WO2020048546A1 - 三环取代哌啶二酮类化合物 - Google Patents

三环取代哌啶二酮类化合物 Download PDF

Info

Publication number
WO2020048546A1
WO2020048546A1 PCT/CN2019/104989 CN2019104989W WO2020048546A1 WO 2020048546 A1 WO2020048546 A1 WO 2020048546A1 CN 2019104989 W CN2019104989 W CN 2019104989W WO 2020048546 A1 WO2020048546 A1 WO 2020048546A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
room temperature
mmol
added
stirred
Prior art date
Application number
PCT/CN2019/104989
Other languages
English (en)
French (fr)
Inventor
罗云富
雷茂义
王勇
黎健
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to US17/274,206 priority Critical patent/US20210317109A1/en
Priority to CN201980058618.4A priority patent/CN112689627B/zh
Priority to JP2021512612A priority patent/JP7098825B2/ja
Priority to KR1020217010370A priority patent/KR20210056397A/ko
Priority to EP19856867.7A priority patent/EP3848363B1/en
Publication of WO2020048546A1 publication Critical patent/WO2020048546A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/45Non condensed piperidines, e.g. piperocaine having oxo groups directly attached to the heterocyclic ring, e.g. cycloheximide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4525Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4741Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having oxygen as a ring hetero atom, e.g. tubocuraran derivatives, noscapine, bicuculline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/541Non-condensed thiazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems

