WO2021185291A1 - 蛋白降解调节剂与其使用方法 - Google Patents

蛋白降解调节剂与其使用方法 Download PDF

Info

Publication number
WO2021185291A1
WO2021185291A1 PCT/CN2021/081375 CN2021081375W WO2021185291A1 WO 2021185291 A1 WO2021185291 A1 WO 2021185291A1 CN 2021081375 W CN2021081375 W CN 2021081375W WO 2021185291 A1 WO2021185291 A1 WO 2021185291A1
Authority
WO
WIPO (PCT)
Prior art keywords
independently selected
reaction
ethyl acetate
compound
room temperature
Prior art date
Application number
PCT/CN2021/081375
Other languages
English (en)
French (fr)
Inventor
雷茂义
彭蕾
罗云富
徐雨
栗俊苗
邓新媛
康子圣
戈伟智
张国利
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to EP21771463.3A priority Critical patent/EP4122925A4/en
Priority to JP2022556672A priority patent/JP2023517393A/ja
Priority to CN202180024213.6A priority patent/CN115380026B/zh
Priority to US17/906,557 priority patent/US20230158152A1/en
Publication of WO2021185291A1 publication Critical patent/WO2021185291A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems

Definitions

  • the present invention relates to a type of protein degradation targeted chimera (PROTAC) and its application in preparing medicines for treating related diseases. Specifically, it relates to a compound represented by formula (I) or a pharmaceutically acceptable salt thereof.
  • PROTAC protein degradation targeted chimera
  • Proteolysis Targeting Chimera is a technology that uses the ubiquitin-proteasome system to target specific proteins and induce their degradation in cells.
  • the ubiquitin-proteasome system is the main pathway of intracellular protein degradation. Its normal physiological function is mainly responsible for the removal of intracellular degeneration, mutation or harmful proteins. The degradation of more than 80% of the intracellular protein depends on the ubiquitin-proteasome system.
  • PROTAC uses the cell's own protein destruction mechanism to remove specific target proteins in the cell.
  • the PROTAC molecule is a heterogeneous bifunctional small molecule consisting of a ligand that binds to the target protein, a ligand that binds to the E3 ubiquitin ligase, and a linker that connects the two ligands. It can be used at the same time. Binding target protein and E3 ubiquitin ligase to form a ternary complex. The mechanism of action is to make the target protein and E3 ligase close enough by binding to the target protein, so that E3 ligase can ubiquitinate and label the target protein, and then The process by which the proteasome degrades tagged proteins.
  • PROTAC molecules Compared with traditional small molecule drugs, PROTAC molecules have many potential advantages: 1) The most important thing is to change the target from "non-druggable” to "druggable". Most small molecule drugs or macromolecular antibodies require Long-term and high-strength binding to the active site of the target protease can take effect. However, more than 80% of the protein surface lacks obvious drug-making sites. It is difficult to target these proteins with current drug strategies. The PROTAC molecule is different. Above, as long as there are certain cracks or gaps on the protein surface, PROTAC molecules can capture and remove these proteins; 2) Remove protein accumulation, the binding of drugs and target proteins can cause the accumulation of target proteins, and PROTAC molecules can directly degrade the proteins.
  • PROTAC technology has been used to target a variety of proteins, including transcription factors, backbone proteins, enzymes and regulatory proteins. Therefore, PROTAC technology has very broad application prospects in the medical field, such as tumor, cardiovascular, degenerative and viral infections and other diseases.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • PTM is selected from drugs or derivatives thereof that bind to a targeted protein
  • L is the chain connecting PTM and ULM
  • ULM is selected from the structures shown in formulas (III-1) and (III-2),
  • R 1 and R 2 are each independently selected from H and C 1-3 alkyl
  • Ring X, ring Y, and ring Z are each independently selected from phenyl, thienyl, furyl, triazolyl, oxazolyl, isoxazolyl, pyrrolyl, and pyridyl.
  • the ULM is selected from formula (II-11), (II-12), (II-13), (II-1), (II-2), (II-3), The structures shown in (II-4), (III-21), (III-22), (III-23) and (III-24),
  • T 1 , T 2 and T 3 are independently selected from CH and N;
  • R 1 and R 2 are each independently selected from H and C 1-3 alkyl
  • Ring A, Ring B, and Ring C are each independently selected from phenyl, thienyl, furyl, pyrrolyl, and pyridyl.
  • the ring A is selected from phenyl and thienyl, and other variables are as defined in the present invention.
  • the ULM is selected from the structures represented by formulas (II-11-1), (II-11-2), (II-1-1) and (II-2-1),
  • T 1 and E 1 are as defined in the present invention.
  • the ring B is selected from phenyl, and other variables are as defined in the present invention.
  • the ULM is selected from the structures represented by formulas (II-12-1) and (III-21-1),
  • T 2 and E 2 are as defined in the present invention.
  • the ring C is selected from phenyl, and other variables are as defined in the present invention.
  • the ULM is selected from formula (II-13-1), (II-3-1), (II-4-2), (III-22-1), (III-23 -1) and the structure shown in (III-24-1),
  • T 3 and E 3 are as defined in the present invention.
  • the ULM is selected from
  • the PTM is selected from ALK, BET, CDK, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEE1, MEK, BCR-ABL, MET, RAS, BTK, VEGFR, JAK , HER2, HDAC, Akt, PI3K, mTOR, AR, ER, PDE ⁇ , SRC, MDM2, RAF, IRAK4, STAT3 and c-Myc drugs or their derivatives, and other variables are as defined in the present invention.
  • the PTM is selected from acting on ALK, BRD4, CDK4/6, CDK8, CDK9, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEEl, MEK, BCR-ABL, MET, KRAS , BTK, VEGFR, HER2, HDAC, Akt, PI3K, mTOR, AR, ER, PDE ⁇ , SRC, JAK, MDM2, RAF, IRAK4, STAT3 and c-Myc drugs or their derivatives, other variables are as defined in the present invention .
  • the PTM is selected from ALK, BRD4, CDK4/6, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEEl, MEK, BCR-ABL, MET, KRAS, EGFR, BTK , AR, ER, PDE ⁇ , JAK, MDM2 and RAF drugs or their derivatives, and other variables are as defined in the present invention.
  • the PTM is selected from,
  • T 10 , T 11 , T 12 and T 13 are each independently selected from N and CR ccc , and at most two of T 10 , T 11 , T 12 and T 13 are selected from N;
  • R a is selected from H, And NH 2 ;
  • R b is selected from H and CH 3 ;
  • R c is selected from H and
  • R d is selected from H, NH 2 and
  • R e is selected from H and
  • R f is selected from H and OH
  • R g is selected from H and OH
  • R h is selected from H and
  • R i is selected from H and CH 3 ;
  • R j is selected from H and CH 3 ;
  • R k is selected from H, NH 2 , NHCH 3 and
  • R l is selected from H
  • R m is selected from H and
  • R n is selected from H, NH 2 , NHCH 2 CH 3 and
  • R o is selected from H and CH 3 ;
  • R p is selected from H and CH 3 ;
  • R q is selected from H
  • R r is selected from H and
  • R s is selected from H, F and Cl;
  • R t is selected from H and Br
  • R aa is selected from H and phenyl
  • R bb and R cc are independently selected from H and CN;
  • R dd , R ff , R hh , R ii and R jj are independently selected from H, OCH 3 ,
  • R ee is selected from H and F;
  • R gg is selected from H and Cl
  • R kk is selected from H, OH and
  • R 11 and R mm are independently selected from H, F, Cl, Br, I, OH, and OCH 3 ;
  • R nn is selected from H, OH and
  • R oo is selected from H and OH
  • R pp is selected from H, OH and
  • R qq and R ss are each independently selected from H, F, Cl, Br, I, OH and OCH 3 ;
  • R tt is selected from H, OH and
  • Ruu is selected from H, F, Cl, Br, I, OH and OCH 3 ;
  • R vv is selected from H and
  • R ww is selected from H and
  • R xx is selected from H and OH
  • R yy , R zz and R aaa are independently selected from H and
  • R bbb is selected from H and
  • R ccc is selected from H, F, Cl, Br and I;
  • R ddd is selected from H and NH 2 .
  • the PTM is selected from,
  • 1, 2, or 3 CH 2 on L is replaced by cyclopropyl
  • the L is selected from the structure represented by formula (II-5), (II-6) and (IV-1)
  • E 8 is selected from 3-8 membered monoheterocycloalkyl, 5-14 membered bridged heterocycloalkyl and 5-14 membered spiroheterocycloalkyl;
  • E 9 and E 10 are independently selected from O and NH;
  • T 4 , T 7 , T 8 and T 9 are independently selected from CH and N;
  • R 7 , R 8 and R 9 are each independently selected from H and C 1-3 alkyl
  • n2, m3, m5, m6, m7, m8 and m9 are each independently selected from 0 or 1;
  • n1, m4 and m10 are independently selected from 0-15;
  • At least one of m1, m2, m3, m4, m5, m6, m7, m8, m9, and m10 is not 0;
  • n12 and m13 are independently selected from 0 or 1;
  • n11, m14 and m15 are independently selected from 0-15;
  • At least one of m11, m12, m13, m14, and m15 is not 0;
  • n17, m20 and m23 are independently selected from 0-15;
  • n 1;
  • At least one of m16, m17, m18, m19, m20, m21, m22, m23, and m24 is not 0;
  • the L is selected from the structure represented by formula (IV-1-1)
  • E 9 and E 10 are independently selected from O and NH;
  • R 9 is selected from H and CH 3 ;
  • m16 is selected from 0 or 1;
  • n17 is selected from 0, 1, 2 or 3;
  • n 1;
  • n21 and m22 are independently selected from 0 or 1;
  • m24 is selected from 0 or 1.
  • the L is selected from formula (I-4), (I-5), (I-6), (II-7), (II-8), (IV-2), Structure shown in (P-1) and (P-2)
  • R 3 , R 4 , R 5 and R 6 are each independently selected from H and C 1-3 alkyl;
  • n1, n4, and n5 are independently selected from 0-15, n2 and n3 are independently selected from 0 or 1, and at least one of n1, n2, n3, n4, and n5 is not 0;
  • n6, n7, n10, and n11 are independently selected from 0-15, n8 and n9 are independently selected from 0 or 1, and at least one of n6, n7, n8, n9, n10, and n11 is not 0;
  • n12, n13, n16, and n17 are independently selected from 0-15, n14 and n15 are independently selected from 0 or 1, and at least one of n12, n13, n14, n15, n16, and n17 is not 0;
  • n19 and n22 are independently selected from 0-15, n18, n20, and n21 are independently selected from 0 or 1, and at least one of n18, n19, n20, n21, and n22 is not 0;
  • E 6 and E 7 are independently selected from O and NH;
  • E 8 is selected from O and NH;
  • Ring D is selected from phenyl, piperidinyl, piperazinyl, 1,2,3-triazolyl, cyclobutyl and N-cyclobutyl;
  • E 11 is selected from O and NH
  • n23 is selected from 0 or 1
  • n24 is selected from 0-15, and at least one of n23 and n24 is not 0;
  • Ring F and ring G are each independently selected from piperidinyl and piperazinyl;
  • n25 is selected from 1-15;
  • n26 is selected from 0 and 1.
  • the L is selected from formula (I-4-1), (I-4-3), (I-4-4), (I-4-5), (I-4 -6), (II-I-4-7), (IV-2-1), (P-1-4-1), (P-II-8-1), (P-II-8-2 ), (P-II-8-3), (P-2-1), (P-1-4-2), (P-2-2) and (P-2-3),
  • R 3 is selected from H, CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 ;
  • R 6 is selected from H and CH 3 ;
  • n1 is selected from 0, 1, 2, 3, 4, 5, 6, 7 and 8;
  • n3 is selected from 0 and 1;
  • n4 is selected from 0, 1, 2, 3 and 4;
  • n5 is selected from 0, 1, 2, 3, 4, 5, 6, 7 and 8;
  • n18 is selected from 0 and 1;
  • n19 is selected from 0, 1, 2, 3, 4, 5, 6, 7 and 8;
  • n20 is selected from 0 and 1;
  • n21 is selected from 0 and 1;
  • n22 is selected from 0, 1, 2, 3, 4, 5, 6, 7 and 8;
  • n24 is selected from 0, 1, 2, 3, and 4.
  • the L is selected from the structure represented by formulas (I-5-1), (I-5-2), (I-5-3) and (I-5-4),
  • n6, n7, n10 and n11 are as defined in the present invention.
  • the L is selected from formula (I-6-1), (I-6-2), (I-6-3), (I-6-4), (I-6 -5), (I-6-6), (I-6-7), (I-6-8), (II-7-1), (IV-II-7-1) and (P-1 -1)
  • T 4 and T 5 are independently selected from CH and N, and one of them must be N;
  • T 6 and T 7 are independently selected from CH and N, and one of them must be C;
  • E 4 , E 5 , n12, n13, n15, n16 and n17 are as defined in the present invention.
  • n12a is selected from 1, 2 and 3;
  • n12b is selected from 0, 1, 2, 3 and 4;
  • n25 is selected from 1, 2, 4, and 5.
  • the L is selected from NH,
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • PTM is selected from drugs or derivatives thereof that bind to a targeted protein
  • L is the chain connecting PTM and ULM
  • ULM is selected from the structures shown in formulas (III-1) and (III-2),
  • R 1 and R 2 are each independently selected from H and C 1-3 alkyl
  • Ring X, ring Y and ring Z are each independently selected from phenyl, thienyl, furyl, triazolyl, oxazolyl, isoxazolyl, pyrrolyl and pyridyl.
  • the compound or a pharmaceutically acceptable salt thereof, wherein ULM is selected from formula (II-11), (II-12), (II-13), (II-1 ), (II-2), (II-3), (II-4), (III-21), (III-22), (III-23) and (III-24),
  • T 1 , T 2 and T 3 are independently selected from CH and N;
  • R 1 and R 2 are each independently selected from H and C 1-3 alkyl
  • Ring A, Ring B, and Ring C are each independently selected from phenyl, thienyl, furyl, pyrrolyl, and pyridyl.
  • the ring A is selected from phenyl and thienyl, and other variables are as defined in the present invention.
  • the ULM is selected from the structures represented by formulas (II-11-1), (II-11-2), (II-1-1) and (II-2-1),
  • T 1 and E 1 are as defined in the present invention.
  • the ring B is selected from phenyl, and other variables are as defined in the present invention.
  • the ULM is selected from the structures represented by formulas (II-12-1) and (III-21-1),
  • T 2 and E 2 are as defined in the present invention.
  • the ring C is selected from phenyl, and other variables are as defined in the present invention.
  • the ULM is selected from formula (II-13-1), (II-3-1), (II-3-2), (III-22-1), (III-23 -1) and the structure shown in (III-24-1),
  • T 3 and E 3 are as defined in the present invention.
  • the ULM is selected from
  • the PTM is selected from ALK, BET, CDK, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEE1, MEK, BCR-ABL, MET, RAS, BTK, VEGFR, JAK , HER2, HDAC, Akt, PI3K, mTOR, AR, ER, SRC, MDM2, RAF, IRAK4, STAT3 and c-Myc drugs or their derivatives, and other variables are as defined in the present invention.
  • the PTM is selected from acting on ALK, BRD4, CDK4/6, CDK8, CDK9, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEEl, MEK, BCR-ABL, MET, KRAS , BTK, VEGFR, HER2, HDAC, Akt, PI3K, mTOR, AR, ER, SRC, JAK, MDM2 and RAF drugs or their derivatives, and other variables are as defined in the present invention.
  • the PTM is selected from ALK, BRD4, CDK4/6, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEEl, MEK, BCR-ABL, MET, KRAS, EGFR, BTK , AR, ER, JAK, MDM2 and RAF drugs or their derivatives, and other variables are as defined in the present invention.
  • the PTM is selected from,
  • T 10 , T 11 , T 12 and T 13 are each independently selected from N and CR ccc , and at most two of T 10 , T 11 , T 12 and T 13 are selected from N;
  • R a is selected from H and
  • R b is selected from H and CH 3 ;
  • R c is selected from H and
  • R d is selected from H, NH 2 and
  • R e is selected from H and
  • R f is selected from H and OH
  • R g is selected from H and OH
  • R h is selected from H and
  • R i is selected from H and CH 3 ;
  • R j is selected from H and CH 3 ;
  • R k is selected from H, NH 2 , NHCH 3 and
  • R l is selected from H
  • R m is selected from H and
  • R n is selected from H, NH 2 , NHCH 2 CH 3 and
  • R o is selected from H and CH 3 ;
  • R p is selected from H and CH 3 ;
  • R q is selected from H
  • R r is selected from H and
  • R s is selected from H, F and Cl;
  • R t is selected from H and Br
  • R aa is selected from H and phenyl
  • R bb and R cc are independently selected from H and CN;
  • R dd , R ff , R hh , R ii and R jj are independently selected from H, OCH 3 ,
  • R ee is selected from H and F;
  • R gg is selected from H and Cl
  • R kk is selected from H, OH and
  • R 11 and R mm are independently selected from H, F, Cl, Br, I, OH, and OCH 3 ;
  • R nn is selected from H, OH and
  • R oo is selected from H and OH
  • R pp is selected from H, OH and
  • R qq and R ss are each independently selected from H, F, Cl, Br, I, OH and OCH 3 ;
  • R tt is selected from H, OH and
  • Ruu is selected from H, F, Cl, Br, I, OH and OCH 3 ;
  • R vv is selected from H and
  • R ww is selected from H and
  • R xx is selected from H and OH
  • R yy , R zz and R aaa are independently selected from H and
  • R bbb is selected from H and
  • R ccc is selected from H, F, Cl, Br and I;
  • the PTM is selected from,
  • the L is selected from the structure represented by formula (II-5), (II-6) and (IV-1)
  • E 8 is selected from 3-8 membered monoheterocycloalkyl, 5-14 membered bridged cycloalkyl and 5-14 membered spirocycloalkyl;
  • E 9 and E 10 are independently selected from O and NH;
  • T 4 , T 7 , T 8 and T 9 are independently selected from CH and N;
  • R 7 , R 8 and R 9 are each independently selected from H and C 1-3 alkyl
  • n2, m3, m5, m6, m7, m8 and m9 are each independently selected from 0 or 1;
  • n1, m4 and m10 are independently selected from 0-15;
  • At least one of m1, m2, m3, m4, m5, m6, m7, m8, m9, and m10 is not 0;
  • n12 and m13 are independently selected from 0 or 1;
  • n11, m14 and m15 are independently selected from 0-15;
  • At least one of m11, m12, m13, m14, and m15 is not 0;
  • n17, m20 and m23 are independently selected from 0-15;
  • n 1;
  • At least one of m16, m17, m18, m19, m20, m21, m22, m23, and m24 is not zero.
  • the L is selected from the structure represented by formula (IV-1-1)
  • E 9 and E 10 are independently selected from O and NH;
  • R 9 is selected from H and CH 3 ;
  • m16 is selected from 0 or 1;
  • n17 is selected from 0, 1, 2 or 3;
  • n 1;
  • n21 and m22 are independently selected from 0 or 1;
  • m24 is selected from 0 or 1.
  • the L is selected from the group consisting of formula (I-4), (I-5), (I-6), (II-7), (II-8) and (IV-2). Show structure
  • R 3 , R 4 , R 5 and R 6 are each independently selected from H and C 1-3 alkyl;
  • n1, n4, and n5 are independently selected from 0-15, n2 and n3 are independently selected from 0 or 1, and at least one of n1, n2, n3, n4, and n5 is not 0;
  • n6, n7, n10, and n11 are independently selected from 0-15, n8 and n9 are independently selected from 0 or 1, and at least one of n6, n7, n8, n9, n10, and n11 is not 0;
  • n12, n13, n16, and n17 are independently selected from 0-15, n14 and n15 are independently selected from 0 or 1, and at least one of n12, n13, n14, n15, n16, and n17 is not 0;
  • n19 and n22 are independently selected from 0-15, n18, n20, and n21 are independently selected from 0 or 1, and at least one of n18, n19, n20, n21, and n22 is not 0;
  • E 6 and E 7 are independently selected from O and NH;
  • Ring D is selected from phenyl, piperidinyl, piperazinyl, 1,2,3-triazolyl, cyclobutyl and N-cyclobutyl;
  • E 11 is selected from O and NH
  • n23 is selected from 0 or 1
  • n24 is selected from 0-15
  • at least one of n23 and n24 is not zero.
  • the L is selected from formula (I-4-1), (I-4-2), (I-4-3), (I-4-4), (I-4 -5), (I-4-6), (II-I-4-7), (II-8-1) and (IV-2-1) shown in the structure,
  • R 3 is selected from H, CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 ;
  • n1 is selected from 0, 1, 2, 3, 4, 5, 6, 7 and 8;
  • n3 is selected from 0 and 1;
  • n4 is selected from 0, 1, 2, 3 and 4;
  • n5 is selected from 0, 1, 2, 3, 4, 5, 6, 7 and 8;
  • n18 is selected from 0 and 1;
  • n19 is selected from 0, 1, 2, 3 and 4;
  • n20 is selected from 0 and 1;
  • n21 is selected from 0 and 1;
  • n24 is selected from 0, 1, 2, 3, and 4.
  • the L is selected from the structure represented by formulas (I-5-1), (I-5-2), (I-5-3) and (I-5-4),
  • n6, n7, n10 and n11 are as defined in the present invention.
  • the L is selected from formula (I-6-1), (I-6-2), (I-6-3), (I-6-4), (I-6 -5), (I-6-6), (I-6-7), (I-6-8), (II-7-1) and (IV-II-7-1) shown in the structure,
  • T 4 and T 5 are independently selected from CH and N, and one of them must be N;
  • T 6 and T 7 are independently selected from CH and N, and one of them must be C;
  • E 4 , E 5 , n12, n13, n15, n16 and n17 are as defined in the present invention.
  • n12a is selected from 1, 2 and 3;
  • n12b is selected from 0, 1, 2, 3, and 4.
  • the L is selected from NH,
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • PTM is selected from drugs or derivatives thereof that bind to a targeted protein
  • L is the chain connecting PTM and ULM
  • ULM is selected from the structures shown in formulas (III-1) and (III-2),
  • R 1 and R 2 are each independently selected from H and C 1-3 alkyl
  • Ring X, ring Y, and ring Z are each independently selected from phenyl, thienyl, furyl, triazolyl, oxazolyl, isoxazolyl, pyrrolyl, and pyridyl.
  • the compound or a pharmaceutically acceptable salt thereof, wherein ULM is selected from formula (II-11), (II-12), (II-13), (II-1 ), (II-2), (II-3), (II-4), (III-21), (III-22), (III-23) and (III-24),
  • T 1 , T 2 and T 3 are independently selected from CH and N;
  • R 1 and R 2 are each independently selected from H and C 1-3 alkyl
  • Ring A, Ring B, and Ring C are each independently selected from phenyl, thienyl, furyl, pyrrolyl, and pyridyl.
  • the ring A is selected from phenyl and thienyl, and other variables are as defined in the present invention.
  • the ULM is selected from the structures represented by formulas (II-11-1), (II-11-2), (II-1-1) and (II-2-1),
  • T 1 and E 1 are as defined in the present invention.
  • the ring B is selected from phenyl, and other variables are as defined in the present invention.
  • the ULM is selected from the structures represented by formulas (II-12-1) and (III-21-1),
  • T 2 and E 2 are as defined in the present invention.
  • the ring C is selected from phenyl, and other variables are as defined in the present invention.
  • the ULM is selected from formula (II-13-1), (II-3-1), (II-3-2), (III-22-1), (III-23 -1) and the structure shown in (III-24-1),
  • T 3 and E 3 are as defined in the present invention.
  • the ULM is selected from
  • the PTM is selected from the group consisting of ALK, BET, CDK, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEE1, MEK, BCR-ABL, MET, RAS, BTK, VEGFR, JAK , HER2, HDAC, Akt, PI3K, mTOR, AR, ER, SRC, MDM2 and RAF drugs or their derivatives, and other variables are as defined in the present invention.
  • the PTM is selected from acting on ALK, BRD4, CDK4/6, CDK8, CDK9, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEEl, MEK, BCR-ABL, MET, KRAS , BTK, VEGFR, HER2, HDAC, Akt, PI3K, mTOR, AR, ER, SRC, JAK, MDM2 and RAF drugs or their derivatives, and other variables are as defined in the present invention.
  • the PTM is selected from ALK, BRD4, CDK4/6, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEEl, MEK, BCR-ABL, MET, KRAS, EGFR, BTK , AR, JAK, MDM2 and RAF drugs or their derivatives, and other variables are as defined in the present invention.
  • the PTM is selected from,
  • R a is selected from H and
  • R b is selected from H and CH 3 ;
  • R c is selected from H and
  • R d is selected from H, NH 2 and
  • R e is selected from H and
  • R f is selected from H and OH
  • R g is selected from H and OH
  • R h is selected from H and
  • R i is selected from H and CH 3 ;
  • R j is selected from H and CH 3 ;
  • R k is selected from H, NH 2 , NHCH 3 and
  • R l is selected from H
  • R m is selected from H and
  • R n is selected from H, NH 2 , NHCH 2 CH 3 and
  • R o is selected from H and CH 3 ;
  • R p is selected from H and CH 3 ;
  • R q is selected from H
  • R r is selected from H and
  • R s is selected from H, F and Cl;
  • R t is selected from H and Br
  • R aa is selected from H and phenyl
  • R bb and R cc are independently selected from H and CN;
  • R dd , R ff , R hh , R ii and R jj are independently selected from H, OCH 3 ,
  • R ee is selected from H and F;
  • R gg is selected from H and Cl
  • the PTM is selected from,
  • the L is selected from the structure represented by formula (II-5) and (II-6)
  • E 8 is selected from 3-8 membered monoheterocycloalkyl, 5-14 membered bridged cycloalkyl, 5-14 membered spirocycloalkyl;
  • T 4 , T 7 , T 8 and T 9 are independently selected from CH and N;
  • R 7 and R 8 are each independently selected from H and C 1-3 alkyl
  • n2, m3, m5, m6, m7, m8 and m9 are each independently selected from 0 or 1;
  • n1, m4 and m10 are independently selected from 0-15;
  • At least one of m1, m2, m3, m4, m5, m6, m7, m8, m9, and m10 is not 0;
  • n12 and m13 are independently selected from 0 or 1;
  • n11, m14 and m15 are independently selected from 0-15;
  • At least one of m11, m12, m13, m14, and m15 is not zero.
  • the L is selected from the structure represented by formula (I-4), (I-5), (I-6), (II-7) and (II-8)
  • R 3 , R 4 , R 5 and R 6 are each independently selected from H and C 1-3 alkyl;
  • n1, n4, and n5 are independently selected from 0-15, n2 and n3 are independently selected from 0 or 1, and at least one of n1, n2, n3, n4, and n5 is not 0;
  • n6, n7, n10, and n11 are independently selected from 0-15, n8 and n9 are independently selected from 0 or 1, and at least one of n6, n7, n8, n9, n10, and n11 is not 0;
  • n12, n13, n16, and n17 are independently selected from 0-15, n14 and n15 are independently selected from 0 or 1, and at least one of n12, n13, n14, n15, n16, and n17 is not 0;
  • n19 and n22 are independently selected from 0-15, n18, n20, and n21 are independently selected from 0 or 1, and at least one of n18, n19, n20, n21, and n22 is not 0;
  • E 6 and E 7 are independently selected from O and NH;
  • Ring D is selected from phenyl, piperidinyl, piperazinyl, 1,2,3-triazolyl, cyclobutyl and N-cyclobutyl.
  • the L is selected from formula (I-4-1), (I-4-2), (I-4-3), (I-4-4), (I-4 -5), (I-4-6), (II-I-4-7) and (II-8-1) shown in the structure,
  • R 3 is selected from H, CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 ;
  • n1 is selected from 0, 1, 2, 3, 4, 5, 6, 7 and 8;
  • n3 is selected from 0 and 1;
  • n4 is selected from 0, 1, 2, 3 and 4;
  • n5 is selected from 0, 1, 2, 3, 4, 5, 6, 7 and 8;
  • n18 is selected from 0 and 1;
  • n19 is selected from 0, 1, 2, 3 and 4;
  • n20 is selected from 0 and 1;
  • n21 is selected from 0 and 1.
  • the L is selected from the structure represented by formulas (I-5-1), (I-5-2), (I-5-3) and (I-5-4),
  • n6, n7, n10 and n11 are as defined in the present invention.
  • the L is selected from formula (I-6-1), (I-6-2), (I-6-3), (I-6-4), (I-6 -5), (I-6-6), (I-6-7), (I-6-8) and (II-7-1) shown in the structure,
  • T 4 and T 5 are independently selected from CH and N, and one of them must be N;
  • T 6 and T 7 are independently selected from CH and N, and one of them must be C;
  • E 4 , E 5 , n12, n13, n15, n16 and n17 are as defined in the present invention.
  • the L is selected from NH,
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • PTM is selected from drugs or derivatives thereof that act on targeted proteins
  • L is the chain connecting PTM and ULM
  • ULM is selected from the structures represented by formulas (II-11), (II-12), (II-13), (II-1), (II-2), (II-3) and (II-4),
  • T 1 , T 2 and T 3 are independently selected from CH and N;
  • R 1 and R 2 are each independently selected from H and C 1-3 alkyl
  • Ring A, Ring B, and Ring C are each independently selected from phenyl, thienyl, furyl, pyrrolyl, and pyridyl.
  • the ring A is selected from phenyl and thienyl, and other variables are as defined in the present invention.
  • the ULM is selected from the structures represented by formulas (II-11-1), (II-11-2), (II-1-1) and (II-2-1),
  • T 1 and E 1 are as defined in the present invention.
  • the ring B is selected from phenyl, and other variables are as defined in the present invention.
  • the ULM is selected from the structure represented by formula (II-12-1),
  • T 2 and E 2 are as defined in the present invention.
  • the ring C is selected from phenyl, and other variables are as defined in the present invention.
  • the ULM is selected from the structures represented by formulas (II-13-1), (II-3-1) and (II-3-2),
  • T 3 and E 3 are as defined in the present invention.
  • the ULM is selected from
  • the PTM is selected from the group consisting of ALK, BET, CDK, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEE1, MEK, BCR-ABL, MET, RAS, BTK, VEGFR, JAK , HER2, HDAC, Akt, PI3K, mTOR, AR, ER, SRC, MDM2 and RAF drugs or their derivatives, and other variables are as defined in the present invention.
  • the PTM is selected from acting on ALK, BRD4, CDK4/6, CDK8, CDK9, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEEl, MEK, BCR-ABL, MET, KRAS , BTK, VEGFR, HER2, HDAC, Akt, PI3K, mTOR, AR, ER, SRC, JAK, MDM2 and RAF drugs or their derivatives, and other variables are as defined in the present invention.
  • the PTM is selected from ALK, BRD4, CDK4/6, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEEl, MEK, BCR-ABL, MET, KRAS, EGFR, BTK , AR, JAK, MDM2 and RAF drugs or their derivatives, and other variables are as defined in the present invention.
  • the PTM is selected from,
  • R a is selected from H and
  • R b is selected from H and CH 3 ;
  • R c is selected from H and
  • R d is selected from H, NH 2 and
  • R e is selected from H and
  • R f is selected from H and OH
  • R g is selected from H and OH
  • R h is selected from H and
  • R i is selected from H and CH 3 ;
  • R j is selected from H and CH 3 ;
  • R k is selected from H, NH 2 , NHCH 3 and
  • R l is selected from H
  • R m is selected from H and
  • R n is selected from H, NH 2 , NHCH 2 CH 3 and
  • R o is selected from H and CH 3 ;
  • R p is selected from H and CH 3 ;
  • R q is selected from H
  • R r is selected from H and
  • R s is selected from H, F and Cl;
  • R t is selected from H and Br
  • R aa is selected from H and phenyl
  • R bb and R cc are independently selected from H and CN;
  • R dd , R ff , R hh , R ii and R jj are independently selected from H, OCH 3 ,
  • R ee is selected from H and F;
  • R gg is selected from H and Cl
  • the PTM is selected from,
  • the L is selected from a C 1-20 alkyl group, the CH 2 on L is replaced by 1, 2 or 3 cyclopropyl groups, and 1, 2 or 3 CH 2 on L is replaced by a ring.
  • the L is selected from the structure represented by formula (II-5) and (II-6)
  • E 8 is selected from 3-8 membered monoheterocycloalkyl, 5-14 membered bridged cycloalkyl, 5-14 membered spirocycloalkyl;
  • T 4 , T 7 , T 8 and T 9 are independently selected from CH and N;
  • R 7 and R 8 are each independently selected from H and C 1-3 alkyl
  • n2, m3, m5, m6, m7, m8 and m9 are each independently selected from 0 or 1;
  • n1, m4 and m10 are independently selected from 0-15;
  • At least one of m1, m2, m3, m4, m5, m6, m7, m8, m9, and m10 is not 0;
  • n12 and m13 are independently selected from 0 or 1;
  • n11 and m14 are independently selected from 0-15, respectively.
  • the L is selected from the structure represented by formula (I-4), (I-5), (I-6), (II-7) and (II-8)
  • R 3 , R 4 , R 5 and R 6 are each independently selected from H and C 1-3 alkyl;
  • n1, n4, and n5 are independently selected from 0-15, n2 and n3 are independently selected from 0 or 1, and at least one of n1, n2, n3, n4, and n5 is not 0;
  • n6, n7, n10, and n11 are independently selected from 0-15, n8 and n9 are independently selected from 0 or 1, and at least one of n6, n7, n8, n9, n10, and n11 is not 0;
  • n12, n13, n16, and n17 are independently selected from 0-15, n14 and n15 are independently selected from 0 or 1, and at least one of n12, n13, n14, n15, n16, and n17 is not 0;
  • n19 and n22 are independently selected from 0-15, n18, n20, and n21 are independently selected from 0 or 1, and at least one of n18, n19, n20, n21, and n22 is not 0;
  • E 6 and E 7 are independently selected from O and NH;
  • Ring D is selected from phenyl, piperidinyl, piperazinyl, 1,2,3-triazolyl, cyclobutyl and N-cyclobutyl.
  • the L is selected from formula (I-4-1), (I-4-2), (I-4-3), (I-4-4), (I-4 -5), (I-4-6), (II-I-4-7) and (II-8-1) shown in the structure,
  • R 3 is selected from H, CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 ;
  • n1 is selected from 0, 1, 2, 3, 4, 5, 6, 7 and 8;
  • n3 is selected from 0 and 1;
  • n4 is selected from 0, 1, 2, 3 and 4;
  • n5 is selected from 0, 1, 2, 3, 4, 5, 6, 7 and 8;
  • n18 is selected from 0 and 1;
  • n19 is selected from 0, 1, 2, 3 and 4;
  • n20 is selected from 0 and 1;
  • n21 is selected from 0 and 1.
  • the L is selected from the structure represented by formulas (I-5-1), (I-5-2), (I-5-3) and (I-5-4),
  • n6, n7, n10 and n11 are as defined in the present invention.
  • the L is selected from formula (I-6-1), (I-6-2), (I-6-3), (I-6-4), (I-6 -5), (I-6-6), (I-6-7), (I-6-8) and (II-7-1) shown in the structure,
  • T 4 and T 5 are independently selected from CH and N, and one of them must be N;
  • T 6 and T 7 are independently selected from CH and N, and one of them must be C;
  • E 4 , E 5 , n12, n13, n15, n16 and n17 are as defined in the present invention.
  • the L is selected from NH,
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • PTM is selected from drugs or derivatives thereof that act on targeted proteins
  • L is the chain connecting PTM and ULM
  • ULM is selected from the structures shown in formulas (I-1), (I-2) and (I-3),
  • T 1 , T 2 and T 3 are independently selected from CH and N;
  • R 1 and R 2 are each independently selected from H and C 1-3 alkyl
  • Ring A, Ring B and Ring C are each independently selected from phenyl, thienyl, furyl and pyrrolyl;
  • the carbon atom with "*" is a chiral carbon atom and exists in the form of (R) or (S) single enantiomer or enriched in one enantiomer.
  • the above-mentioned ring A is selected from phenyl and thienyl, and other variables are as defined in the present invention.
  • the above ULM is selected from the structure represented by formula (I-1-1) and (I-1-2),
  • T 1 and E 1 are as defined in the present invention.
  • the carbon atom with "*" is a chiral carbon atom and exists in the form of (R) or (S) single enantiomer or enriched in one enantiomer.
  • the above-mentioned ring B is selected from phenyl, and other variables are as defined in the present invention.
  • the above ULM is selected from the structure represented by formula (I-2-1),
  • T 2 and E 2 are as defined in the present invention.
  • the carbon atom with "*" is a chiral carbon atom and exists in the form of (R) or (S) single enantiomer or enriched in one enantiomer. .
  • the above-mentioned ring C is selected from phenyl, and other variables are as defined in the present invention.
  • the above ULM is selected from the structure represented by formula (I-3-1),
  • T 3 and E 3 are as defined in the present invention.
  • the carbon atom with "*" is a chiral carbon atom and exists in the form of (R) or (S) single enantiomer or enriched in one enantiomer.
  • the above ULM is selected from
  • the above-mentioned PTM is selected from acting on ALK, BET, CDK, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEE1, MEK, BCR-ABL, MET, RAS, BTK, VEGFR, JAK, HER2, HDAC, Akt, PI3K, mTOR, AR, ER and SRC drugs or their derivatives, and other variables are as defined in the present invention.
  • the above-mentioned PTM is selected from acting on ALK, BRD4, CDK4/6, CDK8, CDK9, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEE1, MEK, BCR-ABL, MET, KRAS, BTK, VEGFR, HER2, HDAC, Akt, PI3K, mTOR, AR, ER, SRC and JAK drugs or their derivatives, other variables are as defined in the present invention, and other variables are as defined in the present invention.
  • the above-mentioned PTM is selected from acting on ALK, BRD4, CDK4/6, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEEl, MEK, BCR-ABL, MET, KRAS, EGFR, BTK and JAK drugs or derivatives thereof, and other variables are as defined in the present invention.
  • the above-mentioned PTM is selected from,
  • R a is selected from H and
  • R b is selected from H and CH 3 ;
  • R c is selected from H and
  • R d is selected from H, NH 2 and
  • R e is selected from H and
  • R f is selected from H and OH
  • R g is selected from H and OH
  • R h is selected from H and
  • R i is selected from H and CH 3 ;
  • R j is selected from H and CH 3 ;
  • R k is selected from H, NH 2 , NHCH 3 and
  • R l is selected from H
  • R m is selected from H and
  • R n is selected from H, NH 2 , NHCH 2 CH 3 and
  • R o is selected from H and CH 3 ;
  • R p is selected from H and CH 3 ;
  • R q is selected from H
  • R r is selected from H and Other variables are as defined in the present invention.
  • the above-mentioned PTM is selected from,
  • the above-mentioned L is selected from the structure represented by formula (I-4), (I-5), (I-6)
  • R 3 , R 4 and R 5 are each independently selected from H and C 1-3 alkyl;
  • n1, n4, and n5 are independently selected from 0-15, n2 and n3 are independently selected from 0 or 1, and at least one of n1, n2, n3, n4, and n5 is not 0;
  • n6, n7, n10, and n11 are independently selected from 0-15, n8 and n9 are independently selected from 0 or 1, and at least one of n6, n7, n8, n9, n10, and n11 is not 0;
  • n12, n13, n16, and n17 are independently selected from 0-15, n14 and n15 are independently selected from 0 or 1, and at least one of n12, n13, n14, n15, n16, and n17 is not 0;
  • Ring D is selected from phenyl, piperidinyl, piperazinyl, 1,2,3-triazolyl, cyclobutyl and N-cyclobutyl, and other variables are as defined in the present invention.
  • the above-mentioned L is selected from formula (I-4-1), (I-4-2), (I-4-3), (I-4-4), (I-4- 5) and the structure shown in (I-4-6),
  • R 3 , n1, n4 and n5 are as defined in the present invention.
  • the above-mentioned L is selected from the structures represented by formulas (I-5-1), (I-5-2), (I-5-3) and (I-5-4),
  • n6, n7, n10 and n11 are as defined in the present invention.
  • the above-mentioned L is selected from formula (I-6-1), (I-6-2), (I-6-3), (I-6-4), (I-6- 5) The structure shown in (I-6-6), (I-6-7) and (I-6-8),
  • T 4 and T 5 are independently selected from CH and N, and one of them must be N;
  • T 6 and T 7 are independently selected from CH and N, and one of them must be C;
  • E 4 , E 5 , n12, n13, n15, n16 and n17 are as defined in the present invention.
  • the above-mentioned L is selected from,
  • the present invention also provides a compound represented by the following formula or a pharmaceutically acceptable salt thereof,
  • the present invention also provides the compound or a pharmaceutically acceptable salt thereof in preparation and treatment with ALK, BET, CDK, PARP, EGFR, ⁇ -secretase, CBF ⁇ -SMMHC, WEE1, MEK, BCR-ABL, MET, RAS, Application of BTK, VEGFR, JAK, HER2, HDAC, Akt, PI3K, mTOR, AR, ER, PDE ⁇ , SRC, MDM2, RAF, IRAK4, STAT3 and c-Myc related diseases in medicine.
  • the compound of the present invention has excellent protein degradation effect, cell proliferation inhibition effect and tumor shrinkage effect, and has better pharmacokinetic properties.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms that are within the scope of reliable medical judgment and are suitable for use in contact with human and animal tissues. , Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of the compound of the present invention, which is prepared from a compound with specific substituents discovered in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting the compound with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salt or similar salts.
  • the acid addition salt can be obtained by contacting the compound with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogen carbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts, the organic acid includes, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid and methanesulfonic acid; also include salts of amino acids (such as arginine, etc.) , And salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain basic and
  • targeting protein refers to a protein or polypeptide that binds to the compound of the present invention and is degraded.
  • drugs or derivatives thereof includes drugs or derivatives thereof that have been developed to bind to a target protein and drugs or derivatives thereof that are developed in the future that can bind to a target protein.
  • the pharmaceutically acceptable salt of the present invention can be synthesized from the parent compound containing acid or base by conventional chemical methods. In general, such salts are prepared by reacting these compounds in free acid or base form with a stoichiometric amount of appropriate base or acid in water or organic solvent or a mixture of both.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers Isomers, (D)-isomers, (L)-isomers, and their racemic mixtures and other mixtures, such as enantiomers or diastereomer-enriched mixtures, all of these mixtures belong to this Within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All these isomers and their mixtures are included in the scope of the present invention.
  • the compound of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I), or C-14 ( 14 C).
  • deuterium can be substituted for hydrogen to form deuterated drugs.
  • the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon.
  • deuterated drugs can reduce toxic side effects and increase drug stability. , Enhance the efficacy, extend the biological half-life of drugs and other advantages. All changes in the isotopic composition of the compounds of the present invention, whether radioactive or not, are included in the scope of the present invention.
  • substituted means that any one or more hydrogen atoms on a specific atom are replaced by substituents, and may include deuterium and hydrogen variants, as long as the valence of the specific atom is normal and the substituted compound is stable of.
  • oxygen it means that two hydrogen atoms are replaced. Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it can be substituted or unsubstituted. Unless otherwise specified, the type and number of substituents can be arbitrary on the basis that they can be chemically realized.
  • substituted means that a specific atom or group can be replaced with another specified atom or group.
  • CH 3 CH 2 CH 3 in the CH 2 can be O, S, NH displacement obtained CH 3 OCH 3, CH 3 SCH 3 and CH 3 NHCH 3.
  • any variable such as R
  • its definition in each case is independent.
  • the group can optionally be substituted with up to two Rs, and R has independent options in each case.
  • combinations of substituents and/or variants thereof are only permitted if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • the middle linking group L is -MW-, at this time -MW- can be formed by connecting ring A and ring B in the same direction as the reading order from left to right It can also be formed by connecting ring A and ring B in the opposite direction to the reading order from left to right
  • Combinations of the linking groups, substituents, and/or variants thereof are only permitted if such combinations result in stable compounds.
  • any one or more sites of the group can be connected to other groups through chemical bonds.
  • the connection method of the chemical bond is not positioned, and there is a H atom at the connectable site, when the chemical bond is connected, the number of H atoms at the site will correspondingly decrease with the number of chemical bonds connected to become the corresponding valence number ⁇ The group.
  • the group is a fused ring structure, and the fused ring structure is connected to other groups through non-localized chemical bonds, any one or more positions of the fused ring can be connected to other groups through chemical bonds.
  • the chemical bond between the site and other groups can be a straight solid bond Straight dashed key Or wavy line Express.
  • the straight solid bond in -OCH 3 means that it is connected to other groups through the oxygen atom in the group;
  • the straight dashed bond in indicates that the two ends of the nitrogen atom in the group are connected to other groups;
  • the wavy line in indicates that the phenyl group is connected to other groups through the 1 and 2 carbon atoms;
  • Indicates that any linkable site on the naphthalene[2,3-d]isoxazolyl can be connected to other groups through a chemical bond, including at least These 7 connection methods.
  • C n-n+m or C n -C n+m includes any specific case of n to n+m carbons, for example, C 1-12 includes C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , including any range from n to n+m, for example, C 1- 12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12, etc.; similarly, from n to n +m member means that the number of atoms in the ring is from n to n+m, for example, 3-12 membered ring includes 3-membered ring, 4-membered ring, 5-membered ring, 6-membered ring, 7-membered ring, 8-membered ring, 9-membered
  • C 1-20 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 20 carbon atoms.
  • the C 1-20 alkyl group includes C 1-19 , C 1-18 , C 1-17 , C 1-16 , C 1-15 , C 1-14 , C 1-13 , C 1-12 , C 1-11 , C 1-10 , C 1-9 , C 1-8 , C 1- 7 , C 1-6 , C 1-5 , C 1-4 , C 1-3 , C 1-2 , C 18 , C 17 , C 16 , C 15 , C 14 , C 13 , C 12 , C 11 , C 10 , C 1-9 , C 8 , C 7 , C 6 and C 5 alkyl etc.; it may be one Valence (such as methyl), divalent (such as methylene) or multivalent (such as methine).
  • C 1-8 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl) , S-butyl and t-butyl), pentyl (including n-pentyl, isopentyl and neopentyl), hexyl, heptyl, octyl, etc.
  • C 1-6 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 6 carbon atoms.
  • the C 1-6 alkyl group includes C 1-5 , C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-4 , C 6 and C 5 alkyl groups, etc.; it may Is monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine).
  • C 1-6 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl) , S-butyl and t-butyl), pentyl (including n-pentyl, isopentyl and neopentyl), hexyl, etc.
  • C 1-3 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine) .
  • Examples of C 1-3 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C 2-4 alkenyl is used to mean a linear or branched hydrocarbon group consisting of 2 to 4 carbon atoms containing at least one carbon-carbon double bond, and a carbon-carbon double bond It can be located in any position of the group.
  • the C 2-4 alkenyl group includes C 2-3 , C 4 , C 3 and C 2 alkenyl groups, etc.; the C 2-4 alkenyl group may be monovalent, divalent or multivalent.
  • Examples of C 2-4 alkenyl include, but are not limited to, vinyl, propenyl, butenyl, butadienyl, and the like.
  • C 2-4 alkynyl is used to mean a linear or branched hydrocarbon group consisting of 2 to 4 carbon atoms containing at least one carbon-carbon triple bond, and a carbon-carbon triple bond It can be located in any position of the group.
  • the C 2-4 alkynyl includes C 2-3 , C 4 , C 3 and C 2 alkynyl and the like. It can be univalent, bivalent, or multivalent. Examples of C 2-4 alkynyl include, but are not limited to, ethynyl, propynyl, butynyl, and the like.
