WO2020049725A1 - 対物光学系 - Google Patents

対物光学系 Download PDF

Info

Publication number
WO2020049725A1
WO2020049725A1 PCT/JP2018/033232 JP2018033232W WO2020049725A1 WO 2020049725 A1 WO2020049725 A1 WO 2020049725A1 JP 2018033232 W JP2018033232 W JP 2018033232W WO 2020049725 A1 WO2020049725 A1 WO 2020049725A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
lens
optical system
objective optical
negative
Prior art date
Application number
PCT/JP2018/033232
Other languages
English (en)
French (fr)
Inventor
高頭英泰
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2018/033232 priority Critical patent/WO2020049725A1/ja
Priority to JP2020540976A priority patent/JP7024100B2/ja
Publication of WO2020049725A1 publication Critical patent/WO2020049725A1/ja
Priority to US17/146,533 priority patent/US12004715B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives

Definitions

  • the present invention relates to an objective optical system having a focusing function.
  • the present invention relates to an endoscope objective optical system capable of close-up observation and a photographing lens such as a small consumer camera.
  • a typical endoscope objective optical system has a wide depth of field of about 5 mm to 100 mm on the object side.
  • An endoscope equipped with such an objective optical system mainly provides an image using a solid-state imaging device such as a CCD or a CMOS.
  • a solid-state imaging device such as a CCD or a CMOS.
  • high quality of an endoscope image has been demanded.
  • the number of pixels of an image sensor has been increased.
  • An endoscope objective optical system capable of magnifying observation focuses on a subject distance of about 1 mm to 3 mm to perform magnifying observation.
  • Patent Documents 1 to 9 disclose objective optical systems for magnifying endoscopes in which the number of movable groups is two in the objective optical system for magnifying endoscopes.
  • Japanese Patent No. 4723628 Japanese Patent No. 3722458 JP 2009-300489
  • Japanese Patent No. 4834799 JP-A-2005-22161 Japanese Patent No. 5567224 Japanese Patent No. 5567225 JP-A-6-289291 JP-A-2002-72089
  • Patent Document 1 discloses an objective optical system having a negative, positive, and negative three-group configuration.
  • Patent Documents 2, 3, 5, 6, and 7 disclose an objective optical system having a four-group configuration of negative, positive, negative, and positive.
  • Patent Documents 8 and 9 disclose an objective optical system having a four-group configuration of positive, negative, positive, and positive.
  • Patent Document 4 discloses various types of objective optical systems including negative, positive, negative, positive and positive, negative, positive, positive.
  • the miniaturization and high definition of the imaging element cannot be handled by the objective optical system in which the optical system of the related art is miniaturized as it is.
  • a sufficiently bright optical system is required for miniaturization and high definition of the imaging device.
  • any of the conventional objective optical systems disclosed in Patent Documents 1 to 9 has a large Fno. For this reason, it is difficult to say that the conventional objective optical system has optical performance corresponding to a small and high-definition imaging device.
  • the conventional objective optical system cannot be said to be an objective optical system compatible with a high-definition imaging device.
  • error sensitivity increases as the size of the image sensor decreases.
  • the movable group tends to have a high refractive power. If the Fno of the objective optical system is reduced in response to a high-definition imaging device, the necessity of reducing the error sensitivity increases.
  • the present invention has been made in view of the above points, and in an objective optical system that can perform focusing for magnifying observation in accordance with a change in object point distance, reduces manufacturing error sensitivity, and provides a high-pixel and compact imaging device. It is an object of the present invention to provide a corresponding, high-performance, Fno-bright objective optical system.
  • an objective optical system includes, in order from the object side, a first positive lens unit, a second negative lens unit, and a negative first lens unit.
  • the zoom lens has a third lens unit and a positive fourth lens unit, and the second lens unit and the third lens unit both move toward the image side to perform focusing from a long-distance object point to a short-distance object point. It is characterized by satisfying conditional expression (1).
  • t12n is an interval between the first lens unit and the second lens unit when a short-distance object point is focused
  • t12f is the distance between the first lens unit and the second lens unit when focusing on a long-distance object point
  • F is the focal length of the entire objective optical system when focusing on a long-distance object point; It is.
  • the “normal observation state” will be appropriately referred to as a “distant object point in-focus state”.
  • the “enlarged observation state” is appropriately referred to as a close observation state or a close object point in focus.
  • the present invention relates to an objective optical system that can perform focusing for magnifying observation (proximity observation) in accordance with a change in object point distance. Has the effect of providing a bright objective optical system.
  • FIG. 1 is a diagram illustrating a cross-sectional configuration of an objective optical system according to a first embodiment of the present invention.
  • (A) is a cross-sectional view of the objective optical system in a normal observation state, and (b) is a cross-sectional view of the objective optical system in a close observation state.
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • E), (f), (g), and (f) respectively show spherical aberration (SA), astigmatism (AS), distortion (DT), and spherical aberration (SA) in the close observation state of the objective optical system according to Example 1.
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • A (b) is a figure which shows the cross-sectional structure of the objective optical system which concerns on Example 3 of this invention.
  • A) is a sectional view in a normal observation state
  • (b) is a sectional view in a close observation state.
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • E), (f), (g), and (f) respectively show spherical aberration (SA), astigmatism (AS), distortion (DT), and spherical aberration (SA) in the close observation state of the objective optical system according to Example 3.
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • A (b) is a figure which shows the cross-sectional structure of the objective optical system which concerns on Example 5 of this invention.
  • A is a sectional view in a normal observation state
  • (b) is a sectional view in a close observation state.
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • E), (f), (g), and (f) respectively show spherical aberration (SA), astigmatism (AS), distortion (DT), and spherical aberration (SA) in the close observation state of the objective optical system according to Example 5.
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • A (b) is a figure which shows the cross-sectional structure of the objective optical system which concerns on Example 7 of this invention.
  • A is a sectional view in a normal observation state
  • (b) is a sectional view in a close observation state.
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • E), (f), (g), and (f) respectively show spherical aberration (SA), astigmatism (AS), distortion (DT), and aberration in the normal observation state of the objective optical system according to Example 7.
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • A), (b) is a figure which shows the cross-sectional structure of the objective optical system which concerns on Example 8 of this invention.
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • E), (f), (g), and (f) respectively show the spherical aberration (SA), astigmatism (AS), distortion (DT), and spherical aberration (SA) in the close observation state of the objective optical system according to Example 8.
  • FIG. 3 is an aberration diagram showing chromatic aberration of magnification (CC).
  • FIGS. 1A and 1B are views showing a cross-sectional configuration of an objective optical system according to an embodiment of the present invention.
  • (A) is a cross-sectional view of the objective optical system in a normal observation state
  • (b) is a cross-sectional view of the objective optical system in a close observation state.
  • the objective optical system includes, in order from the object side, a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, an aperture stop S, and a third group having a negative refractive power.
  • a group G3 includes a fourth group G4 having a positive refractive power.
  • the positive first group G1 includes, in order from the object side, a negative first lens L1, a positive second lens L2, a negative third lens L3, and a positive fourth lens L4.
  • the positive second lens L2 and the negative third lens L3 are cemented to form a cemented lens CL1.
  • the negative second group G2 has a negative fifth lens L5.
  • the negative third group G3 includes, in order from the object side, a negative sixth lens L6 and a positive seventh lens L7.
  • the sixth negative lens L6 and the seventh positive lens L7 are cemented to form a cemented lens CL2.
  • the second group G2 moves to the image side, and the third group G3 moves to the image side. Thereby, focusing is performed from a long-distance object point to a short-distance object point.
  • the fourth positive group G4 includes, in order from the object, a positive eighth lens L8, a positive ninth lens L9, and a negative tenth lens L10.
  • the positive ninth lens L9 and the negative tenth lens L10 are cemented to form a cemented lens CL3.
  • the brightness stop S is disposed between the second group G2 and the third group G3.
  • the first parallel flat plate F1 is disposed between the negative first lens L1 and the positive second lens L2.
  • the first parallel flat plate F1 can be arranged at any position in the objective optical system.
  • An image plane (image plane I) of an image sensor (not shown) is arranged on the image plane I of the objective optical system.
  • a cover glass CG which is a parallel plate, is attached to the imaging surface.
  • the objective optical system according to the present embodiment satisfies the following conditional expression (1).
  • t12n is an interval between the first group G1 and the second group G2 at the time of focusing on a short-distance object point
  • t12f is the distance between the first group G1 and the second group G2 when focusing on a long-distance object point
  • F is the focal length of the entire objective optical system when focusing on a long-distance object point, It is.
  • the interval between the first group G1 and the second group G2 is the distance between the lens surface of the first group G1 closest to the image plane and the lens surface of the second lens group G2 closest to the object side.
  • t34f is the distance between the third group G3 and the fourth group G4 when focusing on a long-distance object point
  • t34n is an interval between the third group G3 and the fourth group G4 at the time of focusing on a short-distance object point
  • F is the focal length of the entire objective optical system when focusing on a long-distance object point
  • the distance between the third group G3 and the fourth group G4 is the distance between the lens surface of the third group G3 closest to the image plane and the lens surface of the fourth lens group G4 closest to the object side.
  • conditional expressions (1) and (2) relate to the movement amounts of the lenses of the second group G2 and the third group G3.
  • conditional expression (1 ′) it is preferable to satisfy the following conditional expression (1 ′) instead of conditional expression (1). 0.1 ⁇ (t12n ⁇ t12f) / F ⁇ 0.7 (1 ′) Thereby, the size of the objective optical system can be further reduced.
  • Conditional expression (2) contributes to securing the moving amount of the movable group and downsizing as in conditional expression (1).
  • conditional expression (2) When falling below a lower limit value of conditional expression (2), it is difficult to secure a moving amount of the third unit G3.
  • the value exceeds the upper limit of conditional expression (2) the distance between the third unit G3 and the fourth unit G4 becomes too large. Therefore, the amount of movement of the third group G3 can be secured.
  • the overall length of the objective optical system becomes too long, the size of the optical system may be increased.
  • conditional expression (2) It is preferable to satisfy the following conditional expression (2 ′) instead of conditional expression (2). 0.2 ⁇ (t34f-t34n) / F ⁇ 1.6 (2 ') Thereby, the size of the objective optical system can be further reduced.
  • conditional expression (2) 0.2 ⁇ (t34f-t34n) / F ⁇ 1.2 (2 ")
  • conditional expression (3) be satisfied together with the conditional expressions (1) and (2) with respect to the amount of movement of the movable group.
  • t12n is an interval between the first group G1 and the second group G2 at the time of focusing on a short-distance object point
  • t12f is the distance between the first group G1 and the second group G2 when focusing on a long-distance object point
  • t34f is the distance between the third group G3 and the fourth group G4 when focusing on a long-distance object point
  • t34n is an interval between the third group G3 and the fourth group G4 at the time of focusing on a short-distance object point; It is.
  • Conditional expression (3) relates to an appropriate range of the amount of movement of the movable group.
  • an interval between the first group G1 and the second group G2 becomes small. In this case, it is difficult to secure a space for moving the second group G2.
  • One of the features of the objective optical system according to the present embodiment is that focusing can be performed up to the closest object point distance of about 3 mm. If the amount of movement of the lens cannot be secured during focusing, focusing cannot be performed on a short-distance object point. For this reason, it is difficult to observe a short-distance object point with a sufficient magnification.
  • the distance between the third unit G3 and the fourth unit G4 becomes smaller. In this case, it is difficult to secure a moving space for the third group G3. If the amount of movement of the lens cannot be secured during focusing, focusing cannot be performed on a short-distance object point. For this reason, it is difficult to observe a short-distance object point with a sufficient magnification.
  • conditional expression (3) 0.1 ⁇ (t12n-t12f) / (t34f-t34n) ⁇ 1.6 (3 ') This further facilitates securing the moving space for the third group G3.
  • the first group G1 includes, in order from the object side, a negative first lens L1 and a subsequent positive sub-lens group.
  • the subsequent positive sub-lens group refers to a lens that follows the image plane side of the first group G1.
  • the subsequent positive sub-lens group is a lens rearward (image side) from the second lens L2. Therefore, the subsequent positive sub-lens group refers to the range from the second lens L2 to the final fourth lens L4 of the first group G1.
  • the parallel flat plate F1 has no refractive power. Therefore, the parallel plate F1 may be included in the first group G1 or may not be included.
  • the lens closest to the object side in the first group G1 includes the parallel flat plate F1.
  • the first negative lens L1 is preferably a plano-concave lens having a concave surface facing the image side.
  • the distal end of the endoscope has a mechanism for feeding water. This mechanism sends water from the nozzle to clean the lens surface.
  • the tip of the objective optical system is a flat surface, it is easy to wash water by sending water to a position on the opposite side of the nozzle water supply unit and far from the nozzle water supply unit.
  • the subsequent positive sub-lens group includes at least a positive fourth lens L4 and a cemented lens CL1.
  • the first group G1 has a negative and a positive refractive power configuration.
  • the negative refractive power of the first lens L1 of the first group G1 and the refractive power of the subsequent positive sub-lens group are appropriately arranged. Thereby, it is easy to secure a moving space for the second group G2 and the third group G3. Further, it is possible to balance axial chromatic aberration and lateral chromatic aberration correction. In addition, field curvature can be favorably corrected.
  • fG1-1 is the focal length of the lens closest to the object side in the first group G1
  • F is the focal length of the entire objective optical system when focusing on a long-distance object point
  • Conditional expression (4) relates to correcting a change in curvature of field due to a change in object point distance. If the lower limit value of conditional expression (4) is not reached, the field curvature at the time of focusing on a short-distance object point greatly undesirably tilts excessively. When the value exceeds the upper limit of conditional expression (4), the curvature of field at the time of focusing on a long-distance object point largely tilts under, and it becomes difficult to correct coma aberration. Further, it becomes difficult to secure the back focus in the first group G1, and it becomes difficult to secure the space for the rear movable group.
  • fG1-2 is the focal length of the positive sub-lens group following the lens closest to the object side in the first group G1
  • F is the focal length of the entire objective optical system when focusing on a long-distance object point; It is.
  • Condition (5) relates to an appropriate ratio between fG1-2 and F. If the lower limit of conditional expression (5) is exceeded, the refractive power of the subsequent positive sub-lens group is too strong, so that it is difficult to secure a movable space after the second group G2. Further, the image plane when observing a short-distance object point tilts under. For this reason, curvature of field becomes large.
  • both the axial chromatic aberration and the lateral chromatic aberration will have an undercurved aberration curve for the C line (656.3 nm), and the aberration curve for the F line (486.1 nm) will be overslant. For this reason, it becomes difficult to correct chromatic aberration.
  • conditional expression (5 ′) is satisfied instead of conditional expression (5).
  • conditional expression (5 ′) is satisfied, the correction of the curvature of field becomes easy, and the chromatic aberration can be corrected more favorably.
  • the refractive power of the first positive lens unit G1 is appropriately set.
  • Chromatic aberration generated in the first group G1 is corrected well.
