unloading are repeated is as small as 100 times, or the number of cycles is as large as 1000 times, but the amount of strain to be applied is large. Is as small as 3%, so that a Cu—Al—Mn-based alloy material capable of maintaining excellent repetitive deformation resistance without deteriorating even under a more severe test condition as in Patent Document 5 is developed. Was needed.
  • Non-Patent Document 1 describes that a Cu—Al—Mn based shape memory alloy can obtain excellent shape memory effects and superelastic properties by controlling the structure. According to Non-Patent Document 1, the following is described. That is, (I) that the region of the ⁇ single phase greatly expands particularly to the low Al concentration side by the addition of Mn; (II) in the binary system of Cu-Al, beta single phase region existed only in the high temperature region is, becomes stable in a low temperature range of 400 ° C.
  • Non-Patent Document 1 discloses that at the time of processing, processing can be performed by controlling a two-phase structure of an ⁇ phase and a ⁇ phase (fcc structure and bcc structure), and finally, by such a device, L2 can be one type ordered structure becomes, Cu-Al-Mn based shape memory alloy which can achieve both of cold workability and shape memory effect and superelasticity is shown in.
  • Non-Patent Document 1 describes that when the ratio d / D between the crystal grain diameter d and the wire diameter D is 4.72, which is larger than 1, a shape recovery rate of 7% or more can be obtained.
  • the shape memory ratio at this time is a value obtained when a plate material having a thickness of 0.2 mm is subjected to 2% bending deformation due to surface distortion at a liquid nitrogen temperature and heated to 200 ° C.
  • a Cu—Al—Mn alloy having a shape recovery rate of 7% or more completely exhibits a bamboo structure, and is a Cu—Al—Mn alloy having such a bamboo structure.
  • the strain tends to remain after a high cycle (eg, 1000 or more cycles), Since sufficient fatigue resistance may not be obtained, there is room for improvement.
  • Non-Patent Document 2 discloses the results of a cyclic tensile load cycle test for a Cu—Al—Mn alloy having a composition of Cu-17 at% Al-11.4 at% Mn, which gives a 6-7% strain. It is shown.
  • Cu-17at% Al-11.4at % Mn alloy described in Non-Patent Document 2 while a L2 1 type ordered structure, the sum is 28.4% of Al and Mn, its degree of order Low. Therefore, in the repeated deformation from several times to about 100 times, a good superelasticity and shape memory effect are exhibited, but in the 200 to 1000 times repeated deformation, the residual strain exceeds 2%, and the residual strain exceeds 2%. There is a problem that the accumulation of distortion is remarkable.
  • Non-Patent Document 3 describes a Cu-20 at% Al-10 at% Mn alloy single crystal having improved cyclic deformation characteristics.
  • the Cu-20 at% Al-10 at% Mn alloy single crystal described in Non-Patent Document 2 is manufactured by the vertical Bridgman method, which is an industrially difficult method, the manufacturing time is long. There's a problem.
  • the test piece manufactured in Non-Patent Document 2 has a considerably small size of 2 mm ⁇ 2 mm ⁇ 4 mm, and there is a problem that the applicable field is limited with this size no matter how excellent the repetitive deformation is.
  • the vertical Bridgman method is a manufacturing method in which a hot zone is formed by resistance heating and a heat insulating material, and the temperature is gradually lowered by pulling down the crucible to crystallize in the crucible.
  • the alloy single crystal to be produced has a high possibility that impurities are mixed from the crucible, and since this serves as a nucleus, a different crystal orientation grows and it is easy to be polycrystallized, so that there is a problem that desired characteristics cannot be obtained in many cases.
  • the vertical Bridgman method is not suitable as a method for producing large-sized shape memory alloy parts and members such as building materials having a total length of 300 mm or more.
  • the Cu-20 at% Al-10 at% Mn alloy described in Non-Patent Document 2 has a composition that cannot be processed after production, it is particularly difficult to apply it as a shape memory alloy used for industrial product materials.
  • a Cu—Al—Mn alloy when used as a medical device, a building member, or the like, deterioration of characteristics due to repeated deformation is a serious problem, and further improvement is required.
  • a high cycle for example, a high deformation (for example, 5% strain)
  • a cyclic deformation in which a stress is applied and a load is repeatedly unloaded.
  • an object of the present invention is, for example, even when a stress that gives a strain specific to a shape memory alloy is applied, and then after the unloading is repeated, the deformation is returned to the original shape, and the strain hardly remains, and the resistance to the stress is reduced.
  • An object of the present invention is to provide a copper-based alloy material excellent in breaking characteristics and fatigue resistance, a method for producing the same, and a member or component made of the copper-based alloy material.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, by adding an appropriate amount of Ni to the Cu-Al-Mn-based alloy material, the ⁇ phase (having a crystal structure , L2 1- type structure, A2-type structure, or B2-type structure), a B2-type precipitation not precipitated by a ternary alloy of Cu—Al—Mn (without addition of Ni).
  • a conventional Cu-Al-Mn alloy is obtained by precipitating and dispersing a phase (NiAl precipitation phase) into a double-phase (two-phase) structure while maintaining the level of workability necessary for producing an industrial product.
  • step 1 The formation of such a multi-phase structure and large crystal grains is performed by performing a step of melting and casting (step 1) and a step of performing hot working (step 2), and then performing a predetermined intermediate annealing (step 3). And a predetermined cold working (step 4) at least once in this order, and further performing an additional intermediate annealing for stabilizing the B2-type precipitated phase in the matrix composed of the ⁇ phase (step 5). ), A step of heating and maintaining in the temperature range where the ⁇ phase precipitation amount is fixed ( ⁇ + ⁇ ) phase in the first stage of the memory heat treatment (Step 6), and a step of converting the ( ⁇ + ⁇ ) phase into a ⁇ single phase.
  • Step 7 heating and holding in a temperature range in which the state becomes a state, cooling and holding in a temperature range in which the state becomes a ( ⁇ + ⁇ ) phase from a single ⁇ phase (Step 8), and a step of ( ⁇ + ⁇ ) Heating and maintaining the temperature range from the state to the ⁇ single phase state (step )
  • a manufacturing method including a step (step 10) for quenching The present invention has been completed based on these findings.
  • the gist configuration of the present invention is as follows.
  • the copper-based alloy material according to the above (1), (2) or (3) which has a composition of: (5)
  • the alloy material has a processing direction that is a rolling direction or a wire drawing direction as an extension direction, a cross section that is substantially circular or substantially polygonal, has a long shape as a whole, A pair of edge halves that are located on the respective edges of the end surfaces and that have a half circumference length corresponding to half the length of the entire circumference of the edge surfaces.
  • the alloy material has a residual strain of 2.0% or less after repeatedly applying and unloading a stress giving 5% strain to the alloy material 1000 times.
  • the number of repetitions until the alloy material breaks when the load and unloading of a stress that gives a strain of 3% to the alloy material are repeated is 1000 times or more.
  • the composition further comprises 0.001 to 2.000% by mass of Co, 0.001 to 3.000% by mass of Fe, 0.001 to 2.000% by mass of Ti, and 0.001 to 1%.
  • 0.001% by mass of V 0.001 to 1.000% by mass of Nb, 0.001 to 1.000% by mass of Ta, 0.001 to 1.000% by mass of Zr, 0.001 to 2.000 %
  • Cr 0.001 to 1.000% by mass of Mo
  • W 0.001 to 2.000% by mass of Si
  • the copper-based alloy material according to (1) (9) A step of melting and casting the material of the copper-based alloy material according to (4) or (8) ([Step 1]), a step of performing hot working ([Step 2]), and The step of performing the intermediate annealing in the first temperature range of 680 ° C. ([Step 3]) and the step of performing the cold working in which the working ratio becomes 30% or more ([Step 4]) were performed at least once or more in this order. After that, a step of performing additional intermediate annealing in a second temperature range of 400 to 550 ° C. ([Step 5]), and heating from room temperature to a third temperature range of 400 to 650 ° C.
  • Step 6 further heating from the third temperature range to a fourth temperature range of 700 to 950 ° C. to maintain the fourth temperature range ([Step 7]), Cooling from the fourth temperature range to the third temperature range and maintaining the temperature in the third temperature range ([Step 8]); After repeating the step of heating from the third temperature range to the fourth temperature range and maintaining the temperature in the fourth temperature range ([Step 9]) at least twice or more, the step of rapidly cooling from the fourth temperature range ([Step 10] ]), A method for producing a copper-based alloy material. (10) After the step of quenching ([Step 10]), the method further comprises a step of heating to a fifth temperature range of 80 to 300 ° C.
  • a current-carrying actuator made of the copper-based alloy material according to any one of the above (1) to (8).
  • a magnetic actuator comprising the copper-based alloy material according to any one of (1) to (8).
  • a magnetic sensor made of the copper-based alloy material according to any one of (1) to (8).
  • the copper-based alloy material of the present invention has a double-phase structure in which a precipitated phase having a B2-type crystal structure is dispersed in a matrix composed of a ⁇ -phase. Even when deformation is returned to the original shape after unloading is repeated, distortion is unlikely to remain, and excellent in fracture resistance and fatigue resistance.
  • the method for producing a copper-based alloy material according to the present invention includes a step of melting and casting the material of the copper-based alloy material (step 1), a step of performing hot working (step 2), and a step of 400 to 680 ° C.
  • the temperature is further reduced to 400 to 550 ° C.
  • a step of performing an additional intermediate annealing in the second temperature range step 5
  • a step of heating from room temperature to a third temperature range of 400 to 650 ° C. and maintaining the temperature in the third temperature range step 6
  • a step of further heating from the third temperature range to a fourth temperature range of 700 to 950 ° C. and maintaining the fourth temperature range step 7
  • cooling from the fourth temperature range to the third temperature range is further reduced to 400 to 550 ° C.
  • the copper-based alloy material of the present invention can be used for various members and the like that are required to have superelastic properties and a shape memory effect.
  • mobile phone antennas, eyeglass frames, orthodontic wires, guide wires, and stents In addition to being applicable to medical products such as ingrown nail correction tools (ingrown nail correction tools) and hallux valgus prostheses, it is also applicable to connectors and energized actuators.
  • the copper-based alloy material of the present invention is a member for the purpose of damping or damping vibration, since the copper alloy material has excellent resistance to repeated deformation including both fatigue resistance and rupture resistance when subjected to repeated deformation.
  • a member for suppressing or attenuating noise or a member for self-restoration (self-centering).
  • members such as space equipment, aeronautical equipment, automobile parts, building parts, electronic parts, medical products, etc., which require repetitive deformation resistance, which were difficult to apply with conventional copper alloy materials And so on.
  • the copper-based alloy material of the present invention is used, for example, with respect to vibration, as a damping material such as a spring material, a damper, a bus bar, a building material such as a brace acting as a damping material, and a connecting part such as a screw or a bolt.
  • a vibration damping (vibration damping) structure or the like can be constructed using these damping materials and building materials acting as damping materials.
  • it can also be used as a civil engineering construction material that can prevent noise and vibration pollution by utilizing the characteristics of absorbing vibration as described above. Further, when the purpose is to reduce noise, the present invention can be applied to the field of transportation equipment.
  • FIGS. 1A and 1B are perspective views schematically showing two types of copper-based alloy materials having different shapes according to the present invention.
  • FIG. 1B shows a case where the copper-based alloy material is a plate shape.
  • FIGS. 2 (a) to 2 (c) show the shapes of test pieces prepared for measuring the number of crystal grain boundaries and mechanical properties present in the copper-based alloy material of the present invention
  • FIG. 2A is a bar having a diameter or a side of 4 mm or more
  • FIG. 2B is a bar (or a wire) having a diameter or a side of less than 4 mm
  • FIG. 3 is a stress-strain curve (SS curve) when a stress corresponding to 5% strain is applied to the copper-based alloy material of the present invention and a deformation is caused by unloading. It shows a case where the cycle of loading and unloading is performed only once (the number of repetition cycles: 1) (first cycle), and a case where the cycle is repeated 1000 times (the number of repetitions: 1000) (1000th cycle). .
  • FIG. 4 is a stress-strain curve (SS curve) when a stress corresponding to 3% strain is applied to the copper-based alloy material of the present invention and a deformation caused by unloading is applied.
  • FIG. 5 is a flowchart conceptually showing a series of steps in the method for producing a copper-based alloy material of the present invention.
  • FIG. 6 is a stress-strain curve (SS curve) when a stress corresponding to 5% strain is applied to the copper-based alloy material of Example 1 and deformation is caused by unloading.
  • the cycle of loading and unloading is repeated once (the number of repetition cycles: 1), 100 times (the number of repetition cycles: 100), and 1000 times (the number of repetition cycles: 1000).
  • SS curve stress-strain curve
  • the copper-based alloy material of the present invention has a double-phase structure in which a precipitated phase having a B2-type crystal structure is dispersed in a matrix (matrix) composed of a ⁇ phase. That is, the copper-based alloy material of the present invention contains a precipitated phase, but has a recrystallized structure substantially consisting of a ⁇ single phase.
  • “having a recrystallized structure substantially consisting of a ⁇ single phase” means that the volume ratio of the ⁇ phase constituting the matrix (matrix) in the recrystallized structure is 80% or more, preferably 90% or more. It means that.
  • the copper-based alloy material of the present invention is made of, for example, a quaternary copper-based alloy containing Al, Mn and Ni as basic components.
  • This alloy becomes a ⁇ -phase (body-centered cubic) single phase (also referred to simply as “ ⁇ single-phase” in this document) at a high temperature, and has a two-phase structure of ⁇ -phase and ⁇ -phase (face-centered cubic) at a low temperature (this book) Then, it is also referred to as “( ⁇ + ⁇ ) phase”).
  • the temperature at which the ⁇ single phase is formed is usually in a high temperature range of 700 ° C. or higher and 950 ° C. or lower at which the ⁇ phase is not melted. Is the low temperature range. Note that, in the non-equilibrium state, the alloy forms an ( ⁇ + ⁇ ) phase even at room temperature, and thus the lower limit temperature of the ( ⁇ + ⁇ ) phase temperature range is not particularly limited.
  • the copper-based alloy material of the present invention for example, a copper-based alloy material composed of a quaternary copper-based alloy containing Al, Mn and Ni as basic components, has the composition and the novel production method of the present invention.
  • a precipitation phase (NiAl precipitation phase) having a B2 type crystal structure is precipitated and dispersed in a matrix (matrix) composed of a ⁇ phase to form a double-phase (two-phase) structure.
  • matrix matrix
  • two-phase two-phase
  • the ⁇ phase constituting the matrix may be any of A2 type, B2 type or L2 1 type crystal structure.
  • the shape memory alloy particularly has a Heusler L2 1 type crystal structure. It is known that it has excellent superelasticity, and is more preferable in that it can stably obtain repeated deformation resistance.
  • the copper-based alloy material of the present invention has a B2-type crystal structure in a ⁇ -phase matrix (matrix), which has not existed before, by optimizing the alloy composition and the steps and conditions of the manufacturing method. It can have a multiphase structure in which the precipitated phase is dispersed.
  • the copper-based alloy material of the present invention not only exhibits a superelastic property and a shape memory effect stably at the initial stage of deformation, but also has a high strain deformation (for example, a stress load and unloading that gives a 5% strain to the alloy material). Even if the deformation is repeated 1,000 times, the residual strain after the repeated deformation can be controlled to 2.0% or less, and the fatigue resistance can be remarkably improved.
  • the copper-based alloy material of the present invention has a large number of deformation times (the number of times until breakage when repeatedly applying and unloading a stress that gives a strain of 3% to the alloy material). 1000 times or more.
  • the number of times of 1000 times or more up to breakage may be simply referred to as “many times”.) Can be improved.
  • the copper-based alloy material of the present invention can exhibit an unexpected and remarkable effect as compared with the conventional copper-based alloy material.
  • the copper-based alloy material of the present invention has a metal structure having a recrystallized structure substantially composed of a ⁇ phase (bcc structure), more specifically, a two-phase structure of a (phase matrix) and a precipitated phase.
  • a ⁇ phase constituting the matrix (mother phase)
  • A2 type is either type B2 and L2 1 type, heretofore Increasing the degree of order by increasing the Al concentration, processing impossible
  • Ni it becomes possible to work by precipitating an ⁇ phase at an intermediate temperature without lowering the degree of ordering, and further, to precipitate a crystal structure of B2 type (for example, NiAl). Fatigue strength can be increased by the precipitation strengthening effect caused by the precipitation of the phase in the matrix.
  • the control of the crystal structure in the present invention can be performed by appropriately setting the alloy composition and the steps and conditions of the production method.
  • TEM transmission electron microscope
  • Example 1 shows that the electron diffraction pattern strongly shows an L2 type 1 ordered phase, and that in the dark-field image, NiAl precipitates of several nm are present. I confirmed that.
  • Comparative Example 23 in the electron diffraction pattern, the diffraction intensity of the L2 1 type ordered phase was lower than that in Example 1, and the presence of the precipitated phase could not be confirmed in the dark field image.
  • a conventional copper-based alloy material manufactured as a shape memory alloy preferably has a crystal structure called a bamboo structure.
  • the term “bamboo structure” as used herein means that only large crystal grains of small crystal grains and large crystal grains are controlled, and exists on the surface or cross section of a round bar-shaped copper alloy material (test specimen), for example.
  • test specimen a round bar-shaped copper alloy material