  • C 3-14 cycloalkyl means a saturated cyclic hydrocarbon group composed of 3 to 14 carbon atoms, which includes monocyclic, bicyclic and tricyclic ring systems, among which bicyclic and tricyclic ring systems include Spiro ring, combined ring and bridge ring.
  • the C 3-14 cycloalkyl groups include C 3-12, C 3-10, C 3- 8, C 3-6, C 3-5, C 4-10, C 4-8, C 4-6, C 4-5 , C 5-8 and C 5-6 cycloalkyl, etc.; it can be monovalent, divalent or multivalent.
  • C 3-14 cycloalkyl examples include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, norbornyl, [2.2.2]bicyclooctane, [ 4.4.0] Dicyclodecane and the like.
  • the term "3-14 membered heterocycloalkyl" by itself or in combination with other terms means a saturated cyclic group consisting of 3 to 14 ring atoms, with 1, 2, 3 or 4 ring atoms.
  • heteroatoms independently selected from O, S and N, and the rest are carbon atoms, wherein nitrogen atoms are optionally quaternized, and nitrogen and sulfur heteroatoms can be optionally oxidized (ie, NO and S(O) p , p Is 1 or 2).
  • Said it includes monocyclic, bicyclic and tricyclic ring systems, wherein the bicyclic and tricyclic ring systems include spiro ring, fused ring and bridged ring.
  • a heteroatom may occupy the connection position of the heterocycloalkyl group with the rest of the molecule.
  • the 3-14 membered heterocycloalkyl group includes 3-12 membered, 3-10 membered, 3-8 membered, 3-6 membered, 3-5 membered, 4-6 membered, 5-6 membered, 4 membered, 5 membered And 6-membered heterocycloalkyl, etc.
  • 3-14 membered heterocycloalkyl examples include, but are not limited to, azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothienyl ( Including tetrahydrothiophen-2-yl and tetrahydrothiophen-3-yl, etc.), tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2- Piperidinyl and 3-piperidinyl, etc.), piperazinyl (including 1-piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), Dioxanyl, dithiazinyl, isoxazolidinyl, isothiazolidin
  • 3-8 membered monoheterocycloalkyl by itself or in combination with other terms means a saturated cyclic group consisting of 3 to 8 ring atoms, with 1, 2, 3 or 4 rings.
  • Atoms are heteroatoms independently selected from O, S, and N, and the rest are carbon atoms, wherein nitrogen atoms are optionally quaternized, and nitrogen and sulfur heteroatoms may optionally be oxidized (ie, NO and S(O) p , p is 1 or 2).
  • the ring is a single ring structure.
  • a heteroatom may occupy the connection position of the heterocycloalkyl group and the rest of the molecule.
  • the 3-8 membered monoheterocycloalkyl group includes 3-6 membered, 3-5 membered, 4-6 membered, 5-6 membered, 4-membered, 5-membered, and 6-membered heterocycloalkyl group.
  • 3-8 membered monoheterocycloalkyl groups include, but are not limited to, azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothienyl (Including tetrahydrothiophen-2-yl and tetrahydrothiophen-3-yl, etc.), tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2 -Piperidinyl and 3-piperidinyl, etc.), piperazinyl (including 1-piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.) , Dioxanyl, Dithiazyl, Isoxazolidinyl
  • the term "5-14 membered bridge heterocycloalkyl" by itself or in combination with other terms means a saturated cyclic group consisting of 5 to 14 ring atoms, with 1, 2, 3 or 4 rings.
  • Atoms are heteroatoms independently selected from O, S, and N, and the rest are carbon atoms, wherein nitrogen atoms are optionally quaternized, and nitrogen and sulfur heteroatoms may optionally be oxidized (ie, NO and S(O) p , p is 1 or 2).
  • the ring includes a bridged ring and a parallel ring of a bicyclic ring and a tricyclic ring system.
  • a heteroatom may occupy the connection position of the heterocycloalkyl group with the rest of the molecule.
  • the 5-14 membered heterocycloalkyl group includes 5-12 membered, 5-10 membered, 5-8 membered, 5-6 membered, 5-membered, and 6-membered heterocycloalkyl group.
  • the term "5-14 membered spiroheterocycloalkyl" by itself or in combination with other terms means a saturated cyclic group consisting of 5 to 14 ring atoms, with 1, 2, 3 or 4 rings.
  • Atoms are heteroatoms independently selected from O, S, and N, and the rest are carbon atoms, wherein nitrogen atoms are optionally quaternized, and nitrogen and sulfur heteroatoms may optionally be oxidized (ie, NO and S(O) p , p is 1 or 2).
  • the ring includes the spiro ring of the bicyclic ring and the tricyclic ring system.
  • a heteroatom may occupy the connection position of the heterocycloalkyl group with the rest of the molecule.
  • the 5-14 membered heterocycloalkyl group includes 5-12 membered, 5-10 membered, 5-8 membered, 5-6 membered, 5-membered, and 6-membered heterocycloalkyl group.
  • the terms "C 6-12 aromatic ring” and “C 6-12 aryl” can be used interchangeably in the present invention.
  • C 6-12 aromatic ring or "C 6-12 aryl” means that A cyclic hydrocarbon group with a conjugated ⁇ -electron system composed of 6 to 12 carbon atoms, which can be a monocyclic, fused bicyclic or fused tricyclic system, in which each ring is aromatic.
  • C 6-12 aryl groups include C 6-10, C 6-9, C 6- 8, C 12, C 10 , and C 6 aryl group.
  • Examples of C 6-12 aryl groups include, but are not limited to, phenyl, naphthyl (including 1-naphthyl, 2-naphthyl, etc.).
  • 5-12 membered heteroaryl ring and “5-12 membered heteroaryl group” can be used interchangeably in the present invention.
  • the term “5-12 membered heteroaryl group” means a ring consisting of 5 to 12 ring atoms. It is composed of a cyclic group with a conjugated ⁇ -electron system, in which 1, 2, 3 or 4 ring atoms are heteroatoms independently selected from O, S and N, and the rest are carbon atoms. It can be a monocyclic, fused bicyclic or fused tricyclic system, where each ring is aromatic.
  • the nitrogen and sulfur heteroatoms may optionally be oxidized (ie NO and S(O) p , p is 1 or 2).
  • the 5-12 membered heteroaryl group can be attached to the rest of the molecule through a heteroatom or a carbon atom.
  • the 5-12 membered heteroaryl groups include 5-10 membered, 5-8 membered, 5-7 membered, 5-6 membered, 5 membered and 6 membered heteroaryl groups and the like.
  • Examples of the 5-12 membered heteroaryl include, but are not limited to, pyrrolyl (including N-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, etc.), pyrazolyl (including 2-pyrazolyl and 3-pyrrolyl, etc.) Azolyl, etc.), imidazolyl (including N-imidazolyl, 2-imidazolyl, 4-imidazolyl and 5-imidazolyl, etc.), oxazolyl (including 2-oxazolyl, 4-oxazolyl and 5- Oxazolyl, etc.), triazolyl (1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, 1H-1,2,4-triazolyl and 4H-1, 2,4-triazolyl, etc.), tetrazolyl, isoxazolyl (3-isoxazolyl, 4-isoxazolyl and 5-isoxazolyl, etc.), thiazolyl (including 2-thi
  • leaving group refers to a functional group or atom that can be replaced by another functional group or atom through a substitution reaction (for example, a nucleophilic substitution reaction).
  • representative leaving groups include triflate; chlorine, bromine, iodine; sulfonate groups, such as mesylate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonic acid Esters, etc.; acyloxy groups, such as acetoxy, trifluoroacetoxy and the like.
  • protecting group includes, but is not limited to, "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to: formyl; acyl, such as alkanoyl (such as acetyl, trichloroacetyl or trifluoroacetyl); alkoxycarbonyl, such as tert-butoxycarbonyl (Boc) ; Arylmethyloxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethyloxycarbonyl (Fmoc); arylmethyl, such as benzyl (Bn), trityl (Tr), 1,1-di -(4'-Methoxyphenyl)methyl; silyl groups, such as trimethylsilyl (TMS) and tert-butyldi
  • hydroxy protecting group refers to a protecting group suitable for preventing side reactions of the hydroxyl group.
  • Representative hydroxy protecting groups include but are not limited to: alkyl groups, such as methyl, ethyl, and tert-butyl; acyl groups, such as alkanoyl groups (such as acetyl); arylmethyl groups, such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and so on.
  • alkyl groups such as methyl, ethyl, and tert-butyl
  • acyl groups such as alkanoyl groups (such as acetyl)
  • arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (P
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those well known to those skilled in the art Equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the field.
  • SXRD single crystal X-ray diffraction
  • the cultured single crystal is collected with a Bruker D8venture diffractometer to collect diffraction intensity data
  • the light source is CuK ⁇ radiation
  • the scanning method After scanning and collecting relevant data, the direct method (Shelxs97) is further used to analyze the crystal structure to confirm the absolute configuration.
  • the solvent used in the present invention is commercially available.
  • Figure 1 is an in vitro test chart of the ALK protein level and phosphorylation level of human lung cancer NCI-H2228 cells.
  • Figure 2 is an in vitro test diagram of the BRD4 protein level and downstream c-Myc level of human acute myeloid leukemia MV4-11 cells.
  • Figure 3 is an in vitro test diagram of the PDE ⁇ protein level of human lung cancer H358 cells.
  • compound BB-1-1 (100 g, 465.02 mmol) was dissolved in a mixed solvent of chloroform (500 mL) and ethyl acetate (500 mL), and then copper bromide (207.73 g, 930.04 mmol) was added.
  • the reaction mixture was heated to 100°C and stirred for 14 hours. After the reaction is completed, it is cooled to room temperature, filtered, and the filtrate is depressurized to remove the solvent.
  • the obtained residue was added with water (200 mL), and extracted with dichloromethane (200 mL ⁇ 3). The organic phases were combined, washed with brine (300 mL ⁇ 2), dried over anhydrous sodium sulfate, and filtered.
  • the obtained intermediate BB-1-2 was stored in dichloromethane (600 mL) and used directly in the next reaction.
  • the intermediate BB-1-5 (1.37g, 3.76mmol) was added to N,N-dimethylformamide (30mL), followed by potassium tert-butoxide (421.48mg, 3.76mmol) ), the reaction mixture was stirred at 0°C for 0.5 hour, then acrylamide (266.98 mg, 3.76 mmol) was added, and the reaction mixture was stirred and reacted at 0°C for 1 hour. After the reaction was completed, the temperature was raised to room temperature, water (50 mL) was added, and extraction was performed with ethyl acetate (50 mL ⁇ 3).
  • Step 6 Synthesis of the hydrochloride salt of intermediate BB-1
  • the intermediate BB-1-6 (227 mg, 533.93 ⁇ mol) was added to a hydrochloric acid ethyl acetate solution (20 mL, 4M), and the reaction mixture was stirred and reacted at room temperature for 14 hours. After the completion of the reaction, the solvent was directly removed from the reaction solution under reduced pressure to obtain the hydrochloride salt of intermediate BB-1.
  • the intermediate BB-2-3 (28.90g, 136.07mmol) was dissolved in absolute ethanol (200mL), and then concentrated sulfuric acid (27.24g, 272.13mmol, 14.8mL, purity: 98%) was added to the reaction mixture. Heat to 80°C and stir to react for 14 hours. After the reaction was completed, cooled to room temperature, the reaction solution was slowly added to ice water (300 mL), and extracted with ethyl acetate (100 mL ⁇ 3). The organic phases were combined, washed with saturated brine (300 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the filtrate was decompressed to remove the solvent.
  • the intermediate BB-2-4 (25.63g, 107.69mmol) was dissolved in anhydrous dichloromethane (300mL), cooled to -78°C, and then boron tribromide (80.95g, 323.06mmol, 31.13) was added. mL), the reaction mixture was warmed to room temperature and stirred for 2 hours. After the reaction was completed, the reaction solution was slowly added to ice water (500 mL), and extracted with dichloromethane (100 mL ⁇ 3). The organic phases were combined, washed with saturated brine (300 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the filtrate was decompressed to remove the solvent.
  • the intermediate BB-2-5 (2.07g, 9.08mmol) was dissolved in acetonitrile (100mL), and tert-butyl bromoacetate (2.66g, 13.62mmol) and potassium carbonate (2.51g, 18.16mmol) were added successively
  • the reaction mixture was heated to 65°C and stirred for 14 hours. After the reaction was completed, it was cooled to room temperature, concentrated under reduced pressure to remove the solvent, water (60 mL) was added to the resulting residue, and extraction was performed with ethyl acetate (60 mL ⁇ 3).
  • the intermediate BB-2-6 (2.70g, 8.08mmol) was dissolved in dimethylformamide (15mL), and potassium tert-butoxide (996.73mg, 8.88mmol) and acrylamide were added successively (573.96 mg, 8.08 mmol), the reaction mixture was stirred at 0°C for 1 hour. After the reaction was completed, water (50 mL) was added to the reaction solution, and extraction was performed with ethyl acetate (50 mL ⁇ 3). The organic phases were combined, washed with saturated brine (100 mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was decompressed to remove the solvent.
  • the intermediate BB-2-5 (2.07g, 9.08mmol) was dissolved in toluene (100mL), and 1,2-dibromoethane (8.53g, 45.41mmol), potassium carbonate (3.77g, 27.25mmol) and stearyl crown ether-6 (24.00g, 90.82mmol), the reaction mixture was heated to 110°C and stirred for 14 hours. After the reaction was completed, it was cooled to room temperature, the solvent was removed under reduced pressure, water (60 mL) was added to the resulting residue, and extraction was performed with ethyl acetate (60 mL ⁇ 3).
  • the intermediate BB-4-2 (14.5g, 44.81mmol) was dissolved in a solution of sodium hydroxide (8.70g, 217.52mmol) in water (150mL), the reaction mixture was heated to 80°C and stirred for reaction 5 hours. After the reaction was completed, it was cooled to room temperature, and dichloromethane (150 mL) was added to dilute, the organic phase was collected after liquid separation, and the aqueous phase was extracted with dichloromethane (150 mL ⁇ 3). The aqueous phase was adjusted to pH 4 with 2M dilute hydrochloric acid, and extracted with ethyl acetate (200 mL ⁇ 3). The organic phases were combined, washed with saturated brine (50 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the filtrate was removed under reduced pressure to remove the solvent to obtain Intermediate BB-4-3.
  • the intermediate BB-4-3 (11.3g, 37.03mmol) was dissolved in ethanol (300mL), and then concentrated sulfuric acid (2.08g, 20.78mmol, 1.13mL, purity: 98%) was added to the reaction. The mixture was heated to 80°C and stirred for 12 hours. After the reaction, it was cooled to room temperature, concentrated under reduced pressure to remove the solvent, water (150 mL) was added, and extraction was performed with ethyl acetate (150 mL ⁇ 1, 100 mL ⁇ 3). The organic phases were combined, washed with saturated brine (50 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the filtrate was decompressed to remove the solvent.
  • the intermediate BB-4-4 (5g, 15.01mmol) was dissolved in N,N-dimethylformamide (80mL), and potassium hexacyanoferrate (II) (1.16g) , 3.15mmol), sodium carbonate (1.59g, 15.01mmol), palladium acetate (336.92mg, 1.50mmol), the reaction mixture was heated to 140°C and stirred for 8 hours. After the reaction was completed, it was cooled to room temperature, water (300 mL) was added, and extraction was performed with ethyl acetate (100 mL ⁇ 5).
  • the intermediate BB-4-5 (1.1g, 3.94mmol) was dissolved in N,N-dimethylformamide (20mL), and then acrylamide (279.94mg, 3.94mmol) and potassium tert-butoxide were added (441.95 mg, 3.94 mmol), the reaction mixture was stirred at room temperature for 2 hours. After the reaction was completed, water (100 mL) was added, and extraction was performed with ethyl acetate (30 mL ⁇ 3). The organic phases were combined, washed with half-saturated brine (20 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to remove the solvent.
  • the intermediate BB-4-4 (5g, 14.58mmol) was dissolved in toluene (10mL), and then tert-butyl N-(2-hydroxyethyl)carbamate (2.82g, 17.50) was added. mmol), tris(dibenzylideneacetone)dipalladium (1.34g, 1.46mmol), 2-di-tert-butylphosphine-2',4',6'-triisopropylbiphenyl (1.86g, 4.37mmol) ) And cesium carbonate (9.50g, 29.16mmol), the reaction mixture was heated to 110°C and stirred for 12 hours.
  • the intermediate BB-5-1 (1g, 2.02mmol, purity: 83.34%) was dissolved in N,N-dimethylformamide (20mL), and then potassium tert-butoxide (248.79mg, 2.22 mmol) and acrylamide (143.27 mg, 2.02 mmol), the reaction mixture was stirred at 0°C for 1 hour. After the reaction was completed, the reaction solution was added with water (50 mL), and extracted with ethyl acetate (50 mL ⁇ 3). The organic phases were combined, washed with saturated brine (100 mL ⁇ 3), dried over anhydrous sodium sulfate, filtered, and the filtrate was decompressed to remove the solvent.
  • Step 3 Synthesis of the hydrochloride salt of intermediate BB-5
  • the intermediate BB-6-1 (1.2g, 2.91mmol) was dissolved in N,N-dimethylformamide (20mL), and then potassium tert-butoxide (359.09mg, 3.20mmol) and Acrylamide (206.78mg, 2.91mmol), the reaction mixture was stirred at 0°C for 1 hour. After the reaction was completed, the reaction solution was added with water (100 mL), and extracted with ethyl acetate (50 mL ⁇ 3). The organic phases were combined, washed with saturated brine (100 mL ⁇ 3), dried over anhydrous sodium sulfate, filtered, and the filtrate was decompressed to remove the solvent.
  • Step 3 Synthesis of the hydrochloride salt of intermediate BB-6
  • the intermediate BB-6-2 (0.46g, 911.62 ⁇ mol, purity: 86.70%) was dissolved in ethyl acetate (5mL), followed by the addition of a solution of hydrochloric acid in ethyl acetate (4M, 15mL), the reaction mixture was The reaction was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was directly removed under reduced pressure to obtain the hydrochloride salt of intermediate BB-6.
  • the intermediate BB-7-3 (8.9g, 34.73mmol) was dissolved in dichloromethane (180mL), cooled to -60°C, and then slowly added dropwise boron tribromide (23.49g, 93.77mmol, 9.04mL), the reaction mixture was slowly warmed to 15°C and stirred for 2 hours. After the completion of the reaction, the reaction mixture was poured into ice water (200 mL), the layers were separated, the organic phase was collected, and the aqueous phase was extracted with ethyl acetate (80 mL ⁇ 3).
  • the intermediate BB-7-4 (8g, 33.03mmol) was dissolved in ethanol (50mL), then concentrated sulfuric acid (3.47g, 34.68mmol, 1.89mL, purity: 98%) was added, and the reaction mixture was heated to 80 The reaction was stirred at °C for 12 hours. After the reaction was completed, it was cooled to room temperature, and the reaction mixture was directly concentrated under reduced pressure to remove the solvent. The resulting residue was diluted with water (100 mL) and extracted with ethyl acetate (100 mL ⁇ 3). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and the solvent was removed under reduced pressure.
  • Step 7 Synthesis of the hydrochloride salt of intermediate BB-7
  • the intermediate BB-7-7 (1.5g, 3.03mmol) was dissolved in ethyl acetate (10mL), followed by the addition of a solution of hydrochloric acid in ethyl acetate (4M, 30mL), the reaction mixture was stirred and reacted at room temperature 12 hours. After the completion of the reaction, the reaction mixture was directly concentrated under reduced pressure to remove the solvent to obtain the hydrochloride of Intermediate BB-7.
  • intermediate BB-4-4 (10g, 29.16mmol) and tert-butyl carbamate (10.25g, 87.49mmol) were added to a mixed solvent of toluene (100mL) and water (20mL), and then Add three (dibenzylideneacetone) dipalladium (1.87g, 2.04mmol), 2-di-tert-butylphosphine-2',4',6'-triisopropylbiphenyl (1.73g, 4.08mmol) in sequence And potassium phosphate (24.76g, 116.65mmol), the reaction mixture was heated to 100°C and stirred for 14 hours.
  • intermediate BB-8-1 (3.5g, 9.29mmol) was added to N,N-dimethylformamide (50mL), followed by potassium tert-butoxide (1.04g, 9.29mmol) ) And acrylamide (659.96 mg, 9.29 mmol), the reaction mixture was stirred for 2 hours at 0°C under nitrogen protection. After the reaction was completed, the reaction mixture was warmed to room temperature, water (50 mL) was added, and the mixture was extracted with ethyl acetate (50 mL ⁇ 3).
  • intermediate BB-8-2 (1.86 g, 4.62 mmol) was added to a hydrochloric acid ethyl acetate solution (4M, 40 mL), and the reaction mixture was stirred and reacted for 4 hours at room temperature under nitrogen protection. After the completion of the reaction, the reaction mixture was directly decompressed to remove the solvent to obtain Intermediate BB-8-3.
  • the intermediate BB-8-3 (0.5g, 1.51mmol) was dissolved in N-methylpyrrolidone (20mL), and then tert-butyl (6-bromohexyl) carbamate (423.56mg, 1.51mmol) was added And N,N-diisopropylethylamine (253.97mg, 1.97mmol, 342.28 ⁇ L), the reaction mixture was heated to 110°C and stirred for 24 hours. After the reaction was completed, it was cooled to room temperature, the reaction mixture was diluted with water (100 mL), and extracted with ethyl acetate (50 mL ⁇ 3).
  • Step 5 Synthesis of the hydrochloride salt of intermediate BB-8
  • the intermediate BB-7-5 (2.85g, 10.53mmol) and (2–(2–(2-hydroxyethoxy)ethoxy)ethyl) t-butyl carbamate (4.2 g, 16.85mmol) was added to anhydrous tetrahydrofuran (40mL), cooled to 0°C, and then added azodicarboxydipiperidine (4.25g, 16.85mmol) and tributylphosphine (3.41g, 16.85mmol) In anhydrous tetrahydrofuran (5mL) solution, the reaction mixture was stirred at 0°C for 1 hour, then the temperature was raised to 15°C and the reaction was stirred for 11 hours.
  • reaction mixture was quenched by adding saturated citric acid solution (45 mL), and extracted with ethyl acetate (45 mL ⁇ 4).
  • the organic phases were combined, washed with saturated brine (80 mL ⁇ 3), dried over anhydrous sodium sulfate, filtered, and the solvent was removed under reduced pressure.
  • Step 3 Synthesis of the hydrochloride salt of intermediate BB-9
  • intermediate BB-9-2 (650 mg, 1.23 mmol) was added to a hydrochloric acid ethyl acetate solution (4M, 15 mL), and the reaction mixture was stirred at room temperature for 2 hours. After the completion of the reaction, the reaction solution was directly decompressed to remove the solvent to obtain the hydrochloride salt of Intermediate BB-9.
  • Step 1 Synthesis of intermediate BB-10-1
  • Step 3 Synthesis of the hydrochloride salt of intermediate BB-10
  • the intermediate BB-11-1 (2.9g, 5.19mmol, purity: 68.84%) was dissolved in N,N-dimethylformamide (20mL), and potassium tert-butoxide ( 641.00 mg, 5.71 mmol) and acrylamide (369.12 mg, 5.19 mmol), the reaction solution was stirred for 1 hour at 0°C under nitrogen protection. After the completion of the reaction, the reaction solution was diluted with water (100 mL) and extracted with ethyl acetate (50 mL ⁇ 3).
  • the intermediate BB-11-2 (0.12g, 201.85 ⁇ mol, purity: 68.87%) was dissolved in dichloromethane (10mL), trifluoroacetic acid (7.70g, 67.56mmol, 5mL) was added, and the reaction mixture was at room temperature The reaction was stirred for 12 hours. After the completion of the reaction, the reaction solution was directly concentrated under reduced pressure to remove the solvent to obtain Intermediate BB-11.
  • Step 1 Synthesis of intermediate BB-12-1
  • the intermediate BB-12-1 (1.9g, 4.44mmol) was added to tetrahydrofuran (40mL), and then acrylamide (315.91mg, 4.44mmol) and potassium tert-butoxide (498.72mg, 4.44mmol), the reaction mixture was stirred at room temperature for 1 hour. After the completion of the reaction, the reaction solution was poured into ice water (50 mL), extracted with ethyl acetate (30 mL ⁇ 3), and the organic phases were combined, washed with saturated brine (30 mL ⁇ 3), dried with anhydrous sodium sulfate, and filtered. The solvent was removed from the filtrate under reduced pressure.
  • Step 3 Synthesis of the hydrochloride salt of intermediate BB-12
  • intermediate BB-14-1 (933mg, 2.11mmol, purity: 89.86%) was added to N,N-dimethylformamide (15mL), followed by potassium tert-butoxide (236.69 mg, 2.11 mmol) and acrylamide (149.93 mg, 2.11 mmol), the reaction mixture was stirred for 1.5 hours at 0°C under nitrogen protection. After the reaction was completed, the reaction solution was warmed to room temperature, water (50 mL) was added, and extraction was performed with ethyl acetate (50 mL ⁇ 3).
  • intermediate BB-14-2 (150mg, 299.34 ⁇ mol, purity: 84.31%) was added to dichloromethane (5mL), followed by trifluoroacetic acid (102.40mg, 898.03 ⁇ mol, 66.49 ⁇ L) The reaction mixture was stirred at room temperature for 14 hours. After the completion of the reaction, the reaction solution was directly decompressed to remove the solvent to obtain Intermediate BB-14.
  • Step 1 Synthesis of intermediate BB-15-1
  • the intermediate BB-15-2 (720mg, 1.90mmol) was dissolved in N,N-dimethylformamide (50mL), and then potassium tert-butoxide (212.92mg, 1.90mmol) and acrylamide were added (134.87mg, 1.90mmol), under the protection of nitrogen, the reaction mixture was stirred and reacted at 0°C for 2 hours. After the reaction was completed, it was diluted with water (50 mL) and extracted with ethyl acetate (10 mL ⁇ 3). The organic phases were combined, washed with saturated brine (50 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the filtrate was decompressed to remove the solvent.
  • Step 3 Synthesis of the hydrochloride salt of intermediate BB-15
  • the intermediate BB-15-1 600 mg, 2.35 mmol
  • 2,2-dimethyl-4-oxo-3,8,11-trioxa-5-azetidine- 13-4-methylbenzenesulfonate (1.02g, 2.35mmol) was dissolved in N,N-dimethylformamide (50mL), and then cesium carbonate (764.36mg, 2.35mmol ⁇ mol) was added, and the reaction mixture was protected under nitrogen The stirring reaction was continued at 80°C for 14 hours.
  • the intermediate BB-16-1 (275mg, 556.69 ⁇ mol) was dissolved in N,N-dimethylformamide (20mL), and then potassium tert-butoxide (62.47mg, 556.69 ⁇ mol) and acrylamide were added. (39.57 mg, 556.69 ⁇ mol), the reaction mixture was stirred and reacted at 0° C. for 2 hours under the protection of nitrogen. After the reaction was completed, it was diluted with water (30 mL) and extracted with ethyl acetate (10 mL ⁇ 3).
  • Step 3 Synthesis of the hydrochloride salt of intermediate BB-16
  • reaction solution was diluted with water (40 mL) and ethyl acetate (30 mL), separated, the organic phase was collected, and the aqueous phase was extracted with ethyl acetate (60 mL x 3).
  • the organic phases were combined, washed with saturated brine (40 mL x 3), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to remove the solvent.
  • the intermediate BB-17-1 (3.5g, 9.25mmol) was dissolved in tetrahydrofuran (35mL), tetrabutylammonium fluoride in tetrahydrofuran (2M, 9.25mL) was added, and the reaction system was at 25 The reaction was stirred at °C for 12 hours. After the reaction was completed, the reaction solution was poured into a saturated aqueous ammonium chloride solution (40 mL), diluted with ethyl acetate (30 mL), separated, the organic phase was collected, and the aqueous phase was extracted with ethyl acetate (50 mL x 3).