  • the aberration is sufficiently corrected within the range of the following conditional expression (6). Therefore, the contribution of the objective optical system to the aberration of the entire system is small. Further, the size of the objective optical system can be reduced.
  • conditional expression (4) and the conditional expression (5) are satisfied and, at the same time, the following conditional expression (6) is satisfied.
  • fG1 is the focal length of the first group G1
  • F is the focal length of the entire objective optical system when focusing on a long-distance object point; It is.
  • Conditional expression (6) relates to an appropriate ratio between fG1 and F.
  • the value goes below the lower limit of conditional expression (6), the chromatic aberration of magnification of the C-line and the F-line becomes excessively corrected.
  • conditional expression (6) also contributes to miniaturization of the entire objective optical system. If the value exceeds the upper limit of conditional expression (6), the positive refractive power becomes weak. For this reason, it is difficult to reduce the overall length of the objective optical system. Further, since the height of the light beam incident on the first lens L1 increases, the size of the optical system also increases.
  • conditional expression (6 ′) is satisfied instead of conditional expression (6).
  • conditional expression (6 ′) 1.0 ⁇ fG1 / F ⁇ 1.8 (6 ′)
  • the field curvature can be corrected more favorably.
  • the size of the objective optical system can be further reduced.
  • fG2 is the focal length of the second group G2
  • F is the focal length of the entire objective optical system when focusing on a long-distance object point; It is.
  • Conditional expression (7) relates to the focal length of the second lens unit G2.
  • the second group G2 disperses the refractive power together with the third group G3.
  • the second group G2 has a focusing function for adjusting an image plane according to a change in object point distance.
  • the refractive power of the lens group is strong, it is necessary to minimize the amount of eccentricity during driving of the lens even when the clearance between the frames is reduced. Therefore, it is desirable that the refractive power of the second group G2, which is the driving lens, be in a range that satisfies the conditional expression (7).
  • fG3 is the focal length of the third group G3
  • F is the focal length of the entire objective optical system when focusing on a long-distance object point
  • Conditional expression (8) relates to the focal length of the third lens unit G3.
  • the third group G3 disperses the refractive power together with the second group G2.
  • the third lens unit G3 has a focusing function for adjusting an image plane according to a change in object point distance.
  • the refractive power of the lens group is strong, it is necessary to minimize the amount of eccentricity during driving of the lens even when the clearance between the frames is reduced. Therefore, it is desirable that the refractive power of the third group G3, which is the driving lens, be in a range satisfying conditional expression (8).
  • fG4 is the focal length of the fourth group G4
  • F is the focal length of the entire objective optical system when focusing on a long-distance object point; It is.
  • Conditional expression (9) contributes to correction of field curvature.
  • the value goes below the lower limit of conditional expression (9)
  • the image plane tilts under.
  • the value exceeds the upper limit of conditional expression (9) the image plane tilts excessively. For this reason, an image is out of focus at the center portion and the peripheral portion of the screen, which is not preferable.
  • conditional expression (9 ′) 2 ⁇ fG4 / F ⁇ 4 (9 ')
  • the field curvature correction is more excellent.
  • fG1S is a composite focal length from the first group G1 to the aperture stop S when focusing on a long-distance object point
  • F is the focal length of the entire objective optical system when focusing on a long-distance object point
  • Conditional expression (10) contributes to correction of chromatic aberration and correction of field curvature.
  • the value goes below the lower limit of conditional expression (10)
  • the image plane tilts excessively. Further, the aberration curve of the F-line of the chromatic aberration of magnification is greatly inclined under.
  • the focal length in the front group becomes larger than the aperture stop S.
  • the focal position in the front group is located farther from the object side than the aperture stop S. This undesirably leads to an increase in the size of the entire objective optical system. Further, the influence on the angle of view is remarkable, and it is difficult to widen the angle. For this reason, it becomes impossible to maintain the observation angle of view required for observation with the endoscope.
  • conditional expression (10 ′) it is preferable to satisfy the following conditional expression (10 ′) instead of conditional expression (10).
  • conditional expression (10 ′) By limiting the upper limit of conditional expression (10), it is possible to further contribute to downsizing. 1 ⁇ fG1S / F ⁇ 5.5 (10 ')
  • the field curvature correction is more excellent.
  • fGS4 is a composite focal length from the aperture stop S to the fourth group G4 when focusing on a long-distance object point;
  • F is the focal length of the entire objective optical system when focusing on a long-distance object point; It is.
  • Conditional expression (11) contributes to chromatic aberration correction and field curvature correction.
  • the value goes below the lower limit of conditional expression (11)
  • the image surface tilts under. Further, the F-line aberration curve of the axial chromatic aberration is greatly inclined.
  • the image plane tilts excessively.
  • chromatic aberration of magnification at the time of focusing on a long-distance object point becomes worse.
  • the aberration curve of the F line is greatly inclined under.
  • the aberration curve of the C-line tilts excessively. In this case, the peripheral image deteriorates significantly, which is not preferable.
  • conditional expression (11) is satisfied instead of conditional expression (11).
  • fG2 is the focal length of the second group G2
  • fG3 is the focal length of the third group G3, It is.
  • Conditional expression (12) relates to a ratio that makes the refractive power of the second group G2 and the third group G3 appropriate. In this case, it is possible to suppress an image plane variation during focusing. Further, it can contribute to downsizing of the objective optical system.
  • the refractive power of the second group G2 will be too strong. Then, the fluctuation of the curvature of field due to focusing increases. As a result, a remarkable difference appears between the image plane position during normal observation (when focusing on a long-distance object point) and the image plane position when focusing on a short-distance object point. Further, since the refractive power of the third lens unit G3 becomes weak, the movement amount of the third lens unit G3 increases. Therefore, the size of the entire objective optical system is increased, which is not preferable.
  • conditional expression (12) If the upper limit of conditional expression (12) is exceeded, the refractive power of the third lens unit G3 will be too strong. In this case, the chromatic aberration of magnification increases. Further, the fluctuation of the image plane at the time of focusing increases, which is not preferable.
  • fG4 is the focal length of the fourth group G4
  • fG1 is the focal length of the first group G1, It is.
  • Conditional expression (13) relates to the ratio that makes the refractive power of the first unit G1 and the fourth unit G4 appropriate. This is a conditional expression that contributes to downsizing of the entire objective optical system.
  • the refractive power of the first lens unit G1 becomes too weak. Therefore, the focal position of the first group G1 shifts to the image plane side. As a result, the overall length becomes longer and the entire lens system becomes larger.
  • conditional expression (13 ′) may be satisfied by conditional expression (13).
  • the upper limit of conditional expression (13) may be limited as follows. 1.5 ⁇ fG4 / fG1 ⁇ 3 (13 ') This allows further miniaturization within the range of the upper limit of conditional expression (13 ′).
  • conditional expression (14) is satisfied.
  • fG3 is the focal length of the third group G3
  • fG4 is the focal length of the fourth group G4, It is.
  • Conditional expression (14) relates to aberration correction at the time of focusing on a long-distance object point.
  • the aberration generated in the first lens L1 having negative refractive power in the first group G1 is corrected by the third lens group G3 and the fourth lens group G4, which are rear lens groups.
  • Fno is the F value of the objective optical system when focusing on a long-distance object point, It is.
  • Conditional expression (15) relates to Fno of the objective optical system.
  • the value goes below the lower limit of conditional expression (15)
  • a bright optical system can be realized.
  • Fno is the F value of the objective optical system when focusing on a long-distance object point
  • Fno_N is an F value of the objective optical system when a short-distance object point is focused, It is.
  • Conditional expression (16) relates to the ratio of Fno when focusing on a long-distance object point and Fno when focusing on a short-distance object point. It is preferable that the difference between Fno when focusing on a long-distance object point and Fno when focusing on a short-distance object point is small, and it is desirable that the difference be within the range of the conditional expression.
  • the larger the Fno the larger the minimum circle of confusion.
  • FIG. 2A is a cross-sectional view of the objective optical system according to the present embodiment in a normal observation state (when a long-distance object point is focused), and FIG. 2B is a close-up observation state (when a short-distance object point is focused).
  • FIG. 2A is a cross-sectional view of the objective optical system according to the present embodiment in a normal observation state (when a long-distance object point is focused)
  • FIG. 2B is a close-up observation state (when a short-distance object point is focused).
  • the objective optical system includes, in order from the object side, a positive first unit G1, a negative second unit G2, a brightness stop S, and a negative third unit G2. There is a group G3 and a positive fourth group G4.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative first lens L1 having a plane facing the object side, a positive second meniscus lens L2 having a convex surface facing the image side, and a biconcave lens. It has a negative third lens L3, a biconvex positive fourth lens L4, and a biconvex positive fifth lens L5.
  • the negative third lens L3 and the positive fourth lens L4 constitute a cemented lens CL1.
  • the negative second group G2 has a negative sixth meniscus lens L6 with the convex surface facing the image side.
  • the negative sixth meniscus lens L6 moves to the image side (image plane I) along the optical axis AX. I do.
  • the negative third unit G3 has a negative seventh meniscus lens L7 with the convex surface facing the object side.
  • the negative seventh meniscus lens L7 moves to the image side (image plane I) along the optical axis AX. I do.
  • ⁇ ⁇ Brightness stop S is arranged in front of third group G3 (object side).
  • the positive fourth group G4 includes, in order from the object side, a biconvex positive eighth lens L8, a biconvex positive ninth lens L9, and a negative tenth meniscus lens L10 having a convex surface facing the image side. And The ninth positive lens L9 and the tenth negative meniscus lens L10 form a cemented lens CL2.
  • a parallel flat plate F1 and a parallel flat plate F2 are arranged in order from the object side.
  • the parallel flat plate F2 is attached as a cover glass CG to the front surface of an image sensor (not shown).
  • the parallel plate F1 is a filter for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • 3A, 3B, 3C, and 3D show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the normal observation state of the present embodiment.
  • 3E, 3F, 3G, and 3H show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the close observation state of the present embodiment. ).
  • FIG. 4A is a cross-sectional view of the objective optical system according to the present embodiment in a normal observation state (a long-distance object point), and FIG. 4B is a cross-sectional view in a close-up observation state (a short-distance object point). .
  • the objective optical system includes, in order from the object side, a positive first unit G1, a brightness stop S, a negative second unit G2, and a negative third unit G2. There is a group G3 and a positive fourth group G4.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative first lens L1 having a plane facing the object side, a parallel flat plate F1, and a positive second meniscus lens L2 having a convex surface facing the image side. And a negative third meniscus lens L3 having a convex surface facing the image side, and a biconvex positive fourth lens L4.
  • the positive second meniscus lens L2 and the negative third meniscus lens L3 constitute a cemented lens CL1.
  • a brightness stop S is disposed behind the first group G1 (on the image plane I side).
  • the second negative group G2 has a negative fifth meniscus lens L5 with the convex surface facing the image side.
  • the negative fifth meniscus lens L5 moves to the image side (image plane I) along the optical axis AX when focusing from the normal observation state (FIG. 4A) to the close observation state (FIG. 4B). I do.
  • the negative third group G3 includes a negative sixth meniscus lens L6 having a convex surface facing the object side, and a positive seventh meniscus lens L7 having a convex surface facing the object side.
  • the negative sixth meniscus lens L6 and the positive seventh meniscus lens L7 constitute a cemented lens CL2.
  • the cemented lens CL2 moves to the image side (image plane I) along the optical axis AX.
  • the positive fourth unit G4 includes, in order from the object side, a biconvex positive eighth lens L8, a positive ninth meniscus lens L9 having a convex surface facing the image side, and a negative fourth lens L9 having a convex surface facing the image side. 10 meniscus lens L10.
  • the positive ninth meniscus lens L9 and the negative tenth meniscus lens L10 constitute a cemented lens CL3.
  • a parallel flat plate F2 and a parallel flat plate F3 are arranged.
  • the parallel flat plate F3 is attached as a cover glass CG to the front surface of an image sensor (not shown).
  • the parallel plate F1 and the parallel plate F2 are filters for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • FIGS. 5A, 5B, 5C, and 5D show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the normal observation state of the present embodiment.
  • FIGS. 5E, 5F, 5G, and 5H show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the close observation state of the present embodiment. ).
  • FIG. 6A is a cross-sectional view of the objective optical system according to the present embodiment in a normal observation state (a long-distance object point), and FIG. 6B is a cross-sectional view in a close-up observation state (a short-distance object point). .
  • the objective optical system includes, in order from the object side, a positive first unit G1, a negative second unit G2, a brightness stop S, and a negative third unit G1.
  • a positive first unit G1 a negative first unit G1
  • a negative second unit G2 a brightness stop S
  • a negative third unit G1 a negative third unit G1.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative first lens L1 having a plane facing the object side, a parallel flat plate F1, and a positive second meniscus lens L2 having a convex surface facing the image side. And a negative third meniscus lens L3 having a convex surface facing the image side, and a biconvex positive fourth lens L4.
  • the positive second meniscus lens L2 and the negative third meniscus lens L3 constitute a cemented lens CL1.
  • the second negative group G2 has a negative fifth meniscus lens L5 with the convex surface facing the image side.
  • the negative fifth meniscus lens L5 moves to the image side (image plane I) along the optical axis AX when focusing from the normal observation state (FIG. 6A) to the close observation state (FIG. 6B). I do.
  • a brightness stop S is arranged behind the second group G2 (on the image plane I side).
  • the negative third unit G3 has a negative sixth meniscus lens L6 with the convex surface facing the object side.
  • the negative sixth lens L6 moves to the image side (image plane I) along the optical axis AX. .
  • the positive fourth unit G4 includes, in order from the object side, a positive seventh meniscus lens L7 having a convex surface facing the object side, a biconvex positive eighth lens L8, and a negative seventh lens L8 having a convex surface facing the image side.
  • the positive eighth lens L8 and the negative ninth meniscus lens L9 constitute a cemented lens CL2.
  • a parallel flat plate F2 and a parallel flat plate F3 are arranged.
  • the parallel flat plate F3 is attached as a cover glass CG to the front surface of an image sensor (not shown).
  • the parallel plate F1 and the parallel plate F2 are filters for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • FIGS. 7A, 7B, 7C, and 7D show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the normal observation state of the present embodiment.
  • FIGS. 7E, 7F, 7G, and 7H show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the close observation state of the present embodiment. ).
  • FIG. 8A is a cross-sectional view of the objective optical system according to the present example in a normal observation state (a long-distance object point), and FIG. 8B is a cross-sectional view in a close-up observation state (a short-distance object point). .
  • the objective optical system includes, in order from the object side, a positive first unit G1, a negative second unit G2, a brightness stop S, and a negative third unit G1.
  • a positive first unit G1 a negative first unit G1
  • a negative second unit G2 a brightness stop S
  • a negative third unit G1 a negative third unit G1.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative first lens L1 having a plane facing the object side, a positive second meniscus lens L2 having a convex surface facing the image side, and a biconcave lens. It has a negative third lens L3, a biconvex positive fourth lens L4, and a biconvex positive fifth lens L5.
  • the negative third lens L3 and the positive fourth lens L4 constitute a cemented lens CL1.
  • the negative second group G2 has a negative sixth meniscus lens L6 with the convex surface facing the image side.
