WO2020049606A1 - 自動製氷機 - Google Patents
自動製氷機 Download PDFInfo
- Publication number
- WO2020049606A1 WO2020049606A1 PCT/JP2018/032542 JP2018032542W WO2020049606A1 WO 2020049606 A1 WO2020049606 A1 WO 2020049606A1 JP 2018032542 W JP2018032542 W JP 2018032542W WO 2020049606 A1 WO2020049606 A1 WO 2020049606A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ice
- tray
- ice making
- partition wall
- ice tray
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
- F25C1/10—Producing ice by using rotating or otherwise moving moulds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
- F25C1/22—Construction of moulds; Filling devices for moulds
- F25C1/24—Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/06—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
Definitions
- the present invention relates to an automatic ice maker provided with a mechanism for twisting an ice tray to separate ice from the ice tray.
- the automatic ice making machine includes an ice making tray having a plurality of ice making pockets, and an ice making machine main body that rotates the ice making tray while rotating to separate ice.
- the automatic ice maker is installed in a refrigerator or the like, and freezes water in an ice tray with cold air from a cooler to generate a plurality of ice particles. After ice-making, the ice-making machine twists the ice-making tray, and a plurality of ice particles are separated from the ice-making pocket and stored in an ice storage case provided at a lower portion.
- an automatic ice maker there is known an automatic ice maker provided with an ice tray provided with ice making pockets in a line (for example, see Patent Document 1).
- FIG. 9 or FIG. 11 of Patent Document 1 exemplifies a mode in which the opened upper surface of the ice making pocket is configured to be extremely wide with respect to the bottom surface. Thereby, ice-removing property can be secured.
- ice made in the ice making pocket having the shape described in Patent Literature 1 includes sharp corners and has a poor appearance, and may cause discomfort when the user puts it in his mouth.
- the present invention has been made in order to solve the above-described problems, and in an ice tray having a row of ice making pockets, an automatic ice tray with improved ice release without impairing the degree of freedom of the shape of the ice making pockets. It is intended to provide an ice machine.
- An automatic ice making machine has an ice tray having a plurality of ice making pockets arranged in a row, a partition wall connecting between the adjacent ice making pockets, and a longitudinal direction which is the one row direction of the ice making tray.
- the second moment of area around the axis in the cross section in the short direction passing through the partition wall is provided to be larger than the second moment of area around the axis in the short section through the ice making pocket. Adjustment rib.
- the automatic ice maker of this invention since the adjustment rib is provided in the ice tray provided with the ice-making pocket of one row, the ice-removing property can be improved, without impairing the flexibility of the shape of an ice-making pocket. .
- FIG. 2 is a schematic front view showing a state where a door of a refrigerator equipped with the automatic ice maker according to Embodiment 1 of the present invention is removed.
- FIG. 2 is a side sectional view of the refrigerator equipped with the automatic ice maker according to Embodiment 1 of the present invention.
- FIG. 2 is a perspective view of an ice tray of the automatic ice maker according to Embodiment 1 of the present invention. It is a perspective view of the automatic ice maker concerning Embodiment 1 of the present invention. It is a top view of the automatic ice maker concerning Embodiment 1 of the present invention. It is sectional drawing showing the AA cross section of the automatic ice maker of FIG.
- FIG. 8 is a cross-sectional view illustrating a cross section BB of the ice tray of FIG. 7.
- FIG. 8 is a cross-sectional view illustrating a cross section taken along line CC of the ice tray of FIG. 7.
- FIG. 8 is a partial sectional view showing a DD section of the ice tray of FIG. 7.
- FIG. 2 is a side view of the ice tray of the automatic ice maker according to Embodiment 1 of the present invention.
- FIG. 1 is a schematic front view showing a state in which a door of a refrigerator equipped with the automatic ice maker according to Embodiment 1 of the present invention is removed.
- the configuration of the refrigerator 1 when the automatic ice maker 10 is provided in the refrigerator 1 will be described with reference to FIG.
- the arrow X direction in FIG. 1 represents the width direction of the refrigerator 1, and the arrow Z direction represents the height direction of the refrigerator 1.
- the refrigerator 1 includes a refrigerator body having a heat insulating box 1a.
- the heat-insulating box 1a has an open front surface.
- a plurality of storage rooms such as a refrigerator room 100, a switching room 200, an ice making room 300, a freezing room 400, and a vegetable room 500 are formed.
- the refrigerator compartment 100 is provided at the uppermost part in the heat insulating box 1a.
- the switching room 200 and the ice making room 300 are provided in parallel below the refrigeration room 100.
- the freezing room 400 is arranged below the switching room 200 and the ice making room 300, and a vegetable room 500 is provided below the freezing room 400.
- the kind of storage room provided in the refrigerator 1 and the order of each storage room are not specifically limited to this.
- the ice making room 300 is arranged on the left side of the switching room 200 in the example shown in FIG. 1 and is set in a freezing temperature zone.
- the switching room 200 is variable from a freezing temperature zone (eg, ⁇ 18 ° C.) to a refrigerated temperature zone (eg, 3 ° C.), and switches to a set temperature zone such as chilled (0 ° C.) and soft frozen ( ⁇ 7 ° C.). be able to.
- the storage rooms are separated by a heat insulating wall 150 containing a heat insulating material.
- FIG. 2 is a side sectional view of the refrigerator equipped with the automatic ice maker according to Embodiment 1 of the present invention.
- FIG. 2 shows a cross section passing through the ice making chamber 300, and the arrow Y direction in the figure shows the depth direction of the refrigerator 1.
- An opening / closing door 101 is provided on an open front surface of the refrigerator compartment 100, and drawer doors 301, 401, and 501 are provided in the ice making room 300, the freezing room 400, and the vegetable room 500, respectively.
- the switching room 200 is provided with a drawer door.
- the refrigerator 1 includes a compressor 2, a cooler 3, a condenser and a decompression device (not shown), and the like.
- the compressor 2, the condenser, the cooler 3, and the decompression device are connected via a refrigerant pipe to form a refrigeration cycle.
- the lower rear portion of the heat insulating box 1a is recessed forward, and a machine room 600 is formed outside the heat insulating box 1a.
- the compressor 2 and the condenser are installed in the machine room 600.
- a machine room fan (not shown) for circulating outside air to the machine room 600 is provided.
- the refrigerator 1 includes a control unit 70 for controlling the operation of the refrigerator 1.
- the control unit 70 is configured by, for example, a microcomputer or the like.
- a cooling room 700 is provided behind the switching room 200, the ice making room 300, and the freezing room 400, and an air passage is formed between the cooling room 700 and each storage room.
- the cooler 3 is installed in the cooling chamber 700 and cools surrounding air with a refrigerant.
- the refrigerator 1 includes a blower fan 4 for circulating the cool air cooled by the cooler 3 to the air passage and each storage room, and at least one damper 5 installed in the air passage.
- a damper 5 is provided in an air passage between the cooling room 700 and the refrigerating room 100. When the damper 5 is open, cool air is introduced from the cooler 3 into the refrigerator compartment 100 via the damper 5.
- the cool air cooled by the cooler 3 passes through each air passage and is blown to the refrigerator compartment 100, the switching compartment 200, the ice making compartment 300, and the freezing compartment 400 to cool each storage compartment.
- the cool air that has passed through the refrigerator compartment 100 flows to the vegetable compartment 500, cools the vegetable compartment 500, and then returns to the cooler 3.
- the temperature of each storage room is detected by thermistors 71, 72, 73, 74 installed in each storage room.
- the control unit 70 controls the opening degree of the damper 5, the frequency of the compressor 2, and the rotation speed of the blower fan 4 so that the temperature of each storage room becomes a temperature set in advance for each storage room.
- the flow of cool air is indicated by solid arrows.
- Part of the cool air from the cooler 3 flows into the ice making chamber 300 via the ice making chamber outlet 6, and flows into the freezing room 400 from an opening 302 provided between the ice making room 300 and the freezing room 400. Further, the remaining part of the cool air cooled by the cooler 3 flows directly into the freezer compartment 400 via the freezer outlet 303. Then, the cool air that has passed through the freezing compartment 400 returns to the cooling compartment 700 from the freezing compartment return port 304.
- an automatic ice making machine 10 having the ice making tray 20 for making ice and an ice storage case 40 for storing ice generated by the automatic ice making machine 10 are installed.
- the ice storage case 40 is disposed below the automatic ice maker 10 in the ice making room 300 and is movable with the drawer door 301 in the depth direction of the refrigerator 1 (arrow Y direction).
- the refrigerator body is provided with a water tank, a water supply pump, and a water supply pipe.
- the water tank water for ice making supplied to the automatic ice maker 10 is stored, and the water tank is installed in an area of a refrigeration temperature zone where the temperature does not fall below freezing so that the water in the water tank does not freeze. I have.
- the water tank is installed in the refrigeration room 100 in the refrigeration temperature zone provided above the ice making room 300.
- the refrigerator compartment 100 and the ice making compartment 300 set to the temperature of the freezing temperature zone are separated by the above-mentioned heat insulating wall 150.