  • the intermediate BB-17-2 (403mg, 1.52mmol) was dissolved in a mixed solvent of dichloromethane (4mL) and tetrahydrofuran (4mL), and 4-dimethylaminopyridine (18.63) was added at 0°C. mg, 152.49 ⁇ mol), methanesulfonyl chloride (262.02mg, 2.29mmol), N,N-diisopropylethylamine (591.26mg, 4.57mmol, 796.85 ⁇ L), the reaction mixture was returned to 20°C and stirred for 1 hour.
  • the intermediate BB-2 (500.00mg, 1.65mmol) was dissolved in N,N-dimethylformamide (20mL) solution, and N,N-diisopropylethylamine (1.07g ,8.24mmol) and O–(7–azabenzotriazole–1–yl)–N,N,N,N–tetramethylurea hexafluorophosphate (940.34mg, 2.47mmol), the reaction mixture is in Stir at room temperature for 30 minutes.
  • N-tert-butoxycarbonyl-1,3-propanediamine (287.27 mg, 1.65 mmol) was added thereto, and the reaction mixture was stirred and reacted at room temperature for 12 hours.
  • water 40 mL was added to the reaction solution, and extraction was performed with ethyl acetate (40 mL ⁇ 3).
  • the organic phases were combined, washed sequentially with saturated brine (40 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to remove the solvent.
  • Step 2 Synthesis of the hydrochloride salt of intermediate BB-18
  • Step 1 Synthesis of intermediate BB-19-1
  • the intermediate BB-19-1 (0.7g, 2.69mmol, 1eq) was dissolved in ethanol (15mL), and then methylamine (726.32mg, 10.76mmol, 4eq, hydrochloride), triethylamine ( 1.09g, 10.76mmol, 1.50mL, 4eq) and sodium cyanoborohydride (338.01mg, 5.38mmol, 2eq), the reaction mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the reaction solution was concentrated in vacuo to remove the solvent. The obtained residue was diluted with water (50 mL), and extracted with ethyl acetate (30 mL ⁇ 3). The organic phases were combined, washed with saturated brine (50 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to remove the solvent. The crude intermediate BB-19-2 was obtained.
  • the intermediate BB-19-3 (0.13g, 346.24 ⁇ mol, 1eq) was dissolved in N,N-dimethylformamide (5mL), and then potassium tert-butoxide (42.74mg, 380.87 ⁇ mol , 1.1eq) and acrylamide (27.07mg, 380.87 ⁇ mol, 26.28 ⁇ L, 1.1eq), the reaction mixture was stirred and reacted at 0°C for 1 hour. After the completion of the reaction, the reaction solution was diluted with water (50 mL) and extracted with ethyl acetate (30 mL ⁇ 3).
  • Step 5 Synthesis of the hydrochloride salt of intermediate BB-19
  • Step 1 Synthesis of intermediate BB-20-1
  • the reaction solution was diluted with ethyl acetate (15 mL) and water (5 mL), the organic phase was collected after liquid separation, and the aqueous phase was extracted with ethyl acetate (10 mL ⁇ 2).
  • the intermediate BB-20-1 was obtained.
  • Intermediate BB-20-1 (200 mg, 325.89 ⁇ mol) was added to ethyl acetate (2 mL), followed by hydrochloric acid/ethyl acetate solution (4M, 4.89 mL), and reacted at 15°C for 1 hour. After the completion of the reaction, the solvent was removed by concentration under reduced pressure to obtain Intermediate BB-20.
  • Step 1 Synthesis of intermediate BB-21-1
  • reaction solution was diluted with ethyl acetate (15 mL) and water (5 mL), the organic phase was collected after liquid separation, and the aqueous phase was extracted with ethyl acetate (10 mL ⁇ 2).
  • the intermediate BB-21-1 was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

一类蛋白降解靶向嵌合体(PROTAC),及其在制备治疗相关疾病的药物中的应用。具体公开了式(I)所示化合物及其药学上可接受的盐,PTM-L-ULM(I)。

Description

蛋白降解调节剂与其使用方法
本发明主张如下优先权:
CN202010187846.6,申请日:2020年03月17日;
CN202011400367.4,申请日:2020年12年01日;
CN202011583584.1,申请日:2020年12年28日;
CN202110182231.9,申请日:2021年02年09日。
技术领域
本发明涉及一类蛋白降解靶向嵌合体(PROTAC),及其在制备治疗相关疾病的药物中的应用。具体涉及式(I)所示化合物或其药学上可接受的盐。
背景技术
蛋白降解靶向嵌合体(Proteolysis Targeting Chimera,PROTAC)是一种应用泛素–蛋白酶体系统靶向特定蛋白质并诱导其在细胞内降解的技术。泛素-蛋白酶体系统是细胞内蛋白质降解的主要途径,其正常生理功能主要负责清除细胞内变性、突变或有害蛋白质,细胞内80%以上蛋白质的降解都依赖于泛素–蛋白酶体系统。PROTAC利用细胞自身的蛋白质破坏机制,清除细胞中的特异性靶向蛋白。
PROTAC分子是一种异质双功能小分子,由一个与目标蛋白结合的配体、一个与E3泛素连接酶结合的配体以及一个连接这两个配体的连接体三部分组成,可同时结合目标蛋白和E3泛素连接酶形成三元复合物,其作用机制是通过与目标蛋白结合使目标蛋白和E3连接酶能足够靠近,从而E3连接酶可以泛素化并标记目标蛋白,再经蛋白酶体降解标记蛋白的过程。
与传统小分子药物相比,PROTAC分子具有诸多潜在的优势:1)最为重要的是,使靶点从“不可成药性”变成“可成药性”,大多数小分子药物或大分子抗体需要与靶蛋白酶的活性位点长时间和高强度的结合才能发挥作用,但是80%以上的蛋白表面缺乏明显的成药位点,以目前的药物策略很难靶向这些蛋白,而PROTAC分子不同,理论上,只要蛋白表面有一定的裂缝或缺口,PROTAC分子就能捕获并清除这些蛋白;2)清除蛋白淤积,药物与靶蛋白的结合可以引起靶蛋白的积聚,而PROTAC分子可将蛋白直接降解,从而减少蛋白在体内的蓄积;3)克服耐药性,靶蛋白特定位点的突变通常会阻断小分子药物与蛋白的结合,产生耐药性,而PROTAC分子通过泛素–蛋白酶体途径将靶蛋白降解,克服了耐药性;4)降低毒性,PROTAC分子只需要催化剂量即可发挥药效,减少了药物在体内的大量蓄积,极大地降低了脱靶毒性的产生;5)“事件驱动”而非“占位驱动”,无论小分子抑制剂,还是大分子抗体,都需持续占据靶蛋白的活性位点以阻断功能,而PROTAC分子是“事件驱动”,只需要与靶蛋白结合后打上泛素标签就能降解蛋白,PROTAC分子可继续游离出来,从而长时间持续发挥药效。
迄今为止,PROTAC技术已可用于靶向多种蛋白质,包括转录因子、骨架蛋白、酶和调节蛋白等。因此,PROTAC技术在医药领域具有非常广阔的应用前景,诸如肿瘤、心血管、退行性和病毒感染等疾病领域的治疗潜力。
发明内容
本发明提供了式(I)所示化合物或其药学上可接受的盐,
PTM-L-ULM
(I)
其中,
PTM选自结合于靶向蛋白的药物或其衍生物;
L为连接PTM和ULM的链;
ULM选自式(III-1)和(III-2)所示结构,
Figure PCTCN2021081375-appb-000001
E选自键、-CH 2-、-NR 1-、-O-、-S-、-S(=O)-、-S(=O) 2-、-C(=O)、和-C(=O)NR 2-;
R 1和R 2分别独立地选自H和C 1-3烷基;
环X、环Y和环Z分别独立地选自苯基、噻吩基、呋喃基、三氮唑基、恶唑基、异恶唑基、吡咯基和吡啶基。
在本发明的一些方案中,所述ULM选自式(II-11)、(II-12)、(II-13)、(II-1)、(II-2)、(II-3)、(II-4)、(III-21)、(III-22)、(III-23)和(III-24)所示结构,
Figure PCTCN2021081375-appb-000002
Figure PCTCN2021081375-appb-000003
T 1、T 2和T 3分别独立地选自CH和N;
E 1、E 2和E 3分别独立地选自键、-CH 2-、-NR 1-、-O-、-S-、-S(=O)-、-S(=O) 2-、-C(=O)、和-C(=O)NR 2-;
R 1和R 2分别独立地选自H和C 1-3烷基;
环A、环B和环C分别独立地选自苯基、噻吩基、呋喃基、吡咯基和吡啶基。
在本发明的一些方案中,所述环A选自苯基和噻吩基,其他变量如本发明所定义。
在本发明的一些方案中,所述ULM选自式(II-11-1)、(II-11-2)、(II-1-1)和(II-2-1)所示结构,
Figure PCTCN2021081375-appb-000004
其中,T 1和E 1如本发明所定义。
在本发明的一些方案中,所述环B选自苯基,其他变量如本发明所定义。
在本发明的一些方案中,所述ULM选自式(II-12-1)和(III-21-1)所示结构,
Figure PCTCN2021081375-appb-000005
其中,T 2和E 2如本发明所定义。
在本发明的一些方案中,所述环C选自苯基,其他变量如本发明所定义。
在本发明的一些方案中,所述ULM选自式(II-13-1)、(II-3-1)、(II-4-2)、(III-22-1)、(III-23-1) 和(III-24-1)所示结构,
Figure PCTCN2021081375-appb-000006
其中,T 3和E 3如本发明所定义。
在本发明的一些方案中,所述ULM选自
Figure PCTCN2021081375-appb-000007
Figure PCTCN2021081375-appb-000008
其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自作用于ALK、BET、CDK、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、RAS、BTK、VEGFR、JAK、HER2、HDAC、Akt、PI3K、mTOR、AR、ER、PDEδ、SRC、MDM2、RAF、IRAK4、STAT3和c-Myc的药物或其衍生 物,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自作用于ALK、BRD4、CDK4/6、CDK8、CDK9、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、KRAS、BTK、VEGFR、HER2、HDAC、Akt、PI3K、mTOR、AR、ER、PDEδ、SRC、JAK、MDM2、RAF、IRAK4、STAT3和c-Myc的药物或其衍生物,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自作用于ALK、BRD4、CDK4/6、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、KRAS、EGFR、BTK、AR、ER、PDEδ、JAK、MDM2和RAF的药物或其衍生物,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自,
Figure PCTCN2021081375-appb-000009
Figure PCTCN2021081375-appb-000010
Figure PCTCN2021081375-appb-000011
Figure PCTCN2021081375-appb-000012
其中,
Figure PCTCN2021081375-appb-000013
选自单键和双键;
T 10、T 11、T 12和T 13分别独立地选自N和CR ccc,且T 10、T 11、T 12和T 13至多2个选自N;
R a选自H、
Figure PCTCN2021081375-appb-000014
和NH 2
R b选自H和CH 3
R c选自H和
Figure PCTCN2021081375-appb-000015
R d选自H、NH 2
Figure PCTCN2021081375-appb-000016
R e选自H和
Figure PCTCN2021081375-appb-000017
R f选自H和OH;
R g选自H和OH;
R h选自H和
Figure PCTCN2021081375-appb-000018
R i选自H和CH 3
R j选自H和CH 3
R k选自H、NH 2、NHCH 3
Figure PCTCN2021081375-appb-000019
R l选自H、
Figure PCTCN2021081375-appb-000020
R m选自H和
Figure PCTCN2021081375-appb-000021
R n选自H、NH 2、NHCH 2CH 3
Figure PCTCN2021081375-appb-000022
R o选自H和CH 3
R p选自H和CH 3
R q选自H、
Figure PCTCN2021081375-appb-000023
R r选自H和
Figure PCTCN2021081375-appb-000024
R s选自H、F和Cl;
R t选自H和Br;
R aa选自H和苯基;
R bb和R cc分别独立地选自H和CN;
R dd、R ff、R hh、R ii和R jj分别独立地选自H、OCH 3
Figure PCTCN2021081375-appb-000025
R ee选自H和F;
R gg选自H和Cl;
R kk选自H、OH和
Figure PCTCN2021081375-appb-000026
R ll和R mm分别独立地选自H、F、Cl、Br、I、OH和OCH 3
R nn选自H、OH和
Figure PCTCN2021081375-appb-000027
R oo选自H和OH;
R pp选自H、OH和
Figure PCTCN2021081375-appb-000028
R qq和R ss分别独立地选自H、F、Cl、Br、I、OH和OCH 3
R tt选自H、OH和
Figure PCTCN2021081375-appb-000029
R uu选自H、F、Cl、Br、I、OH和OCH 3
R vv选自H和
Figure PCTCN2021081375-appb-000030
R ww选自H和
Figure PCTCN2021081375-appb-000031
R xx选自H和OH;
R yy、R zz和R aaa分别独立地选自H和
Figure PCTCN2021081375-appb-000032
R bbb选自H和
Figure PCTCN2021081375-appb-000033
R ccc选自H、F、Cl、Br和I;
R ddd选自H和NH 2
在本发明的一些方案中,所述PTM选自,
Figure PCTCN2021081375-appb-000034
Figure PCTCN2021081375-appb-000035
Figure PCTCN2021081375-appb-000036
其他变量如本发明所定义。
在本发明的一些方案中,所述L上的1、2或3个CH 2被环丙基置换,L上的1、2、3、4、5或6个CH 2任选被选自-NH-、=N-、-O-、-S-、-C(=O)-、-C(=O)O-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-S(=O)-、-S(=O) 2-、-S(=O) 2NH-、=NO-、-P(=O)(OH)-、-P(=O)(R)-、-P(=O)(NHR)-、-P(=O)(NR 2)-、-P(=O)(R)NH-、C 2-4烯基、C 2-4炔基、C 6-12芳基、5-12元杂芳基、C 3-14环烷基和3-14元杂环烷基的原子或基团置换,L任选被1、2、3、4、5或6个R取代,R选自H、F、Cl、Br、I、OH、NH、CN、C 1-3烷基、C 6-12芳基和C 5-10杂芳基,其他变量如本发明所定义。
在本发明的一些方案中,所述L选自式(II-5)、(II-6)和(IV-1)所示结构
Figure PCTCN2021081375-appb-000037
Figure PCTCN2021081375-appb-000038
其中,
E 8选自3-8元单杂环烷基、5-14元桥杂环烷基和5-14元螺杂环烷基;
E 9和E 10分别独立地选自O和NH;
T 4、T 7、T 8和T 9分别独立地选自CH和N;
R 7、R 8和R 9分别独立地选自H和C 1-3烷基;
m2、m3、m5、m6、m7、m8和m9分别独立地选自0或1;
m1、m4和m10分别独立地选自0~15;
且m1、m2、m3、m4、m5、m6、m7、m8、m9和m10至少一个不为0;
且m3和m6至少有一个为1;
m12和m13分别独立地选自0或1;
m11、m14和m15分别独立地选自0~15;
且m11、m12、m13、m14和m15至少一个不为0;
m17、m20和m23分别独立地选自0~15;
m16、m18、m19、m21、m22和m24分别独立地选自0或1;
且m16、m17、m18、m19、m20、m21、m22、m23和m24至少一个不为0;
且m18和m19至少有一个为1。
在本发明的一些方案中,所述L选自式(IV-1-1)所示结构
Figure PCTCN2021081375-appb-000039
其中,
E 9和E 10分别独立地选自O和NH;
R 9选自H和CH 3
m16选自0或1;
m17选自0、1、2或3;
m20选自0、1、2或3;
m21和m22分别独立地选自0或1;
m24选自0或1。
在本发明的一些方案中,所述L选自式(I-4)、(I-5)、(I-6)、(II-7)、(II-8)、(IV-2)、(P-1)和(P-2)所示结构
Figure PCTCN2021081375-appb-000040
其中,
R 3、R 4、R 5和R 6分别独立地选自H和C 1-3烷基;
n1、n4和n5分别独立地选自0~15,n2和n3分别独立地选自0或1,且n1、n2、n3、n4和n5至少一个不为0;
n6、n7、n10和n11分别独立地选自0~15,n8和n9分别独立地选自0或1,且n6、n7、n8、n9、n10和n11至少一个不为0;
n12、n13、n16和n17分别独立地选自0~15,n14和n15分别独立地选自0或1,且n12、n13、n14、n15、n16和n17至少一个不为0;
n19和n22分别独立地选自0~15,n18、n20和n21分别独立地选自0或1,且n18、n19、n20、n21和n22至少一个不为0;
E 4和E 5分别独立地选自键、O、NH和S(=O) 2
E 6和E 7分别独立地选自O和NH;E 8选自O和NH;
环D选自苯基、哌啶基、哌嗪基、1,2,3-三氮唑基、环丁基和N-杂环丁基;
E 11选自O和NH;
n23选自0或1,n24选自0~15,且n23和n24至少一个不为0;
环F和环G分别独立地选自哌啶基和哌嗪基;
n25选自1~15;
n26选自0和1。
在本发明的一些方案中,所述L选自式(I-4-1)、(I-4-3)、(I-4-4)、(I-4-5)、(I-4-6)、(II-I-4-7)、(IV-2-1)、(P-1-4-1)、(P-II-8-1)、(P-II-8-2)、(P-II-8-3)、(P-2-1)、(P-1-4-2)、(P-2-2)和(P-2-3)所示结构,
Figure PCTCN2021081375-appb-000041
其中,
R 3选自H、CH 3、CH 2CH 3和CH(CH 3) 2
R 6选自H和CH 3
n1选自0、1、2、3、4、5、6、7和8;
n3选自0和1;
n4选自0、1、2、3和4;
n5选自0、1、2、3、4、5、6、7和8;
n18选自0和1;
n19选自0、1、2、3、4、5、6、7和8;
n20选自0和1;
n21选自0和1;
n22选自0、1、2、3、4、5、6、7和8;
n24选自0、1、2、3和4。
在本发明的一些方案中,所述L选自式(I-5-1)、(I-5-2)、(I-5-3)和(I-5-4)所示结构,
Figure PCTCN2021081375-appb-000042
其中,n6、n7、n10和n11如本发明所定义。
在本发明的一些方案中,所述L选自式(I-6-1)、(I-6-2)、(I-6-3)、(I-6-4)、(I-6-5)、(I-6-6)、(I-6-7)、(I-6-8)、(II-7-1)、(IV-II-7-1)和(P-1-1)所示结构,
Figure PCTCN2021081375-appb-000043
其中,
T 4和T 5分别独立地选自CH和N,且其中必有一个为N;
T 6和T 7分别独立地选自CH和N,且其中必有一个为C;
E 4、E 5、n12、n13、n15、n16和n17如本发明所定义;
n12a选自1、2和3;
n12b选自0、1、2、3和4;
n25选自1、2、4和5。
在本发明的一些方案中,所述L选自NH、
Figure PCTCN2021081375-appb-000044
Figure PCTCN2021081375-appb-000045
Figure PCTCN2021081375-appb-000046
其他变量如本发明所定义。
本发明提供了式(I)所示化合物或其药学上可接受的盐,
PTM-L-ULM
(I)
其中,
PTM选自结合于靶向蛋白的药物或其衍生物;
L为连接PTM和ULM的链;
ULM选自式(III-1)和(III-2)所示结构,
Figure PCTCN2021081375-appb-000047
E选自键、-CH 2-、-NR 1-、-O-、-S-、-S(=O)-、-S(=O) 2-、-C(=O)、和-C(=O)NR 2-;
R 1和R 2分别独立地选自H和C 1-3烷基;
环X、环Y和环Z分别独立地选自苯基、噻吩基、呋喃基、三氮唑基、恶唑基、异恶唑基、吡咯基和吡啶基。
在本发明的一些方案中,所述所述化合物或其药学上可接受的盐,其中,ULM选自式(II-11)、(II-12)、(II-13)、(II-1)、(II-2)、(II-3)、(II-4)、(III-21)、(III-22)、(III-23)和(III-24)所示结构,
Figure PCTCN2021081375-appb-000048
T 1、T 2和T 3分别独立地选自CH和N;
E 1、E 2和E 3分别独立地选自键、-CH 2-、-NR 1-、-O-、-S-、-S(=O)-、-S(=O) 2-、-C(=O)、和-C(=O)NR 2-;
R 1和R 2分别独立地选自H和C 1-3烷基;
环A、环B和环C分别独立地选自苯基、噻吩基、呋喃基、吡咯基和吡啶基。
在本发明的一些方案中,所述环A选自苯基和噻吩基,其他变量如本发明所定义。
在本发明的一些方案中,所述ULM选自式(II-11-1)、(II-11-2)、(II-1-1)和(II-2-1)所示结构,
Figure PCTCN2021081375-appb-000049
其中,T 1和E 1如本发明所定义。
在本发明的一些方案中,所述环B选自苯基,其他变量如本发明所定义。
在本发明的一些方案中,所述ULM选自式(II-12-1)和(III-21-1)所示结构,
Figure PCTCN2021081375-appb-000050
其中,T 2和E 2如本发明所定义。
在本发明的一些方案中,所述环C选自苯基,其他变量如本发明所定义。
在本发明的一些方案中,所述ULM选自式(II-13-1)、(II-3-1)、(II-3-2)、(III-22-1)、(III-23-1)和(III-24-1)所示结构,
Figure PCTCN2021081375-appb-000051
其中,T 3和E 3如本发明所定义。
在本发明的一些方案中,所述ULM选自
Figure PCTCN2021081375-appb-000052
在本发明的一些方案中,所述PTM选自作用于ALK、BET、CDK、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、RAS、BTK、VEGFR、JAK、HER2、HDAC、Akt、PI3K、mTOR、AR、ER、SRC、MDM2、RAF、IRAK4、STAT3和c-Myc的药物或其衍生物,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自作用于ALK、BRD4、CDK4/6、CDK8、CDK9、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、KRAS、BTK、VEGFR、HER2、HDAC、Akt、PI3K、mTOR、AR、ER、SRC、JAK、MDM2和RAF的药物或其衍生物,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自作用于ALK、BRD4、CDK4/6、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、KRAS、EGFR、BTK、AR、ER、JAK、MDM2和RAF的药物或其衍生物,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自,
Figure PCTCN2021081375-appb-000053
Figure PCTCN2021081375-appb-000054
Figure PCTCN2021081375-appb-000055
Figure PCTCN2021081375-appb-000056
其中,
Figure PCTCN2021081375-appb-000057
选自单键和双键;
T 10、T 11、T 12和T 13分别独立地选自N和CR ccc,且T 10、T 11、T 12和T 13至多2个选自N;
R a选自H和
Figure PCTCN2021081375-appb-000058
R b选自H和CH 3
R c选自H和
Figure PCTCN2021081375-appb-000059
R d选自H、NH 2
Figure PCTCN2021081375-appb-000060
R e选自H和
Figure PCTCN2021081375-appb-000061
R f选自H和OH;
R g选自H和OH;
R h选自H和
Figure PCTCN2021081375-appb-000062
R i选自H和CH 3
R j选自H和CH 3
R k选自H、NH 2、NHCH 3
Figure PCTCN2021081375-appb-000063
R l选自H、
Figure PCTCN2021081375-appb-000064
R m选自H和
Figure PCTCN2021081375-appb-000065
R n选自H、NH 2、NHCH 2CH 3
Figure PCTCN2021081375-appb-000066
R o选自H和CH 3
R p选自H和CH 3
R q选自H、
Figure PCTCN2021081375-appb-000067
R r选自H和
Figure PCTCN2021081375-appb-000068
R s选自H、F和Cl;
R t选自H和Br;
R aa选自H和苯基;
R bb和R cc分别独立地选自H和CN;
R dd、R ff、R hh、R ii和R jj分别独立地选自H、OCH 3
Figure PCTCN2021081375-appb-000069
R ee选自H和F;
R gg选自H和Cl;
R kk选自H、OH和
Figure PCTCN2021081375-appb-000070
R ll和R mm分别独立地选自H、F、Cl、Br、I、OH和OCH 3
R nn选自H、OH和
Figure PCTCN2021081375-appb-000071
R oo选自H和OH;
R pp选自H、OH和
Figure PCTCN2021081375-appb-000072
R qq和R ss分别独立地选自H、F、Cl、Br、I、OH和OCH 3
R tt选自H、OH和
Figure PCTCN2021081375-appb-000073
R uu选自H、F、Cl、Br、I、OH和OCH 3
R vv选自H和
Figure PCTCN2021081375-appb-000074
R ww选自H和
Figure PCTCN2021081375-appb-000075
R xx选自H和OH;
R yy、R zz和R aaa分别独立地选自H和
Figure PCTCN2021081375-appb-000076
R bbb选自H和
Figure PCTCN2021081375-appb-000077
R ccc选自H、F、Cl、Br和I;
其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自,
Figure PCTCN2021081375-appb-000078
Figure PCTCN2021081375-appb-000079
在本发明的一些方案中,所述L选自C 1-20烷基,L上的1、2或3个CH 2被环丙基置换,L上的1、2、3、4、5或6个CH 2任选被-NH-、=N-、-O-、-S-、-C(=O)-、-C(=O)O-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-S(=O)-、-S(=O) 2-、-S(=O) 2NH-、=NO-、-P(=O)(OH)-、-P(=O)(R)-、-P(=O)(NHR)-、-P(=O)(NR 2)-、-P(=O)(R)NH-、C 2-4烯基、C 2-4炔基、C 6-12芳基、5-12元杂芳基、C 3-14环烷基和3-14元杂环烷基的原子或基团置换,L任选被1、2、3、4、5或6个R取代,R选自H、F、Cl、Br、I、OH、NH、CN、C 1-3烷基、C 6-12芳基和C 5-10杂芳基,其他变量如本发明所定义。
在本发明的一些方案中,所述L选自式(II-5)、(II-6)和(IV-1)所示结构
Figure PCTCN2021081375-appb-000080
其中,
E 8选自3-8元单杂环烷基、5-14元桥环烷基和5-14元螺环烷基;
E 9和E 10分别独立地选自O和NH;
T 4、T 7、T 8和T 9分别独立地选自CH和N;
R 7、R 8和R 9分别独立地选自H和C 1-3烷基;
m2、m3、m5、m6、m7、m8和m9分别独立地选自0或1;
m1、m4和m10分别独立地选自0~15;
且m1、m2、m3、m4、m5、m6、m7、m8、m9和m10至少一个不为0;
且m3和m6至少有一个为1;
m12和m13分别独立地选自0或1;
m11、m14和m15分别独立地选自0~15;
且m11、m12、m13、m14和m15至少一个不为0;
m17、m20和m23分别独立地选自0~15;
m16、m18、m19、m21、m22和m24分别独立地选自0或1;
且m16、m17、m18、m19、m20、m21、m22、m23和m24至少一个不为0。
在本发明的一些方案中,所述L选自式(IV-1-1)所示结构
Figure PCTCN2021081375-appb-000081
其中,
E 9和E 10分别独立地选自O和NH;
R 9选自H和CH 3
m16选自0或1;
m17选自0、1、2或3;
m20选自0、1、2或3;
m21和m22分别独立地选自0或1;
m24选自0或1。
在本发明的一些方案中,所述L选自式(I-4)、(I-5)、(I-6)、(II-7)、(II-8)和(IV-2)所示结构
Figure PCTCN2021081375-appb-000082
其中,
R 3、R 4、R 5和R 6分别独立地选自H和C 1-3烷基;
n1、n4和n5分别独立地选自0~15,n2和n3分别独立地选自0或1,且n1、n2、n3、n4和n5至少一个不为0;
n6、n7、n10和n11分别独立地选自0~15,n8和n9分别独立地选自0或1,且n6、n7、n8、n9、n10和n11至少一个不为0;
n12、n13、n16和n17分别独立地选自0~15,n14和n15分别独立地选自0或1,且n12、n13、n14、n15、n16和n17至少一个不为0;
n19和n22分别独立地选自0~15,n18、n20和n21分别独立地选自0或1,且n18、n19、n20、n21和n22至少一个不为0;
E 4和E 5分别独立地选自键、O、NH和S(=O) 2
E 6和E 7分别独立地选自O和NH;
环D选自苯基、哌啶基、哌嗪基、1,2,3-三氮唑基、环丁基和N-杂环丁基;
E 11选自O和NH;
n23选自0或1,n24选自0~15,且n23和n24至少一个不为0。
在本发明的一些方案中,所述L选自式(I-4-1)、(I-4-2)、(I-4-3)、(I-4-4)、(I-4-5)、(I-4-6)、(II-I-4-7)、(II-8-1)和(IV-2-1)所示结构,
Figure PCTCN2021081375-appb-000083
其中,
R 3选自H、CH 3、CH 2CH 3和CH(CH 3) 2
n1选自0、1、2、3、4、5、6、7和8;
n3选自0和1;
n4选自0、1、2、3和4;
n5选自0、1、2、3、4、5、6、7和8;
n18选自0和1;
n19选自0、1、2、3和4;
n20选自0和1;
n21选自0和1;
n24选自0、1、2、3和4。
在本发明的一些方案中,所述L选自式(I-5-1)、(I-5-2)、(I-5-3)和(I-5-4)所示结构,
Figure PCTCN2021081375-appb-000084
其中,n6、n7、n10和n11如本发明所定义。
在本发明的一些方案中,所述L选自式(I-6-1)、(I-6-2)、(I-6-3)、(I-6-4)、(I-6-5)、(I-6-6)、(I-6-7)、(I-6-8)、(II-7-1)和(IV-II-7-1)所示结构,
Figure PCTCN2021081375-appb-000085
其中,
T 4和T 5分别独立地选自CH和N,且其中必有一个为N;
T 6和T 7分别独立地选自CH和N,且其中必有一个为C;
E 4、E 5、n12、n13、n15、n16和n17如本发明所定义;
n12a选自1、2和3;
n12b选自0、1、2、3和4。
在本发明的一些方案中,所述L选自NH、
Figure PCTCN2021081375-appb-000086
Figure PCTCN2021081375-appb-000087
本发明提供了式(I)所示化合物或其药学上可接受的盐,
PTM-L-ULM
(I)
其中,
PTM选自结合于靶向蛋白的药物或其衍生物;
L为连接PTM和ULM的链;
ULM选自式(III-1)和(III-2)所示结构,
Figure PCTCN2021081375-appb-000088
E选自键、-CH 2-、-NR 1-、-O-、-S-、-S(=O)-、-S(=O) 2-、-C(=O)、和-C(=O)NR 2-;
R 1和R 2分别独立地选自H和C 1-3烷基;
环X、环Y和环Z分别独立地选自苯基、噻吩基、呋喃基、三氮唑基、恶唑基、异恶唑基、吡咯基和吡啶基。
在本发明的一些方案中,所述所述化合物或其药学上可接受的盐,其中,ULM选自式(II-11)、(II-12)、(II-13)、(II-1)、(II-2)、(II-3)、(II-4)、(III-21)、(III-22)、(III-23)和(III-24)所示结构,
Figure PCTCN2021081375-appb-000089
T 1、T 2和T 3分别独立地选自CH和N;
E 1、E 2和E 3分别独立地选自-CH 2-、-NR 1-、-O-、-S-、-S(=O)-、-S(=O) 2-、-C(=O)、和-C(=O)NR 2-;
R 1和R 2分别独立地选自H和C 1-3烷基;
环A、环B和环C分别独立地选自苯基、噻吩基、呋喃基、吡咯基和吡啶基。
在本发明的一些方案中,所述环A选自苯基和噻吩基,其他变量如本发明所定义。
在本发明的一些方案中,所述ULM选自式(II-11-1)、(II-11-2)、(II-1-1)和(II-2-1)所示结构,
Figure PCTCN2021081375-appb-000090
其中,T 1和E 1如本发明所定义。
在本发明的一些方案中,所述环B选自苯基,其他变量如本发明所定义。
在本发明的一些方案中,所述ULM选自式(II-12-1)和(III-21-1)所示结构,
Figure PCTCN2021081375-appb-000091
其中,T 2和E 2如本发明所定义。
在本发明的一些方案中,所述环C选自苯基,其他变量如本发明所定义。
在本发明的一些方案中,所述ULM选自式(II-13-1)、(II-3-1)、(II-3-2)、(III-22-1)、(III-23-1)和(III-24-1)所示结构,
Figure PCTCN2021081375-appb-000092
其中,T 3和E 3如本发明所定义。
在本发明的一些方案中,所述ULM选自
Figure PCTCN2021081375-appb-000093
在本发明的一些方案中,所述PTM选自作用于ALK、BET、CDK、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、RAS、BTK、VEGFR、JAK、HER2、HDAC、Akt、PI3K、mTOR、AR、ER、SRC、MDM2和RAF的药物或其衍生物,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自作用于ALK、BRD4、CDK4/6、CDK8、CDK9、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、KRAS、BTK、VEGFR、HER2、HDAC、Akt、PI3K、mTOR、AR、ER、SRC、JAK、MDM2和RAF的药物或其衍生物,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自作用于ALK、BRD4、CDK4/6、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、KRAS、EGFR、BTK、AR、JAK、MDM2和RAF的药物或其衍生物,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自,
Figure PCTCN2021081375-appb-000094
Figure PCTCN2021081375-appb-000095
Figure PCTCN2021081375-appb-000096
其中,
R a选自H和
Figure PCTCN2021081375-appb-000097
R b选自H和CH 3
R c选自H和
Figure PCTCN2021081375-appb-000098
R d选自H、NH 2
Figure PCTCN2021081375-appb-000099
R e选自H和
Figure PCTCN2021081375-appb-000100
R f选自H和OH;
R g选自H和OH;
R h选自H和
Figure PCTCN2021081375-appb-000101
R i选自H和CH 3
R j选自H和CH 3
R k选自H、NH 2、NHCH 3
Figure PCTCN2021081375-appb-000102
R l选自H、
Figure PCTCN2021081375-appb-000103
R m选自H和
Figure PCTCN2021081375-appb-000104
R n选自H、NH 2、NHCH 2CH 3
Figure PCTCN2021081375-appb-000105
R o选自H和CH 3
R p选自H和CH 3
R q选自H、
Figure PCTCN2021081375-appb-000106
R r选自H和
Figure PCTCN2021081375-appb-000107
R s选自H、F和Cl;
R t选自H和Br;
R aa选自H和苯基;
R bb和R cc分别独立地选自H和CN;
R dd、R ff、R hh、R ii和R jj分别独立地选自H、OCH 3
Figure PCTCN2021081375-appb-000108
R ee选自H和F;
R gg选自H和Cl;
Figure PCTCN2021081375-appb-000109
选自单键和双键,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自,
Figure PCTCN2021081375-appb-000110
Figure PCTCN2021081375-appb-000111
在本发明的一些方案中,所述L选自C 1-20烷基,L上的1、2或3个CH 2被环丙基置换,L上的1、2、3、4、5或6个CH 2任选被-NH-、=N-、-O-、-S-、-C(=O)-、-C(=O)O-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-S(=O)-、-S(=O) 2-、-S(=O) 2NH-、=NO-、-P(=O)(OH)-、-P(=O)(R)-、-P(=O)(NHR)-、-P(=O)(NR 2)-、-P(=O)(R)NH-、C 2-4烯基、C 2-4炔基、C 6-12芳基、5-12元杂芳基、C 3-14环烷基和3-14元杂环烷基的原子或基团置换,L任选被1、2、3、4、5或6个R取代,R选自H、F、Cl、Br、I、OH、NH、CN、C 1-3烷基、C 6-12芳基和C 5-10杂芳基,其他变量如本发明所定义。
在本发明的一些方案中,所述L选自式(II-5)、(II-6)所示结构
Figure PCTCN2021081375-appb-000112
其中,
E 8选自3-8元单杂环烷基、5-14元桥环烷基、5-14元螺环烷基;
T 4、T 7、T 8和T 9分别独立地选自CH和N;
R 7和R 8分别独立地选自H和C 1-3烷基;
m2、m3、m5、m6、m7、m8和m9分别独立地选自0或1;
m1、m4和m10分别独立地选自0~15;
且m1、m2、m3、m4、m5、m6、m7、m8、m9和m10至少一个不为0;
且m3和m6至少有一个为1;
m12和m13分别独立地选自0或1;
m11、m14和m15分别独立地选自0~15;
且m11、m12、m13、m14和m15至少一个不为0。
在本发明的一些方案中,所述L选自式(I-4)、(I-5)、(I-6)、(II-7)和(II-8)所示结构
Figure PCTCN2021081375-appb-000113
其中,
R 3、R 4、R 5和R 6分别独立地选自H和C 1-3烷基;
n1、n4和n5分别独立地选自0~15,n2和n3分别独立地选自0或1,且n1、n2、n3、n4和n5至少一个不为0;
n6、n7、n10和n11分别独立地选自0~15,n8和n9分别独立地选自0或1,且n6、n7、n8、n9、n10和n11至少一个不为0;
n12、n13、n16和n17分别独立地选自0~15,n14和n15分别独立地选自0或1,且n12、n13、n14、n15、n16和n17至少一个不为0;
n19和n22分别独立地选自0~15,n18、n20和n21分别独立地选自0或1,且n18、n19、n20、n21和n22至少一个不为0;
E 4和E 5分别独立地选自键、O、NH和S(=O) 2
E 6和E 7分别独立地选自O和NH;
环D选自苯基、哌啶基、哌嗪基、1,2,3-三氮唑基、环丁基和N-杂环丁基。
在本发明的一些方案中,所述L选自式(I-4-1)、(I-4-2)、(I-4-3)、(I-4-4)、(I-4-5)、(I-4-6)、(II-I-4-7)和(II-8-1)所示结构,
Figure PCTCN2021081375-appb-000114
其中,
R 3选自H、CH 3、CH 2CH 3和CH(CH 3) 2
n1选自0、1、2、3、4、5、6、7和8;
n3选自0和1;
n4选自0、1、2、3和4;
n5选自0、1、2、3、4、5、6、7和8;
n18选自0和1;
n19选自0、1、2、3和4;
n20选自0和1;
n21选自0和1。
在本发明的一些方案中,所述L选自式(I-5-1)、(I-5-2)、(I-5-3)和(I-5-4)所示结构,
Figure PCTCN2021081375-appb-000115
其中,n6、n7、n10和n11如本发明所定义。
在本发明的一些方案中,所述L选自式(I-6-1)、(I-6-2)、(I-6-3)、(I-6-4)、(I-6-5)、(I-6-6)、(I-6-7)、(I-6-8)和(II-7-1)所示结构,
Figure PCTCN2021081375-appb-000116
其中,
T 4和T 5分别独立地选自CH和N,且其中必有一个为N;
T 6和T 7分别独立地选自CH和N,且其中必有一个为C;
E 4、E 5、n12、n13、n15、n16和n17如本发明所定义。
在本发明的一些方案中,所述L选自NH、
Figure PCTCN2021081375-appb-000117
Figure PCTCN2021081375-appb-000118
本发明提供了式(I)所示化合物或其药学上可接受的盐,
PTM-L-ULM
(I)
其中,
PTM选自作用于靶向蛋白的药物或其衍生物;
L为连接PTM和ULM的链;
ULM选自式(II-11)、(II-12)、(II-13)、(II-1)、(II-2)、(II-3)和(II-4)所示结构,
Figure PCTCN2021081375-appb-000119
T 1、T 2和T 3分别独立地选自CH和N;
E 1、E 2和E 3分别独立地选自-CH 2-、-NR 1-、-O-、-S-、-S(=O)-、-S(=O) 2-、-C(=O)、和-C(=O)NR 2-;
R 1和R 2分别独立地选自H和C 1-3烷基;
环A、环B和环C分别独立地选自苯基、噻吩基、呋喃基、吡咯基和吡啶基。
在本发明的一些方案中,所述环A选自苯基和噻吩基,其他变量如本发明所定义。
在本发明的一些方案中,所述ULM选自式(II-11-1)、(II-11-2)、(II-1-1)和(II-2-1)所示结构,
Figure PCTCN2021081375-appb-000120
其中,T 1和E 1如本发明所定义。
在本发明的一些方案中,所述环B选自苯基,其他变量如本发明所定义。
在本发明的一些方案中,所述ULM选自式(II-12-1)所示结构,
Figure PCTCN2021081375-appb-000121
其中,T 2和E 2如本发明所定义。
在本发明的一些方案中,所述环C选自苯基,其他变量如本发明所定义。
在本发明的一些方案中,所述ULM选自式(II-13-1)、(II-3-1)和(II-3-2)所示结构,
Figure PCTCN2021081375-appb-000122
其中,T 3和E 3如本发明所定义。
在本发明的一些方案中,所述ULM选自
Figure PCTCN2021081375-appb-000123
在本发明的一些方案中,所述PTM选自作用于ALK、BET、CDK、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、RAS、BTK、VEGFR、JAK、HER2、HDAC、Akt、PI3K、mTOR、AR、ER、SRC、MDM2和RAF的药物或其衍生物,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自作用于ALK、BRD4、CDK4/6、CDK8、CDK9、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、KRAS、BTK、VEGFR、HER2、 HDAC、Akt、PI3K、mTOR、AR、ER、SRC、JAK、MDM2和RAF的药物或其衍生物,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自作用于ALK、BRD4、CDK4/6、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、KRAS、EGFR、BTK、AR、JAK、MDM2和RAF的药物或其衍生物,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自,
Figure PCTCN2021081375-appb-000124
Figure PCTCN2021081375-appb-000125
Figure PCTCN2021081375-appb-000126
其中,
R a选自H和
Figure PCTCN2021081375-appb-000127
R b选自H和CH 3
R c选自H和
Figure PCTCN2021081375-appb-000128
R d选自H、NH 2
Figure PCTCN2021081375-appb-000129
R e选自H和
Figure PCTCN2021081375-appb-000130
R f选自H和OH;
R g选自H和OH;
R h选自H和
Figure PCTCN2021081375-appb-000131
R i选自H和CH 3
R j选自H和CH 3
R k选自H、NH 2、NHCH 3
Figure PCTCN2021081375-appb-000132
R l选自H、
Figure PCTCN2021081375-appb-000133
R m选自H和
Figure PCTCN2021081375-appb-000134
R n选自H、NH 2、NHCH 2CH 3
Figure PCTCN2021081375-appb-000135
R o选自H和CH 3
R p选自H和CH 3
R q选自H、
Figure PCTCN2021081375-appb-000136
R r选自H和
Figure PCTCN2021081375-appb-000137
R s选自H、F和Cl;
R t选自H和Br;
R aa选自H和苯基;
R bb和R cc分别独立地选自H和CN;
R dd、R ff、R hh、R ii和R jj分别独立地选自H、OCH 3
Figure PCTCN2021081375-appb-000138
R ee选自H和F;
R gg选自H和Cl;
Figure PCTCN2021081375-appb-000139
选自单键和双键,其他变量如本发明所定义。
在本发明的一些方案中,所述PTM选自,
Figure PCTCN2021081375-appb-000140
Figure PCTCN2021081375-appb-000141
在本发明的一些方案中,所述L选自C 1-20烷基,L上的CH 2被1、2或3个环丙基置换,L上的1、2或3个CH 2被环丙基置换,L上的1、2、3、4、5或6个CH 2任选被-NH-、=N-、-O-、-S-、-C(=O)-、-C(=O)O-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-S(=O)-、-S(=O) 2-、-S(=O) 2NH-、=NO-、-P(=O)(OH)-、-P(=O)(R)-、-P(=O)(NHR)-、-P(=O)(NR 2)-、-P(=O)(R)NH-、C 2-4烯基、C 2-4炔基、C 6-12芳基、5-12元杂芳基、C 3-14环烷基和3-14元杂环烷基的原子或基团置换,L任选被1、2、3、4、5或6个R取代,R选自H、F、Cl、Br、I、OH、NH、CN、C 1-3烷基、C 6-12芳基和C 5-10杂芳基,其他变量如本发明所定义。
在本发明的一些方案中,所述L选自式(II-5)、(II-6)所示结构
Figure PCTCN2021081375-appb-000142
其中,
E 8选自3-8元单杂环烷基、5-14元桥环烷基、5-14元螺环烷基;
T 4、T 7、T 8和T 9分别独立地选自CH和N;
R 7和R 8分别独立地选自H和C 1-3烷基;
m2、m3、m5、m6、m7、m8和m9分别独立地选自0或1;
m1、m4和m10分别独立地选自0~15;
且m1、m2、m3、m4、m5、m6、m7、m8、m9和m10至少一个不为0;
且m3和m6至少有一个为1;
m12和m13分别独立地选自0或1;
m11和m14分别独立地选自0~15。
在本发明的一些方案中,所述L选自式(I-4)、(I-5)、(I-6)、(II-7)和(II-8)所示结构
Figure PCTCN2021081375-appb-000143
其中,
R 3、R 4、R 5和R 6分别独立地选自H和C 1-3烷基;
n1、n4和n5分别独立地选自0~15,n2和n3分别独立地选自0或1,且n1、n2、n3、n4和n5至少一个不为0;
n6、n7、n10和n11分别独立地选自0~15,n8和n9分别独立地选自0或1,且n6、n7、n8、n9、n10和n11至少一个不为0;
n12、n13、n16和n17分别独立地选自0~15,n14和n15分别独立地选自0或1,且n12、n13、n14、n15、n16和n17至少一个不为0;
n19和n22分别独立地选自0~15,n18、n20和n21分别独立地选自0或1,且n18、n19、n20、n21和n22至少一个不为0;
E 4和E 5分别独立地选自键、O、NH和S(=O) 2
E 6和E 7分别独立地选自O和NH;
环D选自苯基、哌啶基、哌嗪基、1,2,3-三氮唑基、环丁基和N-杂环丁基。
在本发明的一些方案中,所述L选自式(I-4-1)、(I-4-2)、(I-4-3)、(I-4-4)、(I-4-5)、(I-4-6)、(II-I-4-7)和(II-8-1)所示结构,
Figure PCTCN2021081375-appb-000144
其中,
R 3选自H、CH 3、CH 2CH 3和CH(CH 3) 2
n1选自0、1、2、3、4、5、6、7和8;
n3选自0和1;
n4选自0、1、2、3和4;
n5选自0、1、2、3、4、5、6、7和8;
n18选自0和1;
n19选自0、1、2、3和4;
n20选自0和1;
n21选自0和1。
在本发明的一些方案中,所述L选自式(I-5-1)、(I-5-2)、(I-5-3)和(I-5-4)所示结构,
Figure PCTCN2021081375-appb-000145
其中,n6、n7、n10和n11如本发明所定义。
在本发明的一些方案中,所述L选自式(I-6-1)、(I-6-2)、(I-6-3)、(I-6-4)、(I-6-5)、(I-6-6)、(I-6-7)、(I-6-8)和(II-7-1)所示结构,
Figure PCTCN2021081375-appb-000146
其中,
T 4和T 5分别独立地选自CH和N,且其中必有一个为N;
T 6和T 7分别独立地选自CH和N,且其中必有一个为C;
E 4、E 5、n12、n13、n15、n16和n17如本发明所定义。
在本发明的一些方案中,所述L选自NH、
Figure PCTCN2021081375-appb-000147
Figure PCTCN2021081375-appb-000148
本发明提供了式(I)所示化合物或其药学上可接受的盐,
PTM-L-ULM
(I)
其中,
PTM选自作用于靶向蛋白的药物或其衍生物;
L为连接PTM和ULM的链;
ULM选自式(I-1)、(I-2)和(I-3)所示结构,
Figure PCTCN2021081375-appb-000149
T 1、T 2和T 3分别独立地选自CH和N;
E 1、E 2和E 3分别独立地选自-CH 2-、-NR 1-、-O-、-S-、-S(=O)-、-S(=O) 2-、-C(=O)、和-C(=O)NR 2-;
R 1和R 2分别独立地选自H和C 1-3烷基;
环A、环B和环C分别独立地选自苯基、噻吩基、呋喃基和吡咯基;
带“*”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
在本发明的一些方案中,上述环A选自苯基和噻吩基,其他变量如本发明所定义。
在本发明的一些方案中,上述ULM选自式(I-1-1)、(I-1-2)所示结构,
Figure PCTCN2021081375-appb-000150
其中,T 1和E 1如本发明所定义;
带“*”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
在本发明的一些方案中,上述环B选自苯基,其他变量如本发明所定义。
在本发明的一些方案中,上述ULM选自式(I-2-1)所示结构,
Figure PCTCN2021081375-appb-000151
其中,T 2和E 2如本发明所定义;
带“*”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。。
在本发明的一些方案中,上述环C选自苯基,其他变量如本发明所定义。
在本发明的一些方案中,上述ULM选自式(I-3-1)所示结构,
Figure PCTCN2021081375-appb-000152
其中,T 3和E 3如本发明所定义;
带“*”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
在本发明的一些方案中,上述ULM选自
Figure PCTCN2021081375-appb-000153
在本发明的一些方案中,上述PTM选自作用于ALK、BET、CDK、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、RAS、BTK、VEGFR、JAK、HER2、HDAC、Akt、 PI3K、mTOR、AR、ER和SRC的药物或其衍生物,其他变量如本发明所定义。
在本发明的一些方案中,上述PTM选自作用于ALK、BRD4、CDK4/6、CDK8、CDK9、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、KRAS、BTK、VEGFR、HER2、HDAC、Akt、PI3K、mTOR、AR、ER、SRC和JAK的药物或其衍生物,其他变量如本发明所定义,其他变量如本发明所定义。
在本发明的一些方案中,上述PTM选自作用于ALK、BRD4、CDK4/6、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、KRAS、EGFR、BTK和JAK的药物或其衍生物,其他变量如本发明所定义。
在本发明的一些方案中,上述PTM选自,
Figure PCTCN2021081375-appb-000154