  • the copper-based alloy material having a bamboo structure can control only large crystal grains and cannot control small crystal grains. In the repeated deformation, residual strain was accumulated at the grain boundaries, and sufficient fatigue resistance was not obtained. For this reason, attempts have been made to minimize the small crystal grains present in the copper-based alloy material as much as possible, and by controlling the amount of small crystal grains, it is possible to suppress the residual strain to a small value even if the deformation is repeated many times. I know.
  • the copper-based alloy material was not small crystal grains, but had many large crystal grains constituting a so-called bamboo structure, the number of times to break occurred, and the fracture resistance was poor.
  • the fracture resistance of the copper-based alloy material not only controls the abundance of small crystal grains, but also decreases if the abundance of large crystal grains constituting the bamboo structure is large, and the copper-based alloy material breaks. It was found that when the number of times was reduced and the deformation was repeated, the material was broken at an early stage.
  • the copper-based alloy material of the present invention is such that only large crystal grains are present and the frequency of existence of crystal grain boundaries between the large crystal grains existing in the test specimen is controlled to be small, more specifically,
  • the copper-based alloy material has a processing direction that is a rolling direction or a wire drawing direction as an extension direction, a cross section that is substantially circular or substantially polygonal, has an elongated shape as a whole, and has both end surfaces of the alloy material.
  • a pair of edge halves which are located at the respective edges of both end surfaces, and have a half circumference length corresponding to half the length of the entire circumference of the edge,
  • a semi-peripheral surface defined by a pair of extended lines that are the base line or ridge line of the alloy material, which connects both ends of the edge half
  • the frequency of existence of the grain boundary is 0.2 or less, so that the fracture resistance is low.
  • the frequency of the crystal grain boundaries is more preferably 0.1 or less.
  • FIGS. 1A and 1B are perspective views schematically showing two types of copper-based alloy materials having different shapes according to the present invention.
  • FIG. 1B shows a case where the copper-based alloy material is a plate shape.
  • the copper-based alloy material (specimen) 1 has a processing direction RD, which is a rolling direction or a drawing direction, as an extending direction, has a substantially circular cross section, and has a generally long shape (a round bar shape in FIG. 1A). ),
  • the entire peripheral surface 4 of the alloy material 1 excluding the end surfaces 2 and 3 is located at the end edges 5 and 6 of the end surfaces 2 and 3, respectively.
  • the semi-peripheral surface 9 When viewed on a semi-peripheral surface 9 (a region indicated by oblique lines in FIG. 1A) defined by a pair of extended line portions 7 and 8 which are the generatrix of the alloy material 1, the semi-peripheral surface 9 includes a crystal grain boundary. It is preferable that the existence frequency X of the crystal grain boundary X is 0.2 or less even if X does not exist or the crystal grain boundary X exists.
  • the copper alloy material (specimen) 10 has a processing direction RD that is a rolling direction or a drawing direction as an extending direction, has a substantially polygonal cross section, and has a long shape as a whole (FIG. 1B).
  • RD processing direction
  • FIG. 1B the entire peripheral surface of the alloy material 10 excluding the end surfaces 12 and 13, and the entire peripheral surface 14 composed of four surfaces in FIG.
  • a pair of edge halves 15ab which are located at the respective edges 15, 16 of the end faces 12, 13 and have a half circumference length corresponding to half the length of the entire circumference of the edges 15, 16,
  • the semi-peripheral surface (16ab) is formed by connecting the pair of edge half portions 15ab, 16ab and the both ends 15ab1 and 16ab1 and 15ab2 and 16ab2 of the pair of edge half portions 15ab and 16ab2, and is defined by a pair of extended line portions 17 and 18 which are ridge lines of the alloy material 1. Regions indicated by oblique lines in FIG.
  • the crystal grain boundary X does not exist on the semi-peripheral surface 19, or the frequency P of the crystal grain boundary X is 0.2 or less even if the crystal grain boundary X exists. .
  • the surface portion has a substantially higher workability than the central portion due to the influence of additional shear stress and tool surface friction in the processing step, and the crystal grains are likely to be fine. Therefore, if the crystal grains present on the surface portion satisfy the above-described frequency P of the crystal grain boundary X, it is considered that the center portion is also satisfied. Therefore, in the present invention, the evaluation is performed on the surface of the copper-based alloy material. It shall be.
  • FIGS. 2A to 2C The shapes of the copper alloy alloy test specimens of the present invention are shown in FIGS. 2A to 2C as examples of rods, wires and plates.
  • the shape of the test piece shown in FIGS. 2A to 2C is a shape conforming to the shape of a tensile test piece specified in JIS Z2241: 2011. In the case of a round bar shown in FIG.
  • the existence frequency P of the crystal grain boundaries X was measured from the number n of the crystal grain boundaries X existing on the semi-peripheral surface having the parallel portion length Lc. After measuring the number n of the crystal grain boundaries X, the test piece was used as a test piece having the same fatigue resistance and fracture resistance as it was.
  • the copper-based alloy material of the present invention has a double-phase (two-phase) structure of a matrix composed of a ⁇ phase and a precipitated phase having a B2-type crystal structure, and if the existence frequency P ⁇ 0.2, It has been confirmed that it has excellent fatigue resistance regardless of the shape of the specimen.
  • the copper-based alloy material of the present invention has the same excellent fatigue resistance characteristics regardless of the shape of the bar material and the plate material, and even when the device is subsequently processed into a device shape.
  • the invention is not limited to the above shapes. Unless otherwise specified, the evaluation of the characteristics and the observation of the structure of the present invention are performed by preparing a test body in the shape of a JIS No. 9B test piece shown in FIG. 2B.
  • the number n of the crystal grain boundaries X is preferably 1 or less, and most preferably 0, as viewed on the half circumferential surface. If the number n of the crystal grain boundaries X is 2 or more, the copper-based alloy material tends to have a bamboo structure like a conventional copper-based alloy material, resulting in inferior fatigue resistance and fracture resistance. is there.
  • the copper-based alloy material of the present invention is a shape elongated in the processing direction (RD).
  • the working direction (RD) means the rolling direction when the alloy material is subjected to rolling if the alloy material is a plate material, and if the alloy material is a bar (or wire). Means the direction of drawing when the alloy material is subjected to wire drawing.
  • the alloy material of the present invention extends in the working direction (RD), the longitudinal direction of the alloy material does not necessarily have to match the working direction.
  • the copper-based alloy material of the present invention having a long shape is cut or bent, it is included in the copper-based alloy material of the present invention in consideration of the original processing direction of the alloy material.
  • the specific shape of the copper-based alloy material of the present invention is not particularly limited, and may be various shapes such as a rod (line) and a plate (strip). There is no particular limitation on these sizes.
  • the size can be 0.1 to 50 mm in diameter. Can be 8 to 16 mm in diameter.
  • the thickness may be 0.2 mm or more, for example, 0.2 to 15 mm.
  • the copper-based alloy material of the present invention can also obtain a plate material (strip material) by performing rolling instead of wire drawing.
  • a copper-based alloy material (test body) having a length (total length) of 400 mm or more is prototyped, and the frequency P of the crystal grain boundaries X is zero (ie, 20 test pieces). It has been confirmed that there is no crystal grain boundary X on all the semi-peripheral surfaces of the body, in other words, that all 20 specimens are composed of a single crystal.
  • the bar of the present invention is not limited to a round bar (round line), but may be in the shape of a square bar (square line) or a flat bar (flat line).
  • a round bar (round line) obtained in advance by the above-described method is cold-worked by a processing machine, cold-worked by a cassette roller die, pressed by a conventional method. It suffices to perform flat wire processing such as drawing.
  • a square bar (rectangular line) having a square cross-sectional shape and a rectangular rod (rectangular line) having a rectangular cross-sectional shape can be separately formed.
  • the rod (wire) of the present invention may be in the shape of a tube having a hollow tube wall.
  • the copper-based alloy material of the present invention may have the above-described multiphase structure, and the composition does not need to be limited.
  • the copper-based alloy material is a Cu-Al-Mn-Ni-based alloy material
  • As an example of a suitable composition range 8.6 to 12.6% by mass of Al, 2.9 to 8.9% by mass of Mn, and 3.2 to 10.0% by mass of Ni are contained. , The balance being Cu and unavoidable impurities.
  • the copper-based alloy material having the above composition is excellent in hot workability and cold workability. In cold working, a working rate of 20% or more is possible.
  • rods (wires) and plates (strips) Ultrafine wires, foils, pipes, etc., which were difficult to process with the ordered structure alloy, can be formed.
  • Al 8.6 to 12.6 mass%
  • Al (aluminum) expands the region where the ⁇ phase is formed, and is the element that most affects the order in the copper alloy of the present invention.
  • the Al content is 8.6% by mass or more. Is preferred. If the Al content is less than 8.6% by mass, the ⁇ single phase may not be sufficiently formed.
  • the Al content is more than 12.6 wt%, although regular structure L2 1 type ⁇ -phase is easily obtained, since the organization ordered structure during the cold working, is brittle alloy member manufacturing It tends to worsen.
  • the preferred content range of Al changes according to the Mn content. However, when the preferred content range of Mn is limited as described below, the preferred content range of Al is 8.6 to 12.6% by mass. I do.
  • Mn manganese
  • Mn (manganese) is an element that extends the range of existence of the ⁇ phase to the low Al side, significantly improves cold workability, and facilitates forming.
  • the amount is preferably 2.9% by mass or more. If the Mn content is less than 2.9% by mass, satisfactory workability cannot be obtained, and a ⁇ single phase region cannot be formed, resulting in an ( ⁇ + ⁇ ) phase, which is not preferable. On the other hand, if the Mn content is more than 8.9% by mass, there is a tendency that sufficient shape recovery characteristics cannot be obtained. For this reason, the preferable content range of Mn is 2.9 to 8.9% by mass.
  • Ni is an element having an effect of facilitating the formation of a double-phase (two-phase) structure of a stable ordered structure L21 type 1 and a precipitated phase having a B2 type crystal structure.
  • the Ni content is 3.2% by mass or more.
  • the Ni content is less than 3.2 wt%, the amount of precipitated phase becomes insufficient, so with the tissues of L2 1 type single phase, not to lower the degree of order, obtain sufficient fatigue resistance tends There is.
  • the Ni content is more than 10.0% by mass, the ⁇ phase tends to remain, and a ⁇ single phase region tends to be unable to be formed, and sufficient shape recovery may not be obtained. is there.
  • the preferred range of Ni changes according to the content of Al and Mn, when the preferred range of Al and Mn is the above-defined preferred range, the preferred range of Ni is 3.2 to 10%. 0.0% by mass.
  • the Cu—Al—Mn—Ni alloy material of the present invention contains Al, Mn and Ni as essential basic components, and further contains 0.001 to 2.000 mass% of Co as an optional auxiliary component. , 0.001 to 3.000 mass% Fe, 0.001 to 2.000 mass% Ti, 0.001 to 1.000 mass% V, 0.001 to 1.000 mass% Nb, 0 0.001 to 1.000 mass% Ta, 0.001 to 1.000 mass% Zr, 0.001 to 2.000 mass% Cr, 0.001 to 1.000 mass% Mo, 0.001 From 1.000% by mass of W, 0.001 to 2.000% by mass of Si, 0.001 to 0.500% by mass of C, and 0.001 to 5.000% by mass of misch metal
  • One or more selected components are added in a total of 0.00 It can be contained ⁇ 10.000% by weight.
  • the total content of these additional elements is preferably 0.001 to 10.000% by mass, and particularly preferably 0.001 to 5.000% by mass. If the total content of these components is more than 10.000% by mass, the martensitic transformation temperature decreases and the ⁇ single phase structure becomes unstable.
  • Co [0.001 to 2.000 mass% Co, 0.001 to 3.000 mass% Fe, 0.001 to 2.000 mass% Ti]
  • Co has an action of coarsening crystal grains by forming a Co—Al intermetallic compound, and in order to exhibit this action, the Co content is preferably 0.001% by mass or more. If the Co content is more than 2.000% by mass, the toughness of the copper-based alloy material may be reduced and processing may be difficult. Therefore, the preferred Co content range is 0.001 to 2.000. % By mass.
  • Fe is an element having an effect of precipitating a microstructure and strengthening a base structure.
  • the Fe content is preferably set to 0.001% by mass or more. If the Fe content is more than 3.000% by mass, there is a possibility that processing may not be possible due to a decrease in toughness. Therefore, the preferable content range of Fe is 0.001 to 3.000% by mass.
  • Ti is an element having a function of strengthening a base structure because Cu 2 AlTi is precipitated as a stable phase. In order to exert this function, the Ti content is preferably 0.001% by mass or more. If the Ti content is more than 2.000% by mass, the amount of precipitates tends to be excessive and the shape recovery rate tends to deteriorate, so the preferable content range of Ti is 0.001 to 2.000% by mass. .
  • V [V of 0.001 to 1.000 mass%, Nb of 0.001 to 1.000 mass%, Mo of 0.001 to 1.000 mass%, Ta of 0.001 to 1.000 mass%, 0 0.001 to 1.000% by mass of Zr]
  • V (vanadium), Nb (niobium), Mo (molybdenum), Ta (tantalum), and Zr (zirconium) are elements each having an effect of increasing hardness and an effect of improving wear resistance. Since these elements hardly form a solid solution in the matrix, they can be precipitated as a ⁇ phase (bcc crystal) to improve the strength.
  • the contents of V, Nb, Mo, Ta, and Zr for exhibiting the above-mentioned effects are all 0.001% by mass.
  • V, Nb, Mo, Ta, or Zr is more than 1.000% by mass, the cold workability may deteriorate, so that V, Nb, Mo, Ta, or Zr. Is preferably in the range of 0.001 to 1.000% by mass.
  • Cr Cr
  • Cr Cr
  • the Cr content is preferably 0.001% by mass or more. If the Cr content is more than 2.000% by mass, the transformation temperature may be significantly lowered. Therefore, the preferable content range of Cr is 0.001 to 2.000% by mass.
  • Si (silicon) is an element having an action of improving corrosion resistance, and to exhibit this action, the Si content is preferably set to 0.001% by mass or more. If the Si content is more than 2.000% by mass, the superelasticity may be deteriorated. Therefore, the preferable content range of Si is 0.001 to 2.000% by mass.
  • W tungsten
  • the W content is preferably set to 0.001% by mass or more. Further, if the W content is more than 1.000% by mass, the cold workability may be deteriorated. Therefore, the preferable content range of W is 0.001 to 1.000% by mass.
  • C is an element having a pinning effect if it is in an appropriate amount, and has an effect of making the crystal grains coarser, and is particularly preferably added in combination with Ti and Zr.
  • the C content is preferably set to 0.001% by mass or more. If the C content is more than 0.500% by mass, coarsening of crystal grains is unlikely to occur due to the adverse effect of pinning, so the preferred content range of C is 0.001 to 0. 500 mass%.
  • the misch metal is an element having a function of making the crystal grains coarser because a pinning effect can be obtained with an appropriate amount, and the misch metal content is set to 0.001% by mass or more to exhibit this effect. Is preferred. When the content of the misch metal is more than 5.000% by mass, coarsening of crystal grains may not easily occur due to the adverse effect of pinning. Therefore, the preferable content range of the misch metal is 0.001 to It shall be 5.000 mass%.
  • “misch metal” refers to an alloy of a rare earth element such as La (lanthanum), Ce (cerium), Nd (neodymium), etc., which is difficult to separate.
  • the balance other than the above components is Cu and unavoidable impurities.
  • the “unavoidable impurities” referred to herein mean impurities of a content level that can be inevitably included in the manufacturing process. Examples of the inevitable impurities include O, N, H, S, P, and the like. If the content of the unavoidable impurities is, for example, 0.10% by mass or less in the total amount of the unavoidable impurity components, it does not affect the properties of the copper-based alloy material of the present invention.
  • the copper alloy material of the present invention has the following physical properties (characteristics).
  • the copper-based alloy material of the present invention has both fatigue-resistant properties and fracture-resistant properties when repeatedly subjected to a deformation that returns to the original shape after applying a stress that gives a shape memory alloy-specific strain and then unloading. Is better.
  • the term “excellent in fatigue resistance” as used in the present invention refers specifically to an alloy obtained by repeatedly applying and removing a stress that gives a strain of 5% to the alloy material 1000 times. This means that the residual strain of the material is 2.0% or less, more preferably 1.4% or less.
  • FIG. 3 shows an example of stress-strain curves at the first cycle and at the 1000th cycle when the operation from the application of the stress to the unloading is one cycle for the copper alloy material.
  • the lower limit of the residual strain is not particularly limited, but is usually 0.1% or more.
  • “residual strain” means a strain amount remaining after repeated loading and unloading at a predetermined strain amount, and in the present invention, the smaller the residual strain, the more excellent the fatigue resistance property. Is defined as
  • the term “excellent in fracture resistance” as used in the present invention specifically means that an alloy material breaks when repeatedly subjected to a stress load that gives a 3% strain to the alloy material and unloading. This means a case where the number of repetitions up to 1000 is 1000 times or more. The number of repetitions is 5,000 and the test is completed.
  • FIG. 4 shows an example of a stress-strain curve at the first cycle and the 5000th cycle when the operation from the application of the stress to the unloading is one cycle for the copper-based alloy material. In the present invention, it is defined that the greater the number of repetitions, the better the fracture resistance. Further, it is preferable that the number of repetitions be small.
  • the method for producing a copper-based alloy material according to the present invention includes a step of melting and casting ([Step 1]), a step of performing hot working ([Step 2]), a step of performing intermediate annealing ([Step 3]), Interworking ([Step 4]), additional intermediate annealing ([Step 5]), heating and holding to a third temperature range ([Step 6]), heating to a fourth temperature range (Step 7), cooling and holding from the fourth temperature range to the third temperature range ([Step 8]), heating and holding from the third temperature range to the fourth temperature range (Step 9) and a step of rapidly cooling from the fourth temperature range (Step 10).