- a wall provided between the refrigerator compartment 100 and the ice making room 300 is hereinafter referred to as a heat insulating wall 150a.
- the heat insulation wall 150a that is the bottom wall of the refrigerator compartment 100 and the ceiling wall of the ice making room 300 insulates the water tank and the ice tray 20 from each other.
- the water tank may be provided in any manner as long as water is supplied to the ice tray 20 by a water supply pump and a heat insulating material is provided between the water tank and the ice tray 20 to prevent freezing. Good.
- the water stored in the water tank is pumped up by a water supply pump and supplied to an ice tray 20 of the automatic ice maker 10 through a water supply pipe.
- FIG. 3 is a perspective view of an ice tray of the automatic ice maker according to Embodiment 1 of the present invention.
- the schematic configuration of the automatic ice maker 10 will be described with reference to FIGS.
- the automatic ice maker 10 includes a long ice tray 20 in which a plurality of concave ice-forming pockets 21 are provided in a row, and an ice maker main body 30 that freezes water supplied to the ice tray 20 and separates the ice. And
- the ice making machine main body 30 separates the ice tray 20 from the ice tray 20 by rotating the ice tray 20 about the rotation axis Ar and twisting the ice tray 20 about the rotation axis Ar.
- the ice making machine main body 30 has a hollow elongated shape, and the ice making machine main body 30 accommodates the ice tray 20 (see FIG. 4).
- the ice making machine main body 30 is attached to an inner wall of the ice making room 300. In the example shown in FIG. 2, the ice making machine main body 30 is attached to a ceiling wall of the ice making room 300.
- the ice tray 20 is a molded product made of a synthetic resin material such as polypropylene, and has a substantially rectangular outer shape in plan view (see FIG. 7).
- the ice tray 20 has a container portion 25 having a plurality of ice making pockets 21 for forming ice particles, an adjusting rib 26, a mounting portion 27, a support shaft portion 28, and a receiving portion 29.
- the adjustment rib 26, the mounting portion 27, the support shaft portion 28, and the receiving portion 29 are provided outside the container portion 25.
- the water that has passed through the water supply pipe is supplied into the container 25 from the opening 25a of the container 25.
- the ice making tray 20 is held by the ice making machine main body 30 with the opening surface 25a facing upward when water is supplied or when ice is made when ice is generated.
- the attachment portion 27 is provided at one end 20 a of the ice tray 20 in the longitudinal direction (the direction of the arrow Y), and the ice tray 20 is attached to the ice making machine main body 30 via the attachment portion 27.
- the support shaft 28 is provided at the other end 20 b of the ice tray 20 in the longitudinal direction (arrow Y direction) so as to protrude from the container 25.
- the longitudinal direction of the ice making tray 20 is a direction (one-row direction) in which a plurality of ice making pockets 21 are arranged.
- the ice tray 20 is rotatably supported by the ice making machine main body 30 via the support shaft 28.
- the support shaft 28 is provided substantially at the center of the container 25 in the short direction (the direction of the arrow X) of the ice tray 20.
- the receiving portion 29 is provided at the other end 20b of the ice tray 20 in the longitudinal direction (the arrow Y direction) so as to protrude outward from the outer periphery of the container portion 25 in plan view.
- the receiving portion 29 is provided at one corner of the container portion 25, and the height direction (the direction of the arrow Z) is based on the bottom surface portion 21 b of the ice making pocket 21 of the container portion 25.
- the maximum trajectory of the receiving portion 29 is equal to the drive range R ( 6 (see FIG. 6).
- FIG. 4 is a perspective view of the automatic ice maker according to Embodiment 1 of the present invention.
- FIG. 5 is a plan view of the automatic ice maker according to Embodiment 1 of the present invention.
- FIG. 6 is a sectional view showing an AA section of the automatic ice maker of FIG.
- the configuration of the ice making machine main body 30 will be described with reference to FIGS.
- the ice making machine main body 30 includes a driving device 31 for driving the ice tray 20, a cover 32 that extends in a long shape and covers the upper surface of the ice tray 20, and is located above the driving device 31, and is located on one end 32 a side of the cover 32. It is configured to include a connected cold air introduction part 33 and an ice detection lever 34.
- the driving device 31 is provided at one end of the ice making machine main body 30 in the longitudinal direction.
- the driving device 31 includes a motor, a gear, and the like, and the mounting portion 27 of the ice tray 20 is mounted on a shaft of the motor.
- the automatic ice maker 10 is arranged in the ice making chamber 300 such that the rotation axis Ar of the ice tray 20 by the driving device 31 is parallel to the depth direction (the direction of the arrow Y) of the refrigerator 1.
- the other end 20b side of the ice tray 20 is supported by the cover 32 by the support shaft 28 extending in the direction of the rotation axis Ar, so that when the motor of the driving device 31 rotates, the ice tray 20 rotates around the rotation axis Ar.
- the cover 32 has a cover portion 35 having a C-shaped cross section and an ice discharge portion 36 provided below the cover portion 35, and has a substantially cylindrical shape as a whole.
- the ice discharge section 36 has a rectangular discharge port 37 extending in the longitudinal direction (the direction of the arrow Y), and an ice guide section 38 extending downward from the lower edge of the cover 35.
- the ice guides 38 are provided on both sides of the discharge port 37 in the short direction (arrow X direction), and have a rail shape extending in the long direction (arrow Y direction).
- the cover 32 is arranged such that the center position of the cover 32 coincides with the rotation axis Ar of the ice tray 20 attached to the driving device 31, and a gap that forms an ice-making air passage between the cover part 35 and the ice tray 20. G is formed.
- the cover 35 is provided with a stopper 39 protruding inward (see FIG. 2).
- the tip of the stopper 39 is located on the track of the receiving portion 29 of the ice tray 20.
- a shaft hole 32c is formed in the other end 32b in the longitudinal direction (the direction of the arrow Y) of the cover 32, and the support shaft portion 28 of the ice tray 20 is passed through the shaft hole 32c.
- the cover 35 of the cover 32 is located above, and the ice discharge part 36 of the cover 32 is located below.
- the ice tray 20 is rotated and driven by the driving device 31 to perform the ice releasing operation, the ice falling away from the ice tray 20 passes through the discharge port 37 of the ice discharge unit 36.
- the ice guide section 38 of the ice discharge section 36 guides a plurality of ice falling from the ice tray 20 into the ice storage case 40.
- the ice releasing operation is to rotate the ice tray 20 about the rotation axis Ar and to twist the ice tray 20 about the rotation axis Ar.
- the opening width Wb of the discharge port 37 in the short direction (the direction of the arrow X) of the ice discharge unit 36 is larger than the width Wa of the opening surface 25 a of the container 25 of the ice tray 20, and It is smaller than the inner diameter Wd of the cover 35.
- the width through which the ice passes can be ensured to maintain the ice discharging property, and the ice making tray is compared with the case where the opening width Wb of the discharge port 37 and the inner diameter Wd of the cover portion 35 are set to the same width. Even at a position below the rotation axis Ar of 20, the cool air can be passed near the ice tray 20.
- the cool air introduction part 33 has a rectangular column shape in which a cavity serving as a cool air introduction air passage is formed.
- an inclined part 33a is formed which is inclined toward one end 32a of the cover, and the area of the introduction air passage provided inside the cool air introduction part 33 is the smallest on the cover 32 side.
- the inclined portion 33a is configured so that the cross-sectional area of the introduction air passage is continuously changed to suppress an increase in the air passage resistance, and that the cool air flows into the ice making air passage through the introduction air passage.
- the automatic ice maker 10 is installed such that the outer surface of the cold air introduction part 33 faces the side wall surface of the ice making chamber outlet 6.
- the cool air introduction part 33 connects the ice making chamber outlet 6 and one end 32a of the cover 32, and guides the cool air blown out from the ice making chamber outlet 6 to the ice making air path.
- the ice detecting lever 34 is configured to perform a descending operation by driving the driving device 31 and stop operating when the ice detecting lever 34 comes into contact with ice 41 (see FIG. 2) in the ice storage case.
- the cool air blown out from the ice making chamber outlet 6 is introduced into the ice making air passage between the cover 32 and the ice tray 20 by the cool air introducing part 33 of the ice making machine main body 30.
- the cool air introduced into the ice making air duct flows forward while spreading in the width direction along the ice making tray 20, and cools and freezes the water 42 in the ice making tray 20.
- the control unit 70 determines whether the temperature of the ice making chamber 300 is lower than a set value when a preset time elapses after the ice making is started by supplying water to the water supply pump. When the temperature of the ice making chamber 300 is lower than the set value, the controller 70 determines that ice is generated, operates the ice detecting lever 34, and determines the height of the ice in the ice storage case. On the other hand, if the temperature of the ice making chamber 300 is equal to or higher than the set value, the control unit 70 determines that ice has not been generated yet, and performs control to continue ice making. Thereafter, the above-described temperature determination is repeated at regular intervals until the temperature of the ice making chamber 300 falls below the set value.