Figure PCTCN2021081375-appb-000155
其中,
R a选自H和
Figure PCTCN2021081375-appb-000156
R b选自H和CH 3
R c选自H和
Figure PCTCN2021081375-appb-000157
R d选自H、NH 2
Figure PCTCN2021081375-appb-000158
R e选自H和
Figure PCTCN2021081375-appb-000159
R f选自H和OH;
R g选自H和OH;
R h选自H和
Figure PCTCN2021081375-appb-000160
R i选自H和CH 3
R j选自H和CH 3
R k选自H、NH 2、NHCH 3
Figure PCTCN2021081375-appb-000161
R l选自H、
Figure PCTCN2021081375-appb-000162
R m选自H和
Figure PCTCN2021081375-appb-000163
R n选自H、NH 2、NHCH 2CH 3
Figure PCTCN2021081375-appb-000164
R o选自H和CH 3
R p选自H和CH 3
R q选自H、
Figure PCTCN2021081375-appb-000165
R r选自H和
Figure PCTCN2021081375-appb-000166
其他变量如本发明所定义。
在本发明的一些方案中,上述PTM选自,
Figure PCTCN2021081375-appb-000167
在本发明的一些方案中,上述L选自式(I-4)、(I-5)、(I-6)所示结构
Figure PCTCN2021081375-appb-000168
其中,
R 3、R 4和R 5分别独立地选自H和C 1-3烷基;
n1、n4和n5分别独立地选自0~15,n2和n3分别独立地选自0或1,且n1、n2、n3、n4和n5至少一个不为0;
n6、n7、n10和n11分别独立地选自0~15,n8和n9分别独立地选自0或1,且n6、n7、n8、n9、n10和n11至少一个不为0;
n12、n13、n16和n17分别独立地选自0~15,n14和n15分别独立地选自0或1,且n12、n13、n14、n15、n16和n17至少一个不为0;
E 4和E 5分别独立地选自键、O、NH和S(=O) 2
环D选自苯基、哌啶基、哌嗪基、1,2,3-三氮唑基、环丁基和N-杂环丁基,其他变量如本发明所定义。
在本发明的一些方案中,上述L选自式(I-4-1)、(I-4-2)、(I-4-3)、(I-4-4)、(I-4-5)和(I-4-6)所示结构,
Figure PCTCN2021081375-appb-000169
其中,R 3、n1、n4和n5如本发明所定义。
在本发明的一些方案中,上述L选自式(I-5-1)、(I-5-2)、(I-5-3)和(I-5-4)所示结构,
Figure PCTCN2021081375-appb-000170
其中,n6、n7、n10和n11如本发明所定义。
在本发明的一些方案中,上述L选自式(I-6-1)、(I-6-2)、(I-6-3)、(I-6-4)、(I-6-5)、(I-6-6)、(I-6-7)和(I-6-8)所示结构,
Figure PCTCN2021081375-appb-000171
Figure PCTCN2021081375-appb-000172
其中,
T 4和T 5分别独立地选自CH和N,且其中必有一个为N;
T 6和T 7分别独立地选自CH和N,且其中必有一个为C;
E 4、E 5、n12、n13、n15、n16和n17如本发明所定义。
在本发明的一些方案中,上述L选自,
Figure PCTCN2021081375-appb-000173
本发明还有一些方案由上述变量任意组合而来。
本发明还提供了下式所示化合物或其药学上可接受的盐,
Figure PCTCN2021081375-appb-000174
Figure PCTCN2021081375-appb-000175
Figure PCTCN2021081375-appb-000176
Figure PCTCN2021081375-appb-000177
Figure PCTCN2021081375-appb-000178
Figure PCTCN2021081375-appb-000179
Figure PCTCN2021081375-appb-000180
本发明还提供了所述化合物或其药学上可接受的盐在制备治疗与ALK、BET、CDK、PARP、EGFR、 γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、RAS、BTK、VEGFR、JAK、HER2、HDAC、Akt、PI3K、mTOR、AR、ER、PDEδ、SRC、MDM2、RAF、IRAK4、STAT3和c-Myc相关疾病的药物中的应用。
技术效果
本发明化合物具有优异的蛋白降解作用、细胞增殖抑制作用和缩瘤作用,具有较优的药代动力学性质。
相关定义
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
术语“靶向蛋白”表示结合本发明化合物并被降解的蛋白质或多肽。
术语“药物或其衍生物”包括已开发可结合于靶向蛋白的的药物或其衍生物和将来开发的可结合于靶向蛋白的药物或其衍生物。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
术语“被置换”指特定的原子或基团可以被替换为指定的其他原子或基团。如CH 3CH 2CH 3中的CH 2可被O、S、NH置换得到CH 3OCH 3、CH 3SCH 3和CH 3NHCH 3
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2021081375-appb-000181
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2021081375-appb-000182
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2021081375-appb-000183
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。当基团为并环结构,该并环结构通过不定位化学键与其他基团相连时,该并环的任意一个或多个位点可以通过化学键与其他基团相连。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2021081375-appb-000184
直形虚线键
Figure PCTCN2021081375-appb-000185
或波浪线
Figure PCTCN2021081375-appb-000186
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基 团相连;
Figure PCTCN2021081375-appb-000187
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2021081375-appb-000188
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连;
Figure PCTCN2021081375-appb-000189
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure PCTCN2021081375-appb-000190
Figure PCTCN2021081375-appb-000191
这4种连接方式,即使-N-上画出了H原子,但是
Figure PCTCN2021081375-appb-000192
仍包括
Figure PCTCN2021081375-appb-000193
这种连接方式的基团,只是在连接1个化学键时,该位点的的H会对应减少1个变成相应的一价哌啶基;
Figure PCTCN2021081375-appb-000194
表示该萘[2,3-d]异恶唑基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure PCTCN2021081375-appb-000195
Figure PCTCN2021081375-appb-000196
这7种连接方式。
除非另有规定,
Figure PCTCN2021081375-appb-000197
用于表示
Figure PCTCN2021081375-appb-000198
内的基团任意位点的氢原子可被取代。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1- 12包括C 1-3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
除非另有规定,术语“C 1-20烷基”用于表示直链或支链的由1至20个碳原子组成的饱和碳氢基团。所述C 1-20烷基包括C 1-19、C 1-18、C 1-17、C 1-16、C 1-15、C 1-14、C 1-13、C 1-12、C 1-11、C 1-10、C 1-9、C 1-8、C 1- 7、C 1-6、C 1-5、C 1-4、C 1-3、C 1-2、C 18、C 17、C 16、C 15、C 14、C 13、C 12、C 11、C 10、C 1-9、C 8、C 7、C 6和C 5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-8烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)、己基、庚基、辛基等。
除非另有规定,术语“C 1-6烷基”用于表示直链或支链的由1至6个碳原子组成的饱和碳氢基团。所述C 1-6烷基包括C 1-5、C 1-4、C 1-3、C 1-2、C 2-6、C 2-4、C 6和C 5烷基等;其可以是一价(如甲基)、二 价(如亚甲基)或者多价(如次甲基)。C 1-6烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)、己基等。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,“C 2-4烯基”用于表示直链或支链的包含至少一个碳-碳双键的由2至4个碳原子组成的碳氢基团,碳-碳双键可以位于该基团的任何位置上。所述C 2-4烯基包括C 2-3、C 4、C 3和C 2烯基等;所述C 2-4烯基可以是一价、二价或者多价。C 2-4烯基的实例包括但不限于乙烯基、丙烯基、丁烯基、丁间二烯基等。
除非另有规定,“C 2-4炔基”用于表示直链或支链的包含至少一个碳-碳三键的由2至4个碳原子组成的碳氢基团,碳-碳三键可以位于该基团的任何位置上。所述C 2-4炔基包括C 2-3、C 4、C 3和C 2炔基等。其可以是一价、二价或者多价。C 2-4炔基的实例包括但不限于乙炔基、丙炔基、丁炔基等。
除非另有规定,“C 3-14环烷基”表示由3至14个碳原子组成的饱和环状碳氢基团,其包括单环、双环和三环体系,其中双环和三环体系包括螺环、并环和桥环。所述C 3-14环烷基包括C 3-12、C 3-10、C 3- 8、C 3-6、C 3-5、C 4-10、C 4-8、C 4-6、C 4-5、C 5-8和C 5-6环烷基等;其可以是一价、二价或者多价。C 3-14环烷基的实例包括,但不限于,环丙基、环丁基、环戊基、环己基、环庚基、降冰片烷基、[2.2.2]二环辛烷、[4.4.0]二环癸烷等。
除非另有规定,术语“3-14元杂环烷基”本身或者与其他术语联合分别表示由3至14个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。所述其包括单环、双环和三环体系,其中双环和三环体系包括螺环、并环和桥环。此外,就该“3-14元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述3-14元杂环烷基包括3-12元、3-10元、3-8元、3-6元、3-5元、4-6元、5-6元、4元、5元和6元杂环烷基等。3-14元杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、硫杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基、高哌啶基或二氧杂环庚烷基等。
除非另有规定,术语“3-8元单杂环烷基”本身或者与其他术语联合分别表示由3至8个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。所述环为单环结构。此外,就该“3-8元单杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述3-8元单杂环烷基包括3-6元、3-5元、4-6元、5-6元、4元、5元和6元杂环烷基等。3-8元单杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、硫杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃 基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基、高哌啶基或二氧杂环庚烷基等。
除非另有规定,术语“5-14元桥杂环烷基”本身或者与其他术语联合分别表示由5至14个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。所述环包括双环和三环体系的桥环和并环。此外,就该“5-14元桥杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述5-14元杂环烷基包括5-12元、5-10元、5-8元、5-6元、5元和6元杂环烷基等。
除非另有规定,术语“5-14元螺杂环烷基”本身或者与其他术语联合分别表示由5至14个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。所述环包括双环和三环体系的螺环。此外,就该“5-14元桥杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述5-14元杂环烷基包括5-12元、5-10元、5-8元、5-6元、5元和6元杂环烷基等。除非另有规定,本发明术语“C 6-12芳环”和“C 6-12芳基”可以互换使用,术语“C 6-12芳环”或“C 6-12芳基”表示由6至12个碳原子组成的具有共轭π电子体系的环状碳氢基团,它可以是单环、稠合双环或稠合三环体系,其中各个环均为芳香性的。其可以是一价、二价或者多价,C 6-12芳基包括C 6-10、C 6-9、C 6- 8、C 12、C 10和C 6芳基等。C 6-12芳基的实例包括但不限于苯基、萘基(包括1-萘基和2-萘基等)。
除非另有规定,本发明术语“5-12元杂芳环”和“5-12元杂芳基”可以互换使用,术语“5-12元杂芳基”表示由5至12个环原子组成的具有共轭π电子体系的环状基团,,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子。其可以是单环、稠合双环或稠合三环体系,其中各个环均为芳香性的。其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。5-12元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述5-12元杂芳基包括5-10元、5-8元、5-7元、5-6元、5元和6元杂芳基等。所述5-12元杂芳基的实例包括但不限于吡咯基(包括N-吡咯基、2-吡咯基和3-吡咯基等)、吡唑基(包括2-吡唑基和3-吡唑基等)、咪唑基(包括N-咪唑基、2-咪唑基、4-咪唑基和5-咪唑基等)、噁唑基(包括2-噁唑基、4-噁唑基和5-噁唑基等)、三唑基(1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基和4H-1,2,4-三唑基等)、四唑基、异噁唑基(3-异噁唑基、4-异噁唑基和5-异噁唑基等)、噻唑基(包括2-噻唑基、4-噻唑基和5-噻唑基等)、呋喃基(包括2-呋喃基和3-呋喃基等)、噻吩基(包括2-噻吩基和3-噻吩基等)、吡啶基(包括2-吡啶基、3-吡啶基和4-吡啶基等)、吡嗪基、嘧啶基(包括2-嘧啶基和4-嘧啶基等)、苯并噻唑基(包括5-苯并噻唑基等)、嘌呤基、苯并咪唑基(包括2-苯并咪唑基等)、苯并噁唑基、吲哚基(包括5-吲哚基等)、异喹啉基(包括1-异喹啉基和5-异喹啉基等)、喹喔啉基(包括2-喹喔啉基和5-喹喔啉基等)或喹啉基(包括3-喹啉基和6-喹啉基等)。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲核取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2021081375-appb-000199
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2021081375-appb-000200
软件命名,市售化合物采用供应商目录名称。
说明书附图
图1为人肺癌NCI–H2228细胞的ALK蛋白水平及其磷酸化水平的体外测试图。
图2为人急性髓系白血病MV4-11细胞的BRD4蛋白水平及下游c-Myc水平的体外测试图。
图3为人肺癌H358细胞的PDEδ蛋白水平的体外测试图。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
参考例1
Figure PCTCN2021081375-appb-000201
合成路线:
Figure PCTCN2021081375-appb-000202
步骤1:中间体BB–1–2的合成
室温下,将化合物BB–1–1(100g,465.02mmol)溶于三氯甲烷(500mL)和乙酸乙酯(500mL)的混合溶剂中,随后加入溴化铜(207.73g,930.04mmol)。反应混合物加热至100℃并搅拌反应14小时。反应完毕后,冷却至室温,过滤,滤液减压除去溶剂。所得残余物加入水(200mL),用二氯甲烷(200mL×3)萃取。合并有机相,用食盐水(300mL×2)洗涤,无水硫酸钠干燥,过滤。所得中间体BB–1–2保存在二氯甲烷(600mL)中,直接用于下一步反应。
步骤2:中间体BB–1–3的合成
0℃下,向上述中间体BB–1–2的二氯甲烷溶液(465.02mmol,600mL)中,加入三乙胺(47.06g,465.02mmol,64.73mL),反应混合物升至室温并搅拌反应0.5小时。反应完毕后,向反应液中加入水(300mL),分液,水相用二氯甲烷(200mL×3)萃取。合并所有有机相,用食盐水(400mL×2)洗涤,无水硫酸钠干燥,过滤。所得中间体BB–1–3保存在二氯甲烷(1200mL)中,直接用于下一步反应。
步骤3:中间体BB–1–4的合成
室温和氮气保护下,向上述中间体BB–1–3的二氯甲烷溶液(465.02mmol,1200mL)中加入甲苯(2000mL),然后加入乙基(三苯基膦)乙酸酯(194.40g,558.02mmol),反应混合物加热至130℃并搅拌反应60小时。反应完毕后,冷却至室温,减压除去溶剂。所得残余物通过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–70/1,体积比),得到中间体BB–1–4。 1H NMR(400MHz,CDCl 3)δ:7.72(d,J=2.0Hz,1H),7.64(s,1H),7.43–7.38(m,1H),7.37–7.33(m,1H),4.21(q,J=7.2Hz,2H),3.66(d,J=0.8Hz,2H),1.29(t,J=7.2Hz,3H)。
步骤4:中间体BB–1–5的合成
室温和氮气保护下,将中间体BB–1–4(5.01g,17.70mmol)和N–(2–羟基乙基)氨基甲酸叔丁酯(2.85g,17.70mmol)加入到甲苯(60mL)中,随后依次加入2–二叔丁基膦–2′,4′,6′–三异丙基联苯(751.44mg,1.77mmol),碳酸铯(11.53g,35.39mmol)和三(二亚苄基丙酮)二钯(1.62g,1.77mmol),反应混合物加热至110℃并搅拌反应14小时。反应完毕后,冷却到室温,加入水(80mL),用乙酸乙酯(60mL×3)萃取。合并有机相,用饱和食盐水(150mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱分离(洗脱剂:石油醚/乙酸乙酯=20/1–10/1,体积比),得到中间体BB–1–5。 1H NMR(400MHz,CDCl 3)δ:7.61(s,1H),7.50(d,J=7.6Hz,1H),7.02(d,J=2.4Hz,1H),6.91(dd,J=2.4,8.8Hz,1H),4.20(q,J=7.1Hz,2H),3.66(d,J=0.8Hz,2H),3.60–3.53(m,2H),3.43–3.36(m,2H),1.45(s, 9H),1.29(t,J=6.8Hz,3H)。
步骤5:中间体BB–1–6的合成
0℃和氮气保护下,将中间体BB–1–5(1.37g,3.76mmol)加入到N,N–二甲基甲酰胺(30mL)中,随后加入叔丁醇钾(421.48mg,3.76mmol),反应混合物在0℃下搅拌反应0.5小时,随后加入丙烯酰胺(266.98mg,3.76mmol),反应混合物在0℃下继续搅拌反应1小时。反应完毕后,升至室温,加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱分离(洗脱剂:石油醚/乙酸乙酯=3/1–2/3,体积比),得到中间体BB–1–6。MS–ESI m/z:411.0[M+Na] +
步骤6:中间体BB–1的盐酸盐的合成
室温和氮气保护下,将中间体BB–1–6(227mg,533.93μmol)加入盐酸的乙酸乙酯溶液(20mL,4M)中,反应混合物在室温下搅拌反应14小时。反应完毕后,反应液直接减压除去溶剂,得到中间体BB–1的盐酸盐。
参考例2
Figure PCTCN2021081375-appb-000203
合成路线:
Figure PCTCN2021081375-appb-000204
步骤1:中间体BB–2–2的合成
0℃下,向化合物BB–2–1(121.00g,974.73mmol)和4–氯乙酰乙酸乙酯(160.43g,974.73mmol)的混合物缓慢滴加浓硫酸(300mL,纯度:98%),然后反应混合物升温至室温并搅拌反应14小时。反应完毕后,将反应液倒入冰水(1L)中,室温下搅拌1小时。过滤,滤饼用水(200mL)洗涤,收集滤饼,真空干燥,得到中间体BB–2–2。MS–ESI m/z:224.8[M+H] +1H NMR(400MHz,CDCl 3)δ:7.30(d,J=9.2Hz,1H),7.16(dd,J=2.8,9.2Hz,1H),7.10(d,J=2.8Hz,1H),6.59(s,1H),4.66(d,J=0.8Hz,2H),3.89(s,3H)。
步骤2:中间体BB–2–3的合成
室温下,将氢氧化钠(50.33g,1.26mol)溶于水(500mL)中,随后加入中间体BB–2–2(45.66g,139.80mmol),反应混合物加热至80℃并搅拌反应14小时。反应完毕后,冷却至室温,反应液用二氯甲烷(200mL×3)萃取,分液后有机相丢弃,收集水相。水相用4M稀盐酸溶液调节pH值至2–3,用二氯 甲烷(500mL×3)萃取。合并有机相,用饱和食盐水(1000mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到中间体BB–2–3。 1H NMR(400MHz,CDCl 3)δ:7.61(s,1H),7.38(d,J=8.8Hz,1H),7.00(d,J=2.4Hz,1H),6.92(dd,J=2.4,8.8Hz,1H),3.85(s,3H),3.73(d,J=1.2Hz,2H)。
步骤3:中间体BB–2–4的合成
室温下,将中间体BB–2–3(28.90g,136.07mmol)溶于无水乙醇(200mL)中,随后加入浓硫酸(27.24g,272.13mmol,14.8mL,纯度:98%),反应混合物加热至80℃并搅拌反应14小时。反应完毕后,冷却至室温,将反应液缓慢加入冰水(300mL)中,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(300mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经制备柱层析分离(洗脱剂:石油醚/乙酸乙酯=50/1–30/1,体积比),得到中间体BB–2–4。 1H NMR(400MHz,CDCl 3)δ:7.61(s,1H),7.37(d,J=8.8Hz,1H),7.02(d,J=2.4Hz,1H),6.91(dd,J=2.8,8.8Hz,1H),4.20(q,J=7.1Hz,2H),3.85(s,3H),3.67(d,J=0.8Hz,2H),1.28(t,J=7.2Hz,3H)。
步骤4:中间体BB–2–5的合成
室温下,将中间体BB–2–4(25.63g,107.69mmol)溶于无水二氯甲烷(300mL)中,冷却至–78℃,随后加入三溴化硼(80.95g,323.06mmol,31.13mL),反应混合物升温至室温并搅拌反应2小时。反应完毕后,将反应液缓慢加入冰水(500mL)中,用二氯甲烷(100mL×3)萃取。合并有机相,用饱和食盐水(300mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经制备柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–4/1,体积比),得到中间体BB–2–5。 1H NMR(400MHz,CDCl 3)δ:7.59(s,1H),7.30(d,J=8.8Hz,1H),6.98(d,J=2.4Hz,1H),6.81(dd,J=2.4,8.8Hz,1H),5.64(s,1H),4.20(q,J=7.1Hz,2H),3.64(d,J=0.8Hz,2H),1.27(t,J=7.0Hz,3H)。
步骤5:中间体BB–2–6的合成
室温下,将中间体BB–2–5(2.07g,9.08mmol)溶于乙腈(100mL)中,依次加入溴乙酸叔丁酯(2.66g,13.62mmol)和碳酸钾(2.51g,18.16mmol),反应混合物加热至65℃并搅拌反应14小时。反应完毕后,冷却至室温,减压浓缩除去溶剂,向所得残余物中加入水(60mL),用乙酸乙酯(60mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–5/1,体积比),得到中间体BB–2–6。 1H NMR(400MHz,CDCl 3)δ:7.61(s,1H),7.37(d,J=9.2Hz,1H),7.01(d,J=2.4Hz,1H),6.96(dd,J=2.8,8.8Hz,1H),4.55(s,2H),4.19(q,J=7.2Hz,2H),3.64(d,J=0.4Hz,2H),1.51(s,9H),1.27(t,J=7.2Hz,3H)。
步骤6:中间体BB–2–7的合成
0℃和氮气保护下,将中间体BB–2–6(2.70g,8.08mmol)溶于二甲基甲酰胺(15mL)中,依次加入叔丁醇钾(996.73mg,8.88mmol)和丙烯酰胺(573.96mg,8.08mmol),反应混合物在0℃下搅拌反应1小时。反应完毕后,向反应液中加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–2/1,体积比),得到中间体BB–2–7。 1H NMR(400MHz,CDCl 3)δ:8.06(s,1H),7.56(s,1H),7.41(d,J=8.8Hz,1H),6.99–6.95(m,2H),4.55(s,2H),3.96(t,J=7.2Hz,1H),2.84–2.67(m,2H),2.38–2.32(m,2H),1.50(s,9H)。
步骤7:中间体BB–2的合成
室温下,将中间体BB–2–7(198.00mg,550.96μmol)溶于二氯甲烷(15mL)中,随后加入三氟乙酸(4.02g,35.26mmol),反应混合物在室温下搅拌反应2小时。反应完毕后,减压除去溶剂,向所得残余物中加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到中间体BB–2。
参考例3
Figure PCTCN2021081375-appb-000205
合成路线:
Figure PCTCN2021081375-appb-000206
室温下,将中间体BB–2–5(2.07g,9.08mmol)溶于甲苯(100mL)中,依次加入1,2–二溴乙烷(8.53g,45.41mmol)、碳酸钾(3.77g,27.25mmol)和十八冠醚–6(24.00g,90.82mmol),反应混合物加热至110℃并搅拌反应14小时。反应完毕后,冷却至室温,减压除去溶剂,向所得残余物中加入水(60mL),用乙酸乙酯(60mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–20/1,体积比),得到中间体BB–3。 1H NMR(400MHz,CDCl 3)δ:7.62(s,1H),7.38(d,J=8.8Hz,1H),7.06(d,J=2.4Hz,1H),6.94(dd,J=2.4,8.8Hz,1H),4.34(t,J=6.4Hz,2H),4.20(q,J=7.2Hz,2H),3.68–3.65(m,4H),1.29(t,J=7.2Hz,3H)。
参考例4
Figure PCTCN2021081375-appb-000207
合成路线:
Figure PCTCN2021081375-appb-000208
步骤1:中间体BB–4–2的合成
室温和氮气保护下,将浓硫酸(220.80g,2.21mol,120mL,纯度:98%)滴加到冰水(40mL)中,随后加入化合物BB–4–1(10g,44.83mmol),冷却至5~10℃,缓慢滴加4–氯乙酰乙酸乙酯(7.38g,44.83mmol),反应混合物升温至室温并搅拌反应16小时,再升温至50℃并继续搅拌反应16小时。反应完毕后,冷却至室温,倒入冰水(1L)中,有大量固体析出,过滤,收集滤饼。所得固体加入甲苯(400mL),减压除去溶剂,再加入甲苯(400mL),再减压除去溶剂,得到中间体BB–4–2。
步骤2:中间体BB–4–3的合成
室温和氮气保护下,将中间体BB–4–2(14.5g,44.81mmol)溶于氢氧化钠(8.70g,217.52mmol)的水(150mL)溶液中,反应混合物加热至80℃并搅拌反应5小时。反应完毕后,冷却至室温,加入二氯甲烷(150mL)稀释,分液后收集有机相,水相用二氯甲烷(150mL×3)萃取。水相用2M稀盐酸调节pH值至4,用乙酸乙酯(200mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到中间体BB–4–3。
步骤3:中间体BB–4–4的合成
室温和氮气保护下,将中间体BB–4–3(11.3g,37.03mmol)溶于乙醇(300mL)中,随后加入浓硫酸(2.08g,20.78mmol,1.13mL,纯度:98%),反应混合物加热至80℃搅拌反应12小时。反应结束后,冷却至室温,减压浓缩除去溶剂,加入水(150mL),用乙酸乙酯(150mL×1,100mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–97/3,体积比),得到中间体BB–4–4。 1H NMR(400MHz,DMSO_d 6)δ:8.35(d,J=2.0Hz,1H),8.09(t,J=4.4Hz,2H),7.86(s,2H),7.73(dd,J=2.0,8.8Hz,1H),4.18–4.09(m,4H),1.18(t,J=7.2Hz,3H)。
步骤4:中间体BB–4–5的合成
室温和氮气保护下,将中间体BB–4–4(5g,15.01mmol)溶于N,N–二甲基甲酰胺(80mL)中,依次加入六氰合铁(II)酸钾(1.16g,3.15mmol),碳酸钠(1.59g,15.01mmol),醋酸钯(336.92mg,1.50mmol),反应混合物加热至140℃并搅拌反应8小时。反应结束后,冷却至室温,加入水(300mL),用乙酸乙酯萃取(100mL×5)。合并有机相,用无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–9/1,体积比),得到中间体BB–4–5。 1H NMR(400MHz,CDCl 3) δ:8.32(d,J=1.2Hz,1H),8.30(d,J=8.8Hz,1H),7.84(s,1H),7.80–7.74(m,2H),7.72(dd,J=1.8,8.6Hz,1H),4.23(q,J=7.2Hz,2H),4.05(s,2H),1.27(t,J=7.2Hz,3H)。
步骤5:中间体BB–4–6的合成
室温下,将中间体BB–4–5(1.1g,3.94mmol)溶于N,N–二甲基甲酰胺(20mL)中,随后加入丙烯酰胺(279.94mg,3.94mmol)和叔丁醇钾(441.95mg,3.94mmol),反应混合物在室温下搅拌反应2小时。反应完毕后,加入水(100mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用半饱和食盐水洗涤(20mL×2),无水硫酸钠干燥,过滤,减压浓缩除去溶剂。所得残余物加入甲醇(5mL),室温搅拌5分钟,有大量固体析出,过滤,收集固体,减压除去溶剂,得到中间体BB–4–6。 1H NMR(400MHz,DMSO_d 6)δ:10.96(s,1H),8.69(d,J=1.6Hz,1H),8.36(d,J=8.8Hz,1H),8.12(s,1H),8.02–7.93(m,2H),7.86(dd,J=1.6,8.4Hz,1H),4.72(dd,J=4.4,12.4Hz,1H),2.95–2.81(m,1H),2.71–2.60(m,1H),2.48–2.38(m,1H),2.34–2.18(m,1H)。
步骤6:中间体BB–4的盐酸盐的合成
室温和氩气保护下,将湿钯碳(0.2g,纯度:10%)加入到N–甲基吡咯烷酮(3mL)中,随后加入中间体BB–4–6(350mg,1.15mmol)和盐酸的乙酸乙酯溶液(4M,2mL),氢气置换三次,反应混合物在氢气(15psi)氛围和室温条件下搅拌反应12小时,再补加湿钯碳(0.2g,纯度:10%)至上述反应混合液中,氢气置换三次,反应混合物在氢气(15psi)氛围和室温条件下继续搅拌反应12小时。反应完毕后,反应混合物直接过滤,滤液减压除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到中间体BB–4的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),8.57(s,3H),8.23(d,J=8.4Hz,1H),8.14(s,1H),8.04(s,1H),7.88–7.81(m,2H),7.73(d,J=8.4Hz,1H),4.71(dd,J=4.2 12.2Hz,1H),4.25–4.15(m,2H),2.98–2.82(m,1H),2.74–2.59(m,1H),2.45–2.36(m,1H),2.34–2.22(m,1H)。
参考例5
Figure PCTCN2021081375-appb-000209
合成路线:
Figure PCTCN2021081375-appb-000210
步骤1:中间体BB–5–1的合成
室温下和氮气保护下,将中间体BB–4–4(5g,14.58mmol)溶于甲苯(10mL)中,随后加入N–(2–羟基乙基)氨基甲酸叔丁酯(2.82g,17.50mmol),三(二亚苄基丙酮)二钯(1.34g,1.46mmol),2–二叔丁基膦–2’,4’,6’–三异丙基联苯(1.86g,4.37mmol)和碳酸铯(9.50g,29.16mmol),反应混合物加热至 110℃并搅拌反应12小时。反应完毕后,冷却至室温,反应液加入水(100mL),用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(150mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–3/1,体积比),得到中间体BB–5–1(纯度:83.34%)。MS–ESI m/z:436.1[M+Na] +1H NMR(400MHz,CDCl 3)δ:8.15(d,J=8.8Hz,1H),7.74(s,1H),7.63–7.61(m,2H),7.30(d,J=2.4Hz,1H),7.24(dd,J=2.6,9.0Hz,1H),4.22(q,J=7.1Hz,2H),4.18–4.15(m,2H),4.04(s,2H),3.65–3.60(m,2H),1.48(s,9H),1.26(t,J=7.2Hz,3H)。
步骤2:中间体BB–5–2的合成
0℃下,将中间体BB–5–1(1g,2.02mmol,纯度:83.34%)溶于N,N–二甲基甲酰胺(20mL)中,随后加入叔丁醇钾(248.79mg,2.22mmol)和丙烯酰胺(143.27mg,2.02mmol),反应混合物在0℃下搅拌反应1小时。反应完毕后,反应液加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/1,体积比),得到中间体BB–5–2。MS–ESI m/z:338.9[M–Boc+H] +1H NMR(400MHz,CDCl 3)δ:8.08(s,1H),7.90(d,J=9.2Hz,1H),7.68–7.62(m,3H),7.32(d,J=2.0Hz,1H),7.27–7.24(m,1H),5.05(br s,1H),4.49(dd,J=5.2,8.4Hz,1H),4.20–4.15(m,2H),3.65–3.59(m,2H),2.84–2.72(m,2H),2.55–2.45(m,2H),1.48(s,9H)。
步骤3:中间体BB–5的盐酸盐的合成
室温下,将中间体BB–5–2(0.22g,479.26μmol)溶于乙酸乙酯(10mL)中,加入盐酸的乙酸乙酯溶液(4M,4.78mL),反应混合物在室温下搅拌反应12小时。反应完毕后,减压浓缩除去溶剂,得到中间体BB–5的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.21(br s,3H),8.14(br d,J=8.8Hz,1H),7.98(s,1H),7.81–7.75(m,2H),7.57(d,J=2.4Hz,1H),7.28(dd,J=2.8,9.2Hz,1H),4.64(dd,J=4.2,11.8Hz,1H),4.34–4.31(m,2H),3.32–3.25(m,2H),2.92–2.83(m,1H),2.68–2.59(m,1H),2.46–2.35(m,1H),2.33–2.23(m,1H)。
参考例6
Figure PCTCN2021081375-appb-000211
合成路线:
Figure PCTCN2021081375-appb-000212
步骤1:中间体BB–6–1的合成
室温和氮气保护下,将中间体BB–4–4(1.5g,4.37mmol)和N-叔丁氧羰基乙二胺(840.98mg,5.25mmol)加入到甲苯(20mL)和水(4mL)混合溶剂中,随后依次加入三(二亚苄基丙酮)二钯(280.39 mg,306.20μmol),2–二叔丁基膦–2′,4′,6′–三异丙基联苯(260.05mg,612.40μmol)和磷酸钾(3.71g,17.50mmol),反应混合物加热至100℃并搅拌反应14小时。反应完毕后,冷却到室温,加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱分离(洗脱剂:石油醚/乙酸乙酯=50/1–20/1,体积比),得到中间体BB–6–1。 1H NMR(400MHz,CDCl 3)δ:8.03(d,J=9.6Hz,1H),7.70(s,1H),7.57–7.49(m,2H),7.01–6.97(m,2H),4.84(br s,1H),4.22(q,J=7.1Hz,2H),4.02(s,2H),3.47–3.46(m,2H),3.41–3.35(m,2H),1.48(s,9H),1.26(t,J=7.2Hz,3H)。
步骤2:中间体BB–6–2的合成
0℃下,将中间体BB–6–1(1.2g,2.91mmol)溶于N,N–二甲基甲酰胺(20mL)中,随后依次加入叔丁醇钾(359.09mg,3.20mmol)和丙烯酰胺(206.78mg,2.91mmol),反应混合物在0℃下搅拌反应1小时。反应完毕后,反应液加入水(100mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物加入乙酸乙酯(10mL),室温下搅拌10分钟,过滤,所得滤饼减压除去溶剂,得到中间体BB–6–2(纯度:86.70%)。MS–ESI m/z:438.0[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.92(br s,1H),7.92–7.82(m,2H),7.62–7.55(m,1H),7.55–7.48(m,1H),7.04–6.87(m,3H),5.79(br s,1H),4.57(br dd,J=4.2,11.4Hz,1H),3.22–3.12(m,4H),2.92–2.80(m,1H),2.67–2.55(m,1H),2.40–2.29(m,1H),2.29–2.19(m,1H),1.40(s,9H)。
步骤3:中间体BB–6的盐酸盐的合成
室温下,将中间体BB–6–2(0.46g,911.62μmol,纯度:86.70%)溶于乙酸乙酯(5mL)中,随后加入盐酸的乙酸乙酯溶液(4M,15mL),反应混合物在室温下搅拌反应12小时。反应完毕后,直接减压除去溶剂,得到中间体BB–6的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.27(br s,3H),7.99(br d,J=8.8Hz,1H),7.91(s,1H),7.69–7.60(m,2H),7.29–7.23(m,1H),7.19(dd,J=1.8,9.0Hz,1H),4.60(br dd,J=4.6,11.8Hz,1H),3.47(t,J=6.4Hz,2H),3.14–3.05(m,2H),2.92–2.80(m,1H),2.66–2.57(m,1H),2.43–2.31(m,1H),2.29–2.19(m,1H)。
参考例7
Figure PCTCN2021081375-appb-000213
合成路线:
Figure PCTCN2021081375-appb-000214
步骤1:中间体BB–7–2的合成
5–10℃下,将浓硫酸(578.09g,5.78mol,314.18mL,纯度:98%)溶于冰水(156mL)中,然后加入化合物BB–7–1(25g,143.52mmol),随后缓慢滴加4–氯乙酸乙酰乙酯(25.98g,157.87mmol),反应混合物升温至室温并搅拌反应12小时。反应完毕后,将反应混合液倒入冰水(400mL)中,用乙酸乙酯(500mL×3)萃取。合并有机相,用无水硫酸钠干燥,过滤,减压浓缩除去溶剂。所得残余物加入甲基叔丁基醚(30mL),室温下搅拌15分钟,过滤,收集固体,减压除去溶剂,得到中间体BB–7–2。 1H NMR(400MHz,DMSO_d 6)δ:8.42(d,J=9.6Hz,1H),8.13(d,J=9.2Hz,1H),7.56–7.49(m,2H),7.36(dd,J=2.6,9.4Hz,1H),6.82(s,1H),5.35(s,2H),3.90(s,3H)。
步骤2:中间体BB–7–3的合成
室温下,将氢氧化钠(19.22g,480.53mmol)溶于水(116mL)中,然后加入中间体BB–7–2(12g,43.68mmol),反应混合物加热至80℃并搅拌反应12小时。反应完毕后,冷却至室温,加入水(400mL),用乙酸乙酯(100mL)萃取,有机相丢弃,水相用12M浓盐酸调节pH至5–6,用乙酸乙酯(300mL×3)萃取。合并有机相,用无水硫酸钠干燥,过滤,减压除去溶剂,得到中间体BB–7–3。MS–ESI m/z:257.1[M+H] +
步骤3:中间体BB–7–4的合成
15℃和氮气保护下,将中间体BB–7–3(8.9g,34.73mmol)溶于二氯甲烷(180mL)中,冷却至–60℃,随后缓慢滴加三溴化硼(23.49g,93.77mmol,9.04mL),反应混合物缓慢升温至15℃并搅拌反应2小时。反应完毕后,将反应混合液倒入冰水(200mL)中,分液,收集有机相,水相再用乙酸乙酯(80mL×3)萃取。合并有机相,用无水硫酸钠干燥,过滤,减压除去溶剂,得到中间体BB–7–4。MS–ESI m/z:243.0[M+H] +1H NMR(400MHz,DMSO_d 6)δ:12.51(br s,1H),9.67(s,1H),8.02(d,J=8.8Hz,1H),7.94(s,1H),7.65(d,J=9.2Hz,1H),7.60(d,J=9.2Hz,1H),7.29(d,J=2.4Hz,1H),7.17(dd,J=2.6,9.0Hz,1H),4.00(s,2H)。
步骤4:中间体BB–7–5的合成
室温下,将中间体BB–7–4(8g,33.03mmol)溶于乙醇(50mL)中,然后加入浓硫酸(3.47g,34.68mmol,1.89mL,纯度:98%),反应混合物加热至80℃并搅拌反应12小时。反应完毕后,冷却至室温,反应混合液直接减压浓缩除去溶剂,所得残余物加入水(100mL)稀释,用乙酸乙酯(100mL×3)萃取。合并有机相,用无水硫酸钠干燥,过滤,减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–4/1,体积比),得到中间体BB–7–5。MS–ESI m/z:271.1[M+H] +1H NMR(400MHz,CDCl 3)δ:8.12(d,J=8.4Hz,1H),7.72(s,1H),7.65–7.50(m,2H),7.26(s,1H),7.16(d,J=8.0Hz,1H),5.12(s,1H),4.22(q,J=7.2Hz,2H),4.03(s,2H),1.25(t,J=6.4Hz,3H)。
步骤5:中间体BB–7–6的合成
15℃和氮气保护下,将叔丁基(6–羟基己基)氨基甲酯(5.23g,24.05mmol)和中间体BB–7–5(5g,18.50mmol)加入到无水四氢呋喃(120mL)中,随后依次加入偶氮二甲酰二哌啶(7.00g,27.75mmol)和三丁基膦(5.61g,27.75mmol,6.85mL),冷却至0℃并搅拌1小时,然后升温至15℃并继续搅拌12小时。反应完毕后,反应混合液加入水(200mL),用乙酸乙酯(200mL×2)萃取。合并有机相,用饱和食盐水(300mL×2)洗涤,无水硫酸钠干燥,过滤,减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–4/1,体积比),得到中间体BB–7–6。 1H NMR(400MHz,CDCl 3)δ:8.13(d,J=9.2Hz,1H),7.74(s,1H),7.63–7.59(m,2H),7.29(d,J=2.4Hz,1H),7.24(dd,J=2.6,9.0Hz,1H),4.53(s,1H),4.22(q,J=7.2Hz,2H),4.09(t,J=6.4Hz,2H),4.04(s,2H),3.20–3.10(m,2H),1.91–1.81(m,2H),1.60–1.50(m,4H),1.49–1.38(m,11H),1.26(t,J=7.0Hz,3H)。
步骤6:中间体BB–7–7的合成
0℃和氮气保护下,将中间体BB–7–6(7.3g,15.55mmol)溶于四氢呋喃(140mL)中,依次加入丙烯酰胺(1.10g,15.55mmol)和叔丁醇钾的四氢呋喃溶液(1M,15.55mL),反应混合物升温至室温并搅拌反应2小时,然后再加叔丁醇钾的四氢呋喃溶液(1M,3.11mL),反应混合物在室温下继续搅拌反应2小时。反应完毕后,反应混合液加入水(200mL),用乙酸乙酯(200mL×1,150mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–4/1,体积比),得到中间体BB–7–7。
步骤7:中间体BB–7的盐酸盐的合成
室温下,将中间体BB–7–7(1.5g,3.03mmol)溶于乙酸乙酯(10mL)中,随后加入盐酸的乙酸乙酯溶液(4M,30mL),反应混合液在室温下搅拌反应12小时。反应完毕后,反应混合液直接减压浓缩除去溶剂,得到中间体BB–7的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.07(br d,J=9.2Hz,1H),8.00(br s,3H),7.96(s,1H),7.78–7.70(m,2H),7.50(d,J=2.4Hz,1H),7.21(dd,J=2.6,9.0Hz,1H),4.63(br dd,J=4.4,12.0Hz,1H),4.10(t,J=6.4Hz,2H),2.94–2.83(m,1H),2.82–2.71(m,2H),2.68–2.57(m,1H),2.47–2.34(m,1H),2.33–2.19(m,1H),1.85–1.73(m,2H),1.65–1.55(m,2H),1.53–1.36(m,4H)。
参考例8
Figure PCTCN2021081375-appb-000215
合成路线:
Figure PCTCN2021081375-appb-000216
步骤1:中间体BB–8–1的合成
室温和氮气保护下,将中间体BB–4–4(10g,29.16mmol)和氨基甲酸叔丁酯(10.25g,87.49mmol)加入到甲苯(100mL)和水(20mL)的混合溶剂中,随后依次加入三(二亚苄基丙酮)二钯(1.87g,2.04mmol),2–二叔丁基膦–2′,4′,6′–三异丙基联苯(1.73g,4.08mmol)和磷酸钾(24.76g,116.65mmol),反应混合物加热至100℃并搅拌反应14小时。反应完毕后,冷却到室温,加入水(100mL),用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(150mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱分离(洗脱剂:石油醚/乙酸乙酯=30/1–20/1,体积比)。所得产品加入异丙醚(55mL),加热至80℃并搅拌1.5小时,缓慢冷却至室温,有大量固体析出,过滤,收集滤饼,减压除去溶剂,得到中间体BB–8–1。MS–ESI m/z:392.1[M+Na] +1H NMR(400MHz,CDCl 3)δ:8.15(d,J=8.8Hz,1H),8.11(br s,1H),7.74(s,1H),7.70–7.58(m,2H),7.45(dd,J=1.8,9.0Hz,1H),6.64(br s,1H),4.22(q,J=7.1Hz,2H),4.04(s,2H),1.57(s,9H),1.26(t,J=7.0Hz,3H)。
步骤2:中间体BB–8–2的合成
0℃和氮气保护下,将中间体BB–8–1(3.5g,9.29mmol)加入到N,N–二甲基甲酰胺(50mL)中,随后加入叔丁醇钾(1.04g,9.29mmol)和丙烯酰胺(659.96mg,9.29mmol),反应混合物在0℃和氮气保护下搅拌反应2小时。反应完毕后,反应混合液升温至到室温,加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物加入甲醇(25mL),混合物在室温下搅拌1小时,过滤,滤饼用甲醇(10mL)润洗,收集滤饼,减压除去溶剂,得到中间体BB–8–2。MS–ESI m/z:339.1[M+H–56] +1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),9.55(s,1H),8.24(br s,1H),8.06(br d,J=8.8Hz,1H),7.96(s,1H),7.74–7.67(m,2H),7.55(dd,J=2.0,9.2Hz,1H),4.63(br dd,J=4.2,11.8Hz,1H),2.92–2.81(m,1H),2.66–2.58(m,1H),2.46–2.32(m,1H),2.29–2.21(m,1H),1.52(s,9H)。
步骤3:中间体BB–8–3的合成
室温和氮气保护下,将中间体BB–8–2(1.86g,4.62mmol)加入到盐酸的乙酸乙酯溶液(4M,40mL)中,反应混合物在室温和氮气保护下搅拌反应4小时。反应完毕后,反应混合液直接减压除去溶剂,得到中间体BB–8–3。 1H NMR(400MHz,DMSO_d 6)δ:10.96(s,1H),10.36(br s,2H),8.30(br d,J=8.4Hz,1H),8.06(s,1H),7.99(br s,1H),7.94–7.85(m,2H),7.56(br d,J=8.8Hz,1H),4.68(br dd,J=4.2,12.2Hz,1H),2.93–2.82(m,1H),2.68–2.60(m,1H),2.46–2.39(m,1H),2.32–2.23(m,1H)。
步骤4:中间体BB–8–4的合成
室温下,将中间体BB–8–3(0.5g,1.51mmol)溶于N–甲基吡咯烷酮(20mL)中,随后加入(6–溴己基)氨基甲酸叔丁酯(423.56mg,1.51mmol)和N,N–二异丙基乙胺(253.97mg,1.97mmol,342.28μL),反应混合物加热至110℃并搅拌反应24小时。反应完毕后,冷却至室温,反应混合物加入水(100mL)稀释,用乙酸乙酯萃取(50mL×3)。合并有机相,用饱和食盐水(100mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/2,体积比),得到中间体BB–8–4。MS–ESI m/z:494.1[M+H] +1H NMR(400MHz,CDCl 3)δ:8.04(br s,1H),7.77(d,J=9.6Hz,1H),7.59(s,1H),7.57–7.55(m,2H),7.01–6.96(m,2H),4.50–4.45(m,1H),3.24(t,J=7.0Hz,2H),3.18–3.10(m,2H),2.80–2.70(m,2H),2.52–2.42(m,2H),1.75–1.66(m,2H),1.55–1.48(m,4H),1.46(s,9H),1.44–1.35(m,2H)。
步骤5:中间体BB–8的盐酸盐的合成
室温下,将中间体BB–8–4(0.26g,498.94μmol)溶于乙酸乙酯(5mL)中,随后加入盐酸的乙酸乙酯溶液(4M,10mL),反应混合物在室温下搅拌反应12小时。反应完毕后,反应混合物直接减压浓缩除去溶剂,得到中间体BB–8的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),8.30–8.20(m,1H),8.08–8.02(m,2H),7.99(br s,3H),7.89–7.82(m,2H),7.70–7.60(m,1H),4.68(br dd,J=3.8,12.2Hz,1H),3.36–3.28(m,2H),2.93–2.83(m,1H),2.79–2.70(m,2H),2.68–2.60(m,1H),2.47–2.37(m,1H),2.33–2.22(m,1H),1.78–1.68(m,2H),1.60–1.51(m,2H),1.44–1.30(m,4H)。
参考例9
Figure PCTCN2021081375-appb-000217
合成路线:
Figure PCTCN2021081375-appb-000218
步骤1:中间体BB–9–1的合成
室温和氮气保护下,将中间体BB–7–5(2.85g,10.53mmol)和(2–(2–(2–羟基乙氧基)乙氧基)乙基)氨基甲酸叔丁酯(4.2g,16.85mmol)加入到无水四氢呋喃(40mL)中,冷却至0℃,随后依次加入偶氮二甲酰二哌啶(4.25g,16.85mmol)和三丁基膦(3.41g,16.85mmol)的无水四氢呋喃(5mL)溶液,反应混合物在0℃下搅拌反应1小时,然后升温至15℃并继续搅拌反应11小时。反应完毕后,反应混合物加入饱和柠檬酸溶液(45mL)淬灭反应,用乙酸乙酯(45mL×4)萃取。合并有机相,用饱和食盐水(80mL×3)洗涤,无水硫酸钠干燥,过滤,减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/4,体积比),得到中间体BB–9–1。MS–ESI m/z:502.3[M+H] +
步骤2:中间体BB–9–2的合成
室温和氮气保护下,将中间体BB–9–1(3.7g,7.38mmol)和丙烯酰胺(524.33mg,7.38mmol)溶于无水四氢呋喃(50mL)中,冷却至0℃,随后加入叔丁醇钾(1.08g,9.59mmol),反应混合物在0℃下搅拌反应1小时,然后升温至室温并继续搅拌反应1小时。反应完毕后,反应混合物加入饱和柠檬酸溶液(50mL)淬灭反应,用乙酸乙酯(55mL×4)萃取。合并有机相,用饱和食盐水(75mL×3)洗涤,无水硫酸钠干燥,过滤,减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/4,体积比),得到中间体BB–9–2。 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.09(d,J=8.4Hz,1H),7.96(s,1H),7.80–7.68(m,2H),7.51(s,1H),7.24(d,J=8.6Hz,1H),6.77(s,1H),4.70–4.58(m,1H),4.29–4.16(m,2H),3.88–3.75(m,2H),3.69–3.48(m,4H),3.40(t,J=5.6Hz,2H),3.15–3.00(m,2H),2.95–2.82(m,1H),2.70–2.55(m,1H),2.47–2.35(m,1H),2.32–2.20(m,1H),1.37(s,9H)。
步骤3:中间体BB–9的盐酸盐的合成
室温下,将中间体BB–9–2(650mg,1.23mmol)加入到盐酸的乙酸乙酯溶液(4M,15mL)中,反应混合物在室温下搅拌反应2小时。反应完毕后,将反应液直接减压除去溶剂,得到中间体BB–9的盐酸盐。
参考例10
Figure PCTCN2021081375-appb-000219
合成路线:
Figure PCTCN2021081375-appb-000220
步骤1:中间体BB–10–1的合成
将中间体BB–7–5(5.0g,18.50mmol)和2–(2–叔丁氧羰基–氨基乙氧基)乙醇(5.70g,27.75mmol,63.56μL)溶于四氢呋喃(100mL)中,在0℃下加入偶氮二甲酰二哌啶(7.47g,29.60mmol)和三丁基膦(5.99g,29.60mmol),反应混合物在0℃搅拌反应1小时,之后在20℃搅拌反应11小时。将反应液减压浓缩。向残余物中加入冰乙醇(5mL)搅拌5分钟,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/4,体积比),得到中间体BB–10–1。 1H NMR(400MHz,CDCl 3)δ:8.14(d,J=8.8Hz,1H),7.74(s,1H),7.63–7.60(m,2H),7.33–7.28(m,2H),5.00(s,1H),4.30–4.25(m,2H),4.22(q,J=7.1Hz,2H),4.04(d,J=0.8Hz,2H),3.94–3.88(m,2H),3.69–3.63(m,2H),3.43–3.34(m,2H),1.45(s,9H),1.26(t,J=7.2Hz,3H).
步骤2:中间体BB–10–2的合成
将中间体BB–10–1(1.02g,2.23mmol)和丙烯酰胺(158.46mg,2.23mmol)放于干燥反应瓶中,加入无水四氢呋喃(20mL)溶解,置换氮气三次,将反应体系降温到0℃,加入叔丁醇钾(325.22mg,2.90mmol),反应体系在0℃下搅拌1小时后升温到20℃,并在20℃下搅拌1小时。反应液加饱和柠檬酸溶液(20mL)淬灭反应,加水(20mL)和乙酸乙酯(50mL)稀释,分液,收集有机相,水相用乙酸乙酯(50mL×3)萃取,合并有机相,饱和食盐水(50mL×3)洗,无水硫酸钠干燥,过滤,减压浓缩得到油状物粗产品。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/4,体积比),得到中间体BB–10–2。 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.09(d,J=8.8Hz,1H),7.96(s,1H),7.77–7.70(m,2H),7.51(d,J=2.6Hz,1H),7.24(dd,J=2.6,9.2Hz,1H),6.81(t,J=5.6Hz,1H),4.64(dd,J=4.4,11.8Hz,1H),4.28–4.17(m,2H),3.84–3.75(m,2H),3.48(t,J=6.0Hz,2H),3.16–3.07(m,2H),2.93–2.82(m,1H),2.67–2.56(m,1H),2.46–2.35(m,1H),2.32–2.21(m,1H),1.37(s,9H).
步骤3:中间体BB–10的盐酸盐的合成
将中间体BB–10–2(380mg,787.53μmol)加入到乙酸乙酯(1mL)中,加入盐酸的乙酸乙酯溶液(4M,5mL),在15℃下搅拌2小时,反应完成后减压浓缩除去乙酸乙酯,得到中间体BB–10的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),8.09(d,J=8.8Hz,1H),8.02(br s,3H),7.97(s,1H),7.80–7.71(m,2H),7.53(d,J=2.5Hz,1H),7.24(dd,J=2.6,9.2Hz,1H),4.64(dd,J=4.0,12.0Hz,1H),4.31–4.23 (m,2H),3.92–3.83(m,2H),3.72(t,J=5.4Hz,2H),3.06–2.96(m,2H),2.94–2.82(m,1H),2.68–2.57(m,1H),2.47–2.34(m,1H),2.33–2.20(m,1H).