Definitions

  • the present invention relates to a series of tricyclic substituted piperidine dione compounds and its application in the preparation of a medicament for treating diseases related to CRBN protein, in particular to a derivative compound represented by formula (I) or a pharmaceutically acceptable salt thereof. .
  • Thalidomide trade name is reaction stop
  • Thalidomide trade name is reaction stop
  • CRBN protein Cereblon
  • DDB1 DNA damage binding protein 1
  • CUL4A Cullin-4A
  • ROC1 Cullins 1 regulator
  • CRBN is a 442 amino acid protein that is conserved from plant to human. It is located on the short arm of p26.3 of human chromosome 3 and has a molecular weight of 51 kDa. In humans, the CRBN gene has been identified as a candidate gene for autosomal recessive non-syndrome mild mental retardation (ARNSMR). CRBN is widely expressed in testes, spleen, prostate, liver, pancreas, placenta, kidney, lung, skeletal muscle, ovary, small intestine, peripheral blood leukocytes, colon, brain, and retina, but in brain tissue (including retina) and testes The expression was significantly higher in other tissues.
  • CRBN as an important target of antitumor and immunomodulator drugs, has been proven in multiple hematological malignancies such as multiple myeloma, chronic lymphocytic leukemia, skin diseases such as leprosy nodular erythema, and systemic lupus erythematosus. Autoimmune diseases have a clear effect. Doxamines have more side effects, especially peripheral neuropathy. There is an urgent need to develop CRBN modulator drugs without teratogenic effects, fewer peripheral neuropathies, stronger immunomodulatory effects, and higher antitumor activity to improve clinical treatment effects, reduce clinical side effects, and facilitate long-term use of patients.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • n is selected from 0, 1, 2 and 3;
  • R 1 is selected from H, halogen, OH, NH 2 , CN, C 3-6 cycloalkyl, C 1-6 alkyl and C 1-6 alkoxy, said NH 2 , C 3-6 cycloalkyl , C 1-6 alkyl and C 1-6 alkoxy are optionally substituted with 1, 2 or 3 R a ;
  • Ring A is selected from 5- to 6-membered heteroaryl, phenyl, C 4-6 cycloalkyl, and 4- to 7-membered heterocycloalkyl;
  • R is independently selected from F, Cl, Br, I, OH, NH 2 , Me,
  • the 5- to 6-membered heteroaryl group, the 4- to 7-membered heterocycloalkyl group, the 4- to 10-membered heterocycloalkyl group, and the 4- to 10-membered heterocycloalkylamino group respectively include 1, 2, 3, or 4 independently selected from- NH-, -O-, -S-, And N heteroatoms or heteroatoms.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • n is selected from 0, 1, 2 and 3;
  • R 1 is selected from H, halogen, OH, NH 2 and C 1-6 alkyl, wherein C 1-6 alkyl is optionally substituted with 1, 2 or 3 R a;
  • Ring A is selected from 5- to 6-membered heteroaryl, phenyl, C 4-6 cycloalkyl, and 4- to 7-membered heterocycloalkyl;
  • R a is selected from F, Cl, Br, I, OH and NH 2 ;
  • the 5- to 6-membered heteroaryl group and 4- to 7-membered heterocycloalkyl group respectively include 1, 2, 3, or 4 heteroatoms or heteroatom groups independently selected from -NH-, -O-, -S-, and N. .
  • the R a is selected from Other variables are as defined in the present invention.
  • R 1 is selected from H, NH 2 , CN, C 3-6 cycloalkyl, C 1-3 alkyl, and C 1-3 alkoxy, wherein the NH 2 , C 3-6 cycloalkyl, C 1-3 alkyl group and a C 1-3 alkoxy group optionally substituted with 1, 2 or 3 R a, the other variables are as defined in the present invention.
  • R 1 is selected from H, F, Cl, Br, I, OH, NH 2 , and C 1-3 alkyl, wherein C 1-3 alkyl is optionally 1, 2, or 3 R a , other variables are as defined in the present invention.
  • R 1 is selected from the group consisting of F, Cl, Br, I, OH, NH 2 , and C 1-3 alkyl, wherein C 1-3 alkyl is optionally substituted by 1, 2 or 3 R a substitution, the other variables are as defined in the present invention, the other variables are as defined in the present invention.
  • R 1 is selected from H, F, Cl, Br, I, OH, NH 2 and Me, wherein Me is optionally substituted with 1, 2 or 3 R a, of the present invention other variables are as As defined.
  • R 1 is selected from F, Cl, Br, I, OH, NH 2 and Me, wherein Me is optionally substituted by 1, 2 or 3 R a , and other variables are as defined in the present invention.
  • R 1 is selected from the group consisting of H, Me, CN, Other variables are as defined in the present invention.
  • R 1 is selected from H and Me, and other variables are as defined in the present invention.
  • R 1 is selected from Me, and other variables are defined by the present invention.
  • the ring A is selected from the group consisting of phenyl, pyridyl, pyrrolyl, pyrazolyl, 1,3-dioxocyclopentyl, morpholinyl, oxazolyl cyclobutyl, and oxa Cycloheptyl, furyl, tetrahydrofuranyl and 1,4-oxazepine, other variables are as defined in the present invention.
  • ring A is selected from the group consisting of phenyl, pyridyl, pyrrolyl, pyrazolyl, 1,3-dioxocyclopentyl, furyl and Tetrahydrofuranyl, other variables are as defined in the present invention.
  • the ring A is selected from the group consisting of phenyl, 1,3-dioxocyclopentyl, morpholinyl, oxazolyl cyclobutyl, oxetanyl, and 1,4-oxo nitrogen. Heptyl, other variables are as defined in the present invention.
  • the ring A is selected from the group consisting of phenyl, pyridyl, 1,3-dioxocyclopentyl, morpholinyl, oxazolyl cyclobutyl, oxetanyl, tetrahydrofuranyl, and 1,4-oxazepine, other variables are as defined in the present invention.
  • the ring A is selected from phenyl, pyridyl, 1,3-dioxocyclopentyl, and tetrahydrofuranyl, and other variables are as defined in the present invention.
  • the above compound or a pharmaceutically acceptable salt thereof is selected from the group consisting of
  • n, R 1 and ring A are as defined in the present invention.
  • the above compound or a pharmaceutically acceptable salt thereof is selected from the group consisting of
  • n, R 1 , ring A structural unit As defined by the present invention.
  • the present invention also provides the following compounds or pharmaceutically acceptable salts thereof
  • the above compound or a pharmaceutically acceptable salt thereof is selected from the group consisting of
  • the present invention also provides a pharmaceutical composition containing a therapeutically effective amount of the above-mentioned compound or a pharmaceutically acceptable salt thereof as an active ingredient and a pharmaceutically acceptable carrier.
  • the present invention also provides the use of the above compound or a pharmaceutically acceptable salt thereof in the preparation of a medicament for treating diseases related to the CRBN protein.
  • the invention also provides the application of the above composition in the preparation of a medicament for treating diseases related to CRBN protein.
  • pharmaceutically acceptable refers to those compounds, materials, compositions, and / or dosage forms that are within the scope of sound medical judgment and are suitable for use in contact with human and animal tissues Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit / risk ratio.
  • pharmaceutically acceptable salt refers to a salt of a compound of the present invention, prepared from a compound having a specific substituent and a relatively non-toxic acid or base found in the present invention.
  • base addition salts can be obtained by contacting a sufficient amount of a base with a neutral form of such compounds in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salts or similar salts.
  • acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc .; and organic acid salts, such as acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid, and methanesulfonic acid; also include salts of amino acids (such as arginine, etc.) , And salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain basic and acidic functional groups
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound containing an acid group or a base by a conventional chemical method. Generally, such salts are prepared by reacting these compounds in the form of a free acid or base with a stoichiometric amount of an appropriate base or acid in water or an organic solvent or a mixture of the two.
  • the compounds of the invention may exist in specific geometric or stereoisomeric forms.
  • This invention contemplates all such compounds, including cis and trans isomers, (-)-and (+)-enantiomers, (R)-and (S) -enantiomers, diastereomers Isomers, (D) -isomers, (L) -isomers, and racemic and other mixtures thereof, such as enantiomeric or diastereomeric enriched mixtures, all of which belong to the present invention Within the scope of the invention. Additional asymmetric carbon atoms may be present in substituents such as alkyl. All these isomers and their mixtures are included in the scope of the present invention.
  • enantiomers or “optical isomers” refer to stereoisomers in mirror image relationship to each other.
  • diastereomer refers to a stereoisomer in which a molecule has two or more centers of chirality and is in a non-mirror relationship between molecules.
  • wedge solid line key And wedge dashed keys Represents the absolute configuration of a solid center, using straight solid line keys And straight dashed keys
  • the relative configuration of the solid center Represents a wedge solid line key Or wedge-shaped dotted key Or with wavy lines Represents a straight solid line key And straight dashed keys
  • any one or more sites of the group may be connected to other groups through chemical bonds.
  • the chemical bonds connecting the sites to other groups can be straight solid bonds
  • Straight dotted key Or wavy lines Means.
  • a straight solid line bond in -OCH 3 means that it is connected to other groups through the oxygen atom in the group;
  • the straight dashed bond in indicates that it is connected to other groups through two ends of the nitrogen atom in the group;
  • the wavy line in indicates that it is connected to other groups through the carbon atoms in the 1 and 2 positions in the phenyl group.
  • tautomer or “tautomeric form” means that at room temperature, the isomers of different functional groups are in dynamic equilibrium and can be quickly converted to each other. If tautomers are possible (eg in solution), the chemical equilibrium of the tautomers can be reached.
  • proton tautomers also known as prototropic tautomers
  • proton migration such as keto-enol isomerization and imine-ene Amine isomerization.
  • Valence tautomers include recombination of some bonding electrons for mutual conversion.
  • a specific example of the keto-enol tautomerization is the interconversion between two tautomers of pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms “rich in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enantiomerically enriched” refer to one of the isomers or the The enantiomeric content is less than 100%, and the content of the isomer or enantiomer is 60% or more, or 70% or more, or 80% or more, or 90% or more, or 95% or more, or 96% or more, or 97% or more, or 98% or more, or 99% or more, or 99.5% or more, or 99.6% or more, or 99.7% or more, or 99.8% or more, or more 99.9%.
  • the terms “isomer excess” or “enantiomeric excess” refer to the difference between the two isomers or the relative percentages of the two enantiomers. For example, if the content of one isomer or enantiomer is 90%, and the content of the other isomer or enantiomer is 10%, the isomer or enantiomeric excess (ee value) is 80% .
  • Optically active (R)-and (S) -isomers and D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If an enantiomer of a compound of the present invention is desired, it can be prepared by asymmetric synthesis or derivatization with a chiral auxiliary, in which the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure The desired enantiomer.
  • a diastereomeric salt is formed with an appropriate optically active acid or base, and then by a conventional method known in the art Diastereomeric resolution is performed and the pure enantiomer is recovered.
  • Diastereomeric resolution is performed and the pure enantiomer is recovered.
  • the separation of enantiomers and diastereoisomers is usually accomplished by using chromatography that employs a chiral stationary phase and optionally is combined with chemical derivatization (such as the generation of amino groups from amines) Formate).
  • the compounds of the invention may contain atomic isotopes in unnatural proportions on one or more of the atoms constituting the compound.
  • compounds such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C) can be labeled with radioisotopes.
  • deuterated drugs can be replaced by heavy hydrogen. The bond between deuterium and carbon is stronger than the bond between ordinary hydrogen and carbon. Compared with non-deuterated drugs, deuterated drugs have reduced side effects and increased drug stability. , Enhance efficacy, extend the biological half-life of drugs and other advantages. Transformations of all isotopic compositions of the compounds of the invention, whether radioactive or not, are included within the scope of the invention. "Optional" or “optionally” refers to events or conditions described later that may, but need not, occur, and that the description includes situations in which the events or conditions occur and situations in which the events or conditions do not occur.
  • substituted refers to the replacement of any one or more hydrogen atoms on a specific atom with a substituent, and can include deuterium and hydrogen variants, as long as the valence of the specific atom is normal and the substituted compound is stable of.
  • O oxygen
  • Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the kind and number of substituents may be arbitrary on the basis of chemically achievable.
  • any variable such as R
  • its definition in each case is independent.
  • the group may be optionally substituted with at most two R, and R in each case has independent options.
  • combinations of substituents and / or variants are only permitted if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as-(CRR) 0- , the linking group is a single bond.
  • substituents When a substituent is vacant, it means that the substituent does not exist.
  • X in A-X indicates that the structure is actually A.
  • substituents may be bonded through any of its atoms, for example, pyridyl as a substituent may be passed through any of the pyridine rings. The carbon atom is attached to a substituted group.
  • the number of atoms on a ring is generally defined as the number of rings, for example, a "5-7 member ring” refers to a “ring” arranged around 5-7 atoms.
  • C 1-6 alkyl is used to indicate a straight or branched chain saturated hydrocarbon group consisting of 1 to 6 carbon atoms.
  • the C 1-6 alkyl includes C 1-5 , C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-4 , C 6 and C 5 alkyl, etc .; it may Is monovalent (such as methyl), divalent (such as methylene) or polyvalent (such as methine).
  • C 1-6 alkyl examples include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl , S-butyl and t-butyl), pentyl (including n-pentyl, isopentyl and neopentyl), hexyl and the like.
  • C 1-4 alkyl is used to indicate a straight or branched chain saturated hydrocarbon group consisting of 1 to 4 carbon atoms.
  • the C 1-4 alkyl group includes C 1-2 , C 1-3 and C 2-3 alkyl, etc .; it may be monovalent (such as methyl), divalent (such as methylene), or polyvalent (such as (Such as methine).
  • Examples of C 1-4 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl , S-butyl and t-butyl) and the like.
  • C 1-3 alkyl is used to indicate a straight or branched chain saturated hydrocarbon group consisting of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, and the like; it may be monovalent (such as methyl), divalent (such as methylene), or polyvalent (such as methine).
  • Example C 1- 3 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n- propyl and isopropyl) and the like.
  • C 1-10 alkylamino refers to those alkyl groups containing 1 to 6 carbon atoms attached to the rest of the molecule through an amino group.
  • the C 1-6 alkylamino group includes C 1-10 alkoxy groups including C 1-9 , C 1-8 , C 1-7 , C 1-6 , C 1-5 , C 1-4 , C 1- 3 , C 1-2 , C 2-6 , C 2- 4 , C 6 , C 5 , C 4 and C 2 alkylamino.
  • C 1-6 alkylamino examples include, but are not limited to, -NHCH 3 , -N (CH 3 ) 2 , -NHCH 2 CH 3 , -N (CH 3 ) CH 2 CH 3 , -N (CH 2 CH 3 ) ( CH 2 CH 3 ), -NHCH 2 CH 2 CH 3 , -NHCH 2 (CH 3 ) 2 , -NHCH 2 CH 2 CH 2 CH 3, and the like.
  • C 1-6 alkylamino refers to those alkyl groups containing 1 to 6 carbon atoms attached to the rest of the molecule through an amino group.
  • the C 1-6 alkylamino group includes C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-4 , C 6 , C 5 , C 4 , C 3 and C 2 alkylamino Wait.
  • C 1-6 alkylamino examples include, but are not limited to, -NHCH 3 , -N (CH 3 ) 2 , -NHCH 2 CH 3 , -N (CH 3 ) CH 2 CH 3 , -N (CH 2 CH 3 ) ( CH 2 CH 3 ), -NHCH 2 CH 2 CH 3 , -NHCH 2 (CH 3 ) 2 , -NHCH 2 CH 2 CH 2 CH 3, and the like.
  • C 1-6 alkylamino refers to those alkyl groups containing 1 to 6 carbon atoms attached to the rest of the molecule through an amino group.
  • the C 1-6 alkylamino group includes C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-4 , C 6 , C 5 , C 4 , C 3 and C 2 alkylamino Wait.
  • C 1-6 alkylamino examples include, but are not limited to, -NHCH 3 , -N (CH 3 ) 2 , -NHCH 2 CH 3 , -N (CH 3 ) CH 2 CH 3 , -N (CH 2 CH 3 ) ( CH 2 CH 3 ), -NHCH 2 CH 2 CH 3 , -NHCH 2 (CH 3 ) 2 , -NHCH 2 CH 2 CH 2 CH 3, and the like.
  • C1-3 alkylamino refers to those alkyl groups containing 1 to 3 carbon atoms that are attached to the rest of the molecule through an amino group.
  • the C 1-3 alkylamino group includes C 1-2 , C 3 and C 2 alkylamino, and the like.
  • Examples of C 1-3 alkylamino include, but are not limited to, -NHCH 3 , -N (CH 3 ) 2 , -NHCH 2 CH 3 , -N (CH 3 ) CH 2 CH 3 , -NHCH 2 CH 2 CH 3 ,- NHCH 2 (CH 3 ) 2 and the like.
  • C 1-10 alkoxy refers to those alkyl groups containing 1 to 10 carbon atoms that are connected to the rest of the molecule through one oxygen atom.
  • the C 1-10 alkoxy group includes C 1-9 , C 1-8 , C 1-7 , C 1-6 , C 1-5 , C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-4 , C 6 , C 5 , C 4 and C 3 alkoxy and the like.
  • C 1-10 alkoxy examples include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), butoxy (including n-butoxy, isobutyl (Oxy, s-butoxy and t-butoxy), pentyloxy (including n-pentyloxy, isopentyloxy and neopentyloxy), hexyloxy, and the like.
  • C 1-6 alkoxy refers to those alkyl groups containing 1 to 6 carbon atoms that are attached to the rest of the molecule through one oxygen atom.
  • the C 1-6 alkoxy group includes C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-4 , C 6 , C 5 , C 4 and C 3 alkoxy, etc. .
  • C 1-6 alkoxy examples include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), butoxy (including n-butoxy, isobutyl (Oxy, s-butoxy and t-butoxy), pentyloxy (including n-pentyloxy, isopentyloxy and neopentyloxy), hexyloxy, and the like.
  • C 2-4 alkoxy means those alkyl groups containing 2 to 4 carbon atoms which are connected to the rest of the molecule through one oxygen atom.
  • the C 2-4 alkoxy group includes C 2-3 , C 2-4 , C 2 , C 4 and C 3 alkoxy, and the like.
  • C 2-4 alkoxy examples include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), butoxy (including n-butoxy, isobutyl (Oxy, s-butoxy and t-butoxy), pentyloxy (including n-pentyloxy, isopentyloxy and neopentyloxy), hexyloxy, and the like.
  • C 1-3 alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms that are attached to the rest of the molecule through one oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy, and the like.
  • Examples of C 1-3 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • halogen refers to a fluorine, chlorine, bromine or iodine atom by itself or as part of another substituent.
  • C 3-6 cycloalkyl means a saturated cyclic hydrocarbon group consisting of 3 to 6 carbon atoms, which is a monocyclic and bicyclic system.
  • the C 3-6 cycloalkyl includes C 3-5 and C 5-6 cycloalkyl and the like; it may be monovalent, divalent, or polyvalent.
  • Examples of C 3-6 cycloalkyl include, but are not limited to, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • C 4-6 cycloalkyl means a saturated cyclic hydrocarbon group consisting of 4 to 6 carbon atoms, which is a monocyclic and bicyclic system, wherein the bicyclic system includes a spiro ring, a cyclic ring and Bridged ring, the C 4-6 cycloalkyl includes C 4-5 and C 5-6 cycloalkyl and the like; it may be monovalent, divalent, or polyvalent.
  • Examples of C 3-6 cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • the term "4- to 10-membered heterocycloalkyl" itself or in combination with other terms means a saturated cyclic group consisting of 4 to 10 ring atoms, 1, 2, 3 or 4 ring atoms of which Are heteroatoms independently selected from O, S, and N, and the rest are carbon atoms, wherein the nitrogen atom is optionally quaternized, and the nitrogen and sulfur heteroatoms can be optionally oxidized (ie, NO and S (O) p , p Is 1 or 2). It includes monocyclic, bicyclic, and tricyclic systems, where bicyclic and tricyclic systems include spiro, parallel, and bridge rings.
  • the 4-10 membered heterocycloalkyl includes 4-8 members, 4-6 members, 4-7 members, 4-9 members, 4 members, 5 members, 6 members, and the like.
  • 4- to 10-membered heterocycloalkyl examples include, but are not limited to, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothienyl (including tetrahydrothien-2-yl and tetrahydrothien-3-yl, etc.) , Tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2-piperidinyl, and 3-piperidinyl, etc.), piperazinyl (including 1 -Piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), dioxanyl, dithiaalkyl, isoxazolidinyl, isothiazolyl Alkyl, 1,2-oxazinyl, 1,2-thiazinyl,
  • the term "4- to 7-membered heterocycloalkyl" itself or in combination with other terms means a saturated cyclic group consisting of 4 to 7 ring atoms, 1, 2, 3 or 4 ring atoms of which Are heteroatoms independently selected from O, S, and N, and the rest are carbon atoms, wherein the nitrogen atom is optionally quaternized, and the nitrogen and sulfur heteroatoms can be optionally oxidized (ie, NO and S (O) p , p Is 1 or 2). It includes single ring and double ring systems, where the double ring system includes a spiro ring, a parallel ring and a bridge ring.
  • the heteroatom may occupy the position of attachment of the heterocycloalkyl group to the rest of the molecule.
  • the 4-7 membered heterocycloalkyl includes 4-5 members, 4-6 members, 5-6 members, 5-7 members, 4 members, 5 members, 6 members, and the like.
  • 4- to 7-membered heterocycloalkyl examples include, but are not limited to, azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothienyl ( Including tetrahydrothiophen-2-yl and tetrahydrothiophen-3-yl, etc.), tetrahydrofuryl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2- Piperidinyl and 3-piperidinyl, etc.), piperazinyl (including 1-piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), Dioxanyl, dithiazyl, isoxazolidinyl, isothiazolyl
  • the terms “5-6 membered heteroaryl ring” and “5-6 membered heteroaryl group” in the present invention are used interchangeably, and the term “5-6 membered heteroaryl group” means from 5 to 6 ring atoms A single-ring group consisting of a conjugated ⁇ -electron system.
  • One, two, three, or four ring atoms are heteroatoms independently selected from O, S, and N, and the rest are carbon atoms.
  • the nitrogen and sulfur heteroatoms can be optionally oxidized (ie NO and S (O) p , p is 1 or 2).
  • the 5- to 6-membered heteroaryl can be attached to the rest of the molecule through a heteroatom or a carbon atom.
  • the 5- to 6-membered heteroaryl includes 5- and 6-membered heteroaryl.
  • Examples of the 5- to 6-membered heteroaryl include, but are not limited to, pyrrolyl (including N-pyrrolyl, 2-pyrrolyl and 3-pyrrolyl, etc.), pyrazolyl (including 2-pyrrolyl and 3-pyryl) Oxazolyl, etc.), imidazolyl (including N-imidazolyl, 2-imidazolyl, 4-imidazolyl, and 5-imidazolyl, etc.), oxazolyl (including 2-oxazolyl, 4-oxazolyl, and 5- Oxazolyl, etc.), triazolyl (1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, 1H-1,2,4-triazolyl, and 4H-1, 2,4-triazo
  • C n-n + m or C n -C n + m includes any specific case of n to n + m carbons, for example, C 1-12 includes C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , and also include any range from n to n + m, for example, C 1-12 includes C 1- 3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12, etc.
  • n yuan to n + m means that the number of atoms on the ring is n to n + m.
  • 3-12-membered rings include 3-, 4-, 5-, 6-, 7-, 8-, and 9-membered rings.
  • 10-membered ring, 11-membered ring, and 12-membered ring including any range from n to n + m, for example, 3-12-membered ring includes 3-6-membered ring, 3-9-membered ring, 5-6-membered ring Ring, 5-7 member ring, 6-7 member ring, 6-8 member ring, and 6-10 member ring, etc.
  • leaving group refers to a functional group or atom that can be replaced by another functional group or atom through a substitution reaction (eg, an affinity substitution reaction).
  • representative leaving groups include triflate; chlorine, bromine, and iodine; sulfonate groups such as mesylate, tosylate, p-bromobenzenesulfonate, and p-toluenesulfonic acid. Esters, etc .; acyloxy, such as acetoxy, trifluoroacetoxy and the like.
  • protecting group includes but is not limited to "amino protecting group", “hydroxy protecting group” or “mercapto protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to: formyl; acyl, such as alkanoyl (such as acetyl, trichloroacetyl, or trifluoroacetyl); alkoxycarbonyl, such as tert-butoxycarbonyl (Boc) ; Arylmethoxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethoxycarbonyl (Fmoc); Arylmethyl, such as benzyl (Bn), trityl (Tr), 1,1-di -(4'-methoxyphenyl) methyl; silyl, such as trimethylsilyl (TMS) and tert-butyldi
  • hydroxy-protecting group refers to a protecting group suitable for preventing a hydroxyl side reaction.
  • Representative hydroxy protecting groups include, but are not limited to: alkyl groups such as methyl, ethyl, and tert-butyl; acyl groups such as alkanoyl (such as acetyl); aryl methyl groups such as benzyl (Bn), p-formyl Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and more.
  • alkyl groups such as methyl, ethyl, and tert-butyl
  • acyl groups such as alkanoyl (such as acetyl)
  • aryl methyl groups such as benzyl (Bn), p-formyl Oxybenzyl
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those familiar to those skilled in the art. Equivalent alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention.
  • aq stands for water
  • HATU O- (7-azabenzotriazol-1-yl) -N, N, N ', N'-tetramethylurea hexafluorophosphate
  • EDC stands for N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride
  • m-CPBA stands for 3-chloroperoxybenzoic acid
  • eq stands for equivalent, equivalent
  • CDI stands for Carbonyl diimidazole
  • DCM stands for dichloromethane
  • PE stands for petroleum ether
  • DIAD diisopropyl azodicarboxylate
  • DMF stands for N, N-dimethylformamide
  • DMSO stands for dimethyl sulfoxide
  • EtOAc stands for ethyl acetate EtOH for ethanol; MeOH for methanol
  • CBz benzyl
  • the compound of the present invention exhibits a significant down-regulation effect on the IKZF3 protein level in multiple myeloma cells MM.1S; the compound of the present invention exhibits excellent cell proliferation inhibitory effects in the lymphoma cell lines OCI-LY10, DOHH2 and Mino. In rodent mice, the compound of the present invention has superior pharmacokinetic properties; the compound of the present invention WX002 shows a significant tumor shrinking effect on the human lymphoma OCI-LY10 in vivo pharmacodynamic model.
  • FIG. 1 shows the changes of IKZF3 protein levels detected by WB after treatment of multiple myeloma cells MM.1S at a concentration of 100 nM of compounds WX001 to WX008 of the present invention
  • FIG. 2 shows the changes of IKZF3 protein level detected by WB after treatment of multiple myeloma cells MM.1S with compounds WX009 to WX030 at a concentration of 100 nM;
  • FIG. 3 shows the changes of IKZF3 protein levels detected by WB after treatment of multiple myeloma cells MM.1S with compounds WX031 to WX056 of the present invention at a concentration of 100 nM.
  • the intermediate WX001–2 (2.5 g, 13.72 mmol) was dissolved in tetrahydrofuran (30 mL), and the reaction mixture was cooled to ⁇ 60 ° C. under nitrogen protection, and then n-butyllithium (2.5 M, 5.49 mL) was added, and the reaction was performed. After the mixture was stirred for reaction at -60 ° C for 10 minutes, 2-chloro-N-methoxy-N-methylacetamide (2.27 g, 16.47 mmol) was added, the reaction mixture was warmed to room temperature and the reaction was stirred for 2 hours.
  • the intermediate WX002-2 (9 g, 33.33 mmol) was dissolved in acetonitrile (150 mL), followed by potassium carbonate (9.21 g, 66.65 mmol) and ethyl 4-bromocrotonate (6.43 g, 33.33 mmol, 4.60 mL), and the reaction mixture was stirred at room temperature for 12 hours. After completion of the reaction, the reaction solution was filtered, and the filtrate was collected, and the filter cake was washed with ethyl acetate (30 mL ⁇ 2). The filtrate and washing solution were combined, and the solvent was removed under reduced pressure.
  • the intermediate WX002-4 (1.4 g, 5.51 mmol) was dissolved in the solvent tetrahydrofuran (70 mL) under the protection of nitrogen at room temperature, and then acrylamide (391.34 mg, 5.51 mmol) and potassium tert-butoxide (617.81 mg, 5.51) mmol), the reaction mixture was stirred at room temperature for 3 hours. After the reaction was completed, water (100 mL) and ethyl acetate (30 mL) were added to dilute, and the organic phase was collected after liquid separation. The aqueous phase was extracted with ethyl acetate (30 mL ⁇ 2).
  • WX003-1 (9.5 g, 65.45 mmol) and 2-tert-butyl bromoacetate (14.04 g, 71.99 mmol, 10.64 mL) were dissolved in N, N-dimethylformamide (100 mL) at room temperature under nitrogen protection. Then, potassium carbonate (9.05g, 65.45mmol) was slowly added in portions, the reaction mixture was heated to 60 ° C and stirred for 12 hours, and then the reaction system was cooled to 30 ° C. Sodium hydrogen (2.62g, 65.45mmol, purity : 60%), heated to 60 ° C again, and stirred for 2 hours.
  • the intermediate WX003-5 (60.00mg, 206.84 ⁇ mol) was dissolved in tetrahydrofuran (3.5mL), acrylamide (14.70mg, 206.84 ⁇ mol) was added, and after cooling to 0 ° C, potassium tert-butoxide (23.21) mg, 206.84 ⁇ mol), and the reaction mixture was stirred at 0 ° C for 1 hour. After completion of the reaction, water (50 mL) was added to quench the reaction, and the mixture was extracted with ethyl acetate (100 mL ⁇ 2).
  • the intermediate WX004-2 (0.2 g, 1.49 mmol) was dissolved in dichloromethane (3 mL), and then N-iodosuccinimide (335.46 mg, 1.49 mmol) was added.
  • the reaction mixture was at room temperature.
  • the reaction was stirred for 12 hours.
  • a saturated aqueous sodium sulfite solution (80 mL) was added to quench the reaction, and the mixture was extracted with ethyl acetate (80 mL ⁇ 2).
  • the organic phases were combined, dried over anhydrous sodium sulfate, filtered, and the solvent was removed from the filtrate under reduced pressure.
  • the intermediate WX004-3 (0.2 g, 769.15 ⁇ mol, purity: 88%) was dissolved in acetonitrile (4 mL), followed by potassium carbonate (159.46 mg, 1.15 mmol) and ethyl 4-bromocrotonate ( 178.17 mg, 922.98 ⁇ mol), and the reaction mixture was stirred at room temperature for 12 hours. After completion of the reaction, water (50 mL) was added and the mixture was extracted with ethyl acetate (80 mL ⁇ 2). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and the solvent was removed from the filtrate under reduced pressure.
  • the intermediate WX004-5 (0.08 g, 327.54 ⁇ mol) was dissolved in tetrahydrofuran (5 mL), and then acrylamide (23.28 mg, 327.54 ⁇ mol) and potassium tert-butoxide (36.75 mg, 327.54 ⁇ mol) were sequentially added to the reaction The mixture was stirred for 1 hour at room temperature. After completion of the reaction, water (20 mL) was added to quench the reaction, and extraction was performed with ethyl acetate (80 mL ⁇ 2). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and the solvent was removed from the filtrate under reduced pressure.
  • MS--ESI m / z 165.0 [M + H] + .
  • the intermediate WX005-3 (5.00 g, 28.86 mmol, purity: 94.77%) was dissolved in dimethylacetamide (3 mL) and water (0.5 mL), and palladium chloride (102.35 mg, 577.16 ⁇ mol) was added. ) And sodium acetate (4.73 g, 57.72 mmol), the reaction mixture was evacuated and replaced with oxygen several times. The reaction mixture was stirred at 25 ° C. for 1 hour under the protection of oxygen (15 psi). Three batches are combined. After the reaction was completed, the reaction mixture was added with water (200 mL), and extracted with ethyl acetate (100 mL ⁇ 3).
  • the intermediate WX005-4 (4.22 g, 25.42 mmol, purity: 97.69%) was dissolved in dichloromethane (40 mL) under -78 ° C and nitrogen protection, and boron tribromide (19.10 g, 76.26 mmol, 7.35 mL) of dichloromethane (10 mL), the reaction mixture was warmed to 25 ° C and the reaction was stirred for 5 hours. After the reaction was completed, the reaction mixture was poured into water (100 mL) and extracted with dichloromethane (50 mL ⁇ 3).
  • the intermediate WX005-6 (2.10 g, 8.67 mmol, purity: 96.74%) was dissolved in tetrahydrofuran (20 mL), ethanol (10 mL) and water (5 mL), and sodium hydroxide (346.91 mg) was added. , 8.67 mmol), and the reaction mixture was stirred at 25 ° C. for 12 hours. Tetrahydrofuran and ethanol were removed under reduced pressure from the reaction mixture, and water (100 mL) was added to the reaction mixture. Add 2M dilute hydrochloric acid (10mL) to adjust the pH to 2-3, and extract with ethyl acetate (50mL ⁇ 3).
  • the intermediate WX005-7 (1.77 g, 8.39 mmol, purity: 97.79%) was dissolved in acetonitrile (10 mL), and N, N'-carbonyldiimidazole (1.36 g, 8.39 mmol) and Triethylamine (849.43 mg, 8.39 mmol, 1.17 mL), the reaction mixture was raised to 25 ° C and the reaction was stirred for 2 hours. Under nitrogen protection at 0 ° C, the reaction mixture was added dropwise to the above solution, the reaction mixture was raised to 25 ° C and the reaction was stirred for 10 hours.
  • the intermediate WX005-8 (0.821 g, 2.44 mmol, purity: 82.04%) was dissolved in toluene (10 mL), and polyphosphoric acid (0.300 g) was added. The reaction mixture was heated to 110 ° C and the reaction was stirred. 1 hour. After completion of the reaction, the reaction mixture was cooled to room temperature, water (30 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (20 mL ⁇ 3). The organic phases were combined, washed with saturated brine (10 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the solvent was removed under reduced pressure from the filtrate.
  • intermediate WX006-5 (43.00mg, 166.97 ⁇ mol, purity: 94.84%) and intermediate WX006-5 (20.75mg, 69.87 ⁇ mol, purity: 82.23%) were added to N, N-di To methyl formamide (5 mL), potassium tert-butoxide (26.58 mg, 236.84 ⁇ mol) was subsequently added, and the reaction was stirred at 0 ° C for 0.5 hours, and then acrylamide (16.83 mg, 236.84 ⁇ mol) was added to the reaction solution. The reaction mixture was stirred under nitrogen at 0 ° C for 1 hour.
  • WX007-1 (20 g, 135.89 mmol) was dissolved in tetrahydrofuran (300 mL) at room temperature and under nitrogen protection, and the temperature was lowered to 0 ° C.
  • Sodium hydrogen (6.79 g, 169.87 mmol, purity: 60%) was added in portions, and the reaction mixture was warmed. The temperature was lowered to 15 ° C. and the reaction was stirred for 1 hour. The temperature was lowered to 5 ° C., and benzenesulfonyl chloride (30.00 g, 169.87 mmol, 21.74 mL) was slowly added dropwise. The reaction mixture was returned to 15 ° C. and the reaction was stirred for 1 hour.
  • reaction solution was poured into a saturated ammonium chloride solution (200 mL), and extracted with ethyl acetate (100 mL ⁇ 3). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and concentrated to remove the solvent under reduced pressure. The obtained residue was stirred with 50 mL of methanol at room temperature for 30 minutes, and then filtered. The solid was collected and concentrated under reduced pressure to obtain intermediate WX007-2.
  • the intermediate WX007-2 (5 g, 17.40 mmol) was dissolved in dichloromethane (100 mL), the temperature was lowered to -30 ° C, and boron tribromide (5.67 g, 22.62 mmol, 2.18 mL) was added dropwise. Methane solution (20 mL), the reaction mixture was restored to 15 ° C and the reaction was stirred for 3 hours. After completion of the reaction, the reaction solution was poured into 300 mL of ice water, and extracted with dichloromethane (200 mL ⁇ 3). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and the solvent was removed by concentration under reduced pressure.
  • the intermediate WX007-4 (2.5 g, 6.26 mmol) was dissolved in acetonitrile (40 mL), and then potassium carbonate (2.60 g, 18.79 mmol) and ethyl 4-bromocrotonate (3.45 g, 12.52 mmol, 2.47 mL), the reaction mixture was heated to 35 ° C and stirred for 18 hours. After completion of the reaction, the reaction solution was directly filtered, and the filter cake was washed with ethyl acetate (20 mL ⁇ 2). The mother liquor was collected, and the solvent was concentrated under reduced pressure.
  • the intermediate WX007-6 (1.2 g, 3.13 mmol) was dissolved in a mixed solution of tetrahydrofuran (20 mL) and methanol (100 mL), and then ammonium chloride (58.60 mg, 1.10 mmol) and magnesium filings (2.66 g) were added. , 109.54 mmol), the reaction mixture was heated to 80 ° C. and the reaction was stirred for 3 hours. After the reaction was completed, the mixture was cooled to room temperature, and concentrated under reduced pressure to remove the solvent. The obtained residue was diluted with saturated aqueous ammonium chloride solution (100 mL) and ethyl acetate (100 mL).
  • the intermediate WX007-7 (210 mg, 916.11 ⁇ mol) was dissolved in N, N-dimethylformamide (10 mL), and then acrylamide (65.11 mg, 916.11 ⁇ mol) and potassium tert-butoxide (102.80) were added sequentially. mg, 916.11 ⁇ mol), the reaction mixture was stirred at 15 ° C. for 2 hours, potassium tert-butoxide (50 mg) was added, and the reaction was continued for 1 hour. After completion of the reaction, water (20 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (20 mL ⁇ 3).
  • WX008-1 (12.5 g, 71.76 mmol) was dissolved in N, N-dimethylformamide (125 mL), and then N-bromosuccinimide (13.28 g, 74.63 mmol), and the reaction mixture was stirred at 15 ° C for 0.5 hours. After the reaction was completed, the two batches were combined, and the reaction solution was slowly poured into ice water (500 mL), filtered, and the filter cake was concentrated under reduced pressure to remove the solvent to obtain intermediate WX008-2 ().
  • the intermediate WX008-6 (130 mg, 380.79 ⁇ mol) was dissolved in tetrahydrofuran (2.5 mL), and then a solution of acrylamide (27.07 mg, 380.79 ⁇ mol) and potassium tert-butoxide (380.79 ⁇ L, 1M) in tetrahydrofuran was sequentially added.
  • the reaction mixture was stirred at 15 ° C for 1 hour.
  • intermediate WX009-4 (0.1 g, 294.83 ⁇ mol), palladium acetate (13.24 mg, 58.97 ⁇ mol), tetrabutylammonium chloride (98.32 mg, 353.79 ⁇ mol), sodium formate (40.10 mg, 589.65 ⁇ mol), sodium carbonate (62.50 mg, 589.65 ⁇ mol) was dissolved in N, N-dimethylformamide (20 mL), and the reaction mixture was stirred at 80 ° C. for 2 hours. After completion of the reaction, water (50 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (100 mL).
  • the intermediate WX009-5 (0.06 g, 232.31 ⁇ mol) was dissolved in N, N-dimethylformamide (10 mL), potassium tert-butoxide (26.07 mg, 232.31 ⁇ mol) was added, and acrylamide ( 16.51 mg, 232.31 ⁇ mol), and the reaction mixture was stirred for 1 hour at 0-5 ° C.
  • water (30 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (50 mL). The organic phase was separated, washed with saturated brine (20 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the solvent was removed from the filtrate under reduced pressure.
  • Triphenylphosphite (96.85g, 312.13mmol, 82.07mL) was dissolved in dichloromethane (1000mL) at room temperature under the protection of nitrogen, cooled to -78 ° C, and liquid bromine (54.41g, 340.50) was added dropwise mmol, 17.55 mL), and triethylamine (368.88 mmol, 51.34 mL) was added dropwise. The reaction mixture was stirred for 30 minutes, and then compound WX010-1 (50 g, 283.75 mmol) was added. The reaction mixture was returned to room temperature and stirred for 12 hours.
  • reaction solution was poured into a saturated aqueous sodium sulfite solution (1500 mL), and extracted with dichloromethane (1000 mL ⁇ 3). The organic phases were combined, washed successively with saturated brine (1000 mL ⁇ 3), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to remove the solvent.
  • the intermediate WX010–2 (119.5 g, 499.77 mmol) was dissolved in toluene (5 mL) at room temperature and under the protection of nitrogen, cooled to 0 ° C, and then 2,3-dichloro-5,6-dicyano-benzoquinone was added. (124.67 g, 549.19 mmol), the reaction mixture was stirred at room temperature for 12 hours. After completion of the reaction, the reaction solution was poured into a saturated aqueous solution of sulfurous acid (1000 mL), and extracted with ethyl acetate (500 mL ⁇ 3).
  • the intermediate WX010-3 (24 g, 101.23 mmol) was dissolved in dichloromethane (350 mL), cooled to 0 ° C, and boron tribromide (30.43 g, 121.47 mmol, 11.70 mL) was added dropwise. ), The reaction mixture was returned to room temperature and the reaction was stirred for 3 hours. After completion of the reaction, the reaction solution was poured into ice water (1000 mL) to quench, and extracted with dichloromethane (500 mL ⁇ 3).
  • the intermediate WX010-5 (9.4 g, 29.05 mmol) was dissolved in an aqueous solution of sodium hydroxide (2M, 94.00 mL) at room temperature under the protection of nitrogen, and the reaction mixture was heated to 80 ° C. and stirred for 2 hours. After completion of the reaction, the reaction solution was poured into water (500 mL) for dilution, and then extracted with methyl tert-butyl ether (300 mL). The organic phase was discarded, and the aqueous phase was adjusted to pH 5 with 12M concentrated hydrochloric acid, and extracted with ethyl acetate (500 mL ⁇ 3). The organic phases were combined, washed with saturated brine (300 mL ⁇ 3), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to remove the solvent to obtain intermediate WX010-6.
  • sodium hydroxide 2M, 94.00 mL
  • the intermediate WX010-6 (8.8 g, 28.84 mmol,) was dissolved in ethanol (63 mL) at room temperature under the protection of nitrogen, and concentrated sulfuric acid (2.57 g, 25.68 mmol, 1.40 mL, purity: 98%) was added. The reaction mixture The temperature was raised to 80 ° C and the reaction was stirred for 2 hours. After completion of the reaction, the reaction solution was concentrated under reduced pressure to remove the solvent, and water (300 mL) was added thereto, followed by extraction with ethyl acetate (200 mL ⁇ 3).
  • the intermediate WX010–7 (0.5 g, 1.50 mmol) was dissolved in water (0.5 mL) and 1,4–dioxane (5 mL) at room temperature under nitrogen protection, and then methoxy-methyltristriol was added in this order.
  • Potassium fluoborate (456.11mg, 3.00mmol)
  • cesium carbonate (1.47g, 4.50mmol)
  • 2–dicyclohexylphosphine–2,6–diisopropoxy–1,1–biphenyl 140.06mg, 300.14umol
  • Palladium acetate (33.69mg, 150.07umol)
  • the intermediate WX010-8 (100 mg, 335.20 ⁇ mol) was dissolved in N, N-dimethylformamide (2 mL), and then acrylamide (23.83 mg, 335.20 ⁇ mol) and tert-butanol were added sequentially Potassium (37.61 mg, 335.20 ⁇ mol), and the reaction mixture was stirred at room temperature for 1 hour. After completion of the reaction, water (50 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (30 mL ⁇ 3).
  • the intermediate WX010–7 (2.8 g, 8.40 mmol) was dissolved in N, N-dimethylformamide (30 mL) at room temperature and under the protection of nitrogen, followed by potassium phosphate (1.96 g, 9.24 mmol) and vinyl Potassium trifluoroborate (1.35g, 10.08mmol), [1,1–bis (diphenylphosphine) ferrocene] palladium dichloromethane (686.30mg, 840.40 ⁇ mol), the reaction mixture was warmed to 80 ° C and The reaction was stirred at 80 ° C for 12 hours.
  • the intermediate WX011-1 (1 g, 3.57 mmol) was dissolved in N, N-dimethylformamide (10 mL), and then acrylamide (253.56 mg, 3.57 mmol) and tert-butanol were added in this order. Potassium (400.30 mg, 3.57 mmol), and the reaction mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was poured into water (200 mL), and extracted with ethyl acetate (100 mL ⁇ 3).
  • the intermediate WX011-2 (0.4g, 1.31mmol) was dissolved in tetrahydrofuran (3mL) and water (1mL) at room temperature under the protection of nitrogen, cooled to 0 ° C, and then sodium periodate (560.43mg, 2.62mmol) was added. And potassium osmate dihydrate (96.54 mg, 262.01 ⁇ mol), the reaction mixture was stirred at 0 ° C. for 1 hour. After completion of the reaction, water (100 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (50 mL ⁇ 3).
  • the intermediate WX003-1 (20 g, 137.78 mmol) was dissolved in N, N-dimethylformamide (200 mL), and then N-iodosuccinimide (31.00 g, 137.78) was added. mmol) and the reaction mixture was stirred at room temperature for 4 hours. After the reaction was completed, a saturated aqueous sodium sulfite solution (200 mL) was added to the reaction solution, and ethyl acetate (100 mL) was added to dilute. The organic phase was collected by liquid separation, and the aqueous phase was extracted with ethyl acetate (100 mL ⁇ 3).
  • the intermediate WX012-1 (17 g, 62.72 mmol) was dissolved in acetonitrile (170 mL) under a nitrogen atmosphere at 20 ° C, and potassium carbonate (43.34 g, 313.59 mmol) and ethyl 4-bromocrotonate (15.34 g, 59.58 mmol), and the reaction mixture was stirred at 20 ° C for 12 hours. After the reaction was completed, water (300 mL) was added to the reaction solution, and ethyl acetate (200 mL) was added to dilute. The organic phase was collected by liquid separation, and the aqueous phase was extracted with ethyl acetate (150 mL ⁇ 3).
  • the intermediate WX012-3 (5.6 g, 21.94 mmol) was dissolved in dichloromethane (100 mL), and m-chloroperoxybenzoic acid (5.21 g, 24.13 mmol, purity: 80%) was added.
  • the intermediate WX012-4 (500 mg, 1.84 mmol) was dissolved in carbon tetrachloride (5 mL) under nitrogen protection at 20 ° C, and N, N-dimethylethanolamine (164.30 mg, 1.84 mmol) and N, N were added.
  • -Diisopropylethylamine (476.43mg, 3.69mmol)
  • diethylphosphite (509.10mg, 3.69mmol) in acetonitrile (5mL) was added dropwise to the reaction solution.
  • the reaction mixture was heated to 40 ° C and the reaction was stirred. 12 hours.
  • the intermediate WX012-5 (65 mg, 189.84 ⁇ mol) was dissolved in N, N-dimethylformamide (1 mL), and then acrylamide (13.49 mg, 189.84 ⁇ mol) and tert-butyl were added in this order.
  • a solution of potassium alkoxide (1M, 189.84 ⁇ L) in tetrahydrofuran was stirred at 20 ° C. for 3 hours. After the reaction is completed, a 2N dilute aqueous hydrochloric acid solution is added dropwise to the reaction solution to adjust the pH to 6-7, and the filtrate is collected.
  • the intermediate WX013-1 (97 mg, 252.32 ⁇ mol) was dissolved in N, N-dimethylformamide (2 mL) under nitrogen protection at 20 ° C, and then acrylamide (17.93 mg, 252.32 ⁇ mol) and tert-butyl were added in this order.
  • the intermediate WX014-1 (42 mg, 109.82 ⁇ mol) was dissolved in N, N-dimethylformamide (2 mL) under nitrogen protection at 20 ° C, and then acrylamide (7.81 mg, 109.82 ⁇ mol) and tert-butyl were added in this order.
  • the intermediate WX015-2 (14.5 g, 44.81 mmol) was dissolved in a solution of sodium hydroxide (8.70 g, 217.52 mmol) in water (150 mL) at room temperature under the protection of nitrogen.
  • the reaction mixture was heated to 80 ° C and stirred for 5 hours. .
  • dichloromethane 150 mL was added to dilute, and the organic phase was collected after separation.
  • the aqueous phase was extracted with dichloromethane (150 mL ⁇ 3).
  • the organic phases were combined, washed with saturated brine (50 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to remove the solvent.
  • aqueous phase was adjusted to pH 4 with 2M dilute hydrochloric acid, and extracted with ethyl acetate (200 mL ⁇ 3).
  • the organic phases were combined, washed with saturated brine (50 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to remove the solvent to obtain intermediate WX015-3.
  • the intermediate WX015-3 (11.3 g, 37.03 mmol) was dissolved in ethanol (300 mL) at room temperature and under the protection of nitrogen, and then concentrated sulfuric acid (2.08 g, 20.78 mmol, 1.13 mL, purity: 98%) was added. The reaction mixture The temperature was raised to 80 ° C and the reaction was stirred for 12 hours. After the reaction was completed, the reaction solution was concentrated under reduced pressure to remove the solvent, water (150 mL) was added, and then ethyl acetate (150 mL) was added for dilution. The organic phase was collected, and the aqueous phase was extracted with ethyl acetate (100 mL ⁇ 3).
  • the intermediate WX015-5 (1.1 g, 3.94 mmol) was dissolved in N, N-dimethylformamide (20 mL), and then acrylamide (279.94 mg, 3.94 mmol) and potassium tert-butoxide were added in this order. (441.95 mg, 3.94 mmol), the reaction mixture was stirred at 20 ° C for 2 hours. After completion of the reaction, water (100 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (30 mL ⁇ 3).
  • the intermediate WX015-4 (2g, 6.00mmol) was dissolved in dioxane (35mL) at room temperature under the protection of nitrogen, followed by the addition of tert-butyl carbamate (1.05g, 9.00mmol), and 4,5–bis Diphenylphosphine-9,9-dimethylxanthene (521.00mg, 900.42 ⁇ mol), cesium carbonate (4.89g, 15.01mmol) and palladium acetate (202.15mg, 900.42 ⁇ mol), the reaction mixture was slowly warmed to 80 ° C The reaction was stirred for 12 hours.
  • the intermediate WX016-1 (200 mg, 541.40 ⁇ mol) was dissolved in tetrahydrofuran (4 mL), followed by the acrylamide (38.48 mg, 541.40 ⁇ mol) and potassium tert-butoxide (60.75 mg, 541.40 ⁇ mol) ), The reaction mixture was stirred at 20 ° C for 4 hours. After the reaction was completed, water (15 mL) and 2-methyltetrahydrofuran (10 mL) were added to the reaction solution to dilute, and the organic phase was collected by liquid separation. The aqueous phase was extracted with 2-methyltetrahydrofuran (15 mL ⁇ 3).
  • the intermediate WX015-4 (5 g, 15.01 mmol) was dissolved in N, N-dimethylformamide (50 mL) at room temperature and under the protection of nitrogen, followed by subsequent addition of [1,1—bis (diphenylphosphine) ) Ferrocene] palladium dichloride.
  • Dichloromethane (1.23 g, 1.50 mmol
  • potassium phosphate (3.50 g, 16.51 mmol)
  • potassium vinyl trifluoroborate (2.41 g, 18.01 mmol)
  • the intermediate WX017-1 (2g, 7.13mmol) was dissolved in N, N-dimethylformamide (30mL), and then acrylamide (506.79mg, 7.13mmol) and potassium tert-butoxide (800.07) were added in this order. mg, 7.13 mmol), and the reaction mixture was stirred at room temperature for 2 hours. After completion of the reaction, water (100 mL) was added to the reaction solution for dilution, and the mixture was extracted with ethyl acetate (50 mL ⁇ 3).
  • the intermediate WX017-3 (60 mg, 195.25 ⁇ mol) was dissolved in 1,2-dichloroethane (1 mL), and then morpholine (17.01 mg, 195.25 ⁇ mol) was added. The reaction mixture was stirred at room temperature for 10 minutes Then, sodium borohydride acetate (82.76 mg, 390.50 ⁇ mol) was added, and the reaction mixture was stirred and reacted at room temperature for 12 hours. After completion of the reaction, the reaction solution was directly concentrated under reduced pressure to remove the solvent.
  • the intermediate WX015-4 (5g, 15.01mmol) was dissolved in N, N-dimethylformamide (50mL), followed by potassium phosphate (3.19g, 15.01mmol), and [1,1–bis (Diphenylphosphine) ferrocene] palladium dichloride.
  • Dichloromethane (1.23g, 1.50mmol
  • the reaction mixture was heated to 80 ° C and stirred for 12 hours.
  • the intermediate WX018-1 (200 mg, 616.58 ⁇ mol) was dissolved in chloroform (2 mL), followed by ethanol (28.40 mg, 616.58 ⁇ mol, 36.05 ⁇ L), water (616.58 ⁇ mol, 11.11 ⁇ L), and oxalyl chloride. (78.26 mg, 616.58 ⁇ mol, 53.97 ⁇ L), the reaction mixture was returned to room temperature and the reaction was stirred for 1 hour. After the reaction was completed, water (10 mL) was added to the reaction solution, the pH was adjusted to 6-7 with saturated sodium bicarbonate, and extraction was performed with dichloromethane (5 mL ⁇ 3). The organic phases were combined, dried over anhydrous sodium sulfate, and filtered to obtain a dichloromethane solution of intermediate WX018-2.
  • the intermediate WX019-2 (0.9 g, 3.51 mmol) was dissolved in ethanol (10 mL), and then concentrated sulfuric acid (368.00 mg, 3.68 mmol, 0.2 mL, purity: 98%) was added, and the reaction mixture was heated to 80 ° C. The reaction was stirred for 3 hours. After the reaction was completed, the reaction solution was directly concentrated under reduced pressure to remove most of the ethanol. The obtained residue was diluted with ethyl acetate (30 mL) and water (50 mL). The organic phase was collected after liquid separation, and the aqueous phase was extracted with ethyl acetate (30 mL ⁇ 2 ).
  • the intermediate WX008-4 (200 mg, 703.47 ⁇ mol) was dissolved in tetrahydrofuran (10 mL), and then acrylamide (50.00 mg, 703.47 ⁇ mol), potassium tert-butoxide (78.94 mg, 703.47 ⁇ mol) were sequentially added and reacted. The mixture was stirred at 15 ° C for 3 hours. After completion of the reaction, water (50 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (20 mL ⁇ 3). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to remove the solvent.
  • the intermediate WX008-4 (5g, 17.59mmol) was dissolved in dichloromethane (50mL), the temperature was lowered to -60 ° C, and boron tribromide (11.88g, 47.43mmol, 4.57mL) was added. The reaction mixture was returned to 15 ° C and stirred for 2 hours. After completion of the reaction, the reaction solution was poured into ice water (200 mL), and extracted with dichloromethane (50 mL ⁇ 3). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to remove the solvent.
  • the intermediate WX008-5 (0.5 g, 1.85 mmol) was dissolved in tetrahydrofuran (15 mL), and then triphenylphosphine (630.79 mg, 2.40 mmol), and 2–morpholine ethanol (266.93) were sequentially added. mg, 2.03 mmol), the temperature was lowered to 0 ° C, and diisopropyl azodicarboxylate (486.30 mg, 2.40 mmol, 467.59 ⁇ L) was added dropwise. The reaction mixture was returned to room temperature and the reaction was stirred for 12 hours.
  • the intermediate WX020-1 (500 mg, 678.08 ⁇ mol, purity: 52%) was dissolved in tetrahydrofuran (20 mL), and then acrylamide (92.6 mg, 1.30 mmol) and potassium tert-butoxide (1M, 1.30) were added in this order. mL) of a tetrahydrofuran solution, and the reaction mixture was stirred at 20 ° C. for 2 hours. After the reaction was completed, 4M ethyl acetate hydrochloride was added dropwise to the reaction solution to adjust the pH to 5-6, and the solvent was directly concentrated under reduced pressure to remove the solvent.
  • the intermediate WX008-5 (0.5 g, 1.85 mmol) was dissolved in tetrahydrofuran (15 mL), and then triphenylphosphine (630.79 mg, 2.40 mmol) was added in sequence, and N– (2-hydroxyethyl -Pyrrolidine (234.38 mg, 2.04 mmol), the temperature was lowered to 0 ° C, and diisopropyl azodicarboxylate (486.30 mg, 2.40 mmol, 467.59 ⁇ L) was added dropwise. The reaction mixture was returned to room temperature and stirred for 12 hours. After completion of the reaction, the reaction solution was directly concentrated under reduced pressure to remove the solvent.
  • the intermediate WX021-1 (250 mg, 680.39 ⁇ mol) was dissolved in tetrahydrofuran (10 mL), and then a solution of acrylamide (48.36 mg, 680.39 ⁇ mol) and potassium tert-butoxide (1M, 680.39 ⁇ L) in tetrahydrofuran was sequentially added.
  • the reaction mixture was stirred at 20 ° C for 2 hours.
  • 4M ethyl acetate hydrochloride was added dropwise to the reaction solution to adjust the pH to 5-6, and the solvent was removed by concentration under reduced pressure.
  • the intermediate WX008-5 (0.5 g, 1.85 mmol) was dissolved in tetrahydrofuran (15 mL), and then triphenylphosphine (630.79 mg, 2.40 mmol) and 1-hydroxyethyl-4 were added in this order.
  • -Methylpiperazine (293.48mg, 2.04mmol)
  • diisopropyl azodicarboxylate (486.30mg, 2.40mmol, 467.59 ⁇ L) was added dropwise, the reaction mixture was slowly returned to room temperature and the reaction was stirred for 12 hours . After completion of the reaction, the reaction solution was directly concentrated under reduced pressure to remove the solvent.
  • the intermediate WX022-1 400 mg, 1.01 mmol was dissolved in tetrahydrofuran (20 mL), and then acrylamide (71.71 mg, 1.01 mmol) and potassium tert-butoxide (113.21 mg, 1.01 mmol) were sequentially added, and the reaction mixture was The reaction was stirred at room temperature for 2 hours. After the reaction was completed, 4M ethyl acetate hydrochloride was added dropwise to the reaction solution to adjust the pH to 5-6, and concentrated under reduced pressure to obtain a residue.
  • the intermediate WX008-5 (0.5 g, 1.85 mmol) was dissolved in tetrahydrofuran (20 mL), and then 3-dimethylamino-1-propanol (209.94 mg, 2.04 mmol) and tribenzene were added in this order.
  • Phosphine (630.81 mg, 2.40 mmol) was cooled to 0 ° C, and diisopropyl azodicarboxylate (486.32 mg, 2.40 mmol, 467.61 ⁇ L) was added dropwise. The reaction mixture was slowly returned to room temperature and stirred for 12 hours.
  • the intermediate WX023-1 (200 mg, 562.70 ⁇ mol) was dissolved in dry tetrahydrofuran (10 mL) at room temperature under the protection of nitrogen. Acrylamide (40.00 mg, 562.70 ⁇ mol) and potassium tert-butoxide (63.14 mg, 562.70 ⁇ mol) were added in this order. The reaction mixture was stirred at room temperature for 2 hours. After the reaction was completed, 4M ethyl acetate hydrochloride was added dropwise to the reaction solution to adjust the pH to 5-6, and the solvent was removed by concentration under reduced pressure.
  • the intermediate WX008-5 (0.5 g, 1.85 mmol) was dissolved in tetrahydrofuran (15 mL), and then triphenylphosphine (630.79 mg, 2.40 mmol), and 3– (4–morpholine) were sequentially added.
  • triphenylphosphine (630.79 mg, 2.40 mmol), and 3– (4–morpholine) were sequentially added.
  • -1-Propanol (349.21 mg, 2.40 mmol)
  • the temperature was lowered to 0 ° C
  • diisopropyl azodicarboxylate (486.30 mg, 2.40 mmol, 467.59 ⁇ L) was added dropwise.
  • the reaction mixture was returned to room temperature and stirred for 12 hours. After completion of the reaction, the reaction solution was directly concentrated under reduced pressure to remove the solvent.
  • the intermediate WX024-1 (350 mg, 880.58 ⁇ mol) was dissolved in tetrahydrofuran (10 mL), and then acrylamide (62.59 mg, 880.58 ⁇ mol) and potassium tert-butoxide (98.81 mg, 880.58 ⁇ mol) were sequentially added to the reaction. The mixture was stirred at 20 ° C for 2 hours. After the reaction was completed, 4M ethyl acetate hydrochloride was added dropwise to the reaction solution to adjust the pH to 5-6, and the solvent was removed by concentration under reduced pressure.
  • the intermediate WX026-1 400 mg, 974.41 ⁇ mol was dissolved in tetrahydrofuran (10 mL), and then acrylamide (69.26 mg, 974.41 ⁇ mol) and potassium tert-butoxide (109.34 mg, 974.41 ⁇ mol) were sequentially added to the reaction mixture.
  • the reaction was stirred at room temperature for 2 hours.
  • 4M ethyl acetate hydrochloride was added dropwise to the reaction solution to adjust the pH to 5-6, and the solvent was removed by concentration under reduced pressure.
  • preparative HPLC mobile phase: acetonitrile / water; acidic system: 0.05% HCl
  • the intermediate WX027-1 (200 mg, 448.91 ⁇ mol) was dissolved in tetrahydrofuran (5 mL) at room temperature and under the protection of nitrogen, and then acrylamide (31.91 mg, 448.91 ⁇ mol) and potassium tert-butoxide (50.37 mg, 448.91 ⁇ mol) were added in this order.
  • the reaction mixture was stirred at room temperature for 15 hours.
  • 4M ethyl acetate hydrochloride was added to the reaction solution to adjust the pH to 5-6, and the solvent was removed by concentration under reduced pressure.
  • the intermediate WX028-1 (460 mg, 1.21 mmol) was dissolved in N, N-dimethylformamide (5 mL), and then acrylamide (85.71 mg, 1.21 mmol) and tert-butanol were added in this order. Potassium (135.31 mg, 1.21 mmol), the reaction mixture was stirred at room temperature for 1 hour. After the reaction is completed, 2M dilute hydrochloric acid is added dropwise to the reaction solution to adjust the pH to 6-7.
  • the intermediate WX049 (4.4 g, 9.72 mmol) was dissolved in ethyl acetate (10 mL), ethyl acetate hydrochloride (100 mL, 4M) was added, and the reaction mixture was stirred and reacted at room temperature for 2 hours. After completion of the reaction, the reaction solution was filtered. The filter cake was collected and concentrated under reduced pressure to remove the solvent to obtain the hydrochloride salt of intermediate WX029-2.
  • the intermediate WX029-2 (100 mg, 257.17 ⁇ mol, hydrochloride) was dissolved in 1,2-dichloroethane (4 mL), and cyclohexanone (25.24 mg, 257.17 umol, 26.65 ⁇ L), acetic acid Sodium (105.48 mg, 1.29 mmol), the reaction mixture was warmed to 50 ° C. and stirred for 30 minutes, sodium acetate borohydride (109.01 mg, 514.35 ⁇ mol) was added, and the reaction mixture was warmed to 50 ° C. and stirred for 12 hours.
  • the intermediate WX029-2 (100 mg, 257.17 ⁇ mol, hydrochloride) was dissolved in 1,2-dichloroethane (4 mL), cyclohexyl formaldehyde (57.69 mg, 514.35 ⁇ mol), and sodium acetate (21.10 mg, 257.17 ⁇ mol), the reaction mixture was stirred at room temperature for 30 minutes, sodium acetate borohydride (109.01 mg, 514.35 ⁇ mol) was added, and the reaction mixture was stirred at room temperature for 1 hour. After completion of the reaction, the solvent was removed by concentration under reduced pressure.
  • the intermediate WX012-4 (4 g, 14.75 mmol) was dissolved in carbon tetrachloride (40 mL), and N-Boc-ethanolamine (4.75 g, 29.49 mmol, 4.57 mL) and N, N- Diisopropylethylamine (7.62g, 58.98mmol), and then a solution of diethylphosphite (8.15g, 58.98mmol) in acetonitrile (40mL) was added dropwise to the reaction solution. The reaction mixture was heated to 80 ° C and stirred for reaction 12 hour. After completion of the reaction, the reaction solution was cooled to room temperature, and the reaction solution was concentrated under reduced pressure to remove the solvent.
  • the intermediate WX031–1 (100 mg, 241.28 ⁇ mol) was dissolved in tetrahydrofuran (2 mL), the temperature was lowered to 0 ° C, and acrylamide (15.43 mg, 217.15 ⁇ mol) and potassium tert-butoxide (1 M, 217.15 ⁇ L) of a tetrahydrofuran solution, the reaction mixture was returned to 20 ° C. and the reaction was stirred for 2 hours. After the reaction was completed, the reaction solution was poured into water (15 mL), diluted with 2-methyltetrahydrofuran (10 mL), and the organic phase was collected by liquid separation.
  • the intermediate WX012-4 (500 mg, 1.84 mmol) was dissolved in carbon tetrachloride (5 mL) under nitrogen at 20 ° C, and N-hydroxyethylpyrrolidine (424.57 mg, 3.69 mmol) and N, N- Diisopropylethylamine (952.86mg, 7.37mmol), and then a solution of diethyl phosphite (1.02g, 7.37mmol) in acetonitrile (5mL) was added dropwise to the reaction. The reaction mixture was heated to 80 ° C and stirred for 12 hours. . After completion of the reaction, the reaction solution was cooled to room temperature, and concentrated under reduced pressure to remove the solvent.
  • the intermediate WX032-1 (70mg, 190.00 ⁇ mol) was dissolved in N, N-dimethylformamide (1mL), and then acrylamide (13.50mg, 190.00 ⁇ mol) and tert-butyl were added in this order.
  • a solution of potassium alkoxide (1M, 190.00 ⁇ L) in tetrahydrofuran was stirred at 20 ° C. for 3 hours. After the reaction is completed, a 2N dilute aqueous hydrochloric acid solution is added dropwise to the reaction solution to adjust the pH to 6-7, and the filtrate is collected.
  • the intermediate WX033-1 (0.7 g, 2.16 mmol) was dissolved in chloroform (7 mL), the temperature was lowered to 0 ° C, and then ethanol (99.42 mg, 2.16 mmol, 126.16 ⁇ L) and water (2.16 mmol, 38.88 ⁇ L), oxalyl chloride (273.91 mg, 2.16 mmol, 188.90 ⁇ L), the reaction mixture was returned to room temperature and the reaction was stirred for 1 hour. After completion of the reaction, water (20 mL) was added to the reaction solution, the pH was adjusted to 7 with a saturated sodium bicarbonate solution, and extraction was performed with dichloromethane (10 mL ⁇ 3).
  • the intermediate WX033-3 (120 mg, 326.59 ⁇ mol) was dissolved in N, N-dimethylformamide (2 mL), and then acrylamide (23.21 mg, 326.59 ⁇ mol) and tert-butanol were added in this order. Potassium (36.65 mg, 326.59 ⁇ mol), and the reaction mixture was stirred at room temperature for 1 hour. After completion of the reaction, water (50 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (30 mL ⁇ 3).
  • the intermediate WX010-7 (5 g, 15.01 mmol) was dissolved in methanol (25 mL) and toluene (25 mL), and then cesium carbonate (7.33 g, 22.51 mmol) and 2-di-tert-butyl were added in this order.
  • Phosphine-2,4,6-triisopropylbiphenyl (382.36 mg, 900.42 ⁇ mol), palladium acetate (101.08 mg, 450.21 ⁇ mol), the reaction mixture was warmed to 80 ° C. and stirred for 12 hours.
  • the intermediate WX034-2 (2g, 7.03mmol) was dissolved in dichloromethane (40mL), the temperature was lowered to -78 ° C, and then boron tribromide (2.11g, 8.44mmol, 813.39) was added dropwise. ⁇ L), the reaction mixture was returned to room temperature and the reaction was stirred for 2 hours. After that, the reaction mixture was cooled to ⁇ 78 ° C., and boron tribromide (1.76 g, 7.03 mmol, 677.83 ⁇ L) was added dropwise. The reaction mixture was returned to room temperature and stirred for 2 hours.
  • the intermediate WX035-2 400 mg, 1.04 mmol was dissolved in N, N-dimethylformamide (2 mL), and then acrylamide (74.15 mg, 1.04 mmol) and tert-butanol were added in that order. Potassium (117.06 mg, 1.04 mmol), and the reaction mixture was stirred at room temperature for 3 hours. After completion of the reaction, water (50 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (30 mL ⁇ 3).
  • the intermediate WX007-7 (1 g, 4.36 mmol) was dissolved in N, N-dimethylformamide (15 mL), and 1- (2-chloroethyl) pyrrolidine (1.48 g, 8.72) was added. mmol) and potassium carbonate (2.23 g, 16.14 mmol), and the reaction mixture was stirred at 20 ° C. for 12 hours. Additional 1- (2-chloroethyl) pyrrolidine (741.96 mg, 4.36 mmol) and potassium carbonate (1.12 g, 8.07 mmol) were added, and the reaction mixture was stirred at 20 ° C for 16 hours.
  • the intermediate WX036-1 (49 mg, 150.13 ⁇ mol) was dissolved in tetrahydrofuran (1 mL), and acrylamide (10.67 mg, 150.13 ⁇ mol) and potassium tert-butoxide (1M, 150.13 ⁇ L) were added in order.
  • a tetrahydrofuran solution the reaction mixture was stirred at 20 ° C for 3 hours.
  • water (2 mL) was added to the reaction solution, diluted with ethyl acetate (2 mL), and the organic phase was collected by liquid separation. The aqueous phase was extracted with ethyl acetate (3 mL ⁇ 3).
  • the intermediate WX037-1 (150 mg, 509.61 ⁇ mol) was dissolved in N, N-dimethylformamide (3 mL), and then acrylamide (36.22 mg, 509.61 ⁇ mol) and potassium tert-butoxide (57.18) were added in this order. mg, 509.61 ⁇ mol), and the reaction mixture was stirred at room temperature for 1 hour. After completion of the reaction, water (20 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (20 mL ⁇ 3). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain a residue.
  • the intermediate WX015-4 (500 mg, 1.50 mmol) was dissolved in water (0.5 mL) and 1,4-dioxane (5 mL) at room temperature and under nitrogen protection, and then methoxy-methyl trifluoro was added in this order.
  • Potassium borate (456.11mg, 3.00mmol)
  • palladium acetate 33.69mg, 150.07 ⁇ mol
  • cesium carbonate (1.47g, 4.50mmol)
  • 2–dicyclohexylphosphine–2,6–diisopropoxy–1,1 -Biphenyl 140.06 mg, 300.14 ⁇ mol
  • the intermediate WX008-5 (0.5 g, 1.85 mmol) was dissolved in tetrahydrofuran (15 mL), and then triphenylphosphine (630.79 mg, 2.40 mmol) was added in sequence, and 1-acetyl-4– ( 2-hydroxyethyl) piperazine (414.19 mg, 2.40 mmol), Molecular sieve (0.2 g) was cooled to 0 ° C, and diisopropyl azodicarboxylate (486.30 mg, 2.40 mmol, 467.59 ⁇ L) was added dropwise. The reaction mixture was slowly returned to room temperature and the reaction was stirred for 12 hours.
  • the intermediate WX039-1 (200 mg, 365.62 ⁇ mol) was dissolved in tetrahydrofuran (4 mL), and then a solution of acrylamide (33.49 mg, 471.17 ⁇ mol) and potassium tert-butoxide (1M, 471.17 ⁇ L) in tetrahydrofuran was reacted. The mixture was stirred for 1 hour at room temperature. After the reaction was completed, 4M ethyl acetate hydrochloride was added dropwise to the reaction solution to adjust the pH to 6-7, and the solvent was removed by concentration under reduced pressure.
  • the intermediate WX008-5 (3g, 11.10mmol) was dissolved in tetrahydrofuran (50mL) at room temperature and under the protection of nitrogen, and then triphenylphosphine (3.78g, 14.43mmol) and 2-bromoethanol (1.80g, 14.43) were added in this order. mmol, 1.02 mL), the temperature was lowered to 0 ° C, and diisopropyl azodicarboxylate (2.92 g, 14.43 mmol, 2.81 mL) was added dropwise. The reaction mixture was slowly returned to room temperature and the reaction was stirred for 12 hours. The reaction mixture was warmed to 40 ° C and stirred for 3 hours.
  • the intermediate WX040-1 (300 mg, 795.27 ⁇ mol) was dissolved in N, N-dimethylformamide (3 mL), followed by potassium carbonate (384.69 mg, 2.78 mmol), and potassium iodide (66.01 mg, 397.64). ⁇ mol), 4-hydroxypiperidine (160.88 mg, 1.59 mmol), and the reaction mixture was stirred at room temperature for 2 hours. After the reaction was completed, the reaction solution was directly filtered, and the filtrate was collected. The obtained filtrate was directly separated by preparative HPLC (mobile phase: acetonitrile / water; acidic system: 0.05% HCl) to obtain the hydrochloride salt of intermediate WX040-2.
  • the intermediate WX040-2 (260 mg, 599.18 ⁇ mol, hydrochloride) was dissolved in N, N-dimethylformamide (5 mL) at room temperature and under the protection of nitrogen, and then acrylamide (42.59 mg, 599.18 ⁇ mol) was sequentially added. And potassium tert-butoxide (134.47 mg, 1.20 mmol), the reaction mixture was stirred at room temperature for 1 hour. After the reaction, the reaction solution was directly added with 1M dilute hydrochloric acid to adjust the pH to 6-7, and the resulting solution was directly separated by preparative HPLC (mobile phase: acetonitrile / water; neutral system: 10 mM NH 4 HCO 3 ) to obtain the target compound WX040.
  • preparative HPLC mobile phase: acetonitrile / water; neutral system: 10 mM NH 4 HCO 3
  • the intermediate WX040-1 (230 mg, 609.71 ⁇ mol) was dissolved in N, N-dimethylformamide (3 mL), followed by potassium carbonate (379.21 mg, 2.74 mmol) and potassium iodide (50.61 mg, 304.86). ⁇ mol), 4-methyl-4-hydroxypiperidine (184.91 mg, 1.22 mmol, hydrochloride), and the reaction mixture was stirred at room temperature for 3 hours. After the reaction was completed, the reaction solution was directly filtered, and the filtrate was collected. The obtained filtrate was directly separated by preparative HPLC (mobile phase: acetonitrile / water; acidic system: 0.05% HCl) to obtain the hydrochloride salt of intermediate WX041-1.
  • the intermediate WX040-1 500 mg, 1.33 mmol was dissolved in N, N-dimethylformamide (5 mL), and 3-azabicyclo [3.1.0] hexane (165.28 mg, 1.38 mmol, hydrochloride) and potassium carbonate (824.34 mg, 5.96 mmol), and the reaction mixture was stirred at room temperature for 12 hours. After completion of the reaction, water (100 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (150 mL ⁇ 3). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to remove the solvent.
  • the intermediate WX042-1 (0.1330 g, 350.51 ⁇ mol) was dissolved in N, N-dimethylformamide (1 mL), and then acrylamide (24.91 mg, 350.51 ⁇ mol) and tert-butyl were added in this order. Potassium alkoxide (39.33 mg, 350.51 ⁇ mol), the reaction mixture was stirred at room temperature for 1 hour. After the reaction is completed, dilute hydrochloric acid (2M) is added to the reaction solution to adjust the pH to 5-6. The obtained residue was separated by preparative HPLC (mobile phase: acetonitrile / water; neutral system: 10 mM NH 4 HCO 3 ) to obtain the target compound WX042.
  • the intermediate WX040-1 (0.5 g, 1.33 mmol) was dissolved in N, N-dimethylformamide (5 mL), and then potassium iodide (110.01 mg, 662.73 ⁇ mol) and 1-methane were added in this order. Sulfonylpiperazine (435.35 mg, 2.65 mmol), and the reaction mixture was stirred at room temperature for 12 hours. After completion of the reaction, water (100 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (50 mL ⁇ 3).
  • the intermediate WX043-1 (0.3 g, 651.41 ⁇ mol) was dissolved in N, N-dimethylformamide (3 mL), and then acrylamide (46.30 mg, 651.41 ⁇ mol) was added in order. Potassium alkoxide (73.10 mg, 651.41 ⁇ mol), and the reaction mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was adjusted to pH 6-7 with concentrated hydrochloric acid (12M). The obtained residue was separated by preparative HPLC (mobile phase: acetonitrile / water; neutral system: 10 mM NH 4 HCO 3 ) to obtain the target compound WX043.
  • the intermediate WX044-1 (2g, 4.84mmol) was dissolved in tetrahydrofuran (30mL) at room temperature and under the protection of nitrogen, followed by the addition of acrylamide (343.82mg, 4.84mmol) and potassium tert-butoxide (1M, 4.84mL). Tetrahydrofuran solution, the reaction mixture was stirred at room temperature for 2 hours. After completion of the reaction, water (20 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (20 mL ⁇ 3). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to remove the solvent.
  • the intermediate WX044 (800 mg, 1.81 mmol, purity: 99.07%) was dissolved in hydrochloric acid / ethyl acetate (4M, 10 mL). The reaction mixture was stirred at room temperature for 2 hours, and a white solid precipitated. After completion of the reaction, the reaction solution was directly filtered, the solid was collected, and the solvent was concentrated under reduced pressure to obtain the hydrochloride of intermediate WX045-1.
  • the intermediate WX045-1 (100 mg, 266.80 ⁇ mol, hydrochloride) was dissolved in 1,2-dichloroethane (3 mL), and then 1-acetylpiperidine-4 -one (37.66 mg , 266.80 ⁇ mol), sodium acetate (43.77 mg, 533.60 ⁇ mol), the reaction mixture was stirred at room temperature for 10 minutes, and then sodium borohydride acetate (113.09 mg, 533.60 ⁇ mol) was added, and the reaction mixture was stirred at room temperature for 12 hours.
  • the intermediate WX045-1 (0.1 g, 266.80 ⁇ mol, hydrochloride) was dissolved in 1,2-dichloroethane (3 mL), and then 1-methyl-4-piperidine was sequentially added.
  • Ketone (30.19mg, 266.80 ⁇ mol) and sodium acetate (43.77mg, 533.59 ⁇ mol)
  • the reaction mixture was stirred at room temperature for 10 minutes, and then sodium triacetoxyborohydride (113.09mg, 533.59 ⁇ mol) was added, and the reaction mixture was stirred at room temperature 12 hours. After completion of the reaction, the reaction solution was concentrated under reduced pressure to remove the solvent.
  • the intermediate WX045-1 (0.1 g, 266.80 ⁇ mol, hydrochloride) was dissolved in 1,2-dichloroethane (3 mL), and then 1-methanesulfonyl-4-piper was added in order.
  • Pyridone 47.28 mg, 266.80 ⁇ mol
  • sodium acetate 43.77 mg, 533.60 ⁇ mol
  • the reaction mixture was stirred at room temperature for 10 minutes, and then sodium triacetoxyborohydride (113.09 mg, 533.60 ⁇ mol) was added to the reaction mixture.
  • the reaction was stirred at room temperature for 12 hours. After completion of the reaction, the reaction solution was concentrated under reduced pressure to remove the solvent.
  • the intermediate WX045-1 (100 mg, 266.80 ⁇ mol, hydrochloride) was dissolved in 1,2-dichloroethane (3 mL), followed by tetrahydropyrone (26.71 mg, 266.80 ⁇ mol, 24.51). ⁇ L), sodium acetate (43.77 mg, 533.60 ⁇ mol). After the reaction mixture was stirred at room temperature for 10 minutes, sodium acetate borohydride (113.09 mg, 533.60 ⁇ mol) was added, and the reaction mixture was stirred at room temperature for 12 hours.
  • the intermediate WX045-1 (100 mg, 266.80 ⁇ mol, hydrochloride) was dissolved in 1,2-dichloroethane (3 mL), followed by cyclohexanone (26.18 mg, 266.80 ⁇ mol, 27.65 ⁇ L). Sodium acetate (43.77 mg, 533.60 ⁇ mol). After the reaction mixture was stirred at room temperature for 10 minutes, sodium acetate borohydride (113.09 mg, 533.60 ⁇ mol) was added, and the reaction mixture was stirred at room temperature for 12 hours.
  • the intermediate WX029-2 (150 mg, 385.76 ⁇ mol, hydrochloride) was dissolved in 1,2-dichloroethane (5 mL) at room temperature under the protection of nitrogen, and N-tert-butoxycarbonyl-4-piperidone was added. (76.86 mg, 385.76 ⁇ mol) and sodium acetate (31.64 mg, 385.76 ⁇ mol), the reaction mixture was warmed to 50 ° C. and stirred for 0.5 hours. Thereafter, sodium borohydride acetate (163.52 mg, 771.52 ⁇ mol) was added, and the reaction mixture was stirred at 50 ° C. for 4 hours.
  • the intermediate WX029-2 (100 mg, 257.17 ⁇ mol, hydrochloride) was dissolved in 1,2-dichloroethane (4 mL), and 1-methanesulfonyl-4-piperidone ( 45.58 mg, 257.17 ⁇ mol) and sodium acetate (21.10 mg, 257.17 ⁇ mol), the reaction mixture was warmed to 50 ° C. and stirred for 0.5 hours. Thereafter, sodium borohydride acetate (109.01 mg, 514.35 ⁇ mol) was added, and the reaction mixture was stirred at 50 ° C. for 4 hours.
  • the intermediate WX029-2 (100 mg, 257.17 ⁇ mol, hydrochloride) was dissolved in 1,2-dichloroethane (4 mL), and tetrahydropyran- 4-one (51.49 mg, 514.35 umol, 47.24 ⁇ L), sodium acetate (21.10 mg, 257.17 ⁇ mol), the reaction mixture was raised to 50 ° C. and stirred for 30 minutes, sodium acetate borohydride (109.01 mg, 514.35 ⁇ mol) was added, and the reaction mixture was stirred at 50 ° C. for 2 hours.
  • the intermediate WX029-2 (100 mg, 257.17 ⁇ mol, hydrochloride) was dissolved in 1,2-dichloroethane (4 mL), and 1-methyl-4-piperidone (58.20 mg, 514.35) ⁇ mol), sodium acetate (21.10 mg, 257.17 ⁇ mol), the reaction mixture was heated to 50 ° C. and stirred for 30 minutes, sodium acetate borohydride (109.01 mg, 514.35 ⁇ mol) was added, and the reaction mixture was stirred at 50 ° C. for 2 hours. Additional sodium borohydride acetate (109.01 mg, 514.35 ⁇ mol) was added, and the reaction mixture was heated to 75 ° C. and stirred for 2 hours.
  • the intermediate WX031 (300 mg, 682.66 ⁇ mol) was dissolved in ethyl acetate hydrochloride (4M, 20 mL) under a nitrogen atmosphere at 20 ° C, and the reaction mixture was stirred at 20 ° C for 3 hours. After the reaction was completed, the reaction solution was filtered, and the obtained filter cake was concentrated under reduced pressure to remove the solvent to obtain the hydrochloride of intermediate WX057-1.
  • the intermediate WX057-1 (165 mg, 439.06 ⁇ mol, hydrochloride) was dissolved in 1,2-dichloroethane (5 mL) at room temperature and under the protection of nitrogen, and N-tert-butoxycarbonyl-4-piperidone was added. (87.48 mg, 439.06 ⁇ mol) and sodium acetate (39.89 mg, 486.23 ⁇ mol), the reaction mixture was warmed to 50 ° C. and stirred for 0.5 hours. Thereafter, sodium borohydride acetate (186.11 mg, 878.11 ⁇ mol) was added, and the reaction mixture was warmed to 50 ° C. and the reaction was stirred for 12 hours.
  • WB method was used to study the regulation of IKZF3 protein level in multiple myeloma cells MM.1S by different compounds under different concentration conditions.
  • MM.1S cells are seeded in a 6-well plate with 1 ⁇ 10 6 cells per well, and then treated with a certain concentration of the test compound;
  • the tumor cell line was cultured in a 37 ° C, 5% CO 2 incubator under the above-mentioned culture conditions. Passage at regular intervals and take cells in log phase for plating.
  • the culture plate is left at room temperature for 10 minutes to stabilize the luminescence signal.
  • IR (%) (RLU vehicle control-RLU compound) / (RLU vehicle control-RLU blank control) * 100%. Calculate different concentrations in Excel inhibition rate of the compound, and then using GraphPad Prism software for inhibition curves and calculate relevant parameters, including the minimum inhibitory rate, the maximum inhibition rate and IC 50.
  • the compounds of the present invention exhibit excellent inhibitory effects on cell proliferation in the lymphoma cell lines OCI-LY10, DOHH2 and Mino.
  • mice C57BL male mice were selected as the test animals.
  • the LC / MS / MS method was used to quantitatively determine the drug concentration in the plasma of the test compound and the reference compound administered at different time points in the mouse to evaluate the test drug Pharmacokinetic characteristics.
  • C57Balb / c mice male, 20-30g, 7-10 weeks of age, Beijing Wetonglihua or Shanghai Slark).
  • mice were given a clear or suspension solution of the test compound by gavage (overnight fasting). Oral administration was performed by oral gavage at 0h (pre-dose) and 0.5,1,2,4,6,8,24h after the administration. Blood was collected from the jugular vein puncture and placed in an anticoagulation tube (Jiangsu Kangjian Medical) with EDTA-K2. Co., Ltd.), the mixture was vortexed and centrifuged at 13000 rpm for 10 minutes.
  • Cell culture human lymphoma OCI–LY10 cells (National Cancer Institute) in vitro monolayer culture, the culture conditions are RPMI-1640 medium plus 10% fetal bovine serum, 100 U / mL penicillin and 100 ⁇ g / mL streptomycin, 37 ° C , 5% CO 2 incubator. Passage with trypsin-EDTA for routine digestion treatment twice a week. When the cell saturation is 80% -90% and the number reaches the requirements, the cells are collected, counted, and seeded.
  • TGI Tumor Growth Inhibition (tumor growth inhibition rate).
  • TGI (%) [1-(average tumor volume at the end of administration in a treatment group-average tumor volume at the administration of this treatment group) / (average tumor volume at the end of treatment in the solvent control group-average tumor at the start of treatment in the solvent control group Volume)] x 100%.
  • the compound WX002 of the present invention shows a significant tumor shrinking effect on the in vivo pharmacodynamic model of human lymphoma OCI-LY10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