- the control unit 70 controls the driving device 31 according to the result of the ice height determination. Specifically, when the ice detecting lever 34 is lowered below the set height, the control unit 70 determines that the height of the ice stored in the ice storage case 40 is less than the set height, and The driving device 31 is controlled so as to perform the ice removing operation. On the other hand, when the ice detecting lever 34 does not drop below the set height, the control unit 70 determines that the ice height is equal to or higher than the set height, and does not start the ice releasing operation. Thereafter, the above-described height determination is repeated at regular intervals until the ice detecting lever 34 falls below the set height. Such control prevents the ice storage case 40 from overflowing with the ice 41.
- the opening surface 25a of the ice tray 20 facing upward is rotated about the rotation axis Ar by the driving device 31.
- the receiving portion 29 of the ice tray 20 comes into contact with the stopper 39 of the cover 32, so that the rotation of the ice tray 20 in the forward direction is stopped.
- the ice is removed from the ice tray 20.
- FIG. 7 is a plan view of an ice tray of the automatic ice maker according to Embodiment 1 of the present invention.
- FIG. 8 is a cross-sectional view illustrating a cross section BB of the ice tray of FIG.
- FIG. 9 is a cross-sectional view illustrating a cross section taken along line CC of the ice tray of FIG.
- FIG. 10 is a partial sectional view showing a DD section of the ice tray of FIG.
- the ice tray 20, particularly the container 25, will be described with reference to FIG. 3 and FIGS.
- FIGS. 8 and 9 each illustrate a cross section of the ice tray 20 in the lateral direction (the direction of the arrow X).
- the container part 25 includes a plurality of ice making pockets 21, a partition wall 22 that defines the plurality of ice making pockets 21, a groove-shaped water passage part 23 provided on the partition wall 22 and communicating the adjacent ice making pockets 21, And an outer wall portion 24 provided along the outer periphery of the ice making pocket 21.
- FIG. 8 illustrates a cross section in the short direction of the ice tray 20 passing through the center O1 of the ice making pocket 21 (hereinafter referred to as a cross section C1).
- FIG. 9 illustrates an ice tray passing through the center O2 of the partition wall 22. 20 are illustrated in the transverse direction (hereinafter, referred to as a section C2).
- the driving range R of the container 25 of the ice tray 20 is a locus through which the lowest point of the bottom surface 21 b of the ice making pocket 21 passes.
- ice making pockets 21 are formed in the ice tray 20.
- the shape and the number of the ice making pockets 21 are not particularly limited to this.
- the shape of the ice making pocket 21 may be such that the width of the ice making pocket 21 on the opening surface 25a side is equal to or greater than the width of the bottom surface portion 21b. What is necessary is just to set so that it may fit in the depth width inside.
- the side surface 21a of the ice making pocket 21 is inclined at an angle ⁇ 1 with respect to the vertical direction, and the cross-sectional shape of the ice making pocket 21 in the short direction (arrow X direction) is wider on the opening surface 25a side with respect to the bottom surface 21b. It has a configured shape. 8 and 10, the cross-sectional shape of the ice making pocket 21 at the cross section C1 passing through the ice making pocket 21 and perpendicular to the rotation axis Ar, and the cross-sectional shape of the ice making pocket 21 at the vertical cross section passing through the rotation axis Ar are all given. It is substantially trapezoidal, and the three-dimensional shape of the ice making pocket 21 is a substantially quadrangular pyramid.
- the inclined side surface 21 a of the ice making pocket 21 is connected to the inclined side surface 21 a of the adjacent ice making pocket 21 by the partition wall 22.
- the water passage portion 23 is formed in each partition wall 22 so that the water from the water supply pipe reaches all the ice making pockets 21. .
- the cross sectional area of the water channel portion 23 is smaller than the cross sectional area inside the ice making pocket 21. For this reason, stress is easily generated in a portion of the ice formed on the ice tray 20 between the ice particles, that is, a portion formed in the waterway portion 23, and the ice particles are generated when the ice releasing operation is performed. They can be easily separated from each other.
- the waterway portion 23 is formed in a groove shape at the upper end of the partition wall 22 connecting the adjacent ice making pockets 21, the adjacent ice making pockets are compared with the case where the waterway portion 23 is not provided on the partition wall 22. 21 can be shortened.
- the outer wall portion 24 is formed higher than the partition wall 22 on the opening surface 25a side of the container portion 25.
- the outer wall portion 24 holds a plurality of ice making pockets 21 in a row so that a plurality of ice particles can be made simultaneously.
- the ice making part including the ice and the ice making pocket 21 has the rigidity of the ice making pocket 21 and the ice. Rigidity also occurs. For this reason, in the ice making section, in a state with ice, deformation becomes less likely than in a state without ice, and the partition wall 22 is preferentially twisted in the ice making tray 20, and the ice separating property in the ice making pocket 21 may deteriorate. is there.
- the automatic ice making machine 10 includes an adjusting rib 26 for adjusting the magnitude relationship between the rigidity of the ice making pocket 21 and the rigidity of the partition wall 22, and thereby the ice making tray 20 when the ice separating operation is performed. Improves ice release.
- FIG. 11 is a side view of the ice tray of the automatic ice maker according to Embodiment 1 of the present invention.
- the adjustment rib 26 will be described with reference to FIGS. 7 to 9 and FIG.
- the adjustment rib 26 is provided so as to extend downward on both outer sides of the container 25 in the short direction (the direction of the arrow X).
- the adjustment ribs 26 are provided on both outer sides of the partition wall 22 in the short direction and both outer sides of the ice making pocket in the short direction so as to face the side surfaces of the container portion 25. I have.
- the length of the adjustment rib 26 based on the opening surface 25 a of the ice tray 20 is the longest on both sides of the center of the partition wall 22.
- the length H2 of the adjustment ribs 26 on both sides of the partition wall 22 is longer than the length H1 of the adjustment ribs 26 on both sides of the ice making pocket 21.
- the lengths H1 and H2 are represented by the lengths of the adjustment ribs 26 in the height direction (the arrow Z direction) of the ice tray 20.
- the second moment of area of the cross section C2 passing through the partition wall 22 and the cross section of the cross section C1 passing through the ice It can be configured to be equal to or more than the next moment.
- the secondary moment of area is an amount related to the rigidity of each part of the ice tray 20 and represents the difficulty of deformation of the beam member, that is, the ice tray 20 with respect to the bending moment due to the ice-releasing operation in the cross section. Quantity.
- the tip surfaces E2 of the portions provided on both outer sides of the partition wall 22 are located lower than the tip surfaces E1 of the portions provided on both outer sides of the ice making pocket 21. And the front end surface E2 and the front end surface E1 are connected via the slope E3.
- the distal end surface E1 and one end of the inclined surface E3 are connected by a curved surface, the distal end surface E2 and the other end of the inclined surface E3 are connected by a curved surface, and the distal end surface of the adjustment rib 26 has a wave shape as a whole in side view. .
- the slope E3 is formed by a first virtual line La in the longitudinal direction passing through the front end face E2 of a portion provided on both outer sides of the partition wall 22 in the adjustment rib 26, and a second virtual line Lb along the slope E3.
- the angle ⁇ 2 formed by the intersection is formed to be an obtuse angle. In particular, the angle ⁇ 2 is preferably set to 135 degrees or more.
- the adjustment rib 26 is formed so that the tip end surface of the adjustment rib 26 draws a gently inclined ridge line in the longitudinal direction of the ice tray 20, the rigidity of the ice tray 20 changes rapidly in the longitudinal direction. This can prevent the occurrence of stress concentration. Therefore, it is possible to improve the ice-removing property while suppressing the damage or buckling of the ice tray 20 due to the uneven rigidity.
- such an adjustment rib 26 can be easily formed by, for example, providing notches on both sides of the ice making pocket 21 in a plate-like member extending downward from the outer wall 24 of the container 25.
- the adjustment rib 26 is provided only on both outer sides of the partition wall 22. You may.
- the thickness of the adjustment rib 26 has been described as being constant. However, in the adjustment rib 26, a difference is provided in the thicknesses T1 and T2 between the portions on both sides of the ice making pocket 21 and the portions on both sides of the partition wall 22.
- the partition wall 22 may be reinforced.
- the second moment of area is an amount that changes according to the cross-sectional area of the adjustment rib 26, and also changes according to the thickness of the adjustment rib 26.
- the thickness H2 of each part of the adjustment rib 26 can also be increased by making the thickness T2 of both parts of the partition wall 22 larger than the thickness T1 of both parts of the ice making pocket 21. , H2.
- the second moment of area at the cross section C2 passing through the partition wall 22 was 136% of the second moment of area at the cross section C1 passing through the ice making part.
- the second moment of area in the cross section C2 passing through the partition wall 22 in the state where ice is present in the ice tray 20 is the second moment of area in the cross section C1 passing through the ice making section. It was shown that it was adjusted to be equal to or more than.