  • the production conditions for obtaining a superelastic alloy material or a shape memory alloy material excellent in repeated deformation resistance by exhibiting a stable superelastic property as described above are as follows: Such a manufacturing process can be mentioned.
  • FIG. 5 shows an example of a typical manufacturing process.
  • Step 1 is a step of melting and casting a material of the copper-based alloy material having the above-described composition, and may be performed by a conventional method.
  • Step 2 is a step of performing hot working such as hot rolling or hot forging after step 1, and may be performed by a conventional method.
  • hot working is preferably performed at a temperature in the range of 680 to 950 ° C., and is usually performed at about 800 ° C. If hot working is performed at a temperature of 680 ° C. or higher, deformation resistance is reduced, and working is possible. On the other hand, if hot working is performed at a temperature exceeding 950 ° C., the copper-based alloy material may be melted.
  • Step 3 is a step of performing intermediate annealing at a first temperature range of 400 to 680 ° C., preferably 400 to 550 ° C., after Step 2 (or Step 4 when performing two or more times). This is because if the intermediate annealing is performed at a heat treatment temperature higher than 680 ° C., the ratio of the ⁇ phase becomes too large, and the subsequent cold working becomes difficult. On the other hand, when the intermediate annealing is performed at a heat treatment temperature lower than 400 ° C., the effect of hardening the structure as in the aging treatment is increased, and the cold working becomes difficult.
  • the time for the intermediate annealing may be, for example, in the range of 1 to 120 minutes.
  • Step 4 is a step of performing cold working such as cold rolling or cold drawing after step 3, and performing cold working so that the working ratio is 30% or more.
  • the heat treatment temperature in the intermediate annealing [step 3] is set in the range of 400 to 680 ° C.
  • the cold working (specifically, cold rolling or cold drawing) [step 4] is performed.
  • a Cu—Al—Mn—Ni alloy material stably exhibiting good superelastic properties can be obtained by setting the cold rolling ratio or the cold drawing ratio to 30% or more.
  • the number of repetitions of the intermediate annealing [Step 3] and the cold working [Step 4] may be one, but is preferably two or more, more preferably three or more. This is because, as the number of repetitions of the intermediate annealing [Step 3] and the cold working [Step 4] increases, the orientation of the processed texture advances and the characteristics are improved.
  • the cumulative working rate in the cold working [Step 4] is preferably 30% or more, and more preferably. Is 45% or more.
  • the upper limit of the cumulative processing rate is not particularly limited, but is usually 95% or less.
  • Step 5 is a step of performing additional intermediate annealing in the second temperature range after step 4 for the purpose of stabilizing the precipitated phase.
  • the second temperature range is preferably in the range of 400 to 550 ° C. If the annealing temperature is lower than 400 ° C., the effect of precipitating the precipitated phase (NiAl) tends not to be sufficiently obtained, and if the temperature is higher than 550 ° C., the ⁇ phase precipitated in the matrix of ⁇ phase Since the amount of (fcc structure) precipitated becomes too large, the effect of improving the regularity by the precipitation of the B2-type precipitated phase tends to be insufficient.
  • the heat treatment time in the additional intermediate annealing is not particularly limited, it was confirmed that, for example, by setting the heat treatment time to 1 to 120 minutes, a copper-based alloy material in which the ordered structure is not disturbed in the subsequent steps can be obtained. ing. Although the detailed cause of the stabilization of the ordered structure by this step has not been clarified, it is presumed to be due to the effect of precipitation by fine Ni bases.
  • Step 6 is a step of heating from room temperature (20 ° C. ⁇ 20 ° C.) to a third temperature range of 400 to 650 ° C. and maintaining the temperature in the third temperature range, and fixes (controls) the precipitation amount of the ⁇ phase. It is a process for.
  • the third temperature range is conceptually a temperature range in which an ( ⁇ + ⁇ ) phase is formed, and more specifically, a temperature range of 400 to 650 ° C., preferably 450 to 550 ° C., although it varies depending on the alloy composition. is there.
  • the heating temperature is lower than 400 ° C., there is a problem that the cold working cannot be performed, and if the heating temperature is higher than 650 ° C., there is a problem that the texture becomes random.
  • the step [Step 7] of heating and holding in the fourth temperature range in which the ⁇ is a single phase is performed.
  • the ⁇ phase can be eliminated, and as a result, the effect of increasing the crystal grains can be easily obtained by the subsequent heat treatment (crystal grain coarsening treatment (steps 8 to 10)).
  • the holding time in the heat treatment in step 6 is not particularly limited, but is preferably, for example, 1 to 120 minutes.
  • the temperature may be raised to the third temperature range that becomes the ( ⁇ + ⁇ ) phase. Therefore, the heating rate at this time is not particularly limited.
  • the temperature may be 1 ° C./min or more, but if it is necessary to reduce the overall time required for the production, it is preferable to carry out the heating at a high rate of 20 ° C./min or more.
  • Step 7 is a step of further heating from the third temperature range to a fourth temperature range of 700 to 950 ° C. and maintaining the fourth temperature range.
  • the fourth temperature range is conceptually a temperature range in which the phase becomes a ⁇ single phase. Specifically, the temperature range varies depending on the alloy composition, but is in a temperature range of 700 to 950 ° C., preferably 750 ° C. or more, and more preferably 750 ° C. or more. 800 ° C. to 950 ° C.
  • the holding time in the fourth temperature range is not particularly limited, but may be, for example, in a range of 5 minutes to 480 minutes.
  • the heating rate when heating from the third temperature range to the fourth temperature range is 0.1 to 20 ° C./min, preferably 0.1 to 10 ° C./min, more preferably 0.1 to 3. It is preferable to control the temperature to a predetermined slow range of 3 ° C./min.
  • the lower limit of the heating rate is not particularly limited, but is set to 0.1 ° C./min in consideration of the limit as an industrial product.
  • Step 8 is a step of cooling from the fourth temperature range to the third temperature range and maintaining the temperature in the third temperature range.
  • the cooling rate from the fourth temperature range where the ⁇ phase becomes the single phase to the third temperature range which becomes the ( ⁇ + ⁇ ) phase is 0.1 to 20 ° C./min, preferably 0.1 to 10 ° C./min. It is more preferable to control the temperature to a predetermined slow range of 0.1 to 3.3 ° C./min. If the cooling rate is higher than 20 ° C./min, fine crystal grains may be generated on the surface of the alloy material, and the existence frequency P of the crystal grain boundaries X may not be reduced to 0.2 or less. Will be higher.
  • the lower limit of the cooling rate is not particularly limited, but is set to 0.1 ° C./min in consideration of the limit as an industrial product.
  • the third temperature range is usually from 400 to 650 ° C., and preferably from 450 to 550 ° C., which becomes the ⁇ + ⁇ phase. If the temperature is higher than 650 ° C., the ratio of the ⁇ phase becomes too large, so that the pinning effect of the ⁇ phase becomes insufficient, and the crystal grain size satisfying the existence frequency P of the crystal grain boundary X described above is 0.2 or less. The probability of not being obtained increases.
  • the holding time when holding in the third temperature range is not particularly limited, but is preferably in the range of 2 to 480 minutes, more preferably in the range of 30 to 360 minutes.
  • Step 9 is a step of heating from the third temperature range to the fourth temperature range and maintaining the temperature in the fourth temperature range.
  • the heating rate when heating from the third temperature range to the fourth temperature range is 0.1 to 20 ° C./min, preferably 1 to 10 ° C./min, and more preferably 2 to 5 ° C./min. It is preferable to control to a predetermined range. If the heating rate is higher than 20 ° C./min, fine crystal grains are generated on the surface of the alloy material, and the frequency P of the crystal grain boundaries X cannot be reduced to 0.2 or less. The nature becomes high.
  • the lower limit of the heating rate is not particularly limited, but is set to 0.1 ° C./min in consideration of the limit as an industrial product.
  • the fourth temperature range is usually a temperature range in which the phase becomes a single ⁇ phase. Specifically, the fourth temperature range varies depending on the alloy composition, but is in a temperature range of 700 to 950 ° C., preferably 750 ° C. or more, more preferably 750 ° C. or more. 800 ° C. to 950 ° C. If the heating temperature is lower than 700 ° C., there is a problem that the ⁇ phase remains without completely disappearing, and if the heating temperature is higher than 950 ° C., the copper-based alloy may be melted. It is.
  • the holding time in the fourth temperature range is not particularly limited, but is preferably, for example, in the range of 5 minutes to 480 minutes, and more preferably in the range of 30 minutes to 360 minutes.
  • [Step 8] and [Step 9] are preferably repeated at least twice or more, more preferably 3 or more times, and further preferably 4 or more times. If the number of repetitions is less than 2, the driving force for enlarging the crystal grains becomes insufficient, so that there is a possibility that a crystal grain size satisfying the above-mentioned frequency P of the grain boundary X of 0.2 or less cannot be obtained. Get higher.
  • Step 10 is a step of quenching from the fourth temperature range, specifically, a solution treatment by rapid cooling (so-called quenching) performed after repeating the above steps 8 and 9 at least twice or more.
  • This quenching can be performed by, for example, water cooling in which the copper-based alloy material heated and held in the ⁇ single phase is put into cooling water.
  • the cooling rate during rapid cooling is 30 ° C./sec or more, preferably 100 ° C./sec or more, and more preferably 1000 ° C./sec or more. If the cooling rate is as slow as less than 30 ° C./sec, the ⁇ phase may precipitate, and the regularity of the ⁇ phase may not be maintained in the subsequent process. Since the upper limit of the cooling rate depends on the physical property of the copper-based alloy material, it is practically impossible to set the upper limit.
  • the method for producing a copper-based alloy material of the present invention has the above-described steps 1 to 10 as a basic configuration. After the step of rapid cooling ([step 10]), the method is heated to a fifth temperature range of 80 to 300 ° C. It is preferable to further include a step of maintaining the temperature in the fifth temperature range ([Step 11]).
  • Step 11 (Step of heating and holding to the fifth temperature range after rapid cooling [Step 11]) Further, in the method for producing a copper-based alloy material of the present invention, after the step of quenching ([Step 10]), the step of heating to a fifth temperature range of 80 to 300 ° C. and maintaining the fifth temperature range ([Step 10]). 11]). Step 11 is a so-called aging heat treatment performed after rapid cooling. By further performing the step 11, beta phase constituting the matrix can be in the L2 1 type crystal structure, super elastic, fatigue resistance and rupture characteristics can be remarkably improved.
  • the fifth temperature range can be performed in a temperature range of 80 to 300 ° C, preferably 150 to 250 ° C.
  • the heat treatment temperature is lower than 80 ° C.
  • the ⁇ phase is unstable depending on the alloy composition, and if left at room temperature, the martensitic transformation temperature may change.
  • a long-term aging heat treatment precipitates a bainite phase that increases hysteresis and lowers ductility.
  • the precipitation amount is less than 80%, so that the superelastic property and ductility are large. No problem.
  • the holding time in the fifth temperature range is not particularly limited, but may be in the range of 5 to 120 minutes.
  • the copper-based alloy material of the present invention can be suitably used for a member for vibration suppression and damping, a member for noise suppression or damping, and a member for self-restoration (self-centering). It can. These members are made of a bar or a plate.
  • the vibration control (vibration control) material and the building material are not particularly limited, and examples thereof include a brace, a fastener, and an anchor bolt. Furthermore, it has become possible to use it in fields that were difficult in the past, such as space equipment, aeronautical equipment, automobile parts, building parts, electronic parts, and medical products that require repeated deformation resistance.
  • the invention can also be used as a civil engineering construction material that can prevent noise and vibration pollution. Further, when the purpose is to reduce noise, the invention can be applied to the field of transportation equipment. In any case, since it has an excellent self-restoring force, it can be used as a self-restoring material. Moreover, since a crystal structure containing a large amount of Heusler alloy-specific L2 1 ordered structure, since it has excellent magnetic properties, such as a magnetic actuator and a magnetic sensor, can be expected utilization is also new applications. Further, the copper-based alloy material of the present invention can be suitably used as a vibration damping (vibration damping) structure. This damping (damping) structure is constructed using damping (damping) materials.
  • the vibration control (vibration control) structure are not particularly limited, and any structure may be used as long as the structure is formed using the above-described braces, fasteners, anchor bolts, and the like.
  • the copper-based alloy material of the present invention can also be used as a civil engineering construction material that can prevent noise and vibration pollution.
  • a composite material can be formed and used with concrete.
  • the copper-based alloy material of the present invention can also be used as a vibration absorbing member for space equipment, aircraft, automobiles and the like, and a self-restoring material. It can also be applied to the field of transportation equipment for the purpose of reducing noise. Further, since it also has excellent magnetic properties, it can be applied to fields using magnetism such as magnetic actuators and magnetic sensors.
  • Examples 1 to 60 and Comparative Examples 1 to 47 A sample of the bar (wire) was prepared under the following conditions.
  • a raw material of the copper-based alloy giving the composition shown in Table 1 raw materials of pure copper, pure Mn, pure Al, pure Ni, and if necessary, other auxiliary additive elements are melted in the air in a high frequency induction furnace to a predetermined size.
  • an ingot having an outer diameter of 80 mm and a length of 300 mm was obtained ([Step 1]).
  • the obtained ingot was subjected to hot working or extrusion at 800 ° C. ([Step 2]).
  • Step 3 Intermediate annealing time is 100 minutes [Step 5] Additional intermediate annealing time is 30 minutes [Step 6] Rate of temperature rise from room temperature to ( ⁇ + ⁇ ) region is 30 ° C./min, holding in ( ⁇ + ⁇ ) region Time is 60 minutes [Step 7] The retention time in the ⁇ single phase region is 120 minutes [Step 8] The retention time in the ( ⁇ + ⁇ ) region is 60 minutes [Step 9] The retention time in the ⁇ single phase region is 120 minutes [ Step 10] The quenching rate from the ⁇ single phase region is 50 ° C./second [Step 11] The aging heat treatment time is 20 minutes
  • the crystal grain boundary X of the copper-based alloy material is used for evaluating the repetitive deformation resistance (fatigue resistance and fracture resistance) described later.
  • the surface of the test piece is etched with an aqueous ferric chloride solution before the tensile test, whereby the surface of the copper alloy material (more precisely, the half circumferential surface 9) is used.
  • the upper limit of the total length of the test piece to be observed is not particularly limited, but is set to be equal to or longer than the original reference point distance L O of the tensile test described later.
  • Fatigue resistance characteristics were determined by using 5 test specimens out of the 20 test specimens used for calculating the frequency of existence of the crystal grain boundaries in (2) above and reducing the strain by 5%.
  • a stress-strain curve (SS curve) is created by repeatedly applying and unloading the applied stress, and a residual strain (%) after 1000 cycles is determined from the stress-strain curve (FIG. 3). Reference), and evaluated by the numerical value of the residual strain. The smaller the value of the residual strain, the better the fatigue resistance.
  • the test conditions were as follows: the original gauge length was 200 mm, the tensile test was repeated 1,000 times at a test speed of 5% / min. In the present invention, when the evaluation was "1" and "2", the fatigue resistance was evaluated as being at an acceptable level. Tables 3 and 4 show the evaluation results of the fatigue resistance characteristics.
  • Rupture resistance characteristics were determined by using 5 test pieces out of the 20 test pieces used to calculate the frequency of existence of the crystal grain boundaries in (2) above and setting a strain of 3%. The applied stress load and unloading were performed, and the number of repetitions until breaking was determined (see FIG. 4). The greater the number of repetitions until breaking, the more resistant to repeated deformation, so that collapse of buildings and destruction of members can be suppressed, and breakage resistance is excellent.
  • the test conditions were as follows: the original gauge length was 200 mm, and a tensile test in which a stress load giving a strain of 3% and unloading were alternately repeated 1,000 times at a test speed of 3% / min. In the present invention, when the evaluation was "1" and "2", the rupture resistance was evaluated as being at an acceptable level. Tables 3 and 4 show the evaluation results of the fracture resistance.
  • the cyclic deformation resistance was comprehensively evaluated based on the evaluation results of both fatigue resistance and rupture resistance according to the following criteria.
  • the cases where the overall evaluation was “A”, “B”, and “C” were evaluated as the repetition deformation resistance being at an acceptable level.
  • Tables 3 and 4 show the overall evaluation results of the cyclic deformation resistance.
  • FIGS. 6 and 7 show that the copper-based alloy materials of Example 1 and Comparative Example 23 were subjected to a stress load giving 5% strain and unloading only once, 100 times, and 1000 times, respectively.
  • FIG. 4 shows a stress-strain curve (SS curve) after each repetition. From the comparison between FIG. 6 and FIG.
  • SYMBOLS 1 Bar-shaped or linear copper-based alloy material 2, 3 End surface of copper-based alloy material 4 4 Full-peripheral surface of copper-based alloy material 4a, 4b Half-peripheral surface 5, 6 Edge of copper-based alloy material 1 5a, 6a Edge half 5a1, 5a2 Both ends 6a1, 6a2 Both ends of edge half 6a 7, 8 Extended line part 9 Half circumference (hatched area)
  • Reference Signs List 10 (plate-like) copper-based alloy material 12, 13 end surface of copper-based alloy material 14 entire peripheral surface 14a, 14b of copper-based alloy material 10 surface constituting half-peripheral surface 19 15, 16 end of copper-based alloy material 10 Edges 15a to 15d Edges 15a to 16d Edges 16a to 16d Edges 15ab, 16ab Half edges 15ab1, 15ab2 Both ends 16ab1, 16ab2 Half edges 16ab 17, 16ab 18 Extension line part 19 Half circumference (hatched area)
  • X Half circumference