参考例11
Figure PCTCN2021081375-appb-000221
合成路线:
Figure PCTCN2021081375-appb-000222
步骤1:中间体BB–11–1的合成
室温和氮气保护下,将中间体BB–4–4(5g,14.58mmol)溶于甲苯(100mL)中,随后依次加入羟基乙酸叔丁酯(2.31g,17.50mmol),三(二亚苄基丙酮)二钯(1.34g,1.46mmol),2–二叔丁基膦–2′,4′,6′–三异丙基联苯(1.86g,4.37mmol)和碳酸铯(9.50g,29.16mmol,2eq),反应混合物加热至110℃并搅拌反应12小时。反应完毕后,冷却至室温,反应液加入水(100mL),用乙酸乙酯萃取(100mL×3)。合并有机相,用饱和食盐水(150mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–3/1,体积比),得到中间体BB–11–1(纯度:68.84%)。MS–ESI m/z:385.4[M+H] +1H NMR(400MHz,CDCl 3)δ:8.17(d,J=9.0Hz,1H),7.75(s,1H),7.64–7.58(m,2H),7.34–7.30(m,1H),7.25(d,J=2.6Hz,1H),4.65(s,2H),4.22(q,J=7.2Hz,2H),4.04(s,2H),1.51(s,9H),1.28–1.24(m,3H)。
步骤2:中间体BB–11–2的合成
0℃和氮气保护下,将中间体BB–11–1(2.9g,5.19mmol,纯度:68.84%)溶于N,N–二甲基甲酰胺(20mL)中,依次加入叔丁醇钾(641.00mg,5.71mmol)和丙烯酰胺(369.12mg,5.19mmol),反应液在0℃和氮气保护下搅拌反应1小时。反应完毕后,反应液加入水(100mL)稀释,用乙酸乙酯萃取(50mL×3)。合并有机相,用饱和食盐水(100mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/1,体积比),所得产品加入乙酸乙酯(5mL),室温下搅拌5分钟,过滤,滤饼减压除去溶剂,得到中间体BB–11–2(纯度:68.87%)。MS–ESI m/z:432.0[M+Na] +1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.11(br d,J=8.8Hz,1H),7.97(s,1H),7.77–7.71(m,2H),7.44(d,J=2.0Hz,1H)7.25(dd,J=2.2,9.0,Hz,1H),4.78(s,2H),4.69–4.60(m,1H),2.94–2.81(m,1H),2.69–2.57(m,1H),2.39–2.32(m,1H),2.29–2.23(m,1H),1.44(s,9H)。
步骤3:中间体BB–11的合成
室温下,将中间体BB–11–2(0.12g,201.85μmol,纯度:68.87%)溶于二氯甲烷(10mL)中,加入三氟乙酸(7.70g,67.56mmol,5mL),反应混合物室温下搅拌反应12小时。反应完毕后,反应液直接减压 浓缩除去溶剂,得到中间体BB–11。 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.10(br d,J=9.6Hz,1H),7.97(s,1H),7.77–7.72(m,2H),7.46(d,J=2.4Hz,1H),7.25(dd,J=2.8,9.2Hz,1H),4.81(s,2H),4.64(br dd,J=4.0,11.6Hz,1H),2.94–2.81(m,1H),2.69–2.58(m,1H),2.43–2.37(m,1H),2.32–2.21(m,1H)。
参考例12
Figure PCTCN2021081375-appb-000223
合成路线:
Figure PCTCN2021081375-appb-000224
步骤1:中间体BB–12–1的合成
15℃和氮气保护下,将N–叔丁氧羰基–N–甲基–2–氨基乙醇(1.56g,8.88mmol)溶于四氢呋喃(20mL),搅拌条件下依次加入中间体BB–7–5(2g,7.40mmol)和三苯基膦(2.52g,9.62mmol),冷却至0℃,缓慢滴加偶氮二甲酸二异丙酯(1.95g,9.62mmol,1.87mL),反应混合物升温至15℃并搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–4/1,体积比),得到中间体BB–12–1。 1H NMR(400MHz,CDCl 3)δ:8.15(d,J=8.8Hz,1H),7.74(s,1H),7.63–7.61(m,2H),7.30(br s,1H),7.24(dd,J=2.4,8.8Hz,1H),4.29–4.18(m,4H),4.04(d,J=0.8Hz,2H),3.73–3.64(m,2H),3.04(s,3H),1.49(s,9H),1.26(t,J=7.2Hz,3H)。
步骤2:中间体BB–12–2的合成
室温和氮气保护下,将中间体BB–12–1(1.9g,4.44mmol)加入到四氢呋喃(40mL)中,然后依次加入丙烯酰胺(315.91mg,4.44mmol)、叔丁醇钾(498.72mg,4.44mmol),反应混合物在室温下搅拌反应1小时。反应完毕后,将反应液倒入冰水(50mL)中,用乙酸乙酯(30mL×3)萃取,合并有机相,用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=4/1–1/1,体积比),得到中间体BB–12–2。 1H NMR(400MHz,CDCl 3)δ:8.17(s,1H),7.84(d,J=9.2Hz,1H),7.64–7.55(m,3H),7.27(s,1H),7.24–7.17(m,1H),4.42(dd,J=5.6,8.4Hz,1H),4.23–4.10(m,2H),3.68–3.58(m,2H),2.98(s,3H),2.80–2.65(m,2H),2.50–2.34(m,2H),1.43(s,9H)。
步骤3:中间体BB–12的盐酸盐的合成
15℃下,将中间体BB–12–2(0.8g,1.77mmol)溶于盐酸的乙酸乙酯溶液(4M,15mL)中,反应混合物在15℃下搅拌反应20分钟,反应期间有大量固体析出。反应完毕后,反应混合物直接减压除去溶剂,所得残余物用乙酸乙酯(10mL×3)洗涤,收集滤饼,减压除去溶剂,得到中间体BB–12的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),9.19(s,2H),8.14(d,J=9.2Hz,1H),7.98(s,1H),7.83– 7.70(m,2H),7.58(d,J=2.0Hz,1H),7.29(dd,J=2.4,9.2Hz,1H),4.72–4.57(m,1H),4.47–4.29(m,2H),3.43–3.35(m,2H),2.98–2.79(m,1H),2.67–2.55(m,4H),2.42–2.35(m,1H),2.31–2.20(m,1H)。
参考例13
Figure PCTCN2021081375-appb-000225
合成路线:
Figure PCTCN2021081375-appb-000226
室温和氮气保护下,将中间体BB–4–4(1g,2.92mmol)和N–叔丁氧羰基–3–氨基丙基溴(2.08g,8.75mmol)加入到甲苯(20mL)和水(4mL)的混合溶剂中,随后依次加入三(二亚苄基丙酮)二钯(186.93mg,204.13μmol),2–二叔丁基膦–2′,4′,6′–三异丙基联苯(173.37mg,408.26μmol)和磷酸钾(2.48g,11.66mmol),反应混合物加热至100℃并搅拌反应14小时。反应完毕后,冷却到室温,反应液加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱分离(洗脱剂:石油醚/乙酸乙酯=50/1–30/1,体积比),得到中间体BB–13。MS–ESI m/z:512.1[M+Na] +1H NMR(400MHz,CDCl 3)δ:8.20(d,J=8.8Hz,1H),7.78(s,1H),7.75(d,J=1.2Hz,1H),7.71–7.64(m,2H),7.43(br d,J=8.4Hz,1H),4.23(q,J=7.1Hz,2H),4.06(s,2H),3.94–3.87(m,2H),3.43(t,J=6.8Hz,2H),2.23–2.13(m,2H),1.45(s,9H),1.27(t,J=7.2Hz,3H)。
参考例14
Figure PCTCN2021081375-appb-000227
合成路线:
Figure PCTCN2021081375-appb-000228
步骤1:中间体BB–14–1的合成
室温和氮气保护下,将中间体BB–4–4(1.18g,3.44mmol)和3–氨基丙酸叔丁酯(600mg,4.13mmol)加入到甲苯(20mL)和水(4mL)的混合溶剂中,随后依次加入三(二亚苄基丙酮)二钯(220.73mg, 241.05μmol),2–二叔丁基膦–2′,4′,6′–三异丙基联苯(204.72mg,482.10μmol)和磷酸钾(2.92g,13.77mmol),反应混合物加热至100℃并搅拌反应14小时。反应完毕后,反应液冷却到室温,加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱分离(洗脱剂:石油醚/乙酸乙酯=50/1–30/1,体积比),得到中间体BB–14–1(纯度:89.86%)。MS–ESI m/z:398.2[M+H] +1H NMR(400MHz,CDCl 3)δ:8.04(d,J=8.4Hz,1H),7.70(s,1H),7.56–7.50(m,2H),7.03–6.97(m,2H),4.25–4.20(m,2H),4.02(s,2H),3.53(br t,J=6.0Hz,2H),2.62(t,J=6.2Hz,2H),1.48(s,9H),1.28–1.26(m,3H)。
步骤2:中间体BB–14–2的合成
0℃和氮气保护下,将中间体BB–14–1(933mg,2.11mmol,纯度:89.86%)加入到N,N–二甲基甲酰胺(15mL)中,随后加入叔丁醇钾(236.69mg,2.11mmol)和丙烯酰胺(149.93mg,2.11mmol),反应混合物在0℃和氮气保护下搅拌反应1.5小时。反应完毕后,反应液升温至室温,加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱分离(洗脱剂:石油醚/乙酸乙酯=10/1–1/1,体积比),得到中间体BB–14–2(纯度:84.31%)。MS–ESI m/z:423.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),7.90–7.84(m,2H),7.61–7.53(m,2H),7.02(dd,J=2.4,9.2Hz,1H),6.95(d,J=2.0Hz,1H),4.57(dd,J=4.6,11.8Hz,1H),3.39–3.34(m,2H),2.87–2.80(m,1H),2.68–2.60(m,1H),2.59–2.54(m,2H),2.39–2.31(m,1H),2.26–2.22(m,1H),1.41(s,9H)。
步骤3:中间体BB–14的合成
室温和氮气保护下,将中间体BB–14–2(150mg,299.34μmol,纯度:84.31%)加入到二氯甲烷(5mL)中,随后加入三氟乙酸(102.40mg,898.03μmol,66.49μL),反应混合物在室温下搅拌反应14小时。反应完毕后,反应液直接减压除去溶剂,得到中间体BB–14。 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),7.98–7.93(m,1H),7.90(s,1H),7.65–7.60(m,2H),7.16–7.09(m,2H),4.62–4.55(m,1H),3.40(t,J=7.0Hz,2H),2.87–2.80(m,1H),2.69–2.62(m,1H),2.60(t,J=6.8Hz,2H),2.41–2.31(m,1H),2.29–2.20(m,1H)。
参考例15
Figure PCTCN2021081375-appb-000229
合成路线:
Figure PCTCN2021081375-appb-000230
步骤1:中间体BB-15-1的合成
室温下,将中间体BB-2-4(23.50g,98.91mmol)溶于无水二氯甲烷(300mL)中,随后在-78℃加入三溴化硼(74.33g,296.72mmol,28.59mL),反应混合物升温至20℃并搅拌反应2小时。反应完毕后,冷却至室温,在0℃缓慢加入甲醇(70mL),减压除去溶剂,将反应液缓慢加入冰水(500mL)中,用二氯甲烷(100mL×3)萃取。合并有机相,依次用饱和食盐水(300mL×2)洗涤,无水硫酸钠干燥过滤,滤液浓缩减压除去溶剂,所的残余物经制备柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–4/1,体积比),得到中间体BB-15-1。 1H NMR(400MHz,DMSO_d 6)δ:9.21(s,1H),7.80(s,1H),7.34(d,J=8.8Hz,1H),6.88(d,J=2.4Hz,1H),6.76(dd,J=2.4,8.8Hz,1H),3.72(s,2H),3.64(s,3H)。
步骤2:中间体BB–15-2的合成
0℃下,将中间体BB-15-1(1.00g,3.91mmol)和4-(N-Boc-氨基)-1-丁醇(1.11g,5.86mmol)溶于四氢呋喃(100mL)中,随后加入偶氮二甲酰二哌啶(1.48g,5.86mmol)和三丁基膦(1.19g,5.86mmol,1.45mL),氮气保护下反应混合物在20℃下继续搅拌反应14小时。反应完毕后,冷却至室温,加入水(100mL)中,用乙酸乙酯(30mL×3)萃取,合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过制备分离(流动相:乙腈/水;碱性体系:NH 4HCO 3),得到目标中间体BB-15-2。 1H NMR(400MHz,CDCl 3)δ:7.60(s,1H),7.36(d,J=8.8Hz,1H),7.00(d,J=2.8Hz,1H),6.90(dd,J=2.4,8.8Hz,1H),4.02(t,J=6.2Hz,2H),3.74(s,3H),3.68(s,2H),3.22(br d,J=6.4Hz,2H),1.88–1.81(m,2H),1.74–1.67(m,2H),1.46(s,9H)。
步骤2:中间体BB–15-3的合成
0℃下,将中间体BB-15-2(720mg,1.90mmol)溶于N,N–二甲基甲酰胺(50mL)中,随后加入叔丁醇钾(212.92mg,1.90mmol)和丙烯酰胺(134.87mg,1.90mmol),氮气保护下反应混合物在0℃下继续搅拌反应2小时。反应完毕后,加入水(50mL)稀释,用乙酸乙酯(10mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–4/1)分离得到化合物BB-15-3。 1H NMR(400MHz,DMSO-d 6)δ:10.87(s,1H),7.83(s,1H),7.45(d,J=8.8Hz,1H),7.08(d,J=2.4Hz,1H),6.89(dd,J=2.8,8.8Hz,1H),4.10(dd,J=5.0,11.8Hz,1H),3.98–3.93(m,2H),2.97(br d,J=6.4Hz,2H),2.77–2.67(m,1H),2.60–2.54(m,1H),2.39–2.29(m,1H),2.12–2.07(m,1H),1.73–1.66(m,2H),1.57–1.50(m,2H),1.37(s,9H)。
步骤3:中间体BB–15的盐酸盐的合成
20℃下,将中间体BB-15-3(570mg,1.36mmol)溶于盐酸/乙酸乙酯溶液(40mL,4M)中,氮气保护下反应混合物在20℃下继续搅拌反应14小时。反应完毕后,减压除去溶剂,得到化合物BB-15的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ:10.88(s,1H),7.90(br s,3H),7.84(s,1H),7.46(d,J=8.8Hz,1H),7.09(d,J=2.4Hz,1H),6.90(dd,J=2.5,8.8Hz,1H),4.11(dd,J=4.8,12.0Hz,1H),4.03-3.95(m,2H),2.91-2.80(m,2H),2.79-2.65(m,1H),2.62–2.52(m,1H),2.40–2.27(m,1H),2.14-2.05(m,1H),1.85-1.65(m,4H)。
参考例16
Figure PCTCN2021081375-appb-000231
合成路线:
Figure PCTCN2021081375-appb-000232
步骤1:中间体BB–16-1的合成
20℃下,将中间体BB-15-1(600mg,2.35mmol)和2,2-二甲基-4-氧代-3,8,11-三氧杂-5-氮杂环丁烷-13-4-甲基苯磺酸酯(1.02g,2.35mmol)溶于N,N–二甲基甲酰胺(50mL)中,随后加入碳酸铯(764.36mg,2.35mmolμmol),氮气保护下反应混合物在80℃下继续搅拌反应14小时。反应完毕后,冷却至室温,加入水(50mL)中,用乙酸乙酯(10mL×3)萃取,合并有机相,用饱和食盐水(60mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过板分离(洗脱剂:石油醚/乙酸乙酯=1/1),得到目标中间体BB-16-1。 1H NMR(400MHz,CDCl 3)δ:7.60(s,1H),7.36(d,J=8.8Hz,1H),7.03(d,J=2.4Hz,1H),6.95(dd,J=2.6,8.8Hz,1H),5.31(s,2H),4.20–4.18(m,2H),3.91–3.88(m,2H),3.76–3.75(m,1H),3.74(s,3H),3.68(s,2H),3.67–3.66(m,1H),3.57(t,J=4.8Hz,2H),3.33(br d,J=4.4Hz,2H),1.44(s,9H)。
步骤2:中间体BB–16-2的合成
0℃下,将中间体BB-16-1(275mg,556.69μmol)溶于N,N–二甲基甲酰胺(20mL)中,随后加入叔丁醇钾(62.47mg,556.69μmol)和丙烯酰胺(39.57mg,556.69μmol),氮气保护下反应混合物在0℃下继续搅拌反应2小时。反应完毕后,加入水(30mL)稀释,用乙酸乙酯(10mL×3)萃取。合并有机相,用饱和食盐水(60mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过板分离(洗脱剂:石油醚/乙酸乙酯=1/1)分离得到化合物BB-16-2。 1H NMR(400MHz,DMSO-d 6)δ:10.88(s,1H),7.84(s,1H),7.46(d,J=9.2Hz,1H),7.12(d,J=2.8Hz,1H),6.91(dd,J=2.6,8.8Hz,1H),4.12–4.11 (m,1H),4.10–4.07(m,2H),3.75(t,J=4.6Hz,2H),3.60–3.58(m,2H),3.53–3.51(m,2H),3.38(t,J=6.2Hz,2H),3.06(br d,J=12.0Hz,2H),2.71–2.67(m,1H),2.59–2.53(m,1H),2.37–2.33(m,1H),2.11–2.07(m,1H),1.36(s,9H)。
步骤3:中间体BB–16的盐酸盐的合成
20℃下,将中间体BB-16-2(252mg,500.23μmol)溶于盐酸/乙酸乙酯溶液(50mL,4M)中,氮气保护下反应混合物在20℃下继续搅拌反应14小时。反应完毕后,减压除去溶剂,得到化合物BB-16的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ:10.88(s,1H),7.95–7.93(m,3H),7.85(s,1H),7.47(d,J=8.8Hz,1H),7.11(d,J=2.4Hz,1H),6.92(dd,J=2.2,9.0Hz,1H),4.14–4.12(m,1H),4.11–4.07(m,2H),3.77(t,J=4.6Hz,2H),3.64–3.63(m,2H),3.61(br s,2H),3.60(d,J=2.0Hz,2H),2.98–2.93(m,2H),2.77–2.71(m,1H),2.59–2.54(m,1H),2.37–2.33(m,1H),2.11–2.07(m,1H)。
参考例17
Figure PCTCN2021081375-appb-000233
合成路线:
Figure PCTCN2021081375-appb-000234
步骤1:中间体BB-17-1的合成
室温和氮气保护下,将2-((叔-丁基二甲基甲硅烷基)氧代)乙醇(2.40g,13.62mmol)溶于无水四氢呋喃(50mL)中,依次加入中间体BB-2-5(2.5g,11.35mmol),偶氮二甲酰二哌啶(3.72g,14.76mmol),反应体系降温至0℃滴加三丁基膦(2.99g,14.76mmol),反应混合物恢复至25℃并搅拌反应2小时。反应结束后,反应液加水(40mL)和乙酸乙酯(30mL)稀释,分液,收集有机相,水相用乙酸乙酯(60mL x 3)萃取。合并有机相,用饱和食盐水(40mL x 3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–2/3,体积比),得到中间体BB-17-1。
步骤2:中间体BB-17-2的合成
室温和氮气保护下,将中间体BB-17-1(3.5g,9.25mmol)溶解于四氢呋喃(35mL)中,加入四丁基氟化铵的四氢呋喃溶液(2M,9.25mL),反应体系在25℃下搅拌反应12小时。反应完毕后,将反应液倒入饱和氯化铵水溶液(40mL)中,加乙酸乙酯(30mL)稀释,分液,收集有机相,水相用乙酸乙酯(50mL x 3)萃取。合并有机相,用饱和食盐水(30mL x 3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–2/3,体积比),得到中间体BB-17-2。
步骤3:中间体BB-17的合成
室温和氮气保护下,将中间体BB-17-2(403mg,1.52mmol)溶于二氯甲烷(4mL)和四氢呋喃(4mL)的混合溶剂中,0℃下加入4–二甲氨基吡啶(18.63mg,152.49μmol),甲磺酰氯(262.02mg,2.29mmol),N,N–二异丙基乙胺(591.26mg,4.57mmol,796.85μL),反应混合物恢复至20℃搅拌反应1小时。反应完毕后,0℃下将反应液倒入饱和碳酸氢钠水溶液(20mL)中,用乙酸乙酯(30mL x 3)萃取。合并有机相,用饱和食盐水(30mL x 3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–3/2,体积比),得到中间体BB-17。 1H NMR(400MHz,DMSO_d 6)δ:7.87(s,1H),7.48(d,J=8.8Hz,1H),7.17(d,J=2.4Hz,1H),6.96(dd,J=2.4,8.8Hz,1H),4.61–4.47(m,2H),4.36–4.22(m,2H),4.12(q,J=7.2Hz,2H),3.76(s,2H),3.24(s,3H),1.20(t,J=7.2Hz,3H)。
参考例18
Figure PCTCN2021081375-appb-000235
合成路线:
Figure PCTCN2021081375-appb-000236
步骤1:中间体BB-18-1的合成
室温下,将中间体BB-2(500.00mg,1.65mmol)溶于N,N–二甲基甲酰胺(20mL)溶液中,分别向其中加入N,N–二异丙基乙胺(1.07g,8.24mmol)和O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(940.34mg,2.47mmol),反应混合液在室温下搅拌30分钟。随后向其中加入N-叔丁氧羰基-1,3-丙二胺(287.27mg,1.65mmol),反应混合物在室温下继续搅拌反应12小时。反应完毕后,向反应液中加入水(40mL),用乙酸乙酯(40mL×3)萃取。合并有机相,依次用饱和食盐水(40mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/1–0/1,体积比),得到中间体BB-18-1。 1H NMR(400MHz,CDCl 3)δ:7.56(s,1H),7.42(d,J=9.6Hz,1H),7.04–6.97(m,2H),4.54(s,2H),3.97(t,J=8.0Hz,1H),3.43–3.38(m,2H),3.19–3.14(m,2H),2.81–2.74(m,2H),2.40–2.33(m,2H),1.69–1.64(m,2H),1.44(s,9H)。
步骤2:中间体BB-18的盐酸盐的合成
室温下,将中间体BB-18-1(300.00mg,652.90μmol)溶于乙酸乙酯(10mL)溶液中,向其中加入盐酸/乙酸乙酯溶液(4M,12.09mL),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液过滤,收集滤饼,用乙酸乙酯(10mL)洗涤,干燥,得到中间体BB-18的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.89(s,1H),8.39(t,J=6.0Hz,1H),8.06(s,3H),7.86(s,1H),7.49(d,J=8.8Hz,1H),7.17(d,J=2.4Hz, 1H),7.01(dd,J=2.4,8.8Hz,1H),4.50(d,J=1.2Hz,2H),4.11(dd,J=4.8,12.4Hz,1H),3.26–3.17(m,2H),2.80–2.70(m,3H),2.62–2.52(m,1H),2.41–2.28(m,1H),2.13–2.04(m,1H),1.80–1.70(m,2H)。
参考例19
Figure PCTCN2021081375-appb-000237
合成路线:
Figure PCTCN2021081375-appb-000238
步骤1:中间体BB-19-1的合成
室温和氮气保护下,将中间体BB-1-4(5g,17.66mmol,1eq)和丙烯醇(2.00g,34.44mmol,2.34mL,1.95eq)溶于1,4-二氧六环(50mL)中,随后加入N-环己基-N-甲基-环己胺(4.14g,21.19mmol,4.49mL,1.2eq),三(二亚苄基丙酮)二钯(1.62g,1.77mmol,0.1eq)和三叔丁基磷(7.15g,3.53mmol,8.29mL,0.2eq,纯度:10%)的甲苯溶液,反应混合物加热至60℃并在氮气保护下搅拌反应12小时。反应完毕后,冷却至室温,过滤,滤液真空浓缩除去溶剂,所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=50/1–20/1,体积比),得到中间体BB-19-1。 1H NMR(400MHz,DMSO_d 6)δ:9.72(t,J=1.2Hz,1H),7.87(s,1H),7.46(d,J=8.8Hz,1H),7.43(d,J=1.2Hz,1H),7.18(dd,J=1.8,8.2Hz,1H),4.11(q,J=7.1Hz,2H),3.75(d,J=0.4Hz,2H),3.00–2.91(m,2H),2.83–2.75(m,2H),1.20(t,J=7.0Hz,3H)。
步骤2:中间体BB-19-2的合成
室温下,将中间体BB-19-1(0.7g,2.69mmol,1eq)溶于乙醇(15mL)中,随后加入甲胺(726.32mg,10.76mmol,4eq,盐酸盐),三乙胺(1.09g,10.76mmol,1.50mL,4eq)和氰基硼氢化钠(338.01mg,5.38mmol,2eq),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液真空浓缩除去溶剂。所得残余物加入水(50mL)稀释,用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。得到粗品中间体BB-19-2。
步骤3:中间体BB-19-3的合成
室温下,将中间体BB-19-2(2.69mmol,1eq,粗品)溶于二氯甲烷(10mL)中,随后加入二碳酸二叔丁酯(704.51mg,3.23mmol,741.59μL,1.2eq)和三乙胺(544.40mg,5.38mmol,748.83μL,2eq),反应混合物室温搅拌12小时。反应完毕后,反应液减压浓缩除去溶剂,所得残余物经柱层析分离(洗脱 剂:石油醚/乙酸乙酯=20/1–10/1,体积比),得到中间体BB-19-3。 1H NMR(400MHz,CDCl 3)δ:7.61(s,1H),7.40–7.35(m,2H),7.14(dd,J=1.4,8.2Hz,1H),4.20(q,J=7.2Hz,2H),3.69(s,2H),3.35–3.19(m,2H),2.86(s,3H),2.74–2.66(m,2H),1.93–1.83(m,2H),1.45(s,9H),1.28(t,J=7.2Hz,3H)。
步骤4:中间体BB-19-4的合成
0℃下,将中间体BB-19-3(0.13g,346.24μmol,1eq)溶于N,N–二甲基甲酰胺(5mL)中,随后依次加入叔丁醇钾(42.74mg,380.87μmol,1.1eq)和丙烯酰胺(27.07mg,380.87μmol,26.28μL,1.1eq),反应混合物在0℃下继续搅拌反应1小时。反应完毕后,反应液加入水(50mL)稀释,用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–1/1,体积比),得到中间体BB-19-4。 1H NMR(400MHz,CDCl 3)δ:8.07(s,1H),7.56(s,1H),7.50–7.37(m,2H),7.16(dd,J=1.6,8.4Hz,1H),4.03–3.97(m,1H),3.34–3.20(m,2H),2.86(s,3H),2.83–2.75(m,2H),2.74–2.66(m,2H),2.43–2.34(m,2H),1.92–1.82(m,2H),1.46(s,9H)。
步骤5:中间体BB-19的盐酸盐的合成
室温下,将中间体BB-19-4(0.05g,124.85μmol,1eq)溶于乙酸乙酯(5mL)中,随后加入盐酸的乙酸乙酯溶液(10mL,4M),反应混合物在室温下搅拌反应4小时。反应完毕后,反应液减压浓缩除去溶剂,得到中间体BB-19的盐酸盐粗品。
参考例20
Figure PCTCN2021081375-appb-000239
合成路线:
Figure PCTCN2021081375-appb-000240
步骤1:中间体BB-20-1的合成
将4-(叔丁氧羰基氨基)苯甲酸(110.11mg,464.12μmol)溶于N,N–二甲基甲酰胺(2mL)中,在0℃下加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(133.46mg,696.18μmol)、1-羟基苯并三唑(94.07mg, 696.18μmol)和N,N–二异丙基乙胺(209.94mg,1.62mmol,282.94μL),0℃下搅拌30分钟,随后加入中间体BB-7(200mg,464.12μmol,盐酸盐),氮气保护,反应混合物升温至15℃搅拌反应16小时。反应溶液加入乙酸乙酯(15mL)和水(5mL)稀释,分液后收集有机相,水相用乙酸乙酯(10mL×2)萃取。合并有机相,无水硫酸钠干燥,减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=8/1–0/1,体积比)。得到中间体BB-20-1。
步骤2:中间体BB-20的合成
将中间体BB-20-1(200mg,325.89μmol)加入到乙酸乙酯(2mL)中,随后加入盐酸/乙酸乙酯溶液(4M,4.89mL),15℃下反应1小时。反应完毕后,减压浓缩除去溶剂,得到中间体BB-20。 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.41(s,1H),8.07(d,J=8.8Hz,1H),7.98–7.95(m,1H),7.82(d,J=8.0Hz,2H),7.77–7.70(m,2H),7.49(d,J=2.4Hz,1H),7.21(dd,J=2.4,9.0Hz,1H),7.16(d,J=8.0Hz,2H),4.63(dd,J=4.2,11.8Hz,1H),4.10(t,J=6.4Hz,2H),3.29–3.22(m,2H),2.93–2.83(m,1H),2.67–2.56(m,1H),2.45–2.32(m,1H),2.32–2.21(m,1H),1.85–1.74(m,2H),1.60–1.45(m,4H),1.45–1.35(m,2H)。
参考例21
Figure PCTCN2021081375-appb-000241
合成路线:
Figure PCTCN2021081375-appb-000242
步骤1:中间体BB-21-1的合成
将4-(叔丁氧羰基氨基)苯甲酸(113.28mg,477.48μmol)溶于N,N–二甲基甲酰胺(2mL),在0℃下加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(137.30mg,716.21μmol),1–羟基苯并三氮唑(96.77mg,716.21μmol)和N,N–二异丙基乙胺(215.98mg,1.67mmol,291.08μL),0℃下搅拌30分钟,随后 加入中间体BB-10(200mg,477.48μmol,盐酸盐),氮气保护下反应混合物升温至15℃搅拌反应16小时。反应完毕后,反应液加入乙酸乙酯(15mL)和水(5mL)稀释,分液后收集有机相,水相用乙酸乙酯(10mL×2)萃取。合并有机相,无水硫酸钠干燥,减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1–0/1,体积比)。得到中间体BB-21-1。
步骤2:中间体BB-21的合成
将中间体BB-21-1(200mg,332.42μmol)加入到乙酸乙酯(2mL)中,随后加入盐酸/乙酸乙酯(4M,4.98mL),15℃下反应1小时。反应结束后,减压浓缩除去乙酸乙酯,得到中间体BB-21。 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.50(s,1H),8.09(d,J=8.8Hz,1H),7.96(s,1H),7.82(d,J=8.4Hz,2H),7.74(s,2H),7.51(d,J=2.4Hz,1H),7.23(dd,J=2.4,9.2Hz,1H),7.13(d,J=8.0Hz,2H),4.64(dd,J=4.4,11.6Hz,1H),4.27–4.20(m,2H),3.87–3.80(m,2H),3.66–3.59(m,2H),3.49–3.41(m,2H),2.93–2.83(m,1H),2.67–2.55(m,1H),2.46–2.33(m,1H),2.31–2.20(m,1H)。
参考例22
Figure PCTCN2021081375-appb-000243
合成路线:
Figure PCTCN2021081375-appb-000244
步骤1:中间体BB-22-1的合成
室温和氮气保护下,将中间体BB-2-5(500.00mg,2.27mmol)溶于四氢呋喃(12.5mL)中,随后依次加入3–叔丁氧羰基-氨基–1–丙醇(477.41mg,2.72mmol),偶氮二甲酰二哌啶(744.72mg,2.95mmol),氮气置换三次,0℃和氮气保护下滴加三丁基膦(728.24μL,2.95mmol),反应混合物在15℃下搅拌16小时。反应完毕后,将2个平行反应合并,向反应体系加水(20mL)和乙酸乙酯(50mL)稀释,分液后收集有机相,水相用乙酸乙酯萃取(20mL×2)。合并有机相,有机相用无水硫酸钠干燥,过滤,减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–0/1,体积比),得到中间体BB-22-1。 1H NMR(400MHz,CDCl 3)δ:7.60(s,1H),7.36(d,J=8.8Hz,1H),7.02(d,J=2.4Hz,1H),6.90(dd,J=2.4,9.2Hz,1H),4.84(s,1H),4.22–4.17(m,2H),4.06(t,J=6.0Hz,2H),3.66(s,2H),3.37–3.34 (m,2H),2.00(m,2H),1.46(s,9H),1.32–1.26(t,J=7.2Hz,3H)。
步骤2:中间体BB-22-2的合成
室温和氮气保护下,将中间体BB-22-1(1.00g,2.65mmol)溶于四氢呋喃(20mL)中,氮气置换三次,在氮气保护下依次加入丙烯酰胺(188.32mg,2.65mmol),叔丁醇钾(356.77mg,3.18mmol),反应混合物在15℃下搅拌反应1小时。反应完毕后,将反应溶液缓慢倒入到冰水(50mL)中,用乙酸乙酯(100mL×3)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–0/1,体积比),得到中间体BB-22-2。 1H NMR(400MHz,CDCl 3)δ:8.11(s,1H),7.55(s,1H),7.40(d,J=9.6Hz,1H),6.96–6.90(m,2H),4.80(s,1H),4.05(t,J=6.0Hz,2H),3.97(t,J=7.6Hz,1H),3.37–3.33(m,2H),2.85–2.68(m,2H),2.40–2.32(m,2H),2.03–1.96(m,2H),1.45(s,9H)。
步骤3:中间体BB-22的盐酸盐合成
室温和氮气保护下,将中间体BB-22-2(380.24mg,944.84μmol)溶于乙酸乙酯(8mL),加入盐酸/乙酸乙酯溶液(4M,8mL),反应混合物在25℃下搅拌1小时。反应完毕后,将反应液减压浓缩除去溶剂得到中间体BB-22的盐酸盐粗品。
参考例23
Figure PCTCN2021081375-appb-000245
合成路线:
Figure PCTCN2021081375-appb-000246
步骤1:中间体BB-23-2的合成
室温和氮气保护下,将中间体BB-23-1(10.00g,85.33mmol)和三乙胺(17.27g,170.66mmol,23.75mL)溶于二氯甲烷(100mL),在0℃下缓慢加入溶于二氯甲烷(10mL)的二碳酸二叔丁酯(22.35g,102.40mmol),反应混合物升温至18℃反应12小时。反应完毕后,反应溶液加入水(50mL),分离有机相,水相用二氯甲烷(100mL)萃取,合并有机相,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–0/1,体积比),得到中间体BB-23-2。 1H NMR(400MHz,CDCl 3)δ:4.54(s,1H),3.63(t,J=6.4Hz,2H),3.11(t,J=6.8Hz,2H),1.61–1.55(m, 2H),1.54–1.41(m,11H),1.41–1.30(m,4H)。
步骤2:中间体BB-23-3的合成
在室温和氮气保护氛围下将中间体BB-2-5(500.00mg,2.27mmol)溶解于无水四氢呋喃(12.5mL),随后依次加入中间体BB-23-2(591.94mg,2.72mmol),N,N,N',N'-四甲基偶氮二甲酰胺(508.12mg,2.95mmol),氮气置换三次,0℃下滴加三丁基膦(597.04mg,2.95mmol,728.09μL),反应液缓慢升温至15℃搅拌16小时。反应完毕后,向反应体系加水(20mL)和乙酸乙酯(50mL)稀释,分液后收集有机相,水相用乙酸乙酯(20mL×2)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/5,体积比),得到中间体BB-23-3。 1H NMR(400MHz,CDCl 3)δ:7.60(s,1H),7.35(d,J=8.8Hz,1H),7.01(d,J=2.4Hz,1H),6.90(dd,J=2.4,8.8Hz,1H),4.54(s,1H),4.22–1.17(m,2H),3.99(t,J=6.4Hz,2H),3.66(s,2H),3.13(t,J=6.4Hz 2H),1.87–1.76(m,2H),1.58–1.48(m,4H),1.48–1.39(m,11H),1.30–1.25(m,3H)。
步骤3:中间体BB-23-4的合成
室温和氮气保护下,将中间体BB-23-3(1.10g,2.62mmol)溶于无水四氢呋喃(24mL)中,氮气置换三次,在氮气保护下依次加入丙烯酰胺(186.37mg,2.62mmol),叔丁醇钾(353.08mg,3.15mmol),反应混合物在15℃下搅拌反应1小时。反应完毕后,将2个平行反应合并,将反应溶液缓慢倒入到冰水(50mL)中,用乙酸乙酯(100mL×3)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–0/1,体积比),得到中间体BB-23-4。 1H NMR(400MHz,CDCl 3)δ:8.10(s,1H),7.54(s,1H),7.39(d,J=9.6Hz,1H),6.95–6.91(m,2H),4.55(s,1H),4.02–3.94(m,3H),3.20–3.08(m,2H),2.86–2.68(m,2H),2.42–2.33(m,2H),1.85–1.76(m,2H),1.55–1.37(m,15H)。
步骤4:中间体BB-23的盐酸盐的合成
室温和氮气保护下,将中间体BB-23-4(0.60g,1.35mmol)溶于乙酸乙酯(6mL)中,随后加入盐酸/乙酸乙酯溶液(4M,6.00mL),反应液在20℃下搅拌1小时。反应完毕后,反应液减压浓缩除去溶剂,得到中间体BB-23的盐酸盐粗品。
参考例24
Figure PCTCN2021081375-appb-000247
合成路线:
Figure PCTCN2021081375-appb-000248
步骤1:中间体BB-24-1的合成
室温和氮气保护下,将2–[2–[(叔丁氧羰基)氨基]乙氧基]乙醇(559.21mg,2.72mmol),中间体BB-2-5(500.00mg,2.27mmol)溶解于四氢呋喃(12.5mL)中,加入N,N,N',N'–四甲基偶氮二甲酰胺(508.22mg,2.95mmol),反应体系氮气置换三次,加入三丁基膦(728.24μL,2.95mmol),15℃搅拌12小时。反应完毕后,合并处理,加入饱和食盐水(50mL)淬灭反应。加入乙酸乙酯(80mL)稀释,分液,收集有机相。水相用乙酸乙酯(80mL×3)萃取。合并有机相,依次用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/1,体积比),得到中间体BB-24-1。
步骤2:中间体BB-24-2的合成
0℃和氮气保护下,将中间体BB-24-1(530.00mg,1.30mmol)溶解于无水四氢呋喃(5mL)中,加入叔丁醇钾(175.15mg,1.56mmol)和丙烯酰胺(92.45mg,1.30mmol),反应体系在15℃下搅拌2小时。反应完毕后,将反应液倒入冰水(15mL)中淬灭反应,加乙酸乙酯(35mL)稀释,分液,收集有机相,水相用乙酸乙酯(35mL×3)萃取。合并有机相,依次用饱和食盐水(45mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/4,体积比),得到中间体BB-24-2。
步骤3:中间体BB-24的盐酸盐合成
室温和氮气保护下,将中间体BB-24-2(260.00mg,601.20μmol)溶解于乙酸乙酯(3mL)中,25℃下加入盐酸/乙酸乙酯溶液(4M,3mL),反应体系在25℃下搅拌1小时。反应完毕后,将反应液减压浓缩除去溶剂,得到中间体BB-24的盐酸盐粗品。
参考例25
Figure PCTCN2021081375-appb-000249
合成路线:
Figure PCTCN2021081375-appb-000250
步骤1:中间体BB-25-1的合成
室温和氮气保护下,将中间体BB–1–4(2.49g,5.37mmol)和氨基甲酸叔丁酯(1.89g,16.10mmol)加入到甲苯(40mL)和水(8mL)的混合液中,随后依次加入磷酸钾(4.56g,21.46mmol),三(二亚苄基丙酮)二钯(491.33mg,536.55μmol)和2-二叔丁基膦-2′,4′,6′-三异丙基联苯(455.69mg,1.07mmol),反应混合物在105℃和氮气保护下搅拌反应14小时。反应完毕后,冷却至室温,向反应液中加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经过柱分离(洗脱剂:石油醚/乙酸乙酯=20/1–5/1,体积比),得到中间体BB–25–1。 1H NMR(400MHz,CDCl 3)δ:7.71(br s,1H),7.62(s,1H),7.37(d,J=8.8Hz,1H),7.15(dd,J=2.0,8.8Hz,1H),6.60(br s,1H),4.20(q,J=7.2Hz,2H),3.67(d,J=0.8Hz,2H),1.53(s,9H),1.29(s,3H)。
步骤2:中间体BB-25的盐酸盐的合成
室温下,将中间体BB–25–1(500.00mg,1.13mmol)溶于乙酸乙酯(10mL)溶液中,向其中加入盐酸/乙酸乙酯溶液(4M,2.82mL),反应混合物在室温下搅拌反应12小时。反应完毕后,过滤获得滤饼,用乙酸乙酯(50mL)洗涤滤饼。干燥得到中间体BB-25的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.49(br s,3H),8.04(s,1H),7.70(d,J=8.4Hz,1H),7.61(d,J=2.0Hz,1H),7.36(dd,J=2.0,8.8Hz,1H),4.12(q,J=7.1Hz,2H),3.81(s,2H),1.21(t,J=7.2Hz,3H)。
参考例26
Figure PCTCN2021081375-appb-000251
合成路线:
Figure PCTCN2021081375-appb-000252
步骤1:中间体BB–26-2的合成
在预先干燥的反应瓶中加入N-苄基-双邻氯乙基氨基盐酸盐(24.33g,90.57mmol),乙醇(150mL),化合物BB-26-1(24.33g,90.57mmol)和N,N–二异丙基乙胺(117.05g,905.70mmol,157.75mL),反应体系升温至90℃搅拌16小时。反应结束后,减压浓缩除去溶剂,残余物中加入水(100mL),用二氯甲烷(100mL×3)萃取,合并有机相,饱和食盐水(300mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经过柱层析(洗脱剂:石油醚/乙酸乙酯=50/1–10/1,体积比)纯化得到化合物BB-26-2。MS–ESI m/z:289.3[M+H] +. 1H NMR(400MHz,CDCl 3)δ:7.29–7.18(m,5H),4.11–4.06(q,J=6.8Hz,2H),3.45(s,2H),2.92(s,4H),2.31(s,4H),1.23–1.19(m,5H),0.85–0.83(m,2H)。
步骤2:中间体BB–26–3盐酸盐的合成
将化合物BB-26-2(8g,27.74mmol)溶于二氯甲烷(80mL)中,0℃加入氯甲酸氯乙酯(5.79g,40.50mmol),反应体系升温至20℃搅拌1小时。反应完全,将反应液减压浓缩除去溶剂。残余物重新溶解于乙醇(80mL)中,85℃继续反应16小时。反应结束后,反应液减压浓缩除去溶剂。向残余物中加入乙酸乙酯(80mL),搅拌20分钟后过滤,收集滤饼得到化合物BB–26–3的盐酸盐。 1H NMR(400MHz,CD 3OD)δ:4.22-4.11(m,2H),3.59-3.35(m,4H),3.31-3.12(m,4H),1.57-1.27(m,4H),1.27-1.18(m,3H)。
步骤3:中间体BB–26–4的合成
将化合物BB-26-3(3.5g,14.91mmol,盐酸盐)溶于二氧六环(30mL)和水(10mL)的混合溶剂中,反应体系降温至0℃,加入碳酸氢钠(3.76g,44.73mmol,1.74mL)和碳酸叔丁酯(3.25g,14.91mmol,3.43mL),恢复至20℃搅拌12小时。反应结束后,反应液加水(20mL)和二氯甲烷(20mL),分离有机相,水相加二氯甲烷(20mL×3)萃取,合并有机相,用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得残余物经过柱层析(洗脱剂:石油醚/乙酸乙酯=0/1–25/2,体积比)纯 化得到化合物BB-26-4。 1H NMR(400MHz,CDCl 3)δ:4.12(q,J=7.1Hz,2H),3.31(br s,4H),2.90(br s,4H),1.47(s,9H),1.32-1.27(m,2H),1.25(t,J=7.2Hz,3H),0.94(q,J=3.7Hz,2H)。
步骤4:中间体BB–26–5的合成
将化合物BB-26-4(3.1g,10.39mmol)溶于四氢呋喃(35mL)中,氮气置换三次后,降温至–65℃,缓慢加入四氢铝锂(1M四氢呋喃溶液,31.17mL),0℃搅拌1小时。反应结束后,在0℃缓慢向反应液中加入十水硫酸钠(30g),过滤,滤饼用二氯甲烷淋洗,滤液减压浓缩得到化合物BB-26-5。 1H NMR(400MHz,CDCl 3)δ:3.58(s,2H),3.35(t,J=4.8Hz,4H),2.69(t,J=4.8Hz,4H),1.45(s,9H),0.71-0.68(m,2H),0.55–0.52(m,2H)。
步骤5:中间体BB–26–6的合成
氮气保护下,将化合物BB-27(2.39g,5.66mmol)溶于四氢呋喃(50mL)中,然后加入化合物BB-26-5(2.9g,11.31mmol)和三苯基膦(2.97g,11.31mmol),反应体系降温至0℃,滴加偶氮二甲酸二异丙酯(2.29g,11.31mmol,2.20mL)。升温至40℃搅拌12小时。反应结束后,向反应液中加水(20mL)和乙酸乙酯(50mL),分离有机相,水相用乙酸乙酯(50mL×3)萃取,合并有机相,饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经过柱层析(洗脱剂:石油醚/乙酸乙酯=1/0–4/5,体积比)纯化得到化合物BB-26-6。 1H NMR(400MHz,CDCl 3)δ:8.00–7.96(m,2H),7.85-7.82(m,1H),7.08–7.02(m,3H),4.05(s,2H),2.81(s,4H),2.69(s,4H),1.59(s,6H),1.46(s,9H),0.75-0.70(m,4H)。
步骤5:中间体BB–26的盐酸盐的合成
将化合物BB-26-6(3.2g,4.84mmol)溶于乙酸乙酯(5mL)中,加盐酸/乙酸乙酯(30mL,4M),15℃下反应2小时。将反应液减压浓缩除去溶剂,加甲基叔丁基醚(10mL)搅拌5分钟,过滤,滤饼用甲基叔丁基醚(2mL×2)淋洗,收集滤饼减压浓缩除去溶剂,得到化合物BB-26的盐酸盐。
参考例27
Figure PCTCN2021081375-appb-000253
合成路线
Figure PCTCN2021081375-appb-000254
步骤1:中间体BB–27-2的合成
在0-5℃和氮气保护下,将化合物BB-27-1(10g,78.67mmol)溶于二氯甲烷(120mL)和丙酮(60mL),依次慢慢滴加氰基三甲基硅烷(12.45g,125.50mmol,15.70mL),三甲基硅基三氟甲磺酸酯(820.00mg,3.69mmol,666.67μL),反应混合物在25℃搅拌2小时,反应完毕后,冷却至0-5℃,加入水(200mL)稀释,乙酸乙酯(200mL x 3)萃取。合并有机相的经饱和食盐水(100mL x 2)洗涤,无水硫酸钠干 燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–5/1,体积比),得到目标化合物BB-27-2。 1H NMR(400MHz,CDCl 3)δ:6.83(t,J=9.0Hz,1H),6.74(dd,J=2.7,12.1Hz,1H),6.66-6.59(m,1H),1.65(s,6H)。
步骤2:化合物BB-27的合成
在室温下和氮气保护下,将化合物BB-27-2(8g,45.40mmol)溶于N,N-二甲基乙酰胺(150mL),4-硫代异氰酸酯-2-(三氟甲基)苯氰(10.36g,45.40mmol)分批加入反应液中,反应混合物在25℃搅拌12小时,加入甲醇(60mL),稀盐酸(2M,60mL),反应混合物在70℃搅拌3小时,反应完毕后,冷却至室温,加入水(500mL)稀释,用乙酸乙酯(200mL x 3)萃取。合并有机相,用饱和食盐水(100mL x 2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=3/1–1/1,体积比),得到目标化合物BB-27。 1H NMR(400MHz,CDCl 3)δ:7.97(s,1H),7.85(dd,J=1.8,8.3Hz,1H),7.18-7.10(m,2H),6.99-6.88(m,2H),6.06(br s,1H),1.58(s,6H)。
参考例28
Figure PCTCN2021081375-appb-000255
合成路线
Figure PCTCN2021081375-appb-000256
步骤1:中间体BB–28-2的合成
将化合物BB-28-1(2g,9.08mmol),烯丙基溴(1.21g,9.99mmol)和碳酸钾(2.51g,18.16mmol)溶于N,N–二甲基甲酰胺(20mL)中,升温至50℃反应15小时。反应结束后,将反应液降至室温,加水(150mL),用乙酸乙酯(30mL×3)萃取,合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂得到化合物BB-28-2。
步骤2:中间体BB–28-3的合成
将化合物BB-28-2(2g,7.68mmol)溶于N,N–二甲基甲酰胺(20mL)中,依次加入丙烯酰胺(546.15mg,7.68mmol,530.20μL)和叔丁醇钾(1.12g,9.99mmol),20℃下反应1小时。反应结束后,反应液用0.5N稀盐酸调节pH=5–6,用乙酸乙酯萃取(20mL×2),有机相用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经过柱层析(洗脱剂:石油醚/乙酸乙酯=3/1–1/1,体积比)分离纯化得到化合物BB-28-3。 1H NMR(400MHz,CDCl 3)δ:8.05(s,1H),7.55(s,1H),7.45–7.40(m,1H),6.99-6.96(m,2H),6.13-6.06(m,1H),5.47-5.42(m,1H),5.33-5.30(m,1H),4.58-4.56(m,2H),3.99-3.96(m,1H),2.84-2.73(m,2H),2.39-2.36(m,2H)。
步骤3:中间体BB–28的合成
将化合物BB-28-3(0.1g,350.52μmol)溶于四氢呋喃(3mL)和水(1mL)中,降温至0℃,加入高碘酸钠(299.89mg,1.40mmol,77.69μL),二水合锇酸钾(12.91mg,35.05μmol),25℃下反应3小时。反应结束后,反应液加水(5mL)和乙酸乙酯(10mL),分离有机相,水相用乙酸乙酯(10mL×3)萃取,合并有机相,用饱和食盐水(10mL×3)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到化合物BB-28的粗品,直接用于下一步。
参考例29
Figure PCTCN2021081375-appb-000257
合成路线
Figure PCTCN2021081375-appb-000258
步骤1:化合物BB-29-2的合成
室温和氮气保护下,将化合物BB-29-1(3g,10.60mmol),双联频哪醇硼酸酯(3.23g,12.72mmol),乙酸钾(4.16g,42.39mmol),[1,1–双(二苯基膦)二茂铁]二氯化钯二氯甲烷(865.33mg,1.06mmol)溶于二氧六环(50mL)中,升温到100℃搅拌5小时。反应结束后,将反应液降至室温,直接垫硅藻土过滤,滤饼用二氯甲烷(30mL×3)淋洗,滤液减压浓缩除去溶剂。所得残余物经过柱层析(洗脱剂:石油醚/乙酸乙酯=30/1,体积比)分离纯化得到化合物BB-29-2。
步骤2:化合物BB-29-3的合成
室温和氮气保护下,将化合物BB-29-2(2.5g,7.57mmol)和碳酸氢钠(1.27g,15.14mmol,588.95μL)溶于四氢呋喃(30mL)和水(15mL)的混合溶剂中,降温至0℃,滴加过氧化氢(6.59g,58.12mmol,5.58mL,纯度:30%),搅拌2小时。加入15%的亚硫酸钠水溶液(50mL),并搅拌10分钟,用1N盐酸调节pH=5~6,用乙酸乙酯(50mL×3)萃取,有机相用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩除去溶剂。所得残余物经过柱层析(洗脱剂:石油醚/乙酸乙酯=6/1,体积比)分离纯化得到化合物BB-29-3。
步骤3:化合物BB-29-4的合成
室温和氮气保护下,将化合物BB-29-3(0.85g,3.86mmol)加入至N,N–二甲基甲酰胺(20mL)中,加入烯丙基溴(513.63mg,4.25mmol)和碳酸钾(1.07g,7.72mmol),反应体系升温至50℃反应15小时。反应结束后,向反应液中加水(100mL),分离有机相,水相用乙酸乙酯(20mL×3)萃取,合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂得到化合物BB-29-4。
步骤4:化合物BB-29-5的合成
室温和氮气保护下,将化合物BB-29-4(0.9g,3.46mmol)溶于N,N–二甲基甲酰胺(10mL)中,依次加入丙烯酰胺(245.77mg,3.46mmol,238.61μL)和叔丁醇钾(504.9mg,4.50mmol),20℃下反应1小时。反应结束后,反应液用0.5N稀盐酸调节pH=5~6,用乙酸乙酯(30mL×2)萃取,有机相用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,向所得残余物中加入甲基叔丁基醚(5mL),搅拌5分钟,过滤,滤饼用甲基叔丁基醚(2mL×2)淋洗,收集滤饼得到化合物BB-29-5。
步骤5:化合物BB-29的合成
室温和氮气保护下,将化合物BB-29-5(0.1g,350.52μmol)溶于四氢呋喃(3mL)和水(1mL)中,降温至0℃,加入高碘酸钠(299.89mg,1.40mmol,77.69μL),二水合锇酸钾(12.91mg,35.05μmol),25℃下反应3小时。反应结束后,向反应液中加入水(5mL)和乙酸乙酯(10mL),分离有机相,水相用乙酸乙酯(10mL×3)萃取,合并有机相,用饱和食盐水(10mL×3)洗涤,无水硫酸钠干燥,过滤,减压浓缩除去残余溶剂得到化合物BB-29。
参考例30
Figure PCTCN2021081375-appb-000259
合成路线:
Figure PCTCN2021081375-appb-000260
步骤1:中间体BB–30–2的合成
将化合物BB-29-1(1g,3.53mmol)和氨基甲酸叔丁酯(2.07g,17.66mmol)加到甲苯(15mL)和水(1.5mL)中,将三(二亚苄基丙酮)二钯(226.41mg,247.25μmol),2-二叔丁基膦-2',4',6'-三异丙基联苯(209.98mg,494.49μmol),磷酸钾(3.00g,14.13mmol)依次慢慢的加到反应液中,混合物用氮气置换3次后升温到100℃搅拌12小时。反应液冷却到室温,减压旋掉大部分的有机溶剂。用乙酸乙酯稀释 (30mL),有机相经水洗涤2次(30mL x 2),无水硫酸钠干燥,过滤,减压旋干。所得残留物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-3/2,体积比),得到中间体BB–30-2。 1H NMR(400MHz,CDCl 3)δppm:7.83-7.73(m,1H),7.57(s,1H),7.47-7.40(m,1H),7.14-7.05(m,1H),6.81(br d,J=1.0Hz,1H),4.19(q,J=7.0Hz,2H),3.67(d,J=1.3Hz,2H),1.49-1.42(m,9H),1.32-1.23(m,3H)。