公开了一系列带有三环取代哌啶二酮类化合物,及其在制备治疗与CRBN蛋白相关疾病药物中的应用,具体公开了式(I)所示衍生化合物或其药学上可接受的盐。

Description

三环取代哌啶二酮类化合物
相关申请的引用
本申请主张如下优先权:
CN201811044122.5,申请日2018-09-07;
CN201811353938.6,申请日2018-11-14;
CN201910223413.9,申请日2019-03-22。
技术领域
本发明涉及一系列带有三环取代哌啶二酮类化合物,及其在制备治疗与CRBN蛋白相关疾病药物中的应用,具体涉及式(Ι)所示衍生化合物或其药学上可接受的盐。
背景技术
沙利度胺,商品名为反应停,首先由德国格兰泰公司合成。20世纪五十年代后半期到六十年代初期间,在40多个国家作为镇静剂销售,也作为孕妇止吐药而广泛应用,最终酿成上万例海豹肢畸形(形态形成障碍)婴儿的惨剧而撤出市场。
自“反应停”事件后,沙利度胺致畸的作用机制引起了广大科研工作者的浓厚兴趣。已经证实蛋白Cereblon(CRBN)是沙利度胺致畸作用的靶蛋白。沙利度胺通过与CRBN、DNA损伤结合蛋白DDB1(Damaged DNA Binding Protein 1)、CUL4A(Cullin–4A)和Cullins 1调控子(ROC1)结合形成E3泛素连接酶复合物,将多种底物蛋白泛素化,形成泛素化链,从而使底物蛋白被蛋白酶体识别、水解。度胺类药物被称为免疫调节药物(Immunomodulatory Drugs,IMiDs),激活与CRBN形成的E3泛素连接酶复合物对转录因子IKZF1与IKZF3的泛素化,然后被蛋白酶体识别与降解,从而对多发性骨髓瘤(Multiple Myeloma)产生毒性作用。这两种转录因子的缺失会终止骨髓瘤的增长。现在度胺类药物如来那度胺、泊马度胺是治疗多发性骨髓瘤的一线用药。
CRBN是从植物到人均保守的442个氨基酸的蛋白质,其位于人类3号染色体的p26.3短臂上,分子量为51kDa。在人类中,已将CRBN基因鉴别为常染色体隐性遗传非综合征轻型精神发育迟缓(ARNSMR)的候选基因。CRBN广泛地表达在睾丸、脾、前列腺、肝脏、胰腺、胎盘、肾脏、肺、骨骼肌、卵巢、小肠、外周血白细胞、结肠、脑部以及视网膜中,而在脑组织(包括视网膜)以及睾丸中的表达显著高于其他组织。
CRBN作为抗肿瘤和免疫调节剂药物的重要靶点,已被证实在多发性骨髓瘤、慢性淋巴细胞白血病等多种血液性恶性肿瘤、麻风结节性红斑等皮肤病、和系统性红斑狼疮等自免疫性疾病具有明确的疗效。度胺类药物都有较多副作用,尤其是周围神经病变。当前迫切需要开发无致畸作用、更少周围神经病变、更强免疫调节作用和更高抗肿瘤活性的CRBN调节剂药物,来提高临床治疗效果,降低临床副作用,利于患者的长期使用。
发明内容
本发明提供了式(Ⅰ)所示化合物或药学上可接受的盐,
Figure PCTCN2019104989-appb-000001
其中,
n选自0、1、2和3;
R 1选自H、卤素、OH、NH 2、CN、C 3-6环烷基、C 1-6烷基和C 1-6烷氧基,所述NH 2、C 3-6环烷基、C 1-6烷基和C 1-6烷氧基任选被1、2或3个R a取代;
环A选自5~6元杂芳基、苯基、C 4-6环烷基、和4~7元杂环烷基;
R a分别独立地选自F、Cl、Br、I、OH、NH 2、C 1-10烷氨基、C 1-10烷氧基、-C(=O)O-C 1-10烷基、4-10元杂环烷基、4-10元杂环烷基氨基、C 4-7环烷基氨基、C 4-7环烷基甲基氨基,其中,所述NH 2、C 1-10烷氨基、C 1-10烷氧基、-C(=O)O-C 1-10烷基、4-10元杂环烷基、4-10元杂环烷基氨基、C 4-7环烷基氨基、C 4-7环烷基甲基氨基任选被1、2或3个R取代;
R分别独立地选自F、Cl、Br、I、OH、NH 2、Me、
Figure PCTCN2019104989-appb-000002
所述5~6元杂芳基、4~7元杂环烷基4-10元杂环烷基、4-10元杂环烷基氨基分别包含1、2、3或4个独立选自-NH-、-O-、-S-、
Figure PCTCN2019104989-appb-000003
和N的杂原子或杂原子团。
本发明提供式(Ⅰ)所示化合物或药学上可接受的盐,
Figure PCTCN2019104989-appb-000004
其中,
n选自0、1、2和3;
R 1选自H、卤素、OH、NH 2和C 1-6烷基,其中C 1-6烷基任选被1、2或3个R a取代;
环A选自5~6元杂芳基、苯基、C 4-6环烷基、和4~7元杂环烷基;
R a选自F、Cl、Br、I、OH和NH 2
所述5~6元杂芳基、4~7元杂环烷基分别包含1、2、3或4个独立选自-NH-、-O-、-S-和N的杂原子或杂 原子团。
在本发明的一些方案中,上述R a选自F、Cl、Br、I、OH、NH 2、C 1-6烷氨基、C 1-6烷氧基、-C(=O)O-C 1-6烷基、4-7元杂环烷基、4-7元杂环烷基氨基、C 4-7环烷基氨基、C 4-7环烷基甲基氨基,其中,所述NH 2、C 1-6烷氨基、C 1-6烷氧基、-C(=O)O-C 1-6烷基、4-7元杂环烷基、C 4-7环烷基氨基、4-7元杂环烷基氨基、C 4-7环烷基甲基氨基任选被1、2或3个R取代。
在本发明的一些方案中,上述R a选自F、Cl、Br、I、OH、NH 2、C 1-3烷氨基、C 1-3烷氧基、-C(=O)O-C 1-4烷基、吡咯烷基、吗啉基、哌嗪基、哌啶基、3-氮杂双环[3,1,0]己烷基、硫代吗啉-1,1-二氧化物基、环己基氨基、哌啶基氨基、四氢吡喃基、四氢吡喃基氨基和环己基甲基氨基,其中,所述NH 2、C 1-3烷氨基、C 1-3烷氧基、-C(=O)O-C 1-4烷基、四氢吡咯基、吗啉基、哌嗪基、哌啶基、3-氮杂双环[3,1,0]己烷基、硫代吗啉-1,1-二氧化物基、环己基氨基、哌啶基氨基、四氢吡喃基、四氢吡喃基氨基和环己基甲基氨基任选被1、2或3个R取代。
在本发明的一些方案中,上述R a选自
Figure PCTCN2019104989-appb-000005
Figure PCTCN2019104989-appb-000006
Figure PCTCN2019104989-appb-000007
其它变量如本发明所定义。
在本发明的一些方案中,上述R 1选自H、NH 2、CN、C 3-6环烷基、C 1-3烷基和C 1-3烷氧基,其中,所述NH 2、C 3-6环烷基、C 1-3烷基和C 1-3烷氧基任选被1、2或3个R a取代,其它变量如本发明所定义。
在本发明的一些方案中,上述R 1选自H、F、Cl、Br、I、OH、NH 2、C 1-3烷基,其中C 1-3烷基任选被1、2或3个R a取代,其它变量如本发明所定义。
在本发明的一些方案中,上述R 1选自F、Cl、Br、I、OH、NH 2、C 1-3烷基,其中C 1-3烷基任选被1、 2或3个R a取代,其它变量如本发明所定义,其它变量如本发明所定义。
在本发明的一些方案中,上述R 1选自H、F、Cl、Br、I、OH、NH 2和Me,其中Me任选被1、2或3个R a取代,其它变量如本发明所定义。
在本发明的一些方案中,上述R 1选自F、Cl、Br、I、OH、NH 2和Me,其中Me任选被1、2或3个R a取代,其它变量如本发明所定义。
6.根据权利要求5所述化合物或药学上可接受的盐,其中,R 1选自H、Me、CN、
Figure PCTCN2019104989-appb-000008
Figure PCTCN2019104989-appb-000009
Figure PCTCN2019104989-appb-000010
其它变量如本发明所定义。
在本发明的一些方案中,上述R 1选自H、Me,其它变量如本发明所定义。
在本发明的一些方案中,上述R 1选自Me,其它变量如本发明所定义。
在本发明的一些方案中,上述环A选自苯基、吡啶基、吡咯基、吡唑基、1,3-二氧环戊烷基、吗啉基、恶唑基环丁基、氧杂环庚基、呋喃基、四氢呋喃基和1,4-氧氮杂环庚基,其它变量如本发明所定义。
8.根据权利要求7所述化合物或药学上可接受的盐,其中,环A选自苯基、吡啶基、吡咯基、吡唑基、1,3-二氧环戊烷基、呋喃基和四氢呋喃基,其它变量如本发明所定义。
在本发明的一些方案中,上述环A选自苯基、1,3-二氧环戊烷基、吗啉基、恶唑基环丁基、氧杂环庚基和1,4-氧氮杂环庚基,其它变量如本发明所定义。
在本发明的一些方案中,上述环A选自苯基、吡啶基、1,3-二氧环戊烷基、吗啉基、恶唑基环丁基、氧杂环庚基、四氢呋喃基和1,4-氧氮杂环庚基,其它变量如本发明所定义。
在本发明的一些方案中,上述环A选自苯基、吡啶基、1,3-二氧环戊烷基和四氢呋喃基,其它变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2019104989-appb-000011
选自
Figure PCTCN2019104989-appb-000012
Figure PCTCN2019104989-appb-000013
Figure PCTCN2019104989-appb-000014
其它变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2019104989-appb-000015
选自
Figure PCTCN2019104989-appb-000016
Figure PCTCN2019104989-appb-000017
其它变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2019104989-appb-000018
选自
Figure PCTCN2019104989-appb-000019
Figure PCTCN2019104989-appb-000020
其它变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2019104989-appb-000021
选自
Figure PCTCN2019104989-appb-000022
Figure PCTCN2019104989-appb-000023
其它变量如本发明所定义。
本发明还有一些方案是由上述各变量任意组合而来。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自
Figure PCTCN2019104989-appb-000024
其中,n、R 1和环A如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自
Figure PCTCN2019104989-appb-000025
其中,n、R 1、环A、结构单元
Figure PCTCN2019104989-appb-000026
如本发明所定义。
本发明还提供下述化合物或其药学上可接受的盐
Figure PCTCN2019104989-appb-000027
Figure PCTCN2019104989-appb-000028
Figure PCTCN2019104989-appb-000029
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自
Figure PCTCN2019104989-appb-000030
Figure PCTCN2019104989-appb-000031
Figure PCTCN2019104989-appb-000032
Figure PCTCN2019104989-appb-000033
Figure PCTCN2019104989-appb-000034
本发明还提供一种药物组合物,其含有治疗有效量的上述的化合物或其药学上可接受的盐作为活性成分以及药学上可接受的载体。
本发明还提供上述化合物或其药学上可接受的盐在制备治疗与CRBN蛋白相关疾病药物中的应用。
本发明还提供上述组合物在制备治疗与CRBN蛋白相关疾病药物中的应用。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计 量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2019104989-appb-000035
和楔形虚线键
Figure PCTCN2019104989-appb-000036
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2019104989-appb-000037
和直形虚线键
Figure PCTCN2019104989-appb-000038
表示立体中心的相对构型,用波浪线
Figure PCTCN2019104989-appb-000039
表示楔形实线键
Figure PCTCN2019104989-appb-000040
或楔形虚线键
Figure PCTCN2019104989-appb-000041
或用波浪线
Figure PCTCN2019104989-appb-000042
表示直形实线键
Figure PCTCN2019104989-appb-000043
和直形虚线键
Figure PCTCN2019104989-appb-000044
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2019104989-appb-000045
直形虚线键
Figure PCTCN2019104989-appb-000046
或波浪线
Figure PCTCN2019104989-appb-000047
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2019104989-appb-000048
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2019104989-appb-000049
中的波浪线表示通过该苯基集团中的1和2位的碳原子与其他基团相连。
本发明的化合物可以存在特定的。除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%, 或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
除非另有规定,环上原子的数目通常被定义为环的元数,例如,“5-7元环”是指环绕排列5-7个原子的“环”。
除非另有规定,术语“C 1-6烷基”用于表示直链或支链的由1至6个碳原子组成的饱和碳氢基团。所述C 1-6烷基包括C 1-5、C 1-4、C 1-3、C 1-2、C 2-6、C 2-4、C 6和C 5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-6烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)、己基等。
除非另有规定,术语“C 1-4烷基”用于表示直链或支链的由1至4个碳原子组成的饱和碳氢基团。所述C 1-4烷基包括C 1-2、C 1-3和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-4烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)等。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1- 3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-10烷氨基”表示通过氨基连接到分子的其余部分的那些包含1至6个碳原子的烷基基团。所述C 1-6烷氨基包括C 1-10烷氧基包括C 1-9、C 1-8、C 1-7、C 1-6、C 1-5、C 1-4、C 1-3、C 1-2、C 2-6、C 2- 4、C 6、C 5、C 4和C 2烷氨基等。C 1-6烷氨基的实例包括但不限于-NHCH 3、-N(CH 3) 2、-NHCH 2CH 3、-N(CH 3)CH 2CH 3、-N(CH 2CH 3)(CH 2CH 3)、-NHCH 2CH 2CH 3、-NHCH 2(CH 3) 2、-NHCH 2CH 2CH 2CH 3等。
除非另有规定,术语“C 1-6烷氨基”表示通过氨基连接到分子的其余部分的那些包含1至6个碳原子的烷基基团。所述C 1-6烷氨基包括C 1-4、C 1-3、C 1-2、C 2-6、C 2-4、C 6、C 5、C 4、C 3和C 2烷氨基等。C 1-6烷氨基的实例包括但不限于-NHCH 3、-N(CH 3) 2、-NHCH 2CH 3、-N(CH 3)CH 2CH 3、-N(CH 2CH 3)(CH 2CH 3)、-NHCH 2CH 2CH 3、-NHCH 2(CH 3) 2、-NHCH 2CH 2CH 2CH 3等。
除非另有规定,术语“C 1-6烷氨基”表示通过氨基连接到分子的其余部分的那些包含1至6个碳原子的烷基基团。所述C 1-6烷氨基包括C 1-4、C 1-3、C 1-2、C 2-6、C 2-4、C 6、C 5、C 4、C 3和C 2烷氨基等。C 1-6烷氨基的实例包括但不限于-NHCH 3、-N(CH 3) 2、-NHCH 2CH 3、-N(CH 3)CH 2CH 3、-N(CH 2CH 3)(CH 2CH 3)、-NHCH 2CH 2CH 3、-NHCH 2(CH 3) 2、-NHCH 2CH 2CH 2CH 3等。
除非另有规定,术语“C 1-3烷氨基”表示通过氨基连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氨基包括C 1-2、C 3和C 2烷氨基等。C 1-3烷氨基的实例包括但不限于-NHCH 3、-N(CH 3) 2、-NHCH 2CH 3、-N(CH 3)CH 2CH 3、-NHCH 2CH 2CH 3、-NHCH 2(CH 3) 2等。
除非另有规定,术语“C 1-10烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至10个碳原子的烷基基团。所述C 1-10烷氧基包括C 1-9、C 1-8、C 1-7、C 1-6、C 1-5、C 1-4、C 1-3、C 1-2、C 2-6、C 2-4、C 6、C 5、C 4和C 3烷氧基等。C 1-10烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)、丁氧基(包括n-丁氧基、异丁氧基、s-丁氧基和t-丁氧基)、戊氧基(包括n-戊氧基、异戊氧基和新戊氧基)、己氧基等。
除非另有规定,术语“C 1-6烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至6个碳原子的烷基基团。所述C 1-6烷氧基包括C 1-4、C 1-3、C 1-2、C 2-6、C 2-4、C 6、C 5、C 4和C 3烷氧基等。C 1-6烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)、丁氧基(包括n-丁氧基、异丁氧基、s-丁氧基和t-丁氧基)、戊氧基(包括n-戊氧基、异戊氧基和新戊氧基)、己氧基等。
除非另有规定,术语“C 2-4烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含2至4个碳原子的烷基基团。所述C 2-4烷氧基包括C 2-3、C 2-4、C 2、C 4和C 3烷氧基等。C 2-4烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)、丁氧基(包括n-丁氧基、异丁氧基、s-丁氧基和t-丁氧基)、戊氧基(包括n-戊氧基、异戊氧基和新戊氧基)、己氧基等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,术语“卤代素”或“卤素”本身或作为另一取代基的一部分表示氟、氯、溴或碘原子。
除非另有规定,“C 3-6环烷基”表示由3至6个碳原子组成的饱和环状碳氢基团,其为单环和双环体系,所述C 3-6环烷基包括C 3-5和C 5-6环烷基等;其可以是一价、二价或者多价。C 3-6环烷基的实例包括,但不限于,环丁基、环戊基、环己基等。
除非另有规定,“C 4-6环烷基”表示由4至6个碳原子组成的饱和环状碳氢基团,其为单环和双环体系,其中双环体系包括螺环、并环和桥环,所述C 4-6环烷基包括C 4-5和C 5-6环烷基等;其可以是一价、二价或者多价。C 3-6环烷基的实例包括,但不限于,环丙基、环丁基、环戊基、环己基等。
除非另有规定,术语“4-10元杂环烷基”本身或者与其他术语联合分别表示由4至10个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。其包括单环、双环和三环体系,其中双环和三环体系包括螺环、并环和桥环。此外,就该“4-10元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述4-10元杂环烷基包括4-8元、4-6元、4-7元、4-9元、4元、5元和6元杂环烷基等。4-10元杂环烷基的实例包括但不限于吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基、高哌啶基或二氧杂环庚烷基等。
除非另有规定,术语“4-7元杂环烷基”本身或者与其他术语联合分别表示由4至7个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。其包括单环和双环体系,其中双 环体系包括螺环、并环和桥环。此外,就该“4-7元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述4-7元杂环烷基包括4-5元、4-6元、5-6元、5-7元、4元、5元和6元杂环烷基等。4-7元杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、硫杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基、高哌啶基或二氧杂环庚烷基等。
除非另有规定,本发明术语“5-6元杂芳环”和“5-6元杂芳基”可以互换使用,术语“5-6元杂芳基”表示由5至6个环原子组成的具有共轭π电子体系的单环基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子。其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。5-6元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述5-6元杂芳基包括5元和6元杂芳基。所述5-6元杂芳基的实例包括但不限于吡咯基(包括N-吡咯基、2-吡咯基和3-吡咯基等)、吡唑基(包括2-吡唑基和3-吡唑基等)、咪唑基(包括N-咪唑基、2-咪唑基、4-咪唑基和5-咪唑基等)、噁唑基(包括2-噁唑基、4-噁唑基和5-噁唑基等)、三唑基(1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基和4H-1,2,4-三唑基等)、四唑基、异噁唑基(3-异噁唑基、4-异噁唑基和5-异噁唑基等)、噻唑基(包括2-噻唑基、4-噻唑基和5-噻唑基等)、呋喃基(包括2-呋喃基和3-呋喃基等)、噻吩基(包括2-噻吩基和3-噻吩基等)、吡啶基(包括2-吡啶基、3-吡啶基和4-吡啶基等)、吡嗪基或嘧啶基(包括2-嘧啶基和4-嘧啶基等)。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1- 3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲和取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是 指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:aq代表水;HATU代表O-(7-氮杂苯并三唑-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐;EDC代表N-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐;m-CPBA代表3-氯过氧苯甲酸;eq代表当量、等量;CDI代表羰基二咪唑;DCM代表二氯甲烷;PE代表石油醚;DIAD代表偶氮二羧酸二异丙酯;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;CBz代表苄氧羰基,是一种胺保护基团;BOC代表叔丁氧羰基是一种胺保护基团;HOAc代表乙酸;NaCNBH 3代表氰基硼氢化钠;r.t.代表室温;O/N代表过夜;THF代表四氢呋喃;Boc 2O代表二-叔丁基二碳酸酯;TFA代表三氟乙酸;DIPEA代表二异丙基乙基胺;SOCl 2代表氯化亚砜;CS 2代表二硫化碳;TsOH代表对甲苯磺酸;NFSI代表N-氟-N-(苯磺酰基)苯磺酰胺;NCS代表1-氯吡咯烷-2,5-二酮;n-Bu 4NF代表氟化四丁基铵;iPrOH代表2-丙醇;mp代表熔点;LDA代表二异丙基胺基锂;M代表mol/L。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2019104989-appb-000050
软件命名,市售化合物采用供应商目录名称。
技术效果:
本发明化合物展现出对多发性骨髓瘤细胞MM.1S内IKZF3蛋白水平明显下调作用;本发明化合物在淋巴瘤细胞系OCI–LY10,DOHH2与Mino中均展现出优异细胞增殖的抑制作用。在啮齿动物小鼠中,本发明化合物的药代动力学性质较优;本发明化合物WX002在人淋巴瘤OCI–LY10体内药效模型上展示了显著的缩瘤作用。
附图说明
图1为本发明化合物WX001~WX008在100nM浓度下处理多发性骨髓瘤细胞MM.1S后,WB检测细胞内IKZF3蛋白水平的变化情况;
图2为本发明化合物WX009~WX030在100nM浓度下处理多发性骨髓瘤细胞MM.1S后,WB检测细胞内IKZF3蛋白水平的变化情况;
图3为本发明化合物WX031~WX056在100nM浓度下处理多发性骨髓瘤细胞MM.1S后,WB检测细胞内IKZF3蛋白水平的变化情况。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1:WX001
Figure PCTCN2019104989-appb-000051
步骤1:中间体WX001–2的合成
室温下,将WX001–1(11g,79.64mmol)溶于二氯甲烷(100mL)中,随后加入二异丙基乙胺(36.03g,278.74mmol,48.55mL)。反应混合物冷却至0℃,随后加入氯甲醚(10.7g,132.90mmol,10.09mL),反应混合物升温至室温并搅拌反应2小时。反应完毕后,加入水(100mL)稀释,分液后收集有机相,水相用二氯甲烷萃取(50mL×2)。合并有机相,有机相用无水硫酸钠干燥,过滤减压浓缩得到残余物,所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=100/0–9/1,体积比),得到中间体WX001–2。 1H NMR(400MHz,CDCl 3)δ:6.72(d,J=8.4Hz,1H),6.63(d,J=2.4Hz,1H),6.50(dd,J=2.4,8.5Hz,1H),5.93(s,2H),5.09(s,2H),3.49(s,3H).
步骤2:中间体WX001–3的合成
室温下,将中间体WX001–2(2.5g,13.72mmol)溶于四氢呋喃(30mL)中,氮气保护下反应混合物冷却至–60℃,随后加入正丁基锂(2.5M,5.49mL),反应混合物在–60℃下搅拌反应10分钟后,加入2–氯–N–甲氧基–N–甲基乙酰胺(2.27g,16.47mmol),反应混合物升温至室温并继续搅拌反应2小时。反应完毕后,加入水(100mL),用乙酸乙酯(50mL×2)萃取。合并有机相,有机相用无水硫酸钠干燥,过滤,减压浓缩得到中间体WX001–3。 1H NMR(400MHz,CDCl 3)δ:6.84(d,J=8.4Hz,1H),6.64(d,J=7.6Hz,1H),6.05(s,2H),5.17(s,2H),4.65(s,2H),3.50(s,3H).
步骤3:中间体WX001–4的合成
室温下,向中间体WX001–3(3g,11.60mmol)中加入盐酸/乙酸乙酯(4M,40mL),反应混合物在室温下搅拌反应12小时。反应完毕后,反应混合物直接减压浓缩,所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=100/0–4/1,体积比),得到中间体WX001–4。 1H NMR(400MHz,CDCl 3)δ:11.23(s,1H),7.01(d,J=8.4Hz,1H),6.47(d,J=8.8Hz,1H),6.09(s,2H),4.77(s,2H).
步骤4:中间体WX001–5的合成
室温下,将中间体WX001–4(800mg,3.73mmol)溶于乙腈(40mL)中,随后加入碳酸钾(1.03g,7.46mmol),反应混合物在室温下搅拌反应3小时。反应完毕后,反应混合物过滤,滤液减压浓缩,所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=100/0–4/1,体积比),得到中间体WX001–5。 1H NMR(400MHz,CDCl 3)δ:7.06(d,J=8.8Hz,1H),6.53(d,J=8.8Hz,1H),6.13(s,2H),4.63(s,2H).
步骤5:中间体WX001–6的合成
室温下,将中间体WX001–5(260mg,1.46mmol)溶于甲苯(10mL)中,随后加入乙基(三苯基膦)乙酸酯(762.69mg,2.19mmol),氮气保护下反应混合物加热至120℃并搅拌反应48小时。反应完毕后,反应混合物减压浓缩,所得残余物加入甲基叔丁基醚(10mL),室温搅拌30分钟后,过滤,滤饼丢弃,所得滤液减压除去溶剂,所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=100/0–9/1,体积比),得到中间体WX001–6。 1H NMR(400MHz,CDCl 3)δ:7.54(s,1H),6.94(d,J=8.8Hz,1H),6.83(d,J=8.8Hz,1H),6.03(s,2H),4.22(q,J=7.2Hz,2H),3.76(s,2H),1.29(t,J=7.2Hz,3H).
步骤6:化合物WX001的合成
室温下,将中间体WX003–1(170mg,684.85μmol)溶于四氢呋喃(10mL)中,随后加入叔丁醇钾(76.85mg,684.85μmol),再滴加丙烯酰胺(48.68mg,684.85μmol)的四氢呋喃(0.5mL)溶液,氮气保护下反应混合物在室温下搅拌反应0.5小时。反应完毕后,加入水(10mL),用乙酸乙酯(10mL×3)萃取。合并有机相,用无水硫酸钠干燥,过滤,减压浓缩得到残余物。所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=100/0–1/4,体积比),得到化合物WX001。MS–ESI m/z:274.0[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.89(s,1H),7.86(s,1H),7.07(d,J=8.4Hz,1H),6.96(d,J=8.8Hz,1H),6.08–5.98(m,2H),4.05(dd,J=4.8,12.8Hz,1H),2.85–2.71(m,1H),2.69–2.53(m,1H),2.27(dq,J=4.5,13.0Hz,1H),2.12–2.02(m,1H).
实施例2:WX002
Figure PCTCN2019104989-appb-000052
Figure PCTCN2019104989-appb-000053
步骤1:中间体WX002–2的合成
室温下,将WX002–1(5g,34.68mmol)溶于二氯甲烷(70mL)中,随后依次加入N–碘代丁二酰亚胺(7.80g,34.68mmol)和对甲苯磺酸(1.98g,10.40mmol),反应混合物在室温下搅拌反应30分钟。反应完毕后,加入水(50mL)稀释,分液后收集有机相,水相用二氯甲烷(50mL×2)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标中间体WX002–2。 1HNMR(400MHz,CDCl 3)δ:7.96(d,J=8.4Hz,1H),7.76(dd,J=3.2,8.4Hz,2H),7.58(t,J=7.7Hz,1H),7.46–7.37(m,1H),7.32–7.24(m,1H),4.95(s,1H).
步骤2:中间体WX002–3的合成
室温下,将中间体WX002–2(9g,33.33mmol)溶于乙腈(150mL)中,随后依次加入碳酸钾(9.21g,66.65mmol)和4–溴巴豆酸乙酯(6.43g,33.33mmol,4.60mL),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液过滤,收集滤液,滤饼用乙酸乙酯(30mL×2)洗涤。合并滤液和洗液,减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–20/1,体积比),得到目标中间体WX002–3。 1H NMR(400MHz,CDCl 3)δ:8.17(d,J=8.4Hz,1H),7.81(d,J=8.8Hz,1H),7.75(d,J=8.0Hz,1H),7.57(ddd,J=1.2,7.0,8.5Hz,1H),7.42(ddd,J=1.1,6.9,8.1Hz,1H),7.19–7.10(m,2H),6.46(td,J=2.1,15.7Hz,1H),4.90(dd,J=2.0,3.6Hz,2H),4.25(q,J=7.2Hz,2H),1.33(t,J=7.1Hz,3H).
步骤3:中间体WX002–4的合成
室温和氮气保护下,将中间体WX002–3(3g,7.85mmol)溶于N,N–二甲基甲酰胺(50mL)中,随后依次加入碳酸钠(2.08g,19.62mmol)、醋酸钯(88.11mg,392.47μmol)、四丁基氯化铵)(2.40g,8.63mmol)和甲酸钠(533.82mg,7.85mmol),反应混合物加热至80℃并搅拌反应2小时。反应完毕后,冷却至室温,加入水(100mL)和乙酸乙酯(100mL)稀释,分液后收集有机相,水相用乙酸乙酯(50mL×2)萃取。合并有机相,用半饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–20/1,体积比),得到中间体WX002–4。 1H NMR(400MHz,CDCl 3)δ:8.25(d,J=8.4Hz,1H),7.97(d,J=8.4Hz,1H),7.80–7.72(m,2H),7.69–7.64(m,1H),7.60(dt,J=1.3,7.7Hz,1H),7.53–7.46(m,1H),4.24(q,J=7.1Hz,2H),4.09(s,2H),1.28(t,J=7.2Hz,3H).
步骤4:化合物WX002的合成
室温和氮气保护下,将中间体WX002–4(1.4g,5.51mmol)溶于溶剂四氢呋喃(70mL)中,随后依次加入丙烯酰胺(391.34mg,5.51mmol)和叔丁醇钾(617.81mg,5.51mmol),反应混合物在室温下搅拌反应3小时。反应完毕后,加入水(100mL)和乙酸乙酯(30mL)稀释,分液后收集有机相,水相用乙酸乙酯萃取(30mL×2)。合并有机相,用无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–2/3,体积比)后,再经制备HPLC(流动相:乙腈/水;酸性体系:0.05%HCl)分离,得到化合物WX002。MS–ESI m/z:280.0[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),8.18(d,J=8.6Hz,1H),8.06(d,J=8.2Hz,1H),8.01(s,1H),7.90–7.84(m,1H),7.82–7.77(m,1H),7.62–7.56(m,1H),7.55–7.49(m,1H),4.68(dd,J=4.6,12.2Hz,1H),2.89–2.82(m,1H),2.71–2.58(m,1H),2.48–2.36(m,1H),2.35–2.22(m,1H).
实施例3:WX003的盐酸盐
Figure PCTCN2019104989-appb-000054
步骤1:中间体WX003–2的合成
室温和氮气保护下,将WX003–1(9.5g,65.45mmol)和2–溴乙酸叔丁酯(14.04g,71.99mmol,10.64mL)溶于N,N–二甲基甲酰胺(100mL)中,随后分批缓慢加入碳酸钾(9.05g,65.45mmol),反应混合物加热至60℃并搅拌反应12小时,随后反应体系降温至30℃,分批缓慢加入钠氢(2.62g,65.45mmol,纯度:60%),再次加热至60℃继续搅拌反应2小时。反应完毕后,冷却至室温,加入水(100mL)淬灭,用乙酸乙酯(200mL×2)萃取。合并有机相,用半饱和食盐水(150mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:乙酸乙酯),得到中间体WX003–2。 1H NMR(400MHz,CDCl 3)δ:8.81(dd,J=1.6,4.3Hz,1H),8.10–8.03(m,2H),7.48(dd,J=2.8,9.2Hz,1H),7.38(dd,J=4.3,8.3Hz,1H),7.03(d,J=2.8Hz,1H),4.67(s,2H),1.52(s,9H).
步骤2:中间体WX003–3的合成
室温下,向中间体WX003–2(5g,16.91mmol)中加入盐酸乙酸乙酯溶液(4M,50mL),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液直接减压除去溶剂,得到目标中间体WX003–3。 1H NMR(400MHz,DMSO_d 6)δ:9.08(dd,J=1.4,5.3Hz,1H),8.93(d,J=8.4Hz,1H),8.33(d,J=9.2Hz,1H),7.96(dd,J=5.1,8.4Hz,1H),7.80(dd,J=2.7,9.2Hz,1H),7.70(d,J=2.4Hz,1H),4.91(s,2H).
步骤3:中间体WX003–4的合成
室温和氮气保护下,用第一个反应瓶,将中间体WX003–3(3.5g,14.60mmol)加入到乙腈(35mL)中,冷却至0℃后,依次加入三乙胺(2.96g,29.21mmol,4.07mL)和羰基二咪唑(4.74g,29.21mmol),反应混合物升至室温并搅拌反应2小时。室温下,在另一反应瓶,将丙二酸单乙酯钾盐(4.97g,29.21mmol)加入到乙腈(70mL)中,随后依次加入三乙胺(5.47g,54.04mmol,7.52mL)和氯化镁(3.75g,39.43mmol),反应混合物在室温下搅拌反应2小时。最后在0℃下,将第二个反应瓶中的反应混合物滴加到第一个反应瓶中,反应混合物缓慢升温至室温并继续搅拌反应10小时。反应完毕后,加入水(180mL)淬灭反应,用乙酸乙酯(60mL×2)萃取。合并有机相,用半饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–0/1,体积比),得到中间体WX003–4。 1H NMR(400MHz,CDCl 3)δ:8.83–8.77(m,1H),8.07–8.00(m,2H),7.44–7.34(m,2H),7.03(d,J=2.8Hz,1H),4.79(s,2H),4.28–4.15(m,2H),3.67(s,2H),1.36–1.21(m,3H).
步骤4:中间体WX003–5的合成
室温和氮气保护下,将中间体WX003–4(1.5g,5.49mmol)溶于甲苯(3mL)中,再加入多聚磷酸(2mL),反应混合物加热至110℃并搅拌反应0.5小时。反应完毕后,将反应液倒入冰水(80mL)中淬灭,用饱和碳酸氢钠溶液调节pH至7–8,乙酸乙酯(100mL×2)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/1,体积比),得到中间体WX003–5。 1H NMR(400MHz,CDCl 3)δ:8.76(dd,J=1.6,4.3Hz,1H),8.44(d,J=8.5Hz,1H),7.87(d,J=9.2Hz,1H),7.74–7.68(m,1H),7.66(s,1H),7.33(dd,J=4.0,8.4Hz,1H),4.05(q,J=7.2Hz,2H),3.88(s,2H),1.08(t,J=7.2Hz,3H).
步骤5:化合物WX003的合成
室温下,将中间体WX003–5(60.00mg,206.84μmol)溶于四氢呋喃(3.5mL)中,加入丙烯酰胺(14.70mg,206.84μmol),冷却至0℃后,再加入叔丁醇钾(23.21mg,206.84μmol),反应混合物在0℃下搅拌反应1小时。反应完毕后,加入水(50mL)淬灭反应,用乙酸乙酯(100mL×2)萃取。合并有机相,用半饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过制备HPLC(流动相:乙腈/水;酸性体系:0.05%HCl)分离,得到目标化合物WX003的盐酸盐。MS–ESI m/z:281.0[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.96(s,1H),9.14–9.03(m,2H),8.30(d,J=9.2Hz,1H),8.25(s,1H),8.15(d, J=9.2Hz,1H),7.90(dd,J=4.9,8.4Hz,1H),4.75(dd,J=4.4,12.8Hz,1H),2.94–2.78(m,2H),2.71–2.60(m,1H),2.35–2.23(m,1H).
实施例4:WX004
Figure PCTCN2019104989-appb-000055
步骤1:中间体WX004–2的合成
室温下,将WX004–1(0.5g,3.37mmol)溶于二氯甲烷(15mL)中,冷却至–78℃,随后加入三溴化硼(1.69g,6.75mmol,650.34μL),反应混合物缓慢升至0℃并在0℃下搅拌反应4小时。反应完毕后,加入二氯甲烷(50mL)稀释,再缓慢倒入1M氢氧化钠水溶液(20mL)中,用1M盐酸水溶液调节pH至6–7,分液,收集有机相。有机相用无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=100/0–9/1,体积比),得到中间体WX004–2。MS–ESI m/z:133.1[M–H] .
步骤2:中间体WX004–3的合成
室温下,将中间体WX004–2(0.2g,1.49mmol)溶于二氯甲烷(3mL)中,随后加入N–碘代丁二酰亚胺(335.46mg,1.49mmol),反应混合物在室温下搅拌反应12小时。反应完毕后,加入饱和亚硫酸钠水溶液(80mL)淬灭反应,用乙酸乙酯(80mL×2)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过制备层析板分离(洗脱剂:石油醚/乙酸乙酯=3/1,体积比),得到中间体WX004–3。MS–ESI m/z:259.0[M–H] . 1H NMR(400MHz,CDCl 3)δ:7.65(d,J=2.0Hz,1H),7.36(d,J=8.8Hz,1H),6.98(d,J=8.8Hz,1H),6.61(dd,J=0.8,2.0Hz,1H),5.20(s,1H).
步骤3:中间体WX004–4的合成
室温下,将中间体WX004–3(0.2g,769.15μmol,纯度:88%)溶于乙腈(4mL)中,随后依次加入碳酸钾(159.46mg,1.15mmol)和4–溴巴豆酸乙酯(178.17mg,922.98μmol),反应混合物在室温下搅拌反应12小 时。反应完毕后,加入水(50mL),用乙酸乙酯(80mL×2)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过制备层析板分离(洗脱剂:石油醚/乙酸乙酯=3/1,体积比),得到中间体WX004–4。MS–ESI m/z:373.0[M+H] +. 1H NMR(400MHz,CDCl 3)δ:7.67(d,J=2.4Hz,1H),7.40(d,J=8.8Hz,1H),7.10(td,J=4.0,15.6Hz,1H),6.82(d,J=9.2Hz,1H),6.70(dd,J=0.8,2.0Hz,1H),6.39(td,J=2.0,15.6Hz,1H),4.78(dd,J=2.2,3.8Hz,2H),4.24(q,J=7.2Hz,2H),1.32(t,J=7.0Hz,3H).
步骤4:中间体WX004–5的合成
室温和氮气保护下,将中间体WX004–4(0.16g,429.93μmol,纯度:82%)溶于N,N–二甲基甲酰胺(10mL)中,随后依次加入醋酸钯(9.65mg,42.99μmol)、碳酸钠(113.92mg,1.07mmol)、四丁基氯化铵(131.43mg,472.92μmol)和甲酸钠(29.24mg,429.93μmol),反应混合物加热至80℃并在80℃下搅拌反应12小时。反应完毕后,加入水(50mL)淬灭反应,用乙酸乙酯(80mL×2)萃取。合并有机相,用半饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过制备层析板分离(洗脱剂:石油醚/乙酸乙酯=3/1,体积比),得到中间体WX004–5。MS–ESI m/z:245.1[M+H] +. 1H NMR(400MHz,CDCl 3)δ:7.71(d,J=2.0Hz,1H),7.70(s,1H),7.42(q,J=9.0Hz,2H),7.03(d,J=2.4Hz,1H),4.19(q,J=7.0Hz,2H),3.85(s,2H),1.24(t,J=7.0Hz,3H).
步骤5:化合物WX004的合成
室温下,将中间体WX004–5(0.08g,327.54μmol)溶于四氢呋喃(5mL)中,随后依次加入丙烯酰胺(23.28mg,327.54μmol)和叔丁醇钾(36.75mg,327.54μmol),反应混合物在室温下搅拌反应1小时。反应完毕后,加入水(20mL)淬灭反应,用乙酸乙酯(80mL×2)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过制备HPLC(流动相:乙腈/水;酸性体系:0.05%HCl)分离,得到化合物WX004。MS–ESI m/z:270.0[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.99(s,1H),8.10(d,J=2.4Hz,1H),7.99(s,1H),7.56(q,J=9.0Hz,2H),7.07(d,J=1.6Hz,1H),4.35(dd,J=5.0,12.6Hz,1H),2.90–2.78(m,1H),2.72–2.58(m,1H),2.38–2.24(m,1H),2.22–2.12(m,1H).
实施例5:WX005
Figure PCTCN2019104989-appb-000056
Figure PCTCN2019104989-appb-000057
步骤1:中间体WX005–2的合成
室温和氮气保护下,将化合物WX005–1(30.00g,241.67mmol)和3–溴丙–1–烯(35.08g,290.00mmol)溶于丙酮(300mL)中,加入碳酸钾(66.80g,483.34mmol),反应混合物加热至65℃并搅拌反应12小时。反应完毕后,冷却至室温,反应混合物过滤,滤饼丢弃,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–100/1,体积比),得到中间体WX005–2。MS–ESI m/z:165.0[M+H] +. 1H NMR(400MHz,CDCl 3)δ:6.92–6.78(m,4H),6.13–6.00(m,1H),5.41(dq,J=1.6,17.2Hz,1H),5.28(dq,J=1.4,10.2Hz,1H),4.51(t,J=1.6Hz,1H),4.50(t,J=1.4Hz,1H),3.78(s,3H).
步骤2:中间体WX005–3的合成
在室温和氮气保护下,将中间体WX005–2(33.00g,196.63mmol,纯度:97.84%)加入单口烧瓶中,反应混合物加热至180℃并搅拌反应6小时。反应完毕后,冷却至室温,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=100/1–10/1,体积比),得到中间体WX005–3。MS–ESI m/z:165.0[M+H] +. 1H NMR(400MHz,CDCl 3)δ:6.79–6.73(m,1H),6.72–6.64(m,2H),6.11–5.92(m,1H),5.23–5.17(m,1H),5.16–5.13(m,1H),4.63(s,1H),3.77(s,3H),3.39(d,J=6.0Hz,2H).
步骤3:中间体WX005–4的合成
在室温下,将中间体WX005–3(5.00g,28.86mmol,纯度:94.77%)溶于二甲基乙酰胺(3mL)和水(0.5mL)中,加入氯化钯(102.35mg,577.16μmol)和醋酸钠(4.73g,57.72mmol),反应混合物抽真空,用氧气置换几次。反应混合物在25℃和氧气(15psi)保护下搅拌反应1小时。三个批次合并处理。反应完毕后,反应混合物加入水(200mL),用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1–10/1,体积比),得到中间体WX005–4。MS–ESI m/z:163.0[M+H] +. 1H NMR(400MHz,CDCl 3)δ:7.29 (d,J=9.2Hz,1H),6.96(d,J=2.8Hz,1H),6.81(dd,J=2.6,9.0Hz,1H),6.32(s,1H),3.84(s,3H),2.44(d,J=0.8Hz,3H).
步骤4:中间体WX005–5的合成
在–78℃和氮气保护下,将中间体WX005–4(4.22g,25.42mmol,纯度:97.69%)溶于二氯甲烷(40mL)中,缓慢加入三溴化硼(19.10g,76.26mmol,7.35mL)的二氯甲烷(10mL)溶液,反应混合物升至25℃并搅拌反应5小时。反应完毕后,反应混合物倒入水(100mL),用二氯甲烷(50mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1–8/1,体积比),得到中间体WX005–5。MS–ESI m/z:148.9[M+H] +. 1H NMR(400MHz,CDCl 3)δ:7.24(d,J=8.4Hz,1H),6.89(d,J=2.4Hz,1H),6.71(dd,J=2.4,8.8Hz,1H),6.28(s,1H),4.80(s,1H),2.43(d,J=0.8Hz,3H).
步骤5:中间体WX005–6的合成
室温和氮气保护下,将中间体WX005–5(3.08g,20.48mmol,纯度:98.53%)溶于N,N–二甲基甲酰胺(30mL)中,加入碳酸钾(5.66g,40.97mmol),反应混合物在0℃下搅拌反应0.5小时,加入2–溴乙酸乙酯(3.42g,20.48mmol,2.27mL),反应混合物在25℃氮气保护下搅拌反应12小时。反应完毕后,反应混合物加入水(100mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1–10/1,体积比),得到中间体WX005–6。MS–ESI m/z:235.1[M+H] +. 1H NMR(400MHz,CDCl 3)δ:7.30(d,J=9.2Hz,1H),6.95(d,J=2.4Hz,1H),6.86(dd,J=2.4,8.8Hz,1H),6.31(s,1H),4.64(s,2H),4.28(q,J=7.0Hz,2H),2.43(d,J=0.8Hz,3H),1.31(t,J=7.2Hz,3H).
步骤6:中间体WX005–7的合成
在室温和氮气保护下,将中间体WX005–6(2.10g,8.67mmol,纯度:96.74%)溶于四氢呋喃(20mL),乙醇(10mL)和水(5mL)中,加入氢氧化钠(346.91mg,8.67mmol),反应混合物在25℃下搅拌反应12小时。反应混合物减压除去四氢呋喃和乙醇,反应混合物加入水(100mL)。再加入2M稀盐酸(10mL)调节pH至2–3,用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到中间体WX005–7。MS–ESI m/z:207.1[M+H] +. 1H NMR(400MHz,CDCl 3)δ:7.32(d,J=8.8Hz,1H),6.98(d,J=2.8Hz,1H),6.86(dd,J=2.6,9.0Hz,1H),6.33(s,1H),4.70(s,2H),2.44(d,J=0.8Hz,3H).
步骤7:中间体WX005–8的合成
10℃和氮气保护下,将丙二酸单乙酯钾盐(3.29g,19.31mmol)溶于乙腈(20mL)中,将三乙胺(3.14g, 31.06mmol,4.32mL)和氯化镁(2.16g,22.66mmol)的混合物加入上述反应液中,反应混合物升至25℃并搅拌反应2小时。在0℃和氮气保护下,中间体WX005–7(1.77g,8.39mmol,纯度:97.79%)溶于乙腈(10mL)中,加入N,N’–羰基二咪唑(1.36g,8.39mmol)和三乙胺(849.43mg,8.39mmol,1.17mL),反应混合物升至25℃并搅拌反应2小时。在0℃氮气保护下,反应混合物滴加到上述溶液中,反应混合物升至25℃并搅拌反应10小时。反应完毕后,反应混合物加入冰水(100mL),用乙酸乙酯(60mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–5/1,体积比),得到中间体WX005–8。MS–ESI m/z:277.0[M+H] +. 1H NMR(400MHz,CDCl 3)δ:7.31(d,J=8.8Hz,1H),6.91(d,J=2.8Hz,1H),6.81(dd,J=2.8,8.8Hz,1H),6.32(t,J=0.8Hz,1H),4.66(s,2H),4.20(q,J=7.0Hz,2H),3.66(s,2H),2.44(d,J=1.2Hz,3H),1.26(t,J=7.2Hz,3H).
步骤8:中间体WX005–9的合成
室温和氮气保护下,将中间体WX005–8(0.821g,2.44mmol,纯度:82.04%)溶于甲苯(10mL)中,加入多聚磷酸(0.300g),反应混合物加热至110℃并搅拌反应1小时。反应完毕后,冷却至室温,反应混合物加入水(30mL),用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(10mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物所得残余物经过超临界流体色谱(分离条件:色谱柱:ChiralPak AD-3 150x 4.6mm I.D.,3um;流动相:A:二氧化碳,B:乙醇(0.05%二乙基胺);流速:2.5mL/min;柱温:40℃;波长:220nm)分离,收集保留时间为2.087min的样品得到中间体WX005–9。MS–ESI m/z:259.1[M+H] +. 1H NMR(400MHz,CDCl 3)δ:7.68(s,1H),7.34(q,J=9.0Hz,2H),6.66(s,1H),4.21(q,J=7.0Hz,2H),3.83(d,J=0.8Hz,2H),2.52(d,J=0.8Hz,3H),1.27(t,J=7.2Hz,3H).
步骤9:WX005的合成
在0℃和氮气保护下,向中间体WX005–9(0.200g,745.58μmol,纯度:96.28%)的N,N–二甲基甲酰胺(10mL)溶液中加入叔丁醇钾(83.66mg,745.58μmol),随后加入丙烯酰胺(52.99mg,745.58μmol),反应混合物在0℃和氮气保护下搅拌反应1小时。反应完毕后,反应混合物加入水(50mL)稀释,用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(30mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过制备HPLC(流动相:乙腈/水;酸性体系:0.05%HCl)分离,得到目标化合物WX005。MS–ESI m/z:284.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),7.94(s,1H),7.47(d,J=9.2Hz,1H),7.43(d,J=8.8Hz,1H),6.69(s,1H),4.29(dd,J=4.8,12.4Hz,1H),2.89–2.77(m,1H),2.69–2.58(m,1H),2.49(s,3H),2.36–2.23(m,1H),2.20–2.09(m,1H).