Abstract

本発明は、例えば、形状記憶合金特有の歪みを与える応力を負荷してから除荷した後に元の形状に戻す変形を繰返し行った場合であっても、歪みが残留しにくく、耐破断特性と耐疲労特性に優れた銅系合金材等を提供する。 本発明の銅系合金材は、β相からなるマトリックス中に、B2型結晶構造の析出相が分散した複相組織を有する。

Description

銅系合金材およびその製造方法ならびに銅系合金材で構成された部材または部品
 本発明は、所定の負荷、特に形状記憶合金特有の歪みを与える応力の負荷と、除荷とを繰返して変形させた場合であっても、耐疲労特性および耐破断特性に優れる銅系合金材、およびその製造方法ならびに銅系合金材で構成された部材または部品に関する。
 形状記憶合金は、温度変化や、負荷した応力の除荷によって変形前の形状に戻ることが可能な金属材料のことをいう。形状記憶合金が有する特性としては、変形した材料を加熱することで変形前の形状に回復する特性(この特性を「形状記憶効果」と呼ぶ。)と、最大弾性歪みを超えた歪みを与える応力を負荷して変形させても、応力を除荷することで変形前の形状に戻る特性(この特性を「超弾性」と呼ぶ。)の2つに分類することができる。
 通常の金属材料では、弾性限界を超える応力を印加して塑性変形させてしまうと、再び加工を施さない限り、変形前の形状に戻ることはないが、形状記憶合金は、特異な性質を有するため、上記のような特性の発現が可能となっている。なお、本発明では、「形状記憶合金」を、上記形状記憶効果や超弾性のうち、少なくとも超弾性を示す合金と定義する。
 形状記憶合金は、熱弾性型マルテンサイト変態の逆変態に付随して顕著な形状記憶効果及び超弾性特性を示し、生活環境温度近辺で優れた機能を持つことから、種々の分野で実用化されている。
 形状記憶合金の代表的な材料としては、例えば、TiNi合金と銅系の合金が挙げられる。銅系の形状記憶合金(以下、単に「銅系合金」という場合がある。)は、一般に繰返し特性、耐食性等の点でTiNi合金よりも特性が劣っているものの、コストが安いことから、その適用範囲を広げようとする動きがある。
 しかし、従来の銅系合金は、コスト的には有利であるが、冷間加工性が悪く、形状記憶効果や超弾性特性も所期した目標レベルにまでは達していない。この為、種々の研究がなされているにも関わらず、形状記憶合金としての銅系合金は、必ずしも実用化が十分に図られているとはいえない状況にある。
 ところで、形状記憶合金は、合金組成に関わらず、応力の負荷および除荷による変形や、温度の変化を受けても、結晶の構造が、低温相の母相から高温相のマルテンサイト相に変化することにより、見かけ上、大きな変形が起きても元の形状に戻ることができる。
 これまで様々な合金組成からなる形状記憶合金の開発がなされているが、開発方針の一つとして、結晶構造が規則構造(例えば、B19型、DO19型、B2型、L2型等)であることが挙げられる。中でも、結晶構造の整合性が高いほど、変形に対する耐性が高いことが知られており、この観点からすれば、フルホイスラー合金(L2型)のような規則度が高い結晶構造を持つ合金組成が好ましいと考えられる。ところが、一般に、規則度が高くなると加工性が悪くなる傾向があり、この観点からすれば、規則度の高いホイスラー合金は、加工が難しいという問題点を有している。
 このように規則度が高い結晶構造を持つ合金は、冷間加工や熱間加工といった通常行われる加工方法では、製造が難しいことから、例えば、急冷凝固法(例えば特許文献1等)や、チョクラルスキー法、ブリッジマン法(例えば非特許文献2等)などの特殊な製造方法が必要とされる。しかしながら、かかる特殊な製造方法を採用した場合、製造できる形状が制限されるため、製造可能な形状の自由度が低いという問題がある。同様の理由により、規則構造を持つ合金では、加工性が劣ることが弊害になって、実用化に至っていない場合が多い。
 一方、Cu-Al-Mn合金は、加工する時点では、L2型規則相(β相であって、体心立方(bcc)構造を有する。)とA1型相(α相であって、面心立方(fcc)構造を有する。)の二相状態にすることで、上記の問題点である加工性を改善した銅系合金である。さらにその後、高温からの急冷によってβ相の単相組織にすることで、L2型規則相のみの結晶構造にすることが可能になっている。Cu-Al-Mn合金のβ相は、合金組成によってその結晶構造が異なり、A2型不規則相、B2型規則相およびL2型規則相のいずれかの結晶構造を有する。
 また、非特許文献1には、高加工性Cu-Al-Mn基形状記憶合金が記載され、その図1(b)には、Cu-Al-10at%Mnについて、Al濃度の低下とともに、TcA2-B2およびTcB2-L21の規則化温度が急激に低下することが示されている。このことから、Mnを10at%添加することで、低Al濃度側へβ単相域が拡張されるとともに、β相の規則度を低下させることで、加工性を改善できることが期待されたものである。
 しかしながら、合金の規則度が低下すると、加工性が改善される一方で、規則度は、形状記憶特性を保障する重要な因子でもあるため、合金の規則度の低下が、形状記憶特性の劣化を招くという問題がある。
 このようにCu-Al-Mn系の形状記憶合金は、常に加工性と形状回復率(形状記憶効果)とが二律背反の関係にある。Cu-Al-Mn合金における上述した問題点に関し、非特許文献1の図2には、9~13at%Mnの範囲内において、冷間加工率が、Mn濃度には依存せず、Al濃度に依存することが示されている。
 また、形状回復率は、Alが16at%以下のA2型不規則領域では、低下が認められるものの、Alが16at%超えの領域では、90%以上の高い数値を有していることがわかる。よって、Cu-Al-Mn系形状記憶合金は、特定の組成域にすれば、加工性および形状記憶特性の両立を可能にできることがわかってきたことから、Cu-Al-Mn合金を、形状記憶合金に適用するための種々の検討がなされてきた。
 例えば、規則度が高いホイスラー型形状記憶合金に関しては、特許文献1に開示され、また、冷間加工性に優れたβ単相構造のCu-Al-Mn系合金に関しては、特許文献2~6や非特許文献1、2に開示されている。
特許第3872323号公報 特許第3335224号公報 特許第3300684号公報 特許第5837487号公報 特許第6109329号公報 特開2017-141491号公報
須藤祐司、外4名、「高加工性Cu-Al-Mn基形状記憶合金の開発」、まてりあ、日本金属学会、2003年、第42巻、第11号、p.813-821 Kshitij C Shrestha、他4名、「Functional Fatigue of Polycrystalline Cu-Al-Mn Superelastic Alloy Bars under Cyclic Tension」、Journal of Materials in Civil Engineering、American Society of Civil Engineers、2015年、Volume 28、p.04015194 小津俊久、外3名、「CuAlMn形状記憶合金単結晶の超弾性繰り返し挙動」、学術講演会講演論文集、日本材料学会、1996年、45巻、p.169~170
 特許文献1には、Co-Ni-Ga系ホイスラー型磁性形状記憶合金であって、ホイスラー型(ABCの組成比)の磁性形状記憶合金について記載されている。しかしながら、特許文献1に記載の形状記憶合金は、急冷凝固法という特殊な製造方法を採用している。また、特許文献1には、銅系合金に関する記載がなく、加えて、規則構造を有する銅系合金の課題であった加工性の改善についての開示もない。
 特許文献2に記載されたCu-Al-Mn系合金は、加工時にβ単相にした後に規則化処理しているため、冷間加工性については優れているものの、特に超弾性特性が十分ではない。その理由として、結晶配向がランダムであることなどに起因して、変形時に結晶粒間に強い拘束力が生じるために転位などの不可逆欠陥が導入されることが考えられる。よって、良好な超弾性が得られず、繰返し変形によって蓄積する残留歪み量が大きくなる傾向があり、繰返し変形後には超弾性特性の劣化も生じやすいと考えられる。また、繰返し変形を行った場合の耐疲労特性も十分には得られず、残留歪みの蓄積量も大きくなることが予想される。また、特許文献2の表1に示されている本発明材では、形状回復率が95%以上と高い数値が示されているものの、かかる形状回復率は、変形歪量が2%と小さい歪みを与える応力を負荷したときの数値にすぎず、形状記憶合金として適用する部品や部材によっては、十分な特性を有するとはいえず、改善の余地があった。
 特許文献3においては、銅系合金の形状記憶効果及び超弾性特性を向上させるために、β単相への結晶配向を制御するとともに、平均結晶粒径を、線材であれば線径の半分以上とし、また、板材であれば板厚以上とし、かつ、そのような結晶粒径を有する領域を線材の全長または板材の全面積の30%以上とすることによって、優れた加工性を維持しながら、高い形状記憶特性及び超弾性を有する銅系合金が記載されている。しかし、特許文献3に記載の方法では、Cu-Al-Mn系合金における、所定の大きな結晶粒径を有する結晶粒の粒径分布の制御が十分とはいえず、発現される形状記憶効果及び超弾性特性の性能にバラツキがあり、これらの特性が安定しない点で、なお改良の余地がある。また、繰返し変形によって蓄積する残留歪みが大きくなって、繰返し変形後の形状記憶効果や超弾性特性の劣化が生じる場合もあった。
 特許文献4には、8mmを超える最大結晶粒径とすることにより、良好な形状記憶特性を有し、構造物等に適用可能な比較的大きな断面サイズを有する構造材を実現することができるCu-Al-Mn系合金が記載されている。しかしながら、特許文献4に記載の方法では、Cu-Al-Mn系合金における、所定の大きな結晶粒径を有する結晶粒の粒径分布の制御が不十分であり、また、組織の集積度は低いため、形状記憶効果や超弾性特性は安定しないという問題があった。また、繰返し変形によって蓄積する残留歪みについての記載はないものの、かかる残留歪みの蓄積量は大きくなって、繰返し変形後の形状記憶効果や超弾性特性の劣化が顕著になることが予想される。さらに、特許文献4に記載のCu-Al-Mn系合金は、最大結晶粒径の最大値が150mm程度であることから、例えば、全長が300mm以上のサイズをもつ建築材等の大型の形状記憶合金の部品や部材に適用する場合、特に形状記憶合金特有の歪みを与える応力の負荷と、除荷とを繰返して変形させたときの耐疲労特性および耐破断特性の双方が、高いレベルで安定して得られないという問題がある。
 また、本出願人らは、特許文献5において、Cu-Al-Mn系合金材が、実質的にβ単相からなる再結晶組織を有し、再結晶組織中に存在する結晶粒を、大きい結晶粒と小さい結晶粒の2種類の結晶粒で定義し、さらに合金材全体に占める大きい結晶粒の存在量を多く、小さい結晶粒の存在量を少なくなるように制御することによって、耐繰返し変形特性に優れたCu-Al-Mn系合金材を提案するとともに、さらに、特許文献6において、合金材の加工方向に垂直な方向の結晶粒長を、合金材の幅あるいは直径Rに対して同等で、a=Rとなる結晶粒同士に粒界の個数Xの存在量と、3%ひずみを与える応力の負荷と除荷を繰り返し行なった場合に破断する回数を規定することによって、繰返し変形を行なった場合の耐破断性が高くて優れたCu-Al-Mn系合金材を提案した。
 特許文献5に記載のCu-Al-Mn系合金材は、耐繰返し変形特性の評価に関し、5%歪み負荷と除荷のサイクルを100回繰り返した後の残留ひずみが2.0%以下である場合を、耐繰返し変形特性が優れているとしたものであるが、このサイクル数が100回と少なく、特に、この合金材を今後、制振(制震)材や建築材に用いる場合には、耐繰返し変形特性の合格レベルはさらに高くなることが想定されることから、サイクル数を100回超えの回数(例えば1000回)に増加させて、より一層厳しい試験条件で試験を行なったとしても、優れた耐繰返し変形特性を、劣化させることなく維持できるCu-Al-Mn系合金材を開発することが必要とされた。
 同様に、特許文献6でもまた、耐繰返し変形特性の評価に関し、5%歪み負荷と除荷の繰り返すサイクル数が100回と少ないか、あるいは、サイクル数は1000回と多いものの、負荷する歪み量が3%と小さいため、特許文献5と同様、より一層厳しい試験条件で試験を行なったとしても、優れた耐繰返し変形特性を劣化させることなく維持できるCu-Al-Mn系合金材を開発することが必要とされた。
 非特許文献1は、Cu-Al-Mn基形状記憶合金が、組織制御を行なうことにより、優れた形状記憶効果や超弾性特性が得られることを記載する。また、非特許文献1によれば、以下のことが記載されている。すなわち、
(I)β単相の領域が、Mnの添加により、特に低Al濃度側に大きく拡大すること、
(II)Cu-Alの2元系では、高温域のみに存在していたβ単相領域が、400℃以下の低温域でも安定になり、高温から不規則A2~規則B2~規則L2ホイスラー相への逐次規則一不規則変態が出現すること、
(III)A2/B2およびB2/L2規則化温度は、Al濃度に敏感であり、Al濃度が18at%以下になると共に500℃を下回ること、
(IV)このような規則変態温度の低下は、必然的にL2相の規則度の低下を伴うと予想しており、実際、約16at%Alを境にして、低Al側では焼入れによりA2不規則相となっていること、
(V)高Al側では水焼入れするとL2規則化ができていること
が記載されている。そして、非特許文献1には、加工時において、α相とβ相(fcc構造とbcc構造)の二相組織に制御することで加工を可能にすること、およびこのような工夫によって、最終的にL2型の規則構造とすることが可能となり、冷間加工性と形状記憶効果や超弾性の両立することができるCu-Al-Mn基形状記憶合金が示されている。また、非特許文献1には、結晶粒径dとワイヤー直径Dとの比d/Dが4.72と1より大きい場合、7%以上の形状回復率が得られることが記載されている。なお、このときの形状記憶率は、液体窒素温度で0.2mm厚の板材に表面歪で2%の曲げ変形を加え、200℃まで加熱したときのものである。しかしながら、7%以上の形状回復率を有するCu-Al-Mn合金は、完全に竹節組織(bamboo structure)を呈していることが示されており、かかる竹節組織を有するCu-Al-Mn合金だと、高い歪み(例えば5%の歪み)を与える応力の負荷と除荷の繰返し変形試験を行なった場合には、高サイクル(例えばサイクル数が1000回以上)後に歪みが残留しやすくなって、十分な耐疲労特性が得られない場合があるため、改善の余地がある。
 また、非特許文献2には、Cu-17at%Al-11.4at%Mnの組成を有するCu-Al-Mn合金について、6-7%の歪みを与える繰返し引張負荷サイクル試験について行なった結果が示されている。
 しかしながら、非特許文献2に記載のCu-17at%Al-11.4at%Mn合金は、L2型の規則構造でありながら、AlとMnの合計が28.4%であり、その規則度が低い。そのため、数回から100回程度までの繰返し変形においては、良好な超弾性や形状記憶効果を示しているものの、200~1000回の繰返し変形においては、残留歪みが2%を超えており、残留歪みの蓄積が著しいという課題を有している。
 非特許文献3は、繰返し変形特性を向上させたCu-20at%Al-10at%Mn合金単結晶について記載する。しかしながら、非特許文献2に記載のCu-20at%Al-10at%Mn合金単結晶は、工業的に難しい方法とされる縦型ブリッジマン法によって製造したものであるため、製造時間が長くかかるという問題がある。また、非特許文献2で作製した試験片は、サイズが2mm×2mm×4mmとかなり小さく、いかに繰返し変形に優れていようと、このサイズでは適用可能な分野が限られてしまうという問題がある。さらに、縦型ブリッジマン法は、抵抗加熱と断熱材でホットゾーンが構成されており、坩堝を引下げることにより、徐々に温度下げて坩堝内で結晶化させる製造方法であるが、この方法によって製造される合金単結晶は、坩堝から不純物が混入する可能性が高く、これが核となって異なる結晶方位が成長し多結晶化しやすいため、目的の特性が得られない場合が多いという問題がある。さらにまた、縦型ブリッジマン法は、例えば全長が300mm以上のサイズをもつ建築材等の大型の形状記憶合金の部品や部材を製造する方法としては適していない。加えて、非特許文献2に記載されたCu-20at%Al-10at%Mn合金は、製造後に加工ができない組成であるため、特に工業用製品材に用いる形状記憶合金として適用することが難しい。
 このように、従来技術では、結晶方位の集積もしくは結晶粒径を所定の大きなサイズに制御することで、Cu-Al-Mn系合金において超弾性・形状記憶効果の改善に対する種々の検討がなされてきた。しかしながら、上述した従来技術では、いずれも繰返し変形を行った場合の耐疲労特性および耐破断特性の双方を含む耐繰返し変形特性が十分であるとはいえず、さらに向上させる必要があった。
 例えば、Cu-Al-Mn系合金を医療器具や建築部材等として使用する場合、繰返し変形による特性の劣化は、大きな問題となることから、さらなる改善が求められている。また、車載部品や航空宇宙機器部品等として銅系合金材を使用するためには、高い歪み(例えば5%の歪み)を与える応力の負荷と除荷を繰返し行なう繰返し変形において、高サイクル(例えばサイクル数が1000回以上)後でも歪みが残留しにくいことや、超弾性特性・形状記憶効果の劣化をより一層抑制する技術を開発することが求められている。
 そこで本発明の目的は、例えば、形状記憶合金特有の歪みを与える応力を負荷してから除荷した後に元の形状に戻す変形を繰返し行った場合であっても、歪みが残留しにくく、耐破断特性と耐疲労特性に優れた銅系合金材、およびその製造方法ならびに銅系合金材で構成された部材または部品を提供することにある。
 本発明者らは、上述した問題点を解決するために鋭意検討を行った結果、Cu-Al-Mn系合金材中に、適正量のNiをさらに添加することで、β相(結晶構造が、L2型構造、A2型構造およびB2型構造のいずれかであればよい。)からなるマトリックス中に、(Ni非添加の)Cu-Al-Mnの三元系合金では析出しないB2型析出相(NiAl析出相)を析出させて分散させた複相(二相)組織とすることによって、工業製品にする際に必要なレベルの加工性は保持したまま、従来のCu-Al-Mn合金材の規則度よりも高い規則度へ制御することが可能であることを見出し、さらに、合金材の表面(半周面)における結晶粒界の存在頻度を制御すること、換言すれば、実質的な単結晶となる程度まで結晶粒を大きく成長させることによって、所定の歪みを与える応力を負荷した後に除荷して、元の形状に戻す変形を繰返し行った場合であっても、歪みが残留しにくく、耐破断特性と耐疲労特性に優れたCu-Al-Mn-Ni系合金材が得られることを見出した。
 また、このような複相組織および大きな結晶粒の形成は、溶解・鋳造する工程(工程1)と、熱間加工を施す工程(工程2)を行なった後に、所定の中間焼鈍(工程3)と所定の冷間加工(工程4)を少なくとも1回以上この順に行なった後に、さらに、β相からなるマトリックス中にB2型析出相を安定化させるための追加の中間焼鈍を行なう工程(工程5)と、記憶熱処理の最初の段階でα相析出量を固定した(α+β)相の状態になる温度域に加熱・保持する工程(工程6)と、(α+β)相の状態からβ単相の状態になる温度域に加熱・保持する工程(工程7)と、β単相の状態から(α+β)相の状態になる温度域に冷却・保持する工程(工程8)、および(α+β)相の状態からβ単相の状態になる温度域に加熱・保持する工程(工程9)を少なくとも2回以上繰り返した後に、急冷する工程(工程10)とを含む製造方法によって達成できることを見出した。そして本発明は、これらの知見に基づいて完成するに至ったものである。
 すなわち、本発明の要旨構成は、以下のとおりである。
(1)β相からなるマトリックス中に、B2型結晶構造の析出相が分散した複相組織を有する銅系合金材。
(2)前記マトリックスが、A2型、B2型またはL2型の結晶構造を有する、上記((1)に記載の銅系合金材。