- the difference between the length H1 of the adjustment rib 26 in the cross section C1 and the length H2 in the cross section C2 is preferably set in consideration of the rigidity of the ice when the ice tray 20 has ice. That is, in the ice tray 20, the adjustment rib 26 is preferably formed so that the rigidity of the partition wall 22 is higher than the rigidity of the ice making pocket 21 by an amount corresponding to the rigidity of the ice. With such a configuration, in a state where ice is present in the ice making pocket 21, the second moment of area in the short direction can be made uniform in the long direction, and the entire ice making tray 20 is deformed during the ice releasing operation. Can be done.
- the outer periphery of the driving range R of the ice tray 20 is determined by the locus of the vertex of the bottom surface 21 b of the ice making pocket 21.
- the length of the adjustment rib 26 may be set to a length that falls within the driving range R. That is, as shown in FIG. 9, if the trajectory around the rotation axis Ar of the distal end surface E2 of the portion provided on both outsides of the partition wall 22 is within the driving range R shown in FIG. Good.
- the height of the adjustment rib 26 By setting the height of the adjustment rib 26 in this way, the driving range of the ice tray 20 as a whole can be minimized, so that the outer shape of the cover 32 accommodating the ice tray 20 can be reduced, and the automatic ice maker can be used. 10 can be reduced in size.
- the ice tray 20 has the adjustment rib 26.
- the adjustment rib 26 is provided on both outer sides of the partition wall 22 in the short direction (the direction of the arrow X), and outputs the second moment of area around the rotation axis Ar in the cross section C2 passing through the partition wall 22 to the cross section passing through the ice making pocket 21. It is made larger than the second moment of area around the rotation axis Ar at C1.
- the amount of twist of the ice making pocket 21 and the amount of twist of the partition wall 22 during the ice-releasing operation can be made uniform by the adjustment rib 26. There is no need to secure ice. Therefore, the ice separating property can be improved without impairing the degree of freedom of the shape of the ice making pocket 21.
- the length H2 of the adjustment rib 26 in the cross section C2 in the short direction passing through the partition wall 22 is longer than the length H1 of the adjustment rib 26 in the cross section C1 in the short direction passing through the ice making pocket 21.
- the adjustment ribs 26 are provided in the longitudinal direction of the ice tray 20, and the tip end surface E 2 of a portion provided on both outsides of the partition wall 22 and a portion provided on both outsides of the ice making pocket 21. Has an inclined surface E3 connecting to the front end surface E1. This makes it possible to adjust the rigidity of the ice tray 20 while continuously changing the degree of reinforcement between the portions where the lengths H1 and H2 of the adjustment ribs 26 are different.
- the slope E3 is such that the first virtual line La in the longitudinal direction passing through the front end face E2 of the portion provided on both outer sides of the partition wall 22 in the adjustment rib 26 intersects with the second virtual line Lb along the slope E3.
- the angle ⁇ 2 formed is an obtuse angle.
- the ice making machine main body 30 has a gap G between the ice making tray 20 and the upper part of the ice making tray 20 with a gap G, and is connected to one end 32a of the cover 32 in the longitudinal direction. And a cool air introducing portion 33 for introducing cool air into the gap G between the two.
- the cold air introduction part 33 functions as a duct, and guides the cool air blown out from the ice making room outlet 6 to the ice making air passage. Can be.
- the cool air introducing portion 33 has an inclined portion 33a inclined toward one end 32a of the cover, and the cool air introducing portion 33 is formed such that a cross-sectional area of a cavity provided inside the cool air introducing portion 33 becomes smaller on the cover 32 side. It is configured. Thereby, it is possible to introduce the cool air into the ice making air passage while suppressing the decrease in the wind speed of the cool air blown out from the ice making chamber outlet 6.
- the embodiment of the present invention is not limited to the above embodiment, and various changes can be made. For example, a case has been described in which the temperature determination is performed before performing the ice releasing operation, but the temperature determination may be omitted. Also, the case where the automatic ice making machine 10 is installed in the ice making room 300 of the refrigerator 1 has been described. However, when the refrigerator 1 does not have a storage room dedicated to ice making, the automatic ice making machine 10 is placed in a freezing temperature zone such as a freezer. May be installed in the storage room.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
- Production, Working, Storing, Or Distribution Of Ice (AREA)
Abstract
自動製氷機は、一列に配置された複数の製氷ポケットと、隣り合う製氷ポケット間を接続する区画壁とを有する製氷皿と、製氷皿の一列方向である長手方向に沿って延びる軸を中心に製氷皿を回動させかつ軸を中心に製氷皿に捻りを与える製氷機本体と、を備え、製氷皿は、短手方向における区画壁の両方の外側に設けられ、区画壁を通る短手方向の断面における軸周りの断面二次モーメントを、製氷ポケットを通る短手方向の断面における軸周りの断面二次モーメントよりも大きくする調整リブを有している。
Description
本発明は、製氷皿を捻って氷を製氷皿から離す機構を備えた自動製氷機に関する。
自動製氷機は、複数の製氷ポケットを有する製氷皿と、製氷皿を捻りながら回転させ離氷を行う製氷機本体とを備えている。自動製氷機は、冷蔵庫等に設置され、冷却器からの冷気により製氷皿の水を凍結させて複数の氷粒を生成する。製氷後、製氷機本体によって製氷皿の捻り動作が行われ、製氷ポケットから複数の氷粒が離氷し、下部に設けられた貯氷ケースに貯留される。このような自動製氷機において、製氷ポケットが一列に設けられた製氷皿を備えたものが知られている(例えば、特許文献1参照)。
特許文献1に記載されているような、一列の製氷ポケットが配置された製氷皿は、捻られたときの断面二次モーメントの小さい部位においては、捻れ量が他の部位に比べて大きくなる。製氷皿の部位によって捻れ量に違いがあると、複数の製氷ポケットからの一様な離氷が困難である。特許文献1の図9又は図11には、製氷ポケットの開口した上面が、底面に対して極端に幅広に構成された態様が例示されており、このように製氷ポケットの形状に制約を設けることによって離氷性が確保され得る。しかしながら、特許文献1に記載の形状の製氷ポケットで作られた氷は、鋭い角を含んでいて見た目が悪く、また使用者が口に含んだときに不快感を生じさせる場合もある。
本発明は、上記のような課題を解決するためになされたもので、一列の製氷ポケットを備えた製氷皿において、製氷ポケットの形状の自由度を損なうことなく、離氷性を向上させた自動製氷機を提供することを目的とする。
本発明に係る自動製氷機は、一列に配置された複数の製氷ポケットと、隣り合う前記製氷ポケット間を接続する区画壁とを有する製氷皿と、前記製氷皿の前記一列方向である長手方向に沿って延びる軸を中心に前記製氷皿を回動させかつ前記軸を中心に前記製氷皿に捻りを与える製氷機本体と、を備え、前記製氷皿は、短手方向における前記区画壁の両方の外側に設けられ、前記区画壁を通る前記短手方向の断面における前記軸周りの断面二次モーメントを、前記製氷ポケットを通る前記短手方向の断面における前記軸周りの断面二次モーメントよりも大きくする調整リブを有している。
本発明の自動製氷機によれば、一列の製氷ポケットを備えた製氷皿において、調整リブを設けたことにより、製氷ポケットの形状の自由度を損なうことなく、離氷性を向上させることができる。
実施の形態1.