实施例6:WX006
Figure PCTCN2019104989-appb-000058
步骤1:中间体WX006–2的合成
室温和氮气保护下,将化合物WX006–1(4.48g,23.70mmol)溶于N,N–二甲基甲酰胺(50mL)中,加入钠氢(948.12mg,23.70mmol,纯度:60%),随后加入溴乙醛缩二乙醇(4.67g,23.70mmol,3.57mL),反应混合物加热至100℃并搅拌反应16小时。反应完毕后,反应液冷却至室温,倒入冰水(50mL)中,用乙酸乙酯(50mL×3)萃取。合并有机相,用食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1–10/1,体积比),得到中间体WX006–2。 1H NMR(400MHz,CDCl 3)δ:7.15(t,J=8.4Hz,1H),6.69(dd,J=1.2,8.4Hz,1H),6.48(dd,J=1.0,8.2Hz,1H),5.65(s,1H),4.89(t,J=5.2Hz,1H),4.05(d,J=5.2Hz,2H),3.86–3.77(m,2H),3.75–3.66(m,2H),1.27(t,J=7.0Hz,6H).
步骤2:中间体WX006–3的合成
室温和氮气保护下,将中间体WX006–2(2.22g,7.27mmol)溶于甲苯(10mL)中,然后加入多聚磷酸(1.00g),反应混合物加热至120℃并搅拌反应0.4小时。反应完毕后,向反应液冷却至室温,加入水(40mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用食盐水(60mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1–10/1,体积比),得到中间体WX006–3。 1H NMR(400MHz,CDCl 3)δ:7.61(d,J=2.0Hz,1H),7.41(d,J=8.4Hz,1H),6.99(d,J=8.4Hz,1H),6.78(d,J=2.0Hz,1H),5.49(s,1H).
步骤3:中间体WX006–4的合成
室温和氮气保护下,将中间体WX006–3(739.00mg,3.47mmol)溶于乙腈(10mL)中,随后加入碳酸钾(958.91mg,6.94mmol)和4–溴巴豆酸乙酯(1.34g,6.94mmol,956.65uL),反应混合物在室温下搅拌16小 时。反应完毕后,加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(60mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=100/1–50/1,体积比),得到中间体WX006–4。 1H NMR(400MHz,CDCl 3)δ:7.65(d,J=2.0Hz,1H),7.46(d,J=8.8Hz,1H),7.12(dt,J=3.9,15.6Hz,1H),6.88(d,J=8.8Hz,1H),6.79(d,J=2.4Hz,1H),6.35(dt,J=2.0,15.6Hz,1H),4.83(dd,J=2.2,3.8Hz,2H),4.24(q,J=7.2Hz,2H),1.32(t,J=7.0Hz,3H).
步骤4:中间体WX006–5的合成
室温和氮气保护下,将中间体WX006–4(940.00mg,2.89mmol)溶于N,N–二甲基甲酰胺(10mL)中,随后依次加入碳酸钠(766.03mg,7.23mmol),甲酸钠(196.61mg,2.89mmol),醋酸钯(32.45mg,144.55μmol)和四丁基氯化铵(883.78mg,3.18mmol),反应混合物加热至80℃并搅拌反应14小时。反应完毕后,冷却至室温,加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(60mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=100/1–50/1,体积比),得到中间体WX006–5。MS–ESI m/z:245.0[M+H] +.
步骤5:化合物WX006的合成
0℃和氮气保护下,将中间体WX006–5(43.00mg,166.97μmol,纯度:94.84%)和中间体WX006–5(20.75mg,69.87μmol,纯度:82.23%)加入到N,N–二甲基甲酰胺(5mL)中,随后加入叔丁醇钾(26.58mg,236.84μmol),在0℃下搅拌反应0.5小时后,将丙烯酰胺(16.83mg,236.84μmol)加入到上述反应液中,反应混合物在0℃氮气保护下继续搅拌反应1小时。反应完毕后,加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(60mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX006。MS–ESI m/z:270.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.98(s,1H),8.02(d,J=2.0Hz,1H),7.99(s,1H),7.61–7.57(m,1H),7.55–7.51(m,1H),7.05(d,J=2.0Hz,1H),4.25(dd,J=4.8,12.8Hz,1H),2.89–2.80(m,1H),2.68–2.60(m,1H),2.45–2.31(m,1H),2.18–2.09(m,1H).
实施例7:WX007
Figure PCTCN2019104989-appb-000059
Figure PCTCN2019104989-appb-000060
步骤1:中间体WX007–2的合成
室温和氮气保护下,将WX007–1(20g,135.89mmol)溶于四氢呋喃(300mL)中,降温至0℃,分批加入钠氢(6.79g,169.87mmol,纯度:60%),反应混合物升温至15℃并搅拌反应1小时,降温至5℃,缓慢滴加苯磺酰氯(30.00g,169.87mmol,21.74mL),反应混合物恢复至15℃并搅拌反应1小时。反应完毕后,将反应液倒入饱和氯化铵溶液(200mL)中,用乙酸乙酯萃取(100mL×3)。合并有机相,用无水硫酸钠干燥,过滤,减压浓缩除去溶剂,所得残余物用50mL甲醇室温搅拌30分钟后过滤,收集固体,减压浓缩得到中间体WX007–2。 1H NMR(400MHz,CDCl 3)δ:7.90(d,J=8.8Hz,1H),7.87–7.83(m,2H),7.58–7.49(m,2H),7.47–7.38(m,2H),6.98(d,J=2.4Hz,1H),6.94(dd,J=2.6,9.0Hz,1H),6.60(d,J=3.6Hz,1H),3.82(s,3H).
步骤2:中间体WX007–3的合成
室温下,将中间体WX007–2(5g,17.40mmol)溶于二氯甲烷(100mL)中,降温至-30℃,滴加三溴化硼(5.67g,22.62mmol,2.18mL)的二氯甲烷溶液(20mL),反应混合物恢复至15℃并搅拌反应3小时。反应完毕后,将反应液倒入300mL冰水中,用二氯甲烷萃取(200mL×3)。合并有机相,用无水硫酸钠干燥,过滤,减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–7/3,体积比),得到中间体WX007–3。 1H NMR(400MHz,CDCl 3)δ:7.90–7.79(m,3H),7.58–7.49(m,2H),7.43(t,J=7.6Hz,2H),6.93(d,J=2.4Hz,1H),6.85(dd,J=2.4,8.8Hz,1H),6.56(d,J=3.6Hz,1H),4.81(s,1H).
步骤3:中间体WX007–4的合成
0℃和氮气保护下,将中间体WX007–3(3.2g,11.71mmol)溶于甲苯(150mL)中,避光下依次加入叔丁胺(85.64mg,1.17mmol,123.04μL),N–碘代丁二酰亚胺(2.63g,11.71mmol),反应混合物在0℃下搅拌反应1小时。反应完毕后,向反应液加水(200mL),用乙酸乙酯萃取(200mL×3)。合并有机相,用无水硫酸钠干燥,过滤,减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–5/1,体积比),得到中间体WX007–4。
步骤4:中间体WX007–5的合成
室温下,将中间体WX007–4(2.5g,6.26mmol)溶于乙腈(40mL)中,之后加入碳酸钾(2.60g,18.79mmol),4–溴巴豆酸乙酯(3.45g,12.52mmol,2.47mL),反应混合物加热至35℃并搅拌反应18小时。反应完毕后,反应液直接过滤,滤饼用乙酸乙酯洗涤(20mL×2),收集母液,减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–5/1,体积比),得到中间体WX007–5。 1H NMR(400MHz,CDCl 3)δ:7.88(d,J=8.8Hz,1H),7.85–7.80(m,2H),7.60(d,J=3.6Hz,1H),7.57–7.50(m,1H),7.47–7.38(m,2H),7.06(td,J=4.0,15.6Hz,1H),6.81(d,J=9.2Hz,1H),6.61(d,J=4.0Hz,1H),6.34(td,J=2.4,15.8Hz,1H),4.73(dd,J=2.0,4.0Hz,2H),4.20(q,J=6.8Hz,2H),1.29(t,J=7.2Hz,3H).
步骤5:中间体WX007–6的合成
室温和氮气保护下,将中间体WX007–5(2.1g,4.11mmol)溶于N,N–二甲基甲酰胺(35mL)中,之后依次加入碳酸钠(1.09g,10.27mmol),甲酸钠(279.31mg,4.11mmol),醋酸钯(46.10mg,205.35μmol),四丁基氯化铵(1.26g,4.52mmol),反应混合物升温至80℃并搅拌反应8小时。反应完毕后,冷却至室温,加入水(100mL),用乙酸乙酯萃取(50mL×3)。合并有机相,依次用半饱和食盐水洗涤(50mL×2),无水硫酸钠干燥,过滤,减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–5/1,体积比),得到中间体WX007–6。 1H NMR(400MHz,CDCl 3)δ:7.98(d,J=9.2Hz,1H),7.90–7.86(m,2H),7.71–7.67(m,2H),7.56–7.50(m,1H),7.48–7.39(m,3H),6.96(d,J=4.0Hz,1H),4.18(q,J=7.2Hz,2H),3.83(d,J=0.8Hz,2H),1.22(t,J=7.2Hz,3H).
步骤6:中间体WX007–7的合成
室温下,将中间体WX007–6(1.2g,3.13mmol)溶于四氢呋喃(20mL)和甲醇(100mL)的混合溶液中,之后加入氯化铵(58.60mg,1.10mmol)和镁屑(2.66g,109.54mmol),反应混合物加热至80℃并搅拌反应3小时。反应完毕后,冷却至室温,减压浓缩除去溶剂,所得残余物加饱和氯化铵水溶液(100mL)和乙酸乙酯(100mL)稀释,分液后收集有机相,水相用乙酸乙酯萃取(50mL×2)。合并有机相,用无水硫酸钠干燥,过滤,减压浓缩得到残余物。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–5/1,体积比),得到中间体WX007–7。 1H NMR(400MHz,CDCl 3)δ:8.37(s,1H),7.68(s,1H),7.35(d,J=8.8Hz,1H),7.30(d,J=9.2Hz,1H),7.26(d,J=3.2Hz,1H),6.80–6.77(m,1H),3.95(s,2H),3.74(s,3H).
步骤7:化合物WX007的合成
室温下,将中间体WX007–7(210mg,916.11μmol)溶于N,N–二甲基甲酰胺(10mL)中,之后依次加入丙烯酰胺(65.11mg,916.11μmol)和叔丁醇钾(102.80mg,916.11μmol),反应混合物在15℃下搅拌反应2小时,补加叔丁醇钾(50mg),继续搅拌反应1小时。反应完毕后,向反应液加水(20mL),用乙酸乙酯萃取(20mL×3)。合并有机相,用无水硫酸钠干燥,过滤,减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1–1/1,体积比),所得粗品经过制备HPLC分离(流动相:乙腈/水;酸性体系: 0.05%HCl),得到目标化合物WX007。MS–ESI m/z:269.0[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.30(s,1H),10.97(s,1H),7.81(s,1H),7.39(t,J=2.8Hz,1H),7.33(q,J=8.8Hz,2H),6.48(s,1H),4.29(dd,J=5.2,12.0Hz,1H),2.89–2.79(m,1H),2.69–2.56(m,1H),2.36–2.24(m,1H),2.20–2.11(m,1H).
实施例8:WX008的盐酸盐
Figure PCTCN2019104989-appb-000061
步骤1:中间体WX008–2的合成
室温和氮气保护下,将WX008–1(12.5g,71.76mmol)溶于N,N–二甲基甲酰胺(125mL)中,之后分批加入N–溴代丁二酰亚胺(13.28g,74.63mmol),反应混合物在15℃下搅拌反应0.5小时。反应完毕后,两批次合并处理,将反应液缓慢倒入冰水(500mL)中,过滤,滤饼减压浓缩除去溶剂,得到中间体WX008–2()。 1H NMR(400MHz,CDCl 3)δ:8.04(s,1H),7.95(d,J=8.8Hz,1H),7.62(d,J=8.8Hz,1H),7.27–7.23(m,1H),7.22–7.20(m,1H),7.10(d,J=2.8Hz,1H),3.91(s,3H).
步骤2:中间体WX008–3的合成
室温和氮气保护下,将中间体WX008–2(15g,59.27mmol)溶于乙腈(350mL)中,随后依次加入4–溴巴豆酸乙酯(16.78g,65.19mmol,11.99mL)和碳酸钾(16.38g,118.53mmol),反应混合物在15℃下搅拌反应12小时。反应完毕后,两批次合并处理,将反应液过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–30/1,体积比),得到中间体WX008–3。
步骤3:中间体WX008–4的合成
室温和氮气保护下,将中间体WX008–3(3.6g,9.86mmol)溶于N,N–二甲基甲酰胺(45mL)中,随后依次加入醋酸钯(110.65mg,492.86μmol),四丁基氯化铵(3.01g,10.84mmol),甲酸钠(670.38mg,9.86μmol) 和碳酸钠(2.61g,24.64mmol),反应混合物加热至80℃并搅拌反应2小时。反应完毕后,冷却至室温,将反应液缓慢倒入水(50mL)中,用乙酸乙酯萃取(50mL×3),合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–30/1,体积比),得到中间体WX008–4。
步骤4:中间体WX008–5的合成
室温和氮气保护下,将中间体WX008–4(0.5g,1.76mmol)溶于二氯甲烷(6mL)中,随后在–40℃下滴加三溴化硼(881.17mg,3.52mmol,338.91μL),反应混合物恢复至20℃并搅拌反应1小时。反应完毕后,将反应液倒入冰水(50mL)中,用乙酸乙酯萃取(50mL×5),合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1–15/1,体积比),得到中间体WX008–5。 1H NMR(400MHz,CDCl 3)δ:8.14(d,J=9.2Hz,1H),7.74(s,1H),7.59(q,J=8.8Hz,2H),7.31(d,J=2.8Hz,1H),7.19(dd,J=2.6,9.0Hz,1H),5.22(s,1H),4.22(q,J=7.2Hz,2H),4.04(s,2H),1.28(t,J=7.2Hz,3H).
步骤5:中间体WX008–6的合成
室温和氮气保护下,将中间体WX008–5(0.2g,739.98μmol),2–(二甲基氨基)乙醇(131.92mg,1.48mmol)和三苯基膦(388.17mg,1.48mmol)溶于四氢呋喃(6mL)中,降温至0℃,滴加偶氮二甲酸二异丙酯(299.26mg,1.48mmol)的四氢呋喃(0.2mL)溶液,反应混合物加热至50℃并搅拌反应6小时。反应完毕后,冷却至室温,减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=4/1–1/1,体积比),得到中间体WX008–6。
步骤6:化合物WX008的合成
室温下,将中间体WX008–6(130mg,380.79μmol)溶于四氢呋喃(2.5mL)中,之后依次加入丙烯酰胺(27.07mg,380.79μmol)和叔丁醇钾(380.79μL,1M)的四氢呋喃溶液,反应混合物在15℃下搅拌反应1小时。反应完毕后,加入2M盐酸调节pH=5–6,滤液减压浓缩除去溶剂,所得残余物经过2次制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3)和(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX008的盐酸盐。MS–ESI m/z:367.1[M+H] +. 1H NMR(400MHz,MeOD_d 4)δ:8.10(d,J=8.8Hz,1H),7.81(s,1H),7.74(d,J=9.2Hz,1H),7.66(d,J=9.2Hz,1H),7.53(d,J=2.4Hz,1H),7.35(dd,J=2.4,9.2Hz,1H),4.58(dd,J=5.4,10.6Hz,1H),4.49(t,J=4.8Hz,2H),3.67(t,J=4.8Hz,2H),3.02(s,6H),2.93–2.83(m,1H),2.78–2.70(m,1H),2.52–2.37(m,2H).
实施例9:WX009
Figure PCTCN2019104989-appb-000062
步骤1:中间体WX009–2的合成
室温和氮气保护下,将化合物WX009–1(2.5g,11.01mmol)溶于四氢呋喃(50mL)中,叔丁醇钾(1.85g,16.52mmol)分批加入到上述溶液中,随后碘甲烷(17.19g,121.11mmol,7.54mL)滴加到上述反应液中,反应混合物在20℃下搅拌反应2小时。反应完毕后,向反应液加入乙酸乙酯(100mL),去离子水(100mL),有机相分离,用饱和食盐水洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5:1,体积比),得到中间体WX009–2。MS–ESI m/z:240.8[M+H] + ,242.8[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:7.94(s,1H),7.31(d,J=8.8Hz,1H),7.16(d,J=8.8Hz,1H),4.06(s,3H),3.96(s,3H).
步骤2:中间体WX009–3的合成
室温和氮气保护下,将中间体WX009–2(1.2g,4.98mmol)溶于二氯甲烷(100mL)中,加入三溴化硼(3.74g,14.93mmol,1.44mL),反应混合物在20℃下搅拌反应12小时。反应完毕后,向反应液中加入水(20mL),用二氯甲烷(100mL)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到中间体WX009–3。MS–ESI m/z:226.9[M+H] + ,228.9[M+H+2] +.
步骤3:中间体WX009–4的合成
室温和氮气保护下,将中间体WX009–3(0.15g,660.63μmol),4–溴巴豆酸乙酯(191.29mg,990.94μmol),碳酸钾(136.96mg,990.94μmol)加入N,N–二甲基甲酰胺(20mL)中,反应混合物在室温下搅拌反应12小时。反应完毕后,向反应液中加入水(50mL),用乙酸乙酯(100mL)萃取。分离有机相,用饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1:1,体积比),得到中间体WX009–4。 1H NMR(400MHz,CDCl 3)δ:7.96(s,1H),7.29(d, J=9.2Hz,1H),7.14–7.09(m,2H),6.38–6.28(m,1H),4.83–4.76(m,2H),4.24(q,J=14.4Hz,2H),4.07(s,3H),1.32(t,J=6.8Hz,3H).
步骤4:中间体WX009–5的合成
室温和氮气保护下,将中间体WX009–4(0.1g,294.83μmol),醋酸钯(13.24mg,58.97μmol),四丁基氯化铵(98.32mg,353.79μmol),甲酸钠(40.10mg,589.65μmol),碳酸钠(62.50mg,589.65μmol)溶于N,N–二甲基甲酰胺(20mL)中,反应混合物在80℃下搅拌反应2小时。反应完毕后,向反应液中加入水(50mL),用乙酸乙酯(100mL)萃取。分离有机相,用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=3:1,体积比),得到中间体WX009–5。 1H NMR(400MHz,CDCl 3)δ:8.07(s,1H),7.67(s,1H),7.46(d,J=9.6Hz,1H),7.18(d,J=4.0Hz,1H),4.12(q,J=14.0Hz,2H),4.04(s,3H),3.81(d,J=0.8Hz,2H),1.18(t,J=7.2Hz,3H).
步骤5:WX009的合成
氮气保护下,将中间体WX009–5(0.06g,232.31μmol)溶于N,N–二甲基甲酰胺(10mL)中,加入叔丁醇钾(26.07mg,232.31μmol),加入丙烯酰胺(16.51mg,232.31μmol),反应混合物在0–5℃下搅拌反应1小时。反应完毕后,向反应液中加入水(30mL),用乙酸乙酯(50mL)萃取。分离有机相,用饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX009。MS–ESI m/z:284.0[M+H] +. 1HNMR(400MHz,DMSO_d 6)δ:10.98(s,1H),8.07(s,1H),7.99(s,1H),7.68(d,J=8.8Hz,1H),7.57(d,J=9.2Hz,1H),4.37(dd,J=4.6,12.2Hz,1H),4.11(s,3H),2.85–2.75(m,1H),2.65–2.50(m,1H),2.35–2.31(m,1H),2.24–2.15(m,1H).
实施例10:WX010
Figure PCTCN2019104989-appb-000063
Figure PCTCN2019104989-appb-000064
步骤1:中间体WX010–2的合成
室温和氮气保护下,将亚磷酸三苯酯(96.85g,312.13mmol,82.07mL)溶于二氯甲烷(1000mL)中,冷却至–78℃,然后逐滴滴加液溴(54.41g,340.50mmol,17.55mL),再逐滴加入三乙胺(368.88mmol,51.34mL)。反应混合物搅拌反应30分钟,随后加入化合物WX010–1(50g,283.75mmol),反应混合物恢复至室温并搅拌反应12小时。反应完毕后,将反应液倒入饱和亚硫酸钠水溶液(1500mL)中,用二氯甲烷萃取(1000mL×3)。合并有机相,依次用饱和食盐水洗涤(1000mL×3),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0,体积比),得到中间体WX010–2。 1H NMR(400MHz,CDCl 3)δ:7.48(d,J=8.8Hz,1H),6.75(dd,J=2.2,8.6Hz,1H),6.67(d,J=2.4Hz,1H),6.30(t,J=4.8Hz,1H),3.82(s,3H),2.82(t,J=7.8Hz,2H),2.41–2.28(m,2H).
步骤2:中间体WX010–3的合成
室温和氮气保护下,将中间体WX010–2(119.5g,499.77mmol)溶于甲苯(5mL)中,冷却至0℃,然后加入2,3–二氯–5,6–二氰对苯醌(124.67g,549.19mmol),反应混合物在室温下搅拌反应12小时。反应完毕后,将反应液倒入饱和亚硫酸水溶液(1000mL)中,用乙酸乙酯萃取(500mL×3)。合并有机相,依次用饱和碳酸氢钠水溶液(500mL×3),饱和食盐水(500mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0,体积比),得到中间体WX010–3。 1H NMR(399MHz,CDCl 3)δ:8.13(d,J=9.2Hz,1H),7.68(d,J=8.4Hz,1H),7.60(dd,J=1.0,7.4Hz,1H),7.25(d,J=2.4Hz,1H),7.23(dd,J=2.8,6.4Hz,1H),7.11(d,J=2.8Hz,1H),3.92(s,3H).
步骤3:中间体WX010–4的合成
室温和氮气保护下,将中间体WX010–3(24g,101.23mmol)溶于二氯甲烷(350mL)中,冷却至0℃,逐滴滴加三溴化硼(30.43g,121.47mmol,11.70mL),反应混合物恢复至室温并搅拌反应3小时。反应完毕后,将反应液倒入冰水(1000mL)中淬灭,用二氯甲烷萃取(500mL×3)。合并有机相,依次用饱和食盐水洗涤(500mL×3),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到中间体WX010–4。 1H NMR (400MHz,CDCl 3)δ:8.17(d,J=9.2Hz,1H),7.64(t,J=8.2Hz,2H),7.27(t,J=7.8Hz,1H),7.21(dd,J=2.6,9.0Hz,1H),7.16(d,J=2.4Hz,1H).
步骤4:中间体WX010–5的合成
室温和氮气保护下,将中间体WX010–4(6.5g,29.14mmol)溶于甲烷磺酸(87.75g,913.06mmol,65.00mL)中,之后加入4–氯乙酰乙酸乙酯(7.19g,43.71mmol),反应混合物在室温下搅拌反应12小时。反应完毕后,将反应液倒入冰水(500mL)中,用乙酸乙酯(400mL×3)萃取。合并有机相,用饱和食盐水(400mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到中间体WX010–5。
步骤5:中间体WX010–6的合成
室温和氮气保护下,将中间体WX010–5(9.4g,29.05mmol)溶于氢氧化钠(2M,94.00mL)的水溶液中,反应混合物升温至80℃并搅拌反应2小时。反应完毕后,将反应液中倒入水(500mL)中稀释,然后用甲基叔丁基醚(300mL)萃取。有机相丢弃,水相用12M浓盐酸调节pH值至5,用乙酸乙酯(500mL×3)萃取。合并有机相,用饱和食盐水(300mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到中间体WX010–6。
步骤6:中间体WX010–7的合成
室温和氮气保护下,将中间体WX010–6(8.8g,28.84mmol,)溶于乙醇(63mL)中,再加入浓硫酸(2.57g,25.68mmol,1.40mL,纯度:98%),反应混合物升温至80℃并搅拌反应2小时。反应完毕后,反应液减压浓缩除去溶剂,加入水(300mL),用乙酸乙酯(200mL×3)萃取。合并有机相,用饱和食盐水(200mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所的残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–10/1,体积比),得到中间体WX010–7。 1H NMR(400MHz,CDCl 3)δ:8.22(t,J=8.0Hz,2H),7.81(t,J=3.6Hz,2H),7.74(d,J=9.2Hz,1H),7.41(t,J=8.0Hz,1H),4.22(q,J=7.2Hz,2H),4.06(s,2H),1.26(t,J=7.2Hz,3H).
步骤7:中间体WX010–8的合成
室温和氮气保护下,将中间体WX010–7(0.5g,1.50mmol)溶于水(0.5mL)和1,4–二氧六环(5mL)中,然后依次加入甲氧基-甲基三氟硼酸钾盐(456.11mg,3.00mmol),碳酸铯(1.47g,4.50mmol),2–双环己基膦–2,6–二异丙氧基–1,1–联苯(140.06mg,300.14umol),醋酸钯(33.69mg,150.07umol),反应混合加热至100℃并搅拌反应12小时。反应完毕后,冷却至室温,向反应液中加入水(100mL),用乙酸乙酯萃取(50mL×3)。合并有机相,依次用饱和食盐水洗涤(50mL×3),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=50/0–40/1,体积比),得到中间体WX010–8。 1H NMR(399MHz,CDCl 3)δ:8.23(d,J=8.0Hz,1H),8.05(d,J=9.2Hz,1H),7.77(s,1H),7.71(d,J=9.6Hz,1H), 7.55(t,J=7.4Hz,1H),7.50(d,J=6.0Hz,1H),4.96(s,2H),4.22(q,J=6.8Hz,2H),4.08(s,2H),3.47(s,3H),1.26(t,J=7.0Hz,3H).
步骤8:WX010的合成
室温和氮气保护下,将中间体WX010–8(100mg,335.20μmol)溶在N,N–二甲基甲酰胺(2mL)中,然后依次加入丙烯酰胺(23.83mg,335.20μmol),叔丁醇钾(37.61mg,335.20μmol),反应混合物在室温下搅拌反应1小时。反应完毕后,向反应液中加入水(50mL),用乙酸乙酯萃取(30mL×3)。合并有机相,依次用半饱和食盐水洗涤(30mL),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX010。MS–ESI m/z:341.1[M+H 2O+H] +. 1H NMR(400MHz,CDCl 3)δ:8.21(s,1H),8.10(d,J=9.2Hz,1H),7.99(d,J=8.0Hz,1H),7.73(d,J=9.6Hz,1H),7.67(s,1H),7.62–7.47(m,2H),5.04–4.87(m,2H),4.53(dd,J=6.0,8.0Hz,1H),3.47(s,3H),2.87–2.68(m,2H),2.59–2.39(m,2H).
实施例11:WX011
Figure PCTCN2019104989-appb-000065
步骤1:中间体WX011–1的合成
室温和氮气保护下,将中间体WX010–7(2.8g,8.40mmol)溶于N,N–二甲基甲酰胺(30mL)中,之后依次加入磷酸钾(1.96g,9.24mmol),乙烯基三氟硼酸钾(1.35g,10.08mmol),[1,1–双(二苯基膦)二茂铁]二氯化钯二氯甲烷(686.30mg,840.40μmol),反应混合物升温至80℃并在80℃下搅拌反应12小时。反应完毕后,将反应液倒入水(200mL)中,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–50/1,体积比),得到中间体WX011–1。 1H NMR(400MHz,CDCl 3)δ:8.20(d,J=8.0Hz,1H),8.04(d,J=9.2Hz,1H),7.77(s,1H),7.69(d,J=9.2Hz,1H),7.62(d,J=6.8Hz,1H),7.57(d,J=8.0Hz,1H),7.55–7.47 (m,1H),5.79(dd,J=1.6,17.2Hz,1H),5.52(dd,J=1.2,10.8Hz,1H),4.23(q,J=7.0Hz,2H),4.08(s,2H),1.27(t,J=7.2Hz,3H).
步骤2:中间体WX011–2的合成
室温和氮气保护下,将中间体WX011–1(1g,3.57mmol)溶于N,N–二甲基甲酰胺(10mL)中,然后依次加入丙烯酰胺(253.56mg,3.57mmol),叔丁醇钾(400.30mg,3.57mmol),反应混合物在室温下搅拌反应1小时。反应完毕后,将反应液倒入水(200mL)中,用乙酸乙酯(100mL×3)萃取。合并有机相,依次用饱和食盐水(100mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物中加入甲醇(20mL)中,有固体析出,过滤,收集固体,减压浓缩除去溶剂,得到中间体WX011–2。 1H NMR(400MHz,CDCl 3)δ:8.09(d,J=9.2Hz,2H),7.96(d,J=8.0Hz,1H),7.71(d,J=9.2Hz,1H),7.67(s,1H),7.64(d,J=7.2Hz,1H),7.58(t,J=6.6Hz,1H),7.52(dd,J=9.8,16.2Hz,1H),5.80(dd,J=1.2,17.2Hz,1H),5.54(dd,J=1.2,10.8Hz,1H),4.55(dd,J=5.6,8.4Hz,1H),2.85–2.73(m,2H),2.58–2.44(m,2H).
步骤3:中间体WX011–3的合成
室温和氮气保护下,将中间体WX011–2(0.4g,1.31mmol)溶于四氢呋喃(3mL)和水(1mL)中,降温至0℃,然后加入高碘酸钠(560.43mg,2.62mmol)和二水合锇酸钾(96.54mg,262.01μmol),反应混合物在0℃下搅拌反应1小时。反应完毕后,向反应液中加入水(100mL),用乙酸乙酯萃取(50mL×3)。合并有机相,依次用饱和亚硫酸钠水溶液(50mL×3)和饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=2/1–1/1,体积比),得到中间体WX011–3。MS–ESI m/z:308.0[M+H] +.
步骤4:WX011的合成
室温和氮气保护下,将中间体WX011–3(120mg,390.50μmol)溶于1,2–二氯乙烷(2mL)中,然后加入吗啡啉(34.02mg,390.50μmol),反应混合物在室温下搅拌反应10分钟,加入三乙酰氧基硼氢化钠(165.53mg,781.00μmol),反应混合物在室温下搅拌反应1小时。反应完毕后,向反应液中加入水(50mL),用乙酸乙酯萃取(30mL×3)。合并有机相,依次用饱和食盐水洗涤(30mL×2),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX011。MS–ESI m/z:379.1[M+H] +. 1H NMR(400MHz,CDCl 3)δ:8.35(d,J=9.6Hz,1H),8.04(s,1H),7.96(d,J=8.4Hz,1H),7.72(d,J=9.2Hz,1H),7.67(s,1H),7.52(t,J=7.8Hz,1H),7.46(d,J=7.2Hz,1H),4.54(t,J=6.8Hz,1H),3.95(s,2H),3.70(t,J=4.6Hz,4H),2.87–2.75(m,2H),2.57–2.41(m,6H).
实施例12:WX012
Figure PCTCN2019104989-appb-000066
步骤1:中间体WX012–1的合成
室温和氮气保护下,将中间体WX003–1(20g,137.78mmol)溶于N,N–二甲基甲酰胺(200mL)中,再加入N–碘代丁二酰亚胺(31.00g,137.78mmol),反应混合物在室温下搅拌反应4小时。反应完毕后,向反应液中加入饱和亚硫酸钠水溶液(200mL),加入乙酸乙酯(100mL)稀释,分液收集有机相,水相用乙酸乙酯(100mL×3)萃取。合并有机相,依次用半饱和食盐水洗涤(150mL×3),饱和食盐水(150mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到残余物。向所得残余物中加入二氯甲烷(50mL)室温搅拌0.5小时,过滤,固体减压浓缩除去溶剂,得到中间体WX012–1。
步骤2:中间体WX012–2的合成
20℃和氮气保护下,将中间体WX012–1(17g,62.72mmol)溶于乙腈(170mL)中,随后加入碳酸钾(43.34g,313.59mmol)和4–溴巴豆酸乙酯(15.34g,59.58mmol),反应混合物在20℃下搅拌反应12小时。反应完毕后,向反应液中加入水(300mL),加入乙酸乙酯(200mL)稀释,分液收集有机相,水相用乙酸乙酯(150mL×3)萃取。合并有机相,有机相依次用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/1,体积比),得到中间体WX012–2。 1H NMR(400MHz,DMSO_d 6)δ:8.78(dd,J=1.6,4.2Hz,1H),8.39(d,J=8.0Hz,1H),8.08(d,J=9.2Hz,1H),7.66(d,J=9.2Hz,1H),7.61(dd,J=4.2,8.6Hz,1H),7.09(dt,J=3.6,16.0Hz,1H),6.33(dt,J=2.2,16.0Hz,1H),5.08(dd,J=2.2,3.4Hz,2H),4.16(q,J=7.2Hz,2H),1.23(t,J=7.0Hz,3H).
步骤3:中间体WX012–3的合成
室温和氮气保护下,将中间体WX012–2(7.3g,19.05mmol)溶于N,N–二甲基甲酰胺(80mL)中,随后加 入碳酸钠(5.05g,47.63mmol),四丁基氯化铵(5.82g,20.96mmol),甲酸钠(1.30g,19.05mmol)和醋酸钯(213.86mg,952.55μmol),反应混合物升温至70℃并搅拌反应2小时。反应完毕后,冷却至室温,合并处理。向反应液中加入半饱和食盐水(200mL)和乙酸乙酯(100mL),分液收集有机相,水相用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–7/3,体积比),得到中间体WX012–3。 1H NMR(400MHz,CDCl 3)δ:8.93(dd,J=1.8,4.2Hz,1H),8.60(d,J=8.0Hz,1H),8.03(d,J=9.2Hz,1H),7.89(d,J=9.2Hz,1H),7.83(s,1H),7.50(dd,J=4.4,8.4Hz,1H),4.22(q,J=7.6Hz,2H),4.05(s,2H),1.25(t,J=7.0Hz,3H).
步骤4:中间体WX012–4的合成
室温下,将中间体WX012–3(5.6g,21.94mmol)溶于二氯甲烷(100mL)中,再加入间氯过氧苯甲酸(5.21g,24.13mmol,纯度:80%),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液直接经过柱层析分离(洗脱剂:二氯甲烷/甲醇=1/0–15/1,体积比),得到中间体WX012–4。 1H NMR(400MHz,DMSO_d 6)δ:8.61(d,J=6.0Hz,1H),8.55(d,J=9.6Hz,1H),8.22(s,1H),8.09(d,J=9.6Hz,2H),7.58(dd,J=6.0,8.4Hz,1H),4.18(s,2H),4.13(q,J=7.0Hz,2H),1.17(t,J=7.0Hz,3H).
步骤5:中间体WX012–5的合成
20℃和氮气保护下,将中间体WX012–4(500mg,1.84mmol)溶于四氯化碳(5mL)中,加入N,N–二甲基乙醇胺(164.30mg,1.84mmol)和N,N–二异丙基乙胺(476.43mg,3.69mmol),之后向反应液中滴加亚磷酸二乙酯(509.10mg,3.69mmol)的乙腈(5mL)溶液,反应混合物升温至40℃并搅拌反应12小时。补加N,N–二甲基乙醇胺(82.15mg,921.60μmol)和亚磷酸二乙酯(509.10mg,3.69mmol),反应混合物升温至80℃并搅拌反应12小时。补加亚磷酸二乙酯(509.10mg,3.69mmol),反应混合物升温至80℃并搅拌反应12小时。反应完毕后,反应混合物减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到中间体WX012–5。 1H NMR(400MHz,CHCl 3)δ:8.44(d,J=8.8Hz,1H),7.81–7.72(m,3H),7.04(d,J=9.2Hz,1H),4.74(t,J=5.4Hz,2H),4.21(q,J=7.2Hz,2H),3.99(s,2H),3.07(t,J=5.2Hz,2H),2.58(s,6H),1.25(t,J=7.0Hz,3H).
步骤6:WX012的合成
20℃和氮气保护下,将中间体WX012–5(65mg,189.84μmol)溶于N,N–二甲基甲酰胺(1mL)中,之后依次加入丙烯酰胺(13.49mg,189.84μmol)和叔丁醇钾(1M,189.84μL)的四氢呋喃溶液,反应混合物在20℃下搅拌反应3小时。反应完毕后,向反应液中滴加2N的稀盐酸水溶液调节至pH=6–7,过滤,收集滤液。所得滤液经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),再次经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX012。MS–ESI m/z:368.2[M+H] +. 1H NMR(400 MHz,DMSO_d 6)δ:10.93(s,1H),8.49(d,J=8.8Hz,1H),8.04(s,1H),7.93(d,J=9.2Hz,1H),7.70(d,J=8.8Hz,1H),7.05(d,J=8.8Hz,1H),4.64(dd,J=4.4,12.0Hz,1H),4.57–4.46(m,2H),2.93–2.80(m,1H),2.70(t,J=6.0Hz,2H),2.66–2.58(m,1H),2.45–2.38(m,1H),2.34–2.27(m,1H),2.24(s,6H).
实施例13:WX013
Figure PCTCN2019104989-appb-000067
步骤1:中间体WX013–1的合成
室温和氮气保护下,将中间体WX012–4(500mg,1.84mmol)溶于四氯化碳(5mL)中,加入N–(2–羟乙基)吗啡啉(483.55mg,3.69mmol)和N,N–二异丙基乙胺(952.88mg,7.37mmol),之后向反应中滴加亚磷酸二乙酯(1.02g,7.37mmol)的乙腈(5mL)溶液,反应混合物升温至80℃并搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到中间体WX013–1。 1H NMR(400MHz,CHCl 3)δ:8.44(d,J=9.2Hz,1H),7.87–7.72(m,3H),7.02(d,J=9.2Hz,1H),4.65(t,J=5.8Hz,2H),4.21(q,J=7.2Hz,2H),4.03–3.97(m,2H),3.76(t,J=4.6Hz,4H),2.88(t,J=6.0Hz,2H),2.63(t,J=4.4Hz,4H),1.25(t,J=7.2Hz,3H).
步骤2:WX013的合成
20℃和氮气保护下,将中间体WX013–1(97mg,252.32μmol)溶于N,N–二甲基甲酰胺(2mL)中,之后依次加入丙烯酰胺(17.93mg,252.32μmol)和叔丁醇钾(28.31mg,1M,252.32μL)的四氢呋喃溶液,反应混合物在20℃下搅拌反应3小时。反应完毕后,向反应液中滴加2N的稀盐酸水溶液调节pH至6–7,过滤,收集滤液。所得滤液经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX013。MS–ESI m/z:410.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.50(d,J=9.2Hz,1H),8.05(s,1H),7.93(d,J=8.8Hz,1H),7.70(d,J=9.2Hz,1H),7.06(d,J=9.2Hz,1H),4.64(dd,J=4.6,12.6Hz,1H),4.58–4.52(m,2H),3.57(t,J=4.4Hz,4H),2.91–2.80(m,1H),2.76(t,J=5.6Hz,2H),2.69–2.64(m,1H),2.63–2.58(m,1H),2.57–2.52(m,2H),2.45–2.38(m,1H),2.37–2.31(m,1H),2.30–2.22(m,1H).
实施例14:WX014
Figure PCTCN2019104989-appb-000068
步骤1:中间体WX014–1的合成
室温和氮气保护下,将中间体WX012–4(500mg,1.84mmol)溶于四氯化碳(5mL)中,加入1–羟丙基吡咯烷(476.28mg,3.69mmol)和N,N–二异丙基乙胺(952.86mg,7.37mmol),之后向反应液中滴加亚磷酸二乙酯(1.02g,7.37mmol)的乙腈(5mL)溶液,反应混合物升温至80℃并搅拌反应12小时。反应完毕后,反应液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.225%FA),得到中间体WX014–1。 1H NMR(400MHz,DMSO_d 6)δ:8.45(d,J=8.8Hz,1H),8.16–8.07(m,1H),7.94(d,J=9.2Hz,1H),7.69(d,J=9.2Hz,1H),7.10(d,J=8.8Hz,1H),4.48(t,J=6.2Hz,2H),4.17–4.07(m,4H),3.03–2.87(m,6H),2.15–2.02(m,2H),1.90–1.75(m,4H),1.16(t,J=7.0Hz,3H).
步骤2:WX014的合成
20℃和氮气保护下,将中间体WX014–1(42mg,109.82μmol)溶于N,N–二甲基甲酰胺(2mL)中,之后依次加入丙烯酰胺(7.81mg,109.82μmol)和叔丁醇钾(1M,109.82μL)的四氢呋喃溶液,反应混合物在20℃下搅拌反应3小时。反应完毕后,向反应液中滴加2N的稀盐酸水溶液调节pH至6–7,过滤,收集滤液。所得滤液经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX014。MS–ESI m/z:408.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.49(d,J=8.8Hz,1H),8.04(s,1H),7.93(d,J=9.2Hz,1H),7.70(d,J=8.8Hz,1H),7.05(d,J=8.8Hz,1H),4.64(dd,J=5.0,12.2Hz,1H),4.45(t,J=6.0Hz,2H),2.91–2.80(m,1H),2.69–2.64(m,1H),2.63–2.53(m,4H),2.47–2.44(m,2H),2.43–2.36(m,1H),2.31–2.22(m,1H),2.05–1.92(m,2H),1.72–1.66(m,4H).
实施例15:WX015
Figure PCTCN2019104989-appb-000069
Figure PCTCN2019104989-appb-000070
步骤1:中间体WX015–2的合成
20℃和氮气保护下,将浓硫酸(220.80g,2.21mol,120mL,纯度:98%)滴加到冰水(40mL)中,之后加入化合物WX015–1(10g,44.83mmol),最后在5–10℃下滴加4–氯乙酰乙酸乙酯(7.38g,44.83mmol),反应混合物在20℃下搅拌反应16小时。反应混合物升温至50℃继续搅拌反应16小时。反应完毕后,将反应液冷却至室温,倒入冰水(1000mL)中,有固体析出,过滤,滤液丢弃,收集固体。向固体中加入甲苯(400mL×2),减压浓缩除去溶剂,得到中间体WX015–2。
步骤2:中间体WX015–3的合成
室温和氮气保护下,将中间体WX015–2(14.5g,44.81mmol)溶于氢氧化钠(8.70g,217.52mmol)的水(150mL)溶液中,反应混合物升温至80℃并搅拌反应5小时。反应完毕后,加入二氯甲烷(150mL)稀释,分液后收集有机相,水相用二氯甲烷(150mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。水相用2M稀盐酸调节pH至4,用乙酸乙酯(200mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到中间体WX015–3。
步骤3:中间体WX015–4的合成
室温和氮气保护下,将中间体WX015–3(11.3g,37.03mmol)溶于乙醇(300mL)中,随后再加入浓硫酸(2.08g,20.78mmol,1.13mL,纯度:98%),反应混合物升温至80℃并搅拌反应12小时。反应完毕后,反应液减压浓缩除去溶剂,加入水(150mL),再加入乙酸乙酯(150mL)稀释,分液,收集有机相,水相用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所的残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–32/1,体积比),得到中间体WX015–4。 1H NMR(400MHz,DMSO_d 6)δ:8.35(d,J=2.0Hz,1H),8.09(t,J=4.4Hz,2H),7.86(s,2H),7.73(dd,J=2.0,8.8Hz,1H),4.09–4.18(m,4H),1.18(t,J=7.2Hz,3H).
步骤4:中间体WX015–5的合成
室温和氮气保护下,将中间体WX015–4(5g,15.01mmol)溶于N,N–二甲基甲酰胺(80mL)中,随后依次加入六氰合铁(II)酸钾(1.16g,3.15mmol),碳酸钠(1.59g,15.01mmol),醋酸钯(336.92mg,1.50mmol),反应混合物加热至140℃并搅拌反应8小时。反应完毕后,冷却至室温,向反应液加入水(300mL),用乙酸乙酯萃取(100mL×5)。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–9/1,体积比),得到中间体WX015–5。 1H NMR(400MHz,CDCl 3)δ:8.32(d,J=1.2Hz,1H),8.30(d,J=8.8Hz,1H),7.84(s,1H),7.77(s,2H),7.72(dd,J=1.8,8.6Hz,1H),4.23(q,J=7.0Hz,2H),4.05(s,2H),1.27(t,J=7.2Hz,3H).
步骤5:WX015的合成
20℃下,将中间体WX015–5(1.1g,3.94mmol)溶于N,N–二甲基甲酰胺(20mL)中,之后依次加入丙烯酰胺(279.94mg,3.94mmol)和叔丁醇钾(441.95mg,3.94mmol),反应混合物在20℃下搅拌反应2小时。反应完毕后,向反应液加水(100mL),用乙酸乙酯萃取(30mL×3)。合并有机相,依次用半饱和食盐水洗涤(20mL×2),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经5mL甲醇室温搅拌5分钟,有固体析出,过滤,收集固体,减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX015。MS–ESI m/z:305.0[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.96(s,1H),8.70(d,J=1.2Hz,1H),8.36(d,J=8.4Hz,1H),8.13(s,1H),8.02(d,J=9.2Hz,1H),7.98(d,J=8.8Hz,1H),7.87(dd,J=1.6,8.8Hz,1H),4.72(dd,J=4.2,12.6Hz,1H),2.94–2.80(m,1H),2.71–2.61(m,1H),2.47–2.38(m,1H),2.35–2.24(m,1H).
实施例16:WX016
Figure PCTCN2019104989-appb-000071
步骤1:中间体WX016–1的合成
室温和氮气保护下,将中间体WX015–4(2g,6.00mmol)溶于二氧六环(35mL)中,随后依次加入氨基甲酸叔丁酯(1.05g,9.00mmol),4,5–双二苯基膦–9,9–二甲基氧杂蒽(521.00mg,900.42μmol),碳酸铯(4.89g,15.01mmol)和醋酸钯(202.15mg,900.42μmol),反应混合物缓慢升温至80℃并搅拌反应12小时。反 应完毕后,向反应液中加入水(80mL)和乙酸乙酯(80mL)稀释,分液收集有机相,水相用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液浓缩减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–9/1,体积比),得到中间体WX016–1。
步骤2:WX016的合成
20℃和氮气保护下,将中间体WX016–1(200mg,541.40μmol)溶于四氢呋喃(4mL)中,随后依次加入丙烯酰胺(38.48mg,541.40μmol)和叔丁醇钾(60.75mg,541.40μmol),反应混合物在20℃下搅拌反应4小时。反应完毕后,向反应液中加入水(15mL)和2–甲基四氢呋喃(10mL)稀释,分液收集有机相,水相用2-甲基四氢呋喃(15mL×3)萃取。合并有机相,用饱和食盐水(10mL×2)洗涤,无水硫酸钠干燥过滤,滤液浓缩减压除去溶剂。所得残余物经制备HPLC(流动相:乙腈/水;中性体系:10mM NH 4HCO 3)分离,得到目标化合物WX016。MS–ESI m/z:417.1[M+Na] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),9.54(s,1H),8.24(s,1H),8.06(d,J=9.6Hz,1H),7.96(s,1H),7.71(s,2H),7.55(dd,J=2.0,8.8Hz,1H),4.63(dd,J=4.6,12.2Hz,1H),2.93–2.80(m,1H),2.70–2.55(m,1H),2.45–2.36(m,1H),2.30–2.20(m,1H),1.52(s,9H).
实施例17:WX017的盐酸盐
Figure PCTCN2019104989-appb-000072
步骤1:中间体WX017–1的合成
室温和氮气保护下,将中间体WX015–4(5g,15.01mmol)溶于N,N–二甲基甲酰胺(50mL)中,随后依次加之后加入[1,1–双(二苯基膦)二茂铁]二氯化钯.二氯甲烷(1.23g,1.50mmol),磷酸钾(3.50g,16.51mmol),乙烯基三氟硼酸钾(2.41g,18.01mmol),反应混合物加热至80℃并搅拌反应12小时。反应完毕后,冷却至室温,向反应液中加入水(200mL),用乙酸乙酯萃取(100mL×3)。合并有机相,依次用半饱和食盐水洗涤(100mL×3),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–9/1,体积比),得到中间体WX017–1。 1H NMR(400MHz,CDCl 3)δ:8.19(d,J=8.8Hz, 1H),7.89(d,J=0.8Hz,1H),7.76(s,1H),7.73(dd,J=1.6,6.8Hz,1H),7.01(d,J=5.2Hz,1H),7.64(d,J=8.8Hz,1H),6.91(dd,J=10.8,17.6Hz,1H),5.89(d,J=17.6Hz,1H),5.35(d,J=10.8Hz,1H),4.24(q,J=7.2Hz,2H),4.07(s,2H),1.27(t,J=7.2Hz,3H).
步骤2:中间体WX017–2的合成