(3)形状記憶合金としての特性を有する、上記(1)または(2)に記載の銅系合金材。
(4)8.6~12.6質量%のAl、2.9~8.9質量%のMnおよび3.2~10.0質量%のNiを含有し、残部がCuおよび不可避的不純物からなる組成を有する上記(1)、(2)または(3)に記載の銅系合金材。
(5)前記合金材は、圧延方向もしくは伸線方向である加工方向を延在方向とし、横断面が略円形または略多角形であり、全体として長尺形状を有し、前記合金材の、両端面を除く表面である全周面を、前記両端面のそれぞれの端縁に位置し、該端縁の全周の半分の長さに相当する半周長さをもつ1対の端縁半部と、該1対の端縁半部の両端をそれぞれ連結する、前記合金材の母線または稜線である1対の延在線部とで区画した半周面で見て、該半周面に、結晶粒界が存在しないか、または、該結晶粒界が存在しても、前記結晶粒界の存在頻度が0.2以下である、上記(1)~(4)のいずれか1項に記載の銅系合金材。
(6)前記合金材に対して5%の歪みを与える応力の負荷と除荷を1000回繰り返し行なった後の前記合金材の残留歪みが、2.0%以下であることを特徴とする上記(1)~(5)のいずれか1項に記載の銅系合金材。
(7)前記合金材に対して3%の歪みを与える応力の負荷と除荷を繰り返し行なったときに、前記合金材が破断するまでの繰り返し回数が1000回以上であることを特徴とする上記(1)~(6)のいずれか1項に記載の銅系合金材。
(8)前記組成は、さらに、0.001~2.000質量%のCo、0.001~3.000質量%のFe、0.001~2.000質量%のTi、0.001~1.000質量%のV、0.001~1.000質量%のNb、0.001~1.000質量%のTa、0.001~1.000質量%のZr、0.001~2.000質量%のCr、0.001~1.000質量%のMo、0.001~1.000質量%のW、0.001~2.000質量%のSi、0.001~0.500質量%のC、および0.001~5.000質量%のミッシュメタルからなる群より選ばれた1種または2種以上の成分を、合計で0.001~10.000質量%含有する、上記(4)に記載の銅系合金材。
(9)上記(4)または(8)に記載の銅系合金材の素材を溶解・鋳造する工程([工程1])と、熱間加工を施す工程([工程2])と、400~680℃の第1温度域で中間焼鈍を施す工程([工程3])および加工率が30%以上となる冷間加工を施す工程([工程4])を少なくとも各1回以上この順に行った後に、さらに400~550℃の第2温度域で追加の中間焼鈍を行なう工程([工程5])と、室温から400~650℃の第3温度域まで加熱して該第3温度域に保持する工程([工程6])と、前記第3温度域から、700~950℃の第4温度域までさらに加熱して該第4温度域に保持する工程([工程7])と、前記第4温度域から第3温度域まで冷却して該第3温度域に保持する工程([工程8])、および前記第3温度域から前記第4温度域まで加熱して該第4温度域に保持する工程([工程9])を少なくとも2回以上繰り返した後に、前記第4温度域から急冷する工程([工程10])とを含む、銅系合金材の製造方法。
(10)前記急冷する工程([工程10])後に、80~300℃の第5温度域まで加熱して該第5温度域に保持する工程([工程11])をさらに含む、上記(9)に記載の銅系合金材の製造方法。
(11)8.6~12.6質量%のAl、2.9~8.9質量%のMnおよび3.2~10.0質量%のNiを含有し、残部がCuおよび不可避的不純物からなる組成を有する銅系合金材。
(12)上記(1)~(8)のいずれか1項に記載の銅系合金材で構成されるばね材。
(13)上記(1)~(8)のいずれか1項に記載の銅系合金材で構成されるダンパー。
(14)上記(1)~(8)のいずれか1項に記載の銅系合金材で構成されるブレース。
(15)上記(1)~(8)のいずれか1項に記載の銅系合金材で構成されるからなるネジまたはボルト。
(16)上記(1)~(8)のいずれか1項に記載の銅系合金材で構成される通電型アクチュエータ。
(17)上記(1)~(8)のいずれか1項に記載の銅系合金材で構成される磁気アクチュエータ。
(18)上記(1)~(8)のいずれか1項に記載の銅系合金材で構成される磁気センサ。
 本発明の銅系合金材は、β相からなるマトリックス中に、B2型結晶構造の析出相が分散した複相組織を有することによって、例えば、形状記憶合金特有の歪みを与える応力を負荷してから除荷した後に元の形状に戻す変形を繰返し行った場合であっても、歪みが残留しにくく、耐破断特性と耐疲労特性に優れている。
 また、本発明の銅系合金材の製造方法は、銅系合金材の素材を溶解・鋳造する工程(工程1)と、熱間加工を施す工程(工程2)と、400~680℃の第1温度域で中間焼鈍を施す工程(工程3)および加工率が30%以上となる冷間加工を施す工程(工程4)を少なくとも各1回以上この順に行った後に、さらに400~550℃の第2温度域で追加の中間焼鈍を行なう工程(工程5)と、室温から400~650℃の第3温度域まで加熱して該第3温度域に保持する工程(工程6)と、前記第3温度域から、700~950℃の第4温度域までさらに加熱して該第4温度域に保持する工程(工程7)と、前記第4温度域から第3温度域まで冷却して該第3温度域に保持する工程(工程8)、および前記第3温度域から前記第4温度域まで加熱して該第4温度域に保持する工程(工程9)を少なくとも2回以上繰り返した後に、前記第4温度域から急冷する工程(工程10)とを含むことによって、耐破断特性と耐疲労特性に優れた銅合金材の提供が可能になった。
 本発明の銅系合金材は、超弾性特性や形状記憶効果が要求される種々の部材等に用いることができ、例えば、携帯電話のアンテナ、メガネフレームや、歯列矯正ワイヤー、ガイドワイヤー、ステント、巻き爪矯正具(陥入爪矯正具)、外反母趾補装具のような医療製品に適用できる他、コネクタや通電型アクチュエータへの適用も可能である。中でも、本発明の銅系合金材は、繰返し変形を行った場合の耐疲労特性および耐破断特性の双方を含む耐繰返し変形特性が優れているため、振動に関する制振または減衰を目的とした部材等、ノイズの抑制または減衰を目的とした部材等、または自己復元(セルフセンタリング)を目的とした部材等に用いることが好適である。特に、耐繰返し変形特性が必要となる、宇宙機器、航空機器、自動車部材、建築部材、電子部品、医療製品等の部材等であって、従来の銅系合金材では適用が困難であった部材等にも適用することが可能になった。
 さらに、本発明の銅系合金材は、例えば振動については、ばね材、ダンパー、バスバーなどの制振材や、制震材として作用するブレースなどの建築材、ネジまたはボルトなどの連結部品として用いることが好適である。また、これらの制振材や、制震材として作用する建築材を用いて、制振(制震)構造体等を構築することができる。さらに、上記のような振動を吸収する特性を利用して、騒音や振動の公害の防止が可能となる土木建築材としての利用も可能である。さらに、ノイズ減衰の効果を目的とした場合では、輸送機器分野での適用もできる。いずれの場合も優れた自己復元力を兼ね備えるため、自己復元材としても使用できる。その上、ホイスラー合金特有のL2型規則構造を多く含む結晶構造であるため、優れた磁気的特性も有することから、磁気アクチュエータや磁気センサ等の新たな用途への適用も可能である。
図1(a)、(b)は、本発明に従う、異なる形状を有する2種類の銅系合金材を模式的に示した斜視図であって、図1(a)では、銅系合金材が丸棒状である場合、図1(b)では、銅系合金材が板状である場合を示す。 図2(a)~(c)は、本発明の銅系合金材に存在する結晶粒界の個数の測定および機械的特性を測定するために作製した試験片の形状を示すものであって、図2(a)が径または辺が4mm以上の棒材である場合、図2(b)が径または辺が4mm未満である棒材(または線材)である場合、そして、図2(c)が板材である場合を示す。 図3は、本発明の銅系合金材に対し、5%歪みに相当する応力の負荷と、除荷による変形を加えた場合の応力-歪み曲線(S-Sカーブ)であって、応力の負荷と除荷のサイクルを1回だけ(繰返しサイクル回数:1回)行なった場合(1サイクル目)、前記サイクルを1000回(繰返し回数:1000回)繰り返し行なった場合(1000サイクル目)を示す。 図4は、本発明の銅系合金材に対し、3%歪みに相当する応力の負荷と、除荷による変形を加えた場合の応力-歪み曲線(S-Sカーブ)であって、応力の負荷と除荷のサイクルを1回だけ(繰返しサイクル回数:1回)行なった場合(1サイクル目)と、前記サイクルを5000回(繰返し回数:5000回)繰り返し行なった場合(5000サイクル目)を示す。 図5は、本発明の銅系合金材の製造方法における一連の工程を概念的に示すフローチャートである。 図6は、実施例1の銅系合金材に対し、5%歪みに相当する応力の負荷と、除荷による変形を加えた場合の応力-歪み曲線(S-Sカーブ)であって、応力の負荷と除荷のサイクルを、それぞれ、1回(繰返しサイクル回数:1回)、100回(繰返しサイクル回数:100回)および1000回(繰返しサイクル回数:1000回)繰り返し行なった場合を示す。 図7は、比較例23の銅系合金材に対し、5%歪みに相当する応力の負荷と、除荷による変形を加えた場合の応力-歪み曲線(S-Sカーブ)であって、応力の負荷と除荷のサイクルを、それぞれ、1回(繰返しサイクル回数:1回)、100回(繰返しサイクル回数:100回)および1000回(繰返しサイクル回数:1000回)繰り返し行なった場合を示す。
 次に、本発明に従う銅系合金材の好ましい実施形態について、以下で詳細に説明する。
<銅系合金材>
(銅系合金材の金属組織)
 本発明の銅系合金材は、β相からなるマトリックス(母相)中に、B2型結晶構造の析出相が分散した複相組織を有する。すなわち、本発明の銅系合金材は、析出相を含むが、実質的にβ単相からなる再結晶組織を有する。ここで「実質的にβ単相からなる再結晶組織を有する」とは、再結晶組織中でマトリックス(母相)を構成するβ相の占める体積割合が、80%以上、好ましくは90%以上であることをいう。
 本発明の銅系合金材は、例えば、Al、MnおよびNiを基本含有成分とする四元系の銅基合金で構成されている。この合金は、高温でβ相(体心立方)単相(本書では、単に「β単相」ともいう。)になり、低温でβ相とα相(面心立方)の二相組織(本書では、「(α+β)相」ともいう。)になる。合金組成により異なるが、β単相となる温度は、通常、700℃以上で、かつ溶融しない950℃以下の高温の温度域であり、また、(α+β)相となる温度は、通常700℃未満の低温の温度域である。なお、本合金は、非平衡の状態では、室温でも(α+β)相を形成することから、(α+β)相となる温度域の下限温度は特に限定はしない。
 Cu-Al-Mnの三元系合金からなる銅系合金材は、その組成および従来の製造方法の組み合わせで製造すると、規則構造L2型結晶構造をもつβ相からなる単相組織になった。これに対し、本発明の銅系合金材、例えば、Al、MnおよびNiを基本含有成分とする四元系の銅基合金からなる銅系合金材は、その組成および本発明の新規な製造方法の組み合わせで製造することによって、β相からなるマトリックス(母相)中に、B2型結晶構造の析出相(NiAl析出相)が析出して分散した複相(二相)組織になり、このような複相組織にすることによって、例えば、形状記憶合金特有の歪みを与える応力を負荷してから除荷した後に元の形状に戻す変形を繰返し行った場合であっても、歪みが残留しにくく、耐破断特性と耐疲労特性の双方を含む耐繰返し変形特性を向上させることができる。
 マトリックスを構成するβ相は、A2型、B2型またはL2型の結晶構造のいずれかであればよいが、その中で、特に形状記憶合金はホイスラーL2型の結晶構造を有することが、優れた超弾性を有することが知られており、耐繰返し変形特性も安定して得られる点でより好適である。
 本発明の銅系合金材は、合金組成や製造方法の工程および条件の適正化を図ることによって、これまで存在しなかった、β相からなるマトリックス(母相)中に、B2型結晶構造の析出相が分散した複相組織を有することができる。
 本発明の銅系合金材は、変形初期に安定して超弾性特性や形状記憶効果を示すだけでなく、高歪みの変形(例えば合金材に5%の歪みを与える応力の負荷と除荷を行なう変形)を繰返し1000回行なったとしても、繰返し変形後の残留歪みは、2.0%以下に制御することが可能となり、耐疲労特性を格段に向上させることができる。
 また、本発明の銅系合金材は、上記特性に加えて、変形回数が多数回(合金材に3%の歪みを与える応力の負荷と除荷を繰り返し行なった場合に破断するまでの回数が1000回以上であること。以下、この破断するまでの1000回以上の回数を、単に「多数回」という場合がある。)に及んでも、破断に耐えることが可能となり、耐破断特性が格段に向上させることができる。このように、本発明の銅系合金材は、従来の銅系合金材と比較して、予想できない顕著な効果を奏することができる。
(結晶構造の制御とその解析方法)
 本発明の銅系合金材は、その金属組織が、実質的にβ相(bcc構造)からなる再結晶組織を有すること、より詳細には、β相(のマトリックス)と析出相の二相組織を有することが重要である。中でも、マトリックス(母相)を構成するβ相の結晶構造が、A2型、B2型およびL2型のいずれかであり、これまでAl濃度を高くして規則度を高めると、加工が不可能であったが、Niを添加することで、規則度を低下させずに、中間温度でα相が析出することで加工が可能になり、さらに結晶構造がB2型(例えば、NiAl)である析出相をマトリックス中に析出させることにより生じる析出強化作用によって、疲労強度を高めることができる。本発明における結晶構造の制御は、合金組成や製造方法の工程および条件を適正に設定することによって行うことができる。
 β相の詳細な結晶構造の解析は、X線回折(X-ray diffraction:以後、「XRD」と称す。)測定による解析が困難であるため、本発明では透過電子顕微鏡(Transmission Electron Microscope:以後、「TEM」と称す。)にて測定を行った。以下に測定試料の作製方法と測定条件を記載する。
 供試材を湿式研磨によって厚さ80μm程度の板材の試料を作製し、リン酸:エタノール:プロパノール:蒸留水=5:5:1:10(体積分率)の混合溶液を用いて、電圧14.0V、電流150mA、温度0℃のもとで、Struers製TenuPol-5を用いて電解研磨を行う。測定には日本電子製JEM-2100(HC)を用い、電子回折図形と暗視野像を測定した。なお、試料は、実施例1と比較例23の銅系合金材を用いて作製した。
 TEMを用いて電子回折図形と暗視野像を解析した結果、実施例1は、電子回折図形では、L2型規則相を強く示し、また、暗視野像では、数nmのNiAl析出物が存在していることを確認した。一方、比較例23は、電子回折図形では、L2型規則相の回折強度が、実施例1に比べて弱く、また、暗視野像では、析出相の存在を確認できなかった。
(結晶粒径の定義とその制御)
 形状記憶合金として製造される従来の銅系合金材は、バンブー構造と呼ばれる結晶構造を有することが好ましいと考えられていた。ここでいう「バンブー構造」とは、小さい結晶粒と大きい結晶粒のうち、大きい結晶粒のみを制御したものであって、例えば丸棒状の銅合金材(試験体)の表面または断面に存在する結晶粒を観察するとき、大きな結晶粒を、試験体の直径よりも大きな結晶粒になるように粗大化制御することによって、粗大化した大きな結晶粒同士の間に存在する結晶粒界が、銅系合金材の長手方向に沿う間隔をおいて、竹の節のように複数本以上存在して見えるときの組織状態をいい、バンブー組織ともいう。
 バンブー構造を有する銅系合金材は、大きい結晶粒のみの制御が可能であり、小さい結晶粒の制御ができないことから、数回の繰り返し変形では、良好な超弾性を示したが、多数回の繰り返し変形では、残留歪みが粒界に蓄積されて、十分な耐疲労特性が得られなかった。そのため、銅系合金材に存在する小さい結晶粒を可能な限り少なくする試みが行われており、小さい結晶粒の存在量を制御することで、多数回の繰返し変形でも、残留歪みを小さく抑制できることがわかっている。
 しかしながら、銅系合金材は、小さい結晶粒ではない、いわゆるバンブー組織を構成する大きい結晶粒が多く存在すると、破断するまでの回数に制限が発生し、耐破断特性が劣ることが判明した。つまり、銅系合金材の耐破断特性は、小さい結晶粒の存在量を制御するだけではなく、バンブー組織を構成する大きい結晶粒の存在量が多ければ低下し、銅系合金材は、破断するまでの回数が少なくなって、繰返し変形をさせた場合、早期に破断してしまうことが判明した。
 そこで、本発明の銅系合金材は、大きい結晶粒のみが存在し、試験体に存在する大きな結晶粒同士の結晶粒界の存在頻度が小さくなるように制御すること、より具体的には、銅系合金材は、圧延方向もしくは伸線方向である加工方向を延在方向とし、横断面が略円形または略多角形であり、全体として長尺形状を有し、合金材の、両端面を除く表面である全周面を、両端面のそれぞれの端縁に位置し、端縁の全周の半分の長さに相当する半周長さをもつ1対の端縁半部と、1対の端縁半部の両端をそれぞれ連結する、合金材の母線または稜線である1対の延在線部とで区画した半周面で見て、この半周面に、結晶粒界が存在しないか、または、結晶粒界が存在しても、結晶粒界の存在頻度が0.2以下であることによって、耐破断特性がさらに向上する点で好ましい。なお、結晶粒界の存在頻度は、より好ましくは0.1以下である。
 図1(a)、(b)は、本発明に従う、異なる形状を有する2種類の銅系合金材を模式的に示した斜視図であって、図1(a)では、銅系合金材が丸棒状である場合、図1(b)では、銅系合金材が板状である場合を示す。
 銅系合金材(試験体)1が、圧延方向もしくは伸線方向である加工方向RDを延在方向とし、横断面が略円形であり、全体として長尺形状(図1(a)では丸棒状)を有する場合には、合金材1の、両端面2、3を除く表面である全周面4を、両端面2、3のそれぞれの端縁5、6に位置し、端縁5、6の全周の半分の長さに相当する半周長さをもつ1対の端縁半部5a、6aと、1対の端縁半部5a、6aの両端5a1と6a1および5a2と6a2をそれぞれ連結し、合金材1の母線である1対の延在線部7、8とで区画した半周面(図1(a)に斜線で示す領域)9で見て、この半周面9に、結晶粒界Xが存在しないか、または、結晶粒界Xが存在しても、結晶粒界Xの存在頻度Pが0.2以下であることが好ましい。
 結晶粒界Xの存在頻度Pは、具体的には、銅系合金材(試験体)1を20本(N=20)用意し、各試験体1の半周面9に存在する結晶粒界Xの存在個数nをカウントし、その存在頻度Pを算出した。
 例えば、20本の試験体のうち、1本の試験体に、結晶粒界Xの存在個数n1が1個存在し、残りの19本の試験体には、いずれも結晶粒界Xが存在しなかった(n2、n3、・・n20はいずれも0個)場合には、結晶粒界Xの存在個数n(=n1+n2+・・+n20)から算出される存在頻度Pは、(n=1)/(N=20)の計算結果から0.05となる。
 また、20本の試験体のうち、4本以下の試験体に、結晶粒界Xの存在個数が1個存在し、残りの16本以上の試験体には、いずれも結晶粒界Xが存在しなかった場合には、結晶粒界Xの存在個数nから算出される存在頻度Pは、(n≦4)/(N=20)の計算結果から0.20以下となる。
 また、銅系合金材(試験体)10が、圧延方向もしくは伸線方向である加工方向RDを延在方向とし、横断面が略多角形であり、全体として長尺形状(図1(b)では四角形の横断面をもつ板状)を有する場合には、合金材10の、両端面12、13を除く表面である全周面、図1(b)では4つの面からなる全周面14を、両端面12、13のそれぞれの端縁15、16に位置し、端縁15、16の全周の半分の長さに相当する半周長さをもつ、1対の端縁半部15ab、16abと、1対の端縁半部15ab、16abの両端15ab1と16ab1および15ab2と16ab2をそれぞれ連結し、合金材1の稜線である1対の延在線部17、18とで区画した半周面(図1(b)に斜線で示す領域(面14aと面14bの2面))19で見て、この半周面19に、結晶粒界Xが存在しないか、または、結晶粒界Xが存在しても、結晶粒界Xの存在頻度Pが0.2以下であることが好ましい。