図1は、本発明の実施の形態1に係る自動製氷機を搭載した冷蔵庫の扉を外した状態を示す概略正面図である。図1に基づき、自動製氷機10が冷蔵庫1に設けられる場合の冷蔵庫1の構成について説明する。図1の矢印X方向は冷蔵庫1の幅方向を表し、矢印Z方向は冷蔵庫1の高さ方向を表す。冷蔵庫1は、断熱箱体1aを有する冷蔵庫本体を備えている。断熱箱体1aは前面が開口しており、断熱箱体1aの内部には、冷蔵室100、切替室200、製氷室300、冷凍室400及び野菜室500等の複数の貯蔵室が形成されている。冷蔵室100は、断熱箱体1a内の最上部に設けられている。切替室200と製氷室300とは、冷蔵室100の下方に、並列に設けられている。冷凍室400は、切替室200及び製氷室300の下方に配置されており、冷凍室400の下方には、野菜室500が設けられている。なお、冷蔵庫1に設けられる貯蔵室の種類、及び各貯蔵室の順番は特にこれに限定されない。
図1は、本発明の実施の形態1に係る自動製氷機を搭載した冷蔵庫の扉を外した状態を示す概略正面図である。図1に基づき、自動製氷機10が冷蔵庫1に設けられる場合の冷蔵庫1の構成について説明する。図1の矢印X方向は冷蔵庫1の幅方向を表し、矢印Z方向は冷蔵庫1の高さ方向を表す。冷蔵庫1は、断熱箱体1aを有する冷蔵庫本体を備えている。断熱箱体1aは前面が開口しており、断熱箱体1aの内部には、冷蔵室100、切替室200、製氷室300、冷凍室400及び野菜室500等の複数の貯蔵室が形成されている。冷蔵室100は、断熱箱体1a内の最上部に設けられている。切替室200と製氷室300とは、冷蔵室100の下方に、並列に設けられている。冷凍室400は、切替室200及び製氷室300の下方に配置されており、冷凍室400の下方には、野菜室500が設けられている。なお、冷蔵庫1に設けられる貯蔵室の種類、及び各貯蔵室の順番は特にこれに限定されない。
製氷室300は、図1に示される例では切替室200の左側に配置され、冷凍温度帯に設定されている。切替室200は、冷凍温度帯(例えば-18℃)から冷蔵温度帯(例えば3℃)まで可変であり、例えば、チルド(0℃)及びソフト冷凍(-7℃)等の設定温度帯に切り替えることができる。貯蔵室間は、断熱材を含む断熱壁150により仕切られている。
図2は、本発明の実施の形態1に係る自動製氷機を搭載した冷蔵庫の側断面図である。図2は、製氷室300を通る断面を表し、図中の矢印Y方向は冷蔵庫1の奥行き方向を表している。冷蔵室100の開口した前面には開閉扉101が設けられ、製氷室300、冷凍室400及び野菜室500には、それぞれ引き出しドア301、401、501が設けられている。図示していないが、切替室200には引き出しドアが設けられている。
また冷蔵庫1は、圧縮機2と、冷却器3と、図示しない凝縮器及び減圧装置等を備える。圧縮機2、凝縮器、冷却器3、及び減圧装置は冷媒配管を介して接続され、冷凍サイクルが形成されている。断熱箱体1aの背面下部は前方へ凹んでおり、断熱箱体1aの外側に機械室600が形成されている。圧縮機2及び凝縮器は、機械室600に設置されている。また機械室600には、外気を機械室600に循環させる図示しない機械室ファンが設置されている。また冷蔵庫1は、冷蔵庫1の運転を制御する制御部70を備えている。制御部70は、例えばマイクロコンピュータ等で構成される。
断熱箱体1a内において、切替室200、製氷室300及び冷凍室400の後方には、冷却室700が設けられており、冷却室700と各貯蔵室との間にそれぞれ風路が形成されている。冷却器3は、冷却室700に設置され、冷媒により周囲の空気を冷却する。また冷蔵庫1は、冷却器3により冷却された冷気を風路及び各貯蔵室へ循環させる送風ファン4と、風路に設置された少なくとも1つのダンパ5とを備えている。図1に示される例では、冷却室700と冷蔵室100との間の風路にダンパ5が設けられている。ダンパ5が開のとき、冷却器3から冷気がダンパ5を介して冷蔵室100へ導入される。
冷却器3で冷却された冷気は各風路を通り、冷蔵室100、切替室200、製氷室300及び冷凍室400へと送風され各貯蔵室を冷却する。冷蔵室100を通った冷気は、野菜室500へ流れ、野菜室500を冷却した後、冷却器3に戻る。各貯蔵室の温度は、各貯蔵室に設置されたサーミスタ71、72、73、74により検知される。制御部70は、各貯蔵室の温度が、貯蔵室ごとに予め設定された温度になるように、ダンパ5の開度、圧縮機2の周波数及び送風ファン4の回転数を制御する。
図2には、実線矢印で冷気の流れが示されている。冷却器3からの冷気の一部は、製氷室吹出し口6を介して製氷室300に流入し、製氷室300と冷凍室400との間に設けられた開口部302から冷凍室400へ流れる。また冷却器3で冷却された冷気の残りの一部は、冷凍室吹出口303を介して直接冷凍室400へ流入する。そして、冷凍室400内を通過した冷気は、冷凍室戻り口304から冷却室700へ戻る。
製氷室300には、製氷皿20を有し、製氷を行う自動製氷機10と、自動製氷機10により生成された氷を貯留する貯氷ケース40が設置されている。貯氷ケース40は、製氷室300において自動製氷機10の下方に配置され、引き出しドア301とともに冷蔵庫1の奥行き方向(矢印Y方向)に移動可能となっている。
また、図示していないが、冷蔵庫本体には、水タンク、給水ポンプ及び給水パイプが設置されている。水タンクには、自動製氷機10に供給される製氷用の水が蓄えられており、水タンク内の水が凍結しないように、水タンクは、氷点下にならない冷蔵温度帯の領域に設置されている。例えば、水タンクは、製氷室300より上方に設けられた冷蔵温度帯の冷蔵室100に設置される。
冷蔵室100と、冷凍温度帯の温度に設定される製氷室300とは、上述した断熱壁150で仕切られている。断熱壁150において、冷蔵室100と製氷室300との間に設けられた壁部を、以下、断熱壁部150aと称す。水タンクが冷蔵室100に設置される場合、冷蔵室100の底壁であり且つ製氷室300の天井壁である断熱壁部150aにより、水タンクと製氷皿20との間が断熱される。なお、水タンクは、給水ポンプにより製氷皿20への給水がされ、且つ水タンクと製氷皿20との間に断熱材が配置され凍結が防止できる構成であれば、どのように配置されてもよい。水タンクに蓄えられた水は、給水ポンプにより汲み上げられ、給水パイプを通って自動製氷機10の製氷皿20に給水される。
図3は、本発明の実施の形態1に係る自動製氷機の製氷皿の斜視図である。図2及び図3に基づき、自動製氷機10の概略構成について説明する。自動製氷機10は、凹状に形成された複数の製氷ポケット21が一列に設けられた長尺状の製氷皿20と、製氷皿20に供給された水を凍結させて離氷する製氷機本体30とを備える。
製氷機本体30は、回転軸Arを中心に製氷皿20を回動させかつ回転軸Arを中心に製氷皿20に捻りを与えることで、製氷皿20からの離氷を行う。製氷機本体30は中空の長尺形状を有しており、製氷機本体30に製氷皿20が収容される(図4参照)。製氷機本体30は、製氷室300の内壁に取り付けられる。図2に示される例では、製氷機本体30は、製氷室300の天井壁に取り付けられている。
製氷皿20は、ポリプロピレン等の合成樹脂材からなる成型品であり、平面視でほぼ長方形の外形を有している(図7参照)。製氷皿20は、氷粒を形成するための複数の製氷ポケット21を有する容器部25と、調整リブ26と、取付部27と、支持軸部28と、受け部29とを有している。調整リブ26、取付部27、支持軸部28及び受け部29は、容器部25の外側に設けられている。
給水パイプを通った水は、容器部25の開口面25aから容器部25内に供給される。製氷皿20は、水が供給される給水時又は氷が生成される製氷時において、開口面25aが上方を向いた状態で製氷機本体30に保持されている。取付部27は、製氷皿20の長手方向(矢印Y方向)の一端20aに設けられており、取付部27を介して製氷皿20が製氷機本体30に取り付けられる。
支持軸部28は、製氷皿20の長手方向(矢印Y方向)の他端20bに、容器部25から突出するように設けられている。ここで、製氷皿20の長手方向は、複数の製氷ポケット21が並んだ方向(一列方向)である。支持軸部28を介して製氷皿20が製氷機本体30に回転自在に軸支される。支持軸部28は、製氷皿20の、短手方向(矢印X方向)において容器部25のほぼ中央に設けられている。
受け部29は、製氷皿20の長手方向(矢印Y方向)の他端20bに、平面視で容器部25の外周よりも外側へ突出するように設けられている。図3に示される例では、受け部29は、容器部25の一角に設けられており、高さ方向(矢印Z方向)において、容器部25の製氷ポケット21の底面部21bを基準にした場合に開口面25aとほぼ同じ高さに設けられている。したがって、製氷皿20が支持軸部28を介して製氷機本体30に軸支されながら取付部27を介して回転駆動されるとき、受け部29の最大軌道が、容器部25の駆動範囲R(図6参照)の外側を通る。
図4は、本発明の実施の形態1に係る自動製氷機の斜視図である。図5は、本発明の実施の形態1に係る自動製氷機の平面図である。図6は、図5の自動製氷機のA-A断面を表す断面図である。図2~図6を用いて、製氷機本体30の構成について説明する。製氷機本体30は、製氷皿20を駆動する駆動装置31と、長尺状に延び、製氷皿20の上面を覆うカバー32と、駆動装置31の上方に位置し、カバー32の一端32a側につながる冷気導入部33と、検氷レバー34と、を備えて構成される。
駆動装置31は、製氷機本体30の長手方向の一端に設けられている。駆動装置31は、モータ及びギア等で構成されており、モータの軸に、製氷皿20の取付部27が取り付けられる。駆動装置31による製氷皿20の回転軸Arが冷蔵庫1の奥行き方向(矢印Y方向)に平行となるように、自動製氷機10が製氷室300に配置される。製氷皿20の他端20b側は、回転軸Ar方向に延びた支持軸部28によりカバー32に軸支されているので、駆動装置31のモータが回転する際、取付部27を介して製氷皿20が回転軸Arを中心に回動する。