  • the negative sixth meniscus lens L6 moves to the image side (image plane I) along the optical axis AX. I do.
  • the negative third unit G3 has a negative seventh meniscus lens L7 with the convex surface facing the object side.
  • the negative seventh meniscus lens L7 moves to the image side (image plane I) along the optical axis AX. I do.
  • ⁇ ⁇ Brightness stop S is arranged in front of third group G3 (object side).
  • the positive fourth group G4 includes, in order from the object side, a biconvex positive eighth lens L8, a biconvex positive ninth lens L9, and a negative tenth meniscus lens L10 having a convex surface facing the image side. And The positive ninth lens L9 and the negative tenth meniscus lens L10 constitute a cemented CL2.
  • a parallel flat plate F1 and a parallel flat plate F2 are arranged.
  • the parallel flat plate F2 is attached as a cover glass CG to the front surface of an image sensor (not shown).
  • the parallel plate F1 is a filter for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • 9A, 9B, 9C, and 9D show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the normal observation state of the present embodiment.
  • 9E, 9F, 9G, and 9H show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the close observation state of the present embodiment. ).
  • FIG. 10A is a cross-sectional view of the objective optical system according to the present embodiment in a normal observation state (a long-distance object point), and FIG. 10B is a cross-sectional view in a close-up observation state (a short-distance object point). .
  • the objective optical system includes, in order from the object side, a positive first unit G1, a negative second unit G2, a brightness stop S, and a negative third unit G1.
  • a positive first unit G1 a negative first unit G1
  • a negative second unit G2 a brightness stop S
  • a negative third unit G1 a negative third unit G1.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative first lens L1 having a plane facing the object side, a parallel flat plate F1, and a positive second meniscus lens L2 having a convex surface facing the image side. And a negative third meniscus lens L3 having a convex surface facing the image side, and a biconvex positive fourth lens L4.
  • the positive second meniscus lens L2 and the negative third meniscus lens L3 constitute a cemented lens CL1.
  • the negative second group G2 includes, in order from the object side, a positive fifth meniscus lens L5 having a convex surface facing the image side, and a negative sixth meniscus lens L6 having a convex surface facing the image side.
  • the positive fifth meniscus lens L5 and the negative sixth meniscus lens L6 form a cemented lens CL2.
  • the cemented lens CL2 moves to the image side (image plane I side) along the optical axis AX.
  • a brightness stop S is arranged behind the second group G2 (on the image plane I side).
  • the negative third group G3 includes, in order from the object side, a negative seventh meniscus lens L7 having a convex surface facing the object side, and a positive eighth meniscus lens L8 having a convex surface facing the object side.
  • the negative seventh meniscus lens L7 and the positive eighth meniscus lens L8 are joined to form CL3.
  • the cemented lens CL3 moves to the image side (image plane I side) along the optical axis AX.
  • the positive fourth group G4 includes, in order from the object side, a biconvex positive ninth lens L9, a biconvex positive tenth lens L10, and a negative eleventh meniscus lens L11 having a convex surface facing the image side. And The tenth positive lens L10 and the negative eleventh meniscus lens L11 constitute a cemented lens CL4.
  • a parallel flat plate F2 and a parallel flat plate F3 are arranged.
  • the parallel flat plate F3 is attached as a cover glass CG to the front surface of an image sensor (not shown).
  • the parallel plate F1 and the parallel plate F2 are filters for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • FIGS. 11A, 11B, 11C, and 11D show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the normal observation state of the present embodiment.
  • FIGS. 11E, 11F, 11G, and 11H show spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) in the close observation state of the present embodiment. ).
  • FIG. 12A is a cross-sectional view of the objective optical system according to the present example in a normal observation state (a long-distance object point), and FIG. 12B is a cross-sectional view in a close-up observation state (a short-distance object point). .
  • the objective optical system includes, in order from the object side, a positive first unit G1, a negative second unit G2, a brightness stop S, and a negative third unit G2. There is a group G3 and a positive fourth group G4.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative first lens L1 having a plane facing the object side, a negative second meniscus lens L2 having a convex surface facing the object side, and a biconvex lens. It has a positive third lens L3, a negative fourth meniscus lens L4 with the convex surface facing the image side, and a biconvex positive fifth lens L5.
  • the third positive lens L3 and the fourth negative meniscus lens L4 constitute a cemented lens CL1.
  • the negative second group G2 has a biconcave negative sixth lens L6.
  • the negative sixth lens L6 moves to the image side (image plane I) along the optical axis AX. .
  • a brightness stop S is arranged behind the second group G2 (on the image plane I side).
  • the negative third group G3 includes, in order from the object side, a negative seventh meniscus lens L7 having a convex surface facing the object side, and a positive eighth meniscus lens L8 having a convex surface facing the object side.
  • the negative seventh meniscus lens L7 and the positive eighth meniscus lens L8 constitute a cemented lens CL2.
  • the cemented lens CL2 moves to the image side (image plane I) along the optical axis AX.
  • the fourth positive lens unit G4 includes a biconvex positive ninth lens L9, a biconvex positive tenth lens L10, and a negative eleventh meniscus lens L11 with the convex surface facing the image side.
  • the positive tenth lens L10 and the negative eleventh meniscus lens L11 constitute a cemented lens CL3.
  • a parallel flat plate F1 and a parallel flat plate F2 are arranged behind the fourth group G4 (on the image plane I side).
  • the parallel plate F2 is attached to a front surface of an image sensor (not shown) by a cover glass CG.
  • the parallel plate F1 is a filter for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • FIGS. 13A, 13B, 13C and 13D show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the normal observation state of the present embodiment.
  • FIGS. 13E, 13F, 13G, and 13H show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the close observation state of the present embodiment. ).
  • FIG. 14A is a cross-sectional view of the objective optical system according to the present example in a normal observation state (a long-distance object point), and FIG. 14B is a cross-sectional view in a close-up observation state (a short-distance object point). .
  • the objective optical system includes, in order from the object side, a positive first unit G1, a negative second unit G2, a brightness stop S, and a negative third unit G1.
  • a positive first unit G1 a negative first unit G1
  • a negative second unit G2 a brightness stop S
  • a negative third unit G1 a negative third unit G1.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative first lens L1 having a plane facing the object side, a parallel flat plate F1, and a positive second meniscus lens L2 having a convex surface facing the image side. And a negative third meniscus lens L3 having a convex surface facing the image side, and a biconvex positive fourth lens L4.
  • the positive second meniscus lens L2 and the negative third meniscus lens L3 constitute a cemented lens CL1.
  • the negative second group G2 has a biconcave fifth lens L5.
  • the negative fifth lens L5 moves to the image side (image plane I side) along the optical axis AX. I do.
  • a brightness stop S is arranged behind the second group G2 (on the image plane I side).
  • the negative third group G3 includes, in order from the object side, a negative sixth meniscus lens L6 having a convex surface facing the object side, and a positive seventh meniscus lens L7 having a convex surface facing the object side.
  • the negative sixth meniscus lens L6 and the positive seventh meniscus lens L7 constitute a cemented lens CL2.
  • the cemented lens CL2 moves to the image side (image plane I side) along the optical axis AX.
  • the positive fourth group G4 includes, in order from the object side, a biconvex positive eighth lens L8, a biconvex positive ninth lens L9, and a negative tenth meniscus lens L10 having a convex surface facing the image side. And The ninth positive lens L9 and the tenth negative meniscus lens L10 constitute a junction CL3.
  • a parallel flat plate F2 and a parallel flat plate F3 are arranged.
  • the parallel flat plate F3 is attached as a cover glass CG to the front surface of an image sensor (not shown).
  • the parallel plate F1 and the parallel plate F2 are filters for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • FIGS. 15A, 15B, 15C, and 15D show spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) in the normal observation state of the present embodiment.
  • FIGS. 15E, 15F, 15G, and 15H show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the close observation state of the present embodiment. ).
  • FIG. 16A is a cross-sectional view of the objective optical system according to the present example in a normal observation state (a long-distance object point), and FIG. 16B is a cross-sectional view in a close-up observation state (a short-distance object point). .
  • the objective optical system includes, in order from the object side, a positive first unit G1, a negative second unit G2, a brightness stop S, and a negative third unit G1.
  • a positive first unit G1 a negative first unit G1
  • a negative second unit G2 a brightness stop S
  • a negative third unit G1 a negative third unit G1.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative first lens L1 having a plane facing the object side, a parallel flat plate F1, and a positive second meniscus lens L2 having a convex surface facing the image side. And a negative third meniscus lens L3 having a convex surface facing the image side and a positive fourth meniscus lens L4 having a convex surface facing the object side.
  • the positive second meniscus lens L2 and the negative third meniscus lens L3 constitute a cemented lens CL1.
  • the negative second group G2 has a negative fifth meniscus lens L5 with the convex surface facing the object side.
  • the negative fifth meniscus lens L5 moves to the image side (image plane I side) along the optical axis AX. Moving.
  • a brightness stop S is arranged behind the second group G2 (on the image plane I side).
  • the negative third group G3 includes, in order from the object side, a biconcave negative sixth lens L6 and a biconvex positive seventh lens L7.
  • the negative sixth lens L6 and the positive seventh lens L7 constitute a cemented lens CL2.
  • the cemented lens CL2 moves to the image side (image plane I side) along the optical axis AX.
  • the positive fourth group G4 includes, in order from the object side, a biconvex positive eighth lens L8, a biconvex positive ninth lens L9, and a negative tenth meniscus lens L10 having a convex surface facing the image side. And The ninth positive lens L9 and the tenth negative meniscus lens L10 constitute a junction CL3.
  • a parallel flat plate F2 is disposed behind the fourth group G4 (on the image plane I side).
  • the parallel flat plate F2 is attached as a cover glass CG to the front surface of an image sensor (not shown).
  • the parallel plate F1 is a filter for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • 17A, 17B, 17C, and 17D show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the normal observation state of the present example.
  • 17 (e), (f), (g), and (h) show spherical aberration (SA), astigmatism (AS), distortion (DT), and chromatic aberration of magnification (CC) in the close observation state of the present embodiment. ).
  • r is the radius of curvature of each lens surface
  • d is the distance between each lens surface
  • ne is the refractive index of the e-line of each lens
  • ⁇ d is the Abbe number of each lens
  • Fno is the F number
  • 2 ⁇ is the full angle of view
  • IH are image heights.
  • the stop is a brightness stop.
  • Numerical example 1 Unit mm Surface data Surface number r d ne ⁇ d 1 ⁇ 0.380 1.88815 40.76 2 1.2815 1.335 3 -2.7347 0.797 1.51825 64.14 4 -1.6935 0.231 5 -2.1424 0.542 1.72733 29.23 6 15.3785 0.695 1.77621 49.60 7 -2.5873 0.020 8 2.9604 0.718 1.59667 35.31 9 -14.2460 Variable 10 -4.4554 0.286 1.75453 35.33 11 -13.9667 variable 12 (aperture) ⁇ 0.020 13 2.2922 0.285 1.73429 28.46 14 1.5748 Variable 15 8.8855 0.760 1.77621 49.60 16 -2.8180 0.032 17 5.0609 1.054 1.69979 55.53 18 -1.8002 0.478 1.97189 17.47 19 -26.0438 0.152 20 ⁇ 0.320 1.51825 64.14 21 ⁇ 0.500 22 ⁇
  • Numerical example 2 Unit mm Surface data Surface number r d ne ⁇ d 1 ⁇ 0.385 1.88815 40.76 2 1.4871 2.377 3 ⁇ 0.500 1.49557 75.00 4 ⁇ 0.606 5 -43.4711 2.000 1.77621 49.60 6 -1.9369 0.447 1.59911 39.24 7 -10.2589 0.020 8 2.7843 0.717 1.59667 35.31 9 -27.1989 0.406 10 (aperture) ⁇ ⁇ variable 11 -4.6572 0.240 1.51977 52.43 12 -34.2554 Variable 13 4.3339 0.180 1.70442 30.13 14 1.4414 0.478 1.48915 70.23 15 2.1269 Variable 16 2.6219 0.638 1.77621 49.60 17 -6.8528 0.606 18 -3.6963 0.874 1.69979 55.53 19 -1.7059 0.478 1.93429 18.90 20 -3.3679 0.200 21 ⁇ 0.
  • Numerical example 3 Unit mm Surface data Surface number r d ne ⁇ d 1 ⁇ 0.380 1.88815 40.76 2 1.1477 1.498 3 ⁇ 0.500 1.51825 64.14 4 ⁇ 0.606 5 -6.4863 2.000 1.77621 49.60 6 -1.5836 0.450 1.59911 39.24 7 -4.0682 0.020 8 5.5995 0.717 1.59667 35.31 9 -7.9918 Variable 10 -6.4172 0.240 1.51977 52.43 11 -34.2554 0.020 12 (aperture) ⁇ ⁇ variable 13 11.9362 0.300 1.59667 35.31 14 2.3063 Variable 15 4.2276 0.638 1.77621 49.60 16 11.0452 0.215 17 3.4879 1.850 1.48915 70.23 18 -1.7623 0.478 1.93429 18.90 19 -3.0209 0.391 20 ⁇ 0.500 1.51825 64.14 21 ⁇ 2.229 22 ⁇ 0.800 1.88815 40.76 23
  • Numerical example 4 Unit mm Surface data Surface number r d ne ⁇ d 1 ⁇ 0.380 1.88815 40.76 2 1.2649 1.323 3 -3.4997 0.797 1.51825 64.14 4 -1.6811 0.126 5 -1.9395 0.542 1.72733 29.23 6 19.3591 1.036 1.77621 49.60 7 -2.5749 0.020 8 2.6839 0.718 1.59667 35.31 9 -10.7355 variable 10 -3.7069 0.286 1.75453 35.33 11 -9.7789 Variable 12 (aperture) ⁇ 0.020 13 2.9773 0.285 1.73429 28.46 14 1.7166 Variable 15 5.7655 0.760 1.77621 49.60 16 -3.1662 0.032 17 6.5961 1.054 1.69979 55.53 18 -1.7956 0.478 1.97189 17.47 19 -35.2137 0.157 20 ⁇ 0.320 1.51825 64.14 21 ⁇ 0.500 22 ⁇
  • Numerical example 5 Unit mm Surface data Surface number r d ne ⁇ d 1 ⁇ 0.383 1.88815 40.76 2 1.2260 1.379 3 ⁇ 0.350 1.88815 40.76 4 ⁇ 0.480 5 -8.7232 1.600 1.77621 49.60 6 -2.5072 0.320 1.58482 40.75 7 -3.5270 0.020 8 5.4575 0.717 1.59667 35.31 9 -4.8801 Variable 10 -5.2079 0.300 1.51825 64.14 11 -4.7433 0.240 1.51977 52.43 12 -34.2554 0.100 13 (aperture) ⁇ variable 14 8.7235 0.300 1.59667 35.31 15 1.1844 0.650 1.49846 81.54 16 4.1376 Variable 17 2.9597 0.638 1.77621 49.60 18 -7.5247 0.239 19 10.4640 1.000 1.48915 70.23 20 -2.5938 0.350 1.93429 18.90 21 -21.5658 0.150 22 ⁇
  • Numerical example 6 Unit mm Surface data Surface number r d ne ⁇ d 1 ⁇ 0.340 1.88815 40.76 2 1.3383 1.078 3 6.0440 0.450 1.48915 70.23 4 2.0791 0.843 5 14.1820 1.600 1.77621 49.60 6 -1.6879 0.320 1.58482 40.75 7 -4.5957 0.020 8 4.0754 0.717 1.59667 35.31 9 -8.6881 variable 10 -19.9927 0.400 1.85504 23.78 11 6.0323 0.200 12 (aperture) ⁇ variable 13 7.0194 0.300 1.64268 44.87 14 1.2018 0.650 1.49846 81.54 15 4.6383 Variable 16 3.0725 0.800 1.77621 49.60 17 -6.8430 0.241 18 10.9631 1.500 1.53947 74.70 19 -2.0587 0.350 1.97189 17.47 20 -5.0060 0.116 21 ⁇ 0.500 1.51825 64.14 22 ⁇ 0.800 23 ⁇ 0.550 1.
  • Numerical example 7 Unit mm Surface data Surface number r d ne ⁇ d 1 ⁇ 0.340 1.88815 40.76 2 1.3136 1.173 3 ⁇ 0.450 1.51825 64.14 4 ⁇ 1.040 5 -22.0438 1.600 1.77621 49.60 6 -1.9707 0.320 1.58482 40.75 7 -5.4934 0.020 8 3.1357 0.717 1.59667 35.31 9 -11.8675 variable 10 -29.3373 0.400 1.85504 23.78 11 5.4879 0.100 12 (aperture) ⁇ ⁇ variable 13 146.8933 0.300 1.67340 47.23 14 1.2019 0.650 1.53947 74.70 15 27.7287 Variable 16 3.1252 1.200 1.77621 49.60 17 -11.8652 0.241 18 11.7363 1.500 1.53947 74.70 19 -2.0431 0.350 1.97189 17.47 20 -4.0454 0.124 21 ⁇ 0.350 1.51825 64.14 22 ⁇ 0.934
  • Numerical example 8 Unit mm Surface data Surface number r d ne ⁇ d 1 ⁇ 0.340 1.88815 40.76 2 1.2866 1.200 3 ⁇ 0.450 1.51825 64.14 4 ⁇ 0.930 5 -9.2138 1.600 1.77621 49.60 6 -2.1791 0.320 1.79192 25.68 7 -3.2640 0.020 8 3.0261 0.717 1.65222 33.79 9 201.4069
  • Variable 10 2.9154 0.400 1.93429 18.90 11 1.7853 0.200 12 (aperture) ⁇ ⁇ variable 13 -8.4150 0.300 1.67340 47.23 14 1.4007 0.650 1.53947 74.70 15 -12.4275 Variable 16 2.9859 1.200 1.77621 49.60 17 -14.1885 0.240 18 12.7780 1.500 1.53947 74.70 19 -1.9349 0.350 1.97189 17.47 20 -3.8880 1.120 21 ⁇ 0.700 1.88815 40.76 22 Imaging surface ⁇ Various data Normal
  • Table 1 below shows conditional expression corresponding values of conditional expressions (1) to (16) in the configuration of each embodiment.
  • Table 1 Conditional expressions Example 1 Example 2 Example 3 Example 4 (1) 0.508 0.157 0.364 0.146 (2) 0.783 0.392 1.07 0.686 (3) 0.648 0.401 0.34 0.213 (4) -1.59 -1.426 -1.215 -1.52 (5) 2.498 2.328 2.549 2.138 (6) 1.657 1.062 1.252 1.234 (7) -9.681 -8.855 -14.326 -8.62 (8) -9.079 -4.072 -4.557 -6.517 (9) 2.712 2.569 3.45 2.792 (10) 3.422 1.062 1.942 2.231 (11) 3.012 5.617 4.656 3.331 (12) 1.066 2.175 3.143 1.323 (13) 1.637 2.42 2.756 2.262 (14) -3.348 -1.585 -1.321 -2.334 (15) 2.981 4.92 3.921 3.15
  • t12n is an interval between the first lens unit and the second lens unit when a short-distance object point is focused
  • t12f is the distance between the first lens unit and the second lens unit when focusing on a long-distance object point
  • F is the focal length of the entire objective optical system when focusing on a long-distance object point
  • t34f is the distance between the third and fourth lens units when focusing on a long-distance object point
  • t34n is an interval between the third unit and the fourth unit at the time of focusing on a short-distance object point
  • F is the focal length of the entire objective optical system when focusing on a long-distance object point
  • conditional expressions may be used alone or in any combination, and the effects of the present invention are achieved. Further, a conditional expression in which the upper limit value and the lower limit value of the conditional expression are individually changed may be used, and the effect of the present invention is similarly exerted.
  • a high-performance and bright Fno objective that has reduced manufacturing error sensitivity and is compatible with a high-pixel and small-sized imaging device. Useful for optical systems.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)