 本発明における銅系合金材は、表面部の方が、加工工程での付加的剪断応力や工具面摩擦の影響で実質的に中心部より加工度が高くなって、結晶粒が微細になりやすいため、表面部に存在する結晶粒が、上述した結晶粒界Xの存在頻度Pを満足すれば、中心部でも満足すると考えられることから、本発明では、銅系合金材の表面において評価を行うこととする。
 本発明の銅系合金材の試験体の形状については、棒材、線材および板材の例として、それぞれ図2(a)~(c)に示す。図2(a)~(c)に示す試験体の形状は、JIS Z2241:2011に規定する引張試験片の形状に準拠した形状であって、図2(a)に示す丸棒の場合は、JIS2号試験片の形状、図2(b)に示す線材の場合は、JIS9B号試験片の形状、図2(c)に示す板材の場合は、JIS1B号試験片に、テーパー(R)加工を施さない形状とし、平行部長さLcの半周面における結晶粒界Xの存在個数nから、結晶粒界Xの存在頻度Pを測定した。また、この試験体は、結晶粒界Xの存在個数nの測定後に、そのままの形状で耐疲労特性や耐破断特性の試験体として使用した。本発明の銅系合金材は、β相からなるマトリックスと、B2型結晶構造の析出相との複相(二相)組織を有しており、かつ存在頻度P≦0.2であれば、試験体の形状に依らず、優れた耐疲労特性を有することを確認している。また、本発明の銅系合金材は、棒材および板材のいずれの形状であっても、その後デバイス形状に加工しても、同様の優れた耐疲労特性を有することを確認しており、本発明は上記の形状には限定されない。なお、本発明の特性評価および組織観察については、特に指定しない限り、図2(b)に示すJIS9B号試験片の形状にした試験体を作製して実施することとする。
 図2(a)~(c)で示す各試験体の寸法の例を以下に示す。
[図2(a)に示す丸棒の場合]
 直径d:16mm、全長Lt:300mm(平行部長さLc:250mm)
[図2(b)に示す線材の場合]
 直径d:3mm、全長Lt:300mm(平行部長さLc:250mm)
[図2(c)に示す板材の場合]
 厚さa:0.2mm、幅b:25mm、全長Lt:300mm(平行部長さLc:250mm)
 また、本発明の銅系合金材は、前記半周面で見て、結晶粒界Xの存在個数nが1以下であることが好ましく、最適には0である。結晶粒界Xの存在個数nが2以上であると、銅系合金材が、従来の銅系合金材のようにバンブー構造となって、耐疲労特性および耐破断特性が劣る傾向があるからである。
(銅系合金材の形状等)
 本発明の銅系合金材は、加工方向(RD)に対して伸長された形状体である。先述の通り、加工方向(RD)とは、合金材が板材であれば、合金材に圧延加工を施したときの圧延方向を意味し、また、合金材が棒材(または線材)であれば、合金材に伸線加工を施したときの伸線方向を意味する。本発明の合金材は、加工方向(RD)に対して伸長しているが、必ずしも合金材の長手方向と加工方向とが一致している必要はない。長尺形状を有する本発明の銅系合金材を切断・曲げ加工等した場合は、合金材のもともとの加工方向がどの向きであったのかを考慮して、本発明の銅系合金材に含まれるものであるか否かを判断する。なお、本発明の銅系合金材の具体的な形状については特に制限はなく、例えば棒(線)、板(条)など種々の形状とすることができる。これらのサイズにも特に制限はないが、例えば、銅系合金材が棒材(線材を含む。)である場合には、直径0.1~50mmのサイズにすることができ、また、用途によっては直径8~16mmのサイズにすることができる。また、銅系合金材が板材である場合には、その厚さが0.2mm以上、例えば0.2~15mmであってもよい。本発明の銅系合金材は、伸線加工に代えて圧延加工を行うことで、板材(条材)を得ることもできる。そして、本発明では、長さ(全長)が400mm以上の銅系合金材(試験体)を試作し、結晶粒界Xの存在頻度Pが零(ゼロ)であること、すなわち、20本の試験体の全ての半周面に結晶粒界Xが存在しないこと、言い換えれば、20本の全ての試験体が単結晶で構成されていたことを確認している。
 また、本発明の棒材は、丸棒(丸線)に限らず、角棒(角線)や平角棒(平角線)の形状であってもよい。ここで、角棒(角線)を得るには、上記方法によって予め得た丸棒(丸線)に、常法に従って、例えば、加工機による冷間加工、カセットローラーダイスによる冷間加工、プレス、引抜加工等の平角線加工を施せばよい。また、平角線加工において得られる断面形状を適宜調整すれば、断面形状が正方形である角棒(角線)と断面形状が長方形である平角棒(平角線)を作り分けることができる。さらに、本発明の棒材(線材)は、中空状で管壁を有する管などの形状であってもよい。
(銅系合金材の組成)
 本発明の銅系合金材は、上述したような複相組織を有していればよく、組成を限定しなくてもよいが、例えば、Cu-Al-Mn-Ni系合金材である場合の好適な組成範囲の一例を挙げておくと、8.6~12.6質量%のAl、2.9~8.9質量%のMnおよび3.2~10.0質量%のNiを含有し、残部がCuおよび不可避的不純物からなる組成が挙げられる。上記組成の銅系合金材は,熱間加工性及び冷間加工性に優れ、冷間加工では20%以上の加工率が可能になり、棒(線)、板(条)の他に、従来の規則構造合金では加工が困難であった極細線、箔、パイプ等にも成形加工することができる。
 以下に、上記組成範囲に限定した理由を説明する。
[Al:8.6~12.6質量%]
 Al(アルミニウム)は、β相の形成領域を拡げ、本発明の銅合金において、規則度に最も影響を与える元素であり、この作用を発揮するため、Al含有量は8.6質量%以上とすることが好ましい。Al含有量が8.6質量%未満だと、β単相を十分に形成できないおそれがある。また、Al含有量が12.6質量%よりも多いと、規則構造L2型のβ相が得やすくなるものの、冷間加工時における組織も規則構造となるため、合金材が脆くなって加工性が悪くなる傾向がある。なお、Alの好適含有範囲は、Mn含有量に応じて変化するが、Mnが下記で限定した好適含有範囲である場合には、Alの好適含有範囲は8.6~12.6質量%とする。
[Mn:2.9~8.9質量%]
 Mn(マンガン)は、β相の存在範囲を低Al側へ拡張し、冷間加工性を著しく向上させ、成形加工を容易にする作用を有する元素であり、この作用を発揮するため、Mn含有量は2.9質量%以上とすることが好ましい。Mn含有量が2.9質量%未満だと、満足な加工性が得られず、かつβ単相の領域を形成することができず(α+β)相となるので好ましくない。また、Mn含有量が8.9質量%よりも多いと、十分な形状回復特性が得られない傾向がある。こにため、Mnの好適含有範囲は2.9~8.9質量%とする。
[Ni:3.2~10.0質量%]
 Ni(ニッケル)は、安定した規則構造L2型と、B2型結晶構造の析出相の複相(二相)組織の形成をしやすくする作用を有する元素であり、この作用を発揮するため、Ni含有量3.2質量%以上とすることが好ましい。Ni含有量が3.2質量%未満だと、析出相の量が不十分となり、L2型単相の組織となって、規則度が低下するため、十分な耐疲労特性を得られない傾向がある。また、Ni含有量が10.0質量%よりも多いと、α相が残存しやすくなって、β単相の領域を形成できなくなる傾向があって、十分な形状回復性が得られない場合がある。なお、Niの好適含有範囲は、AlおよびMnの含有量に応じて変化するが、AlおよびMnが上記で限定した好適含有範囲である場合には、Niの好適含有範囲は3.2~10.0質量%とする。
 本発明のCu-Al-Mn-Ni系合金材は、Al、MnおよびNiを必須の基本含有成分とするが、さらに、任意の副添加成分として、0.001~2.000質量%のCo、0.001~3.000質量%のFe、0.001~2.000質量%のTi、0.001~1.000質量%のV、0.001~1.000質量%のNb、0.001~1.000質量%のTa、0.001~1.000質量%のZr、0.001~2.000質量%のCr、0.001~1.000質量%のMo、0.001~1.000質量%のW、0.001~2.000質量%のSi、0.001~0.500質量%のC、および0.001~5.000質量%のミッシュメタルからなる群より選ばれた1種または2種以上の成分を、合計で0.001~10.000質量%含有させることができる。これらの成分は、良好な冷間加工性を維持したまま、銅系合金材の強度を向上させる効果を発揮することができる。これらの添加元素の含有量は、合計で0.001~10.000質量%であるのが好ましく、特に0.001~5.000質量%が好ましい。これら成分の含有量の合計が10.000質量%よりも多いと、マルテンサイト変態温度が低下し、β単相組織が不安定になる。
[0.001~2.000質量%のCo、0.001~3.000質量%のFe、0.001~2.000質量%のTi]
 Co(コバルト)、Fe(鉄)、Ti(チタン)は、いずれも基地組織の強化に有効な元素である。
 Coは、Co-Al金属間化合物の形成により結晶粒を粗大化する作用を有し、この作用を発揮させるため、Co含有量は0.001質量%以上とすることが好ましい。また、Co含有量が2.000質量%よりも多くなると、銅系合金材の靭性を低下させて加工が困難となるおそれがあることから、Coの好適含有範囲は0.001~2.000質量%とする。
 Feは、微細組織を析出して基地組織を強化する作用を有する元素であり、この作用を発揮させるため、Fe含有量は0.001質量%以上とすることが好ましい。また、Fe含有量が3.000質量%よりも多くなると、靭性の低下により加工ができなくなるおそれがあることから、Feの好適含有範囲は0.001~3.000質量%とする。
 Tiは、CuAlTiが安定相となって析出するため基地組織を強化する作用を有する元素であり、この作用を発揮させるため、Ti含有量は0.001質量%以上とすることが好ましい。また、Ti含有量が2.000質量%よりも多くなると、析出物が過多となり形状回復率が悪化する傾向があることから、Tiの好適含有範囲は0.001~2.000質量%とする。
[0.001~1.000質量%のV、0.001~1.000質量%のNb、0.001~1.000質量%のMo、0.001~1.000質量%のTa、0.001~1.000質量%のZr]
 V(バナジウム)、Nb(ニオブ)、Mo(モリブデン)、Ta(タンタル)、Zr(ジルコニウム)は、いずれも硬さを高める効果を有し、耐摩耗性を向上させる作用を有する元素であって、これらの元素は、いずれもほとんど基地に固溶しないので、β相(bcc結晶)として析出し、強度を向上させることができる。上記作用を発揮させるためのV、Nb、Mo、Ta、Zrの含有量は、いずれも0.001質量%である。また、V、Nb、Mo、Ta、Zrの含有量は、いずれも1.000質量%よりも多くなると、冷間加工性が悪くなるおそれがあることから、V、Nb、Mo、Ta、Zrの好適含有範囲は、それぞれ0.001~1.000質量%とする。
[0.001~2.000質量%のCr]
 Cr(クロム)は、耐摩耗性及び耐食性を維持するのに有効な元素であり、この作用を発揮するため、Cr含有量は0.001質量%以上とすることが好ましい。また、Cr含有量が2.000質量%よりも多くなると、変態温度が著しく低下するおそれがあることから、Crの好適含有範囲は、0.001~2.000質量%とする。
[0.001~2.000質量%のSi]
 Si(ケイ素)は、耐食性を向上させる作用を有する元素であり、この作用を発揮するため、Si含有量は0.001質量%以上とすることが好ましい。また、Si含有量が2.000質量%よりも多くなると、超弾性が悪くなるおそれがあることから、Siの好適含有範囲は、0.001~2.000質量%とする。
[0.001~1.000質量%のW]
 W(タングステン)は、基地にほとんど固溶しないので、析出強化の作用を有する元素であり、この作用を発揮するため、W含有量は0.001質量%以上とすることが好ましい。また、W含有量が1.000質量%よりも多くなると、冷間加工性が悪くなるおそれがあることから、Wの好適含有範囲は、0.001~1.000質量%とする。
[0.001~0.500質量%のC]
 C(炭素)は、適量であればピン止め効果が得られ、より結晶粒を粗大化させる作用を有する元素であり、特にTi、Zrとの複合添加が好ましい。この作用を発揮するため、C含有量は0.001質量%以上とすることが好ましい。また、C含有量が0.500質量%よりも多くなると、ピン止めの逆効果により結晶粒の粗大化が起こりにくくなるおそれがあることから、Cの好適含有範囲は、0.001~0.500質量%とする。
[0.001~5.000質量%のミッシュメタル]
 ミッシュメタルは、適量であればピン止め効果が得られるので、より結晶粒を粗大化させる作用を有する元素であり、この作用を発揮するため、ミッシュメタル含有量は0.001質量%以上とすることが好ましい。また、ミッシュメタル含有量が5.000質量%よりも多くなると、ピン止めの逆効果により結晶粒の粗大化が起こりにくくなるおそれがあることから、ミッシュメタルの好適含有範囲は、0.001~5.000質量%とする。なお、「ミッシュメタル」とは、La(ランタン)、Ce(セリウム)、Nd(ネオジム)など、単体分離の難しい希土類元素の合金のことを指す。
[Cuおよび不可避的不純物]
 上記した成分以外の残部は、Cuおよび不可避的不純物である。ここでいう「不可避不純物」は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物としては、例えば、O、N、H、S、P等が挙げられる。不可避不純物の含有量は、例えば不可避不純物成分の合計量で、0.10質量%以下であれば、本発明の銅系合金材の特性に影響を及ぼすものではない。
(銅系合金材の物性)
 本発明の銅系合金材は、以下の物性(特性)を有する。
 本発明の銅系合金材は、形状記憶合金特有の歪みを与える応力を負荷してから除荷した後に元の形状に戻す変形を繰返し行った場合における、耐疲労特性と耐破断特性の両特性が優れている。
 ここで、本発明でいう「耐疲労特性が優れている」とは、具体的には、合金材に対して5%の歪みを与える応力の負荷と除荷を1000回繰り返し行なった後の合金材の残留歪みが2.0%以下、より好ましくは1.4%以下である場合を意味する。図3は、銅系合金材に対し、前記応力の負荷から除荷までの動作を1サイクルとしたときの、1サイクル目と1000サイクル目の応力-歪み曲線の一例を示したものである。なお、この残留歪みの下限値には特に制限はないが、通常0.1%以上である。また、「残留歪み」とは、所定の歪み量での負荷と除荷を繰返した後に残留する歪み量のことを意味し、本発明では、この残留歪みが小さいほど、耐疲労特性が優れていると定義する。
 また、本発明でいう「耐破断特性が優れている」とは、具体的には、合金材に対して3%の歪みを与える応力の負荷と除荷を繰り返し行なったときに合金材が破断するまでの繰り返し回数が1000回以上である場合を意味する。なお、前記繰返し回数は5000回で試験終了とする。図4は、銅系合金材に対し、前記応力の負荷から除荷までの動作を1サイクルとしたときの、1サイクル目と5000サイクル目の応力-歪み曲線の一例を示したものである。本発明では、この繰返し回数が多いほど、耐破断特性が優れていると定義する。さらに、この繰返し回数にばらつきが少ないことが好ましい。
 ここでいう「繰返し回数のばらつき」に関し、本発明では、例えば、各製造条件について、同等の試験体をN=5回測定した結果、歪みを与える応力の負荷と除荷を行なった場合に破断するまでの繰返し回数が全て5000回において未破断(5000回で測定は終了)であれば、耐破断特性が優れていると判断する。また、全て1000回以上(例えばN=5の測定で、最低値が4412回、最大値が5000回)であれば、耐破断特性は良好であると判断する。一方、5回の測定のうち、一部の試験体が1000回以上で未破断であっても、1つの試験体が1000回未満で破断した場合には、破断するまでの繰返し回数のばらつきがあって、耐破断特性が劣ると判断する。
<銅系合金材の製造方法>
 次に、本発明の銅系合金材の製造方法の例として、Cu-Al-Mn-Ni系合金材の好適な製造方法を以下で説明する。
 本発明の銅系合金材の製造方法は、溶解・鋳造する工程([工程1])、熱間加工を施す工程([工程2])、中間焼鈍を施す工程([工程3])、冷間加工を施す工程([工程4])、追加の中間焼鈍を行なう工程([工程5])、第3温度域まで加熱して保持する工程([工程6])、第4温度域まで加熱して保持する工程([工程7])と、第4温度域から第3温度域まで冷却して保持する工程([工程8])、第3温度域から第4温度域まで加熱して保持する工程([工程9])、第4温度域から急冷する工程([工程10])とを含んでいる。
 本発明の銅系合金材において、上記のような安定的に良好な超弾性特性を奏して耐繰返し変形特性に優れる超弾性合金材または形状記憶合金材を得るための製造条件としては、下記のような製造工程を挙げることができる。代表的な製造プロセスの一例を図5に示す。
(溶解・鋳造工程[工程1])
 工程1は、上述した組成を有する銅系合金材の素材を溶解し、鋳造する工程であって、常法によって行えばよい。
(熱間加工を施す工程[工程2])
 工程2は、工程1の後に、熱間圧延または熱間鍛造等の熱間加工を施す工程であって、常法によって行えばよい。例えば、熱間加工を行なう温度は680~950℃の温度範囲で行うことが好ましく、通常800℃程度で行う。熱間加工を680℃以上の温度で行なえば、変形抵抗が小さくなって、加工が可能である。一方で、950℃を超える温度で熱間加工を行なうと、銅系合金材が溶融してしまうおそれがあるからである。
(中間焼鈍を施す工程[工程3])
 工程3は、工程2の後(、2回以上行なう場合には、工程4の後)に、400~680℃、好ましくは400~550℃の第1温度域で中間焼鈍を施す工程である。680℃より高い熱処理温度で中間焼鈍を施すと、β相の比率が多くなりすぎて、その後に行なう冷間加工が難しくなるからである。一方、400℃より低い熱処理温度で中間焼鈍を施すと、時効処理のように組織が硬化する効果が大きくなってしまい冷間加工が難しくなるからである。中間焼鈍の時間は、例えば1~120分の範囲であればよい。
(冷間加工を施す工程[工程4])
 工程4は、工程3の後に、冷間圧延または冷間伸線の冷間加工を施す工程であって、加工率が30%以上となるように冷間加工を施す。
 製造工程全体の中で、特に中間焼鈍[工程3]での熱処理温度を400~680℃の範囲とし、冷間加工(具体的には冷間圧延もしくは冷間伸線)[工程4]での冷間圧延率もしくは冷間伸線の加工率を30%以上の範囲とすることにより、安定的に良好な超弾性特性を奏するCu-Al-Mn-Ni系合金材が得られる。
 また、中間焼鈍[工程3]と冷間加工[工程4]を少なくとも各1回以上この順に行うことで、結晶方位をより好ましく集積させることができる。中間焼鈍[工程3]と冷間加工[工程4]の繰返し回数は、1回でも良いが、好ましくは2回以上、さらに好ましくは3回以上である。中間焼鈍[工程3]と冷間加工[工程4]の繰返し回数が多いほど、加工集合組織の配向が進み特性が向上するためである。
 ここで、加工率は、次の式で定義される値である。
  加工率(%)={(A-A)/A}×100
 Aは冷間加工(冷間圧延もしくは冷間伸線)前の試料の断面積(mm)であり、Aは冷間加工後の試料の断面積(mm)である。
 また、中間焼鈍[工程3]と冷間加工[工程4]とを各2回以上行う場合の、冷間加工[工程4]における累積加工率は、30%以上とすることが好ましく、より好ましくは45%以上である。累積加工率の上限値には、特に制限はないが、通常95%以下である。
(追加の中間焼鈍を行なう工程[工程5])