步骤2:中间体BB–30–3的合成
0℃下,将化合物BB-30-2(300mg,939.40μmol)和丙烯酰胺(73.45mg,1.03mmol,71.31μL)加到四氢呋喃(5mL)中,将叔丁醇钾(158.12mg,1.41mmol)慢慢加到反应中,混合物氮气置换3次后升在0℃搅拌1小时。反应液慢慢加到饱和氯化铵水溶液中(20mL)中,用乙酸乙酯萃取2次(20mL x 2),有机相用饱和食盐水洗涤1次(20mL),无水硫酸钠干燥,过滤,减压旋干。所得残留物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-3/1,体积比),得到中间体BB–30-3。
步骤3:中间体BB–30的盐酸盐的合成
将化合物BB-30-3(40mg,116.16μmol)加到乙酸乙酯(2mL)中,将盐酸/二氧六环(4M,1mL)慢慢滴加到反应中。混合物氮气置换3次后在25℃搅拌12小时。反应液直接旋干得到中间体BB-30的盐酸盐。
参考例31
Figure PCTCN2021081375-appb-000261
合成路线:
Figure PCTCN2021081375-appb-000262
步骤1:中间体BB-31-1的合成
室温和氮气保护下,将中间体BB–25-1(12g,37.58mmol)溶于四氢呋喃(240mL)溶液中,氮气置换三次,在氮气保护下依次加入丙烯酰胺(2.67g,37.58mmol)和叔丁醇钾(5.48g,48.85mmol),反应混合物在20℃下搅拌反应1小时。反应完毕后,向反应液中加入水(12mL),加入乙酸乙酯(1.5L)搅拌3分钟,随后加入无水硫酸钠干燥,过滤,减压浓缩除去溶剂。所得残余物通过柱层析分离(洗脱剂:石油醚/乙酸乙酯=0/1–1/1,体积比),得到中间体BB-31-1。
步骤2:中间体BB-31的盐酸盐的合成
20℃下,将盐酸/乙酸乙酯(4M,200mL)加入到中间体BB-31-1(8.3g,24.10mmol)中,搅拌1小时。反应完毕后,减压浓缩去除溶剂,得到中间体BB-31的盐酸盐。
参考例32
Figure PCTCN2021081375-appb-000263
合成路线:
Figure PCTCN2021081375-appb-000264
步骤1:中间体BB-32-1的合成
0℃和氮气保护下,将BB-1-4(5.00g,17.66mmol)溶于N,N-二甲基甲酰胺(30mL)中,分别向其中加入叔丁醇钾(2.18g,19.43mmol)和丙烯酰胺(1.38g,19.43mmol),反应混合物在0℃下搅拌反应1小时。反应完毕后,向反应液中加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,依次用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。向所得残余物中加入乙酸乙酯(5mL)室温下搅拌10分钟,打浆纯化,得到中间体BB-32-1。 1H NMR(400MHz,DMSO_d 6)δ:10.90(s,1H),7.96(s,1H),7.86(d,J=2.0Hz,1H),7.56(d,J=8.8Hz,1H),7.45(dd,J=1.8,8.6Hz,1H),4.16(dd,J=4.8,12.4Hz,1H),2.79–2.66(m,1H),2.63–2.53(m,1H),2.42–2.29(m,1H),2.15–2.03(m,1H)。
步骤2:中间体BB-32的合成
室温下,将中间体BB-32-1(2.00g,6.49mmol)和丙烯醇(2.45g,42.18mmol)溶于1,4-二氧六环(30mL)中,向其中分别加入三(二亚苄基丙酮)二钯(594.38mg,649.08μmol),N,N-二环己基甲胺(1.52g,7.79mmol)和三叔丁基膦(10%甲苯溶液)(2.63g,1.30mmol),反应混合物在室温和氮气保护下搅拌反应12小时。反应完毕后,向反应液中加入水(100mL),用乙酸乙酯(100mL×3)萃取。合并有机相,依次用饱和食盐水(100mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/1,体积比),得到中间体BB-32。 1H NMR(400MHz,DMSO_d 6)δ:10.89(s,1H),9.72(t,J=1.4Hz,1H),7.85(s,1H),7.51–7.42(m,2H),7.17(dd,J=1.6,8.4Hz,1H),4.11(dd,J=4.8,12.4Hz,1H),2.99–2.90(m,2H),2.83–2.68(m,3H),2.63–2.53(m,1H),2.40–2.26(m,1H),2.14–2.05(m,1H)。
参考例33
Figure PCTCN2021081375-appb-000265
合成路线:
Figure PCTCN2021081375-appb-000266
步骤1:中间体BB-33-1的合成
室温和氮气保护下,将中间体BB-1-4(3g,10.60mmol)溶于甲苯(70mL)和水(14mL)的混合溶剂中,再依次加入三(二亚苄基丙酮)二钯(485.16mg,529.81μmol),2-二叔丁基膦-2’,4’,6’-三异丙基联苯(449.96mg,1.06mmol),磷酸钾(6.75g,31.79mmol)和1-叔丁氧羰基哌嗪(3.95g,21.19mmol),反应混合物在100℃和氮气保护下搅拌反应12小时。反应完毕后,冷却至室温,向反应液中加入水(100mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱分离(洗脱剂:石油醚/乙酸乙酯=40/1,体积比),得到中间体BB-33-1。 1H NMR(400MHz,CDCl 3)δ:7.60(s,1H),7.39(d,J=8.8Hz,1H),7.08(s,1H),7.01(d,J=8.4Hz,1H),4.20(q,J=7.2Hz,2H),3.66(s,2H),3.63(br s,4H),3.11(br s,4H),1.50(s,9H),1.28(t,J=7.2Hz,3H)。
步骤2:中间体BB-33-2的合成
0℃和氮气保护下,将中间体BB-33-1(1g,2.57mmol)溶于N,N-二甲基甲酰胺(10mL)中,再依次加入叔丁醇钾(433.29mg,3.86mmol)和丙烯酰胺(219.57mg,3.09mmol),反应混合物在0℃和氮气保护下搅拌反应1小时。反应完毕后,向反应液中加入水(100mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=3/1–1/1,体积比),得到中间体BB-33-2。MS–ESI m/z:413.9[M+H] +
步骤3:中间体BB-33的盐酸盐的合成
室温和氮气保护下,将中间体BB-33-2(1.04mmol)加入到乙酸乙酯(3mL)中,再加入盐酸/乙酸乙酯(25mL,100.00mmol,),反应混合物在室温和氮气保护下搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂,得到中间体BB-33的盐酸盐。MS–ESI m/z:313.9[M+H] +
参考例34
Figure PCTCN2021081375-appb-000267
合成路线:
Figure PCTCN2021081375-appb-000268
步骤1:中间体BB–34–1的合成
室温下,将中间体BB–2(500.00mg,1.65mmol)溶于N,N–二甲基甲酰胺(20mL)中,分别向其中加入N,N–二异丙基乙胺(1.07g,8.24mmol)和O-(7-氮杂苯并三氮唑-1-基)-N,N,N,N-四甲基脲六氟膦盐(940.34mg,2.47mmol),混合溶液在室温下搅拌半小时。随后向其中加入N-叔丁氧羰基-1,4-丁二胺(310.40mg,1.65mmol),反应混合物在室温下搅拌反应12小时。反应完毕后,向反应液中加入水(40mL),用乙酸乙酯(30mL×3)萃取。合并有机相,依次用饱和食盐水(40mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/1–0/1,体积比),得到中间体BB–34–1。 1H NMR(400MHz,CDCl 3)δ:7.55(s,1H),7.41(d,J=8.8Hz,1H),6.98(d,J=2.4Hz,1H),6.95(dd,J=2.4,8.8Hz,1H),4.52(s,2H),3.99–3.90(m,1H),3.43–3.27(m,2H),3.15–3.05(m,2H),2.85–2.68(m,2H),2.39–2.27(m,2H),1.60–1.45(m,4H),1.43(s,9H)。
步骤5:中间体BB–34的盐酸盐的合成
室温下,将中间体BB–34–1(400.00mg,844.74μmol)溶于乙酸乙酯(10mL)中,向其中加入盐酸/乙酸乙酯溶液(4M,15.64mL),反应混合物在室温下搅拌反应12小时。反应完毕后,过滤,滤饼用乙酸乙酯(10mL)洗涤。收集滤饼,干燥,得到中间体BB–34的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.89(s,1H),8.22(t,J=5.8Hz,1H),7.98(br s,3H),7.87(s,1H),7.50(d,J=8.8Hz,1H),7.17(d,J=2.4Hz,1H),7.00(dd,J=2.8,8.8Hz,1H),4.47(d,J=3.2Hz,2H),4.11(dd,J=4.8,12.0Hz,1H),3.19-3.12(m,2H),2.80-2.71(m,3H),2.62-2.53(m,1H),2.41-2.28(m,1H),2.13-2.04(m,1H),1.59-1.45(m,4H)。
实施例1
Figure PCTCN2021081375-appb-000269
合成路线:
Figure PCTCN2021081375-appb-000270
步骤1:中间体WX001–2的合成
室温下,将化合物WX001–1(1g,1.79mmol)溶于乙醇(15mL)中,随后依次加入溴乙酸叔丁酯(454.32mg,2.33mmol,344.18μL)和N,N–二异丙基乙胺(463.13mg,3.58mmol,624.16μL),反应混合物加热至50℃并搅拌反应12小时。反应完毕后,冷却至室温,反应液直接减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1–1/1,体积比),得到中间体WX001–2。 1H NMR(400MHz,CDCl 3)δ:9.49(s,1H),8.58(d,J=8.4Hz,1H),8.146(s,1H),7.99(s,1H),7.93(dd,J=1.4,8.2Hz,1H),7.62(td,J=1.6,8.6Hz,1H),7.54(s,1H),7.26(t,J=7.0Hz,1H),6.82(s,1H),4.58–4.46(m,1H),3.32–3.22(m,1H),3.18(s,2H),3.14–3.05(m,2H),2.74–2.61(m,1H),2.32(t,J=11.8Hz,2H),2.16(s,3H),1.93–1.79(m,2H),1.78–1.70(m,2H),1.49(s,9H),1.36(d,J=6.0Hz,6H),1.31(d,J=6.4Hz,6H)。
步骤2:中间体WX001–3的合成
室温下,将中间体WX001–2(0.5g,743.74μmol)溶于二氯甲烷(5mL)中,随后加入三氟乙酸(7.70g,67.53mmol,5mL),反应混合物在室温下搅拌反应2小时。反应完毕后,反应液直接减压浓缩除去溶剂,所得残余物加入水(20mL)稀释,用乙酸乙酯(20mL×4)萃取。合并有机相,用无水硫酸钠干燥,过滤,减压浓缩除去溶剂,得到中间体WX001–3。 1H NMR(400MHz,CDCl 3)δ:10.47(s,2H),8.40(d,J=8.4Hz,1H),8.01(s,1H),7.93–7.89(m,1H),7.47–7.30(m,3H),6.90(s,1H),4.62–4.47(m,1H),4.02–3.80(m,4H),3.24–3.17(m,1H),3.17-2.97(m,3H),2.44–2.25(m,2H),2.18(s,3H),2.02–1.91(m,2H),1.31(d,J=6.8Hz,6H),1.25(d,J=6.0Hz,6H)。
步骤3:WX001的合成
室温和氮气保护下,将中间体WX001–3(149.76mg,227.86μmol)和中间体BB–1(74mg,227.86μmol,盐酸盐)加入到N,N–二甲基甲酰胺(5mL)中,随后加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(129.96mg,341.79μmol)和三乙胺(69.17mg,683.58μmol,95.15μL),反应混合物在室温和氮气保护下搅拌反应14小时。反应完毕后,向反应液中加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX001。MS–ESI m/z:886.3[M+H] +1H NMR(400MHz,CD 3OD)δ:8.25(br s,2H),8.02(d,J=8.0Hz,1H),7.79–7.69(m,2H),7.56(t,J=8.0Hz,1H),7.39(d,J=9.2Hz,1H),7.34(br s,1H),7.15(d,J=2.0Hz,1H),7.00–6.92(m,2H),4.71–4.63(m,1H),4.20–4.09(m,3H),3.99(s,2H),3.74–3.61(m,4H),3.43–3.37(m,1H),3.27–3.21(m,1H),3.16–3.07(m,1H),2.88–2.69(m,2H),2.50–2.38(m,1H),2.31–2.23(m,1H),2.19(s,3H),2.14–2.05(m,2H),2.02–1.88(m,3H),1.31(d,J=6.0Hz,6H),1.25(d,J=6.8Hz,6H)。
实施例2
Figure PCTCN2021081375-appb-000271
合成路线:
Figure PCTCN2021081375-appb-000272
0℃和氮气保护下,将中间体WX001–3(160mg,259.67μmol)溶于N,N–二甲基甲酰胺(5mL)中,随后依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(148.10mg,389.50μmol)和三乙胺(78.83mg,779.01μmol,108.43μL),反应混合物在0℃下搅拌15分钟后,再加入中间体BB–4(98.48mg,285.64μmol,盐酸盐),反应混合物自然升温至室温并继续搅拌反应12小时。反应完毕后,向反应液中加入水(30mL),用乙酸乙酯萃取(20mL×3)。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX002的盐酸盐。MS–ESI m/z:906.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.96(s,1H),9.73(s,1H),9.62(s,1H),9.25(t,J=5.2Hz,1H),8.37(d,J=8.8Hz,2H),8.31(s,1H),8.15(d,J=7.2Hz,1H),8.02(s,1H),7.96(s,1H),7.86(dd,J=1.4,7.8Hz,1H),7.82(d,J=3.2Hz,2H),7.64(t,J=7.4Hz,1H),7.54(dd,J=1.4,8.6Hz,1H),7.48(s,1H),7.40(t,J=7.6Hz,1H),6.80(s,1H),4.66(dd,J=4.2,8.6,Hz,1H),4.57(d,J=5.6Hz,2H),4.54–4.46(m,1H),4.08(d,J=4.4Hz,2H),3.58(d,J=12.8Hz,1H),3.34–3.20(m,2H),3.07–2.82(m,3H),2.73–2.59(m,2H),2.46–2.37(m,1H),2.32–2.21(m,1H),2.12(s,3H),2.10–2.03(m,2H),1.88(d,J=13.6Hz,2H),1.25(d,J=6.0Hz,6H),1.15(d,J=6.8Hz,6H)。
实施例3
Figure PCTCN2021081375-appb-000273
合成路线:
Figure PCTCN2021081375-appb-000274
室温下,将中间体BB–2(156.94mg,517.50μmol)溶于N,N–二甲基甲酰胺(15mL)中,随后依次加入三乙胺(157.10mg,1.55mmol)、O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(295.15mg,776.25μmol)和WX001–1(288.83mg,517.50μmol),反应混合物在室温下搅拌反应2小时。反应 完毕后,反应液直接减压浓缩除去溶剂,向所得残余物中加入水(40mL),用乙酸乙酯(40mL×3)萃取。合并有机相,依次用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX003。MS–ESI m/z:843.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.89(s,1H),9.82(s,1H),8.66(s,1H),8.37(s,1H),8.26(d,J=8.0Hz,1H),7.89(dd,J=1.2,8.0Hz,1H),7.87(s,1H),7.69(t,J=7.4Hz,1H),7.48(d,J=9.2Hz,1H),7.46(t,J=7.6Hz,1H),7.39(s,1H),7.15(d,J=2.8Hz,1H),6.96(dd,J=2.6,9.0Hz,1H),6.78(d,J=3.2Hz,1H),4.83(s,2H),4.58–4.47(m,2H),4.09(dd,J=4.8,11.6Hz,1H),4.02(d,J=13.2Hz,1H),3.48–3.43(m,1H),3.18(t,J=7.0Hz,1H),2.92(t,J=11.2Hz,1H),2.78–2.67(m,2H),2.62–2.52(m,1H),2.38–2.27(m,1H),2.15–2.10(m,1H),2.09(s,3H),1.73–1.59(m,3H),1.55–1.42(m,1H),1.18(d,J=6.0Hz,6H),1.14(d,J=6.8Hz,6H)。
实施例4
Figure PCTCN2021081375-appb-000275
合成路线:
Figure PCTCN2021081375-appb-000276
步骤1:中间体WX004–2的合成
室温下,将WX004–1(0.6g,1.72mmol)溶于乙酸乙酯(20mL)中,加入盐酸的乙酸乙酯溶液(4M,10mL),反应液在室温下搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂,所得残余物加入碳酸氢钠饱和水溶液,用二氯甲烷(20mL×4)萃取。合并有机相,用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到中间体WX004–2。MS–ESI m/z:249.0[M+H] +1H NMR(400MHz,CDCl 3)δ:6.71(s,1H),6.54(s,1H),4.49–4.43(m,1H),3.63(br s,1H),3.25–3.22(m,2H),2.81–2.71(m,3H),2.21(s,3H),1.78–1.74(m,2H),1.71–1.59(m,2H),1.34(d,J=6.0Hz,6H)。
步骤2:中间体WX004–3的合成
0℃下,将WX004–2(0.34g,1.36mmol)溶于N,N–二甲基甲酰胺(10mL)中,依次加入碳酸钾(188.54mg,1.36mmol)和溴乙酸叔丁酯(266.09mg,1.36mmol)。反应混合物在0℃下搅拌反应1小时。反应完毕后,反应液加入水(20mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过薄层层析分离(展开剂:石油醚/乙酸乙酯=2/1,体积比),得到中间体WX004–3(纯度:89.45%)。MS–ESI m/z:363.1[M+H] +1H NMR(400MHz,CDCl 3)δ:6.73(s,1H),6.53(s,1H),4.48–4.39(m,1H),3.17(s,2H),3.09–3.06(m,2H),2.65–2.57(m,1H),2.33–2.26(m,2H),2.19(s,3H),1.88–1.78(m,2H),1.74–1.71(m,2H),1.49(s,9H),1.32(d,J=6.0Hz,6H)。
步骤3:中间体WX004–4的合成
室温和氮气保护下,将中间体WX004–3(0.16g,394.81μmol,纯度:89.45%)溶于二氯甲烷(10mL)中,加入三氟乙酸(7.70g,67.53mmol,5mL),反应液在室温下搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂,得到中间体WX004–4(粗品)。
步骤4:WX004的合成
室温下,将中间体BB–1(0.08g,246.34μmol,盐酸盐)和WX004–4(粗品,354.60μmol)溶于N,N–二甲基甲酰胺(10mL)中,随后依次加入三乙胺(124.63mg,1.23mmol,171.43μL)和O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(140.50mg,369.50μmol),反应液在室温下搅拌反应2小时。反应完毕后,反应液加入水(30mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX004。MS–ESI m/z:577.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.88(s,1H),8.89(t,J=5.4Hz,1H),7.86(s,1H),7.48(d,J=8.8Hz,1H),7.12(d,J=2.4Hz,1H),6.92(dd,J=2.6,9.0Hz,1H),6.85(s,1H),6.77(s,1H),4.60–4.54(m,1H),4.13–4.04(m,3H),3.97(s,2H),3.59–3.55(m,2H),3.53–3.50(m,2H),3.19(t,J=11.6Hz,2H),2.97–2.89(m,1H),2.78–2.66(m,1H),2.61–2.55(m,1H),2.40–2.29(m,1H),2.19(s,3H),2.13–2.06(m,1H),2.05–1.97(m,2H),1.83–1.80(m,2H),1.30(d,J=6.0Hz,6H)。
实施例5
Figure PCTCN2021081375-appb-000277
合成路线:
Figure PCTCN2021081375-appb-000278
步骤1:中间体WX005–2的合成
室温下,将WX005–1(20g,109.04mmol)溶于氨的甲醇溶液(7M,100mL)中,反应液在室温下搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂,所得残余物加入乙酸乙酯(30mL),过滤,滤饼用乙酸乙酯(10mL)洗涤,滤饼真空干燥,得到中间体WX005–2。MS–ESI m/z:163.7[M+H] +1H NMR(400MHz,CDCl 3)δ:8.15(s,1H),5.70(br s,2H)。
步骤2:中间体WX005–3的合成
室温下,将WX005–2(498.78mg,2.98mmol)溶于1,4–二氧六环(20mL)中,加入WX004–1(1.25g,3.58mmol)和对甲苯磺酸(769.85mg,4.47mmol),反应混合物加热至85℃并搅拌反应12小时。反应完毕后,冷却至室温,加入水(40mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–5/1,体积比),得到中间体WX005–3。 1H NMR(400MHz,CDCl 3)δ:8.15(s,1H),8.01(s,1H),7.35(s,1H),6.70(s,1H),5.57(br s,2H),4.58–4.50(m,1H),4.30–4.23(m,2H),2.85–2.77(m,3H),2.32(s,3H),1.76–1.30(m,2H),1.54–1.51(m,2H),1.50(s,9H),1.35(d,J=6.0Hz,6H)。
步骤3:中间体WX005–4的盐酸盐的合成
室温下,将WX005–3(0.45g,945.36μmol)溶于乙酸乙酯(15mL)中,随后加入盐酸的乙酸乙酯溶液(4M,5mL),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂,得到中间体WX005–4的盐酸盐。MS–ESI m/z:376.1[M+H] +
步骤4:中间体WX005–5的合成
0℃下,将WX005–4(0.4g,970.04μmol,盐酸盐)溶于N,N–二甲基甲酰胺(20mL)中,依次加入碳酸钾(201.10mg,1.46mmol)和溴乙酸叔丁酯(189.21mg,970.04μmol)。反应混合物在0℃下搅拌反应1小时。反应完毕后,反应液加入水(30mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相, 用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–5/1,体积比),得到中间体WX005–5。MS–ESI m/z:490.2[M+H] +1H NMR(400MHz,CDCl 3)δ:8.12(s,1H),8.00(s,1H),7.35(s,1H),6.80(s,1H),5.13(s,2H),4.54–4.48(m,1H),3.18(s,2H),3.10–3.07(m,2H),2.71–2.65(m,1H),2.34–2.29(m,5H),1.90–1.80(m,2H),1.76–1.73(m,2H),1.49(s,9H),1.34(d,J=6.0Hz,6H)。
步骤5:中间体WX005–6的三氟乙酸盐的合成
室温和氮气保护下,将中间体WX005–5(0.18g,358.17μmol)溶于二氯甲烷(10mL)中,加入三氟乙酸(7.70g,67.53mmol,5mL),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液直接减压浓缩除去溶剂,得到中间体WX005–6的三氟乙酸盐。MS–ESI m/z:434.1[M+H] +
步骤6:WX005的合成
室温下,将中间体BB–1(80mg,246.34μmol,盐酸盐)和WX005–6(358.17μmol,三氟乙酸盐)溶于N,N–二甲基甲酰胺(10mL)中,依次加入三乙胺(124.63mg,1.23mmol,171.44μL)和O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(140.50mg,369.50μmol),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液加入水(20mL)稀释,用乙酸乙酯(10mL×3)萃取。合并有机相,用饱和食盐水(20mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:0.05%NH 4HCO 3),得到目标化合物WX005。MS–ESI m/z:704.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.88(s,1H),9.65(br s,1H),8.90(t,J=5.2Hz,1H),8.13(s,1H),7.89–7.85(m,2H),7.48(d,J=8.8Hz,1H),7.12(d,J=2.4Hz,1H),6.92(dd,J=2.4,8.8Hz,1H),6.80(s,1H),4.60–4.53(m,1H),4.13–4.05(m,3H),3.98(s,2H),3.60–3.50(m,4H),3.25–3.15(m,2H),3.00–2.93(m,1H),2.79–2.65(m,1H),2.62–2.55(m,1H),2.40–2.32(m,1H),2.27(s,3H),2.15–2.08(m,1H),2.06–1.96(m,2H),1.85–1.80(m,2H),1.28(d,J=6.0Hz,6H)。
实施例6
Figure PCTCN2021081375-appb-000279
合成路线:
Figure PCTCN2021081375-appb-000280
步骤1:中间体WX006–1的合成
室温下,将中间体BB–3(300mg,916.95μmol)溶于二甲基甲酰胺(20mL)中,随后依次加入碳酸钾(190.10mg,1.38mmol)和WX001–1(511.78mg,916.95μmol),反应混合物加热至80℃并搅拌反应14小时。反应完毕后,冷却至室温,向反应液中加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–2/1,体积比),得到中间体WX006–1。 1H NMR(400MHz,CDCl 3)δ:9.22(s,1H),8.31(d,J=8.4Hz,1H),7.88(s,1H),7.73(s,1H),7.66(dd,J=1.6,8.0Hz,1H),7.38–7.35(m,1H),7.33(s,1H),7.09(d,J=8.8Hz,1H),7.00–6.97(m,2H),6.77(d,J=2.4Hz,1H),6.67(dd,J=2.4,8.8Hz,1H),6.55(s,1H),4.29–4.23(m,1H),3.95–3.90(m,4H),3.38(d,J=0.8Hz,2H),3.03–2.96(m,1H),2.93–2.90(m,2H),2.65–2.61(m,2H),2.47–2.38(m,1H),2.05–1.97(m,2H),1.89(s,3H),1.56–1.53(m,4H),1.08(d,J=6.0Hz,6H),1.05(d,J=6.8Hz,6H),1.01(t,J=7.2Hz,3H)。
步骤2:WX006的合成
0℃和氮气保护下,将WX006–1(200.00mg,245.28μmol)溶于N,N–二甲基甲酰胺(10mL)中,然后依次加入叔丁醇钾(30.27mg,269.81μmol)和丙烯酰胺(17.73mg,245.28μmol),反应混合物在0℃下搅拌反应1小时。反应完毕后,向反应液中加入水(40mL),用乙酸乙酯(40mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX006。MS–ESI m/z:829.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.88(s,1H),9.45(s,1H),8.46(d,J=8.4Hz,1H),8.24(s,1H),8.05(s,1H),7.85(s,1H),7.84–7.81(m,1H),7.62(t,J=7.8Hz,1H),7.50(s,1H),7.46(d,J=9.2Hz,1H),7.38–7.32(m,1H),7.12(d,J=2.4Hz,1H),6.92(dd,J=2.8,8.8Hz,1H),6.85(s,1H),4.60–4.54(m,1H),4.13–4.09(m,3H),3.47–3.40(m,1H),3.10–3.07(m,2H),2.77–2.52(m,6H),2.37–2.32(m,1H),2.23–2.15(m,2H),2.12(s,3H),1.71–1.64(m,4H),1.21(d,J=6.0Hz,6H),1.15(d,J=6.8Hz,6H)。
实施例7
Figure PCTCN2021081375-appb-000281
合成路线:
Figure PCTCN2021081375-appb-000282
室温下,将WX007–1(0.06g,149.67μmol)溶于N,N–二甲基甲酰胺(5mL)中,随后依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(85.36mg,224.51μmol)和N,N–二异丙基乙胺(77.38mg,598.68μmol,104.28μL),反应混合物在室温下搅拌30分钟,随后加入中间体BB–5(61.71mg,164.64μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,反应液加入水(30mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX007。MS–ESI m/z:721.0[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.60–8.55(m,1H),8.15–8.05(m,1H),7.97(s,1H),7.77–7.72(m,2H),7.56(br s,1H),7.37–7.32(m,2H),7.30–7.25(m,2H),7.25–7.20(m,1H),4.67–4.60(m,1H),4.55–4.50(m,1H),4.20–4.15(m,2H),3.70–3.60(m,1H),3.55–3.50(m,1H),3.36–3.30(m,1H),3.25–3.17(m,1H),2.91–2.81(m,1H),2.68–2.61(m,1H),2.59(s,3H),2.40(s,3H),2.35–2.30(m,1H),2.30–2.20(m,1H),1.59(d,J=5.6Hz,3H)。
实施例8
Figure PCTCN2021081375-appb-000283
合成路线:
Figure PCTCN2021081375-appb-000284
室温下,将WX007–1(0.05g,124.73μmol)溶于N,N–二甲基甲酰胺(5mL)中,随后依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(71.14mg,187.09μmol)和N,N–二异丙基乙胺(64.48mg,498.90μmol,86.90μL),反应混合物在室温下搅拌30分钟,随后加入中间体BB–9(68.97mg,137.20μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,反应液加入水(30mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX008。MS–ESI m/z:809.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.30(t,J=5.4Hz,1H),8.08(br d,J=9.2Hz,1H),7.96(s,1H),7.75–7.70(m,2H),7.51(d,J=2.4Hz,1H),7.49–7.46(m,2H),7.44–7.39(m,2H),7.23(dd,J=2.8,9.2Hz,1H),4.63(br dd,J=4.2,11.8Hz,1H),4.55–4.50(m,1H),4.23(t,J=4.6Hz,2H),3.83(t,J=4.4Hz,2H),3.67–3.63(m,2H),3.62–3.58(m,2H),3.49(t,J=5.8Hz,2H),3.36–3.16(m,4H),2.92–2.82(m,1H),2.69–2.61(m,1H),2.60(s,3H),2.46–2.40(m,1H),2.39(s,3H),2.30–2.21(m,1H),1.60(s,3H)。
实施例9
Figure PCTCN2021081375-appb-000285
合成路线:
Figure PCTCN2021081375-appb-000286
室温下,将WX007–1(0.05g,124.73μmol)溶于N,N–二甲基甲酰胺(5mL)中,随后依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(71.14mg,187.09μmol)和N,N–二异丙基乙胺(64.48mg,498.90μmol,86.90μL),反应混合物在室温下搅拌30分钟,随后加入中间体BB–8(58.99mg,137.20μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,反应液加入水(30mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX009。MS–ESI m/z:776.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),8.29(br d,J=8.8Hz,1H),8.22(br t,J=5.6Hz,1H),8.09(br s,1H),8.06(s,1H),7.91–7.83(m,2H),7.72–7.65(m,1H),7.53–7.48(m,2H),7.44–7.39(m,2H),4.69(br dd,J=4.4,12.0Hz,1H),4.55(t,J=7.2Hz,1H),3.39–3.32(m,2H),3.30–3.17(m,2H),3.14–3.07(m,2H),2.93–2.82(m,1H),2.69–2.64(m,1H),2.62(s,3H),2.46–2.40(m,1H),2.39(s,3H),2.31–2.22(m,1H),1.76–1.67(m,2H),1.58(d,J=3.6Hz,3H),1.49–1.30(m,6H)。
实施例10
Figure PCTCN2021081375-appb-000287
合成路线:
Figure PCTCN2021081375-appb-000288
室温下,将WX007–1(0.05g,124.73μmol)溶于N,N–二甲基甲酰胺(5mL)中,随后依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(71.14mg,187.09μmol)和N,N–二异丙基乙胺(64.48mg,498.92μmol,86.90μL),反应混合物在室温下搅拌30分钟,随后加入中间体BB–6(51.29mg,137.20μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,反应液加入水(30mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX010。MS–ESI m/z:720.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.95(s,1H),8.65(t,J=4.8Hz,1H),8.21(br d,J=8.4Hz,1H),8.02(s,1H),7.90(s,1H),7.84–7.79(m,2H),7.58(br d,J=9.2Hz,1H),7.49–7.39(m,4H),7.37–7.29(m,1H),4.69–4.59(m,2H),3.56–3.46(m,4H),3.37–3.30(m,2H),2.94–2.79(m,1H),2.67(s,3H),2.65–2.58(m,1H),2.42(s,3H),2.40–2.31(m,1H),2.31–2.21(m,1H),1.61(s,3H)。
实施例11
Figure PCTCN2021081375-appb-000289
合成路线:
Figure PCTCN2021081375-appb-000290
室温下,将WX007–1(0.06g,149.67μmol)溶于N,N–二甲基甲酰胺(5mL)中,随后依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(85.36mg,224.51μmol)和N,N–二异丙基乙胺(77.37mg,598.68μmol,104.28μL),反应混合物在室温下搅拌30分钟,随后加入中间体BB–10(62.96mg,164.64μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,反应液加入水(30mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX011。MS–ESI m/z:765.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.92(s,1H),8.36(br t,J=5.4Hz,1H),8.08(br d,J=9.2Hz,1H),7.96(s,1H),7.77–7.69(m,2H),7.52(d,J=2.4Hz,1H),7.50–7.46(m,2H),7.45–7.39(m,2H),7.24(dd,J=2.6,9.0Hz,1H),4.63(br dd,J=4.4,12.0Hz,1H),4.60–4.54(m,1H),4.25(t,J=4.6Hz,2H),3.85(t,J=4,4Hz,2H),3.57(t,J=5.8Hz,2H),3.42–3.17(m,4H),2.94–2.81(m,1H),2.64(s,3H),2.68–2.54(m,1H),2.40(s,3H),2.39–2.30(m,1H),2.30–2.21(m, 1H),1.60(s,3H)。
实施例12
Figure PCTCN2021081375-appb-000291
合成路线:
Figure PCTCN2021081375-appb-000292
室温下,将WX007–1(0.06g,149.67μmol)溶于N,N–二甲基甲酰胺(5mL)中,随后依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(85.36mg,224.51μmol)和N,N–二异丙基乙胺(77.37mg,598.68μmol,104.28μL),反应混合物在室温下搅拌30分钟,随后加入中间体BB–7(64.94mg,164.64μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,反应液加水(30mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX012。MS–ESI m/z:777.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.22(br t,J=5.6Hz,1H),8.07(br d,J=8.8Hz,1H),7.95(s,1H),7.76–7.69(m,2H),7.53–7.47(m,3H),7.46–7.40(m,2H),7.21(dd,J=2.4,9.2Hz,1H),4.63(br dd,J=4.6,11.8Hz,1H),4.60–4.53(m,1H),4.09(br t,J=6.4Hz,2H),3.32–3.05(m,4H),2.93–2.82(m,1H),2.68–2.57(m,1H),2.62(s,3H),2.46–2.40(m,1H),2.39(s,3H),2.30–2.20(m,1H),1.83–1.72(m,2H),1.60(s,3H),1.55–1.44(m,4H),1.44–1.36(m,2H)。
实施例13
Figure PCTCN2021081375-appb-000293
合成路线:
Figure PCTCN2021081375-appb-000294
步骤1:中间体WX013–2的合成
室温和氮气保护下,将中间体WX013–1(1g,6.58mmol,氢溴酸盐)溶于二氯甲烷(20mL)中,随后依次加入三乙胺(1.33g,13.16mmol,1.83mL)和二碳酸二叔丁酯(1.58g,7.24mmol,1.66mL),反应混合物在室温下搅拌反应2小时。反应完毕后,反应液加入二氯甲烷(20mL),用稀盐酸溶液(2M,50mL×3)洗涤。有机相用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1–2/1,体积比),得到中间体WX013–2。 1H NMR(400MHz,CDCl 3)δ:4.53(br s,1H),3.43(t,J=6.8Hz,2H),3.20–3.10(m,2H),1.95–1.86(m,2H),1.70–1.60(m,2H),1.45(s,9H)。
步骤2:中间体WX013–4的合成
室温下,将WX013–3(0.05g,111.72μmol)溶于N,N–二甲基甲酰胺(2mL)中,随后依次加入中间体WX013–2(28.17mg,111.72μmol)和碳酸氢钠(18.77mg,223.45μmol),反应混合物在室温下搅拌反应12小时。随后再加入碘化钾(9.27mg,55.86μmol),反应混合物加热至80℃并继续搅拌反应6小时。反应完毕后,冷却至室温,反应液加入水(30mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过薄层层析分离(展开剂:二氯甲烷/甲醇=10/1,体积比),得到中间体WX013–4。 1H NMR(400MHz,CDCl 3)δ:8.81(s,1H),8.16(br d,J=8.8Hz,1H),8.07(br s,1H),8.04(br d,J=2.4Hz,1H),7.34(dd,J=2.4,8.8Hz,1H),5.94–5.82(m,1H),5.20(br s,1H),3.24–3.20(m,4H),3.20–3.12(m,2H),2.70–2.60(m,4H),2.56(s,3H),2.48–2.41(m,2H),2.38(s,3H),2.14–2.00(m,2H),1.95–1.83(m,2H),1.75–1.65(m,4H),1.62– 1.55(m,4H),1.44(s,9H)。
步骤3:中间体WX013–5的盐酸盐的合成
室温下,将中间体WX013–4(0.055g,88.89μmol)溶于乙酸乙酯(5mL)中,随后加入盐酸的乙酸乙酯溶液(4M,3mL),反应混合物在室温下搅拌反应2小时。反应完毕后,反应液直接减压浓缩除去溶剂,得到中间体WX013–5的盐酸盐。MS–ESI m/z:519.1[M+H] +
步骤4:WX013的合成
室温下,将中间体BB–11(100.9μmol)溶于N,N–二甲基甲酰胺(5mL)中,加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(57.54mg,151.35μmol)和N,N–二异丙基乙胺(52.15mg,403.60μmol),反应混合物在室温下搅拌30分钟,随后加入WX013–5(88.89μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,反应液加入水(30mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX013。MS–ESI m/z:854.1[M+H] +1H NMR(400MHz,DMSO_d 6)δ:11.42(br s,1H),10.94(s,1H),9.01(s,1H),8.38(t,J=5.2Hz,1H),8.18–8.10(m,1H),8.07(s,1H),7.97(s,1H),7.93–7.87(m,1H),7.85–7.77(m,1H),7.77–7.71(m,2H),7.51(s,1H),7.36–7.30(m,1H),5.90–5.78(m,1H),4.71–4.66(m,1H),4.64(s,2H),3.80–3.72(m,1H),3.28–3.17(m,5H),3.12–2.99(m,4H),2.95–2.83(m,1H),2.70–2.56(m,2H),2.43(s,3H),2.33(s,3H),2.30–2.15(m,4H),2.00–1.87(m,2H),1.85–1.68(m,5H),1.63–1.56(m,2H),1.55–1.47(m,2H)。
实施例14
Figure PCTCN2021081375-appb-000295
合成路线:
Figure PCTCN2021081375-appb-000296
步骤1:中间体WX014–1的合成
室温下,将WX013–3(0.1g,223.45μmol)溶于N,N–二甲基甲酰胺(10mL)中,随后依次加入5–溴 戊酸甲酯(65.38mg,335.17μmol),碳酸氢钠(37.54mg,446.90μmol)和碘化钾(18.55mg,111.73μmol),反应混合物加热至80℃并搅拌反应12小时。反应完毕后,冷却至室温,反应液加入水(50mL)稀释,用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过薄层层析分离(展开剂:二氯甲烷/甲醇=10/1,体积比),得到中间体WX014–1。MS–ESI m/z:562.2[M+H] +1H NMR(400MHz,CDCl 3)δ:8.82(s,1H),8.23–8.11(m,2H),8.06(br d,J=2.8Hz,1H),7.33(dd,J=3.0,9.4Hz,1H),5.95–5.82(m,1H),3.69(s,3H),3.26–3.16(m,4H),2.68–2.58(m,4H),2.56(s,3H),2.47–2.40(m,2H),2.40–2.31(m,7H),2.15–2.00(m,2H),1.96–1.83(m,2H),1.75–1.66(m,4H),1.62–1.55(m,2H)。
步骤2:中间体WX014–2的合成
室温下,将中间体WX014–1(0.104g,183.90μmol)溶于甲醇(10mL)中,随后加入氢氧化钠(22.07mg,551.71μmol)的水(1mL)溶液,反应混合物在室温下搅拌反应12小时。然后再加入氢氧化钠(73.56mg,1.84mmol)的水(3mL)溶液至上述反应混合液中,反应混合物在室温下继续搅拌反应4小时。反应完毕后,反应液直接减压浓缩除去溶剂,所得残余物加入水(20mL),用2N的稀盐酸调节pH至5–6,减压浓缩除去溶剂,得到中间体WX014–2(粗品)。MS–ESI m/z:548.1[M+H] +
步骤3:WX014的合成
室温下,将WX014–2(183.90μmol,粗品)溶于N,N–二甲基甲酰胺(5mL)中,随后依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(104.89mg,275.85μmol)和N,N–二异丙基乙胺(95.07mg,735.60μmol),反应混合液在室温下搅拌30分钟,然后再加入中间体BB–6(68.75mg,183.91μmol,盐酸盐),反应混合液在室温下继续搅拌反应2小时。反应完毕后,反应液加入水(30mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX014。MS–ESI m/z:867.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:11.22(br s,1H),11.03(br s,1H),10.94(s,1H),9.02(s,1H),8.26(t,J=4.6Hz,1H),8.10–8.00(m,2H),7.93(s,1H),7.92–7.88(m,1H),7.81(d,J=9.2Hz,1H),7.72–7.62(m,2H),7.50–7.37(m,1H),7.34–7.26(m,1H),5.91–5.79(m,1H),4.62(br dd,J=4.0,12.0Hz,1H),3.58–3.52(m,2H),3.42–3.35(m,3H),3.35–3.29(m,2H),3.28–3.18(m,3H),3.16–3.06(m,4H),2.93–2.79(m,1H),2.70–2.57(m,1H),2.44(s,3H),2.42–2.37(m,1H),2.35(s,3H),2.29–2.15(m,5H),2.00–1.90(m,2H),1.86–1.67(m,4H),1.65–1.50(m,4H)。
实施例15
Figure PCTCN2021081375-appb-000297
合成路线:
Figure PCTCN2021081375-appb-000298
步骤1:中间体WX015–2的合成
室温下,将WX015–1(300.00mg,936.37μmol)溶于二甲基甲酰胺(15mL)中,随后依次加入N–叔丁氧羰基–6–溴己胺(314.84mg,1.12mmol)和碳酸氢钠(235.99mg,2.81mmol),反应混合物加热至40℃并搅拌反应12小时。反应完毕后,冷却至室温,减压浓缩除去溶剂,向所得残余物中加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:二氯甲烷/甲醇=1/0–20/1,体积比),得到中间体WX015–2。 1H NMR(400MHz,CDCl 3)δ:9.05(s,1H),8.51(s,1H),8.31(d,J=6.8Hz,1H),7.91(d,J=8.4Hz,1H),7.83(d,J=8.4Hz,2H),7.43(d,J=8.4Hz,2H),7.29–7.25(m,2H),6.02(s,1H),3.11–2.96(m,5H),2.56–2.41(m,2H),2.12–2.08(m,2H),2.05–2.01(m,2H),1.94–1.87(m,2H),1.60–1.57(m,2H),1.52–1.48(m,2H),1.44(s,9H),1.39–1.29(m,4H)。
步骤2:中间体WX015–3的盐酸盐合成
室温下,将中间体WX015–2(320.00mg,615.77μmol)溶于乙酸乙酯(15mL)中,随后加入盐酸的乙酸乙酯溶液溶液(4M,20mL),反应混合物在室温下搅拌反应12小时。反应完毕后,减压浓缩除去溶剂,得到中间体WX015–3的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:11.10(s,1H),9.34(s,1H),8.55(s,1H),8.15(d,J=8.0Hz,2H),8.10(s,3H),8.06(d,J=6.8Hz,1H),8.02(d,J=8.4Hz,1H),7.90(s,1H),7.53(d,J=8.0Hz,2H),7.29–7.25(m,1H),3.51–3.48(m,2H),3.41–3.35(m,1H),3.20–3.12(m,1H),3.04–3.02(m,2H),2.96–2.93(m,1H),2.75–2.67(m,2H),2.14–2.03(m,1H),1.98–1.90(m,2H),1.82–1.71(m,3H),1.58–1.50(m,2H),1.40–1.23(m,4H)。
步骤3:WX015的盐酸盐的合成
室温下,将中间体BB–11(35.65mg,100.90μmol)溶于二甲基甲酰胺(10mL)中,随后依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(57.55mg,151.35μmol)和N,N–二异丙基乙胺(65.20mg,504.50μmol),反应混合物在室温下搅拌反应半小时。然后再向反应液加入WX015–3(46.89mg,102.12μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,减压浓缩除去溶剂,向所得残余物中加入水(40mL),用乙酸乙酯(40mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX015的盐酸盐。MS–ESI m/z:755.1[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),10.00(s,1H),9.31(s,1H),8.54(s,1H),8.16– 8.11(m,4H),8.06(d,J=6.4Hz,1H),8.02(d,J=8.0Hz,1H),7.97(s,1H),7.89(s,1H),7.76–7.71(m,2H),7.54–7.52(m,2H),7.47(d,J=2.4Hz,1H),7.32–7.26(m,2H),4.65–4.60(m,3H),3.53–3.45(m,2H),3.21–3.09(m,3H),3.02–3.00(m,2H),2.90–2.84(m,2H),2.67–2.60(m,2H),2.38–2.35(m,2H),2.27–2.23(m,2H),1.98–1.91(m,2H),1.70–1.64(m,2H),1.50–1.44(m,2H),1.30–1.21(m,4H)。
实施例16
Figure PCTCN2021081375-appb-000299
合成路线:
Figure PCTCN2021081375-appb-000300
步骤1:中间体WX016–1的合成
室温下,将WX015–1(400.00mg,1.25mmol)溶于二甲基甲酰胺(15mL)中,随后依次加入N–叔丁氧羰基–3–氨基丙基溴(314.84mg,1.12mmol)和碳酸氢钠(314.66mg,3.75mmol),反应混合物加热至40℃并搅拌反应12小时。反应完毕后,冷却至室温,减压浓缩除去溶剂,向所得残余物中加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:二氯甲烷/甲醇=1/0–20/1,体积比),得到中间体WX016–1。 1H NMR(400MHz,CDCl 3)δ:9.06(s,1H),8.52(s,1H),8.31(d,J=6.8Hz,1H),7.91(d,J=8.0Hz,1H),7.83(d,J=8.0Hz,2H),7.43(d,J=8.4Hz,2H),7.29–7.25(m,1H),6.19(s,1H),5.50(s,1H),3.31–3.23(m,3H),3.10–3.03(m,2H),2.57–2.42(m,2H),2.08–2.05(m,2H),2.03–2.00(m,2H),1.88–1.81(m,2H),1.75–1.72(m,2H),1.46(s,9H)。
步骤2:中间体WX016–2的盐酸盐合成
室温下,将中间体WX016–1(450.00mg,942.22μmol)溶于乙酸乙酯(15mL)中,随后加入盐酸的乙酸乙酯溶液(4M,10mL),反应混合物在室温下搅拌反应12小时。反应完毕后,减压浓缩除去溶剂,得到中间体WX016–2的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:11.12(s,1H),9.36-9.30(m,1H),8.55(s,1H),8.25(br s,3H),8.16–8.13(m,2H),8.06–8.01(m,2H),7.89(s,1H),7.60–7.50(m,2H),7.30–7.24(m, 1H),3.51–3.48(m,2H),3.43–3.37(m,1H),3.29–3.15(m,3H),2.99–2.88(m,3H),2.19–2.04(m,3H),1.98–1.94(m,2H),1.80–1.73(m,1H)。
步骤3:WX016的盐酸盐的合成
室温下,将中间体BB–11(70.00mg,198.12μmol)溶于二甲基甲酰胺(10mL)溶液中,分别向其中加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(113.00mg,297.18μmol)和N,N–二异丙基乙胺(128.02mg,990.59μmol),反应混合物在室温下搅拌反应半小时。之后向反应液加入WX016–2(82.01mg,198.12μmol,盐酸盐),继续在室温下搅拌反应12小时。反应完毕后,减压浓缩除去溶剂,向所得残余物中加入水(40mL),用乙酸乙酯(30mL×3)萃取。合并有机相,依次用饱和食盐水(60mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX016的盐酸盐。MS–ESI m/z:713.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),10.31(s,1H),9.31(s,1H),8.55(s,1H),8.39(t,J=5.4Hz,1H),8.16–8.10(m,3H),8.06(d,J=7.2Hz,1H),8.02(d,J=8.4Hz,1H),7.97(s,1H),7.91(s,1H),7.78–7.71(m,2H),7.50(d,J=2.4Hz,1H),7.47–7.45(m,2H),7.32(dd,J=2.4,8.8Hz,1H),7.30–7.26(m,1H),4.67–4.65(m,3H),3.51–3.44(m,2H),3.27–3.23(m,2H),3.04–2.91(m,3H),2.88–2.78(m,2H),2.67–2.59(m,2H),2.44–2.33(m,1H),2.25–2.21(m,1H),2.01–1.87(m,5H),1.68–1.52(m,1H)。