Abstract

物点距離の変化に応じて拡大観察するためにフォーカシングできる対物光学系において、製造誤差感度を低減し、高画素かつ小型の撮像素子に対応した、高性能でFnoが明るい対物光学系を提供すること。 物体側から順に、正の第1群、負の第2群、負の第3群、正の第4群を有し、第2群と第3群が共に像側へ移動することで遠距離物点から近距離物点へのフォーカシングを行い、 以下の条件式(1)を満足することを特徴とする。 0.1 < (t12n-t12f)/F < 1.2 (1) ここで、 t12nは、近距離物点合焦時での第1群と第2群の間隔、 t12fは、遠距離物点合焦時での第1群と第2群の間隔、 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、 である。

Description

対物光学系
 本発明は、合焦機能を有する対物光学系に関する。特に、近接観察可能な内視鏡対物光学系、その他民生用の小型カメラ等の撮影レンズに関する。
 一般的な内視鏡対物光学系は、物体側におおよそ5mm~100mmの広い範囲の被写界深度を有する。このような対物光学系を搭載した内視鏡では、主にCCDやCMOSなどの固体撮像素子を用いて画像を提供する。近年、診断の精度を向上させることを目的に、内視鏡画像の高画質化が求められている。内視鏡画像の高画質化のために、撮像素子の高画素化が進んでいる。
 しかしながら、高精細の撮像素子を使用した場合、回折に起因して画質が劣化する。画質の劣化を避けるために、対物光学系のFナンバー(Fno)を小さくする必要がある。また、画素数増加の影響で撮像素子のサイズが大きくなる。撮像素子のサイズが大きくなると、対物光学系の焦点距離も大きくする必要がある。Fnoを小さくすることと、対物光学系の焦点距離を大きくすることを理由に、被写界深度が狭くなる。そのため、従来並みの被写界深度を確保するためにフォーカシング機能を有する対物光学系の必要性が増している。
 また、近年、医療用内視鏡の分野では、病変の質的診断を行なうために拡大観察(近接観察)が可能な光学系の要求が強まっている。拡大観察が可能な内視鏡対物光学系は、1mm~3mm程度の被写体距離にフォーカシングして拡大観察を行う。
 近距離物点へのフォーカシングが可能である拡大内視鏡用の対物光学系において、可動群が1群であるタイプの光学系は多数開示されている。また、拡大内視鏡用の対物光学系において、可動群の数が2群である拡大内視鏡用の対物光学系が特許文献1から9に開示されている。
特許第4723628号公報 特許第3722458号公報 特開2009-300489号公報 特許第4834799号公報 特開2015-22161号公報 特許第5567224号公報 特許第5567225号公報 特開平6-289291号公報 特開2002-72089号公報
 特許文献1は、負・正・負の3群構成の対物光学系を開示する。特許文献2、3、5、6、7は、負・正・負・正の4群構成の対物光学系を開示する。特許文献8、9は、正・負・正・正の4群構成の対物光学系を開示する。特許文献4は、負・正・負・正や正・負・正・正をはじめ様々な屈折力タイプの対物光学系を開示する。
 近年、拡大観察が可能な内視鏡に搭載されている高画素化された撮像素子は、年々小型化している。そのため、対物光学系に関して、高画素の撮像素子に対応して高性能化が求められている。
 また、撮像素子の小型化、高精細化に対しては、従来技術の光学系をそのまま小型化した対物光学系では対応できない。撮像素子の小型化、高精細化に対しては、十分に明るい光学系が必要である。
 しかしながら、上記特許文献1から9に開示されている従来のいずれの対物光学系は、Fnoが大きい。このため、従来の上記対物光学系は、小型、高精細の撮像素子に対応した光学性能を有するとは言い難い。
 さらに、これら従来の対物光学系のFnoを小さくした場合でも、所望の収差性能を得ることは難しいことは容易に予測される。このため、従来の対物光学系は、高精細な撮像素子に対応した対物光学系とは言い難い。
 また、撮像素子を小型化していくと誤差感度が高くなる。特に、拡大観察が可能な内視鏡用の対物光学系では、可動群の屈折力が強くなる傾向にある。高精細な撮像素子に対応して、対物光学系のFnoを小さくすると、誤差感度を低減させる必要性が増す。
 本発明は上記の点を鑑みてなされたものであり、物点距離の変化に応じて拡大観察するためにフォーカシングできる対物光学系において、製造誤差感度を低減し、高画素かつ小型の撮像素子に対応した、高性能でFnoが明るい対物光学系を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係る対物光学系は、物体側から順に、正の第1群、負の第2群、負の第3群、正の第4群を有し、第2群と第3群がともに像側へ移動することで遠距離物点から近距離物点へのフォーカシングを行い、
 条件式(1)を満足することを特徴とする。
 0.1 < (t12n-t12f)/F < 1.2     (1) 
 t12nは、近距離物点合焦時での第1群と第2群の間隔、
 t12fは、遠距離物点合焦時での第1群と第2群の間隔、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
である。
 なお、以下、「通常観察状態」を適宜、遠距離物点合焦時という。また、「拡大観察状態」を、適宜、近接観察状態、近距離物点合焦時という。
 本発明は、物点距離の変化に応じて拡大観察(近接観察)するためにフォーカシングできる対物光学系において、製造誤差感度を低減し、高画素かつ小型の撮像素子に対応した、高性能でFnoが明るい対物光学系を提供できるという効果を奏する。
(a)、(b)は、本発明の一実施形態に係る対物光学系の断面構成を示す図である。(a)は対物光学系の通常観察状態における断面図、(b)は対物光学系の近接観察状態における断面図である。 本発明の実施例1に係る対物光学系の断面構成を示す図である。(a)は対物光学系の通常観察状態における断面図、(b)は対物光学系の近接観察状態における断面図である。 (a)、(b)、(c)、(d)は、それぞれ実施例1に係る対物光学系の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)を示す収差図である。(e)、(f)、(g)、(f)は、それぞれ実施例1に係る対物光学系の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)を示す収差図である。 (a)、(b)は、本発明の実施例2に係る対物光学系の断面構成を示す図である。(a)は対物光学系の通常観察状態における断面図、(b)は対物光学系の近接観察状態における断面図である。 (a)、(b)、(c)、(d)は、それぞれ実施例2に係る対物光学系の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)を示す収差図である。(e)、(f)、(g)、(f)は、それぞれ実施例2に係る対物光学系の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)を示す収差図である。 (a)、(b)は、本発明の実施例3に係る対物光学系の断面構成を示す図である。(a)は通常観察状態における断面図、(b)は近接観察状態における断面図である。 (a)、(b)、(c)、(d)は、それぞれ実施例3に係る対物光学系の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)を示す収差図である。(e)、(f)、(g)、(f)は、それぞれ実施例3に係る対物光学系の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)を示す収差図である。 (a)、(b)は、本発明の実施例4に係る対物光学系の断面構成を示す図である。(a)は通常観察状態における断面図、(b)は近接観察状態における断面図である。 (a)、(b)、(c)、(d)は、それぞれ実施例4に係る対物光学系の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)を示す収差図である。(e)、(f)、(g)、(f)は、それぞれ実施例4に係る対物光学系の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)を示す収差図である。 (a)、(b)は、本発明の実施例5に係る対物光学系の断面構成を示す図である。(a)は通常観察状態における断面図、(b)は近接観察状態における断面図である。 (a)、(b)、(c)、(d)は、実施例5に係る対物光学系の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)をそれぞれ示す収差図である。(e)、(f)、(g)、(f)は、それぞれ実施例5に係る対物光学系の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)を示す収差図である。 (a)、(b)は、本発明の実施例6に係る対物光学系の断面構成を示す図である。(a)は通常観察状態における断面図、(b)は近接観察状態における断面図である。 (a)、(b)、(c)、(d)は、実施例6に係る対物光学系の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)をそれぞれ示す収差図である。(e)、(f)、(g)、(f)は、それぞれ実施例6に係る対物光学系の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)を示す収差図である。 (a)、(b)は、本発明の実施例7に係る対物光学系の断面構成を示す図である。(a)は通常観察状態における断面図、(b)は近接観察状態における断面図である。 (a)、(b)、(c)、(d)は、実施例7に係る対物光学系の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)をそれぞれ示す収差図である。(e)、(f)、(g)、(f)は、それぞれ実施例7に係る対物光学系の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)を示す収差図である。 (a)、(b)は、本発明の実施例8に係る対物光学系の断面構成を示す図である。(a)は通常観察状態における断面図、(b)は近接観察状態における断面図である。 (a)、(b)、(c)、(d)は、それぞれ実施例8に係る対物光学系の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、及び倍率色収差(CC)を示す収差図である。(e)、(f)、(g)、(f)は、それぞれ実施例8に係る対物光学系の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT),及び倍率色収差(CC)を示す収差図である。
 以下に、実施形態に係る対物光学系を図面に基づいて詳細に説明する。なお、この実施形態により、この発明が限定されるものではない。
 図1(a)、(b)は、本発明の一実施形態に係る対物光学系の断面構成を示す図である。(a)は対物光学系の通常観察状態における断面図、(b)は対物光学系の近接観察状態における断面図である。
 本実施形態に係る対物光学系は、物体側から順に、正の屈折力を有する第1群G1、負の屈折力を有する第2群G2、明るさ絞りS、負の屈折力を有する第3群G3、正の屈折力を有する第4群G4を有する。
 正の第1群G1は、物体側から順に、負の第1レンズL1と、正の第2レンズL2と、負の第3レンズL3と、正の第4レンズL4と、を有する。正の第2レンズL2と負の第3レンズL3は接合され、接合レンズCL1を構成する。
 負の第2群G2は、負の第5レンズL5を有する。
 負の第3群G3は、物体側から順に、負の第6レンズL6と、正の第7レンズL7と、を有する。負の第6レンズL6と正の第7レンズL7は接合され、接合レンズCL2を構成する。
 第2群G2は像側に移動し、共に第3群G3は像側に移動する。これにより、遠距離物点から近距離物点へフォーカシングする。
 正の第4群G4は、物体側から順に、正の第8レンズL8と、正の第9レンズL9と、負の第10レンズL10と、を有する。正の第9レンズL9と負の第10レンズL10は接合され、接合レンズCL3を構成する。
 明るさ絞りSは、第2群G2と第3群G3との間に配置されている。
 負の第1レンズL1と正の第2レンズL2の間に、第1の平行平板F1が配置されている。第1の平行平板F1は、対物光学系中の任意の位置に配置できる。また、対物光学系の像面Iには、撮像素子(不図示)の撮像面(像面I)が配置されている。撮像面には、平行平板であるカバーガラスCGが貼り付けられている。
 本実施形態の対物光学系の構成を、以下に説明する。
 また、本実施形態の好ましい態様によれば、可動群を有する光学系は、小型化、高性能化を達成するためには、各レンズ群の移動量が重要となる。そのため、本実施形態に係る対物光学系は、以下の条件式(1)を満足することが望ましい。
 0.1 < (t12n-t12f)/F < 1.2     (1)
 ここで、
 t12nは、近距離物点合焦時での第1群G1と第2群G2の間隔、
 t12fは、遠距離物点合焦時での第1群G1と第2群G2の間隔、
 Fは、遠距離物点合焦時の対物光学系全系の焦点距離、
である。ここで、第1群G1と第2群G2の間隔とは、第1群G1の最も像面側に近いレンズ面と、第2レンズ群G2の最も物体側に近いレンズ面との距離である。
 さらに、本実施形態の好ましい態様によれば、以下の条件式(2)を満足することが望ましい。
 0.2 < (t34f-t34n)/F < 2      (2) 
 ここで、
 t34fは、遠距離物点合焦時での第3群G3と第4群G4の間隔、
 t34nは、近距離物点合焦時での第3群G3と第4群G4の間隔、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
である。ここで、第3群G3と第4群G4の間隔とは、第3群G3の最も像面側に近いレンズ面と、第4レンズ群G4の最も物体側に近いレンズ面との距離である。
 条件式(1)及び条件式(2)は、第2群G2と第3群G3それぞれのレンズの移動量に関するものである。
 条件式(1)の下限値を下回ると、第2群G2の移動量の確保が困難となる。また、条件式(1)の上限値を上回ると、第1群G1と第2群G2の間隔が大きくなり過ぎる。このため、第2群G2の移動量を確保できる。しかし、光学系の全長が長くなり過ぎるため光学系が大型化するおそれがある。
 条件式(1)に代えて、以下の条件式(1’)を満足することが好ましい。
 0.1 < (t12n-t12f)/F < 0.7     (1’)
 これにより、対物光学系を一層小型化できる。
 条件式(2)は、条件式(1)と同様に、可動群の移動量を確保することと小型化に寄与する。条件式(2)の下限値を下回ると、第3群G3の移動量の確保が困難となる。また、条件式(2)の上限値を上回ると、第3群G3と第4群G4の間隔が大きくなり過ぎる。このため、第3群G3の移動量を確保できる。しかし、対物光学系の全長が長くなり過ぎるため光学系が大型化するおそれがある。
 さらに、対物光学系の全長の小型化のために、条件式(2)の上限値は以下の範囲に限定することが望ましい。
 条件式(2)に代えて、以下の条件式(2’)を満足することが好ましい。
 0.2 < (t34f-t34n)/F < 1.6      (2’) 
 これにより、対物光学系をさらに小型化できる。
 条件式(2)に代えて、以下の条件式(2”)を満足することがより好ましい。
 0.2 < (t34f-t34n)/F < 1.2      (2”) 
 これにより、対物光学系をより一層小型化できる。
 また、本実施形態の好ましい態様によれば、可動群の移動量に関して、条件式(1)、条件式(2)と共に以下の条件式(3)を満足することが望ましい。
 0.1 < (t12n-t12f)/(t34f-t34n) < 2.2   (3)
 ここで、
 t12nは、近距離物点合焦時での第1群G1と第2群G2の間隔、
 t12fは、遠距離物点合焦時での第1群G1と第2群G2の間隔、
 t34fは、遠距離物点合焦時での第3群G3と第4群G4の間隔、
 t34nは、近距離物点合焦時での第3群G3と第4群G4の間隔、
である。
 条件式(3)は、可動群の移動量の適切な範囲に関する。条件式(3)の下限値を下回ると、第1群G1と第2群G2の間隔が小さくなる。この場合、第2群G2を移動する空間の確保が困難となる。
 本実施形態の対物光学系の特徴の一つは、最至近の物点距離が3mm前後までフォーカシングできることである。フォーカシングの際、レンズの移動量が確保できない場合、近距離の物点にフォーカシングできない。このため、近距離物点に関して十分な倍率での観察が困難となる。
 さらに、所定のスペースに収まるように第2群G2の移動量を小さくした場合、第2群G2の光軸上の位置精度による像面位置感度が高くなる。この場合、製造誤差による第2群G2の位置ずれに対する像面位置ずれが大きくなるという不具合が生じやすくなる。
 また、条件式(3)の上限値を上回ると、第3群G3と第4群G4の間隔が小さくなる。この場合、第3群G3の移動スペースの確保が困難となる。フォーカシングの際、レンズの移動量が確保できない場合、近距離の物点にフォーカシングできない。このため、近距離物点に関して十分な倍率での観察が困難となる。
 さらに、不十分なスペースに収まるように第3群G3の移動量を小さくした場合、第3群G3の光軸上の位置精度による像面位置感度が高くなる。この場合、製造誤差による第3群G3の位置ずれに対する像面位置ずれが大きくなるという不具合が生じやすくなる。
 条件式(3)に代えて、以下の条件式(3’)を満足することが好ましい。
 0.1 < (t12n-t12f)/(t34f-t34n) < 1.6
                                                          (3’)
 これにより、第3群G3の移動スペース確保がさらに容易となる。
 また、本実施形態の好ましい態様によれば、第1群G1は、物体側から順に、負の第1レンズL1と後続の正のサブレンズ群で構成する。後続の正のサブレンズ群とは、第1群G1の像面側へ後続するレンズをいう。具体的には、後続の正のサブレンズ群とは、第2レンズL2から後方(像面側)のレンズである。従って、後続の正のサブレンズ群は、第2レンズL2から第1群G1の最終第4レンズL4までをいう。なお、平行平板F1は、屈折力を有していない。このため、平行平板F1は、第1群G1に含まれる場合と、含まれない場合のいずれの場合でも良い。本実施形態では、第1群G1の最も物体側に近いレンズには、平行平板F1が含まれる。