 工程5は、工程4の後に、析出相の安定化を目的として、さらに第2温度域で追加の中間焼鈍を行なう工程である。第2温度域は、400~550℃の範囲とすることが好ましい。焼鈍温度が400℃よりも低すぎると、析出相(NiAl)が析出する効果が十分には得られない傾向があり、また、550℃より高いと、β相のマトリックス中に、析出するα相(fcc構造)の析出量が多くなり過ぎるため、B2型析出相の析出による規則度向上の効果が十分に発揮できない傾向がある。なお、追加の中間焼鈍での熱処理時間は、特に限定はしないが、例えば1~120分にすることで、その後の工程で規則構造が乱れることがない銅系合金材が得られることを確認している。この工程による規則構造の安定化の詳細な原因は明らかになっていないが、微細なNi基物による析出の効果であると推定している。
(第3温度域まで加熱して保持する工程[工程6])
 工程6は、室温(20℃±20℃)から400~650℃の第3温度域まで加熱して、第3温度域に保持する工程であって、α相の析出量を固定(制御)するための工程である。
 第3温度域は、概念的には(α+β)相になる温度域であって、具体的には、合金組成によっても異なるが、400~650℃、好ましくは450℃~550℃の温度範囲である。加熱温度が400℃未満だと、冷間加工が出来なくなるという問題があり、また、加熱温度が650℃よりも高いと、集合組織がランダムになるという問題があるからである。
 このように、一旦(α+β)相になる第3温度域に加熱・保持する工程[工程6]の後に、β単相になる第4温度域に加熱・保持する工程[工程7]を行なうことによって、α相を消失することができ、その結果、その後に引き続き行なう熱処理(結晶粒粗大化処理(工程8~工程10))によって、結晶粒が大きくなる効果が得られやすくなる。なお、工程6における熱処理での保持時間は、特に限定はしないが、例えば1~120分にすることが好ましい。
 工程6において、室温から第3温度域まで加熱する際には、(α+β)相になる第3温度域まで昇温できればよいので、このときの昇温速度は、特に制限はなく、例えば0.1℃/分以上であればよいが、製造にかかる全体の時間を短縮する必要がある場合には、20℃/分以上の速い昇温速度で行うことが好ましい。
(第4温度域まで加熱して保持する工程[工程7])
 工程7は、第3温度域から、700~950℃の第4温度域までさらに加熱して、第4温度域に保持する工程である。
 第4温度域は、概念的にはβ単相になる温度域であって、具体的には、合金組成によっても異なるが、700~950℃の温度範囲、好ましくは750℃以上、さらに好ましくは800℃~950℃である。加熱温度が700℃未満だと、α相が完全に消失せずに残ってしまうという問題があり、また、加熱温度が950℃よりも高いと、銅系合金が溶融してしまうおそれがあるからである。なお、第4温度域での保持時間は、特に限定はしないが、例えば5分~480分の範囲にすればよい。
 また、第3温度域から第4温度域まで加熱したときの昇温速度は、0.1~20℃/分、好ましくは0.1~10℃/分、さらに好ましくは0.1~3.3℃/分という所定の遅い範囲に制御することが好ましい。前記昇温速度が20℃/分よりも速いと、微細な結晶粒が合金材の表面に発生してしまい、上述した結晶粒界Xの存在頻度Pが0.2以下にすることができない可能性が高くなる。なお、前記昇温速度の下限値については、特に限定はしないが、工業製品としての限界を考えて0.1℃/分とした。
(第4温度域から第3温度域まで冷却して保持する工程[工程8])
 工程8は、第4温度域から第3温度域まで冷却して該第3温度域に保持する工程である。β単相になる第4温度域から、(α+β)相になる第3温度域までの冷却での降温速度は、0.1~20℃/分、好ましくは0.1~10℃/分、さらに好ましくは0.1~3.3℃/分という所定の遅い範囲に制御することが好ましい。前記降温速度が20℃/分よりも速いと、微細な結晶粒が合金材の表面に発生してしまい、上述した結晶粒界Xの存在頻度Pが0.2以下にすることができない可能性が高くなる。なお、前記降温速度の下限値については、特に限定はしないが、工業製品としての限界を考えて0.1℃/分とした。
 また、第3温度域は、通常、α+β相になる400~650℃であり、好ましくは450~550℃とする。650℃より高い温度になると、β相の比率が多くなりすぎるため、α相のピン留め効果が不十分となり、上述した結晶粒界Xの存在頻度Pが0.2以下を満たす結晶粒径が得られない可能性が高くなる。一方で、400℃より低い温度になると、α相の比率が多くなりすぎるため、ピン止め効果が大きすぎて、上述した結晶粒界Xの存在頻度Pが0.2以下を満たす結晶粒径が得られない可能性が高くなる。
 さらに、第3温度域で保持する際の保持時間は、特に限定はしないが、2~480分の範囲とすることが好ましく、より好ましくは30~360分の範囲とする。
(第3温度域から第4温度域まで加熱して保持する工程[工程9])
 工程9は、第3温度域から第4温度域まで加熱して該第4温度域に保持する工程である。
 ここで、第3温度域から第4温度域まで加熱する際の昇温速度は、0.1~20℃/分、好ましくは1~10℃/分、さらに好ましくは2~5℃/分という所定の範囲に制御することが好ましい。前記昇温速度が20℃/分よりも速いと、微細な結晶粒が合金材の表面に発生してしまい、上述した結晶粒界Xの存在頻度Pが0.2以下にすることができない可能性が高くなる。なお、前記昇温速度の下限値については、特に限定はしないが、工業製品としての限界を考えて0.1℃/分とした。
 また、第4温度域は、通常、β単相になる温度域であって、具体的には、合金組成によっても異なるが、700~950℃の温度範囲、好ましくは750℃以上、さらに好ましくは800℃~950℃である。加熱温度が700℃未満だと、α相が完全に消失せずに残ってしまうという問題があり、また、加熱温度が950℃よりも高いと、銅系合金が溶融してしまうおそれがあるからである。なお、第4温度域での保持時間は、特に限定はしないが、例えば5分~480分の範囲とすることが好ましく、より好ましくは30~360分の範囲とする。
 なお、[工程8]および[工程9]は、少なくとも2回以上繰り返すことが好ましく、より好ましくは3回以上、さらに好ましくは4回以上である。繰り返す回数が2回より少ないと、結晶粒を大きくする駆動力が不十分となるため、上述した結晶粒界Xの存在頻度Pが0.2以下を満たす結晶粒径が得られない可能性が高くなる。
(第4温度域から急冷する工程[工程10])
 工程10は、第4温度域から急冷する工程であって、具体的には、上記工程8および工程9を少なくとも2回以上繰り返し後に行なう急冷(いわゆる、焼き入れ)による溶体化処理である。この急冷は、例えば、β単相に加熱・保持された銅系合金材を、冷却水中に投入する水冷によって行うことができる。
 急冷時の冷却速度は、30℃/秒以上、好ましくは100℃/秒以上、さらに好ましくは1000℃/秒以上とする。前記冷却速度が30℃/秒未満と遅いと、α相が析出してしまうため、その後の工程でβ相の規則度を保つことができなくなるおそれがある。なお、前記冷却速度の上限値は、銅系合金材の物性値に依存するため、設定するのは事実上不可能である。
 本発明の銅系合金材の製造方法は、上述した工程1~10を基本構成とするが、急冷する工程([工程10])後に、80~300℃の第5温度域まで加熱して該第5温度域に保持する工程([工程11])をさらに含むことが好ましい。
(急冷後に第5温度域まで加熱して保持する工程[工程11])
 また、本発明の銅系合金材の製造方法は、急冷する工程([工程10])後に、80~300℃の第5温度域まで加熱して該第5温度域に保持する工程([工程11])をさらに含むことが好ましい。工程11は、急冷後に行なう、いわゆる時効熱処理である。工程11をさらに行なうことによって、マトリックスを構成するβ相が、L2型の結晶構造にすることができ、超弾性、耐疲労特性および耐破断特性が格段に向上させることができる。
 第5温度域は、80~300℃、好ましくは150~250℃の温度範囲で行うことができる。前記熱処理温度80℃未満だと、合金組成によってはβ相が不安定であり、室温に放置していると、マルテンサイト変態温度が変化することがある。200℃以上では長時間の時効熱処理により、ヒステリシスを大きくし延性を低下させるベイナイト相が析出するが、300℃までであれば、析出量が80%未満であるため、超弾性特性や延性に大きな支障はない。一方300℃よりも高いと、過剰なベイナイト相析出により延性が低下し、さらにα相の析出が生じやすくなり、β相からなるマトリックスと、B2型析出相の二相組織が得られなくなるおそれがあり、加えて、α相の析出は、形状記憶特性や超弾性を著しく低下させる傾向があるため好ましくない。
 また、第5温度域での保持時間は、特に限定はしないが、5~120分の範囲であればよい。
<銅系合金材の用途>
 本発明の銅系合金材は、振動に関する制振・減衰を目的とした部材や、ノイズの抑制または減衰を目的とした部材、自己復元(セルフセンタリング)を目的とした部材に好適に用いることができる。これらの部材は、棒材や板材から構成されてなるものである。制振(制震)材や建築材の例としては、特に制限されるものではないが、例えば、ブレース、ファスナー、アンカーボルトなどを挙げることができる。さらに、特に耐繰返し変形特性が必要となる宇宙機器、航空機器、自動車部材、建築部材、電子部品、医療製品等、従来では困難であった分野でも使用が可能となった。振動を吸収する特性を利用して、騒音や振動の公害の防止が可能となる土木建築材としての利用も可能である。さらに、ノイズ減衰の効果を目的とした場合では輸送機器分野での適用もできる。いずれの場合も優れた自己復元力を兼ね備えるため、自己復元材としても使用できる。その上、ホイスラー合金特有のL2型規則構造を多く含む結晶構造であるため、優れた磁気的特性も有することから、磁気アクチュエータや磁気センサ等、新たな用途にも活用が期待できる。
 また、本発明の銅系合金材は、制振(制震)構造体として好適に用いることができる。この制振(制震)構造体は、制振(制震)材を用いて構築されてなるものである。制振(制震)構造体の例としては、特に制限されるものではなく、上述したブレース、ファスナー、アンカーボルトなどを用いて構成された構造体であればいかなる構造体であってもよい。
 本発明の銅系合金材は騒音や振動の公害の防止が可能となる土木建築材としての利用も可能である。例えば、コンクリートと共に複合材料を形成して使用することができる。
 本発明の銅系合金材は宇宙機器や航空機、自動車などの振動吸収部材、自己復元材として使用も可能である。ノイズ減衰の効果を目的とした輸送機器分野への適用もできる。また、優れた磁気的特性も有することから、磁気アクチュエータや磁気センサ等磁気を利用した分野への適用もできる。
 なお、上述した実施形態は、この発明の具体的態様の理解を容易にするため例示したものであって、この発明は、かかる実施形態だけには限定されず、特許請求の範囲に記載された発明の精神と範囲に反することなく幅広く解釈される。
 以下に、本発明を実施例に基づき、さらに詳細に説明するが、本発明はそれらの実施例だけに限定されるものではない。
(実施例1~60および比較例1~47)
 棒材(線材)のサンプル(供試材)は以下の条件で作製した。
 表1に示す組成を与える銅系合金の素材として、純銅、純Mn、純Al、純Ni、および必要により他の副添加元素の原料を高周波誘導炉にて大気中で溶解した後に所定のサイズの鋳型で冷却して鋳造することによって、外径80mm×長さ300mmの鋳塊(インゴット)を得た([工程1])。次に、得られた鋳塊を800℃で熱間加工または押出加工を施した([工程2])。その後、表2に示す条件で、[工程3]~[工程9]の各工程を行なった後に急冷し([工程10])、その後、6つの製法(製法No.ad、ae、af、W、X、Y)を除く製法については、さらに時効熱処理を行うことによって、JIS2号試験片(直径d:16mm、全長Lt:300mm、平行部長さLc:250mm)の棒材を作製した。なお、表2に示されていないその他の製造条件については、全ての実施例と比較例で、以下に示す同一の製造条件で行なった。
<同一の製造条件>
[工程3]中間焼鈍時間は100分
[工程5]追加の中間焼鈍時間は30分
[工程6]室温から(α+β)域への昇温速度は30℃/分、(α+β)域での保持時間     は60分
[工程7]β単相域での保持時間は120分
[工程8](α+β)域での保持時間は60分
[工程9]β単相域での保持時間は120分
[工程10]β単相域からの急冷速度は50℃/秒
[工程11]時効熱処理時間は20分
(評価方法)
 以下に各試験及び評価の方法について詳述する。
(1)銅系合金材の金属組織の結晶構造の特定
 銅系合金材の金属組織の結晶構造は、TEMによる電子回折パターンと暗視野像により、マトリックスと析出相の特定を行なった。
(2)銅系合金材における結晶粒界Xの存在頻度Pの算出方法
 銅系合金材の結晶粒界Xは、後述の耐繰返し変形特性(耐疲労特性および耐破断特性)の評価を行なうための引張試験用の試験片(体)を用い、引張試験する前に、試験片の表面を塩化第二鉄水溶液でエッチングすることによって、銅合金材の表面(より厳密には、半周面9)で観察した。観察する試験片の全長の上限は、特に定めないが、後述する引張試験の原標点距離Lと同等以上の長さとした。そのため、本発明では、全長250mmの20本の試験片(N=20)の表面(半周面9)で結晶粒界の観察を行い、その上で原標点距離L=300mmにおける結晶粒界Xの個数をカウントし、20本の試験片のそれぞれに存在していた結晶粒界の個数n1、n2、・・n19、n20を足し合わせて合計個数n(=n1+n2+・・+n20)を算出し、この合計個数nを、試験片の本数N(=20)で割った比率n/Nである存在頻度Pを算出した。表3および表4に、結晶粒界の存在頻度Pを示す。
(3)耐疲労特性
 耐疲労特性は、上記(2)の結晶粒界の存在頻度を算出するために用いた20本の試験片のうち、5本の試験片を用い、5%の歪みを与える応力の負荷と、除荷を繰返し行って、応力-歪曲線(S-Sカーブ)を作成し、この応力-歪曲線から、1000サイクル繰り返した後の残留歪み(%)を求め(図3参照)、この残留歪みの数値によって評価した。残留ひずみの数値は小さいほど、耐疲労特性に優れている。
 試験条件は、原標点距離が200mmであり、歪量5%を与える応力の負荷と、除荷とを交互に繰り返す引張試験を、試験速度5%/分で1000回行い、耐疲労特性は、以下の3段階の基準で評価し、本発明では、評価が「1」および「2」である場合を、耐疲労特性が合格レベルにあるとして評価した。耐疲労特性の評価結果を表3および表4に示す。
<耐疲労特性の評価基準>
 1(優):残留歪みが1.4%以下である場合
 2(良):残留歪みが1.4%を超え2.0%以下である場合
 3(不良):残留歪みが2.0%を超えている場合または繰返し回数が1000回に到達する前に破断した場合
(4)耐破断特性
 耐破断特性は、上記(2)の結晶粒界の存在頻度を算出するために用いた20本の試験片のうち、5本の試験片を用い、3%の歪みを与える応力の負荷と、除荷を行って、破断するまでの繰返し回数を求めた(図4参照)。破断するまでの繰返し回数が多いほど、繰返し変形に耐えられるため、建物の崩壊や部材の破壊を抑制でき、耐破断特性に優れている。
 試験条件は、原標点距離が200mmであり、歪量3%を与える応力の負荷と、除荷とを交互に繰り返す引張試験を、試験速度3%/分で1000回行い、耐破断特性は、以下の3段階の基準で評価し、本発明では、評価が「1」および「2」である場合を、耐破断特性が合格レベルにあるとして評価した。耐破断特性の評価結果を表3および表4に示す。
<耐破断特性の評価基準>
 1(優):5本の試験片の全てにおいて、繰返し回数が、測定上限である5000回に到達した場合
 2(良):5本の試験片の全てにおいて、繰返し回数が1000回以上であるが、少なくとも1本の試験片の繰返し回数が5000回に到達しなかった場合
 3(不良):5本の試験片のうち、少なくとも1本の試験片の繰返し回数が1000回に到達しなかった場合
(5)耐繰返し変形特性の総合評価
 耐繰返し変形特性は、耐疲労特性と耐破断特性の双方の評価結果に基づいて、以下のような基準で総合評価を行なった。なお、本発明では、総合評価が「A」、「B」および「C」である場合を、耐繰返し変形特性が合格レベルにあるとして評価した。耐繰返し変形特性の総合評価結果を表3および表4に示す。
<耐繰返し変形特性の総合評価の基準>
 A:耐疲労特性の評価が「1」でかつ耐破断特性の評価が「1」または「2」である場合
 B:耐疲労特性の評価が「2」でかつ耐破断特性の評価が「1」または「2」である場合
 C:耐疲労特性の評価が「1」または「2」でかつ耐破断特性の評価が「3」である場合
 D:耐疲労特性の評価が「3」である場合
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および表4の評価結果から、実施例1~60はいずれも、L2型、B2型またはA2型の結晶構造をもつβ相からなるマトリックス中に、B2型結晶構造の析出相が分散した複相(二相)組織を有しているので、繰返し変形を行った場合の耐疲労特性が「1」または「2」の合格レベルであって、耐繰返し変形特性の総合評価も「C」以上の合格レベルであった。
 一方、比較例1~22および45~47は、本発明で規定する製造条件を満たさず、また、比較例23~44は、本発明で規定する適正な合金組成の範囲を満たさないため、いずれも、耐疲労特性の評価が「3」と劣っており、耐繰返し変形特性の総合評価も「D」の不合格レベルであった。
 なお、比較例39および比較例41は、L2型の結晶構造をもつβ相からなるマトリックス中に析出相が分散した複相(二相)組織を有するものの、析出相がα相(fcc構造=A1)であることから、本発明の銅系合金材が有する二相組織とは異なり、耐疲労特性と耐破断特性の双方とも劣っているのがわかる。
 図6および図7は、それぞれ実施例1および比較例23の銅系合金材に対して、5%の歪みを与える応力の負荷と、除荷を、1回のみ、100回の繰返し、および1000回の繰返しをそれぞれ行なった後の応力-歪曲線(S-Sカーブ)を示したものである。図6および図7の比較から、実施例1の銅系合金材では、1回のみ、100回の繰返しおよび1000回の繰返しのいずれのS-Sカーブとも大きな変化はなく、1000回繰返し後の残留歪みも0.2%と小さいのに対し、比較例23の銅系合金材では、1回のみ、100回の繰返しおよび1000回の繰返しのいずれのS-Sカーブとも大きく変化しており、特に1000回の繰返し後の残留歪みが3.2%と大きいのがわかる。
 さらに、表1に記載した以外の本発明の銅系合金材の場合や、棒材(線材)に代えて板材(条材)とした場合においても、ここでの試験結果の記載は省略するが、上述した実施例と同様の結果が得られた。
 1 (棒状または線状の)銅系合金材
 2、3 銅系合金材1の端面
 4 銅系合金材1の全周面
 4a、4b 半周面
 5、6 銅系合金材1の端縁
 5a、6a 端縁半部
 5a1、5a2 端縁半部5aの両端
 6a1、6a2 端縁半部6aの両端
 7、8 延在線部
 9 半周面(ハッチング領域)
 10 (板状の)銅系合金材
 12、13 銅系合金材10の端面
 14 銅系合金材10の全周面
 14a、14b 半周面19を構成する面
 15、16 銅系合金材10の端縁
 15a~15d 端縁15を構成する辺
 16a~16d 端縁16を構成する辺
 15ab、16ab 端縁半部
 15ab1、15ab2 端縁半部15abの両端
 16ab1、16ab2 端縁半部16abの両端
 17、18 延在線部
 19 半周面(ハッチング領域)
 X 結晶粒界
 P 結晶粒界の存在頻度
 n 結晶粒界の存在個数
 D 銅系合金材1の直径
 RD 銅系合金材1、10の加工方向
 ND 銅系合金材10の法線方向(または厚さ方向)
 TD 銅系合金材10の板幅方向
 W 銅系合金材10の板幅
 T 銅系合金材10の板厚