室温下,将中间体WX017–1(2g,7.13mmol)溶于N,N–二甲基甲酰胺(30mL)中,之后依次加入丙烯酰胺(506.79mg,7.13mmol)和叔丁醇钾(800.07mg,7.13mmol),反应混合物在室温下搅拌反应2小时。反应完毕后,向反应液中加入水(100mL)稀释,用乙酸乙酯萃取(50mL×3)。合并有机相,依次用半饱和食盐水洗涤(30mL×3),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物用10mL甲醇室温搅拌10分钟,有淡黄色固体析出,过滤,收集固体,减压浓缩,得到中间体WX017–2。 1H NMR(400MHz,DMSO_d 6)δ:10.98(s,1H),8.13(d,J=8.4Hz,1H),8.05(s,1H),8.02(s,1H),7.84(d,J=9.2Hz,1H),7.81–7.75(m,2H),6.92(dd,J=11.0,17.8Hz,1H),5.98(d,J=17.6Hz,1H),5.35(d,J=11.2Hz,1H),4.67(dd,J=4.4,12.0Hz,1H),2.96–2.82(m,1H),2.69–2.59(m,1H),2.44–2.35(m,1H),2.33–2.20(m,1H).
步骤3:中间体WX017–3的合成
室温和氮气保护下,将中间体WX017–2(400mg,1.31mmol)溶于四氢呋喃(6mL)和水(2mL),降温至0℃,加入高碘酸钠(560.43mg,2.62mmol)和二水合锇酸钾(96.54mg,262.01μmol),反应混合物缓慢恢复至室温并搅拌反应1小时。反应完毕后,向反应液中加入水(20mL)和N,N–二甲基甲酰胺(1mL)稀释,用乙酸乙酯萃取(20mL×3)。合并有机相,依次用饱和亚硫酸钠溶液洗涤(20mL×3),无水硫酸钠干燥,过滤,滤液减压浓缩。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=4/1–1/1,体积比),所得粗品用1mL甲醇室温搅拌5分钟,过滤,收集固体,减压浓缩,得到中间体WX017–3。 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),10.17(s,1H),8.71(s,1H),8.37(d,J=8.8Hz,1H),8.14–8.08(m,2H),8.00–7.97(m,2H),4.73(dd,J=4.4,12.0Hz,1H),2.69–2.62(m,1H),2.47–2.38(m,1H),2.37–2.25(m,2H).
步骤4:WX017的合成
室温下,将中间体WX017–3(60mg,195.25μmol)溶于1,2–二氯乙烷(1mL)中,之后加入吗啡啉(17.01mg,195.25μmol),反应混合物在室温下搅拌10分钟后加入醋酸硼氢化钠(82.76mg,390.50μmol),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX017的盐酸盐。MS–ESI m/z:379.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.38(s,1H),10.95(s,1H),8.31–8.21(m,2H),8.06(s,1H),7.91–7.85(m,3H),4.71(dd,J=4.4,12.4Hz,1H),4.51(s,2H),3.93(d,J=12.0Hz,2H),3.81(t,J=12.0Hz,2H),3.31–3.22(m,2H),3.22–3.07(m,2H),2.96–2.83(m,1H),2.69–2.58(m,1H),2.46–2.37(m,1H),2.33–2.21(m,1H).
实施例18:WX018
Figure PCTCN2019104989-appb-000073
步骤1:中间体WX018–1的合成
室温下,将中间体WX015–4(5g,15.01mmol)溶于N,N–二甲基甲酰胺(50mL)中,之后依次加磷酸钾(3.19g,15.01mmol),[1,1–双(二苯基膦)二茂铁]二氯化钯.二氯甲烷(1.23g,1.50mmol),(E)–1–乙氧乙烯基–2–硼酸嚬哪醇酯(3.86g,19.51mmol),反应混合物加热至80℃并搅拌反应12小时。反应完毕后,冷却至室温,向反应液中加入水(100mL),用乙酸乙酯萃取(100mL×3)。合并有机相,依次用半饱和食盐水洗涤(50mL×3),无水硫酸钠干燥,过滤,滤液减压浓缩得到残余物。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–19/1,体积比),得到中间体WX018–1。MS–ESI m/z:325.2[M+H] +.
步骤2:中间体WX018–2的合成
0℃下,将中间体WX018–1(200mg,616.58μmol)溶于氯仿(2mL)中,之后依次加入乙醇(28.40mg,616.58μmol,36.05μL),水(616.58μmol,11.11μL)和草酰氯(78.26mg,616.58μmol,53.97μL),反应混合物恢复至室温并搅拌反应1小时。反应完毕后,向反应液中加入水(10mL),用饱和碳酸氢钠调节pH至6–7,用二氯甲烷萃取(5mL×3)。合并有机相,用无水硫酸钠干燥,过滤,得到中间体WX018–2的二氯甲烷溶液。
步骤3:中间体WX018–3的合成
室温和氮气保护下,向中间体WX018–2(0.04M,15mL)的二氯甲烷溶液中加入吗啡啉(78.41mg,900.00μmol),反应混合物在室温下搅拌反应10分钟后,加入醋酸硼氢化钠(254.33mg,1.20mmol),反应混合物在室温下继续搅拌反应4小时。反应完毕后,反应液直接减压浓缩除去溶剂。所得残余物经过柱层析分离 (洗脱剂:石油醚/乙酸乙酯=7/3–3/7,体积比),得到中间体WX018–3。 1H NMR(400MHz,CDCl 3)δ:8.17(d,J=8.4Hz,1H),7.76(d,J=6.0Hz,2H),7.68(d,J=9.2Hz,1H),7.63(d,J=8.8Hz,1H),7.45(dd,J=1.8,8.6Hz,1H),4.23(q,J=7.2Hz,2H),4.06(s,2H),3.79(t,J=4.6Hz,4H),3.08–2.95(m,2H),2.81–2.70(m,2H),2.67–2.55(m,4H),1.27(t,J=7.0Hz,3H).
步骤4:WX018的合成
室温和氮气保护下,将中间体WX018–3(100mg,272.16μmol)溶于N,N–二甲基甲酰胺(2mL)中,随后依次加入丙烯酰胺(19.34mg,272.16μmol)和叔丁醇钾(30.54mg,272.16μmol),反应混合物在室温下搅拌反应1小时。反应完毕后,向反应液中滴加2M稀盐酸调节pH至6–7,过滤,收集滤液。所得滤液经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX018。MS–ESI m/z:393.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.96(s,1H),8.08(d,J=8.4Hz,1H),7.99(s,1H),7.87(s,1H),7.78(d,J=9.2Hz,1H),7.74(d,J=8.8Hz,1H),7.48(dd,J=1.4,8.6Hz,1H),4.65(dd,J=4.2,11.8Hz,1H),3.58(t,J=4.4Hz,4H),2.92(t,J=5.8Hz,2H),2.89–2.82(m,1H),2.69–2.64(m,1H),2.63–2.55(m,2H),2.48–2.42(m,4H),2.41–2.22(m,2H).
实施例19:WX019
Figure PCTCN2019104989-appb-000074
步骤1:中间体WX019–1的合成
19℃下,将浓硫酸(110.40g,1.10mol,60mL,纯度:98%)滴加到冰水(20mL)中,之后加入化合物WX008–1(5g,28.70mmol),最后在5–10℃下,滴加4–氯乙酰乙酸乙酯(5.20g,31.57mmol),反应混合物恢复至19℃并搅拌反应12小时。反应完毕后,将反应液倒入冰水(200mL)中,有淡黄色固体析出,过滤,收集固体,所得固体用2–甲基四氢呋喃(500mL)和水(200mL)稀释,分液后收集有机相,水相用 2-甲基四氢呋喃萃取(300mL×4)。合并有机相,减压浓缩除去溶剂。所得残余物经过50mL甲基叔丁基醚室温搅拌15分钟,过滤,收集固体,减压浓缩除去溶剂,得到中间体WX019–1。
步骤2:中间体WX019–2的合成
室温下,将氢氧化钠(1.60g,40.04mmol)溶于水(20mL)中,随后加入中间体WX019–1(1g,3.64mmol),反应混合物加热至80℃并搅拌反应12小时。反应完毕后,冷却至室温,加入水(100mL),用乙酸乙酯萃取(50mL),除去有机相,水相用浓盐酸(12M)调节pH至5–6,有固体析出,用乙酸乙酯萃取(50mL×3)。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到中间体WX019–2。
步骤3:中间体WX008–4的合成
室温下,将中间体WX019–2(0.9g,3.51mmol)溶于乙醇(10mL)中,之后加入浓硫酸(368.00mg,3.68mmol,0.2mL,纯度:98%),反应混合物加热至80℃并搅拌反应3小时。反应完毕后,反应液直接减压浓缩除去大部分乙醇,所得残余物经乙酸乙酯(30mL)和水(50mL)稀释,分液后收集有机相,水相用乙酸乙酯萃取(30mL×2)。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–9/1,体积比),得到中间体WX008–4。 1H NMR(400MHz,CDCl 3)δ:8.04(d,J=9.2Hz,1H),7.64(s,1H),7.56–7.49(m,2H),7.20(d,J=2.8Hz,1H),7.15(dd,J=2.4,9.2Hz,1H),4.12(q,J=7.0Hz,2H),3.94(s,2H),3.84(s,3H),1.16(t,J=7.0Hz,3H).
步骤4:WX019的合成
15℃下,将中间体WX008–4(200mg,703.47μmol)溶于四氢呋喃(10mL)中,之后依次加入丙烯酰胺(50.00mg,703.47μmol),叔丁醇钾(78.94mg,703.47μmol),反应混合物在15℃下搅拌反应3小时。反应完毕后,向反应液加入水(50mL),用乙酸乙酯萃取(20mL×3)。合并有机相,用无水硫酸钠干燥,过滤,减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),再次经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX019。MS–ESI m/z:310.0[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.08(d,J=8.8Hz,1H),7.96(s,1H),7.85–7.70(m,2H),7.50(d,J=1.6Hz,1H),7.23(dd,J=2.4,9.2Hz,1H),4.63(dd,J=4.0,12.0Hz,1H),3.89(s,3H),3.01–2.82(m,1H),2.70–2.56(m,2H),2.33–2.19(m,1H).
实施例20:WX020的盐酸盐
Figure PCTCN2019104989-appb-000075
Figure PCTCN2019104989-appb-000076
步骤1:中间体WX008–5的合成
15℃和氮气保护下,将中间体WX008–4(5g,17.59mmol)溶于二氯甲烷(50mL)中,降温至–60℃,加入三溴化硼(11.88g,47.43mmol,4.57mL),反应混合物恢复至15℃并搅拌反应2小时。反应完毕后,将反应液倒入冰水(200mL)中,用二氯甲烷萃取(50mL×3)。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–4/1,体积比),得到中间体WX008–5。 1H NMR(400MHz,CDCl 3)δ:8.14(d,J=9.2Hz,1H),7.75(s,1H),7.59(q,J=8.8Hz,2H),7.36–7.25(m,1H),7.19(dd,J=2.0,8.8Hz,1H),4.25(q,J=7.2Hz,2H),4.06(s,2H),1.28(t,J=7.0Hz,3H).
步骤2:中间体WX020–1的合成
0℃和氮气保护下,将中间体WX008–5(0.5g,1.85mmol)溶于四氢呋喃(15mL)中,之后依次加入三苯基膦(630.79mg,2.40mmol),2–吗啉乙醇(266.93mg,2.03mmol),降温至0℃,滴加偶氮二甲酸二异丙酯(486.30mg,2.40mmol,467.59μL),反应混合物恢复至室温并搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=4/1–0/1,体积比),得到中间体WX020–1。MS–ESI m/z:384.2[M+H] +.
步骤3:WX020的合成
20℃下,将中间体WX020–1(500mg,678.08μmol,纯度:52%)溶于四氢呋喃(20mL)中,之后依次加入丙烯酰胺(92.6mg,1.30mmol)和叔丁醇钾(1M,1.30mL)的四氢呋喃溶液,反应混合在20℃下搅拌反应2小时。反应完毕后,向反应液滴加4M盐酸乙酸乙酯调节pH至5–6,直接减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),再次经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX020的盐酸盐。MS–ESI m/z:409.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.26(s,1H),10.95(s,1H),8.12(d,J=8.4Hz,1H),7.99(s,1H),7.78(s,2H),7.60(d,J=2.4Hz,1H),7.30(dd,J=2.4,9.2Hz,1H),4.64(dd,J=4.2,12.2Hz,1H),4.57(t,J=4.6Hz,2H),3.97(d,J=11.6Hz,2H),3.84(t,J=11.8Hz,2H),3.62(s,2H),3.53(d,J=12.0Hz,2H),3.31–3.16(m,2H),2.94–2.81(m,1H),2.70–2.58(m,1H),2.45–2.35(m,1H),2.34–2.20(m,1H).
实施例21:WX021的盐酸盐
Figure PCTCN2019104989-appb-000077
步骤1:中间体WX021–1的合成
0℃和氮气保护下,将中间体WX008–5(0.5g,1.85mmol)溶于四氢呋喃(15mL)中,之后依次加入三苯基膦(630.79mg,2.40mmol),N–(2–羟乙基)–吡咯烷(234.38mg,2.04mmol),降温至0℃,滴加偶氮二甲酸二异丙酯(486.30mg,2.40mmol,467.59μL),反应混合物恢复至室温并搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=4/1–0/1,体积比),得到中间体WX021–1。 1H NMR(400MHz,CDCl 3)δ:8.15(d,J=8.8Hz,1H),7.75(s,1H),7.63(s,2H),7.34(d,J=2.8Hz,1H),7.30(dd,J=2.4,8.8Hz,1H),4.27(t,J=6.0Hz,2H),4.23(q,J=7.2Hz,2H),4.06(s,2H),3.01(t,J=6.0Hz,2H),2.81–2.62(m,4H),1.89–1.84(m,4H),1.28(t,J=7.0Hz,3H).
步骤2:WX021的合成
20℃下,将中间体WX021–1(250mg,680.39μmol)溶于四氢呋喃(10mL)中,之后依次加入丙烯酰胺(48.36mg,680.39μmol)和叔丁醇钾(1M,680.39μL)的四氢呋喃溶液,反应混合物在20℃下搅拌反应2小时。反应完毕后,向反应液滴加入4M盐酸乙酸乙酯调节pH至5–6,减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),所得残余物再次经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX021的盐酸盐。MS–ESI m/z:393.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),10.76(s,1H),8.12(d,J=8.8Hz,1H),7.99(s,1H),7.78(s,2H),7.59(d,J=2.4Hz,1H),7.30(dd,J=2.8,9.2Hz,1H),4.64(dd,J=4.4,12.0Hz,1H),4.49(t,J=4.8Hz,2H),3.70–3.56(m,4H),3.21–3.08(m,2H),2.95–2.81(m,1H),2.70–2.58(m,1H),2.45–2.31(m,1H),2.30–2.21(m,1H),2.10–1.83(m,4H).
实施例22:WX022的盐酸盐
Figure PCTCN2019104989-appb-000078
Figure PCTCN2019104989-appb-000079
步骤1:中间体WX022–1的合成
0℃和氮气保护下,将中间体WX008–5(0.5g,1.85mmol)溶于四氢呋喃(15mL)中,之后依次加入三苯基膦(630.79mg,2.40mmol),1–羟乙基–4–甲基哌嗪(293.48mg,2.04mmol),降温至0℃,滴加偶氮二甲酸二异丙酯(486.30mg,2.40mmol,467.59μL),反应混合物缓慢恢复至室温并搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/1–0/1至甲醇/二氯甲烷=1/9,体积比),得到中间体WX022–1。 1H NMR(400MHz,CDCl 3)δ:8.12(d,J=9.2Hz,1H),7.72(s,1H),7.60(s,2H),7.30(d,J=2.4Hz,1H),7.25(dd,J=2.6,9.0Hz,1H),4.24(t,J=6.0Hz,2H),4.20(q,J=7.2Hz,2H),4.03(s,2H),2.89(t,J=5.8Hz,2H),2.78–2.40(m,8H),2.31(s,3H),1.25(t,J=7.2Hz,3H).
步骤2:WX022的合成
室温下,将中间体WX022–1(400mg,1.01mmol)溶于四氢呋喃(20mL)中,之后依次加入丙烯酰胺(71.71mg,1.01mmol)和叔丁醇钾(113.21mg,1.01mmol),反应混合物在室温下搅拌反应2小时。反应完毕后,向反应液滴加4M盐酸乙酸乙酯调pH至5–6,减压浓缩得到残余物。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),再次经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX022的盐酸盐。MS–ESI m/z:422.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.91(s,1H),10.95(s,1H),8.11(d,J=8.8Hz,1H),7.98(s,1H),7.78(s,2H),7.59(d,J=2.4Hz,1H),7.32(dd,J=2.8,9.2Hz,1H),4.64(dd,J=4.4,12.0Hz,1H),4.57(t,J=4.0Hz,2H),3.85–3.58(m,10H),2.95–2.86(m,1H),2.84(s,3H),2.68–2.58(m,1H),2.46–2.32(m,1H),2.31–2.20(m,1H).
实施例23:WX023的盐酸盐
Figure PCTCN2019104989-appb-000080
步骤1:中间体WX023–1的合成
室温和氮气保护下,将中间体WX008–5(0.5g,1.85mmol)溶于四氢呋喃(20mL)中,之后依次加入3–二甲氨基–1–丙醇(209.94mg,2.04mmol)和三苯基膦(630.81mg,2.40mmol),降温至0℃滴加偶氮二甲酸二异丙酯(486.32mg,2.40mmol,467.61μL),反应混合物缓慢恢复至室温搅拌反应12小时。反应完毕后,反应液直接减压浓缩,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/1–0/1,然后甲醇/二氯甲烷=1/9,体积比),得到中间体WX023–1。 1H NMR(400MHz,CDCl 3)δ:8.13(d,J=8.8Hz,1H),7.73(s,1H),7.61(s,2H),7.32(d,J=2.8Hz,1H),7.25(dd,J=2.4,9.2Hz,1H),4.22(d,J=7.2Hz,2H),4.16(t,J=6.6Hz,2H),4.04(s,2H),2.54(t,J=7.2Hz,2H),2.30(s,6H),2.10–2.00(m,2H),1.26(t,J=7.2Hz,3H).
步骤2:WX023的合成
室温和氮气保护下,将中间体WX023–1(200mg,562.70μmol)溶于干燥四氢呋喃(10mL)中,依次加入丙烯酰胺(40.00mg,562.70μmol)和叔丁醇钾(63.14mg,562.70μmol),反应混合物在室温下搅拌反应2小时。反应完毕后,向反应液滴加4M盐酸乙酸乙酯调节pH至5–6,减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),再次经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX023的盐酸盐。MS–ESI m/z:381.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),10.33(s,1H),8.10(d,J=8.8Hz,1H),7.97(s,1H),7.76(s,2H),7.52(d,J=2.4Hz,1H),7.23(dd,J=2.4,9.2Hz,1H),4.64(dd,J=4.0,11.6Hz,1H),4.20(t,J=5.8Hz,2H),3.31–3.22(m,2H),2.95–2.83(m,1H),2.81(s,3H),2.79(s,3H),2.70–2.58(m,1H),2.45–2.32(m,1H),2.31–2.16(m,3H).
实施例24:WX024的盐酸盐
Figure PCTCN2019104989-appb-000081
步骤1:中间体WX024–1的合成
室温和氮气保护下,将中间体WX008–5(0.5g,1.85mmol)溶于四氢呋喃(15mL)中,之后依次加入三苯基膦(630.79mg,2.40mmol),3–(4–吗啉)–1–丙醇(349.21mg,2.40mmol),降温至0℃滴加偶氮二甲酸二异丙酯(486.30mg,2.40mmol,467.59μL),反应混合物恢复至室温并搅拌反应12小时。反应完毕后,反应 液直接减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=3/2–1/4,体积比),得到中间体WX024–1。 1H NMR(400MHz,CDCl 3)δ:8.13(d,J=9.2Hz,1H),7.74(s,1H),7.62(s,2H),7.31(d,J=2.8Hz,1H),7.24(dd,J=2.8,9.2Hz,1H),4.22(q,J=7.4Hz,2H),4.17(d,J=6.4Hz,2H),4.04(s,2H),3.75(t,J=4.6Hz,4H),2.59(t,J=7.2Hz,2H),2.54–2.45(m,4H),2.11–2.00(m,2H),1.26(t,J=7.0Hz,3H).
步骤2:WX024的合成
20℃下,将中间体WX024–1(350mg,880.58μmol)溶于四氢呋喃(10mL)中,之后依次加入丙烯酰胺(62.59mg,880.58μmol)和叔丁醇钾(98.81mg,880.58μmol),反应混合物在20℃下搅拌反应2小时。反应完毕后,向反应液滴加4M盐酸乙酸乙酯调节pH至5–6,减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),再次经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX024的盐酸盐。MS–ESI m/z:423.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.09(s,1H),10.94(s,1H),8.10(d,J=9.2Hz,1H),7.97(s,1H),7.76(s,2H),7.53(d,J=2.4Hz,1H),7.23(dd,J=2.4,9.2Hz,1H),4.64(dd,J=4.2,11.8Hz,1H),4.21(t,J=6.0Hz,2H),3.97(d,J=10.4Hz,2H),3.83(t,J=11.6Hz,2H),3.52–3.46(m,2H),3.35–3.25(m,2H),3.16–3.03(m,2H),2.93–2.81(m,1H),2.69–2.57(m,1H),2.43–2.22(m,4H).
实施例25:WX025
Figure PCTCN2019104989-appb-000082
步骤1:中间体WX025–1的合成
室温和氮气保护下,将中间体WX008–5(0.5g,1.85mmol)溶于四氢呋喃(15mL)中,之后依次加入三苯基膦(630.79mg,2.40mmol),4–(2–羟乙基)硫代吗啉–1,1–二氧化物(464.22mg,2.59mmol),降温至0℃,滴加偶氮二甲酸二异丙酯(486.30mg,2.40mmol,467.59μL),反应混合物恢复至室温并搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=3/2–3/7,体积比),得到中间体WX025–1。
步骤2:WX025的合成
室温和氮气保护下,将中间体WX025–1(650mg,1.51mmol)溶于四氢呋喃(20mL)中,随后依次加入丙烯酰胺(107.07mg,1.51mmol)和叔丁醇钾(169.03mg,1.51mmol),反应混合物在室温下搅拌反应1小时。反应完毕后,向反应液滴加4M盐酸乙酸乙酯调节pH至5–6,减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),再次经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX025。MS–ESI m/z:457.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),8.11(d,J=8.4Hz,1H),7.98(s,1H),7.78(s,2H),7.58(d,J=2.4Hz,1H),7.31(dd,J=2.6,9.0Hz,1H),4.64(dd,J=4.4,12.0Hz,1H),4.57–4.49(m,2H),3.88–3.75(m,4H),3.74–3.64(m,6H),2.94–2.81(m,1H),2.70–2.58(m,1H),2.45–2.35(m,1H),2.31–2.20(m,1H).
实施例26:WX026的盐酸盐
Figure PCTCN2019104989-appb-000083
步骤1:中间体WX026–1的合成
室温和氮气保护下,将中间体WX008–5(0.5g,1.85mmol)溶于四氢呋喃(15mL)中,之后依次加入三苯基膦(630.79mg,2.40mmol),1–(3–羟丙基)–4–甲基哌嗪(409.84mg,2.59mmol),降温至0℃,滴加偶氮二甲酸二异丙酯(486.30mg,2.40mmol,467.59μL),反应混合物恢复至室温并搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/1–0/1至二氯甲烷/甲醇=9/1,体积比),得到中间体WX026–1。 1H NMR(400MHz,CDCl 3)δ:8.13(d,J=9.2Hz,1H),7.73(s,1H),7.61(s,2H),7.30(d,J=2.4Hz,1H),7.24(dd,J=2.6,9.0Hz,1H),4.22(q,J=7.0Hz,2H),4.15(t,J=6.4Hz,2H),4.04(s,2H),2.60(t,J=7.4Hz,3H),2.59–2.40(m,7H),2.32(s,3H),2.11–2.01(m,2H),1.26(t,J=7.0Hz,3H).
步骤2:WX026的合成
室温下,将中间体WX026–1(400mg,974.41μmol)溶于四氢呋喃(10mL)中,之后依次加入丙烯酰胺(69.26mg,974.41μmol)和叔丁醇钾(109.34mg,974.41μmol),反应混合物在室温下搅拌反应2小时。反 应完毕后,向反应液滴加4M盐酸乙酸乙酯调节pH至5–6,减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),再次经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX026的盐酸盐。MS–ESI m/z:436.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.94(s,1H),10.94(s,1H),8.10(d,J=8.8Hz,1H),7.97(s,1H),7.75(s,2H),7.53(d,J=2.4Hz,1H),7.24(dd,J=2.4,8.8Hz,1H),4.64(dd,J=4.4,12.0Hz,1H),4.22(t,J=5.8Hz,2H),3.90–3.61(m,6H),3.47–3.35(m,4H),2.96–2.87(m,1H),2.85(s,3H),2.70–2.57(m,1H),2.46–2.19(m,4H).
实施例27:WX027
Figure PCTCN2019104989-appb-000084
步骤1:中间体WX027–1的合成
室温和氮气保护下,将中间体WX008–5(1g,3.70mmol)溶于四氢呋喃(30mL)中,之后依次加入三苯基膦(1.26g,4.81mmol),4–(3–羟丙基)硫代吗啉–1,1–二氧化物(1.00g,5.18mmol),降温至0℃,滴加偶氮二甲酸二异丙酯(972.60mg,4.81mmol,935.19μL),反应混合物恢复至室温并搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=4/1–2/3,体积比),所得化合物再次经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),馏分减压浓缩除去乙腈,用饱和碳酸钠溶液调节pH至6–7,用乙酸乙酯萃取(50mL×2)。合并有机相,用无水硫酸钠干燥,过滤,减压浓缩,得到中间体WX027–1。 1H NMR(400MHz,CDCl 3)δ:8.14(d,J=9.2Hz,1H),7.74(s,1H),7.62(s,2H),7.29(d,J=2.8Hz,1H),7.23(dd,J=2.6,9.0Hz,1H),4.22(q,J=7.0Hz,2H),4.16(t,J=6.0Hz,2H),4.04(s,2H),313–3.02(m,8H),2.77(t,J=7.0Hz,2H),2.05–1.99(m,2H),1.26(t,J=7.2Hz,3H).
步骤2:WX027的合成
室温和氮气保护下,将中间体WX027–1(200mg,448.91μmol)溶于四氢呋喃(5mL)中,随后依次加入丙烯酰胺(31.91mg,448.91μmol)和叔丁醇钾(50.37mg,448.91μmol),反应混合物在室温下搅拌反应15小时。反应完毕后,向反应液中加入4M盐酸乙酸乙酯调pH至5–6,减压浓缩除去溶剂。所得残余物经过 制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX027。MS–ESI m/z:471.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.07(d,J=8.4Hz,1H),7.96(s,1H),7.79–7.70(m,2H),7.50(d,J=2.4Hz,1H),7.22(dd,J=2.6,9.0Hz,1H),4.62(dd,J=4.6,11.8Hz,1H),4.15(t,J=6.2Hz,2H),3.13–3.04(m,4H),2.98–2.89(m,4H),2.88–2.80(m,1H),2.72–2.63(m,3H),2.43–2.34(m,1H),2.29–2.21(m,1H),2.01–1.89(m,2H).
实施例28:WX028的盐酸盐
Figure PCTCN2019104989-appb-000085
步骤1:中间体WX028–1的合成
室温和氮气保护下,将中间体WX008–5(1g,3.70mmol)溶于四氢呋喃(10mL)中,之后依次加入三苯基膦(1.26g,4.81mmol),3–(1–吡咯烷基)–1–丙醇(525.82mg,4.07mmol),降温至0℃,滴加偶氮二甲酸二异丙酯(972.60mg,4.81mmol,935.19μL),反应混合物恢复至室温并搅拌反应12小时。反应完毕后,反应液减压浓缩除去溶剂。所得残余物通经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/1–1/2,二氯甲烷/甲醇=20/1,体积比),得到中间体WX028–1。 1H NMR(400MHz,CDCl 3)δ:8.13(d,J=8.8Hz,1H),7.73(s,1H),7.61(s,2H),7.31(d,J=2.4Hz,1H),7.24(dd,J=2.4,9.2Hz,1H),4.22(q,J=6.8Hz,2H),4.18(t,J=6.6Hz,2H),4.04(s,2H),2.74(t,J=7.4Hz,2H),2.69–2.57(m,4H),2.21–2.09(m,2H),1.90–1.78(m,4H),1.26(t,J=7.2Hz,3H).
步骤2:WX028的合成
室温和氮气保护下,将中间体WX028–1(460mg,1.21mmol)溶于N,N–二甲基甲酰胺(5mL)中,随后依次加入丙烯酰胺(85.71mg,1.21mmol)和叔丁醇钾(135.31mg,1.21mmol),反应混合物在室温下搅拌反应1小时。反应完毕后,向反应液滴加2M稀盐酸调节pH值至6–7。所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),再次经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX028的盐酸盐。MS–ESI m/z:406.9[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.93 (s,1H),10.78(s,1H),8.10(d,J=9.2Hz,1H),7.97(s,1H),7.76(s,2H),7.53(d,J=2.8Hz,1H),7.23(dd,J=2.6,9.0Hz,1H),4.64(dd,J=4.4,12.0Hz,1H),4.21(t,J=6.0Hz,2H),3.64–3.51(m,2H),3.33–3.27(m,2H),3.11–2.97(m,2H),2.93–2.81(m,1H),2.70–2.57(m,1H),2.47–2.31(m,1H),2.30–2.17(m,3H),2.08–1.95(m,2H),1.94–1.83(m,2H).
实施例29:WX029
Figure PCTCN2019104989-appb-000086
步骤1:中间体WX029–1的合成
室温和氮气保护下,将中间体WX008–5(6g,22.20mmol)和N–Boc–N–甲基氨基乙醇(5.06g,28.86mmol)溶于四氢呋喃(100mL)中,加入三苯基膦(8.73g,33.30mmol),降温至0℃,滴加偶氮二甲酸二异丙酯(6.73g,33.30mmol,6.47mL),反应混合物升至室温并搅拌反应12小时。反应完毕后,减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–4/1,体积比),得到中间体WX029–1。 1H NMR(400MHz,DMSO_d 6)δ:8.05(d,J=8.8Hz,1H),8.00(s,1H),7.73(s,2H),7.53(d,J=2.4Hz,1H),7.25(dd,J=2.4,9.2Hz,1H),4.26–4.18(m,2H),4.12(q,J=7.2Hz,2H),4.10(s,2H),3.60(t,J=4.8Hz,2H),2.91(d,J=12.4Hz,3H),1.35(s,9H),1.17(t,J=7.2Hz,3H).
步骤2:中间体WX049的合成
室温和氮气保护下,将中间体WX029–1(4.1g,9.57mmol)溶于四氢呋喃(80mL)中,降温至0℃,加入丙烯酰胺(646.12mg,9.09mmol)和叔丁醇钾(8.30mL,1M)的四氢呋喃溶液,反应混合物恢复至室温并搅拌反应1小时。反应完毕后,向反应液中加入水(100mL),然后用乙酸乙酯(200mL×3)萃取。合并有 机相,有机相依次用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩除去溶剂得到残余物。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–2/3,体积比),得到中间体WX049。 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.09(d,J=8.8Hz,1H),7.96(s,1H),7.75(s,2H),7.53(d,J=2.4Hz,1H),7.21(dd,J=2.4,9.2Hz,1H),4.63(dd,J=4.4,12.0Hz,1H),4.27–4.17(m,2H),3.67–3.55(m,2H),2.94–2.86(m,3H),2.71–2.53(m,2H),2.42–2.20(m,2H),1.36(s,9H).
步骤3:中间体WX029–2的合成
室温下,将中间体WX049(4.4g,9.72mmol)溶于乙酸乙酯(10mL)中,加入盐酸乙酸乙酯(100mL,4M),反应混合物在室温下搅拌反应2小时。反应完毕后,将反应液过滤。收集滤饼,减压浓缩除去溶剂,得到中间体WX029–2的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.95(s,2H),8.14(d,J=9.2Hz,1H),7.98(s,1H),7.78(s,2H),7.58(d,J=2.4Hz,1H),7.28(dd,J=2.4,8.8Hz,1H),4.64(dd,J=4.4,11.6Hz,1H),4.39(t,J=5.0Hz,2H),3.40(t,J=5.0Hz,2H),2.92–2.83(m,1H),2.66(s,3H),2.62–2.58(m,1H),2.46–2.32(m,1H),2.31–2.22(m,1H).
步骤4:WX029的合成
室温下,将中间体WX029–2(100mg,257.17μmol,盐酸盐)溶于1,2–二氯乙烷(4mL)中,加入环己酮(25.24mg,257.17umol,26.65μL),乙酸钠(105.48mg,1.29mmol),反应混合物升温至50℃并搅拌反应30分钟,加入醋酸硼氢化钠(109.01mg,514.35μmol),反应混合物升温至50℃并搅拌反应12小时。补加醋酸硼氢化钠(109.01mg,514.35μmol),反应混合物升温至75℃并搅拌反应2小时。反应完毕后,冷却至室温,减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl)。得到目标化合物WX029。MS–ESI m/z:435.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.13(d,J=8.8Hz,1H),7.99(s,1H),7.78(s,2H),7.59(d,J=2.8Hz,1H),7.28(dd,J=2.6,9.0Hz,1H),4.64(dd,J=4.4,11.6Hz,1H),4.59–4.49(m,2H),3.78–3.63(m,1H),3.33–3.25(m,1H),2.93–2.85(m,1H),2.84–2.79(m,3H),2.69–2.58(m,2H),2.44–2.22(m,2H),2.16–2.02(m,2H),1.89–1.78(m,2H),1.68–1.57(m,1H),1.53–1.40(m,2H),1.36–1.24(m,2H),1.21–1.05(m,1H).
实施例30:WX030的盐酸盐
Figure PCTCN2019104989-appb-000087
Figure PCTCN2019104989-appb-000088
室温下,将中间体WX029–2(100mg,257.17μmol,盐酸盐)溶于1,2–二氯乙烷(4mL)中,加入环己基甲醛(57.69mg,514.35μmol),乙酸钠(21.10mg,257.17μmol),反应混合物在室温下搅拌反应30分钟,加入醋酸硼氢化钠(109.01mg,514.35μmol),反应混合物室温下继续搅拌反应1小时。反应完毕后,减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX030的盐酸盐。MS–ESI m/z:449.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),10.19(s,1H),8.13(d,J=9.2Hz,1H),7.98(s,1H),7.78(s,2H),7.59(d,J=2.4Hz,1H),7.26(dd,J=2.8,9.2Hz,1H),4.65(dd,J=4.2,11.8Hz,1H),4.60–4.48(m,2H),3.67–3.51(m,2H),3.19–3.08(m,1H),3.01–2.94(m,1H),2.93–2.81(m,4H),2.69–2.59(m,1H),2.46–2.34(m,1H),2.31–2.22(m,1H),1.97–1.78(m,3H),1.75–1.55(m,3H),1.34–1.06(m,3H),1.04–0.85(m,2H).
实施例31:WX031
Figure PCTCN2019104989-appb-000089
步骤1:中间体WX031–1的合成
室温和氮气保护下,将中间体WX012–4(4g,14.75mmol)溶于四氯化碳(40mL)中,加入N–Boc–乙醇胺(4.75g,29.49mmol,4.57mL)和N,N–二异丙基乙胺(7.62g,58.98mmol),之后向反应液中滴加亚磷酸二乙酯(8.15g,58.98mmol)的乙腈(40mL)溶液,反应混合物升温至80℃并搅拌反应12小时。反应完毕后,冷却至室温,将反应液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–5/1,体积比),得到中间体WX031–1。MS–ESI m/z:415.2[M+H] +.
步骤2:WX031的合成
室温和氮气保护下,将中间体WX031–1(100mg,241.28μmol)溶于四氢呋喃(2mL)中,降温至0℃,依 次加入丙烯酰胺(15.43mg,217.15μmol)和叔丁醇钾(1M,217.15μL)的四氢呋喃溶液,反应混合物恢复至20℃并搅拌反应2小时。反应完毕后,将反应液倒入水(15mL)中,加入2–甲基四氢呋喃(10mL)稀释,分液收集有机相,水相用2–甲基四氢呋喃(15mL×3)萃取。合并有机相,用饱和食盐水(10mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX031。MS–ESI m/z:440.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.51(d,J=9.2Hz,1H),8.05(s,1H),7.94(d,J=9.2Hz,1H),7.70(d,J=8.8Hz,1H),7.04(d,J=9.2Hz,2H),4.64(dd,J=4.4,12.6Hz,1H),4.41(t,J=5.6Hz,2H),3.42–3.38(m,2H),2.91–2.79(m,1H),2.69–2.59(m,1H),2.45–2.35(m,1H),2.34–2.21(m,1H),1.38(s,9H).
实施例32:WX032
Figure PCTCN2019104989-appb-000090
步骤1:中间体WX032–1的合成
20℃和氮气保护下,将中间体WX012–4(500mg,1.84mmol)溶于四氯化碳(5mL)中,加入N–羟乙基吡咯烷(424.57mg,3.69mmol)和N,N–二异丙基乙胺(952.86mg,7.37mmol),之后向反应中滴加亚磷酸二乙酯(1.02g,7.37mmol)的乙腈(5mL)溶液,反应混合物升温至80℃并搅拌反应12小时。反应完毕后,将反应液冷却至室温,减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:0.2%FA),得到中间体WX032–1。 1H NMR(400MHz,DMSO_d 6)δ:8.50(d,J=9.2Hz,1H),8.15–8.08(m,1H),7.97(d,J=8.8Hz,1H),7.72(d,J=9.2Hz,1H),7.17(d,J=9.2Hz,1H),4.70(t,J=4.8Hz,2H),4.16–4.08(m,4H),4.02–3.97(m,2H),3.80–3.71(m,2H),1.96–1.87(m,4H),1.20–1.16(m,5H).
步骤2:WX032的合成
20℃和氮气保护下,将中间体WX032–1(70mg,190.00μmol)溶于N,N–二甲基甲酰胺(1mL)中,之后依次加入丙烯酰胺(13.50mg,190.00μmol)和叔丁醇钾(1M,190.00μL)的四氢呋喃溶液,反应混合物在20℃下搅拌反应3小时。反应完毕后,向反应液中滴加2N的稀盐酸水溶液调节pH至6–7,过滤,收集滤液。所得滤液经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX032。 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.51(d,J=9.2Hz,1H),8.05(s,1H),7.94(d,J=9.2Hz,1H),7.71 (d,J=9.2Hz,1H),7.07(d,J=8.8Hz,1H),4.64(dd,J=4.0,12.0Hz,1H),4.59–4.52(m,2H),3.00–2.79(m,3H),2.72–2.58(m,5H),2.46–2.21(m,2H),1.76–1.66(m,4H).
实施例33:WX033
Figure PCTCN2019104989-appb-000091
步骤1:中间体WX033–1的合成
室温和氮气保护下,将中间体WX010–7(1g,3.00mmol)溶于N,N–二甲基甲酰胺(10mL)中,然后依次加入磷酸钾(637.10mg,3.00mmol),(E)–1–乙氧乙烯基–2–硼酸嚬哪醇酯(772.82mg,3.90mmol),[1,1–双(二苯基膦)二茂铁]二氯化钯.二氯甲烷(245.11mg,300.14μmol),反应混合物升温至80℃并搅拌反应12小时。反应完毕后,将反应液倒入水(200mL)中,用乙酸乙酯(150mL×3)萃取。合并有机相,用半饱和食盐水(150mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–50/1,体积比),得到中间体WX033–1。MS–ESI m/z:325.1[M+H] +
步骤2:中间体WX033–2的合成
室温和氮气保护下,将中间体WX033–1(0.7g,2.16mmol)溶于氯仿(7mL)中,降温至0℃,然后依次加 入乙醇(99.42mg,2.16mmol,126.16μL),水(2.16mmol,38.88μL),草酰氯(273.91mg,2.16mmol,188.90μL),反应混合物恢复至室温并搅拌反应1小时。反应完毕后,向反应液中加入水(20mL),用饱和碳酸氢钠溶液调节pH至7,用二氯甲烷(10mL×3)萃取。合并有机相,依次用饱和食盐水(20mL×3)洗涤,无水硫酸钠干燥,过滤,滤液(30mL)直接用于下一步反应,得到中间体WX033–2的二氯甲烷溶液。
步骤3:中间体WX033–3的合成
室温和氮气保护下,向中间体WX033–2(0.07M,30mL)的二氯甲烷溶液中加入吗啡啉(365.90mg,4.20mmol),反应混合物在室温下搅拌反应10分钟。然后加入三乙酰氧基硼氢化钠(890.15mg,4.20mmol),反应混合物在室温下搅拌反应12小时。反应完毕后,向反应液加入水(100mL),用二氯甲烷萃取(50mL×3)。合并有机相,依次用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1–0/1,体积比),所得残余物再经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到中间体WX033–3。 1H NMR(400MHz,DMSO_d 6)δ:8.04(s,1H),8.01(t,J=7.4Hz,2H),7.82(d,J=9.2Hz,1H),7.51(t,J=7.8Hz,1H),7.42(d,J=6.8Hz,1H),4.23–4.06(m,4H),3.61(t,J=4.4Hz,4H),3.27(t,J=7.8Hz,2H),2.62(t,J=7.8Hz,2H),2.53–2.49(m,4H),1.18(t,J=7.2Hz,3H).
步骤4:WX033的合成
室温和氮气保护下,将中间体WX033–3(120mg,326.59μmol)溶于N,N–二甲基甲酰胺(2mL)中,然后依次加入丙烯酰胺(23.21mg,326.59μmol),叔丁醇钾(36.65mg,326.59μmol),反应混合物在室温下搅拌反应1小时。反应完毕后,向反应液加入水(50mL),用乙酸乙酯萃取(30mL×3)。合并有机相,依次用饱和食盐水洗涤(30mL×2),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX033。MS–ESI m/z:393.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),8.06(d,J=7.6Hz,1H),8.03–7.97(m,2H),7.83(d,J=9.2Hz,1H),7.50(t,J=7.8Hz,1H),7.42(d,J=6.8Hz,1H),4.68(dd,J=4.4,12.0Hz,1H),3.61(t,J=4.4Hz,4H),3.31–3.23(m,5H),2.93–2.84(m,1H),2.69–2.60(m,3H),2.47–2.35(m,2H),2.31–2.22(m,1H).
实施例34:WX034
Figure PCTCN2019104989-appb-000092
Figure PCTCN2019104989-appb-000093
步骤1:中间体WX034–1的合成
室温和氮气保护下,将中间体WX010–7(5g,15.01mmol)溶于甲醇(25mL)和甲苯(25mL)中,然后依次加入碳酸铯(7.33g,22.51mmol),2–二叔丁基膦–2,4,6–三异丙基联苯(382.36mg,900.42μmol),醋酸钯(101.08mg,450.21μmol),反应混合物升温至80℃并搅拌反应12小时。反应完毕后,向反应液加入水(200mL),用乙酸乙酯萃取(150mL),有机相丢弃。水相用浓盐酸(12M)调节pH至5,然后水相用乙酸乙酯萃取(150mL×3),合并有机相,依次用饱和食盐水(150mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。得到中间体WX034–1。MS–ESI m/z:257.1[M+H] +
步骤2:中间体WX034–2的合成
室温和氮气保护下,将中间体WX034–1(2.8g,10.93mmol)溶于乙醇(28mL)中,然后加入浓硫酸(1.07g,10.93mmol,582.43μL,纯度:98%),反应混合物升温至80℃并搅拌反应3小时。反应完毕后,反应液直接减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=49/1–19/1,体积比),得到中间体WX034–2。 1H NMR(400MHz,CDCl 3)δ:8.25(d,J=9.2Hz,1H),7.81(d,J=8.4Hz,1H),7.76(s,1H),7.64(d,J=9.2Hz,1H),7.50(t,J=8.2Hz,1H),6.87(d,J=7.6Hz,1H),4.24(q,J=7.2Hz,2H),4.07(s,2H),4.03(s,3H),1.27(t,J=7.0Hz,3H).
步骤3:WX034的合成
室温和氮气保护下,将中间体WX034–2(60mg,211.04μmol)溶于N,N–二甲基甲酰胺(2mL)中,然后依次加入丙烯酰胺(15.00mg,211.04μmol),叔丁醇钾(23.68mg,211.04μmol),反应混合物在室温下搅拌反应1小时。反应完毕后,向反应液加入水(50mL),用乙酸乙酯萃取(30mL×3)。合并有机相,依次用半饱和食盐水洗涤(30mL×3),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.04%HCl),得到目标化合物WX034。MS–ESI m/z:310.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),8.15(d,J=9.6Hz,1H),8.00(s,1H),7.78–7.70(m,2H),7.51(t,J=8.0Hz,1H),7.02(d,J=8.0Hz,1H),4.65(dd,J=4.4,12.0Hz,1H),4.00(s,3H),2.98–2.82(m,1H),2.68–2.59(m,1H),2.46–2.33(m,1H),2.31–2.20(m,1H).
实施例35:WX035
Figure PCTCN2019104989-appb-000094
步骤1:中间体WX035–1的合成
室温和氮气保护下,将中间体WX034–2(2g,7.03mmol)溶于二氯甲烷(40mL)中,降温至–78℃,然后逐滴加入三溴化硼(2.11g,8.44mmol,813.39μL),反应混合物恢复至室温并搅拌反应2小时。之后将反应混合物冷却至–78℃,逐滴加入三溴化硼(1.76g,7.03mmol,677.83μL),反应混合物恢复至室温并搅拌反应2小时。反应完毕后,将反应液倒入冰水(200mL)中,用二氯甲烷(150mL×3)萃取。合并有机相,用饱和食盐水(150mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=9/1–4/1,体积比),得到中间体WX035–1。 1H NMR(400MHz,CDCl 3)δ:8.14(d,J=9.2Hz,1H),7.80(d,J=8.4Hz,1H),7.76(s,1H),7.63(d,J=9.2Hz,1H),7.39(t,J=7.8Hz,1H),6.81(d,J=7.6Hz,1H),5.49(s,1H),4.24(q,J=7.0Hz,2H),4.07(s,2H),1.27(t,J=7.2Hz,3H).
步骤2:中间体WX035–2的合成
室温和氮气保护下,将中间体WX035–1(300mg,1.11mmol)溶于四氢呋喃(3mL)中,然后依次加入三苯基膦(378.47mg,1.44mmol),N–(2–羟乙基)吗啡啉(189.28mg,1.44mmol),降温至0℃,滴加偶氮二甲酸二异丙酯(291.78mg,1.44mmol,280.56μL),反应混合物恢复至室温并搅拌反应12小时。反应完毕后,向反应液加入水(100mL),用乙酸乙酯萃取(50mL×3)。合并有机相,依次用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–0/1,体积比),得到中间体WX035–2。MS–ESI m/z:384.3[M+H] +.
步骤3:WX035的合成