 負の第1レンズL1は像側に凹面を向けた平凹レンズであることが望ましい。内視鏡の先端部は、送水する機構を有する。この機構は、ノズルからレンズ面を洗浄するために送水する。対物光学系の先端が平面の場合、ノズルの送水部から反対側の、ノズルの送水部から遠い位置まで送水し、洗浄することが容易となる。
 後続に正のサブレンズ群は、少なくとも正の第4レンズL4と、接合レンズCL1を有することが好ましい。このように第1群G1は、負、正の屈折力構成とする。さらに、第1群G1の第1レンズL1の負の屈折力と後続の正のサブレンズ群の屈折力をそれぞれ適切に配置する。これにより、第2群G2と第3群G3の移動スペースを確保することが容易となる。さらに、軸上色収差と倍率色収差補正のバランスをとることができる。加えて、像面湾曲を良好に補正できる。
 また、本実施形態の好ましい態様によれば、以下の条件式(4)を満足することが望ましい。
 -1 < fG1-1/F < -2   (4)
 ここで、 
 fG1-1は、第1群G1の最も物体側に近いレンズの焦点距離、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
 条件式(4)は物点距離の変化による像面湾曲の変動を補正することに関する。条件式(4)の下限値を下回ると、近距離物点合焦時での像面湾曲が大きくオーバーに傾くため好ましくない。また、条件式(4)の上限値を上回ると、遠距離物点合焦時での像面湾曲が大きくアンダーに傾き、さらにはコマ収差補正が困難となる。さらに、第1群G1におけるバックフォーカスを確保がしづらくなるため、後方の可動群のスペースの確保が困難となる。
 また、本実施形態の好ましい態様によれば、以下の条件式(5)を満足することが望ましい。
 1.8 < fG1-2/F < 3.5   (5)
 ここで、
 fG1-2は、第1群G1の最も物体側に近いレンズの後続の正のサブレンズ群の焦点距離、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
である。
 条件式(5)は、fG1-2とFの適切な比に関する。条件式(5)の下限値を下回ると、後続の正のサブレンズ群での屈折力が強すぎるため第2群G2以降の可動スペースの確保が困難になる。さらに近距離物点を観察した場合の像面がアンダーに傾く。このため、像面弯曲が大きくなってしまう。
 条件式(5)の上限値を上回ると、軸上色収差、倍率色収差ともに、C線(656.3nm)の収差曲線がアンダーに倒れ、F線(486.1nm)の収差曲線がオーバーに傾く。このため、色収差を補正することが難しくなる。
 条件式(5)に代えて、以下の条件式(5’)を満足することが好ましい。
 2 < fG1-2/F < 3  (5’) 
 条件式(5’)を満足する範囲内であれば、像面湾曲補正が容易となり、さらに色収差もより良好に補正することが可能となる。
 また、本実施形態の好ましい態様によれば、正の第1群G1の屈折力を適切に配することが望ましい。第1群G1で発生する色収差を良好に補正する。この場合、後続の群で色収差が発生したとしても、以下の条件式(6)の範囲内であれば十分に収差補正されている。このため、対物光学系の全系の収差への寄与は少ない。さらには、対物光学系を小型化できる。
 そのため、本実施形態の好ましい態様によれば、条件式(4)、条件式(5)を満たすと同時に、以下の条件式(6)を満足することが望ましい。
 0.6 < fG1/F < 2.2   (6) 
 ここで、
 fG1は、第1群G1の焦点距離、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
である。
 条件式(6)は、fG1とFの適切な比に関する。条件式(6)の下限値を下回ると、C線とF線の倍率色収差が補正過剰となるため好ましくない。
 また、条件式(6)の上限値を上回ると、軸上色収差のバランスが崩れるため好ましくない。また、倍率色収差が補正不足となるため好ましくない。いずれの場合も画面周辺での色にじみを伴うコントラストの低下を招いてしまう。
 さらに、条件式(6)は、対物光学系全系の小型化にも寄与している。条件式(6)の上限値を上回ると正の屈折力が弱くなる。このため、対物光学系の全長の短縮が困難となる。さらには第1レンズL1に入射する光線高が高くなるため、光学系も大型化してしまう。
 条件式(6)に代えて、以下の条件式(6’)を満足することが好ましい。
 1.0 <fG1/F < 1.8   (6’) 
 条件式(6’)の下限の範囲内では、像面湾曲をさらに良好に補正できる。また、条件式(6’)の上限の範囲では、対物光学系をさらに小型化できる。
 また、本実施形態の好ましい態様によれば、以下の条件式(7)を満足することが望ましい。
 -18 < fG2/F < -4.5   (7) 
 ここで、
 fG2は、第2群G2の焦点距離、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
である。
 条件式(7)は、第2群G2の焦点距離に関するものである。第2群G2は第3群G3と共に屈折力を分散させている。第2群G2は、物点距離の変化に応じて像面を合わせるためのフォーカシング機能を担っている。
 このような可動レンズ群を構成する場合、レンズを保持する枠の構造上、移動枠と固定枠のクリアランスが生ずる。このため、可動枠が存在すると、固定枠のみのレンズ群に比べて、レンズの偏心量が大きくなる。
 レンズ群の屈折力が強いと、枠同士のクリアランスを小さくした場合でも、レンズの駆動時の偏心量を極力小さく抑える必要がある。そのため、駆動レンズである第2群G2の屈折力は、条件式(7)を満足する範囲であることが望ましい。
 条件式(7)の下限値を下回ると、第2群G2の屈折力は弱くなり偏心による誤差感度は低減できる。しかし、第2群G2の移動量が大きくなるため好ましくない。
 条件式(7)の上限値を上回ると、第2群G2の屈折力が強くなり過ぎ、枠同士が偏心した場合、光学性能の劣化が著しくなる。
 また、本実施形態の好ましい態様によれば、以下の条件式(8)を満足することが望ましい。
 -10 < fG3/F < -3   (8) 
 ここで、
 fG3は、第3群G3の焦点距離、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
 条件式(8)は、第3群G3の焦点距離に関するものである。第3群G3は第2群G2と共に屈折力を分散させている。第3群G3は、物点距離の変化に応じて像面を合わせるためのフォーカシング機能を担っている。
 このような可動レンズ群を構成する場合、レンズを保持する枠の構造上、移動枠と固定枠との間にクリアランスが生ずる。このため、光学系が可動枠を有する場合、固定枠のみのレンズ群に比べてレンズの偏心量が大きくなる。
 レンズ群の屈折力が強いと、枠同士のクリアランスを小さくした場合でも、レンズの駆動時の偏心量を極力小さく抑える必要がある。そのため、駆動レンズである第3群G3の屈折力は、条件式(8)を満足する範囲であることが望ましい。
 条件式(8)の下限値を下回ると、第3群G3の屈折力が強くなり過ぎ、枠同士の偏心が偏心した場合、光学性能劣化が著しくなる。また、条件式(8)の上限値を上回ると、屈折力は弱くなり偏心による誤差感度は低減できる。しかし、第3群G3の移動量が大きくなるため好ましくない。
 また、本実施形態の好ましい態様によれば、以下の条件式(9)を満足することが望ましい。
 1 < fG4/F < 5   (9) 
 ここで、
 fG4は、第4群G4の焦点距離、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
である。
 条件式(9)は、像面湾曲の補正に寄与するものである。条件式(9)の下限値を下回ると、像面がアンダーに傾く。条件式(9)の上限値を上回ると、像面がオーバーに傾く。このため、画面の中心部分と周辺部でピントの合わない画像となってしまうため好ましくない。
 条件式(9)に代えて、以下の条件式(9’)を満足することが好ましい。
 2 < fG4/F < 4   (9’)
 条件式(9’)を満足する範囲では、像面湾曲補正がより良好となる。 
 また、本実施形態の好ましい態様によれば、以下の条件式(10)を満足することが望ましい。
 1 < fG1S/F < 8   (10) 
 ここで、
 fG1Sは、遠距離物点合焦時の第1群G1から明るさ絞りSまでの合成焦点距離、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
である。
 条件式(10)は、色収差の補正と像面湾曲の補正に寄与するものである。条件式(10)の下限値を下回ると、像面がオーバーに傾く。さらには倍率色収差のF線の収差曲線がアンダーに大きく傾く。
 条件式(10)の上限値を上回ると像面がアンダーに傾く。そして、遠距離物点合焦時のF線の収差曲線と、近距離物点合焦時のC線の収差曲線がそれぞれオーバー側に傾くため好ましくない。
 さらに、明るさ絞りSよりも前群での焦点距離が大きくなる。このため、明るさ絞りSよりも前群での焦点位置が物体側からより遠くに位置する。このことにより、対物光学系の全系での大型化を招いてしまい好ましくない。さらに、画角への影響も著しく、広角化が難しくなる。このため、内視鏡の観察に必要な観察画角を維持できなくなる。
 条件式(10)に代えて、以下の条件式(10’)を満足することが好ましい。条件式(10)の上限値を限定することでさらに小型化に寄与することが可能となる。
 1 < fG1S/F < 5.5   (10’)
 条件式(10’)を満足する範囲では、像面湾曲補正がより良好となる。 
 また、本実施形態の好ましい態様によれば、以下の条件式(11)を満足することが望ましい。
 2 < fGS4/F < 7   (11) 
 ここで、
 fGS4は、遠距離物点合焦時の明るさ絞りSから第4群G4までの合成焦点距離、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
である。
 条件式(11)は、色収差補正と像面湾曲補正に寄与するものである。条件式(11)の下限値を下回ると、像面がアンダーに傾く。さらには軸上倍率色収差のF線の収差曲線がオーバーに大きく傾く。
 条件式(11)の上限値を上回ると、像面がオーバーに傾く。特に遠距離物点合焦時の倍率色収差が悪化する。F線の収差曲線がアンダーに大きく傾く。C線の収差曲線がオーバーに大きく傾く。この場合、周辺画像の劣化が著しくなり好ましくない。
 条件式(11)に代えて、以下の条件式(11’)を満足することが好ましい。条件式(11)は下記の様に限定することで、像面湾曲と倍率色収差の補正がさらに良好となる。
 2.4 < fGS4/F < 6.2   (11’)
 また、本実施形態の好ましい態様によれば、以下の条件式(12)を満足することが望ましい。
 0.5 < fG2/fG3 < 3.5   (12) 
 ここで、
 fG2は、第2群G2の焦点距離、
 fG3は、第3群G3の焦点距離、
である。
 条件式(12)は、第2群G2と第3群G3の屈折力を適切にする比に関する。この場合、フォーカシング時における像面変動を抑えることができる。また、対物光学系の小型化へ寄与できる。
 条件式(12)の下限値を下回ると、第2群G2の屈折力が強くなり過ぎる。そして、フォーカシングに伴う像面湾曲の変動が大きくなる。これにより、通常観察時(遠距離物点合焦時)における像面位置と近距離物点合焦時における像面位置に著しい差が出てくる。さらには第3群G3の屈折力が弱くなるため第3群G3の移動量が大きくなる。このため、対物光学系の全系の大型化を招くため好ましくない。
 また、条件式(12)の上限値を上回ると第3群G3の屈折力が強くなり過ぎる。この場合、倍率色収差が大きくなる。また、フォーカシング時の像面の変動も大きくなるため好ましくない。
 また、本実施形態の好ましい態様によれば、以下の条件式(13)を満足することが望ましい。
 1.5 < fG4/fG1 < 3.5   (13) 
 ここで、
 fG4は、第4群G4の焦点距離、
 fG1は、第1群G1の焦点距離、
である。
 条件式(13)は、第1群G1と第4群G4の屈折力を適切にする比に関する。対物光学系の全系の小型化に寄与する条件式である。
 条件式(13)の下限値を下回ると、第1群G1の屈折力が弱くなり過ぎる。そして、第1レンズL1へ入射する光線高が多くなってしまう。このため、第1群G1内のレンズ径が大型化する。
 条件式(13)の上限値を上回ると、第1群G1の屈折力が弱くなり過ぎる。このため、第1群G1による焦点位置が像面側にシフトする。この結果として、全長が長くなりレンズ系全体が大型化してしまう。
 条件式(13)に代えて、以下の条件式(13’)を満足することが好ましい。条件式(13)の上限は以下の様に限定するとよい。
 1.5 < fG4/fG1 < 3   (13’)
 これにより、条件式(13’)の上限の範囲内では、さらなる小型化が可能となる。
 また、本実施形態の好ましい態様によれば、以下の条件式(14)を満足することが望ましい。
 -4 < fG3/fG4 < -1   (14) 
 ここで、
 fG3は、第3群G3の焦点距離、
 fG4は、第4群G4の焦点距離、
である。
 条件式(14)は、遠距離物点合焦時における収差補正に関するものである。第1群G1内の負屈折力の第1レンズL1で発生した収差を後方のレンズ群である第3群G3と第4群G4で補正する。
 そのため、第3群G3と第4群G4の屈折力を適切にすることが必要となる。条件式(14)の下限値を下回ると、特に、軸上色収差が大きくなり好ましくない。条件式(14)の上限値を上回ると、倍率色収差が大きくなり好ましくない。
 また、本実施形態の好ましい態様によれば、以下の条件式(15)を満足することが望ましい。
 2.5 < Fno < 5.2    (15)
 ここで、
 Fnoは、遠距離物点合焦時の対物光学系のF値、
である。
 条件式(15)は、対物光学系のFnoに関する。条件式(15)の下限値を下回ると、明るい光学系が実現できる。しかし、被写界深度が浅くなるため好ましくない。
 条件式(15)の上限値を上回ると、回折限界の影響に起因して、高精細な撮像素子に対応した空間周波数における光学性能が得られなくなる。
 また、本実施形態の好ましい態様によれば、以下の条件式(16)を満足することが望ましい。
 0.8 < Fno/Fno_N < 1.2    (16)
 ここで、
 Fnoは、遠距離物点合焦時の対物光学系のF値、
 Fno_Nは、近距離物点合焦時の対物光学系のF値、
である。
 条件式(16)は、遠距離物点合焦時のFnoと近距離物点合焦時のFnoの比に関する。遠距離物点合焦時のFnoと近距離物点合焦時のFnoの差は少ない方が好ましく、条件式の範囲であることが望ましい。
 Fnoにより像面における最小錯乱円径が次式(A)で決まる。
(像面における最小錯乱円径)= 1.22×(Fno)×(波長)  (A)
 上記式(A)から、Fnoが大きいと最小錯乱円径が大きくなる。そして、高画素化した撮像素子に対応できず画質劣化を招いてしまう。このため、近距離物点合焦時のFnoと遠距離物点合焦時のFnoの差が大きくない方が好ましい。Fnoの差が条件式(16)の範囲を超えるとフォーカシングした際の画質の差が大きくなってしまい好ましくない。
 条件式(16)の下限値を下回ると近距離物点合焦時の画質劣化が大きくなるため好ましくない。また、条件式(16)の上限値を上回ると遠距離物点合焦時の画質劣化が大きくなるので好ましくない。
(実施例1)
 実施例1に係る対物光学系について説明する。
図2(a)は、本実施例に係る対物光学系の、通常観察状態(遠距離物点合焦時)における断面図、図2(b)は近接観察状態(近距離物点合焦時)における断面図である。
 図2(a)、(b)に示すように、対物光学系は、物体側から順に、正の第1群G1と、負の第2群G2と、明るさ絞りSと、負の第3群G3と、正の第4群G4と、を有する。
 正の第1群G1は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、両凹の負の第3レンズL3と、両凸の正の第4レンズL4と、両凸の正の第5レンズL5と、を有する。負の第3レンズL3と正の第4レンズL4は接合レンズCL1を構成する。
 負の第2群G2は、像側に凸面を向けた負の第6メニスカスレンズL6を有する。負の第6メニスカスレンズL6は、通常観察状態(図2(a))から近接観察状態(図2(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I)に移動する。
 負の第3群G3は、物体側に凸面を向けた負の第7メニスカスレンズL7を有する。負の第7メニスカスレンズL7は、通常観察状態(図2(a))から近接観察状態(図2(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I)に移動する。
 第3群G3の前方(物体側)には、明るさ絞りSが配置されている。
 正の第4群G4は、物体側から順に、両凸の正の第8レンズL8と、両凸の正の第9レンズL9と、像側に凸面を向けた負の第10メニスカスレンズL10と、を有する。正の第9レンズL9と負の第10メニスカスレンズL10は接合レンズCL2を構成する。
 第4群G4の後ろ(像面I側)には、物体側から順に、平行平板F1と、平行平板F2とが配置されている。平行平板F2は、図示しない撮像素子の前面にカバーガラスCGとして貼り付けられている。
 平行平板F1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのフィルターである。
 図3(a)、(b)、(c)、(d)は、本実施例の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。図3(e)、(f)、(g)、(h)は、本実施例の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
 これら、諸収差図は、656.3nm(C線)、486.1nm(F線)及び546.1nm(e線)の各波長について示す。また、各図中、”ω”は半画角を示す。以下、収差図に関しては、同様の符号を用いる。
(実施例2)
 実施例2に係る対物光学系について説明する。図4(a)は、本実施例に係る対物光学系の、通常観察状態(遠距離物点)における断面図、図4(b)は近接観察状態(近距離物点)における断面図である。
 図4(a)、(b)に示すように、対物光学系は、物体側から順に、正の第1群G1と、明るさ絞りSと、負の第2群G2と、負の第3群G3と、正の第4群G4と、を有する。