 

Claims (18)

  1.  β相からなるマトリックス中に、B2型結晶構造の析出相が分散した複相組織を有する銅系合金材。
  2.  前記マトリックスが、A2型、B2型またはL2型の結晶構造を有する、請求項1に記載の銅系合金材。
  3.  形状記憶合金としての特性を有する、請求項1または2に記載の銅系合金材。
  4.  8.6~12.6質量%のAl、2.9~8.9質量%のMnおよび3.2~10.0質量%のNiを含有し、残部がCuおよび不可避的不純物からなる組成を有する請求項1、2または3に記載の銅系合金材。
  5.  前記合金材は、圧延方向もしくは伸線方向である加工方向を延在方向とし、横断面が略円形または略多角形であり、全体として長尺形状を有し、
     前記合金材の、両端面を除く表面である全周面を、
     前記両端面のそれぞれの端縁に位置し、該端縁の全周の半分の長さに相当する半周長さをもつ1対の端縁半部と、
     該1対の端縁半部の両端をそれぞれ連結する、前記合金材の母線または稜線である1対の延在線部と
    で区画した半周面で見て、
     該半周面に、結晶粒界が存在しないか、または、該結晶粒界が存在しても、前記結晶粒界の存在頻度が0.2以下である、請求項1~4のいずれか1項に記載の銅系合金材。
  6.  前記合金材に対して5%の歪みを与える応力の負荷と除荷を1000回繰り返し行なった後の前記合金材の残留歪みが、2.0%以下であることを特徴とする請求項1~5のいずれか1項に記載の銅系合金材。
  7.  前記合金材に対して3%の歪みを与える応力の負荷と除荷を繰り返し行なったときに、前記合金材が破断するまでの繰り返し回数が1000回以上であることを特徴とする請求項1~6のいずれか1項に記載の銅系合金材。
  8.  前記組成は、さらに、0.001~2.000質量%のCo、0.001~3.000質量%のFe、0.001~2.000質量%のTi、0.001~1.000質量%のV、0.001~1.000質量%のNb、0.001~1.000質量%のTa、0.001~1.000質量%のZr、0.001~2.000質量%のCr、0.001~1.000質量%のMo、0.001~1.000質量%のW、0.001~2.000質量%のSi、0.001~0.500質量%のC、および0.001~5.000質量%のミッシュメタルからなる群より選ばれた1種または2種以上の成分を、合計で0.001~10.000質量%含有する、請求項4に記載の銅系合金材。
  9.  請求項4または8に記載の銅系合金材の素材を溶解・鋳造する工程([工程1])と、
     熱間加工を施す工程([工程2])と、
     400~680℃の第1温度域で中間焼鈍を施す工程([工程3])および加工率が30%以上となる冷間加工を施す工程([工程4])を少なくとも各1回以上この順に行った後に、さらに400~550℃の第2温度域で追加の中間焼鈍を行なう工程([工程5])と、
     室温から400~650℃の第3温度域まで加熱して該第3温度域に保持する工程([工程6])と、
     前記第3温度域から、700~950℃の第4温度域までさらに加熱して該第4温度域に保持する工程([工程7])と、
     前記第4温度域から第3温度域まで冷却して該第3温度域に保持する工程([工程8])、および前記第3温度域から前記第4温度域まで加熱して該第4温度域に保持する工程([工程9])を少なくとも2回以上繰り返した後に、前記第4温度域から急冷する工程([工程10])と
    を含む、銅系合金材の製造方法。
  10.  前記急冷する工程([工程10])後に、80~300℃の第5温度域まで加熱して該第5温度域に保持する工程([工程11])をさらに含む、請求項9に記載の銅系合金材の製造方法。
  11.  8.6~12.6質量%のAl、2.9~8.9質量%のMnおよび3.2~10.0質量%のNiを含有し、残部がCuおよび不可避的不純物からなる組成を有する銅系合金材。
  12. 請求項1~8のいずれか1項に記載の銅系合金材で構成されるばね材。
  13. 請求項1~8のいずれか1項に記載の銅系合金材で構成されるダンパー。
  14. 請求項1~8のいずれか1項に記載の銅系合金材で構成されるブレース。
  15. 請求項1~8のいずれか1項に記載の銅系合金材で構成されるからなるネジまたはボルト。
  16. 請求項1~8のいずれか1項に記載の銅系合金材で構成される通電型アクチュエータ。
  17. 請求項1~8のいずれか1項に記載の銅系合金材で構成される磁気アクチュエータ。
  18. 請求項1~8のいずれか1項に記載の銅系合金材で構成される磁気センサ。

     
PCT/JP2019/034181 2018-09-03 2019-08-30 銅系合金材およびその製造方法ならびに銅系合金材で構成された部材または部品 WO2020050175A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/272,852 US11959161B2 (en) 2018-09-03 2019-08-30 Copper-based alloy material, production method therefor, and members or parts made of copper-based alloy material
EP19857193.7A EP3848475A4 (en) 2018-09-03 2019-08-30 COPPER-BASED ALLOY MATERIAL, METHOD FOR PRODUCING IT, AND ELEMENT, OR PART, FORMED FROM COPPER-BASED ALLOY MATERIAL
KR1020217008793A KR102542006B1 (ko) 2018-09-03 2019-08-30 구리계 합금재 및 그의 제조 방법 그리고 구리계 합금재로 구성된 부재 또는 부품
CN201980057440.1A CN112639144B (zh) 2018-09-03 2019-08-30 铜系合金材料及其制造方法以及由铜系合金材料构成的构件或部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-164272 2018-09-03
JP2018164272A JP6941842B2 (ja) 2018-09-03 2018-09-03 銅系合金材およびその製造方法ならびに銅系合金材で構成された部材または部品

Publications (1)

Publication Number Publication Date
WO2020050175A1 true WO2020050175A1 (ja) 2020-03-12

Family

ID=69721645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034181 WO2020050175A1 (ja) 2018-09-03 2019-08-30 銅系合金材およびその製造方法ならびに銅系合金材で構成された部材または部品

Country Status (6)

Country Link
US (1) US11959161B2 (ja)
EP (1) EP3848475A4 (ja)
JP (1) JP6941842B2 (ja)
KR (1) KR102542006B1 (ja)
CN (1) CN112639144B (ja)
WO (1) WO2020050175A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846244A (zh) * 2021-09-20 2021-12-28 哈尔滨工程大学 一种CuAlMn形状记忆合金及制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862508B (zh) * 2021-09-29 2022-09-02 哈尔滨工程大学 一种CuAlMnCoNi形状记忆合金及其制备方法
CN114109752B (zh) * 2021-11-08 2023-07-28 上海交通大学 一种形状记忆合金驱动元件
CN114807648B (zh) * 2022-05-27 2023-08-18 天津理工大学 一种高温形状记忆合金及其制备方法
CN115341119A (zh) * 2022-07-19 2022-11-15 华南理工大学 一种4d打印的铜基形状记忆合金粉末及其应用
CN117276846B (zh) * 2023-11-02 2024-03-05 广州博远装备科技有限公司 一种基于形状记忆合金的自适应短波天线

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837487B2 (ja) 1975-04-17 1983-08-16 ミノルタ株式会社 ソクコウカイロ
JPS60177159A (ja) * 1984-02-23 1985-09-11 Toshiba Corp 形状記憶素子
JPS619329B2 (ja) 1981-05-22 1986-03-22 Nippon Denshin Denwa Kk
JPH05311287A (ja) * 1992-05-06 1993-11-22 Furukawa Electric Co Ltd:The 強磁性Cu系形状記憶材料とその製造方法
WO1999049092A1 (fr) * 1998-03-25 1999-09-30 Kanto Special Steel Works Ltd. Alliage magnetique a memoire de forme a base de fer et procede de preparation correspondant
JP2001131658A (ja) * 1999-11-05 2001-05-15 Kansai Electric Power Co Inc:The 耐食性銅合金
JP3300684B2 (ja) 1999-07-08 2002-07-08 清仁 石田 形状記憶特性及び超弾性を有する銅系合金、それからなる部材ならびにそれらの製造方法
JP3335224B2 (ja) 1993-08-27 2002-10-15 清仁 石田 高加工性銅系形状記憶合金の製造方法
JP3872323B2 (ja) 2001-09-21 2007-01-24 独立行政法人科学技術振興機構 Co−Ni−Ga系ホイスラー型磁性形状記憶合金およびその製造方法
JP2017518439A (ja) * 2014-05-06 2017-07-06 マサチューセッツ インスティテュート オブ テクノロジー 溶融スピンによって製造されたオリゴ結晶性形状記憶合金ワイヤ
JP2017141491A (ja) 2016-02-10 2017-08-17 国立大学法人東北大学 Cu−Al−Mn系合金材及び用途

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837487U (ja) 1981-09-04 1983-03-11 ダイキン工業株式会社 冷蔵・冷風扇装置
US4551975A (en) 1984-02-23 1985-11-12 Kabushiki Kaisha Toshiba Actuator
JPS619329U (ja) 1984-06-22 1986-01-20 富士重工業株式会社 パ−トタイム4輪駆動自動車の動力伝達装置
JPS6130643A (ja) * 1984-07-20 1986-02-12 Kobe Steel Ltd 加工性の良好な硬質形状記憶合金
WO1998010106A1 (fr) 1996-09-09 1998-03-12 Toto Ltd. Alliage de cuivre et procede de fabrication correspondant
JP2005298952A (ja) * 2004-04-15 2005-10-27 Chuo Spring Co Ltd 制振材料およびその製造方法
CN1330781C (zh) 2005-01-13 2007-08-08 四川大学 冷轧超薄叠层合金化制备CuAlNiMn形状记忆合金薄膜
EP2578707A4 (en) 2010-05-31 2013-12-25 Japan Copper Dev Ass ALLOY ON COPPER BASE AND STRUCTURAL MATERIAL THEREWITH
EP3118338B1 (en) 2014-03-14 2020-12-02 Furukawa Electric Co. Ltd. Rod made of cu-al-mn-based alloy and method for producing same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837487B2 (ja) 1975-04-17 1983-08-16 ミノルタ株式会社 ソクコウカイロ
JPS619329B2 (ja) 1981-05-22 1986-03-22 Nippon Denshin Denwa Kk
JPS60177159A (ja) * 1984-02-23 1985-09-11 Toshiba Corp 形状記憶素子
JPH05311287A (ja) * 1992-05-06 1993-11-22 Furukawa Electric Co Ltd:The 強磁性Cu系形状記憶材料とその製造方法
JP3335224B2 (ja) 1993-08-27 2002-10-15 清仁 石田 高加工性銅系形状記憶合金の製造方法
WO1999049092A1 (fr) * 1998-03-25 1999-09-30 Kanto Special Steel Works Ltd. Alliage magnetique a memoire de forme a base de fer et procede de preparation correspondant
JP3300684B2 (ja) 1999-07-08 2002-07-08 清仁 石田 形状記憶特性及び超弾性を有する銅系合金、それからなる部材ならびにそれらの製造方法
JP2001131658A (ja) * 1999-11-05 2001-05-15 Kansai Electric Power Co Inc:The 耐食性銅合金
JP3872323B2 (ja) 2001-09-21 2007-01-24 独立行政法人科学技術振興機構 Co−Ni−Ga系ホイスラー型磁性形状記憶合金およびその製造方法
JP2017518439A (ja) * 2014-05-06 2017-07-06 マサチューセッツ インスティテュート オブ テクノロジー 溶融スピンによって製造されたオリゴ結晶性形状記憶合金ワイヤ
JP2017141491A (ja) 2016-02-10 2017-08-17 国立大学法人東北大学 Cu−Al−Mn系合金材及び用途

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GORYCZKA, T.: "EFFECT OF WHEEL VELOCITY ON TEXTURE FORMATION AND SHAPE MEMORY IN CU -AL-NI BASED MELT- SPUN RIBBONS", ARCHIVES OF METALLURGY AND MATERIALS, vol. 54, no. 3, 2009, pages 755 - 763, XP009187794 *
KSHITIJ C SHRESTHA: "Functional Fatigue of Polycrystalline Cu-Al-Mn Superelastic Alloy Bars under Cyclic Tension", JOURNAL OF MATERIALS IN CIVIL ENGINEERING, AMERICAN SOCIETY OF CIVIL ENGINEERS, vol. 28, 2015, pages 04015194
See also references of EP3848475A4
TOSHIHISA OZU: "Superelastic Repeated Behavior of Cu-Al-Mn Shape Memory Alloy Single Crystal", PROCEEDINGS OF ACADEMIC LECTURES, SOCIETY OF MATERIALS SCIENCE, JAPAN, vol. 45, 1996, pages 169 - 170
YUJI SUDO: "Development of Highly Workable Cu-Al-Mn-based Shape Memory Alloy", MATERIA, THE JAPAN INSTITUTE OF METALS AND MATERIALS, vol. 42, no. 11, 2003, pages 813 - 821

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846244A (zh) * 2021-09-20 2021-12-28 哈尔滨工程大学 一种CuAlMn形状记忆合金及制备方法
CN113846244B (zh) * 2021-09-20 2022-06-21 哈尔滨工程大学 一种CuAlMn形状记忆合金及制备方法

Also Published As

Publication number Publication date
EP3848475A1 (en) 2021-07-14
KR102542006B1 (ko) 2023-06-13
JP6941842B2 (ja) 2021-09-29
KR20210055051A (ko) 2021-05-14
JP2020037715A (ja) 2020-03-12
EP3848475A4 (en) 2022-06-22
CN112639144A (zh) 2021-04-09
US20210317557A1 (en) 2021-10-14
CN112639144B (zh) 2022-05-03
US11959161B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2020050175A1 (ja) 銅系合金材およびその製造方法ならびに銅系合金材で構成された部材または部品
JP6109329B2 (ja) Cu−Al−Mn系合金材とその製造方法、及びそれを用いた棒材または板材
JP6490608B2 (ja) Cu−Al−Mn系合金材の製造方法
KR102539690B1 (ko) 티타늄 합금 선재 및 티타늄 합금 선재의 제조 방법
JP5912094B2 (ja) 安定した超弾性を示すCu−Al−Mn系棒材及び板材の製造方法
KR102237789B1 (ko) 내응력부식성이 우수한 Cu-Al-Mn계 합금재료로 이루어지는 전신재와 그 용도
JP5885169B2 (ja) Ti−Mo合金とその製造方法
KR102452921B1 (ko) α+β형 티타늄 합금 선재 및 α+β형 티타늄 합금 선재의 제조 방법
JPH10306335A (ja) (α+β)型チタン合金棒線材およびその製造方法
JP5594244B2 (ja) 75GPa未満の低ヤング率を有するα+β型チタン合金およびその製造方法
JP6696202B2 (ja) α+β型チタン合金部材およびその製造方法
JPWO2016013566A1 (ja) 加工方向と同一方向への形状変化特性を有するチタン合金部材およびその製造方法
JPWO2018047787A1 (ja) Fe基形状記憶合金材及びその製造方法
JP5621571B2 (ja) 75GPa未満の低ヤング率を有するα+β型チタン合金およびその製造方法
JP5512145B2 (ja) 形状記憶合金
JP2017002390A (ja) チタン合金鍛造材
JP6673121B2 (ja) α+β型チタン合金棒およびその製造方法
JP2016153532A (ja) 安定した超弾性を示すCu−Al−Mn系棒材及び板材、それを用いた制震部材、並びに制震部材を用いた制震構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217008793

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019857193

Country of ref document: EP

Effective date: 20210406