室温和氮气保护下,将中间体WX035–2(400mg,1.04mmol)溶在N,N–二甲基甲酰胺(2mL)中,然后加入依次丙烯酰胺(74.15mg,1.04mmol),叔丁醇钾(117.06mg,1.04mmol),反应混合物在室温下搅拌反应 3小时。反应完毕后,向反应液加入水(50mL),用乙酸乙酯萃取(30mL×3)。合并有机相,依次用半饱和食盐水洗涤(30mL×2),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX035。MS–ESI m/z:409.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),8.16(d,J=9.2Hz,1H),8.00(s,1H),7.76(d,J=9.2Hz,1H),7.73(d,J=8.0Hz,1H),7.49(t,J=8.2Hz,1H),7.03(d,J=8.0Hz,1H),4.64(dd,J=4.2,11.8Hz,1H),4.31(t,J=5.8Hz,2H),3.60(t,J=4.6Hz,4H),2.93–2.83(m,3H),2.68–2.61(m,1H),2.58–2.55(m,3H),2.46–2.34(m,2H),2.30–2.22(m,1H).
实施例36:WX036
Figure PCTCN2019104989-appb-000095
步骤1:中间体WX036–1的合成
20℃下,将中间体WX007–7(1g,4.36mmol)溶于N,N–二甲基甲酰胺(15mL)中,再加入1–(2–氯乙基)吡咯烷(1.48g,8.72mmol)和碳酸钾(2.23g,16.14mmol),反应混合物在20℃下搅拌反应12小时。补加1–(2–氯乙基)吡咯烷(741.96mg,4.36mmol)和碳酸钾(1.12g,8.07mmol),反应混合物在20℃下搅拌反应16小时。补加1–(2–氯乙基)吡咯烷(741.96mg,4.36mmol)和碳酸钾(1.12g,8.07mmol),反应混合物在20℃下搅拌反应36小时。反应完毕后,将反应液倒入半饱和食盐水(50mL)中,加入乙酸乙酯(50mL)稀释,分液收集有机相,水相用乙酸乙酯(50mL×3)萃取。合并有机相,依次用半饱和食盐水(80mL×3)洗涤,饱和食盐水(80mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),所得粗品再次经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到中间体WX036–1。 1H NMR(400MHz,DMSO_d 6)δ:7.85(s,1H)7.44(d,J=4.9Hz,1H)7.42(d,J=8.8Hz,1H)7.34(d,J=9.2Hz,1H)6.55(d,J=3.2Hz,1H)4.33(t,J=6.8Hz,2H)3.93(s,2H)3.64(s,3H)2.79(t,J=6.6Hz,2H),2.48–2.42(m,4H)1.68–1.61(m,4H).
步骤2:WX036的合成
0℃和氮气保护下,将中间体WX036–1(49mg,150.13μmol)溶于四氢呋喃(1mL)中,依次加入丙烯酰胺(10.67mg,150.13μmol)和叔丁醇钾(1M,150.13μL)的四氢呋喃溶液,反应混合物在20℃下搅拌反应3小时。反应完毕后,向反应液中加入水(2mL),加入乙酸乙酯(2mL)稀释,分液收集有机相,水相用乙 酸乙酯(3mL×3)萃取。合并有机相,用饱和食盐水(10mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂得到残余物。所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX036。MS–ESI m/z:366.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.97(s,1H),7.83(s,1H),7.45(s,1H),7.42(d,J=5.2Hz,1H),7.35(d,J=9.2Hz,1H),6.45(d,J=3.2Hz,1H),4.33(t,J=6.8Hz,2H),4.28(dd,J=5.2,12.0Hz,1H),2.89–2.82(m,1H),2.79(t,J=6.6Hz,2H),2.64–2.55(m,1H),2.48–2.43(m,4H),2.36–2.24(m,1H),2.19–2.09(m,1H),1.67–1.62(m,4H).
实施例37:WX037
Figure PCTCN2019104989-appb-000096
步骤1:中间体WX037–1的合成
室温和氮气保护下,将中间体WX015–4(500mg,1.50mmol)溶于1,4–二氧六环(15mL)中,之后依次加环丙基三氟硼酸钾(444.14mg,3.00mmol),四三苯基膦钯(86.71mg,75.04μmol),碳酸钠(556.71mg,5.25mmol),反应混合物加热至110℃并搅拌反应12小时。反应完毕后,冷却至室温,过滤,收集滤液,减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–19/1,体积比),所得化合物再次经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),减压浓缩除去大部分乙腈,用乙酸乙酯萃取(20mL×3)。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到中间体WX037–1。 1H NMR(400MHz,CDCl 3)δ:8.12(d,J=8.8Hz,1H),7.74(s,1H),7.68–7.59(m,3H),7.30(dd,J=1.8,8.6Hz,1H),4.22(q,J=7.0Hz,2H),4.05(s,2H),2.14–2.05(m,1H),1.27(t,J=7.2Hz,3H),1.10–0.99(m,2H),0.87–0.75(m,2H).
步骤2:WX037的合成
室温下,将中间体WX037–1(150mg,509.61μmol)溶于N,N–二甲基甲酰胺(3mL)中,之后依次加入丙烯酰胺(36.22mg,509.61μmol)和叔丁醇钾(57.18mg,509.61μmol),反应混合物在室温下搅拌反应1小时。反应完毕后,向反应液中加入水(20mL),用乙酸乙酯萃取(20mL×3)。合并有机相,用无水硫酸钠干燥,过滤,减压浓缩得到残余物,所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM  NH 4HCO 3),得到目标化合物WX037。MS–ESI m/z:320.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),8.04(d,J=8.8Hz,1H),7.97(s,1H),7.82–7.66(m,3H),7.29(dd,J=1.6,8.8Hz,1H),4.63(dd,J=4.4,12.0Hz,1H),2.94–2.82(m,1H),2.70–2.59(m,1H),2.43–2.34(m,1H),2.30–2.20(m,1H),2.14–2.05(m,1H),1.06–0.97(m,2H),0.82–0.75(m,2H).
实施例38:WX038
Figure PCTCN2019104989-appb-000097
步骤1:中间体WX038–1的合成
室温和氮气保护下,将中间体WX015–4(500mg,1.50mmol)溶于水(0.5mL)和1,4–二氧六环(5mL)中,之后依次加入甲氧基–甲基三氟硼酸钾盐(456.11mg,3.00mmol),醋酸钯(33.69mg,150.07μmol),碳酸铯(1.47g,4.50mmol),2–双环己基膦–2,6–二异丙氧基–1,1–联苯(140.06mg,300.14μmol),反应混合物加热至100℃并搅拌反应12小时。反应完毕后,向反应液加入水(20mL),用乙酸乙酯萃取(30mL×3)。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–19/1,体积比),得到中间体WX038–1。 1H NMR(400MHz,CDCl 3)δ:8.22(d,J=8.4Hz,1H),7.91(s,1H),7.77(s,1H),7.73(d,J=9.2Hz,1H),7.65(d,J=9.2Hz,1H),7.57(dd,J=1.4,8.6Hz,1H),4.66(s,2H),4.23(q,J=7.0Hz,2H),4.08(s,2H),3.45(s,3H),1.27(t,J=7.0Hz,3H).
步骤2:WX038的合成
室温和氮气保护下,将中间体WX038–1(130mg,435.76μmol)溶于N,N–二甲基甲酰胺(2mL)中,随后依次加入丙烯酰胺(30.97mg,435.76μmol)和叔丁醇钾(48.90mg,435.76μmol),反应混合物在室温下搅拌反应2小时。反应完毕后,向反应液加入水(20mL),用乙酸乙酯萃取(20mL×3)。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX038。MS–ESI m/z:324.0[M+H] +. 1H NMR(400MHz,CDCl 3)δ:8.11(s,1H),7.98(d,J=8.4Hz,1H),7.94(s,1H),7.84–7.53(m,4H),4.66(s,2H),4.57–4.46(m,1H),3.46(s,3H),2.92–2.72(m,2H),2.61–2.38(m,2H).
实施例39:WX039
Figure PCTCN2019104989-appb-000098
步骤1:中间体WX039–1的合成
室温和氮气保护下,将中间体WX008–5(0.5g,1.85mmol)溶于四氢呋喃(15mL)中,之后依次加入三苯基膦(630.79mg,2.40mmol),1–乙酰基–4–(2–羟基乙基)哌嗪(414.19mg,2.40mmol),
Figure PCTCN2019104989-appb-000099
分子筛(0.2g),降温至0℃,滴加偶氮二甲酸二异丙酯(486.30mg,2.40mmol,467.59μL),反应混合物缓慢恢复至室温并搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/1–0/1至甲醇/二氯甲烷=1/9,体积比),得到中间体WX039–1。MS–ESI m/z:425.2[M+H] +. .
步骤2:WX039的合成
室温下,将中间体WX039–1(200mg,365.62μmol)溶于四氢呋喃(4mL)中,之后加入丙烯酰胺(33.49mg,471.17μmol)和叔丁醇钾(1M,471.17μL)的四氢呋喃溶液,反应混合物在室温下搅拌反应1小时。反应完毕后,向反应液滴加4M盐酸乙酸乙酯调节pH至6–7,减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX039。MS–ESI m/z:450.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.08(d,J=9.2Hz,1H),7.96(s,1H),7.75(s,2H),7.53(d,J=2.4Hz,1H),7.22(dd,J=2.4,9.2Hz,1H),4.63(dd,J=4.4,11.6Hz,1H),4.23(t,J=5.6Hz,2H),3.50–3.39(m,5H),2.93–2.83(m,1H),2.80(t,J=5.4Hz,2H),2.69–2.54(m,2H),2.46–2.22(m,4H),1.99(s,3H).
实施例40:WX040
Figure PCTCN2019104989-appb-000100
Figure PCTCN2019104989-appb-000101
步骤1:中间体WX040–1的合成
室温和氮气保护下,将中间体WX008–5(3g,11.10mmol)溶于四氢呋喃(50mL)中,之后依次加入三苯基膦(3.78g,14.43mmol),2–溴乙醇(1.80g,14.43mmol,1.02mL),降温至0℃,滴加偶氮二甲酸二异丙酯(2.92g,14.43mmol,2.81mL),反应混合物缓慢恢复至室温并搅拌反应12小时。反应混合物升温至40℃并搅拌反应3小时。反应完毕后,反应液直接减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=9/1–4/1,体积比),得到中间体WX040–1。 1H NMR(400MHz,CDCl 3)δ:8.18(d,J=9.2Hz,1H),7.77(s,1H),7.68–7.61(m,2H),7.34–7.28(m,2H),4.46(t,J=6.2Hz,2H),4.24(q,J=7.0Hz,2H),4.06(s,2H),3.74(t,J=6.4Hz,2H),1.28(t,J=7.0Hz,3H).
步骤2:中间体WX040–2的合成
室温下,将中间体WX040–1(300mg,795.27μmol)溶于N,N–二甲基甲酰胺(3mL)中,之后依次加入碳酸钾(384.69mg,2.78mmol),碘化钾(66.01mg,397.64μmol),4–羟基哌啶(160.88mg,1.59mmol),反应混合物在室温下搅拌反应2小时。反应完毕后,反应液直接过滤,收集滤液,所得滤液直接经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到中间体WX040–2的盐酸盐。 1H NMR(400MHz,D 2O)δ:7.86–7.71(m,1H),7.65(s,1H),7.53(s,2H),7.27(s,1H),7.12(d,J=8.8Hz,1H),4.38–4.27(m,2H),4.22–4.05(m,3H),4.00–3.82(m,3H),3.66(d,J=12.8Hz,1H),3.57–3.42(m,3H),3.38–3.27(m,1H),3.10(t,J=12.2Hz,1H),2.16(d,J=13.6Hz,1H),2.05–1.85(m,2H),1.82–1.67(m,1H),1.16(t,J=7.0Hz,3H).
步骤3:WX040的合成
室温和氮气保护下,将中间体WX040–2(260mg,599.18μmol,盐酸盐)溶于N,N–二甲基甲酰胺(5mL)中,之后依次加入丙烯酰胺(42.59mg,599.18μmol)和叔丁醇钾(134.47mg,1.20mmol),反应混合物在室温下搅拌反应1小时。反应完毕后,反应液直接加1M稀盐酸调节pH至6–7,所得溶液直接经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX040。MS–ESI m/z:423.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.08(d,J=8.8Hz,1H),8.01–7.90(m,1H),7.75(s,2H), 7.54(d,J=2.4Hz,1H),7.23(dd,J=2.2,9.0Hz,1H),4.63(dd,J=4.6,11.4Hz,2H),4.24(s,2H),3.62–3.43(m,1H),2.96–2.79(m,4H),2.71–2.58(m,1H),2.44–2.17(m,5H),1.83–1.68(m,2H),1.52–1.37(m,2H).
实施例41:WX041
Figure PCTCN2019104989-appb-000102
步骤1:中间体WX041–1的合成
室温下,将中间体WX040–1(230mg,609.71μmol)溶于N,N–二甲基甲酰胺(3mL)中,之后依次加碳酸钾(379.21mg,2.74mmol),碘化钾(50.61mg,304.86μmol),4–甲基–4–羟基哌啶(184.91mg,1.22mmol,盐酸盐),反应混合物在室温下搅拌反应3小时。反应完毕后,反应液直接过滤,收集滤液,所得滤液直接经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到中间体WX041–1的盐酸盐。
步骤2:WX041的合成
室温和氮气保护下,将中间体WX041–1(180mg,401.83μmol,盐酸盐)溶于N,N–二甲基甲酰胺(3mL)中,之后依次加入丙烯酰胺(28.56mg,401.83μmol)和叔丁醇钾(90.18mg,803.66μmol),反应混合物在室温下搅拌反应1小时。反应完毕后,向反应液滴加2M稀盐酸调节pH至6–7,所得溶液直接经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX041。MS–ESI m/z:437.1[M+H] +. 1H NMR(400MHz,CDCl 3)δ:8.12(s,1H),7.89(d,J=9.2Hz,1H),7.70–7.59(m,3H),7.37–7.28(m,2H),4.56–4.43(m,1H),4.26(t,J=5.8Hz,2H),2.93(t,J=5.6Hz,2H),2.84–2.70(m,4H),2.64–2.40(m,4H),1.80–1.66(m,4H),1.28(s,3H).
实施例42:WX042
Figure PCTCN2019104989-appb-000103
Figure PCTCN2019104989-appb-000104
步骤1:中间体WX042–1的合成
室温下,将中间体WX040–1(500mg,1.33mmol)溶于N,N–二甲基甲酰胺(5mL)中,依次加入3–氮杂双环[3.1.0]己烷(165.28mg,1.38mmol,盐酸盐)和碳酸钾(824.34mg,5.96mmol),反应混合物在室温下搅拌反应12小时。反应完毕后,向反应液加入水(100mL),用乙酸乙酯萃取(150mL×3)。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所的残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1–1/1,体积比),得到中间体WX042–1。 1H NMR(400MHz,CDCl 3)δ:8.11(d,J=9.2Hz,1H),7.72(s,1H),7.60(s,2H),7.29(s,1H),7.23(d,J=8.8Hz,1H),4.23–4.17(m,2H),4.11(q,J=7.2Hz,4H),4.02(s,2H),3.29–3.17(m,2H),2.67–2.58(m,2H),1.47–1.37(m,3H),0.95–0.78(m,2H),0.49–0.36(m,1H),0.06(s,1H).
步骤2:WX042的合成
室温和氮气保护下,将中间体WX042–1(0.1330g,350.51μmol)溶于N,N–二甲基甲酰胺(1mL)中,随后依次加入丙烯酰胺(24.91mg,350.51μmol)和叔丁醇钾(39.33mg,350.51μmol),反应混合物在室温下搅拌反应1小时。反应完毕后,向反应液加入稀盐酸(2M)调节pH值至5–6。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX042。MS–ESI m/z:404.9[M+H] +. 1H NMR(400MHz,CDCl 3)δ:8.12(s,1H),7.88(d,J=8.8Hz,1H),7.67–7.63(m,2H),7.32(d,J=2.4Hz,1H),7.26–7.24(m,1H),4.49(dd,J=5.2,8.8Hz,1H),4.19(t,J=6.0Hz,2H),3.14(d,J=8.8Hz,2H),2.95(t,J=6.0Hz,2H),2.84–2.71(m,2H),2.57–2.38(m,4H),1.44–1.34(m,2H),0.78–0.69(m,1H),0.43–0.34(m,1H).
实施例43:WX043
Figure PCTCN2019104989-appb-000105
步骤1:中间体WX043–1的合成
室温和氮气保护下,将中间体WX040–1(0.5g,1.33mmol)溶于N,N–二甲基甲酰胺(5mL)中,然后依次加入碘化钾(110.01mg,662.73μmol),1–甲烷磺酰哌嗪(435.35mg,2.65mmol),反应混合物室温反应搅拌12小时。反应完毕后,向反应液加入水(100mL),用乙酸乙酯萃取(50mL×3)。合并有机相,依次用饱和食盐水洗涤(50mL×3),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1–1/1,体积比),得到中间体WX043–1。 1H NMR(400MHz,CDCl 3)δ:8.15(d,J=9.2Hz,1H),7.74(s,1H),7.62(s,2H),7.30(d,J=2.4Hz,1H),7.26–7.23(m,1H),4.25(t,J=6.0Hz,2H),4.22(q,J=7.6Hz,2H),4.04(s,2H),3.30(t,J=5.0Hz,4H),2.95(t,J=5.4Hz,2H),2.79(s,3H),2.76(t,J=8.8Hz,4H),1.26(t,J=7.2Hz,3H).
步骤2:WX043的合成
室温和氮气保护下,将中间体WX043–1(0.3g,651.41μmol)溶于N,N–二甲基甲酰胺(3mL)中,然后依次加入丙烯酰胺(46.30mg,651.41μmol),叔丁醇钾(73.10mg,651.41μmol),反应混合物在室温下搅拌反应1小时。反应完毕后,反应液用浓盐酸(12M)调节pH至6–7。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX043。MS–ESI m/z:486.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.89(s,1H),8.03(d,J=9.2Hz,1H),7.91(s,1H),7.70(s,2H),7.48(d,J=2.4Hz,1H),7.18(dd,J=2.8,9.2Hz,1H),4.58(dd,J=4.2,12.2Hz,1H),4.18(t,J=5.8Hz,2H),3.08(t,J=5.0Hz,4H),2.82(s,3H),2.79(t,J=5.6Hz,2H),2.58(t,J=4.8Hz,4H),2.38–2.19(m,2H),1.22–1.01(m,2H).
实施例44:WX044
Figure PCTCN2019104989-appb-000106
步骤1:中间体WX044–1的合成
室温和氮气保护下,将中间体WX008–5(1.5g,5.55mmol)溶于四氢呋喃(20mL)中,之后依次加入三苯基膦(1.89g,7.21mmol),N–Boc–乙醇胺(1.16g,7.21mmol,1.12mL),降温至0℃,滴加偶氮二甲酸二异丙酯(1.46g,7.21mmol,1.40mL),反应混合物缓慢恢复至室温并搅拌反应4小时。反应完毕后,反应液直接减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=9/1–4/1,体积比),得到中间体WX044–1。 1H NMR(400MHz,CDCl 3)δ:8.15(d,J=9.2Hz,1H),7.74(s,1H),7.62(s,2H),7.29(d,J=2.4 Hz,1H),7.24(dd,J=2.6,9.0Hz,1H),4.22(q,J=7.0Hz,2H),4.19–4.13(m,2H),4.04(s,2H),3.69–3.57(m,2H),1.47(s,9H),1.26(t,J=7.2Hz,3H).
步骤2:WX044的合成
室温和氮气保护下,将中间体WX044–1(2g,4.84mmol)溶于四氢呋喃(30mL)中,随后依次加入丙烯酰胺(343.82mg,4.84mmol)和叔丁醇钾(1M,4.84mL)的四氢呋喃溶液,反应混合物在室温下搅拌反应2小时。反应完毕后,向反应液加入水(20mL),用乙酸乙酯萃取(20mL×3)。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=4/1–1/1,体积比),所得粗品经5mL甲醇室温搅拌15分钟,有白色固体析出,过滤,收集固体,减压浓缩除去溶剂,得到目标化合物WX044。MS–ESI m/z:338.9[M–Boc+H] +. 1H NMR(400MHz,CDCl 3)δ:8.18(s,1H),7.89(d,J=8.8Hz,1H),7.68–7.62(m,3H),7.32(d,J=2.4Hz,1H),7.25(dd,J=2.6,9.0Hz,1H),5.07(s,1H),4.48(dd,J=5.2,8.8Hz,1H),4.17(t,J=5.0Hz,2H),3.67–3.55(m,2H),2.88–2.70(m,2H),2.57–2.39(m,2H),1.47(s,9H).
实施例45:WX045的盐酸盐
Figure PCTCN2019104989-appb-000107
步骤1:中间体WX045–1的合成
室温下,将中间体WX044(800mg,1.81mmol,纯度:99.07%)溶于盐酸/乙酸乙酯(4M,10mL)中,反应混合物在室温下搅拌反应2小时,有白色固体析出。反应完毕后,反应液直接过滤,收集固体,减压浓缩除去溶剂,得到中间体WX045–1的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.35(s,3H),8.14(d,J=9.2Hz,1H),7.98(s,1H),7.85–7.73(m,2H),7.57(d,J=2.4Hz,1H),7.28(dd,J=2.8,8.8Hz,1H),4.65(dd,J=4.6,12.2Hz,1H),4.34(t,J=5.2Hz,2H),3.34–3.23(m,2H),2.94–2.82(m,1H),2.69–2.57(m,1H),2.46–2.33(m,1H),2.32–2.21(m,1H).
步骤2:WX045的合成
室温下,将中间体WX045–1(100mg,266.80μmol,盐酸盐)溶于1,2–二氯乙烷(3mL)中,随后依次加入1–乙酰基哌啶–4–酮(37.66mg,266.80μmol),醋酸钠(43.77mg,533.60μmol),反应混合物在室温下搅拌反应10分钟后,加入醋酸硼氢化钠(113.09mg,533.60μmol),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂,所得残余物经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX045的盐酸盐。MS–ESI m/z:464.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),9.50(s,2H),8.13(d,J=8.8Hz,1H),7.98(s,1H),7.83–7.74(m,2H),7.58(d,J=2.4Hz,1H),7.30(dd,J=2.4,9.2Hz,1H),4.65(dd,J=4.4,11.6Hz,1H),4.52–4.39(m,3H),3.92(d,J=13.6Hz,1H),3.49–3.33(m,3H),3.06(t,J=12.6Hz,1H),2.95–2.82(m,1H),2.69–2.54(m,2H),2.44–2.32(m,1H),2.31–2.21(m,1H),2.13(t,J=14.4Hz,2H),2.01(s,3H),1.68–1.54(m,1H),1.53–1.39(m,1H).
实施例46:WX046的盐酸盐
Figure PCTCN2019104989-appb-000108
室温和氮气保护下,将中间体WX045–1(0.1g,266.80μmol,盐酸盐)溶于1,2–二氯乙烷(3mL)中,然后依次加入1–甲基–4–哌啶酮(30.19mg,266.80μmol)和乙酸钠(43.77mg,533.59μmol),反应混合物在室温下搅拌10分钟,然后加入三乙酰氧基硼氢化钠(113.09mg,533.59μmol),反应混合物室温搅拌反应12小时。反应完毕后,反应液减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX046的盐酸盐。MS–ESI m/z:436.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),10.61(s,1H),9.54(s,2H),8.13(d,J=8.8Hz,1H),7.99(s,1H),7.85–7.73(m,2H),7.58(d,J=2.8Hz,1H),7.30(dd,J=2.8,9.2Hz,1H),4.64(dd,J=4.6,11.8Hz,1H),4.44(t,J=5.0Hz,2H),3.58–3.44(m,4H),3.08–2.95(m,2H),2.91–2.82(m,1H),2.79–2.62(m,4H),2.45–2.18(m,5H),2.12–1.95(m,2H).
实施例47:WX047
Figure PCTCN2019104989-appb-000109
室温和氮气保护下,将中间体WX045–1(0.18g,480.23μmol,盐酸盐)溶在1,2–二氯乙烷(3mL)中,然后依次加入N–叔丁氧羰基–4–哌啶酮(95.68mg,480.23μmol)和乙酸钠(78.79mg,960.47μmol),反应混合物在室温下搅拌反应10分钟,然后再加入三乙酰氧基硼氢化钠(203.56mg,960.47μmol),反应混合物搅拌在室温下搅拌反应12小时。反应完毕后,反应液减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX047。MS–ESI m/z:522.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.08(d,J=9.2Hz,1H),7.96(s,1H),7.80–7.68(m,2H),7.51(d,J=2.8Hz,1H),7.23(dd,J=2.4,9.2Hz,1H),4.63(dd,J=4.4,12.0Hz,1H),4.14(t,J=5.8Hz,2H),3.83(d,J=13.2Hz,2H),2.97(t,J=5.6Hz,2H),2.93–2.74(m,3H),2.70–2.52(m,3H),2.46–2.31(m,1H),2.30–2.18(m,1H),1.84–1.75(m,2H),1.39(s,9H),1.19–1.05(m,2H).
实施例48:WX048的盐酸盐
Figure PCTCN2019104989-appb-000110
室温和氮气保护下,将中间体WX045–1(0.1g,266.80μmol,盐酸盐)溶于1,2–二氯乙烷(3mL)中,然后依次加入1–甲磺酰基–4–哌啶酮(47.28mg,266.80μmol)和乙酸钠(43.77mg,533.60μmol),反应混合物在室温下搅拌反应10分钟,然后再加入三乙酰氧基硼氢化钠(113.09mg,533.60μmol),反应混合物在室 温下搅拌反应12小时。反应完毕后,反应液减压浓缩除去溶剂。所得残余物经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX048的盐酸盐。MS–ESI m/z:500.0[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),9.20(s,2H),8.14(d,J=9.2Hz,1H),7.99(s,1H),7.85–7.72(m,2H),7.59(d,J=2.4Hz,1H),7.30(dd,J=2.6,9.0Hz,1H),4.64(dd,J=4.2,11.8Hz,1H),4.43(t,J=4.6Hz,2H),3.67(d,J=12.0Hz,2H),3.47(s,2H),3.30–3.23(m,1H),2.91(s,3H),2.90–2.84(m,1H),2.83–2.76(m,2H),2.66–2.59(m,1H),2.46–2.38(m,1H),2.31–2.24(m,1H),2.19(d,J=11.2Hz,2H),1.76–1.60(m,2H).
实施例49:WX049
Figure PCTCN2019104989-appb-000111
室温和氮气保护下,将中间体WX029–1(0.3g,700.15μmol)溶于四氢呋喃(8mL)中,降温至0℃,加入丙烯酰胺(49.77mg,700.15μmol)和叔丁醇钾(700.15μL,1M)的四氢呋喃溶液,反应混合物恢复至室温并搅拌反应1小时。反应完毕后,向反应液中加入水(10mL),然后用乙酸乙酯(10mL×3)萃取。合并有机相,依次用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX049。MS–ESI m/z:475.0[M+Na] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.09(d,J=8.8Hz,1H),7.97(s,1H),7.75(s,2H),7.54(d,J=2.8Hz,1H),7.22(dd,J=2.4,9.2Hz,1H),4.63(dd,J=4.4,12.4Hz,1H),4.27–4.18(m,2H),3.66–3.56(m,2H),2.94–2.88(m,3H),2.88–2.83(m,1H),2.68–2.59(m,1H),2.46–2.31(m,1H),2.29–2.22(m,1H),1.38(s,9H).
实施例50:WX050的盐酸盐
Figure PCTCN2019104989-appb-000112
Figure PCTCN2019104989-appb-000113
室温下,将中间体WX045–1(100mg,266.80μmol,盐酸盐)溶于1,2–二氯乙烷(3mL)中,随后依次加入四氢吡喃酮(26.71mg,266.80μmol,24.51μL),醋酸钠(43.77mg,533.60μmol),反应混合物在室温下搅拌反应10分钟后,加入醋酸硼氢化钠(113.09mg,533.60μmol),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂,所得残余物经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX050的盐酸盐。MS–ESI m/z:423.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),9.18(s,2H),8.14(d,J=9.2Hz,1H),7.99(s,1H),7.83–7.75(m,2H),7.59(d,J=2.4Hz,1H),7.30(dd,J=2.4,9.2Hz,1H),4.64(dd,J=4.4,12.0Hz,1H),4.43(t,J=4.4Hz,2H),3.94(dd,J=4.0,11.2Hz,2H),3.51–3.36(m,4H),3.31–3.26(m,1H),2.97–2.81(m,1H),2.71–2.58(m,1H),2.45–2.35(m,1H),2.31–2.22(m,1H),2.07–1.97(m,2H),1.77–1.58(m,2H).
实施例51:WX051的盐酸盐
Figure PCTCN2019104989-appb-000114
室温下,将中间体WX045–1(100mg,266.80μmol,盐酸盐)溶于1,2–二氯乙烷(3mL)中,随后依次加入环己酮(26.18mg,266.80μmol,27.65μL),醋酸钠(43.77mg,533.60μmol),反应混合物在室温下搅拌反应10分钟后,加入醋酸硼氢化钠(113.09mg,533.60μmol),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂,所得残余物经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX051的盐酸盐。MS–ESI m/z:421.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.88(s,2H),8.14(d,J=9.2Hz,1H),7.99(s,1H),7.84–7.75(m,2H),7.58(d,J=2.4Hz,1H),7.29(dd,J=2.4,9.2Hz,1H),4.64(dd,J=4.4,11.6Hz,1H),4.41(t,J=4.8Hz,2H),3.51–3.39(m,2H), 3.20–3.04(m,1H),2.96–2.80(m,1H),2.73–2.58(m,1H),2.45–2.35(m,1H),2.30–2.22(m,1H),2.15–2.04(m,2H),1.86–1.74(m,2H),1.68–1.57(m,1H),1.44–1.19(m,4H),1.18–1.04(m,1H).
实施例52:WX052
Figure PCTCN2019104989-appb-000115
室温和氮气保护下,将中间体WX029–2(150mg,385.76μmol,盐酸盐)溶于1,2–二氯乙烷(5mL)中,加入N–叔丁氧羰基–4–哌啶酮(76.86mg,385.76μmol)和醋酸钠(31.64mg,385.76μmol),反应混合物升温至50℃并搅拌反应0.5小时。之后加入醋酸硼氢化钠(163.52mg,771.52μmol),反应混合物在50℃继续搅拌反应4小时。补加醋酸钠(31.64mg,385.76μmol),反应混合物升温至70℃并搅拌反应12小时。反应完毕后,冷却至室温,将反应液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX052。MS–ESI m/z:536.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.07(d,J=8.8Hz,1H),7.96(s,1H),7.77–7.71(m,2H),7.51(d,J=2.4Hz,1H),7.20(dd,J=2.6,9.0Hz,1H),4.63(dd,J=4.4,12.0Hz,1H),4.15(t,J=6.0Hz,2H),3.97(d,J=12.8Hz,2H),2.93–2.80(m,3H),2.78–2.63(m,2H),2.62–2.56(m,1H),2.43–2.37(m,1H),2.36–2.30(m,1H),2.29(s,3H),2.28–2.21(m,1H),1.76–1.65(m,2H),1.38(s,9H),1.34–1.21(m,2H).
实施例53:WX053的盐酸盐
Figure PCTCN2019104989-appb-000116
Figure PCTCN2019104989-appb-000117
室温和氮气保护下,将中间体WX029–2(100mg,257.17μmol,盐酸盐)溶于1,2–二氯乙烷(4mL)中,加入1–甲磺酰基–4–哌啶酮(45.58mg,257.17μmol)和醋酸钠(21.10mg,257.17μmol),反应混合物升温至50℃并搅拌反应0.5小时。之后加入醋酸硼氢化钠(109.01mg,514.35μmol),反应混合物在50℃下继续搅拌反应4小时。补加醋酸钠(21.10mg,257.17μmol),反应混合物升温至70℃并搅拌反应12小时。反应完毕后,冷却至室温,将反应液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX053的盐酸盐。MS–ESI m/z:514.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.12(s,1H),10.94(s,1H),8.12(d,J=8.8Hz,1H),7.98(s,1H),7.78(s,2H),7.60(d,J=2.8Hz,1H),7.30(dd,J=2.8,9.2Hz,1H),4.64(dd,J=4.2,12.2Hz,1H),4.60–4.51(m,2H),3.78–3.65(m,3H),2.92(s,3H),2.90–2.76(m,6H),2.68–2.58(m,1H),2.49–2.35(m,2H),2.34–2.13(m,4H),1.88–1.72(m,2H).
实施例54:WX054的盐酸盐
Figure PCTCN2019104989-appb-000118
0℃和氮气保护下,将中间体WX052(100mg,186.70μmol)溶于盐酸乙酸乙酯(4M,21.05mL)中,反应混合物在20℃下搅拌反应2小时。反应完毕后,过滤,所得滤饼减压浓缩除去溶剂,得到目标化合物WX054的盐酸盐。MS–ESI m/z:436.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.25(s,1H),10.94(s,1H),9.21(d,J=10.0Hz,1H),9.08(d,J=10.8Hz,1H),8.12(d,J=8.4Hz,1H),7.99(s,1H),7.78(s,2H),7.60(d,J=2.4Hz,1H),7.30(dd,J=2.6,9.0Hz,1H),4.69–4.50(m,3H),3.72–3.55(m,2H),3.42–3.38(m,2H),3.03–2.88(m,3H),2.84(d,J=4.4Hz,3H),2.70–2.58(m,1H),2.52–2.54(m,1H),2.47–2.21(m,4H),2.12–1.95(m,2H).
实施例55:WX055
Figure PCTCN2019104989-appb-000119
室温下,将中间体WX029–2(100mg,257.17μmol,盐酸盐)溶于1,2–二氯乙烷(4mL)中,加入四氢吡喃–4–酮(51.49mg,514.35umol,47.24μL),乙酸钠(21.10mg,257.17μmol),反应混合物升至50℃并搅拌反应30分钟,加入醋酸硼氢化钠(109.01mg,514.35μmol),反应混合物在50℃下搅拌反应2小时。补加醋酸硼氢化钠(109.01mg,514.35μmol),反应混合物升至75℃并搅拌反应2小时。反应完毕后,将反应液冷却至室温。减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX055。MS–ESI m/z:436.9[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.08(d,J=8.8Hz,1H),7.96(s,1H),7.75(d,J=1.6Hz,2H),7.52(d,J=2.4Hz,1H),7.21(dd,J=2.6,9.0Hz,1H),4.63(dd,J=4.6,12.2Hz,1H),4.17(t,J=6.2Hz,2H),3.89(dd,J=4.0,10.8Hz,2H),3.32–3.25(m,2H),2.92–2.82(m,3H),2.70–2.58(m,2H),2.45–2.36(m,1H),2.32(s,3H),2.29–2.22(m,1H),1.72–1.63(m,2H),1.52–1.38(m,2H).
实施例56:WX056的盐酸盐
Figure PCTCN2019104989-appb-000120
室温下,将中间体WX029–2(100mg,257.17μmol,盐酸盐)溶于1,2–二氯乙烷(4mL)中,加入1–甲基–4–哌啶酮(58.20mg,514.35μmol),乙酸钠(21.10mg,257.17μmol),反应混合物加热至50℃并搅拌反应30分钟,加入醋酸硼氢化钠(109.01mg,514.35μmol),反应混合物在50℃下搅拌反应2小时。补加醋酸硼氢化钠(109.01mg,514.35μmol),反应混合物加热至75℃并搅拌反应2小时。反应完毕后,将反应液冷却至室温,减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX056的盐酸盐。MS–ESI m/z:449.9[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.50(s,1H),11.14(s,1H),10.96(s,1H),8.14(d,J=8.4Hz,1H),8.01(s,1H),7.80(s,2H),7.62(d,J=2.4Hz,1H),7.33(dd,J=2.4,9.2Hz,1H),4.67(dd,J=4.6,12.2Hz,1H),4.63–4.58(m,2H),3.70–3.52(m,5H),3.13–2.99(m,2H),2.96–2.89(m,1H),2.87(d,J=4.4Hz,3H),2.74(d,J=4.4Hz,3H),2.70–2.59(m,1H),2.45–2.37(m,2H),2.36–2.18(m,4H).
实施例57:WX057
Figure PCTCN2019104989-appb-000121
步骤1:中间体WX057–1的合成
20℃和氮气保护下,将中间体WX031(300mg,682.66μmol)溶于盐酸乙酸乙酯(4M,20mL)中,反应混合物在20℃下搅拌反应3小时。反应完毕后,将反应液过滤,所得滤饼减压浓缩除去溶剂,得到中间体WX057–1的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),8.58(d,J=8.8Hz,1H),8.36(s,3H),8.08(s,1H),7.98(d,J=8.8Hz,1H),7.75(d,J=9.2Hz,1H),7.11(d,J=9.2Hz,1H),4.70–4.63(m,3H),3.36–3.23(m,2H),2.95–2.82(m,1H),2.71–2.61(m,1H),2.47–2.38(m,1H),2.36–2.23(m,1H).
步骤2:WX057的合成
室温和氮气保护下,将中间体WX057–1(165mg,439.06μmol,盐酸盐)溶于1,2–二氯乙烷(5mL)中,加入N–叔丁氧羰基–4–哌啶酮(87.48mg,439.06μmol)和醋酸钠(39.89mg,486.23μmol),反应混合物升温至50℃并搅拌反应0.5小时。之后加入醋酸硼氢化钠(186.11mg,878.11μmol),反应混合物升温至50℃并搅拌反应12小时。反应完毕后,冷却至室温,将反应液减压浓缩除去溶剂。所得残余物经过2次制备HPLC 分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX057。MS–ESI m/z:523.3[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.50(d,J=9.2Hz,1H),8.05(s,1H),7.93(d,J=8.8Hz,1H),7.69(d,J=8.8Hz,1H),7.06(d,J=9.2Hz,1H),4.64(dd,J=4.0,12.4Hz,1H),4.45(t,J=5.6Hz,2H),3.82(d,J=12.8Hz,2H),2.97(t,J=5.8Hz,2H),2.91–2.71(m,3H),2.69–2.58(m,2H),2.48–2.35(m,2H),2.34–2.20(m,1H),1.88–1.75(m,2H),1.39(s,9H),1.18–1.05(m,2H).
实验例1:多发性骨髓瘤细胞的IKZF3蛋白水平的体外测试
实验目的:
用WB的方法,研究化合物在不同浓度条件下对多发性骨髓瘤细胞MM.1S内IKZF3蛋白水平的调控。
实验方案:
1)将MM.1S细胞解冻并传代2次;
2)将MM.1S细胞以每孔1×10 6个细胞接种在6孔板中,然后用一定浓度的受试化合物处理;
3)处理16小时后,将培养的细胞样品溶解在置于冰上的拥有完整组蛋白酶抑制剂(Roche)的RIPA缓冲液(Sigma–Aldrich)或NETN缓冲液(150mM NaCl,1%NP–40,50mM Tris–HCl,pH=8.0)中,并静置20分钟;
4)在离心(转速:17950rpm)15分钟后,收集上层清液并进行蛋白定量测试(Pierce BCA蛋白测定试剂盒,Thermo);
5)通过SDS–PAGE分离等量的20μg蛋白,并转移到PVDF或尼龙膜(Invitrogen)上;
6)加入5%脱脂奶粉,然后在一抗anti–IKZF3(NBP2–24495,Novμs Biologicals)和anti–Actin(1844–1,Epitomics))的5%BSA中4℃孵育过夜;
7)最后用HRP连接的二抗(Goat–anti–rabbit IgG(sc–2004,Santa Cruz))反应1小时后,用化学发光底物(Thermo Scientific)检测膜上的条带。
实验结果如图1-3所示。
结论:
本发明化合物在100nM,或500nM和50nM浓度下处理多发性骨髓瘤细胞MM.1S后,WB检测显示细胞内IKZF3蛋白水平明显下降。
实验例2:在淋巴瘤细胞系OCI–LY10,DOHH2与Mino中的抗增殖作用评估
实验目的:本实验通过检测受试化合物分别在弥漫性大B细胞淋巴瘤细胞系OCI–LY10和DOHH2,以及套细胞淋巴瘤细胞系Mino中对细胞增殖的抑制作用。
实验材料:
1.细胞系及培养方法
细胞系 肿瘤类型 生长特点 培养方法
OCI–LY10 淋巴瘤 悬浮 RPMI 1640+10%FBS
DOHH2 淋巴瘤 悬浮 RPMI 1640+10%FBS
Mino 淋巴瘤 悬浮 RPMI 1640+15%FBS
2.培养基及试剂
培养基及试剂 生产商 货号
RPMI 1640 GIBCO 22400-089
Dulbecco's PBS Hyclone SH30256.01
FBS Hyclone SY30087.03
Antibiotic–antimycotic GIBCO 15240-062
0.25% Trypsin GIBCO 25200072
DMSO SIGMA D2650
2-mercaptoethanol SIGMA 60-24-2
3.多孔板
Greiner
Figure PCTCN2019104989-appb-000122
96-孔板,平底黑板(带盖及透明底),#655090。
4.细胞活性实验所用试剂及仪器
(1)Promega CellTiter–Glo发光法细胞活性检测试剂盒(Promega–G7573)。
(2)2104
Figure PCTCN2019104989-appb-000123
读板器,PerkinElmer。
实验方案:
1.细胞培养
将肿瘤细胞系按上述培养条件在37℃,5%CO 2的培养箱中进行培养。定期传代,取处于对数生长期的细胞用于铺板。
2.细胞铺板
(1).用台盼兰进行细胞染色并计数活细胞。
(2).将细胞浓度调整至合适浓度。
Cell line Density(per 96-well)
OCI–LY10 5000
DOHH2 5000
Mino 6000
(3).按上图所示在培养板中每孔加入90μL细胞悬液,在空白对照空中加入不含细胞的培养液。
(4).将培养板在37℃,5%CO 2,及100%相对湿度的培养箱中培养过夜。
3.化合物存储板制备
制备化合物起始浓度400倍浓度的母液存储板:将化合物用DMSO从最高浓度梯度稀释至最低浓度。每次现用现配。
4.10倍化合物工作液的配制及化合物处理细胞
(1).化合物起始浓度10倍浓度的工作液的配制:在V形底的96孔板中加入76μL细胞培养液,从化合物起始浓度200倍浓度的母液存储板中吸取4μL化合物加入96孔板的细胞培养液中。在溶媒对照和空白对照中 加入4μL DMSO。加入化合物或DMSO后用排枪吹打混匀在V形底的96孔板中加入78μL细胞培养液,从化合物起始浓度400倍浓度的母液存储板中吸取2μL化合物加入96孔板的细胞培养液中。在溶媒对照和空白对照中加入2μL DMSO。加入化合物或DMSO后用排枪吹打混匀。
(2).加药:取10μL的化合物起始浓度10倍浓度的工作液加入到细胞培养板中。在溶媒对照和空白对照中加入10μL DMSO-细胞培养液混合液。
(3).将96孔细胞板放回培养箱中培养OCI–LY10(5倍稀释,加药共孵育5天),DOHH2(3倍稀释,加药共孵育4天),Mino(3倍稀释,加药共孵育4天)。
5.CellTiter–Glo发光法细胞活性检测
以下步骤按照Promega CellTiter–Glo发光法细胞活性检测试剂盒(Promega–G7573)的说明书来进行。
(1).将CellTiter–Glo缓冲液融化并放置至室温。
(2).将CellTiter–Glo底物放置至室温。
(3).在一瓶CellTiter–Glo底物中加入10mL CellTiter–Glo缓冲液以溶解底物,从而配制CellTiter–Glo工作液。
(4).缓慢涡旋震荡使充分溶解。
(5).取出细胞培养板放置30分钟使其平衡至室温。
(6).在每孔中加入50μL(等于每孔中细胞培养液一半体积)的CellTiter–Glo工作液。用铝箔纸包裹细胞板以避光。
(7).将培养板在轨道摇床上振摇2分钟以诱导细胞裂解。
(8).培养板在室温放置10分钟以稳定发光信号。
(9).在2104EnVision读板器上检测发光信号。
6.数据分析
用下列公式来计算检测化合物的抑制率(Inhibition rate,IR):IR(%)=(RLU溶媒对照–RLU化合物)/(RLU溶媒对照–RLU空白对照)*100%.在Excel中计算不同浓度化合物的抑制率,然后用GraphPad Prism软件作抑制曲线图和计算相关参数,包括最小抑制率,最大抑制率及IC 50
实验结果:测试结果见表1。
表1本发明化合物在OCI–LY10,DOHH2与Mino细胞系中的细胞增殖抑制作用
化合物 OCI–LY10 IC 50(nM) DOHH2 IC 50(nM) Mino IC 50(nM)
WX002 26 97 8
WX004 17 144 7
WX005 / 165 10
“/”代表未检测。
结论:
本发明化合物在淋巴瘤细胞系OCI–LY10,DOHH2与Mino中均展现出优异细胞增殖的抑制作用。
实验例3:化合物的小鼠药代动力学评价
实验目的:
本研究受试动物选用C57BL雄性小鼠,应用LC/MS/MS法定量测定小鼠口服给予测试化合物和参比化合物不同时间点的血浆中的药物浓度,以评价受试药物在小鼠体内的药代动力学特征。
实验材料:
C57Balb/c(C57)小鼠(雄性,20-30g,7~10周龄,北京维通利华或上海斯莱克)。
实验操作:
将测试化合物的澄清或悬浮溶液经灌胃给予到C57小鼠(过夜禁食)。口服灌胃给药于0h(给药前)和给药后0.5,1,2,4,6,8,24h从颈静脉穿刺采血,置于添加了EDTA-K2的抗凝管(江苏康健医疗用品有限公司)中,将混合物充分涡旋混合并以13000rpm离心10分钟。采用LC-MS/MS法测定血药浓度,使用WinNonlin TM Version 6.3(Pharsight,Mountain View,CA)药动学软件,以非房室模型线性对数梯形法计算相关药代动力学参数。
实验结果:测试结果见表2。
表2本发明化合物在小鼠中的药代动力学参数
Figure PCTCN2019104989-appb-000124
结论:
实验结果表明,WX004,WX007,WX008的盐酸盐和WX020的盐酸盐的口服血浆系统暴露量(AUC 0- inf)较高。在啮齿动物小鼠中,WX004,WX007,WX008的盐酸盐和WX020的盐酸盐的药代动力学性质较优。
实验例4:化合物在人淋巴瘤OCI–LY10细胞皮下异种移植肿瘤CB–17 SCID模型的体内药效学研究
细胞培养:人淋巴瘤OCI–LY10细胞(National Cancer Institute)体外单层培养,培养条件为RPMI–1640培养基中加10%胎牛血清,100U/mL青霉素和100μg/mL链霉素,37℃,5%CO 2孵箱培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,接种。
动物:CB–17 SCID小鼠,雌性,6–8周龄,体重18–22克。
实验方案:
将0.2mL(10×10 6个)OCI–LY10细胞(加基质胶,体积比为1:1)皮下接种于每只小鼠的右后背,肿瘤平均体积达到约139mm 3时开始分组给药。七天为一个给药周期,每天给药一次,给药间隔24小时,将实验化合物口服给药,一共给药四个周期。受试化合物WX002给药剂量为60mg/kg,肿瘤体积每周两次用二维卡尺测量,体积以立方毫米计量,通过以下的公式计算:V=0.5a×b 2,其中a和b分别是肿瘤的长泾和短径。抗肿瘤药效是通过化合物处理过的动物的平均肿瘤增加体积除以未处理过的动物的平均肿瘤增加体积来确定。
实验结果:测试结果见表3。
表3本发明化合物在人淋巴瘤OCI–LY10细胞皮下异种移植肿瘤CB-17 SCID模型测试结果
Figure PCTCN2019104989-appb-000125
TGI:Tumor Growth Inhibition(肿瘤增长抑制率)。TGI(%)=[1–(某处理组给药结束时平均瘤体积—该处理组给药时平均瘤体积)/(溶剂对照组结束治疗时平均瘤体积—溶剂对照组开始治疗时平均瘤体积)]×100%。
结论:
本发明化合物WX002在人淋巴瘤OCI–LY10体内药效模型上展示了显著的缩瘤作用。