カバー32は、C字状の断面形状を有するカバー部35と、カバー部35の下部に設けられた氷排出部36とを有し、全体として略円筒形状をしている。氷排出部36は、長手方向(矢印Y方向)に延びる長方形状の排出口37と、カバー部35の下方の縁部から下方へ延出した氷ガイド部38とを有する。氷ガイド部38は、短手方向(矢印X方向)における排出口37の両側に設けられ、長手方向(矢印Y方向)に延びるレール形状を有している。
カバー32は、カバー32の中心位置が、駆動装置31に取り付けられた製氷皿20の回転軸Arと一致するように配置され、カバー部35と製氷皿20との間に製氷風路となる隙間Gが形成されている。カバー部35には、内面側に突出したストッパ39が設けられている(図2参照)。ストッパ39の先端は、製氷皿20の受け部29の軌道上に位置する。また、カバー32の長手方向(矢印Y方向)の他端32bには軸穴32cが形成されており、軸穴32cには製氷皿20の支持軸部28が通される。
自動製氷機10が製氷室300に設置されると、カバー32のカバー部35は上方に位置し、カバー32の氷排出部36は下方に位置する。製氷皿20が駆動装置31により回転駆動され離氷動作が行われる際、製氷皿20から離れて落下する氷は、氷排出部36の排出口37を通過する。氷排出部36の氷ガイド部38は、製氷皿20から落下する複数の氷を貯氷ケース40内にガイドする。ここで、離氷動作とは、回転軸Arを中心に製氷皿20を回動させかつ回転軸Arを中心に製氷皿20に捻りを与えることである。
図6に示されるように、氷排出部36の短手方向(矢印X方向)における排出口37の開口幅Wbは、製氷皿20の容器部25の開口面25aの幅Waよりも大きく、かつカバー部35の内径Wdよりも小さい。このような構成により、氷が通る幅を確保して氷の排出性を維持するとともに、排出口37の開口幅Wbとカバー部35の内径Wdとを同じ幅に設定した場合と比べ、製氷皿20の回転軸Arより下方の位置でも、冷気を製氷皿20近くに通過させることができる。
冷気導入部33は、内部に冷気の導入風路となる空洞が形成された四角柱状の形状を有している。冷気導入部33のカバー32側には、カバーの一端32aにかけて傾斜する傾斜部33aが形成されており、冷気導入部33の内部に設けられた導入風路の面積は、カバー32側で最も小さくなる。傾斜部33aは、導入風路の断面積を連続的に変化させることで風路抵抗の増加を抑制し、冷気が導入風路を介して製氷風路へ流入するように構成されている。自動製氷機10は、冷気導入部33の外面が製氷室吹出し口6の側壁面と対向するように設置される。冷気導入部33は、製氷室吹出し口6とカバー32の一端32aとを接続し、製氷室吹出し口6から吹き出される冷気を製氷風路に誘導する。
検氷レバー34は、駆動装置31の駆動により下降動作を行い、貯氷ケース内の氷41(図2参照)に接触すると動作が止まる構成となっている。
次に、図2~図6を用いて、自動製氷機10の動作の一例について説明する。製氷室吹出し口6から吹き出す冷気は、製氷機本体30の冷気導入部33により、カバー32と製氷皿20との間の製氷風路に導入される。製氷風路に導入された冷気は、製氷皿20に沿って幅方向に広がりながら前方へ流れ、製氷皿20内の水42を冷却し凍結させる。
制御部70は、給水ポンプに給水させることで製氷を開始してから、予め設定された設定時間が経過すると、製氷室300の温度が設定値よりも下回っているか否か温度判定を行う。制御部70は、製氷室300の温度が設定値よりも下回っている場合、氷が生成されていると判定し、検氷レバー34を動作させ、貯氷ケース内の氷の高さ判定を行う。一方、製氷室300の温度が設定値以上であれば、制御部70は、未だ氷が生成されていないと判定し、製氷を続ける制御を行う。その後、製氷室300の温度が設定値よりも下回るまで、一定時間ごとに、上述した温度判定が繰り返される。
制御部70は、氷の高さ判定の結果に応じて駆動装置31を制御する。具体的には、検氷レバー34が設定高さよりも下降した場合に、制御部70は、貯氷ケース40内に貯留された氷の高さが設定高さ未満であると判定し、製氷皿20の離氷動作を行うように駆動装置31を制御する。一方、検氷レバー34が設定高さよりも下がらない場合には、制御部70は、氷の高さが設定高さ以上であると判定し、離氷動作を開始しない。その後、検氷レバー34が設定高さよりも下降するまで、一定時間ごとに、上述した高さ判定が繰り返される。このような制御により、貯氷ケース40が氷41であふれることを防止している。
製氷皿20の離氷動作では、上方を向いた製氷皿20の開口面25aが、駆動装置31により回転軸Arを中心に回動される。製氷皿20が回動される際、製氷皿20の受け部29がカバー32のストッパ39に接触することで製氷皿20の前方の回転が止まり、後方が回転されることで製氷皿20が捻られ、変形し、氷が製氷皿20から離れる。
図7は、本発明の実施の形態1に係る自動製氷機の製氷皿の平面図である。図8は、図7の製氷皿のB-B断面を表す断面図である。図9は、図7の製氷皿のC-C断面を表す断面図である。図10は、図7の製氷皿のD-D断面を表す部分断面図である。図3及び図7~図10を用いて、製氷皿20、特に容器部25について説明する。図8及び図9はそれぞれ製氷皿20の短手方向(矢印X方向)の断面を例示している。
容器部25は、複数の製氷ポケット21と、複数の製氷ポケット21を区画形成する区画壁22と、区画壁22に設けられ、隣り合う製氷ポケット21を連通させる溝状の水路部23と、複数の製氷ポケット21の外周に沿って設けられた外壁部24とを有する。図8には、製氷ポケット21の中心O1を通る製氷皿20の短手方向の断面(以下、断面C1という)が例示されており、図9には、区画壁22の中心O2を通る製氷皿20の短手方向の断面(以下、断面C2という)が例示されている。図8において、製氷皿20の容器部25の駆動範囲Rは、製氷ポケット21の底面部21bの最下点が通る軌跡となっている。
図3及び図7に示される例では、製氷皿20に、製氷ポケット21が6つ形成されている。なお、製氷ポケット21の形状及び数は、特にこれに限定されない。製氷ポケット21の形状は、開口面25a側における製氷ポケット21の幅が底面部21bの幅以上となるように形成されていればよく、製氷ポケット21の数は、自動製氷機10が製氷室300内の奥行き幅に収まるように設定されていればよい。
製氷ポケット21の側面21aは、鉛直方向に対して角度θ1で傾斜しており、短手方向(矢印X方向)において製氷ポケット21の断面形状は、底面部21bに対して開口面25a側が幅広に構成された形状となっている。図8及び図10の例では、製氷ポケット21を通り回転軸Arに垂直な断面C1での製氷ポケット21の断面形状、及び回転軸Arを通る縦断面での製氷ポケット21の断面形状はいずれも略台形をしており、製氷ポケット21の立体形状は略四角錐台である。そして、製氷ポケット21の傾斜した側面21aは、隣り合う製氷ポケット21の傾斜した側面21aと、区画壁22により接続されている。
上述したように、給水パイプを介して製氷皿20への給水が行われるので、給水パイプからの水が全ての製氷ポケット21に行き渡るように、水路部23は各区画壁22に形成されている。図8及び図9に示されるように、回転軸Arと垂直な断面において、水路部23の断面積は製氷ポケット21内部の断面積よりも小さい。このため、製氷皿20に形成された氷の、氷粒と氷粒との間の部分すなわち水路部23に形成される部分に応力が発生し易く、離氷動作が行われたときに氷粒同士が容易に分離できる。また、水路部23は、隣り合う製氷ポケット21同士を接続する区画壁22の上端に溝状に形成されているので、区画壁22に水路部23が設けられない場合と比べ、隣接する製氷ポケット21間の水の経路を短くすることができる。
外壁部24は、容器部25の開口面25a側に、区画壁22よりも高く形成されている。外壁部24は、複数の氷粒が同時に製氷できるよう、1列に複数の製氷ポケット21を保持している。
ところで、一般に、製氷ポケット21に氷が有る状態すなわち水が凍結し氷が生成された状態において、氷及び製氷ポケット21を含む製氷部には、製氷ポケット21の部材の剛性に加え、氷が持つ剛性も発生する。このため、製氷部では、氷が有る状態において、氷が無い状態よりも変形しにくくなり、製氷皿20において区画壁22が優先して捻られ、製氷ポケット21で離氷性が悪化する場合がある。
実施の形態1の自動製氷機10は、製氷ポケット21の剛性と区画壁22の剛性との大小関係を調整する調整リブ26を備え、これにより、離氷動作が行われる際の製氷皿20の離氷性を改善している。
図11は、本発明の実施の形態1に係る自動製氷機の製氷皿の側面図である。図7~図9及び図11を用いて、調整リブ26について説明する。調整リブ26は、短手方向(矢印X方向)における容器部25の両方の外側に下方へ延びるように設けられている。具体的には、調整リブ26は、短手方向における区画壁22の両方の外側と、短手方向における前記製氷ポケットの両方の外側とに、容器部25の側面と対向するように設けられている。製氷皿20の開口面25aを基準とした調整リブ26の長さは、区画壁22の中心の両側で最も長い。そして、区画壁22の両側における調整リブ26の長さH2は、製氷ポケット21の両側における調整リブ26の長さH1よりも長い。ここで、長さH1、H2は、製氷皿20の高さ方向(矢印Z方向)における調整リブ26の長さで表される。
このような調整リブ26によって区画壁22が補強されるので、製氷皿20に氷が有る状態で、区画壁22を通る断面C2の断面二次モーメントを、製氷ポケット21を通る断面C1の断面二次モーメント以上となるように構成できる。ここで、断面二次モーメントとは、製氷皿20の部位ごとの剛性に関係する量であり、断面における、離氷動作による曲げモーメントに対するはり部材すなわち製氷皿20の変形のしにくさを表した量である。