 正の第1群G1は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、平行平板F1と、像側に凸面を向けた正の第2メニスカスレンズL2と、像側に凸面を向けた負の第3メニスカスレンズL3と、両凸の正の第4レンズL4と、を有する。正の第2メニスカスレンズL2と負の第3メニスカスレンズL3は接合レンズCL1を構成する。
 第1群G1の後方(像面I側)には、明るさ絞りSが配置されている。
 負の第2群G2は、像側に凸面を向けた負の第5メニスカスレンズL5を有する。負の第5メニスカスレンズL5は、通常観察状態(図4(a))から近接観察状態(図4(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I)に移動する。
 負の第3群G3は、物体側に凸面を向けた負の第6メニスカスレンズL6と、物体側に凸面を向けた正の第7メニスカスレンズL7と、を有する。負の第6メニスカスレンズL6と正の第7メニスカスレンズL7は接合レンズCL2を構成する。接合レンズCL2は、通常観察状態(図4(a))から近接観察状態(図4(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I)に移動する。
 正の第4群G4は、物体側から順に、両凸の正の第8レンズL8と、像側に凸面を向けた正の第9メニスカスレンズL9と、像側に凸面を向けた負の第10メニスカスレンズL10と、を有する。正の第9メニスカスレンズL9と負の第10メニスカスレンズL10は接合レンズCL3を構成する。
 第4群G4の後方(像面I側)には、平行平板F2と、平行平板F3とが配置されている。平行平板F3は、図示しない撮像素子の前面にカバーガラスCGとして貼り付けられている。
 平行平板F1、平行平板F2は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのフィルターである。
 図5(a)、(b)、(c)、(d)は、本実施例の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。図5(e)、(f)、(g)、(h)は、本実施例の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
(実施例3)
 実施例3に係る対物光学系について説明する。図6(a)は、本実施例に係る対物光学系の、通常観察状態(遠距離物点)における断面図、図6(b)は近接観察状態(近距離物点)における断面図である。
 図6(a)、(b)に示すように、対物光学系は、物体側から順に、正の第1群G1と、負の第2群G2と、明るさ絞りSと、負の第3群G3と、正の第4群G4と、を有する。
 正の第1群G1は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、平行平板F1と、像側に凸面を向けた正の第2メニスカスレンズL2と、像側に凸面を向けた負の第3メニスカスレンズL3、両凸の正の第4レンズL4と、を有する。正の第2メニスカスレンズL2と負の第3メニスカスレンズL3は接合レンズCL1を構成する。
 負の第2群G2は、像側に凸面を向けた負の第5メニスカスレンズL5を有する。負の第5メニスカスレンズL5は、通常観察状態(図6(a))から近接観察状態(図6(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I)に移動する。
 第2群G2の後方(像面I側)には、明るさ絞りSが配置されている。
 負の第3群G3は、物体側に凸面を向けた負の第6メニスカスレンズL6を有する。負の第6レンズL6は、通常観察状態(図6(a))から近接観察状態(図6(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I)に移動する。
 正の第4群G4は、物体側から順に、物体側に凸面を向けた正の第7メニスカスレンズL7と、両凸の正の第8レンズL8と、像側に凸面を向けた負の第9メニスカスレンズL9と、を有する。正の第8レンズL8と負の第9メニスカスレンズL9は接合レンズCL2を構成する。
 第4群G4の後方(像面I側)には、平行平板F2と、平行平板F3とが配置されている。平行平板F3は、図示しない撮像素子の前面にカバーガラスCGとして貼り付けられている。
 平行平板F1、平行平板F2は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのフィルターである。
 図7(a)、(b)、(c)、(d)は、本実施例の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。図7(e)、(f)、(g)、(h)は、本実施例の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
(実施例4)
 実施例4に係る対物光学系について説明する。図8(a)は、本実施例に係る対物光学系の、通常観察状態(遠距離物点)における断面図、図8(b)は近接観察状態(近距離物点)における断面図である。
 図8(a)、(b)に示すように、対物光学系は、物体側から順に、正の第1群G1と、負の第2群G2と、明るさ絞りSと、負の第3群G3と、正の第4群G4と、を有する。
 正の第1群G1は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、両凹の負の第3レンズL3と、両凸の正の第4レンズL4と、両凸の正の第5レンズL5と、を有する。負の第3レンズL3と正の第4レンズL4は接合レンズCL1を構成する。
 負の第2群G2は、像側に凸面を向けた負の第6メニスカスレンズL6を有する。負の第6メニスカスレンズL6は、通常観察状態(図8(a))から近接観察状態(図8(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I)に移動する。
 負の第3群G3は、物体側に凸面を向けた負の第7メニスカスレンズL7を有する。負の第7メニスカスレンズL7は、通常観察状態(図8(a))から近接観察状態(図8(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I)に移動する。
 第3群G3の前方(物体側)には、明るさ絞りSが配置されている。
 正の第4群G4は、物体側から順に、両凸の正の第8レンズL8と、両凸の正の第9レンズL9と、像側に凸面を向けた負の第10メニスカスレンズL10と、を有する。正の第9レンズL9と負の第10メニスカスレンズL10は接合されたCL2を構成する。
 第4群G4の後方(像面I側)には、平行平板F1と、平行平板F2とが配置されている。平行平板F2は、図示しない撮像素子の前面にカバーガラスCGとして貼り付けられている。
 平行平板F1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのフィルターである。
 図9(a)、(b)、(c)、(d)は、本実施例の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。図9(e)、(f)、(g)、(h)は、本実施例の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
(実施例5)
 実施例5に係る対物光学系について説明する。図10(a)は、本実施例に係る対物光学系の、通常観察状態(遠距離物点)における断面図、図10(b)は近接観察状態(近距離物点)における断面図である。
 図10(a)、(b)に示すように、対物光学系は、物体側から順に、正の第1群G1と、負の第2群G2と、明るさ絞りSと、負の第3群G3と、正の第4群G4と、を有する。
 正の第1群G1は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、平行平板F1と、像側に凸面を向けた正の第2メニスカスレンズL2と、像側に凸面を向けた負の第3メニスカスレンズL3と、両凸の正の第4レンズL4と、を有する。正の第2メニスカスレンズL2と負の第3メニスカスレンズL3は接合レンズCL1を構成する。
 負の第2群G2は、物体側から順に、像側に凸面を向けた正の第5メニスカスレンズL5と、像側に凸面を向けた負の第6メニスカスレンズL6と、を有する。正の第5メニスカスレンズL5と負の第6メニスカスレンズL6は接合された接合レンズCL2を構成する。接合レンズCL2は、通常観察状態(図10(a))から近接観察状態(図10(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I側)に移動する。
 第2群G2の後方(像面I側)には、明るさ絞りSが配置されている。
 負の第3群G3は、物体側から順に、物体側に凸面を向けた負の第7メニスカスレンズL7と、物体側に凸面を向けた正の第8メニスカスレンズL8と、を有する。負の第7メニスカスレンズL7と正の第8メニスカスレンズL8は接合されてCL3を構成する。接合レンズCL3は、通常観察状態(図10(a))から近接観察状態(図10(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I側)に移動する。
 正の第4群G4は、物体側から順に、両凸の正の第9レンズL9と、両凸の正の第10レンズL10と、像側に凸面を向けた負の第11メニスカスレンズL11と、を有する。正の第10レンズL10と負の第11メニスカスレンズL11は接合レンズCL4を構成する。
 第4群G4の後方(像面I側)には、平行平板F2と、平行平板F3が配置されている。平行平板F3は、図示しない撮像素子の前面にカバーガラスCGとして貼り付けられている。
 平行平板F1、平行平板F2は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのフィルターである。
 図11(a)、(b)、(c)、(d)は、本実施例の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。図11(e)、(f)、(g)、(h)は、本実施例の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
(実施例6)
 実施例6に係る対物光学系について説明する。図12(a)は、本実施例に係る対物光学系の、通常観察状態(遠距離物点)における断面図、図12(b)は近接観察状態(近距離物点)における断面図である。
 図12(a)、(b)に示すように、対物光学系は、物体側から順に、正の第1群G1と、負の第2群G2と、明るさ絞りSと、負の第3群G3と、正の第4群G4と、を有する。
 正の第1群G1は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、物体側に凸面を向けた負の第2メニスカスレンズL2と、両凸の正の第3レンズL3と、像側に凸面を向けた負の第4メニスカスレンズL4と、両凸の正の第5レンズL5と、を有する。正の第3レンズL3と負の第4メニスカスレンズL4は接合レンズCL1を構成する。
 負の第2群G2は、両凹の負の第6レンズL6を有する。負の第6レンズL6は、通常観察状態(図12(a))から近接観察状態(図12(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I)に移動する。
 第2群G2の後方(像面I側)には、明るさ絞りSが配置されている。
 負の第3群G3は、物体側から順に、物体側に凸面を向けた負の第7メニスカスレンズL7と、物体側に凸面を向けた正の第8メニスカスレンズL8と、を有する。負の第7メニスカスレンズL7と正の第8メニスカスレンズL8は接合レンズCL2を構成する。接合レンズCL2は、通常観察状態(図12(a))から近接観察状態(図12(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I)に移動する。
 正の第4群G4は、両凸の正の第9レンズL9と、両凸の正の第10レンズL10と、像側に凸面を向けた負の第11メニスカスレンズL11と、を有する。正の第10レンズL10と負の第11メニスカスレンズL11は接合レンズCL3を構成する。
 第4群G4の後方(像面I側)には、平行平板F1と、平行平板F2が配置されている。平行平板F2は、図示しない撮像素子の前面にカバーガラスCG貼り付けられている。
 平行平板F1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのフィルターである。
 図13(a)、(b)、(c)、(d)は、本実施例の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。図13(e)、(f)、(g)、(h)は、本実施例の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
(実施例7)
 実施例7に係る対物光学系について説明する。図14(a)は、本実施例に係る対物光学系の、通常観察状態(遠距離物点)における断面図、図14(b)は近接観察状態(近距離物点)における断面図である。
 図14(a)、(b)に示すように、対物光学系は、物体側から順に、正の第1群G1と、負の第2群G2と、明るさ絞りSと、負の第3群G3と、正の第4群G4と、を有する。
 正の第1群G1は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、平行平板F1と、像側に凸面を向けた正の第2メニスカスレンズL2と、像側に凸面を向けた負の第3メニスカスレンズL3と、両凸の正の第4レンズL4と、を有する。正の第2メニスカスレンズL2と負の第3メニスカスレンズL3は接合レンズCL1を構成する。
 負の第2群G2は、両凹の第5レンズL5を有する。負の第5レンズL5は、通常観察状態(図14(a))から近接観察状態(図14(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I側)に移動する。
 第2群G2の後方(像面I側)には、明るさ絞りSが配置されている。
 負の第3群G3は、物体側から順に、物体側に凸面を向けた負の第6メニスカスレンズL6と、物体側に凸面を向けた正の第7メニスカスレンズL7と、を有する。負の第6メニスカスレンズL6と正の第7メニスカスレンズL7は接合レンズCL2を構成する。接合レンズCL2は、通常観察状態(図14(a))から近接観察状態(図14(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I側)に移動する。
 正の第4群G4は、物体側から順に、両凸の正の第8レンズL8と、両凸の正の第9レンズL9と、像側に凸面を向けた負の第10メニスカスレンズL10と、を有する。正の第9レンズL9と負の第10メニスカスレンズL10は接合CL3を構成する。
 第4群G4の後方(像面I側)には、平行平板F2と、平行平板F3が配置されている。平行平板F3は、図示しない撮像素子の前面にカバーガラスCGとして貼り付けられている。
 平行平板F1、平行平板F2は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのフィルターである。
 図15(a)、(b)、(c)、(d)は、本実施例の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。図15(e)、(f)、(g)、(h)は、本実施例の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
(実施例8)
 実施例8に係る対物光学系について説明する。図16(a)は、本実施例に係る対物光学系の、通常観察状態(遠距離物点)における断面図、図16(b)は近接観察状態(近距離物点)における断面図である。
 図16(a)、(b)に示すように、対物光学系は、物体側から順に、正の第1群G1と、負の第2群G2と、明るさ絞りSと、負の第3群G3と、正の第4群G4と、を有する。
 正の第1群G1は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、平行平板F1と、像側に凸面を向けた正の第2メニスカスレンズL2と、像側に凸面を向けた負の第3メニスカスレンズL3と、物体側に凸面を向けた正の第4メニスカスレンズL4と、を有する。正の第2メニスカスレンズL2と負の第3メニスカスレンズL3は接合レンズCL1を構成する。
 負の第2群G2は、物体側に凸面を向けた負の第5メニスカスレンズL5を有する。負の第5メニスカスレンズL5は、通常観察状態(図16(a))から近接観察状態(図16(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I側)に移動する。
 第2群G2の後方(像面I側)には、明るさ絞りSが配置されている。
 負の第3群G3は、物体側から順に、両凹の負の第6レンズL6と、両凸の正の第7レンズL7と、を有する。負の第6レンズL6と正の第7レンズL7は接合レンズCL2を構成する。接合レンズCL2は、通常観察状態(図16(a))から近接観察状態(図16(b))へフォーカシングするに際して、光軸AXに沿って像側(像面I側)に移動する。
 正の第4群G4は、物体側から順に、両凸の正の第8レンズL8と、両凸の正の第9レンズL9と、像側に凸面を向けた負の第10メニスカスレンズL10と、を有する。正の第9レンズL9と負の第10メニスカスレンズL10は接合CL3を構成する。
 第4群G4の後方(像面I側)には、平行平板F2が配置されている。 
 平行平板F2は、図示しない撮像素子の前面にカバーガラスCGとして貼り付けられている。
 平行平板F1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのフィルターである。
 図17(a)、(b)、(c)、(d)は、本実施例の通常観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。図17(e)、(f)、(g)、(h)は、本実施例の近接観察状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
 以下に、上記各実施例の数値データを示す。記号は、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、neは各レンズのe線の屈折率、νdは各レンズのアッベ数、FnoはFナンバー、2ωは全画角、IHは像高である。絞りは、明るさ絞りである。
数値実施例1
単位    mm
 