实施例17
Figure PCTCN2021081375-appb-000301
合成路线:
Figure PCTCN2021081375-appb-000302
步骤1:中间体WX017–2的合成
室温下,将化合物WX017–1(500mg,1.56mmol)溶于N,N–二甲基甲酰胺(30mL)中,随后依次加入5–溴戊酸甲酯(457.56mg,2.35mmol)和碳酸钾(432.27mg,3.13mmol)。反应混合物加热至50℃ 并搅拌反应10小时。反应完毕后,反应液加入水(50mL),用二氯甲烷(10mL×3)萃取。合并有机相,用饱和食盐水洗涤(40mL),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:二氯甲烷/甲醇=1/0,体积比),得到中间体WX017–2。MS–ESI m/z:434.0[M+H] +1H NMR(400MHz,CDCl 3)δ:8.71(s,1H),8.70(br s,1H),8.08(s,1H),7.99(dd,J=2.4,6.6Hz,1H),7.78–7.66(m,1H),7.52(s,1H),7.22–7.13(m,1H),4.13(br t,J=6.8Hz,2H),4.02(s,3H),3.73(s,3H),2.49(t,J=7.0Hz,2H),1.99–1.90(m,2H),1.87–1.78(m,2H)。
步骤2:中间体WX017–3的合成
室温下,将中间体WX017–2(500mg,1.15mmol)溶于甲醇(15mL)与水(3mL)的混合溶剂中,随后加入氢氧化钠(230.47mg,5.76mmol),反应混合物在室温下搅拌反应3小时。反应完毕后,反应液用1M稀盐酸调节pH至3,直接减压浓缩除去溶剂,得到中间体WX017–3。MS–ESI m/z:420.0[M+H] +
步骤3:WX017的合成
室温下,将中间体BB–5(56mg,149.41μmol,盐酸盐)与中间体WX017–3(188.18mg,448.22μmol)溶于N,N–二甲基甲酰胺(15mL)中,随后依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(85.21mg,224.11μmol)与N,N–二异丙基乙胺(77.24mg,597.62μmol,104.10μL)。反应混合物在室温下搅拌反应10小时。反应完毕后,反应液加入水(50mL),用乙酸乙酯(40mL×2)萃取。合并有机相,用饱和食盐水洗涤(40mL),无水硫酸钠干燥,过滤,减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:0.05%NH 4HCO 3),得到目标化合物WX017。MS–ESI m/z:740.4[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),9.60(s,1H),8.50(s,1H),8.18(t,J=5.4Hz,1H),8.11(dd,J=2.8,6.8Hz,1H),8.07(br d,J=9.2Hz,1H),7.95(s,1H),7.82(s,1H),7.81–7.76(m,1H),7.74–7.70(m,2H),7.51(d,J=2.8Hz,1H),7.44(t,J=9.2Hz,1H),7.23–7.18(m,2H),4.61(br dd,J=4.6,12.2Hz,1H),4.18–4.08(m,4H),3.92(s,3H),3.55–3.47(m,2H),2.94–2.81(m,1H),2.70–2.57(m,1H),2.44–2.31(m,1H),2.29–2.20(m,3H),1.90–1.79(m,2H),1.78–1.67(m,2H)。
实施例18
Figure PCTCN2021081375-appb-000303
合成路线:
Figure PCTCN2021081375-appb-000304
步骤1:中间体WX018–2的合成
室温和氮气保护下,将化合物WX018–1(1g,8.12mmol)和溴乙酸叔丁酯(1.58g,8.12mmol)溶于N,N–二甲基甲酰胺(10mL)中,随后加入碳酸钾(4.49g,32.49mmol),反应混合物加热至70℃并搅拌反应12小时。反应完毕后,冷却至室温,将反应液过滤,滤液倒入半饱和食盐水(80mL)中,用乙酸乙酯(50mL×4)萃取。合并有机相,用饱和食盐水(10mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–5/1,体积比),得到中间体WX018–2。 1H NMR(400MHz,CDCl 3)δ:10.01(d,J=0.8Hz,1H),8.45(d,J=2.4Hz,1H),7.97(d,J=8.8Hz,1H),7.30–7.26(m,1H),4.66(s,2H),1.50(s,9H)。
步骤2:中间体WX018–3的合成
室温和氮气保护下,将中间体WX018–2(500mg,2.11mmol)和2–硝基–4–(三氟甲氧基)苯胺(468.11mg,2.11mmol)和二甲基亚砜(8.23mg,105.37μmol)溶于乙醇(5mL)中,随后加入连二亚硫酸钠(1.10g,6.32mmol)的水(1.5mL)溶液,反应混合物加热至85℃并搅拌反应12小时。反应完毕后,冷却至室温,反应液直接减压浓缩除去溶剂,向残余物中加入水(50mL),用氨水调节pH值至7,用乙酸乙酯(50mL×4)萃取。合并有机相,用饱和食盐水(10mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:二氯甲烷/甲醇=1/0,体积比),得到中间体WX018–3。
步骤3:中间体WX018–4的合成
室温和氮气保护下,将中间体WX018–3(450mg,1.10mmol)溶于三氟乙酸(7.70g,67.53mmol,5mL)中,反应混合物在室温下搅拌反应3小时。反应完毕后,将反应液倒入水(50mL)中,用1N的氢氧化钠水溶液调节pH值至7,用乙酸乙酯(50mL×5)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到中间体WX018–4。
步骤11:WX018的合成
室温和氮气保护下,将中间体WX018–4(100mg,283.08μmol)溶于N,N–二甲基甲酰胺(2mL)中,随后依次加入1–(3–二甲氨基丙基)–3–乙基碳二亚胺盐酸盐(81.40mg,424.63μmol)、1–羟基苯并三氮唑(57.38mg,424.63μmol)和二异丙基乙胺(91.47mg,707.71μmol),冷却至0℃,反应混合物在0℃下搅拌反应20分钟,再加入中间体BB–12(99.75mg,283.08μmol,盐酸盐),反应混合物升温至室温并继续搅拌反应12小时。反应完毕后,将反应液过滤,滤液经制备HPLC分离(流动相:乙腈/水; 酸性体系:0.04%HCl),所得产品再经制备HPLC分离(流动相:乙腈/水;酸性体系:0.04%HCl),得到目标化合物WX018。MS–ESI m/z:688.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.52(s,1H),8.36(dd,J=2.8,9.0Hz,1H),8.12(dd,J=9.2,15.2Hz,1H),7.96(d,J=9.6Hz,1H),7.79–7.68(m,3H),7.67–7.48(m,3H),7.39–7.19(m,2H),5.29–5.12(m,2H),4.65(dd,J=4.2,11.8Hz,1H),4.42–4.35(m,1H),4.23(t,J=5.4Hz,1H),3.89–3.72(m,2H),3.21–2.95(m,3H),2.92–2.81(m,1H),2.69–2.57(m,1H),2.43–2.32(m,1H),2.31–2.22(m,1H)。
实施例19
Figure PCTCN2021081375-appb-000305
合成路线:
Figure PCTCN2021081375-appb-000306
室温和氮气保护下,将中间体WX018–4(100mg,283.08μmol)溶于N,N–二甲基甲酰胺(2mL)中,随后依次加入1–(3–二甲氨基丙基)–3–乙基碳二亚胺盐酸盐(81.40mg,424.63μmol)、1–羟基苯并三氮唑(57.38mg,424.63μmol)和二异丙基乙胺(91.47mg,707.71μmol),冷却至0℃,反应混合物在0℃下搅拌30分钟,再加入中间体BB–10(108.25mg,283.08μmol,盐酸盐),反应混合物升温至室温并继续搅拌反应12小时。反应完毕后,将反应液过滤,滤液经制备HPLC分离(流动相:乙腈/水;酸性体系:0.04%HCl),得到目标化合物WX019。MS–ESI m/z:718.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.54(d,J=2.8Hz,1H),8.42(d,J=8.8Hz,1H),8.35(t,J=5.2Hz,1H),8.07(d,J=9.2Hz,1H),7.95(s,1H),7.77(d,J=8.8Hz,1H),7.72–7.69(m,2H),7.68–7.63(m,2H),7.48(d,J=2.8Hz,1H),7.37(d,J=8.8Hz,1H),7.23(dd,J=2.8,9.2Hz,1H),4.76(s,2H),4.63(dd,J=4.0,11.6Hz,1H),4.25–4.18(m,2H),3.86–3.79(m,2H),3.63–3.55(m,2H),3.42–3.34(m,2H),2.95–2.83(m,1H),2.69–2.58(m,1H),2.44–2.37(m,1H),2.30–2.20(m,1H)。
实施例20
Figure PCTCN2021081375-appb-000307
合成路线:
Figure PCTCN2021081375-appb-000308
0℃和氮气保护下,将WX020–1(50mg,112.89μmol)溶于N,N–二甲基甲酰胺(1mL)中,随后依次加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(85.85mg,225.78μmol),二异丙基乙胺(58.36mg,451.57μmol),反应混合物在0℃下搅拌反应30分钟,然后再加入中间体BB–9(52.26mg,112.89μmol,盐酸盐),反应混合物升温至15℃并继续搅拌反应16小时。反应完毕后,反应液过滤,滤液直接经制备HPLC分离(流动相:乙腈/水;酸性体系:0.04%HCl),得到目标化合物WX020。MS–ESI m/z:851.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.09(d,J=8.8Hz,1H),7.97(s,1H),7.88(t,J=5.6Hz,1H),7.77–7.70(m,2H),7.60(d,J=8.4Hz,2H),7.52(d,J=2.4Hz,1H),7.36–7.27(m,3H),7.24(dd,J=2.4,9.2Hz,1H),7.20–7.08(m,2H),4.64(dd,J=4.2,11.8Hz,1H),4.26–4.18(m,2H),3.84–3.77(m,2H),3.66–3.60(m,2H),3.59–3.51(m,2H),3.42–3.40(m,2H),3.25–3.15(m,2H),2.93–2.82(m,1H),2.70–2.58(m,1H),2.45–2.32(m,3H),2.30–2.12(m,3H),2.11–2.01(m,2H),1.68–1.52(m,4H),1.49–1.40(m,1H),1.36–1.21(m,2H)。
实施例21
Figure PCTCN2021081375-appb-000309
合成路线:
Figure PCTCN2021081375-appb-000310
0℃和氮气保护下,将WX020–1(100mg,225.78μmol)溶于N,N–二甲基甲酰胺(2mL)中,随后依次加入1–(3–二甲氨基丙基)–3–乙基碳二亚胺盐酸盐(64.92mg,338.67μmol),1–羟基苯并三氮唑(45.76mg,338.67μmol)和N,N–二异丙基乙胺(102.13mg,790.24μmol),反应混合物在0℃下搅拌反应30分钟,然后再加入中间体BB–10(94.57mg,225.78μmol,盐酸盐),反应混合物升温至15℃并继续搅拌反应16小时。反应完毕后,反应液过滤,滤液直接经制备HPLC分离(流动相:乙腈/水;酸性体系:0.04%HCl),得到目标化合物WX021。MS–ESI m/z:807.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),8.08(d,J=8.8Hz,1H),7.96(s,1H),7.92(t,J=5.2Hz,1H),7.76–7.71(m,2H),7.59(d,J=8.8Hz,2H),7.50(d,J=2.8Hz,1H),7.37–7.25(m,3H),7.22(dd,J=2.4,9.2Hz,1H),7.19–7.07(m,2H),4.63(dd,J=4.2,11.8Hz,1H),4.30–4.13(m,2H),3.87–3.71(m,2H),3.57–3.43(m,2H),3.28–3.20(m,2H),2.93–2.80(m,1H),2.69–2.57(m,1H),2.43–2.31(m,3H),2.29–2.12(m,3H),2.11–1.98(m,2H),1.67–1.50(m,4H),1.50–1.39(m,1H),1.38–1.20(m,2H)。
实施例22
Figure PCTCN2021081375-appb-000311
合成路线:
Figure PCTCN2021081375-appb-000312
步骤1:中间体WX022–2的合成
室温和氮气保护下,将化合物WX022–1(2.13g,5.96mmol)加入到甲苯(30mL)中,随后加入间氯过氧苯甲酸(1.33g,6.56mmol,纯度:85%),反应液在室温下搅拌反应1小时,随后将N,N–二异丙基乙胺(1.54g,11.92mmol,2.08mL)和1–叔丁氧羰基–4–(4–氨基苯基)哌嗪(1.98g,7.15mmol)依次加入到上述反应液中,反应混合物在室温下继续搅拌14小时。反应完毕后,向反应液中加入饱和碳酸氢钠水溶液(20mL)和饱和亚硫酸钠溶液(30mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱分离(洗脱剂:石油醚/乙酸乙酯=3/1–10/1,体积比),得到中间体WX022–2。MS–ESI m/z:587.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.16(br s,1H),8.83(s,1H),8.05(br t,J=7.4Hz,1H),7.75(br d,J=8.0Hz,1H),7.62–7.60(m,3H),6.95(br d,J=9.2Hz,2H),5.71–5.61(m,1H),5.32(s,1H),4.99(br d,J=10.4Hz,1H),4.83(br d,J=16.8Hz,1H),4.68(br d,J=5.6Hz,2H),3.47–3.46(m,4H),3.06–3.05(m,4H),1.46(s,6H),1.42(s,9H)。
步骤2:中间体WX022–3的三氟乙酸盐的合成
室温和氮气保护下,将三氟乙酸(5.02g,44.01mmol,3.26mL)滴加到中间体WX022–2(2.59g,4.40mmol)的二氯甲烷溶液(30mL)中,反应混合物在室温下搅拌反应14小时。反应完毕后,反应液直接减压浓缩除去溶剂,得到中间体WX022–3的三氟乙酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.24(br s,1H),9.39(br s,2H),8.85(s,1H),8.04(br t,J=8.0Hz,1H),7.74(br d,J=8.0Hz,1H),7.68–7.57(m,3H),7.04(br d,J=8.8Hz,2H),5.71–5.59(m,1H),4.99(br d,J=10.4Hz,1H),4.82(br d,J=17.2Hz,1H),4.75–4.73(m,2H),3.38–3.37(m,4H),3.30–3.18(m,4H),1.46(s,6H)。
步骤3:中间体WX022–4的合成
室温和氮气保护下,将中间体WX022–3(280.06mg,466.31μmol,三氟乙酸盐)和中间体BB–13(247mg,466.31μmol)加入到N,N–二甲基甲酰胺(5mL)中,随后依次加入碳酸钾(322.24mg,2.33mmol)和碘化钾(77.41mg,466.31μmol),反应混合物加热至80℃并搅拌反应24小时。反应完毕后,冷却到室温,反应液加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱分离(洗脱剂:二氯甲烷/甲醇=1/0–50/1,体积比),得到中间体WX022–4(纯度:83.58%)。MS–ESI m/z:896.4[M+H] +1H NMR(400MHz,CDCl 3)δ:8.86–8.82(m,1H),8.20(d,J=8.8Hz,1H),8.15–8.07(m,1H),7.85(br t,J=7.6Hz,1H),7.79–7.74(m,3H),7.70–7.65(m,1H),7.59–7.54(m,1H),7.48–7.41(m,3H),7.38–7.31(m,2H),6.90(br d,J=9.2Hz,2H),5.05(br d,J=10.0Hz,1H),4.95(br d,J=16.4Hz,1H),4.75(br d,J=6.0Hz,2H),4.27–4.20(m,2H),4.07(s,2H),3.97–3.86(m,2H),3.83(br t,J=7.4Hz,2H),3.21–3.10(m,4H),2.65–2.50(m,4H),1.91–1.81(m,2H),1.57(br s,6H),1.45(br s,9H),1.29–1.27(m,3H)。
步骤4:中间体WX022–5的合成
0℃和氮气保护下,将中间体WX022–4(152mg,141.78μmol,纯度:83.58%)加入到N,N–二甲基甲酰胺(10mL)中,随后加入叔丁醇钾(15.91mg,141.78μmol)和丙烯酰胺(10.08mg,141.78μmol),反应混合物在0℃下搅拌反应2小时。反应完毕后,升温至室温,反应液加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到中间体WX022–5(纯度:63.53%)。MS–ESI m/z:921.3[M+H] +
步骤5:化合物WX022的合成
室温和氮气保护下,将中间体WX022–5(124mg,85.53μmol,纯度:63.53%)加入到盐酸的乙酸乙酯溶液(4M,15mL)中,反应混合物在室温下搅拌反应3小时。反应完毕后,反应液减压除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX022。MS–ESI m/z:821.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),10.21(br s,1H),8.84(s,1H),8.14–8.00(m,2H),7.97(s,1H),7.79–7.69(m,3H),7.67–7.59(m,3H),7.57–7.49(m,1H),7.43–7.34(m,1H),7.00(br d,J=8.4Hz,2H),5.72–5.60(m,1H),4.99(br d,J=10.4Hz,1H),4.82(br d,J=16.8Hz,1H),4.68(br d,J=4.0Hz,2H),4.66–4.59(m,1H),3.81–3.68(m,4H),3.43–3.36(m,2H),3.35–3.28(m,2H),3.27–3.05(m,4H),2.93–2.81(m,1H),2.68–2.59(m,1H),2.44–2.34(m,2H),2.25–2.15(m,2H),1.46(s,6H)。
实施例23
Figure PCTCN2021081375-appb-000313
合成路线:
Figure PCTCN2021081375-appb-000314
室温和氮气保护下,将中间体BB–11(101.99mg,169.82μmol)和中间体WX022–3(60mg,169.82μmol,三氟乙酸盐)加入到N,N–二甲基甲酰胺(5mL)中,随后依次加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(64.57mg,169.82μmol)和N,N–二异丙基乙胺(65.84mg,509.45μmol,88.74μL),反应混合物在室温下搅拌反应14小时。反应完毕后,反应液中加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX023。MS–ESI m/z:822.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),10.19(br s,1H),8.85(s,1H),8.16–8.01(m,2H),7.97(s,1H),7.78–7.73(m,3H),7.68–7.59(m,3H),7.52(d,J=2.4Hz,1H),7.29(dd,J=2.6,9.4Hz,1H),7.07(br d,J=8.0Hz,2H),5.72–5.61(m,1H),5.05–4.97(m,3H),4.82(dd,J=1.4,17.0Hz,1H),4.68(br d,J=5.6Hz,2H),4.66–4.61(m,1H),3.73–3.69(m,4H),3.30–3.16(m,4H),2.94–2.82(m,1H),2.69–2.63(m,1H),2.43–2.39(m,1H),2.22–2.30(m,1H),1.46(s,6H)。
实施例24
Figure PCTCN2021081375-appb-000315
合成路线:
Figure PCTCN2021081375-appb-000316
步骤1:中间体WX024–1的合成
室温和氮气保护下,将化合物WX022–3(600mg,999.02μmol,三氟乙酸盐)和N–叔丁氧羰基–3–氨基丙基溴(261.68mg,1.10mmol)加入到N,N–二甲基甲酰胺(10mL)中,随后加入碳酸钾(276.15mg,2.00mmol),反应混合物加热至60℃并搅拌反应8小时。反应完毕后,冷却到室温,反应液加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱分离(洗脱剂:石油醚/乙酸乙酯=1/0–100/1,体积比),得到中间体WX024–1。MS–ESI m/z:644.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.14(br s,1H),8.82(s,1H),8.08–8.00(m,1H),7.75(br d,J=7.6Hz,1H),7.64–7.54(m,3H),6.92(br d,J=8.8Hz,2H),6.85–6.77(m,1H),5.73–5.60(m,1H),5.32(s,1H),4.99(br d,J=10.0Hz,1H),4.82(br d,J=17.6Hz,1H),4.71–4.64(m,2H),3.32–3.26(m,4H),3.15–3.04(m,4H),2.99–2.94(m,2H),2.36–2.28(m,2H),1.60–1.54(m,2H),1.46(s,6H),1.38(s,9H)。
步骤2:中间体WX024–2的盐酸盐合成
室温和氮气保护下,将中间体WX024–1(500.47μmol)加入到盐酸的乙酸乙酯溶液(4M,50mL)中,反应混合物在室温下搅拌反应14小时。反应完毕后,反应液减压除去溶剂,得到中间体WX024–2的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:11.27(br s,1H),10.24(br s,1H),8.85(s,1H),8.14(br s,3H),8.04(br t,J=8.0Hz,1H),7.75(br d,J=8.4Hz,1H),7.66–7.60(m,2H),7.01(br d,J=9.2Hz,2H),5.72–5.60(m,1H),4.99(br d,J=10.0Hz,1H),4.82(br d,J=17.2Hz,1H),4.73–4.64(m,2H),3.82–3.73(m,2H),3.60–3.49(m,2H),3.24–3.17(m,4H),3.17–3.10(m,2H),2.97–2.90(m,2H),2.13–2.06(m,2H),1.59(s,6H)。
步骤3:化合物WX024的盐酸盐合成
室温和氮气保护下,将中间体WX024–2(98.51mg,169.82μmol,盐酸盐)和中间体BB–11(60mg,169.82μmol)加入到N,N–二甲基甲酰胺(5mL)中,随后依次加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(64.57mg,169.82μmol)和N,N–二异丙基乙胺(65.84mg,509.45μmol,88.74μL),反应混合物在室温下搅拌反应14小时。反应完毕后,反应液中加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX024的盐酸盐。MS–ESI m/z:879.4[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),10.38(br s,1H),10.21(br s,1H),8.84(s,1H),8.41(br t,J=5.2Hz,1H),8.15(br d,J=9.6Hz,1H),8.04(br t,J=7.4Hz,1H),7.97(s,1H),7.80–7.72(m,3H),7.67–7.58(m,3H),7.53(br d,J=2.0Hz,1H),7.35(br d,J=8.4Hz,1H),6.97(br d,J=8.8Hz,2H),5.73–5.59(m,1H),4.99(br d,J=10.0Hz,1H),4.82(br d,J=17.6Hz,1H),4.72–4.62(m,5H),3.71(br d,J=8.0Hz,2H),3.36–3.21(m,2H),3.15–2.93(m,8H),2.93–2.81(m,1H),2.70–2.58(m,1H),2.43–2.37(m,1H),2.29–2.22(m,1H),1.98–1.86(m,2H),1.46(s,6H)。
实施例25
Figure PCTCN2021081375-appb-000317
合成路线:
Figure PCTCN2021081375-appb-000318
室温和氮气保护下,将中间体WX022–3(81.97mg,136.48μmol,三氟乙酸盐)和中间体BB–14(50mg,136.48μmol)加入到N,N–二甲基甲酰胺(5mL)中,随后依次加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(51.89mg,136.48μmol)和N,N–二异丙基乙胺(52.92mg,409.43μmol,71.31μL),反应混合物在室温下搅拌反应14小时。反应完毕后,反应液中加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX025。MS–ESI m/z:835.4[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.96(s,1H),10.34(br s,1H),8.89(s,1H),8.23(br d,J=8.4Hz,1H),8.08–8.01(m,2H),7.93(br s,1H),7.88–7.81(m,2H),7.78–7.71(m,3H),7.65–7.56(m,2H),7.46–7.33(m,2H),5.72–5.61(m,1H),4.99(dd,J=1.0,10.2Hz,1H),4.82(br dd,J=1.0,17.0Hz,1H),4.72–4.63(m,3H),3.92–3.74(m,4H),3.61(br t,J=6.8Hz,2H),3.44–3.28(m,4H),2.94(br t,J=6.4Hz,2H),2.91–2.81(m,1H),2.68–2.59(m,1H),2.45–2.37(m,1H),2.31–2.22(m,1H),1.46(s,6H)。
实施例26
Figure PCTCN2021081375-appb-000319
合成路线:
Figure PCTCN2021081375-appb-000320
室温和氮气保护下,将中间体WX024–2(79.18mg,136.48μmol,盐酸盐)和中间体BB–14(50mg,136.48μmol)加入到N,N–二甲基甲酰胺(5mL)中,随后依次加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(51.89mg,136.48μmol)和N,N–二异丙基乙胺(17.64mg,136.48μmol,23.77μL),反应混合物在室温下搅拌反应14小时。反应完毕后,反应液中加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX026。MS–ESI m/z:892.4[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.96(s,1H),10.89(br s,1H),10.23(br s,1H),8.85(s,1H),8.32(br t,J=5.6Hz,1H),8.27–8.21(m,1H),8.08–8.01(m,2H),7.94(br s,1H),7.88–7.82(m,2H),7.75(br d,J=8.0Hz,1H),7.67–7.57(m,4H),6.99(br d,J=8.8Hz,2H),5.72–5.60(m,1H),4.99(dd,J=1.0,10.2Hz,1H),4.82(br dd,J=1.2,17.2Hz,1H),4.73–4.64(m,3H),3.80–3.68(m,2H),3.57(br t,J=7.2Hz,2H),3.54–3.46(m,2H),3.20–3.06(m,8H),2.92–2.83(m,1H),2.69–2.60(m,3H),2.45–2.37(m,1H),2.31–2.21(m,1H),1.93–1.82(m,2H),1.46(s,6H)。
实施例27
Figure PCTCN2021081375-appb-000321
合成路线:
Figure PCTCN2021081375-appb-000322
步骤1:中间体WX027–2的合成
室温下,将WXF027–1(2.00g,8.96mmol)和1–溴–3–氟–4–碘苯(3.24g,10.75mmol)溶于甲苯(20mL)和二氧六环(20mL)的混合溶剂中,随后依次加入4,5–双(二苯基膦)–9,9–二甲基氧杂蒽(1.04g,1.79mmol)、三(二亚苄基丙酮)二钯(820.52mg,896.04μmol)和碳酸铯(8.76g,26.88mmol),反应混合物加热至100℃并搅拌反应12小时。反应完毕后,冷却至室温,向所得反应液中加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,依次用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:二氯甲烷/甲醇=1/0–20/1,体积比),得到中间体WX027–2。 1H NMR(400MHz,DMSO_d 6)δ:8.44(s,1H),8.09–8.00(m,2H),7.46(dd,J=2.4,11.2Hz,1H),7.14(d,J=8.8Hz,1H),6.50–6.41(m,1H),3.92(s,3H),3.81(s,3H)。
步骤2:中间体WX027–3的合成
室温下,将中间体WX027–2(1.10g,2.78mmol)溶于甲醇(30mL)中,随后加入氢氧化钠(444.20mg,11.11mmol),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液用2M稀盐酸水溶液调节pH至5–6,过滤,收集滤饼,用水(15mL)洗涤,得到中间体WX027–3。 1H NMR(400MHz,DMSO_d 6)δ:8.44(s,1H),8.39(s,1H),8.08(s,1H),7.47(dd,J=1.8,11.0Hz,1H),7.17(d,J=8.0Hz,1H),6.57–6.52(m,1H),3.92(s,3H)。
步骤3:WX027的合成
室温下,将中间体WX027–3(50.00mg,130.84μmol)溶于二甲基甲酰胺(10mL)中,随后依次加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(74.62mg,196.25μmol)和N,N–二异丙基乙胺(84.55mg,654.18μmol),反应混合物在室温下搅拌反应半小时。然后再加入中间体BB–9(60.59mg,120.53μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,向反应液中加入水(40mL),用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(80mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX027。MS–ESI m/z:790.1[M+H] +,792.2[M+2+H] +1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.79(t,J=5.4Hz,1H),8.71(s,1H),8.44(s,1H),8.06(d,J=8.8Hz,1H),7.95(s, 1H),7.92(s,1H),7.77–7.67(m,2H),7.50–7.41(m,2H),7.19(dd,J=2.2,9.0Hz,1H),7.12(d,J=8.8Hz,1H),6.52–6.47(m,1H),4.62(dd,J=4.0,11.6Hz,1H),4.25–4.10(m,2H),3.92(s,3H),3.77–3.76(m,2H),3.51–3.47(m,5H),3.42–3.39(m,3H),2.91–2.83(m,1H),2.64–2.59(m,1H),2.44–2.35(m,1H),2.27–2.20(m,1H)。
实施例28
Figure PCTCN2021081375-appb-000323
合成路线:
Figure PCTCN2021081375-appb-000324
室温下,将中间体WX027–3(50.00mg,130.84μmol)溶于二甲基甲酰胺(10mL)中,随后依次加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(74.62mg,196.25μmol)和N,N–二异丙基乙胺(84.55mg,654.18μmol),反应混合物在室温下搅拌反应半小时,然后再加入中间体BB–8(56.25mg,130.84μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,向反应液中加入水(40mL),用乙酸乙酯(20mL×3)萃取。合并有机相,依次用饱和食盐水(80mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX028。MS–ESI m/z:757.1[M+H] +,759.1[M+2+H] +1H NMR(400MHz,DMSO_d 6)δ:10.96(s,1H),8.79–8.73(m,2H),8.29(d,J=7.6Hz,1H),8.13(s,1H),8.06(s,1H),7.96(s,1H),7.91–7.85(m,2H),7.71(d,J=8.8Hz,1H),7.44(dd,J=2.0,10.8Hz,1H),7.12(d,J=8.4Hz,1H),6.53–6.47(m,1H),4.69(dd,J=3.8,12.2Hz,1H),3.95(s,3H),3.35–3.31(m,2H),3.24–3.19(m,2H),2.92–2.83(m,1H),2.66–2.62(m,1H),2.45–2.39(m,1H),2.33–2.26(m,1H),1.76–1.67(m,2H),1.48–1.44(m,2H),1.36–1.33(m,2H),1.30–1.28(m,2H)。
实施例29
Figure PCTCN2021081375-appb-000325
合成路线:
Figure PCTCN2021081375-appb-000326
室温下,将中间体WX027–3(50.00mg,130.84μmol)溶于二甲基甲酰胺(10mL)中,随后依次加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(74.62mg,196.25μmol)和N,N–二异丙基乙胺(84.55mg,654.18μmol),反应混合物在室温下搅拌反应半小时,然后再加入中间体BB–6(48.91mg,130.84μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,向反应液中加入水(40mL),用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(80mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX029。MS–ESI m/z:701.3[M+H] +,703.3[M+2+H] +1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),9.05(t,J=5.2Hz,1H),8.75(s,1H),8.14–8.02(m,2H),7.96(s,1H),7.74–7.67(m,2H),7.55(s,1H),7.45(dd,J=2.4,11.2Hz,1H),7.36(d,J=9.6Hz,1H),7.16(d,J=10.0Hz,1H),6.59–6.53(m,1H),4.62(dd,J=4.2,11.8Hz,1H),3.92(s,3H),3.61–3.52(m,2H),3.44–3.43(m,2H),2.90–2.82(m,1H),2.67–2.59(m,1H),2.44–2.36(m,1H),2.30–2.19(m,1H)。
实施例30
Figure PCTCN2021081375-appb-000327
合成路线:
Figure PCTCN2021081375-appb-000328
室温下,将中间体WX027–3(50.00mg,130.84μmol)溶于二甲基甲酰胺(10mL)溶液中,随后依次加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(74.62mg,196.25μmol)和N,N–二异丙基乙胺(84.55mg,654.18μmol),反应混合物在室温下搅拌反应半小时,然后加入中间体BB–10(48.91mg,130.84μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,向反应液中加入水(40mL),用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(80mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX030。MS–ESI m/z:746.2[M+H] +,748.2[M+2+H] +1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.83(t,J=5.6Hz,1H),8.75(s,1H),8.05(d,J=8.8Hz,1H),7.96(s,1H),7.93(s,1H),7.75–7.68(m,2H),7.50–7.42(m,2H),7.19(dd,J=2.6,9.4Hz,1H),7.14(dd,J=1.2,8.8Hz,1H),6.55–6.49(m,1H),4.64–4.60(m,1H),4.23–4.13(m,2H),3.93(s,3H),3.83–3.73(m,2H),3.59(t,J=5.8Hz,2H),3.47–3.43(m,2H),2.92–2.83(m,1H),2.67–2.59(m,1H),2.45–2.34(m,1H),2.28–2.25(m,1H)。
实施例31
Figure PCTCN2021081375-appb-000329
合成路线:
Figure PCTCN2021081375-appb-000330
室温下,将中间体WX027–3(50.00mg,130.84μmol)溶于二甲基甲酰胺(10mL)中,随后依次加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(74.62mg,196.25μmol)和N,N–二异丙基乙胺(84.55mg,654.18μmol),反应混合物在室温下搅拌反应半小时,然后加入中间体BB–7(51.61mg,130.84μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,向反应液中加入水(40mL),用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(80mL)洗涤,无水硫酸钠干燥, 过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX031。MS–ESI m/z:758.2[M+H] +,760.2[M+2+H] +1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),8.68–8.65(m,2H),8.06(d,J=8.8Hz,1H),7.96(s,1H),7.88(s,1H),7.77–7.69(m,2H),7.48–7.43(m,2H),7.20(dd,J=2.8,9.2Hz,1H),7.14(d,J=8.4Hz,1H),6.51–6.45(m,1H),4.63(dd,J=4.4,12.0Hz,1H),4.07(t,J=6.4Hz,2H),3.93(s,3H),3.27–3.22(m,2H),2.92–2.83(m,1H),2.67–2.59(m,1H),2.45–2.33(m,1H),2.28–2.25(m,1H).1.79–1.67(m,2H),1.55–1.38(m,4H),1.36–1.28(m,2H)。
实施例32
Figure PCTCN2021081375-appb-000331
合成路线:
Figure PCTCN2021081375-appb-000332
步骤1:中间体WX032–2的合成
室温下,将WX032–1(4g,10.15mmol)和无水哌嗪(1.31g,15.22mmol)溶于无水二氧六环(40mL)中,随后加入二异丙基乙基胺(3.53mL,20.29mmol),反应混合物加热至100℃并搅拌反应8小时。反应完毕后,冷却至室温,过滤,所得滤饼加入乙酸乙酯(50mL),室温下搅拌1小时,过滤,减压除去溶剂,得到中间体WX032–2。 1H NMR(400MHz,DMSO_d 6)δ:9.89(s,1H),8.23(s,1H),7.40(br d,J=6.8Hz,1H),7.33–7.22(m,2H),6.05(s,1H),3.53–3.47(m,4H),2.85–2.79(m,4H),2.41(s,3H),2.24(s,3H)。
步骤2:中间体WX032–3的合成
室温下,将中间体WX032–2(500mg,1.13mmol)和6–溴己酸乙酯(299.14μL,1.69mmol)溶于N,N– 二甲基甲酰胺(10mL)中,随后依次加入碳酸氢钠(189.23mg,2.25mmol)和碘化钾(93.48mg,563.12μmol),反应混合物加热至80℃并搅拌反应8小时。反应完毕后,冷却至室温,反应液加入饱和食盐水(120mL),用乙酸乙酯(40mL×4)萃取。合并有机相,用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩蒸除溶剂。所得残余物加入石油醚(30mL)和乙酸乙酯(5mL),室温下搅拌30分钟,过滤,减压除去溶剂,得到中间体WX032–3。
步骤3:中间体WX032–4的合成
室温下,将WX032–3(440mg,751.93μmol)溶于甲醇(10mL)中,随后依次加入氢氧化钠(150.38mg,3.76mmol)和水(10mL,反应混合物加热至80℃并搅拌反应2小时。反应完毕后,冷却至室温,反应液加入饱和食盐水(40mL),用三水合柠檬酸固体调节pH值至5,用乙酸乙酯(20mL×4)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到中间体WX032–4。
步骤4:WX032的合成
室温下,将WX032–4(60mg,107.51μmol)和二异丙基乙基胺(74.90μL,430.04μmol)溶于N,N–二甲基甲酰胺(2mL)中,随后加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(44.97mg,118.26μmol),反应混合物在室温下搅拌反应1小时,然后再加入中间体BB–4(40.77mg,118.26μmol,盐酸盐),反应混合物在室温下继续搅拌2小时。反应完毕后,反应液用甲醇稀释至6mL,过滤除去不溶物,滤液直接经制备HPLC分离(流动相:乙腈/水;中性体系:0.05%NH 4HCO 3),得到目标化合物WX032。MS–ESI m/z:848.4[M+H] +1H NMR(400MHz,DMSO_d 6)δ:11.47(br s,1H),10.95(s,1H),9.88(br s,1H),8.42(t,J=5.6Hz,1H),8.22(s,1H),8.13(br d,J=8.0Hz,1H),7.99(s,1H),7.87(s,1H),7.83–7.70(m,2H),7.48(br d,J=8.0Hz,1H),7.40(br d,J=7.2Hz,1H),7.34–7.20(m,2H),6.04(br s,1H),4.66(br dd,J=3.8,11.8Hz,1H),4.44(br d,J=5.6Hz,2H),3.60–3.40(m,2H),2.96–2.79(m,2H),2.69–2.55(m,3H),2.43–2.27(m,10H),2.24(s,3H),2.19(br t,J=7.0Hz,2H),1.63–1.54(m,2H),1.52–1.41(m,2H),1.35–1.25(m,2H)。
实施例33
Figure PCTCN2021081375-appb-000333
合成路线:
Figure PCTCN2021081375-appb-000334
室温下,将中间体WX032–4(70mg,125.43μmol)和二异丙基乙基胺(87.39μL,501.71μmol)溶于N,N–二甲基甲酰胺(2mL)中,随后加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(52.46mg,137.97μmol),反应混合物在室温下搅拌反应1小时,然后再加入中间体BB–8(59.32mg,137.97μmol,盐酸盐),反应混合物在室温下继续搅拌2小时。反应完毕后,反应液过滤除去不溶物,滤液用甲醇稀释至5mL,滤液直接经制备HPLC分离(流动相:乙腈/水;中性体系:0.05%NH 4HCO 3),得到目标化合物WX033。MS–ESI m/z:933.5[M+H] +1H NMR(400MHz,DMSO_d 6)δ:11.47(br s,1H),10.93(s,1H),9.88(s,1H),8.22(s,1H),7.90–7.80(m,2H),7.75(br t,J=5.8Hz,1H),7.60–7.48(m,2H),7.40(br d,J=7.6Hz,1H),7.32–7.21(m,2H),7.02(dd,J=2.0,9.2Hz,1H),6.88(d,J=2.0Hz,1H),6.04(s,1H),5.75(br t,J=5.0Hz,1H),4.56(br dd,J=4.2,11.8Hz,1H),3.60–3.43(m,3H),3.14–2.97(m,4H),2.91–2.79(m,1H),2.70–2.56(m,2H),2.45–2.36(m,6H),2.35–2.30(m,2H),2.30–2.18(m,6H),2.05(br t,J=7.4Hz,2H),1.67–1.57(m,2H),1.55–1.47(m,2H),1.46–1.36(m,6H),1.35–1.29(m,2H),1.27–1.18(m,2H)。
实施例34
Figure PCTCN2021081375-appb-000335
合成路线:
Figure PCTCN2021081375-appb-000336
室温下,将中间体WX032–4(70mg,125.43μmol)和二异丙基乙基胺(87.39μL,501.71μmol)溶于N,N–二甲基甲酰胺(2mL)中,随后加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(52.46mg,137.97μmol),反应混合物在室温下搅拌反应1小时,然后再加入中间体BB–9(63.87mg,137.97μmol,盐酸盐),反应混合物在室温下继续搅拌2小时。反应完毕后,反应液过滤除去不溶物,滤液用甲醇稀释至5mL,滤液直接经制备HPLC分离(流动相:乙腈/水;中性体系:0.05%NH 4HCO 3), 得到目标化合物WX034。MS–ESI m/z:966.4[M+H] +1H NMR(400MHz,DMSO_d 6)δ:11.48(br s,1H),10.94(s,1H),9.89(br s,1H),8.22(s,1H),8.09(br d,J=9.2Hz,1H),7.96(s,1H),7.84(t,J=5.0Hz,1H),7.77–7.68(m,2H),7.51(br d,J=2.0Hz,1H),7.40(br d,J=7.2Hz,1H),7.33–7.19(m,3H),6.04(br s,1H),4.63(dd,J=4.0,12.0Hz,1H),4.28–4.15(m,2H),3.87–3.75(m,2H),3.66–3.59(m,2H),3.58–3.52(m,2H),3.52–3.45(m,3H),3.45–3.39(m,4H),3.23–3.12(m,2H),2.96–2.81(m,1H),2.70–2.57(m,2H),2.43–2.35(m,6H),2.35–2.19(m,6H),2.06(br t,J=7.2Hz,2H),1.59–1.34(m,4H),1.30–1.13(m,2H)。
实施例35
Figure PCTCN2021081375-appb-000337
合成路线:
Figure PCTCN2021081375-appb-000338
室温下,将中间体WX032–4(70mg,125.43μmol)和二异丙基乙基胺(87.39μL,501.71μmol)溶于N,N–二甲基甲酰胺(2mL)中,随后加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(52.46mg,137.97μmol),反应混合物在室温下搅拌反应1小时,然后再加入中间体BB–6(51.58mg,137.97μmol,盐酸盐),反应混合物在室温下继续搅拌2小时。反应完毕后,反应液过滤除去不溶物,滤液用甲醇稀释至5mL,滤液直接经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX035。MS–ESI m/z:877.4[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),9.97(s,1H),8.26(s,1H),8.12(br t,J=5.0Hz,1H),8.03(br d,J=8.0Hz,1H),7.94(s,1H),7.73–7.65(m,2H),7.45–7.36(m,2H),7.32–7.22(m,3H),6.16(s,1H),4.60(br dd,J=4.0,11.6Hz,1H),4.34(br d,J=12.0Hz,2H),3.37–3.28(m,4H),3.10–2.93(m,4H),2.92–2.79(m,1H),2.70–2.57(m,1H),2.45(s,3H),2.41–2.31(m,2H),2.30–2.19(m,5H),2.13(br t,J=7.2Hz,2H),1.74–1.61(m,2H),1.59–1.48(m,2H),1.35–1.19(m,4H)。
实施例36
Figure PCTCN2021081375-appb-000339
合成路线:
Figure PCTCN2021081375-appb-000340
步骤1:中间体WX036–3的合成
将WX036-1(10g,45.66mmol)和化合物WX036-2(14.13g,136.98mmol)加到N,N-二甲基甲酰胺(100mL)和水(10mL)的混合溶剂中,将碘化亚铜(1.74g,9.14mmol),铜粉(580.00mg,9.13mmol),碳酸钾(31.55g,228.30mmol)和N,N-二甲基甘氨酸(2.35g,22.83mmol)依次慢慢的加到反应中,混合物用氮气置换3次后升温到110℃搅拌12小时。反应完成,反应液冷却到室温,往里面加入200mL冰水,6M的盐酸调至pH=4-5。乙酸乙酯萃取(500mL x 2),合并的有机相用饱和食盐水洗涤(300mLx2),无水硫酸钠干燥,过滤,减压旋干。粗品经加入到15mL二氯甲烷中搅拌1小时,过滤,滤饼用二氯甲烷洗涤(5mL x 2),收集固体减压旋干得到目标化合物WX036-3。 1H NMR(400MHz,DMSO-d 6)δ:12.56(br s,1H),7.60(t,J=8.9Hz,1H),6.96(br s,1H),6.34(dd,J=2.3,8.8Hz,1H),6.16(dd,J=2.0,14.6Hz,1H),1.46(s,6H)。
步骤2:中间体WX036–5的合成
将中间体WX036-3(0.1g,414.57μmol)和化合物WX036-4(141.90mg,621.85μmol)加到乙醇(2mL)中,将三乙胺(142.63mg,1.41mmol,196.19μL)慢慢的加到反应中,混合物在80℃搅拌12小时。反应完成,反应液冷却到室温,减压旋干除去溶剂,加20mL水,1M的盐酸调至pH=3-4,乙酸乙酯萃取(20mL x 2),饱和食盐水洗涤(20mL x 2),无水硫酸钠干燥,过滤旋干。粗品经柱层析分离(洗脱剂:二氯甲烷:甲醇=1:0-10:1,体积比)纯化得到目标化合物WX036-5。
MS–ESI m/z:452.1[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.04(s,1H),8.41(d,J=8.3Hz,1H),8.30(d,J=1.3Hz,1H),8.11-8.05(m,2H),7.47(dd,J=1.6,11.2Hz,1H),7.38(dd,J=1.8,8.3Hz,1H),1.56(s,6H)。
步骤3:实施例WX036的合成
将中间体WX036-5(150mg,235.17μmol)和中间体BB-1(81.36mg,282.21μmol)加到N,N-二甲基甲酰胺(2mL)中,将O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(178.84mg,470.34μmol)和三乙胺(71.39mg,705.51μmol,98.20μL)慢慢的加到反应中,反应液在氮气保护下20℃搅拌12小时。反应完成后,反应液中加入20mL水和30mL乙酸乙酯,分出有机相,有机相经水洗涤(20mL x 2),合并的有机相经无水硫酸钠干燥,过滤,减压旋干得到粗品,粗品经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl)得到目标化合物WX036。MS–ESI m/z:722.1[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.88(s,1H),8.76(br t,J=5.1Hz,1H),8.41(d,J=8.3Hz,1H),8.30(d,J=1.8Hz,1H),8.09(dd,J=1.8,8.3Hz,1H),7.86(s,1H),7.80(t,J=8.0Hz,1H),7.51-7.41(m,2H),7.34(dd,J=1.8,8.3Hz,1H),7.16(d,J=2.5Hz,1H),6.99-6.91(m,1H),4.19–4.07(m,3H),3.68(q,J=5.5Hz,2H),2.80-2.66(m,1H),2.63–2.53(m,1H),2.43–2.29(m,1H),2.15–2.04(m,1H),1.55(s,6H)。
实施例37
Figure PCTCN2021081375-appb-000341
合成路线:
Figure PCTCN2021081375-appb-000342
将中间体WX036-5(150mg,277.11μmol)和中间体BB-15(332.53μmol,盐酸盐)加到N,N-二甲基甲酰胺(2mL)中,将O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(210.73mg,554.22μmol)和三乙胺(84.12mg,831.33μmol,115.71μL)慢慢的加到反应中,反应液在氮气保护下20℃搅拌12小时。反应完成后,反应液中加入20mL水和30mL乙酸乙酯,分出有机相,有机相经水洗涤(20mL x 2),合并的有机相经无水硫酸钠干燥,过滤,减压旋干得到粗品,粗品经制备HPLC分离(流动 相:乙腈/水;酸性体系:0.05%HCl)得到目标化合物WX037。MS–ESI m/z:750.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.89(s,1H),8.59(t,J=5.5Hz,1H),8.41(d,J=8.3Hz,1H),8.30(d,J=1.8Hz,1H),8.09(d,J=8.3Hz,1H),7.89–7.82(m,1H),7.77(t,J=8.0Hz,1H),7.51–7.40(m,2H),7.33(dd,J=1.8,8.0Hz,1H),7.12(d,J=2.5Hz,1H),6.92(dd,J=2.4,8.9Hz,1H),4.12(dd,J=4.8,11.8Hz,1H),4.06-3.98(m,2H),2.81–2.64(m,1H),2.63–2.52(m,3H),2.35(dq,J=4.5,12.4Hz,1H),2.15–2.07(m,1H),1.86–1.76(m,2H),1.75–1.65(m,2H),1.55(s,6H)。
实施例38
Figure PCTCN2021081375-appb-000343
合成路线:
Figure PCTCN2021081375-appb-000344
将中间体WX036-5(150mg,277.11μmol)和中间体BB-16(125.17mg,332.53μmol)加到DMF(2mL)中,将O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(210.73mg,554.22μmol)和三乙胺(84.12mg,831.33μmol,115.71μL)慢慢的加到反应中,反应液在氮气保护下20℃搅拌12小时。反应完成后,反应液中加入20mL水和30mL乙酸乙酯,分出有机相,有机相经水洗涤(20mL x 2),合并的有机相经无水硫酸钠干燥,过滤,减压旋干得到粗品,粗品经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl)得到目标化合物WX038。MS–ESI m/z:810.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.88(s,1H),8.60-8.49(m,1H),8.41(d,J=8.0Hz,1H),8.30(d,J=1.8Hz,1H),8.09(dd,J=1.5,8.3Hz,1H),7.85(s,1H),7.78(t,J=8.0Hz,1H),7.51–7.37(m,2H),7.35–7.26(m,1H),7.16–7.10(m,1H),6.92(dd,J=2.5,8.8Hz,1H),4.10(sxt,J=5.3Hz,3H),3.77(t,J=4.6Hz,2H),3.66–3.52(m,6H),3.44(q,J=5.9Hz,2H),2.82-2.65(m,1H),2.62–2.54(m,1H),2.35(dq,J=4.4,12.5Hz,1H),2.16–1.96(m,1H),1.53(s,6H)。