Claims (15)

  1. 式(Ⅰ)所示化合物或药学上可接受的盐,
    Figure PCTCN2019104989-appb-100001
    其中,
    n选自0、1、2和3;
    R 1选自H、卤素、OH、NH 2、CN、C 3-6环烷基、C 1-6烷基和C 1-6烷氧基,所述NH 2、C 3-6环烷基、C 1-6烷基和C 1-6烷氧基任选被1、2或3个R a取代;
    环A选自5~6元杂芳基、苯基、C 4-6环烷基、和4~7元杂环烷基;
    R a分别独立地选自F、Cl、Br、I、OH、NH 2、C 1-10烷氨基、C 1-10烷氧基、-C(=O)O-C 1-10烷基、4-10元杂环烷基、4-10元杂环烷基氨基、C 4-7环烷基氨基、C 4-7环烷基甲基氨基,其中,所述NH 2、C 1-10烷氨基、C 1-10烷氧基、-C(=O)O-C 1-10烷基、4-10元杂环烷基、4-10元杂环烷基氨基、C 4-7环烷基氨基、C 4-7环烷基甲基氨基任选被1、2或3个R取代;
    R分别独立地选自F、Cl、Br、I、OH、NH 2、Me、
    Figure PCTCN2019104989-appb-100002
    所述5~6元杂芳基、4~7元杂环烷基4-10元杂环烷基、4-10元杂环烷基氨基分别包含1、2、3或4个独立选自-NH-、-O-、-S-、
    Figure PCTCN2019104989-appb-100003
    和N的杂原子或杂原子团。
  2. 根据权利要求1所述化合物或药学上可接受的盐,其中,R a选自F、Cl、Br、I、OH、NH 2、C 1-6烷氨基、C 1-6烷氧基、-C(=O)O-C 1-6烷基、4-7元杂环烷基、4-7元杂环烷基氨基、C 4-7环烷基氨基、C 4-7环烷基甲基氨基,其中,所述NH 2、C 1-6烷氨基、C 1-6烷氧基、-C(=O)O-C 1-6烷基、4-7元杂环烷基、C 4-7环烷基氨基、4-7元杂环烷基氨基、C 4-7环烷基甲基氨基任选被1、2或3个R取代。
  3. 根据权利要求2所述化合物或药学上可接受的盐,其中,R a选自F、Cl、Br、I、OH、NH 2、C 1-3烷氨基、C 1-3烷氧基、-C(=O)O-C 1-4烷基、吡咯烷基、吗啉基、哌嗪基、哌啶基、3-氮杂双环[3,1,0]己烷基、硫代吗啉-1,1-二氧化物基、环己基氨基、哌啶基氨基、四氢吡喃基、四氢吡喃基氨基和环己基甲基氨基,其中,所述NH 2、C 1-3烷氨基、C 1-3烷氧基、-C(=O)O-C 1-4烷基、四氢吡咯基、吗啉基、哌嗪基、哌啶基、3-氮杂双环[3,1,0]己烷基、硫代吗啉-1,1-二氧化物基、环己基氨基、哌啶基氨基、四氢吡喃基、四氢吡喃基氨基和环己基甲基氨基任选被1、2或3个R取代。
  4. 根据权利要求3所述化合物或药学上可接受的盐,其中,R a选自
    Figure PCTCN2019104989-appb-100004
    Figure PCTCN2019104989-appb-100005
  5. 根据权利要求1~4任意一项所述化合物或药学上可接受的盐,其中,R 1选自H、NH 2、CN、C 3-6环烷基、C 1-3烷基和C 1-3烷氧基,其中,所述NH 2、C 3-6环烷基、C 1-3烷基和C 1-3烷氧基任选被1、2或3个R a取代。
  6. 根据权利要求5所述化合物或药学上可接受的盐,其中,R 1选自H、Me、CN、
    Figure PCTCN2019104989-appb-100006
    Figure PCTCN2019104989-appb-100007
    Figure PCTCN2019104989-appb-100008
  7. 根据权利要求1~3任意一项所述化合物或药学上可接受的盐,其中,环A选自苯基、吡啶基、吡咯基、吡唑基、1,3-二氧环戊烷基、吗啉基、恶唑基环丁基、氧杂环庚基、呋喃基、四氢呋喃基和1,4-氧氮杂环庚基。
  8. 根据权利要求7所述化合物或药学上可接受的盐,其中,环A选自苯基、吡啶基、吡咯基、吡唑基、1,3-二氧环戊烷基、呋喃基和四氢呋喃基。
  9. 根据权利要求8所述化合物或药学上可接受的盐,其中,结构单元
    Figure PCTCN2019104989-appb-100009
    选自
    Figure PCTCN2019104989-appb-100010
    Figure PCTCN2019104989-appb-100011
    Figure PCTCN2019104989-appb-100012
  10. 根据权利要求1~9任意一项所述化合物或其药学上可接受的盐,其选自
    Figure PCTCN2019104989-appb-100013
    其中,
    n、R 1、环A如权利要求1~9任意一项所定义。
  11. 下式所示化合物或其药学上可接受的盐,其选自
    Figure PCTCN2019104989-appb-100014
    Figure PCTCN2019104989-appb-100015
    Figure PCTCN2019104989-appb-100016
  12. 根据权利要求11所述化合物或其药学上可接受的盐,其选自
    Figure PCTCN2019104989-appb-100017
    Figure PCTCN2019104989-appb-100018
    Figure PCTCN2019104989-appb-100019
    Figure PCTCN2019104989-appb-100020
    Figure PCTCN2019104989-appb-100021
  13. 一种药物组合物,包括治疗有效量的根据权利要求1~12任意一项所述的化合物或其药学上可接受的盐作为活性成分以及药学上可接受的载体。
  14. 根据权利要求1~12任意一项所述的化合物或其药学上可接受的盐在制备治疗与CRBN蛋白相关疾病的药物中的应用。
  15. 根据权利要求13所述的组合物在制备治疗与CRBN蛋白相关疾病药物中的应用。
PCT/CN2019/104989 2018-09-07 2019-09-09 三环取代哌啶二酮类化合物 WO2020048546A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/274,206 US20210317109A1 (en) 2018-09-07 2019-09-09 Tricyclic substituted piperidine dione compound
CN201980058618.4A CN112689627B (zh) 2018-09-07 2019-09-09 三环取代哌啶二酮类化合物
JP2021512612A JP7098825B2 (ja) 2018-09-07 2019-09-09 三環式置換ピペリジンジオン類化合物
KR1020217010370A KR20210056397A (ko) 2018-09-07 2019-09-09 삼환식 치환 피페리딘 디온계 화합물
EP19856867.7A EP3848363B1 (en) 2018-09-07 2019-09-09 Tricyclic substituted piperidine dione compound