面データ
  面番号      r          d          ne        νd
      1       ∞        0.380     1.88815    40.76
      2      1.2815     1.335
      3     -2.7347     0.797     1.51825    64.14
      4     -1.6935     0.231
      5     -2.1424     0.542     1.72733    29.23
      6     15.3785     0.695     1.77621    49.60
      7     -2.5873     0.020
      8      2.9604     0.718     1.59667    35.31
      9    -14.2460     可変   
     10     -4.4554     0.286     1.75453    35.33
     11    -13.9667     可変  
     12(絞り)∞        0.020
     13      2.2922     0.285     1.73429    28.46
     14      1.5748     可変  
     15      8.8855     0.760     1.77621    49.60
     16     -2.8180     0.032
     17      5.0609     1.054     1.69979    55.53
     18     -1.8002     0.478     1.97189    17.47
     19    -26.0438     0.152
     20       ∞        0.320     1.51825    64.14
     21       ∞        0.500
     22       ∞        0.880     1.51825    64.14
     23撮像面 ∞
 
各種データ
                 通常観察状態     近接観察状態
  焦点距離          0.907            1.020
  Fno               2.95             3.0
  物点距離         15.0              2.66
  IH                1.0mm
  2ω             158°
 
   d9               0.2504           0.7110  
   d11              0.0265           0.2767  
   d14              1.8762           1.1654  
 
数値実施例2 
単位    mm
 
面データ
  面番号      r          d          ne        νd
      1       ∞        0.385     1.88815    40.76
      2      1.4871     2.377
      3       ∞        0.500     1.49557    75.00
      4       ∞        0.606
      5    -43.4711     2.000     1.77621    49.60
      6     -1.9369     0.447     1.59911    39.24
      7    -10.2589     0.020
      8      2.7843     0.717     1.59667    35.31
      9    -27.1989     0.406
     10(絞り)∞        可変  
     11     -4.6572     0.240     1.51977    52.43
     12    -34.2554     可変  
     13      4.3339     0.180     1.70442    30.13
     14      1.4414     0.478     1.48915    70.23
     15      2.1269     可変  
     16      2.6219     0.638     1.77621    49.60
     17     -6.8528     0.606
     18     -3.6963     0.874     1.69979    55.53
     19     -1.7059     0.478     1.93429    18.90
     20     -3.3679     0.200
     21       ∞        0.450     1.51825    64.14
     22       ∞        0.821
     23       ∞        0.550     1.88815    40.76
     24撮像面 ∞
 
各種データ
                   通常観察状態     近接観察状態
  焦点距離            1.174            1.242
  Fno                 4.92             5.42
  物点距離           26.3              3.35   
  IH                  1.0mm
  2ω               120.8°
 
   d10                0.16             0.3448  
   d12                0.02             0.2955  
   d15                0.6962           0.2359  
 
数値実施例3
単位    mm
 
面データ
  面番号      r          d          ne        νd
      1       ∞        0.380     1.88815    40.76
      2      1.1477     1.498
      3       ∞        0.500     1.51825    64.14
      4       ∞        0.606
      5     -6.4863     2.000     1.77621    49.60
      6     -1.5836     0.450     1.59911    39.24
      7     -4.0682     0.020
      8      5.5995     0.717     1.59667    35.31
      9     -7.9918     可変   
     10     -6.4172     0.240     1.51977    52.43
     11    -34.2554     0.020
     12(絞り)∞        可変  
     13     11.9362     0.300     1.59667    35.31
     14      2.3063     可変  
     15      4.2276     0.638     1.77621    49.60
     16     11.0452     0.215
     17      3.4879     1.850     1.48915    70.23
     18     -1.7623     0.478     1.93429    18.90
     19     -3.0209     0.391
     20       ∞        0.500     1.51825    64.14
     21       ∞        2.229
     22       ∞        0.800     1.88815    40.76
     23撮像面 ∞
 
各種データ
                   通常観察状態     近接観察状態
  焦点距離            1.064            1.309
  Fno                 3.92             4.69
  物点距離           26.3              2.22
  IH                  1.0mm
  2ω               153.4°
 
   d9                 0.115            0.502  
   d12                0.0333           0.7842  
   d14                1.5              0.3621
 
数値実施例4
単位    mm
 
面データ
  面番号      r          d          ne        νd
      1       ∞        0.380     1.88815    40.76
      2      1.2649     1.323
      3     -3.4997     0.797     1.51825    64.14
      4     -1.6811     0.126
      5     -1.9395     0.542     1.72733    29.23
      6     19.3591     1.036     1.77621    49.60
      7     -2.5749     0.020
      8      2.6839     0.718     1.59667    35.31
      9    -10.7355     可変   
     10     -3.7069     0.286     1.75453    35.33
     11     -9.7789     可変  
     12(絞り)∞        0.020
     13      2.9773     0.285     1.73429    28.46
     14      1.7166     可変  
     15      5.7655     0.760     1.77621    49.60
     16     -3.1662     0.032
     17      6.5961     1.054     1.69979    55.53
     18     -1.7956     0.478     1.97189    17.47
     19    -35.2137     0.157
     20       ∞        0.320     1.51825    64.14
     21       ∞        0.500
     22       ∞        0.880     1.51825    64.14
     23撮像面 ∞
 
各種データ
                   通常観察状態     近接観察状態
  焦点距離            0.937            1.024
  Fno                 3.15             3.16
  物点距離           15                3.66
  IH                  1.0mm
  2ω               155.3°
 
   d9                 0.2036           0.3402  
   d11                0.02             0.526  
   d14                1.7759           1.1333  
 
数値実施例5
単位    mm
 
面データ
  面番号      r          d          ne        νd
      1       ∞        0.383     1.88815    40.76
      2      1.2260     1.379
      3       ∞        0.350     1.88815    40.76
      4       ∞        0.480
      5     -8.7232     1.600     1.77621    49.60
      6     -2.5072     0.320     1.58482    40.75
      7     -3.5270     0.020
      8      5.4575     0.717     1.59667    35.31
      9     -4.8801     可変   
     10     -5.2079     0.300     1.51825    64.14
     11     -4.7433     0.240     1.51977    52.43
     12    -34.2554     0.100
     13(絞り)∞        可変  
     14      8.7235     0.300     1.59667    35.31
     15      1.1844     0.650     1.49846    81.54
     16      4.1376     可変  
     17      2.9597     0.638     1.77621    49.60
     18     -7.5247     0.239
     19     10.4640     1.000     1.48915    70.23
     20     -2.5938     0.350     1.93429    18.90
     21    -21.5658     0.150
     22       ∞        0.550     1.51825    64.14
     23       ∞        0.596
     24       ∞        0.800     1.88815    40.76
     25撮像面 ∞  
 
各種データ
                   通常観察状態     近接観察状態
  焦点距離            1.089            1.157
  Fno                 3.56             3.81
  物点距離           26.3              3.65
  IH                  1.0mm
  2ω               135°
 
   d9                 0.15             0.3633  
   d13                0.0212           0.618  
   d16                0.9745           0.1644  
 
数値実施例6
単位    mm
 
面データ
  面番号      r          d          ne        νd
      1       ∞        0.340     1.88815    40.76
      2      1.3383     1.078
      3      6.0440     0.450     1.48915    70.23
      4      2.0791     0.843
      5     14.1820     1.600     1.77621    49.60
      6     -1.6879     0.320     1.58482    40.75
      7     -4.5957     0.020
      8      4.0754     0.717     1.59667    35.31
      9     -8.6881     可変   
     10    -19.9927     0.400     1.85504    23.78
     11      6.0323     0.200
     12(絞り)∞        可変
     13      7.0194     0.300     1.64268    44.87
     14      1.2018     0.650     1.49846    81.54
     15      4.6383     可変  
     16      3.0725     0.800     1.77621    49.60
     17     -6.8430     0.241
     18     10.9631     1.500     1.53947    74.70
     19     -2.0587     0.350     1.97189    17.47
     20     -5.0060     0.116
     21       ∞        0.500     1.51825    64.14
     22       ∞        0.800
     23       ∞        0.550     1.88815    40.76
     24撮像面 ∞ 
 
各種データ
                   通常観察状態     近接観察状態
  焦点距離            1.084            1.176
  Fno                 3.42             3.48
  物点距離           26.3              3
  IH                  1.0mm
  2ω               130°
 
   d9                 0.15             0.57  
   d12                0.3435           0.256  
   d15                0.5685           0.236  
 
数値実施例7
単位    mm
 
面データ
  面番号      r          d          ne        νd
      1       ∞        0.340     1.88815    40.76
      2      1.3136     1.173
      3       ∞        0.450     1.51825    64.14
      4       ∞        1.040
      5    -22.0438     1.600     1.77621    49.60
      6     -1.9707     0.320     1.58482    40.75
      7     -5.4934     0.020
      8      3.1357     0.717     1.59667    35.31
      9    -11.8675     可変   
     10    -29.3373     0.400     1.85504    23.78
     11      5.4879     0.100
     12(絞り)∞        可変  
     13    146.8933     0.300     1.67340    47.23
     14      1.2019     0.650     1.53947    74.70
     15     27.7287     可変  
     16      3.1252     1.200     1.77621    49.60
     17    -11.8652     0.241
     18     11.7363     1.500     1.53947    74.70
     19     -2.0431     0.350     1.97189    17.47
     20     -4.0454     0.124
     21       ∞        0.350     1.51825    64.14
     22       ∞        0.934
     23       ∞        0.800     1.88815    40.76
     24撮像面 ∞
 
各種データ
                   通常観察状態     近接観察状態 
  焦点距離            1.124            1.248
  Fno                 3.48             3.56
  物点距離           26.3              2.48
  IH                  1.0mm
  2ω               130.8°
 
   d9                 0.15             0.6298  
   d12                0.3002           0.2621  
   d15                0.7108           0.2691  
 
数値実施例8
単位    mm
 
面データ
  面番号      r          d          ne        νd
      1       ∞        0.340     1.88815    40.76
      2      1.2866     1.200
      3       ∞        0.450     1.51825    64.14
      4       ∞        0.930
      5     -9.2138     1.600     1.77621    49.60
      6     -2.1791     0.320     1.79192    25.68
      7     -3.2640     0.020
      8      3.0261     0.717     1.65222    33.79
      9    201.4069     可変   
     10      2.9154     0.400     1.93429    18.90
     11      1.7853     0.200
     12(絞り)∞        可変  
     13     -8.4150     0.300     1.67340    47.23
     14      1.4007     0.650     1.53947    74.70
     15    -12.4275     可変  
     16      2.9859     1.200     1.77621    49.60
     17    -14.1885     0.240
     18     12.7780     1.500     1.53947    74.70
     19     -1.9349     0.350     1.97189    17.47
     20     -3.8880     1.120
     21       ∞        0.700     1.88815    40.76
     22撮像面 ∞  
 
各種データ
                   通常観察状態     近接観察状態
  焦点距離            1.109            1.219
  Fno                 3.02             3.03
  物点距離           26.3              2.18
  IH                  1.0mm
  2ω               133.9°
 
   d9                 0.15             0.7358  
   d12                0.2444           0.1052  
   d15                0.6918           0.2452 
 