区画壁22の両方の外側に設けられた部位の先端面E2は、製氷ポケット21の両方の外側に設けられた部位の先端面E1よりも下方に位置している。そして、先端面E2と先端面E1とは、斜面E3を介して接続されている。先端面E1と斜面E3の一端とは曲面で接続され、先端面E2と斜面E3の他端とは曲面で接続され、調整リブ26の先端面は全体として側面視で波形状を有している。また、斜面E3は、調整リブ26において区画壁22の両方の外側に設けられた部位の先端面E2を通る長手方向の第1仮想線Laと、斜面E3に沿った第2仮想線Lbとが交わって成す角度θ2が鈍角となるように形成されている。特に、角度θ2が135度以上に設定されているとよい。
このように、調整リブ26の先端面が、製氷皿20の長手方向にわたって緩やかに傾斜した稜線を描くように調整リブ26が形成されることで、製氷皿20の剛性が長手方向で急激に変わることによる応力集中の発生を予防できる。よって、剛性が不均一であることによる、製氷皿20の破損あるいは座屈の発生を抑制しつつ離氷性を向上させることができる。
また、このような調整リブ26は、例えば、容器部25の外壁部24から下方へ延びる板状の部材に、製氷ポケット21の両側で切り欠きを設けることで容易に成型できる。なお、これまで、容器部25の長手方向の側面に渡って一続きの調整リブ26が設けられる場合について説明したが、調整リブ26は、区画壁22の両方の外側にのみ設けられる構成であってもよい。また、調整リブ26の厚みが一定であるものとして説明したが、調整リブ26において、製氷ポケット21の両側の部位と区画壁22の両側の部位とで、厚みT1、T2に差を設けることにより、区画壁22を補強してもよい。断面二次モーメントは、調整リブ26の断面積によって変化する量であり、調整リブ26の厚みによっても変化する。具体的には、調整リブ26において、区画壁22の両側の部位の厚みT2を、製氷ポケット21の両側の部位の厚みT1よりも厚くすることによっても、調整リブ26の各部位の長さH1、H2で調整した場合と同様の効果が得られる。
次に、従来の構成と、製氷皿20に調整リブ26を設けた場合とについて、製氷皿20の離氷動作における回転軸Ar周りの断面二次モーメントを比較した結果について説明する。従来の構成では、区画壁22を通る断面C2における軸周りの断面二次モーメントは、製氷部を通る断面C1における断面二次モーメントの56%となった。
一方、調整リブ26を設けた場合、区画壁22を通る断面C2における断面二次モーメントは、製氷部を通る断面C1における断面二次モーメントの136%になった。つまり、実施の形態1の製氷皿20を用いた場合、製氷皿20に氷がある状態で、区画壁22を通る断面C2における断面二次モーメントが、製氷部を通る断面C1における断面二次モーメントと同等以上となるように調整されることが示された。
調整リブ26の断面C1における長さH1と断面C2における長さH2との差は、特に、製氷皿20に氷が有る場合の氷の剛性を加味して設定されるとよい。つまり、製氷皿20において、氷の剛性に相当する分だけ、区画壁22の剛性が製氷ポケット21の剛性よりも高くなるように、調整リブ26が形成されているとよい。このような構成により、製氷ポケット21に氷が有る状態において、短手方向における断面二次モーメントを、長手方向にわたって均一化することができ、離氷動作の際には、製氷皿20全体を変形させることができる。
ところで、図8に示されるように、製氷ポケット21を通る断面C1においては、製氷皿20の駆動範囲Rの外周は、製氷ポケット21の底面部21bの頂点の軌跡で決まる。調整リブ26の長さは、駆動範囲Rに収まる長さにするとよい。つまり、図9に示されるように、区画壁22の両方の外側に設けられた部位の先端面E2の、回転軸Ar周りの軌跡が、図8に示される駆動範囲R以内に収まっていればよい。調整リブ26の高さをこのように設定することで、製氷皿20全体としても駆動範囲を最小限にできるため、製氷皿20を収容するカバー32の外形を小さくすることができ、自動製氷機10を小型化できる。
以上のように、実施の形態1の自動製氷機10によれば、製氷皿20は調整リブ26を有している。調整リブ26は、短手方向(矢印X方向)における区画壁22の両方の外側に設けられ、区画壁22を通る断面C2における回転軸Ar周りの断面二次モーメントを、製氷ポケット21を通る断面C1における回転軸Ar周りの断面二次モーメントよりも大きくする。これにより、一列の複数の製氷ポケット21が設けられた製氷皿20において、従来よりも、製氷皿20に氷が有るときの長手方向(矢印Y方向)にわたる剛性の差を小さくできる。したがって、離氷動作の際の、製氷ポケット21の捻れ量と区画壁22の捻れ量とを調整リブ26により均一化できるので、従来のように極端に側面の傾斜の角度θ1を大きくして離氷性を確保する必要が無い。よって、製氷ポケット21の形状の自由度を損なうことなく、離氷性を向上させることができる。
また、区画壁22を通る短手方向の断面C2における調整リブ26の長さH2は、製氷ポケット21を通る短手方向の断面C1における調整リブ26の長さH1よりも長い。これにより、製氷皿20の両側に設けられた調整リブ26の長さに差を設けることにより、製氷皿20の長手方向(矢印Y方向)における剛性を容易に調整でき、製氷皿20の製造が容易となる。
また調整リブ26は、製氷皿20の長手方向に渡って設けられており、区画壁22の両方の外側に設けられた部位の先端面E2と、製氷ポケット21の両方の外側に設けられた部位の先端面E1とを接続する斜面E3を有する。これにより、調整リブ26の長さH1、H2が異なる部位間で、補強の度合いを連続的に変化させながら製氷皿20の剛性を調整することができる。
また斜面E3は、調整リブ26において区画壁22の両方の外側に設けられた部位の先端面E2を通る長手方向の第1仮想線Laと、斜面E3に沿った第2仮想線Lbとが交わって成す角度θ2が鈍角となるように形成されている。これにより、調整リブ26の長さH1、H2が異なる位置において、製氷皿20の一部に応力が集中することによる製氷皿20の破損を防止できる。
また、製氷機本体30は、製氷皿20との間に隙間Gを有して製氷皿20の上部を覆うカバー32と、長手方向においてカバー32の一端32aにつながり、カバー32と製氷皿20との間の隙間Gに冷気を導入する冷気導入部33と、をさらに備えている。これにより、自動製氷機10が冷蔵庫1の製氷室吹出し口6に設置されると、冷気導入部33がダクトとして機能し、製氷室吹出し口6から吹き出される冷気を製氷風路に誘導することができる。
また冷気導入部33は、カバーの一端32aにかけて傾斜する傾斜部33aを有し、冷気導入部33は、冷気導入部33の内部に設けられた空洞の断面積がカバー32側で小さくなるように構成されている。これにより、製氷室吹出し口6から吹き出される冷気の風速低下を抑制しつつ製氷風路へ冷気を導入できる。
なお、本発明の実施の形態は上記実施の形態に限定されず、種々の変更を行うことができる。例えば、離氷動作を実施する前に温度判定を行う場合について説明したが、温度判定は省略してもよい。また、自動製氷機10が冷蔵庫1の製氷室300に設置される場合について説明したが、冷蔵庫1が製氷専用の貯蔵室を有さない場合には、自動製氷機10は冷凍庫等の冷凍温度帯の貯蔵室に設置されてもよい。
1 冷蔵庫、1a 断熱箱体、2 圧縮機、3 冷却器、4 送風ファン、5 ダンパ、6 製氷室吹出し口、10 自動製氷機、20 製氷皿、20a 一端、20b 他端、21 製氷ポケット、21a 側面、21b 底面部、22 区画壁、23 水路部、24 外壁部、25 容器部、25a 開口面、26 調整リブ、27 取付部、28 支持軸部、29 受け部、30 製氷機本体、31 駆動装置、32 カバー、32a 一端、32b 他端、32c 軸穴、33 冷気導入部、33a 傾斜部、34 検氷レバー、35 カバー部、36 氷排出部、37 排出口、38 氷ガイド部、39 ストッパ、40 貯氷ケース、41 氷、42 水、70 制御部、71 サーミスタ、72 サーミスタ、73 サーミスタ、74 サーミスタ、100 冷蔵室、101 開閉扉、150 断熱壁、150a 断熱壁部、200 切替室、300 製氷室、301 引き出しドア、302 開口部、303 冷凍室吹出口、304 冷凍室戻り口、400 冷凍室、401 引き出しドア、500 野菜室、501 引き出しドア、600 機械室、700 冷却室、Ar 回転軸、C1、C2 断面、E1 先端面、E2 先端面、E3 斜面、G 隙間、La 第1仮想線、Lb 第2仮想線、O1、O2 中心、H1、H2 長さ、R 駆動範囲、Wb 開口幅、Wd 内径、θ1、θ2 角度。
Claims (6)
- 一列に配置された複数の製氷ポケットと、隣り合う前記製氷ポケット間を接続する区画壁とを有する製氷皿と、
前記製氷皿の前記一列方向である長手方向に沿って延びる軸を中心に前記製氷皿を回動させかつ前記軸を中心に前記製氷皿に捻りを与える製氷機本体と、
を備え、
前記製氷皿は、短手方向における前記区画壁の両方の外側に設けられ、前記区画壁を通る前記短手方向の断面における前記軸周りの断面二次モーメントを、前記製氷ポケットを通る前記短手方向の断面における前記軸周りの断面二次モーメントよりも大きくする調整リブを有している
自動製氷機。 - 前記調整リブは、前記短手方向における前記区画壁の両方の外側と、前記短手方向における前記製氷ポケットの両方の外側とに、下方へ延びるように設けられており、前記区画壁を通る前記短手方向の断面における前記調整リブの長さは、前記製氷ポケットを通る前記短手方向の断面における前記調整リブの長さよりも長い
請求項1に記載の自動製氷機。 - 前記調整リブは、前記製氷皿の前記長手方向に渡って設けられており、前記区画壁の両方の外側に設けられた部位の先端面と、前記製氷ポケットの両方の外側に設けられた部位の先端面とを接続する斜面を有する
請求項2に記載の自動製氷機。 - 前記斜面は、前記調整リブにおいて前記区画壁の両方の外側に設けられた部位の先端面を通る前記長手方向の第1仮想線と、前記斜面に沿った第2仮想線とが交わって成す角度が鈍角となるように形成されている