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201811044122 2018-09-07
CN201811044122.5 2018-09-07
CN201811353938 2018-11-14
CN201811353938.6 2018-11-14
CN201910223413.9 2019-03-22
CN201910223413 2019-03-22

Publications (1)

Publication Number Publication Date
WO2020048546A1 true WO2020048546A1 (zh) 2020-03-12

Family

ID=69723030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104989 WO2020048546A1 (zh) 2018-09-07 2019-09-09 三环取代哌啶二酮类化合物

Country Status (6)

Country Link
US (1) US20210317109A1 (zh)
EP (1) EP3848363B1 (zh)
JP (1) JP7098825B2 (zh)
KR (1) KR20210056397A (zh)
CN (1) CN112689627B (zh)
WO (1) WO2020048546A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021185291A1 (zh) * 2020-03-17 2021-09-23 南京明德新药研发有限公司 蛋白降解调节剂与其使用方法
WO2022194221A1 (zh) * 2021-03-17 2022-09-22 南京明德新药研发有限公司 呋喃稠环取代的戊二酰亚胺类化合物
WO2023001028A1 (zh) * 2021-07-19 2023-01-26 南京明德新药研发有限公司 杂芳-3-哌啶二酮类化合物及其应用
WO2023088406A1 (zh) * 2021-11-18 2023-05-25 正大天晴药业集团股份有限公司 稠合酰亚胺类衍生物
EP4043455A4 (en) * 2019-09-12 2023-09-20 Medshine Discovery Inc. BICYCLIC COMPOUND AS A CRBN PROTEIN REGULATOR
WO2024037616A1 (zh) * 2022-08-19 2024-02-22 正大天晴药业集团股份有限公司 包含环己基的化合物
WO2024055994A1 (zh) * 2022-09-14 2024-03-21 南京明德新药研发有限公司 萘并呋喃取代的戊二酰亚胺类化合物的晶型、制备方法及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7422139B2 (ja) * 2018-09-07 2024-01-25 チア タイ ティエンチン ファーマシューティカル グループ カンパニー リミテッド Crbnタンパク質に作用する三環式化合物
US11319330B2 (en) * 2018-09-07 2022-05-03 Medshine Discovery Inc. Tricyclic furan-substituted piperidinedione compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101080400A (zh) * 2004-09-03 2007-11-28 细胞基因公司 制备取代的2-(2,6-二氧代哌啶-3-基)-1-氧代异吲哚啉的方法
CN102245023A (zh) * 2008-11-14 2011-11-16 康瑟特制药公司 取代的二氧代哌啶基邻苯二甲酰亚胺衍生物
CN102379874A (zh) * 2002-05-17 2012-03-21 细胞基因公司 使用3-(4-氨基-1-氧代-1,3-二氢-异吲哚-2-基)-哌啶-2,6-二酮用于治疗和控制多发性骨髓瘤的方法及组合物
CN108409718A (zh) * 2018-03-27 2018-08-17 南通大学 芳香氮芥-度胺类缀合物及其制备方法和医药用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8877780B2 (en) * 2006-08-30 2014-11-04 Celgene Corporation 5-substituted isoindoline compounds
PT3202461T (pt) * 2010-02-11 2019-03-19 Celgene Corp Derivados arilmetoxi-indolina e composições que os compreendem e métodos para a sua utilização
WO2017197046A1 (en) * 2016-05-10 2017-11-16 C4 Therapeutics, Inc. C3-carbon linked glutarimide degronimers for target protein degradation
JP7422139B2 (ja) * 2018-09-07 2024-01-25 チア タイ ティエンチン ファーマシューティカル グループ カンパニー リミテッド Crbnタンパク質に作用する三環式化合物
US11319330B2 (en) * 2018-09-07 2022-05-03 Medshine Discovery Inc. Tricyclic furan-substituted piperidinedione compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102379874A (zh) * 2002-05-17 2012-03-21 细胞基因公司 使用3-(4-氨基-1-氧代-1,3-二氢-异吲哚-2-基)-哌啶-2,6-二酮用于治疗和控制多发性骨髓瘤的方法及组合物
CN101080400A (zh) * 2004-09-03 2007-11-28 细胞基因公司 制备取代的2-(2,6-二氧代哌啶-3-基)-1-氧代异吲哚啉的方法
CN102245023A (zh) * 2008-11-14 2011-11-16 康瑟特制药公司 取代的二氧代哌啶基邻苯二甲酰亚胺衍生物
CN108409718A (zh) * 2018-03-27 2018-08-17 南通大学 芳香氮芥-度胺类缀合物及其制备方法和医药用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3848363A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043455A4 (en) * 2019-09-12 2023-09-20 Medshine Discovery Inc. BICYCLIC COMPOUND AS A CRBN PROTEIN REGULATOR
WO2021185291A1 (zh) * 2020-03-17 2021-09-23 南京明德新药研发有限公司 蛋白降解调节剂与其使用方法
CN115380026A (zh) * 2020-03-17 2022-11-22 南京明德新药研发有限公司 蛋白降解调节剂与其使用方法
JP2023517393A (ja) * 2020-03-17 2023-04-25 メッドシャイン ディスカバリー インコーポレイテッド タンパク質分解調整剤およびその使用方法
CN115380026B (zh) * 2020-03-17 2023-11-07 南京明德新药研发有限公司 蛋白降解调节剂与其使用方法
WO2022194221A1 (zh) * 2021-03-17 2022-09-22 南京明德新药研发有限公司 呋喃稠环取代的戊二酰亚胺类化合物
TWI807697B (zh) * 2021-03-17 2023-07-01 大陸商南京明德新藥研發有限公司 呋喃稠環取代的戊二醯亞胺類化合物
WO2023001028A1 (zh) * 2021-07-19 2023-01-26 南京明德新药研发有限公司 杂芳-3-哌啶二酮类化合物及其应用
WO2023088406A1 (zh) * 2021-11-18 2023-05-25 正大天晴药业集团股份有限公司 稠合酰亚胺类衍生物
WO2024037616A1 (zh) * 2022-08-19 2024-02-22 正大天晴药业集团股份有限公司 包含环己基的化合物
WO2024055994A1 (zh) * 2022-09-14 2024-03-21 南京明德新药研发有限公司 萘并呋喃取代的戊二酰亚胺类化合物的晶型、制备方法及其应用

Also Published As

Publication number Publication date
EP3848363B1 (en) 2023-07-19
JP2021535184A (ja) 2021-12-16
CN112689627B (zh) 2022-03-29
CN112689627A (zh) 2021-04-20
EP3848363A1 (en) 2021-07-14
EP3848363A4 (en) 2022-08-10
KR20210056397A (ko) 2021-05-18
JP7098825B2 (ja) 2022-07-11
US20210317109A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2020048546A1 (zh) 三环取代哌啶二酮类化合物
WO2020048547A1 (zh) 三环并呋喃取代哌啶二酮类化合物
WO2022222995A1 (zh) 吡啶酰胺类化合物
WO2020048548A1 (zh) 一种作用于crbn蛋白的三并环类化合物
CN104159893B (zh) 哌啶化合物或其盐
CN108699035A (zh) 新化合物
CN104470903B (zh) 杂环化合物和它们的使用方法
WO2019154365A1 (zh) 一种atr抑制剂及其应用
PT2997023T (pt) Derivados de bipirazole como inibidores da jak
BR112016006692B1 (pt) Composto derivado de quinazolina, composição farmacêutica e seus usos
WO2020035065A1 (zh) 作为ret抑制剂的吡唑衍生物
CN111372937B (zh) 噻吩并二氮杂卓衍生物及其应用
CN107849053A (zh) 螺环化合物
WO2023217045A1 (zh) 选择性抑制parp1的氟代喹喔啉酮衍生物
WO2022194221A1 (zh) 呋喃稠环取代的戊二酰亚胺类化合物
WO2022194269A1 (zh) 新型egfr降解剂
TW202110848A (zh) 取代的稠合雙環類衍生物、其製備方法及其在醫藥上的應用
CN113874379B (zh) 作为Cdc7抑制剂的四并环类化合物
CN111315750B (zh) 作为mTORC1/2双激酶抑制剂的吡啶并嘧啶类化合物
US20230382923A1 (en) Fused tetracyclic quinazoline derivatives as inhibitors of erbb2
WO2022247770A1 (zh) 一种含氮杂环化合物、其制备方法及应用
JP2021517570A (ja) イミダゾピロロン化合物及びその使用
CN113766914A (zh) 戊烷脒的类似物和其用途
CN106336387A (zh) 酰胺类衍生物、其制备方法及其在医药上的用途
WO2023246914A1 (zh) 杂环取代的嘧啶并吡喃类化合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010370

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019856867

Country of ref document: EP

Effective date: 20210407