 以下の表1に、各実施例の構成における条件式(1)から(16)の条件式対応値を示す。
 
(表1)
条件式    実施例1   実施例2   実施例3   実施例4  
 (1)       0.508     0.157     0.364     0.146  
 (2)       0.783     0.392     1.07      0.686 
 (3)       0.648     0.401     0.34      0.213   
 (4)      -1.59     -1.426    -1.215    -1.52  
 (5)       2.498     2.328     2.549     2.138  
 (6)       1.657     1.062     1.252     1.234  
 (7)      -9.681    -8.855   -14.326    -8.62  
 (8)      -9.079    -4.072    -4.557    -6.517   
 (9)       2.712     2.569     3.45      2.792  
(10)       3.422     1.062     1.942     2.231  
(11)       3.012     5.617     4.656     3.331
(12)       1.066     2.175     3.143     1.323 
(13)       1.637     2.42      2.756     2.262 
(14)      -3.348    -1.585    -1.321    -2.334 
(15)       2.981     4.92      3.921     3.15  
(16)       0.993     0.907     0.836     0.997 
 
条件式    実施例5   実施例6   実施例7  実施例8
 (1)       0.196     0.387     0.427     0.528
 (2)       0.744     0.307     0.393     0.403
 (3)       0.263     1.263     1.086     1.312
 (4)      -1.268    -1.39     -1.316    -1.306
 (5)       2.26      2.124     2.173     2.228
 (6)       1.361     1.221     1.181     1.237
 (7)     -10.918    -4.964    -4.785    -5.361
 (8)      -6.902    -6.918    -7.001    -6.949
 (9)       2.867     2.457     2.621     2.674
(10)       2.31      4.813     4.419     3.426
(11)       4.26      3.269     3.149     3.094
(12)       1.582     0.718     0.683     0.771
(13)       2.107     2.013     2.218     2.161
(14)      -2.407    -2.815    -2.672    -2.599
(15)       3.557     3.42      3.483     3.019
(16)       0.934     0.982     0.978     0.997
 
 以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。
(付記)
 なお、これらの実施例から以下の構成の発明が導かれる。 
(付記項1)
 物体側から順に、正の第1群、負の第2群、負の第3群、正の第4群を有し、
 第2群と第3群が共に像側へ移動することで遠距離物点から近距離物点へのフォーカシングを行い、以下の条件式(1)を満足することを特徴とする対物光学系。
 0.1 < (t12n-t12f)/F < 1.2     (1)
 ここで、
 t12nは、近距離物点合焦時での第1群と第2群の間隔、
 t12fは、遠距離物点合焦時での第1群と第2群の間隔、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
である。
(付記項2)
 以下の条件式(2)を満足することを特徴とする付記項1に記載の対物光学系。 
 0.2 < (t34f-t34n)/F < 2      (2)
 ここで、
  t34fは、遠距離物点合焦時での第3群と第4群の間隔、
 t34nは、近距離物点合焦時での第3群と第4群の間隔、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
である。 
(付記項3)
 以下の条件式(3)、(4)、(5)の少なくともいずれか一つの条件式を満足することを特徴とする付記項1に記載の対物光学系
 0.1 < (t12n-t12f)/(t34f-t34n) < 2.2     (3) 
  -1 < fG1-1/F < -2   (4)
 1.8 < fG1-2/F < 3.5   (5) 
 ここで、
 t12nは、近距離物点合焦時での第1群と第2群の間隔、
 t12fは、遠距離物点合焦時での第1群と第2群の間隔、
 t34fは、遠距離物点合焦時での第3群と第4群の間隔、
 t34nは、近距離物点合焦時での第3群と第4群の間隔、
 fG1-1は、第1群の最も物体側にあるレンズの焦点距離、
 fG1-2は、第1群の最も物体側にあるレンズの後続の正のサブレンズ群の焦点距離、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
である。 
(付記項4)
 以下の条件式(6)、(7)、(8)、(9)、(10)、(11)、(12)、(13)、(14)、(15)、(16)のうちの少なくともいずれか一つの条件式を満足することを特徴とする付記項1から3の何れか1項に記載の対物光学系。 
 0.6 < fG1/F < 2.2   (6) 
 -18 < fG2/F < -4.5   (7) 
 -10 < fG3/F < -3   (8) 
 1 < fG4/F < 5   (9) 
 1 < fG1S/F < 8   (10) 
 2 < fGS4/F < 7   (11) 
 0.5 < fG2/fG3 < 3.5   (12)
 1.5 < fG4/fG1 < 3.5   (13) 
 -4 < fG3/fG4 < -1   (14) 
 2.5 < Fno < 5.2    (15)
 0.8 < Fno/Fno_N < 1.2    (16)
 ここで、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
 fG1は、第1群の焦点距離、
 fG2は、第2群の焦点距離、
 fG3は、第3群の焦点距離、
 fG4は、第4群の焦点距離、
 fG1Sは、遠距離物点合焦時の第1群から明るさ絞りまでの合成焦点距離、
 fGS4は、遠距離物点合焦時の明るさ絞りから第4群までの合成焦点距離、
 Fnoは、遠距離物点合焦時の対物光学系のF値、
 Fno_Nは、近距離物点合焦時の対物光学系のF値、
である。 
(付記項5)
 以下の条件式(1’)、(2’)、(2”)、(3’)、(5’)、(6’)、(9’)、(10’)、(11’)、(13’)のうちの少なくともいずれか一つの条件式を満足することを特徴とする付記項1から4の何れか1項に記載の対物光学系。
 0.1 < (t12n-t12f)/F < 0.7     (1’)
 0.2 < (t34f-t34n)/F < 1.6      (2’) 
 0.2 < (t34f-t34n)/F < 1.2      (2”) 
 0.1 < (t12n-t12f)/(t34f-t34n) < 1.6     (3’)
 2 < fG1-2/F < 3    (5’)
 1 < fG1/F < 1.8   (6’) 
 2 < fG4/F < 4   (9’) 
 1 < fG1S/F < 5.5   (10’)
 2.4 < fGS4/F < 6.2   (11’) 
 1.5 < fG4/fG1 < 3   (13’) 
 ここで、
 t12nは、近距離物点合焦時での第1群と第2群の間隔、
 t12fは、遠距離物点合焦時での第1群と第2群の間隔、
 t34fは、遠距離物点合焦時での第3群と第4群の間隔、
 t34nは、近距離物点合焦時での第3群と第4群の間隔、
 Fは、遠距離物点合焦時の対物光学系の全系の焦点距離、
 fG1は、第1群の焦点距離、
 fG4は、第4群の焦点距離、
 fG1-2は、第1群の最も物体側に近いレンズの後続の正のサブレンズ群の焦点距離、
 fG1Sは、遠距離物点合焦時の第1群から明るさ絞りまでの合成焦点距離、
 fGS4は、遠距離物点合焦時の明るさ絞りから第4群までの合成焦点距離、
である。
 なお、各条件式は、いずれの条件式を単独で用いても、自由に組み合わせて用いてもよく、本発明の効果を奏する。また、条件式の上限値、下限値をそれぞれ単独に変更した条件式であってもよく、同様に本発明の効果を奏する。
 以上のように、物点距離の変化に応じて拡大観察するためにフォーカシングできる対物光学系において、製造誤差感度を低減し、高画素かつ小型の撮像素子に対応した、高性能でFnoが明るい対物光学系に有用である。
 G1 第1群
 G2 第2群
 G3 第3群
 G4 第4群
 S 明るさ絞り
 L1~L11 レンズ
 CL1~CL4 接合レンズ
 AX 光軸
 I 像面(撮像面)
 CG カバーガラス
 F1、F2、F3 平行平板

Claims (3)

  1.  物体側から順に、正の第1群、負の第2群、負の第3群、正の第4群を有し、
     前記第2群と前記第3群が共に像側へ移動することで遠距離物点から近距離物点へのフォーカシングを行い、
     以下の条件式(1)を満足することを特徴とする対物光学系。
     0.1 < (t12n-t12f)/F < 1.2     (1) 
     ここで、
     t12nは、近距離物点合焦時での前記第1群と前記第2群の間隔、
     t12fは、遠距離物点合焦時での前記第1群と前記第2群の間隔、
     Fは、遠距離物点合焦時の前記対物光学系の全系の焦点距離、
    である。
  2.  以下の条件式(2)を満足することを特徴とする請求項1に記載の対物光学系。
     0.2 < (t34f-t34n)/F < 2      (2) 
     ここで
     t34fは、遠距離物点合焦時での前記第3群と前記第4群の間隔、
     t34nは、近距離物点合焦時での前記第3群と前記第4群の間隔、
     Fは、遠距離物点合焦時の前記対物光学系の全系の焦点距離、
    である。
  3.  以下の条件式(3)、(4)、(5)の少なくともいずれかの一つの条件式を満足することを特徴とする請求項1に記載の対物光学系。
     0.1 < (t12n-t12f)/(t34f-t34n) < 2.2     (3) 
     -1 < fG1-1/F < -2   (4) 
     1.8 <fG1-2/F < 3.5   (5)
     ここで、
     t12nは、近距離物点合焦時での前記第1群と前記第2群の間隔、
     t12fは、遠距離物点合焦時での前記第1群と前記第2群の間隔、
     t34fは、遠距離物点合焦時での前記第3群と前記第4群の間隔、
     t34nは、近距離物点合焦時での前記第3群と前記第4群の間隔、
     fG1-1は、前記第1群の最も物体側にあるレンズの焦点距離、
     fG1-2は、前記第1群の最も物体側にあるレンズの後続の正のサブレンズ群の焦点距離、
     Fは、遠距離物点合焦時の前記対物光学系の全系の焦点距離、
    である。
PCT/JP2018/033232 2018-09-07 2018-09-07 対物光学系 WO2020049725A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/033232 WO2020049725A1 (ja) 2018-09-07 2018-09-07 対物光学系
JP2020540976A JP7024100B2 (ja) 2018-09-07 2018-09-07 対物光学系及び内視鏡
US17/146,533 US12004715B2 (en) 2018-09-07 2021-01-12 Objective optical system and endoscope using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033232 WO2020049725A1 (ja) 2018-09-07 2018-09-07 対物光学系

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/146,533 Continuation US12004715B2 (en) 2018-09-07 2021-01-12 Objective optical system and endoscope using the same

Publications (1)

Publication Number Publication Date
WO2020049725A1 true WO2020049725A1 (ja) 2020-03-12

Family

ID=69722493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033232 WO2020049725A1 (ja) 2018-09-07 2018-09-07 対物光学系

Country Status (3)

Country Link
US (1) US12004715B2 (ja)
JP (1) JP7024100B2 (ja)
WO (1) WO2020049725A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114035306B (zh) * 2021-11-26 2022-05-27 东莞市融光光学有限公司 一种水下广角透镜成像系统
CN117970608A (zh) * 2024-03-26 2024-05-03 舜宇光学(中山)有限公司 光学镜头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116709A (ja) * 1982-12-24 1984-07-05 Olympus Optical Co Ltd 望遠レンズのフオ−カシング方式
JPH10104505A (ja) * 1996-09-30 1998-04-24 Nikon Corp 長焦点マイクロレンズ
JP2007260305A (ja) * 2006-03-29 2007-10-11 Olympus Medical Systems Corp 撮像光学系
JP2013104956A (ja) * 2011-11-11 2013-05-30 Olympus Corp 対物光学系及びそれを備えた観察装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136810A (ja) * 1988-11-18 1990-05-25 Olympus Optical Co Ltd ズームレンズ
US5117309A (en) * 1989-06-15 1992-05-26 Olympus Optical Co., Ltd. Vari-focal lens system having graded refractive index lens
JPH06289291A (ja) 1993-03-31 1994-10-18 Canon Inc ズームレンズ
US6046861A (en) * 1997-10-08 2000-04-04 Vari-Lite. Inc. Zoom lens system having imaging and non-imaging ranges
JP3722458B2 (ja) 1999-09-20 2005-11-30 フジノン株式会社 内視鏡用対物レンズ
JP2002072089A (ja) 2000-09-04 2002-03-12 Minolta Co Ltd 撮像装置
DE102004026005B4 (de) * 2004-05-27 2006-06-14 Stm Medizintechnik Starnberg Gmbh ZOOMOBJEKTIV für Endoskopiegeräte
JP2009300489A (ja) 2008-06-10 2009-12-24 Fujinon Corp 変倍光学系および撮像装置
JP4723628B2 (ja) 2008-11-07 2011-07-13 Hoya株式会社 内視鏡対物光学系および内視鏡
CN102428401B (zh) 2009-05-26 2014-06-25 奥林巴斯医疗株式会社 内窥镜的物镜
JP2012008238A (ja) * 2010-06-23 2012-01-12 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
WO2013069266A1 (ja) 2011-11-09 2013-05-16 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡
CN103917909B (zh) 2011-11-09 2016-03-09 富士胶片株式会社 内窥镜用物镜及内窥镜
US9019621B2 (en) 2011-11-11 2015-04-28 Olympus Corporation Objective optical system and observation apparatus provided with the same
JP6145873B2 (ja) 2013-07-19 2017-06-14 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116709A (ja) * 1982-12-24 1984-07-05 Olympus Optical Co Ltd 望遠レンズのフオ−カシング方式
JPH10104505A (ja) * 1996-09-30 1998-04-24 Nikon Corp 長焦点マイクロレンズ
JP2007260305A (ja) * 2006-03-29 2007-10-11 Olympus Medical Systems Corp 撮像光学系
JP2013104956A (ja) * 2011-11-11 2013-05-30 Olympus Corp 対物光学系及びそれを備えた観察装置

Also Published As

Publication number Publication date
JP7024100B2 (ja) 2022-02-22
US12004715B2 (en) 2024-06-11
JPWO2020049725A1 (ja) 2021-06-03
US20210127956A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
JP4819969B2 (ja) 対物光学系
JP4934233B2 (ja) 対物光学系
JP4834799B2 (ja) 内視鏡の対物レンズ
US7616386B2 (en) Zoom lens and image-pickup apparatus
JP4919392B2 (ja) 投影用ズームレンズおよび投写型表示装置
JP6197147B1 (ja) 対物光学系
WO2016006486A1 (ja) 対物光学系
JP6266189B1 (ja) 対物光学系
JP6899030B2 (ja) 対物光学系、撮像装置、内視鏡、及び内視鏡システム
JP2004354888A (ja) 内視鏡用対物レンズ
JP2012047909A (ja) 内視鏡用結像光学系及びそれを備えた内視鏡
JP2013117657A (ja) ズームレンズ及び撮像装置
JP2009251432A (ja) 内視鏡用対物光学系
JP2014029375A (ja) ズームレンズ及びそれを有する撮像装置
WO2020049725A1 (ja) 対物光学系
JP6836466B2 (ja) 内視鏡対物光学系
WO2008105248A1 (ja) ズームレンズと、これを有する光学装置
JP6484759B2 (ja) 対物光学系
JP5082486B2 (ja) ズームレンズと、これを有する光学装置
JP2005091655A (ja) 内視鏡対物光学系
JP4898361B2 (ja) テレコンバータレンズ及びそれを有する撮像装置
JP7079895B2 (ja) 内視鏡対物光学系及び内視鏡
JP7079892B2 (ja) 内視鏡用対物光学系及び内視鏡
JP2006099130A (ja) ズームレンズ
JP2011013661A (ja) 顕微鏡用ズームレンズ、顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540976

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932697

Country of ref document: EP

Kind code of ref document: A1