請求項3に記載の自動製氷機。 - 前記製氷機本体は、
前記製氷皿との間に隙間を有して前記製氷皿の上部を覆うカバーと、
前記長手方向において前記カバーの一端につながり、前記カバーと前記製氷皿との間の前記隙間に冷気を導入する冷気導入部と、
をさらに備えた請求項1~4のいずれか一項に記載の自動製氷機。 - 前記冷気導入部は、前記カバーの一端にかけて傾斜する傾斜部を有し、前記冷気導入部の内部に設けられた空洞の断面積が前記カバー側で小さくなっている
請求項5に記載の自動製氷機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/032542 WO2020049606A1 (ja) | 2018-09-03 | 2018-09-03 | 自動製氷機 |
JP2020540875A JP7076560B2 (ja) | 2018-09-03 | 2018-09-03 | 自動製氷機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/032542 WO2020049606A1 (ja) | 2018-09-03 | 2018-09-03 | 自動製氷機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020049606A1 true WO2020049606A1 (ja) | 2020-03-12 |
Family
ID=69723022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/032542 WO2020049606A1 (ja) | 2018-09-03 | 2018-09-03 | 自動製氷機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7076560B2 (ja) |
WO (1) | WO2020049606A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2481525A (en) * | 1943-06-09 | 1949-09-13 | Commerical Plastics Company | Ice cube tray |
JPS637770U (ja) * | 1986-07-02 | 1988-01-19 | ||
JPH049561A (ja) * | 1990-04-26 | 1992-01-14 | Toshiba Corp | 自動製氷装置付冷蔵庫 |
JPH0894230A (ja) * | 1994-09-28 | 1996-04-12 | Matsushita Refrig Co Ltd | 冷凍冷蔵庫 |
JP2010043823A (ja) * | 2008-07-18 | 2010-02-25 | Panasonic Corp | 冷蔵庫 |
CN101871712A (zh) * | 2010-07-08 | 2010-10-27 | 合肥美的荣事达电冰箱有限公司 | 自动制冰机和具有其的冰箱 |
JP2013053775A (ja) * | 2011-09-01 | 2013-03-21 | Sharp Corp | 冷蔵庫 |
US20140165623A1 (en) * | 2012-12-13 | 2014-06-19 | Whirlpool Corporation | Weirless ice tray |
KR20140140457A (ko) * | 2013-05-29 | 2014-12-09 | 이정미 | 식품용 제빙용기 |
JP2015132448A (ja) * | 2014-01-15 | 2015-07-23 | 日本電産サンキョー株式会社 | 製氷装置 |
JP2016205771A (ja) * | 2015-04-28 | 2016-12-08 | 紀伊産業株式会社 | 製氷皿 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3012642U (ja) | 1994-12-19 | 1995-06-20 | 株式会社栗原製作所 | プラスチツク製卵容器の補強構造 |
JP5870528B2 (ja) | 2011-07-28 | 2016-03-01 | セイコーエプソン株式会社 | 液体収容容器、液体噴射システム、及び、液体供給システム |
-
2018
- 2018-09-03 WO PCT/JP2018/032542 patent/WO2020049606A1/ja active Application Filing
- 2018-09-03 JP JP2020540875A patent/JP7076560B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2481525A (en) * | 1943-06-09 | 1949-09-13 | Commerical Plastics Company | Ice cube tray |
JPS637770U (ja) * | 1986-07-02 | 1988-01-19 | ||
JPH049561A (ja) * | 1990-04-26 | 1992-01-14 | Toshiba Corp | 自動製氷装置付冷蔵庫 |
JPH0894230A (ja) * | 1994-09-28 | 1996-04-12 | Matsushita Refrig Co Ltd | 冷凍冷蔵庫 |
JP2010043823A (ja) * | 2008-07-18 | 2010-02-25 | Panasonic Corp | 冷蔵庫 |
CN101871712A (zh) * | 2010-07-08 | 2010-10-27 | 合肥美的荣事达电冰箱有限公司 | 自动制冰机和具有其的冰箱 |
JP2013053775A (ja) * | 2011-09-01 | 2013-03-21 | Sharp Corp | 冷蔵庫 |
US20140165623A1 (en) * | 2012-12-13 | 2014-06-19 | Whirlpool Corporation | Weirless ice tray |
KR20140140457A (ko) * | 2013-05-29 | 2014-12-09 | 이정미 | 식품용 제빙용기 |
JP2015132448A (ja) * | 2014-01-15 | 2015-07-23 | 日本電産サンキョー株式会社 | 製氷装置 |
JP2016205771A (ja) * | 2015-04-28 | 2016-12-08 | 紀伊産業株式会社 | 製氷皿 |
Also Published As
Publication number | Publication date |
---|---|
JP7076560B2 (ja) | 2022-05-27 |
JPWO2020049606A1 (ja) | 2021-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8336330B2 (en) | Refrigerator with icemaker compartment having an improved air flow | |
EP3702703B1 (en) | Refrigerator including ice making device | |
EP3062048B1 (en) | Refrigerator | |
EP3270078B1 (en) | Ice maker and refrigerator having the same | |
US20080034779A1 (en) | Refrigerator | |
US20100199701A1 (en) | Icemaker and refrigerator having the same | |
TWI519748B (zh) | 冷凍冷藏庫 | |
EP3217126B1 (en) | Refrigerator | |
KR20080014598A (ko) | 제빙장치 및 이를 갖춘 냉장고 | |
KR102483212B1 (ko) | 냉장고 | |
US20160370068A1 (en) | Ice tray apparatus and method | |
WO2020049606A1 (ja) | 自動製氷機 | |
JP4281003B2 (ja) | 冷蔵庫 | |
JP7401898B2 (ja) | 冷蔵庫 | |
CN113028707A (zh) | 冰箱 | |
JP5634358B2 (ja) | 冷蔵庫 | |
KR100414269B1 (ko) | 냉장고의 냉기 공급장치 | |
JP5634359B2 (ja) | 冷蔵庫 | |
KR100585695B1 (ko) | 사이드 바이 사이드 타입 냉장고의 댐퍼 | |
KR100595434B1 (ko) | 냉장고 | |
JP6444180B2 (ja) | 冷蔵庫 | |
KR100700540B1 (ko) | 냉장고의 급속 제빙장치 | |
JP6709346B2 (ja) | 冷蔵庫 | |
KR101139586B1 (ko) | 냉장고의 제어 방법 | |
KR20120072775A (ko) | 냉기토출구를 가지는 냉장고 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18932440 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020540875 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18932440 Country of ref document: EP Kind code of ref document: A1 |