实施例39
Figure PCTCN2021081375-appb-000345
合成路线:
Figure PCTCN2021081375-appb-000346
步骤1:化合物WX039-2的合成
室温和氮气保护下,将中间体BB-27(360mg,1.05mmol)溶于N,N–二甲基甲酰胺(8mL)中,加入中间体BB-17(404.72mg,955.92μmol),碳酸钾(396.34mg,2.87mmol),反应体系在50℃下搅拌反应12小时。反应完毕后,将反应混合物冷却至室温,加入饱和食盐水(20mL)和乙酸乙酯(30mL)稀释,分液,收集有机相,水相用乙酸乙酯(30mL x 3)萃取。合并有机相,用饱和食盐水(30mL x 3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–2/3,体积比)得到粗品。粗品经薄层层析硅胶板(展开剂:石油醚:乙酸乙酯=1:1)再次纯化,得到中间体WX039-2。 1H NMR(400MHz,DMSO_d 6)δ:8.39(d,J=8.0Hz,1H),8.28(s,1H),8.07(d,J=6.8Hz,1H),7.87(s,1H),7.57–7.38(m,2H),7.34(dd,J=2.4,11.6Hz,1H),7.26–7.15(m,2H),6.96(dd,J=2.4,8.8Hz,1H),4.52–4.50(m,2H),4.40–4.38(m,2H),4.18–4.05(m,2H),3.76(s,2H),1.52(s,6H),1.20(t,J=7.2Hz,3H)。
步骤2:化合物WX039的合成
室温和氮气保护下,将中间体WX039-2(136mg,203.09μmol)溶于干燥的无水四氢呋喃(3mL)中,随后依次加入丙烯酰胺(28.87mg,406.19μmol),叔丁醇钾的四氢呋喃溶液(1M,406.19μL),反应混合物25℃下搅拌反应1小时。反应完毕后,向反应液加入饱和食盐水(20mL),2–甲基四氢呋喃(20 mL)稀释,分液,水相用2–甲基四氢呋喃(30mL x 3)萃取。合并有机相,依次用饱和食盐水(20mL x 2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:HCl)得到目标化合物WX039。MS–ESI m/z:695.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.88(s,1H),8.39(d,J=8.0Hz,1H),8.28(s,1H),8.07(d,J=7.6Hz,1H),7.86(s,1H),7.55–7.38(m,2H),7.34(dd,J=2.0,11.8Hz,1H),7.20(d,J=2.4Hz,2H),6.96(dd,J=2.0,8.8Hz,1H),4.61–4.28(m,4H),4.11(dd,J=4.8,12.0Hz,1H),2.79–2.65(m,1H),2.62–2.53(m,1H),2.43–2.30(m,1H),2.16–2.06(m,1H),1.52(s,6H)。
实施例40
Figure PCTCN2021081375-appb-000347
合成路线:
Figure PCTCN2021081375-appb-000348
步骤1:化合物WX040-1的合成
将中间体BB-27(479.06mg,1.13mmol)和2-[4-(2-甲基磺酰氧基乙基)苯基]乙酸乙酯(0.27g,942.92μmol,1eq)加到二甲亚砜(5mL)中,将碳酸钾(260.64mg,1.89mmol)慢慢加入到反应中,在氮气保护下,80℃搅拌10小时。反应完成后,乙酸乙酯(50mL)稀释,有机相用水洗涤(50mL x 2),饱和食盐水洗涤(30mL),水硫酸钠干燥,过滤,减压旋蒸。粗品经柱层析分离(洗脱剂:石油醚:乙酸乙酯=1:0-3:1,体积比)纯化得到目标化合物WX040-1。 1H NMR(400MHz,CDCl 3)δ:8.14–7.93(m,2H),7.85(dd,J=1.8,8.3Hz,1H),7.35-7.22(m,4H),7.14–6.98(m,3H),4.22–4.08(m,2H),3.62(s,2H),3.17(t,J=6.9Hz,2H),1.59(s,6H),1.28(t,J=7.2Hz,5H)。
步骤2:化合物WX040-2的合成
将化合物WX040-1(0.16g,225.21μmol)加到乙醇(3mL)和水(0.3mL)中,将一水合氢氧化锂(18.90mg,450.41μmol)慢慢加到反应中,混合物氮气置换3次后在25℃搅拌10小时,减压旋掉大部分的有机溶剂,加20mL水,水相用2M盐酸调至pH=2,水相用乙酸乙酯萃取(50mLx2),合并有机相用饱和食盐水洗涤(30mL),无水硫酸钠干燥,过滤,减压旋蒸。粗品经柱层析分离(洗脱剂:二氯甲烷:甲醇=100:1-20:1,体积比)得到化合物WX040-2。
MS–ESI m/z:586.3[M+H] +
步骤3:化合物WX040的合成
将化合物WX040-2(23.37mg,85.39μmol)和3-(5-氨基苯并[d]异恶唑-3-基)哌啶-2,6-二酮(23.37mg,85.39μmol)加到N,N–二甲基甲酰胺(2mL)中,将三乙胺(17.28mg,170.77μmol,23.77μL)和O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(48.70mg,128.08μmol)慢慢的加到反应中,混合物用氮气置换3次后在25℃搅拌2小时。反应完毕,反应液倒入20mL水和30mL乙酸乙酯中,有机相经水洗涤(20mL x 2),无水硫酸钠干燥,过滤,减压旋干。粗品经制备HPLC纯化流动相:乙腈/水;酸性体系:HCl)得到目标化合物WX040。MS–ESI m/z:813.2[M+H] +1H NMR(400MHz,DMSO-d 6)δ:10.80(s,1H),10.08(s,1H),8.39(d,J=8.3Hz,1H),8.28(d,J=1.5Hz,1H),8.06(dd,J=1.8,8.3Hz,1H),7.41-7.21(m,6H),7.15(br d,J=8.5Hz,1H),6.81-6.64(m,2H),6.20(dd,J=1.9,11.9Hz,1H),4.39-4.21(m,3H),3.59(s,2H),3.08(br t,J=6.9Hz,2H),2.79-2.65(m,1H),2.64-2.53(m,1H),2.17-2.00(m,1H),1.97-1.81(m,1H),1.50(s,6H)。
实施例41
Figure PCTCN2021081375-appb-000349
合成路线:
Figure PCTCN2021081375-appb-000350
步骤1:中间体WX041-1的合成
室温下,将WX022-1(250.00mg,699.44μmol)溶于甲苯(20mL)中,随后加入间氯过氧苯甲酸(181.05mg,839.33μmol,纯度:80%),反应液在20℃下搅拌1小时,随后将N,N-二异丙基乙胺(451.98 mg,3.50mmol)和中间体BB-25(196.73mg,769.38μmol,盐酸盐)加入上述反应液中,反应混合物在20℃氮气保护下继续搅拌12小时。反应完毕后,向所得反应液中加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,依次用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1–1/1,体积比),得到中间体WX041–1。 1H NMR(400MHz,CDCl 3)δ:8.88(s,1H),7.88(t,J=7.8Hz,1H),7.80–7.74(m,2H),7.69(s,1H),7.46(s,2H),7.36(d,J=8.0Hz,1H),5.77–5.66(m,1H),5.05(d,J=10.8Hz,1H),4.94(d,J=16.8Hz,1H),4.76(d,J=6.4Hz,2H),4.20(q,J=7.2Hz,2H),3.68(s,2H),1.59(s,6H),1.28(t,J=7.0Hz,3H)。
步骤2:WX041的合成
0℃和氮气保护下,将WX041–1(280.00mg,529.74μmol)溶于N,N-二甲基甲酰胺(20mL)溶剂中,分别向其中加入叔丁醇钾(65.39mg,582.72μmol)和丙烯酰胺(37.65mg,529.74μmol),反应混合物在0℃下搅拌反应1小时。反应完毕后,向反应液中加入水(30mL),用乙酸乙酯(30mL×3)萃取。合并有机相,依次用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX041。MS–ESI m/z:554.1[M+H] + . 1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),10.25(br s,1H),8.87(s,1H),7.99–7.86(m,2H),7.78(s,1H),7.74(d,J=7.2Hz,1H),7.67(d,J=8.8Hz,1H),7.60–7.53(m,2H),5.72–5.57(m,1H),4.99(d,J=10.0Hz,1H),4.82(d,J=16.8Hz,1H),4.68(d,J=5.6Hz,2H),4.08–4.03(m,1H),2.81–2.67(m,1H),2.64–2.53(m,1H),2.38–2.09(m,2H),1.44(s,6H)。
实施例42
Figure PCTCN2021081375-appb-000351
合成路线:
Figure PCTCN2021081375-appb-000352
室温下,将WX007-1(50.00mg,124.73μmol)溶于N,N-二甲基甲酰胺(10mL)溶液中,分别向其中加入N,N-二异丙基乙胺(80.60mg,623.63μmol)和O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(71.14mg,187.09μmol),混合溶液在室温下搅拌30分钟。随后向其中加入中间体BB-18(49.37mg,124.73μmol,盐酸盐),反应混合物在室温下继续搅拌反应12小时。反应完毕后,向反应液中加入水(40mL),用乙酸乙酯(40mL×3)萃取。合并有机相,依次用饱和食盐水(40mL×2)洗涤, 无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX042。MS–ESI m/z:742.5[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.88(s,1H),8.25(t,J=5.2Hz,1H),8.16(t,J=5.6Hz,1H),7.86(s,1H),7.51–7.37(m,5H),7.17(d,J=2.0Hz,1H),7.00(dd,J=2.4,8.8Hz,1H),4.56–4.50(m,1H),4.49–4.39(m,2H),4.09(dd,J=4.8,12.0Hz,1H),3.31–3.05(m,6H),2.79–2.64(m,1H),2.60(s,3H),2.58–2.55(m,1H),2.39(s,3H),2.36–2.27(m,1H),2.11–2.03(m,1H),1.67–1.60(m,2H),1.59(s,3H)。
实施例43
Figure PCTCN2021081375-appb-000353
合成路线:
Figure PCTCN2021081375-appb-000354
步骤1:中间体WX043-1的合成
室温和氮气保护下,将WX007–1(0.4g,997.80μmol,1eq)溶于乙醇(5mL)中,随后加入浓硫酸(368.00mg,3.68mmol,0.2mL,纯度:98%),反应混合物加热至80℃并回流反应12小时。反应完毕后,冷却至室温,真空浓缩除去溶剂,所得残余物加入碳酸钾水溶液(1M,30mL)稀释,用二氯甲烷(20mL×3)萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。得到中间体WX043-1。 1H NMR(400MHz,CDCl 3)δ:7.45–7.37(m,2H),7.36–7.30(m,2H),4.66–4.58(m,1H),4.24(t,J=7.1Hz,2H),3.68–3.58(m,2H),2.68(s,3H),2.42(s,3H),1.70(s,3H), 1.33(t,J=7.0Hz,3H)。
步骤2:中间体WX043-2的合成
-78℃和氮气保护下,将中间体WX043-1(0.21g,489.59μmol)溶于二氯甲烷(5mL)中,随后加入DIBAL-H(1M,735.00μL,1.50eq)(1M的甲苯溶液),反应混合物在-78℃下搅拌反应2小时。反应完毕后,反应液加入饱和氯化铵溶液(5mL)淬灭,真空浓缩除去溶剂。所得残余物加入水(30mL)稀释,用乙酸乙酯(20mL×3)萃取。合并有机相,用水(50mL)和饱和食盐水(50mL)依次洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。得到中间体WX043-2。 1H NMR(400MHz,CDCl 3)δ:10.10(s,1H),7.43–7.39(m,2H),7.36–7.32(m,2H),4.69(t,J=6.4Hz,1H),3.80–3.75(m,2H),2.69(s,3H),2.43(s,3H),1.71(s,3H)。
步骤3:WX043的合成
室温和氮气保护下,将中间体WX043-2(0.05g,129.91μmol,1eq)溶于二氯甲烷(5mL)中,随后依次加入中间体BB-1(155.89μmol,1.2eq,盐酸盐),三乙胺(39.44mg,389.73μmol,54.25μL,3eq)和三乙酰氧基硼氢化钠(63.33mg,298.79μmol,2.3eq),反应混合物室温搅拌2小时。反应完毕后,反应液加水(20mL)稀释,用二氯甲烷(10mL×3)萃取。合并有机相,用水(20mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX043。MS–ESI m/z:657.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.87(br s,1H),7.84(s,1H),7.49–7.40(m,5H),7.10(d,J=1.6Hz,1H),6.88(dd,J=2.6,9.0Hz,1H),4.22(br t,J=6.6Hz,1H),4.14–4.06(m,1H),4.06–3.94(m,2H),3.05–2.87(m,4H),2.78–2.65(m,1H),2.59(s,3H),2.62–2.56(m,1H),2.56–2.52(m,2H),2.39(s,3H),2.36–2.26(m,1H),2.12–2.02(m,1H),1.59(s,3H)。
实施例44
Figure PCTCN2021081375-appb-000355
合成路线:
Figure PCTCN2021081375-appb-000356
室温和氮气保护下,将WX043(0.045g,68.47μmol,1eq)溶于二氯甲烷(5mL)中,随后依次加入甲 醛水溶液(27.78mg,342.37μmol,25.49μL,5eq,纯度:37%),硫酸镁(0.4g,3.32mmol,48.53eq)和三乙酰氧基硼氢化钠(43.54mg,205.42μmol,3eq),反应混合物室温搅拌1小时。反应完毕后,反应液加水(20mL)稀释,用二氯甲烷(10mL×3)萃取。合并有机相,用水(20mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;中性体系:10mM NH 4HCO 3),得到目标化合物WX044。MS–ESI m/z:671.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.87(s,1H),7.83(s,1H),7.43-7.35(m,5H),7.09-7.03(m,1H),6.76(dd,J=2.0,8.8Hz,1H),4.21-4.15(m,1H),4.12-4.03(m,1H),4.03-3.93(m,2H),2.88-2.80(m,1H),2.79-2.65(m,4H),2.61-2.57(m,1H),2.56(s,3H),2.55-2.52(m,2H),2.35(s,3H),2.34-2.30(m,1H),2.29(s,3H),2.11-2.00(m,1H),1.54(d,J=4.0Hz,3H)。
实施例45
Figure PCTCN2021081375-appb-000357
合成路线:
Figure PCTCN2021081375-appb-000358
室温和氮气保护下,将中间体WX043-2(0.04g,103.93μmol,1eq)溶于二氯甲烷(5mL)中,随后依次加入中间体BB-19(0.04g,118.76μmol,1.14eq,粗品盐酸盐),三乙胺(21.03mg,207.86μmol,28.93μL,2eq)和三乙酰氧基硼氢化钠(44.05mg,207.86μmol,2eq),反应混合物室温搅拌2小时。反应完毕后,反应液减压浓缩除去溶剂,所得残余物加水(50mL)稀释,用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX045的盐酸盐。MS–ESI m/z:669.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.87(s,1H),10.80(br s,1H),7.86(s,1H),7.52–7.42(m,6H),7.24–7.19(m,1H),4.39–4.31(m,1H),4.12(dd,J=4.6,11.8Hz,1H),3.47–3.28(m,2H),3.26–3.07(m,2H),2.83(s,3H),2.80–2.66(m,5H),2.64(s,3H),2.59–2.53(m,1H),2.40(s,3H),2.35–2.27(m,1H),2.15–2.03(m,3H),1.61(d,J=8.4Hz,3H)。
实施例46
Figure PCTCN2021081375-appb-000359
合成路线:
Figure PCTCN2021081375-appb-000360
步骤1:中间体WX046-2的合成
将WX046-1(10g,59.67mmol)和3-氯-2-氟苯甲醛(10.88g,68.62mmol)溶在乙醇(100mL)中,然后氮气置换三次,在氮气保护下逐滴加入哌啶(5.08g,59.67mmol,5.89mL),反应混合物在80℃下搅拌反应2小时。反应完毕后,将反应液冷却至4℃,过滤,滤饼经过减压浓缩除去溶剂,得到中间体WX046-2。 1H NMR(400MHz,DMSO_d 6)δ:10.87(s,1H),7.77–7.68(m,2H),7.55(s,1H),7.38(t,J=8.0Hz,1H),7.17(d,J=8.4Hz,1H),6.93(dd,J=1.8,8.2Hz,1H),6.90(d,J=1.8Hz,1H)。
步骤2:中间体WX046-3的合成
将中间体WX046-2(10g,32.45mmol)溶在甲苯(200mL)中,氮气置换三次,在氮气保护下依次加入(5R,6S)-5,6-二苯基吗啉-2-酮(9.86g,38.94mmol),环己酮(6.37g,64.91mmol,6.73mL),反应混合物在140℃下搅拌反应2小时。在氮气保护下加入环己酮(3.19g,32.45mmol,3.36mL),反应混合物在140℃下搅拌反应5小时。将反应液过滤,滤液减压浓缩除去溶剂。所的残余物通过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–3/1,体积比)。得到中间体WX046-3。 1H NMR(400MHz,DMSO_d 6)δ:10.78(s,1H),7.94(s,1H),7.45–7.36(m,1H),7.29–7.23(m,4H),7.15–7.10(m,4H),7.04–6.99(m,2H),6.83(d,J=2.0Hz,1H),6.82–6.76(m,2H),6.65(dd,J=2.0,8.2Hz,1H),6.34(d,J=8.4Hz,1H),5.44(d,J=11.6Hz,1H),4.90(d,J=2.6Hz,1H),4.57(d,J=11.2Hz,1H),2.38(d,J=13.2Hz,1H),2.15(d,J=11.2Hz,1H),1.77–1.73(m,5H),1.69–1.55(m,3H)。
步骤3:中间体WX046-4的合成
室温下,将化合物WX046-3(5.5g,8.57mmol)溶于甲醇(60mL),加入浓硫酸(1.68g,17.15mmol,913.95μL)。随后加热至80℃反应16小时。反应结束后,将两批反应合并处理,将反应液减压浓 缩,除掉甲醇,加入乙酸乙酯(300mL)稀释,用饱和碳酸氢钠溶液调碱pH=8,分离有机相,无水硫酸钠干燥,过滤,减压浓缩得到粗品。通过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1–0/1,体积比)。得到中间体WX046-4。
1H NMR(400MHz,CD 3OD)δ:7.61(t,J=7.6Hz,1H),7.42(dd,J=2.4,8.4Hz,1H),7.23(t,J=8.4Hz 1H),7.04(t,J=7.6Hz,2H),6.73(d,J=2.0Hz,1H),4.84(d,J=9.6Hz,1H),4.63(d,J=9.6Hz,1H),3.66(s,3H),2.24–2.14(m,1H),1.97–1.84(m,2H),1.80–1.67(m,2H),1.64–1.57(m,2H),1.51–1.47(m,1H),1.12–0.97(m,2H)。
步骤4:中间体WX046-5的三氟乙酸盐的合成
将中间体WX046-4(8.57mmol)加入到四氢呋喃(50mL)和水(50mL)中,加入一水合氢氧化锂(2.64g,62.85mmol)和甲醇(10mL),室温下反应16小时。反应结束后,将反应溶液减压浓缩除去四氢呋喃和甲醇,随后用乙酸乙酯(150mL)稀释,加入三氟乙酸至pH=4–5,搅拌20小时,分离有机相,无水硫酸钠干燥,减压浓缩除去溶剂,所得残余物经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.1%TFA),纯化得到中间体WX046-5的三氟乙酸盐。 1H NMR(400MHz,CD 3OD)δ:7.64(t,J=6.8Hz,1H),7.55(dd,J=2.4,8.0Hz,1H),7.32(t,J=8.0Hz,1H),7.16–7.08(m,2H),6.76(d,J=1.6Hz,1H),4.99(d,J=10.8Hz,1H),4.80(d,J=10.4Hz,1H),2.56(d,J=8.4Hz,1H),2.13(d,J=12.4Hz,1H),2.02–1.84(m,3H),1.82–1.73(m,2H),1.66–1.50(m,1H),1.32–1.09(m,2H)。
步骤5:WX046的盐酸盐的合成
室温和氮气保护下,将中间体BB-20(139.77mg,259.81μmol,盐酸盐)和中间体WX046-5(150mg,259.81μmol,三氟乙酸盐)溶于N,N–二甲基甲酰胺(2mL),在0℃下加入三正丙基环磷酸酐50%乙酸乙酯溶液(330.66mg,519.61μmol,309.03μL)、N,N–二异丙基乙胺(134.31mg,1.04mmol,181.01μL),0℃下搅拌30分钟,氮气保护下反应混合物升温至15℃搅拌反应16小时。反应溶液经滤膜过滤得到澄清溶液,经制备HPLC分离(流动相:乙腈/水;酸性体系:0.04%HCl),得到目标化合物WX046的盐酸盐。MS–ESI m/z:958.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.96(s,1H),10.61(s,1H),10.24(s,1H),8.39(t,J=5.2Hz,1H),8.09(d,J=8.4Hz,1H),7.98(s,1H),7.83(d,J=8.8Hz,2H),7.75(s,2H),7.70(d,J=8.8Hz,2H),7.64(t,J=6.8Hz,1H),7.50(d,J=2.4Hz,1H),7.48(dd,J=2.4,8.4Hz,1H),7.38(t,J=8.0Hz,1H),7.23(dd,J=2.8,9.9Hz,1H),7.16(t,J=7.6Hz,1H),7.06(dd,J=2.0,8.4Hz,1H),6.70(d,J=2.0Hz,1H),4.80–4.75(m,1H),4.75–4.62(m,2H),4.11(t,J=6.4Hz,2H),3.74–3.67(m,1H),3.31–3.23(m,2H),2.94–2.84(m,1H),2.68–2.59(m,1H),2.43–2.40(m,1H),2.31–2.23(m,1H),2.11–1.99(m,1H),1.89–1.77(m,3H),1.73–1.47(m,10H),1.46–1.34(m,3H),1.05–0.93(m,1H),0.91–0.79(m,1H)。
实施例47
Figure PCTCN2021081375-appb-000361
合成路线:
Figure PCTCN2021081375-appb-000362
将中间体BB-21(139.77mg,259.81μmol,盐酸盐)和中间体WX046-5(150mg,259.81μmol,三氟乙酸盐)溶于N,N–二甲基甲酰胺(2mL),在0℃下加入三正丙基环磷酸酐50%乙酸乙酯溶液(330.66mg,519.61μmol,309.03μL),N,N–二异丙基乙胺(134.31mg,1.04mmol,181.01μL),0℃下搅拌30分钟,氮气保护,反应混合物升温至15℃搅拌反应16小时。反应溶液经滤膜过滤得到澄清溶液,经制备HPLC分离(流动相:乙腈/水;酸性体系:0.04%HCl)纯化得到目标化合物WX047的盐酸盐。MS–ESI m/z:946.3[M+H] +1H NMR(400MHz,CD 3OD)δ:8.00(d,J=9.6Hz,1H),7.80(d,J=5.2Hz,1H),7.76–7.67(m,3H),7.64(d,J=8.8Hz,1H),7.60(d,J=8.4Hz,1H),7.58–7.49(m,3H),7.43–7.32(m,2H),7.24(dd,J=2.8,9.2Hz,1H),7.18(t,J=7.6Hz,1H),7.15–7.08(m,1H),6.80(s,1H),5.01–4.91(m,1H),4.63–4.55(m,1H),4.28(d,J=4.4Hz,2H),3.96–3.90(m,2H),3.81–3.74(m,2H),3.64–3.57(m,2H),3.31–3.17(m,1H),2.95–2.82(m,1H),2.79–2.70(m,1H),2.51–2.38(m,2H),2.29–2.04(s,1H),2.03–1.82(m,3H),1.82–1.62(m,3H),1.62–1.46(m,1H),1.28–1.09(m,2H)。
实施例48
Figure PCTCN2021081375-appb-000363
合成路线:
Figure PCTCN2021081375-appb-000364
步骤1:中间体WX048-2的合成
室温下,将化合物WX048-1(4.9g,25.05mmol,1eq)溶于二氯甲烷(50mL)中,将氯甲酸苯酯(3.92g,25.05mmol,3.14mL,1eq)溶于二氯甲烷(10mL)溶液并加入上述反应液中,反应混合液在室温下搅拌反应1小时。反应完毕后,反应液倒入水(50mL)中,加入稀盐酸(1M,50mL),用二氯甲烷(50mL)萃取。有机相依次用稀盐酸溶液(1M,50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到中间体WX048-2。 1H NMR(400MHz,CDCl 3)δ:7.80(d,J=1.6Hz,1H),7.59(dd,J=2.0,8.8Hz,1H),7.47–7.38(m,3H),7.30–7.25(m,1H),7.19(d,J=7.6Hz,2H)。
步骤2:中间体WX048-4的合成
室温和氮气保护下,将化合物WX048-3(10.00g,71.89mmol)溶于氯苯(100mL)中,加入4–氯吡啶–2–甲酸甲酯(9.25g,53.91mmol),反应混合物在130℃搅拌12小时。反应完毕后,将反应体系降温到室温,将反应液倒入石油醚(100mL)中,搅拌15分钟,静置,将上层清液倾倒出去,将剩余黑色油状物用二氯甲烷(500mL)溶解,使用氢氧化钠溶液(1N)调节pH=9左右,加入水(100mL)稀释,分液,收集有机相,水相用二氯甲烷(250mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/1,体积比)。得到中间体WX048-4。 1H NMR(400MHz,CDCl 3)δ:8.71(d,J=5.6Hz,1H),8.46–8.23(m,2H),7.76(d,J=2.4Hz,1H),7.26–7.20(m,2H),7.14(dd,J=2.4,5.6Hz,1H),4.02(s,3H)。
步骤3:中间体WX048-5的合成
室温和氮气保护下,将湿钯碳(0.40g)溶解于甲醇(20mL)中,加入中间体WX048-4(1.67g,6.09mmol),反应混合物氮气置换三次,随后氢气置换三次,反应体系在25℃和氢气氛围下搅拌12小时,反应完毕后,将反应液用硅藻土过滤,用甲醇(50mL×3)淋洗滤饼,合并有机相,减压浓缩除去溶剂,得到粗品中间体WX048-5。
步骤4:中间体WX048-6的合成
室温和氮气保护下,将中间体WX048-5(500.00mg,2.05mmol)和中间体WX048-2(646.22mg,2.05mmol)溶解于N,N–二甲基甲酰胺(4mL)中,向反应体系中加入三乙胺(0.42mL,3.07mmol),反应混合物在25℃下搅拌2小时,加入半饱和食盐水(20mL)淬灭反应,加入乙酸乙酯(30mL)稀释, 分液,收集有机相。水相用乙酸乙酯(30mL×3)萃取。合并有机相,依次用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–2/1,体积比),得到中间体WX048-6。
步骤5:中间体WX048-7的合成
室温和氮气保护下,将中间体WX048-6(0.80g,1.72mmol)溶解于甲醇(6mL)中,加入一水合氢氧化锂(288.28mg,6.87mmol),加入水(6mL),反应混合物在25℃下搅拌1小时。反应完毕后,加入稀盐酸(1M)调节反应液的pH至5–6,然后减压浓缩,过滤,用乙酸乙酯(20mL×3)淋洗滤饼。收集滤饼并减压浓缩,除去残余溶剂,得到粗品中间体WX048-7。 1H NMR(400MHz,DMSO_d 6)δ:9.22(s,1H),9.00(s,1H),8.57(d,J=5.6Hz,1H),8.12(s,1H),7.71–7.55(m,3H),7.40(d,J=2.4Hz,1H),7.19(d,J=9.0Hz,2H)。
步骤6:WX048的合成
室温和氮气保护下,将中间体WX048-7(105.00mg,232.41μmol)溶解于N,N–二甲基甲酰胺(2mL),依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(176.74mg,464.82μmol),N,N–二异丙基乙胺(121.45μL,697.24μmol),中间体BB-22(157.48mg,464.82μmol,盐酸盐),反应混合物在25℃下搅拌12小时。反应完毕后,加入饱和食盐水(20mL)淬灭反应,加入乙酸乙酯(30mL)稀释,分液,收集有机相。水相用乙酸乙酯(30mL×3)萃取,合并有机相,饱和食盐水(20mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所的残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX048。MS–ESI m/z:736.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.86(s,1H),9.34(s,1H),9.10(s,1H),8.96(t,J=6.0Hz,1H),8.52(d,J=5.6Hz,1H),8.12(d,J=2.2Hz,1H),7.84(s,1H),7.69–7.55(m,4H),7.46(d,J=9.0Hz,1H),7.41(d,J=2.6Hz,1H),7.21–7.14(m,3H),7.10(d,J=2.4Hz,1H),6.92(dd,J=2.4,8.8Hz,1H),4.09(dd,J=4.8,12.0Hz,1H),4.06–3.99(m,2H),3.46(q,J=6.4Hz,2H),2.78–2.65(m,1H),2.62–2.55(m,1H),2.39–2.26(m,1H),2.14–2.07(m,1H),2.00(q,J=6.4Hz,2H)。
实施例49
Figure PCTCN2021081375-appb-000365
合成路线:
Figure PCTCN2021081375-appb-000366
室温和氮气保护下,将中间体WX048-7(133.00mg,294.39μmol)溶解于N,N–二甲基甲酰胺(3mL)中,依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(223.87mg,588.78μmol),N,N–二异丙基乙胺(114.14mg,883.17μmol,153.83μL)和中间体BB-23(224.25mg,588.78μmol,盐酸盐),反应体系在15℃搅拌12小时。反应完毕后,加入饱和食盐水(20mL)淬灭反应,加入乙酸乙酯(30mL)稀释,分液,收集有机相,水相用乙酸乙酯(30mL×3)萃取。合并有机相,依次用饱和食盐水(20mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX049。MS–ESI m/z:778.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.86(s,1H),9.29(s,1H),9.06(s,1H),8.80(t,J=6.0Hz,1H),8.51(d,J=5.6Hz,1H),8.12(d,J=2.2Hz,1H),7.83(s,1H),7.70–7.55(m,4H),7.46–7.36(m,2H),7.21–7.13(m,3H),7.08(d,J=2.4Hz,1H),6.88(dd,J=2.4,8.8Hz,1H),4.10(dd,J=4.8,12.4Hz,1H),3.99–3.88(m,2H),3.27(q,J=6.4Hz,2H),2.77–2.66(m,1H),2.60–2.54(m,1H),2.38–2.28(m,1H),2.13–2.07(m,1H),1.76–1.67(m,2H),1.58–1.51(m,2H),1.49–1.40(m,2H),1.39–1.30(m,2H)。
实施例50
Figure PCTCN2021081375-appb-000367
合成路线:
Figure PCTCN2021081375-appb-000368
25℃和氮气保护下,将中间体WX048-7(125.00mg,276.68μmol)溶解于N,N-二甲基甲酰胺(2mL)中,依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(210.41mg,553.36μmol),N,N–二异丙基乙胺(144.58μL,830.05μmol)和中间体BB-24(204.09mg,553.36μmol,盐酸盐),反应体系在25℃下搅拌4小时。反应完毕后,将反应液过滤,滤液经制备HPLC分离(流动相:乙腈/水;酸性体系:0.04%HCl),得到目标化合物WX050。MS–ESI m/z:766.2[M+H] +1H NMR(400MHz,CD 3OD)δ:8.43(s,1H),8.00(d,J=2.4Hz,1H),7.71–7.55(m,5H),7.51(d,J=8.4Hz,1H),7.32(d,J=8.8Hz,1H),7.17–6.98(m,4H),6.89(d,J=7.8Hz,1H),4.20–4.12(m,2H),4.11–4.04(m,1H),3.89–3.81(m,2H),3.74(d,J=4.4Hz,2H),3.61(s,2H),2.79–2.70(m,2H),2.43–2.31(m,1H),2.29–2.23(m,1H)。
实施例51
Figure PCTCN2021081375-appb-000369
合成路线:
Figure PCTCN2021081375-appb-000370
25℃和氮气保护下,将中间体WX048-7(125.00mg,276.68μmol)溶解于N,N–二甲基甲酰胺(2mL)中,依次加入O–(7–氮杂苯并三唑–1–基)–N,N,N,N–四甲基脲六氟磷酸盐(210.41mg,553.36μmol),N,N–二异丙基乙胺(144.58μL,830.04μmol)和中间体BB-1(159.53mg,553.36μmol,盐酸盐),反应体系在25℃下搅拌1小时。反应完毕后,加入饱和食盐水(20mL)淬灭反应,加入乙酸乙酯(30mL)稀释,分液,收集有机相,水相用乙酸乙酯(30mL×3)萃取。合并有机相,依次用饱和食盐水(20mL×3)洗,无水硫酸钠干燥,过滤,减压浓缩除去溶剂。所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX051。MS–ESI m/z:722.2[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.86(s,1H),9.28(s,1H),9.05(s,1H),8.95(s,1H),8.53(d,J=5.6Hz,1H),8.12(d,J=2.2Hz,1H),7.84(s,1H),7.68–7.57(m,4H),7.45(d,J=8.8Hz,1H),7.42(s,1H),7.20–7.15(m,3H),7.14(d,J=2.6Hz,1H),6.91(dd,J=2.4,9.0Hz,1H),4.15–4.06(m,3H),3.73–3.64(m,2H),2.77–2.67(m,1H),2.57(d,J=4.0Hz,1H),2.40–2.29(m,1H),2.12–2.04(m,1H)。
实施例52
Figure PCTCN2021081375-appb-000371
合成路线:
Figure PCTCN2021081375-appb-000372
将化合物BB-28(0.1g,348.11μmol)溶于1,2–二氯乙烷(3mL)中,加入化合物BB-26的盐酸盐(138.79mg,232.07μmol)和乙酸钠(38.07mg,464.14μmol),搅拌30分钟,加三乙酰氧基硼氢化钠(98.37mg,464.14μmol),25℃下反应12hr。反应完毕,向反应液中加入水(5mL),和二氯甲烷(10mL),分离有机相,水相用二氯甲烷(20mL×3)萃取,合并有机相,用饱和食盐水洗涤(20mL×2),无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。残余物经HPLC分离(流动相:乙腈/水;酸性体系:0.04%HCl)纯化得到目标化合物WX052。MS–ESI m/z:833.4[M+H] +1H NMR(400MHz,CD 3OD)δ:8.16–8.14(m,2H),7.99-7.96(m,1H),7.72(s,1H),7.42(d,J=8.8Hz,1H),7.29–7.24(m,2H),7.17–7.16(m,2H),7.03-7.00(m,1H),4.43–4.35(m,2H),4.30-4.22(m,2H),4.11(dd,J=4.8Hz,8.0Hz,1H),3.68–3.59(m,4H),3.46(s,4H),3.31–3.30(m,2H),2.85–2.68(m,2H),2.45–2.34(m,1H),2.30–2.23(m,1H),1.56(s,6H),1.10–0.93(m,4H)。
实施例53
Figure PCTCN2021081375-appb-000373
合成路线:
Figure PCTCN2021081375-appb-000374
室温和氮气保护下,将化合物BB-29(0.1g,348.11μmol)溶于1,2–二氯乙烷(3mL)中,加入化合物BB-26的盐酸盐(138.79mg,232.07μmol)和乙酸钠(38.08mg,464.14μmol),搅拌30分钟,加入三乙酰氧基硼氢化钠(98.37mg,464.14μmol),25℃下反应12小时。反应完毕,向反应液中加入水(5mL)和二氯甲烷(10mL),分离有机相,水相用二氯甲烷(20mL×3)萃取,有机相用饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。残余物经HPLC(流动相:乙腈/水;酸性体系:0.04%HCl)分离纯化,得到目标化合物WX053。MS–ESI m/z:833.4[M+H] +1H NMR(400MHz,CD 3OD)δ:8.16–8.14(m,2H),7.98-7.96(m,1H),7.65(s,1H),7.49-7.47(m,1H),7.29–7.25(m,2H),7.19–7.16(m,2H),6.99-6.97(m,1H),4.46–4.42(m,2H),4.27(s,2H),4.11-4.07(m,1H),3.66-3.65(m,4H),3.51-3.45(m,4H),3.31-3.30(m 2H),2.82-2.66(m,2H),2.40–2.23(m,2H),1.55(s,6H),1.09–0.97(m,4H)。
实施例54
Figure PCTCN2021081375-appb-000375
合成路线:
Figure PCTCN2021081375-appb-000376
步骤1:化合物WX054-1的合成
将化合物BB-26的盐酸盐(0.4g,668.84μmol)溶于四氢呋喃(4mL),氮气保护下降至0℃,滴加三乙胺(169.20mg,1.67mmol,232.73μL),加完后滴加溴乙酸乙酯(122.87mg,735.72μmol,81.37μL)的四氢呋喃(1mL)溶液,缓慢升至20℃搅拌15小时。向反应液中加水(10mL),用乙酸乙酯萃取(10mL×2),有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,减压除去溶剂得到化合物WX054-1。
步骤2:化合物WX054-2的合成
将化合物WX054-1(0.4g,617.59μmol)溶于四氢呋喃(8mL)和水(2mL)的混合溶剂中,降至0℃,加入一水合氢氧化锂(129.58mg,3.09mmol),加完后20℃搅拌2小时。将反应液用1N稀盐酸调节pH=4-5,用二氯甲烷(50mL×3)萃取,有机相用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,减压除去溶剂得到化合物WX054-2。
步骤3:化合物WX054的合成
将化合物WX054-2(0.08g,129.11μmol)置于N,N-二甲基甲酰胺(2mL)中,加入N,N-二异丙基乙胺(50.06mg,387.33μmol,67.47μL)和O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(98.18mg,258.22μmol),再加入化合物BB-30(34.69mg,142.02μmol),20℃搅拌12小时,将反应液减压浓缩除去溶剂,所得残余物经HPLC(流动相:乙腈/水;酸性体系:0.04%HCl)分离纯化得到目标化合物WX054。 1H NMR(400MHz,CD 3OD)δ:8.17-8.14(m,2H),8.03(d,J=2.0Hz,1H),8.00-7.97(m,1H),7.72(s,1H),7.52(d,J=8.4Hz,1H),7.29-7.25(m,3H),7.20-7.17(m,1H),4.26(s,2H),4.13-4.09(m, 3H),3.49-3.35(m,8H),2.84-2.67(m,2H),2.43-2.33(m,1H),2.30-2.23(m,1H),1.57(s,6H),1.00-0.91(m,4H)。
实施例55
Figure PCTCN2021081375-appb-000377
合成路线:
Figure PCTCN2021081375-appb-000378
步骤1:中间体WX055-2的合成
在0℃下,将WX055-1(20g,47.67mmol)溶于N,N-二甲基甲酰胺(200mL)中,分多次缓慢加入氢化钠(3.81g,95.35mmol,60%含量),反应混合物在0℃下搅拌反应10分钟后,再加入1-溴-4-(溴甲基)苯(11.92g,47.67mmol),维持反应混合物在0℃下继续搅拌反应30分钟。反应完毕后,向反应液中加入水(600mL),用乙酸乙酯(200mL×3)萃取。合并有机相,用饱和食盐水(200mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–1/1,体积比),得到中间体WX055-2。 1H NMR(400MHz,DMSO_d 6)δ:7.51–7.45(m,4H),7.43–7.31(m,8H),7.28(d,J=8.8Hz,2H),7.19(d,J=8.8Hz,1H),7.15(d,J=2.4Hz,1H),7.11(d,J=8.4Hz,2H),6.83(dd,J=2.2,9.0Hz,1H),6.75(d,J=8.4Hz,2H),5.21(s,2H),5.12(s,4H),2.17(s,3H)。
步骤2:中间体WX055-3的合成
室温和氮气保护下,将中间体WX055-2(5.71g,9.70mmol)和硼酸(1.20g,19.40mmol)加入到1-甲基-2-吡咯烷酮(100mL)中,再依次加入醋酸钯(217.82mg,970.21μmol),二叔丁基-(2,4,6-三异丙基-3,6-二甲氧基联苯-2-基)膦(940.50mg,1.94mmol)和碳酸铯(6.32g,19.40mmol),反应混合物在100℃和氮气保护下搅拌反应12小时。反应完毕后,冷却至室温,将反应液倒入水(200mL)中,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–5/1,体积比),得到中间体WX055-3。 1H NMR(400MHz,CDCl 3)δ:7.53–7.32(m,10H),7.26–7.22(m,2H),7.15(d,J=2.4Hz,1H),7.09(d,J=8.8Hz,1H),7.05–7.00(m,2H),6.90(dd,J=2.4,8.8Hz,1H),6.81(d,J=8.4Hz,2H),8.71–6.66(m,2H),5.15(s,2H),5.11(s,4H),2.26(s,3H)。
步骤3:中间体WX055-4的合成
室温和氮气保护下,将中间体WX055-3(2g,3.80mmol)溶于N,N-二甲基甲酰胺(30mL)中,再依次加入碳酸铯(2.48g,7.61mmol)和乙基2-(2-(2-(2-(对甲苯磺酰基氧基)乙氧基)乙氧基)乙氧基)乙酸酯(1.78g,4.57mmol),反应混合物在80℃和氮气保护下搅拌反应12小时。反应完毕后,冷却至室温,向反应液中加入水(150mL),用乙酸乙酯(70mL×3)萃取。合并有机相,用饱和食盐水(70mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱分离(洗脱剂:石油醚/乙酸乙酯=3/1–1/1,体积比),得到中间体WX055-4。 1H NMR(400MHz,CDCl 3)δ:7.53–7.30(m,10H),7.26–7.21(m,2H),7.16(d,J=2.0Hz,1H),7.08(d,J=8.8Hz,1H),7.05–6.99(m,2H),6.90(dd,J=2.8,8.8Hz,1H),6.86(d,J=8.8Hz,2H),6.80–6.75(m,2H),5.15(s,2H),5.12(s,2H),5.11(s,2H),4.21(q,J=7.2Hz,2H),4.15(s,2H),4.09–4.05(m,2H),3.85–3.81(m,2H),3.76–3.66(m,8H),2.26(s,3H),1.28(t,J=7.2Hz,3H)。
步骤4:中间体WX055-5的合成
20℃下,将中间体WX055-4(1.5g,2.02mmol)溶于甲醇(40mL)中,再在氮气保护下加入湿钯碳(3g,10%含量),将反应体系用氢气置换三次,反应混合物在20℃和氢气(15Psi)保护下搅拌反应4小时。反应完毕后,将反应液过滤,过滤后钯碳倒入相应的催化剂回收桶,滤液减压除去溶剂,得到中间体WX055-5。 1H NMR(400MHz,CDCl 3)δ:7.09(d,J=8.4Hz,2H),6.99(d,J=2.4Hz,1H),6.97(d,J=8.8Hz,1H),6.85(d,J=8.4Hz,2H),6.77(d,J=8.4Hz,2H),6.73–6.67(m,3H),5.03(s,2H),4.17(q,J=7.1Hz,2H),4.11(s,2H),4.03–3.97(m,2H),3.80–3.76(m,2H),3.72–3.63(m,8H),2.14(s,3H),1.23(t,J=7.0Hz,3H)。
步骤5:中间体WX055-6的合成
室温下,将中间体WX055-5(650mg,1.15mmol)溶于甲醇(30mL)和水(6mL)的混合溶剂中,再加入氢氧化钠固体(138.38mg,3.46mmol),反应混合物在40℃和氮气保护下搅拌反应2小时。反应完毕后,冷却至室温,反应液减压除去溶剂,向残余物中加入水(50mL),用稀盐酸(2M)调节溶液pH值为4-5,用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到中间体WX055-6。 1H NMR(400MHz,DMSO_d 6)δ:7.15(d,J=8.4Hz,2H),7.06(d,J=8.8Hz,1H),6.85(d,J=8.4Hz,2H),6.80(d,J=2.0Hz,1H),6.75(s,4H),6.57(dd,J=2.2,8.6Hz,1H),5.10(s,2H),3.99(s,2H),3.99–3.95(m,2H),3.71–3.64(m,2H),3.58–3.48(m,8H),2.10(s,3H)。
步骤6:化合物WX055的合成
室温和氮气保护下,将中间体WX055-6(50mg,93.36μmol)溶于N,N-二甲基甲酰胺(3mL)中,再依次加入HATU(46.15mg,121.36μmol),N,N-二异丙基乙胺(40.65μL,233.39μmol)和中间体BB-31(22.80mg,93.36μmol,盐酸盐),反应混合物在室温和氮气保护下搅拌反应1小时。反应完毕后,向反应液中加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX055。MS–ESI m/z:762.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.93(s,1H),9.67(s,1H),9.64(s,1H),8.70(s,1H),7.86(s,2H),7.54–7.47(m,2H),7.15(d,J=8.4Hz,2H),7.05(d,J=8.8Hz,1H),6.85(d,J=8.4Hz,2H),6.80(d,J=2.0Hz,1H),6.76–6.68(m,4H),6.57(dd,J=2.0,8.4Hz,1H),5.09(s,2H),4.09(dd,J=5.0,12.2Hz,1H),4.06(s,2H),3.96–3.91(m,2H),3.68–3.63(m,4H),3.62–3.58(m,2H),3.56(s,4H),2.81–2.70(m,1H),2.61–2.57(m,1H),2.31–2.19(m,1H),2.13–2.05(m,4H)。
实施例56
Figure PCTCN2021081375-appb-000379
合成路线:
Figure PCTCN2021081375-appb-000380
步骤1:中间体WX056-1的合成
室温和氮气保护下,将中间体WX055-3(4.2g,7.99mmol)溶于甲苯(100mL)中,再加入碳酸钾(3.31g,23.97mmol),十八冠醚-6(21.12g,79.90mmol)和1,2-二溴乙烷(3.01mL,39.95mmol),反应混合物在110℃和氮气保护下搅拌反应12小时。反应完毕后,冷却至室温,减压浓缩除去溶剂,向剩余物中加入水(150mL),用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1,体积比),得到中间体WX056-1。 1H NMR(400MHz,DMSO_d 6)δ:7.50–7.27(m,14H),7.21(d,J=8.8Hz,1H),7.15–7.10(m,3H),6.81(dd,J=2.4,8.8Hz,1H),6.78–6.75(m,2H),5.17(s,2H),5.15(s,2H),5.12(s,2H),4.23–4.19(m,2H),3.76–3.71(m,2H),2.16(s,3H)。
步骤2:中间体WX056-2的合成
室温下,将中间体WX056-1(1.20g,1.90mmol)和1-叔丁氧羰基-哌嗪(423.98mg,2.28mmol)溶于乙腈(20mL)中,向其中加入碳酸钾(524.36mg,3.79mmol),反应混合物在80℃氮气保护下搅拌反应12小时。反应完毕后,冷却至室温,向所得残余物加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,依次用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/1,体积比),得到中间体WX056-2。 1H NMR(400MHz,CDCl 3)δ:7.51(d,J=7.2Hz,2H),7.49–7.45(m,2H),7.45–7.30(m,6H),7.25(d,J=8.4Hz,2H),7.17(d,J=2.0Hz,1H),7.08(d,J=8.8Hz,1H),7.03(d,J=8.8Hz,2H),6.90(dd,J=2.2,9.0Hz,1H),6.88(d,J=8.8Hz,2H),6.77(d,J=8.8Hz,2H),5.15(s,2H),5.13(s,2H),5.11(s,2H),4.06(t,J=5.2Hz,2H),3.53– 3.40(m,4H),2.86–2.74(m,2H),2.59–2.45(m,4H),2.27(s,3H),1.48(s,9H)。
步骤3:中间体WX056-3的盐酸盐合成
室温下,将WX056-2(1.30g,1.76mmol)溶于乙酸乙酯(10mL)中,向其中加入氯化氢乙酸乙酯溶液(4M,4.40mL),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液减压浓缩除去溶剂,得到中间体WX056-3的盐酸盐。
步骤4:中间体WX056-4的合成
室温下,将中间体WX056-3(500.00mg,741.54μmol,盐酸盐)溶于二氯甲烷(10mL)中,分别向其中加入N,N-二异丙基乙胺(191.67mg,1.48mmol)和中间体BB-32(211.56mg,741.54μmol),反应混合物在室温和氮气保护下搅拌反应3小时。之后向其中加入三乙酰氧基硼氢化钠(157.16mg,741.54μmol),反应混合物在室温下搅拌反应10小时。反应完毕后,向反应液中加入水(30mL),用二氯甲烷(30mL×3)萃取。合并有机相,依次用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:二氯甲烷/甲醇=1/0–20/1,体积比),得到中间体WX056-4。 1H NMR(400MHz,DMSO_d 6)δ:10.89(s,1H),7.85(s,1H),7.53–7.28(m,14H),7.21(d,J=8.8Hz,1H),7.16–7.09(m,4H),6.82(dd,J=2.0,8.8Hz,1H),6.75(s,4H),5.16(s,2H),5.15(s,2H),5.13(s,2H),4.11(dd,J=4.8,12.0Hz,1H),3.96(br t,J=5.6Hz,2H),3.34(s,4H),2.79–2.69(m,1H),2.68–2.55(m,5H),2.47–2.43(m,2H),2.38–2.25(m,5H),2.17(s,3H),2.12–2.05(m,2H),1.79–1.67(m,2H)。
步骤5:WX056的合成
室温下,将中间体WX056-4(200.00mg,220.48μmol)溶于甲醇(40mL)和乙酸乙酯(5mL)的混合溶剂中,向其中加入盐酸溶液(12M,91.87μL)和雷尼镍(30mg),反应混合物置换氢气三次,在室温和氢气(45psi)保护下搅拌反应12小时。反应完毕后,反应液过滤,用甲醇(30mL×3)洗涤滤饼,滤液减压浓缩除去溶剂。所得残余物经过薄层层析分离(展开剂:二氯甲烷/甲醇=10/1,体积比),得到目标化合物WX056。MS–ESI m/z:727.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.87(s,1H),9.66(s,1H),8.69(s,1H),7.84(s,1H),7.44(d,J=8.8Hz,1H),7.38(s,1H),7.17–7.11(m,3H),7.05(d,J=8.4Hz,1H),6.85(d,J=8.0Hz,2H),6.80(d,J=2.4Hz,1H),6.75(s,4H),6.57(dd,J=2.0,8.8Hz,1H),5.10(s,2H),4.11(dd,J=5.0,12.2Hz,1H),3.95(t,J=5.8Hz,2H),2.79–2.55(m,10H),2.38–2.28(m,4H),2.23(br t,J=7.2Hz,3H),2.09(s,3H),2.15–2.05(m,1H),1.76–1.66(m,2H)。
实施例57
Figure PCTCN2021081375-appb-000381
合成路线:
Figure PCTCN2021081375-appb-000382
步骤1:中间体WX057-1的合成
室温和氮气保护下,将中间体WX055-3(770mg,1.46mmol)溶于N,N-二甲基甲酰胺(20mL)中,再加入碳酸钾(404.91mg,2.93mmol)和1,5-二溴戊烷(990.70μL,7.32mmol),反应混合物在80℃和氮气保护下搅拌反应12小时。反应完毕后,冷却至室温,向反应液中加入水(100mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1–10/1,体积比),得到中间体WX057-1。MS–ESI m/z:674.0[M+H] +,676.0[M+2+H] +
步骤2:中间体WX057-2的合成
室温和氮气保护下,将中间体WX057-1(428.35μmol)溶于乙腈(10mL)中,再加入碳酸氢钠(179.93mg,2.14mmol)和中间体BB-33(172.43mg,471.19μmol,纯度:95.59%),反应混合物在80℃和氮气保护下搅拌反应12小时。反应完毕后,冷却至室温,反应液减压除去溶剂,向所得残余物中加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:二氯甲烷/甲醇=20/1,体积比),得到中间体WX057-2。MS–ESI m/z:907.5[M+H] +
步骤3:WX057的合成
室温和氮气保护下,将中间体WX057-2(153.21μmol)溶于甲醇(5mL)和乙酸乙酯(5mL)的混合溶剂中,再加入盐酸(63.84μL,766.05μmol)和雷尼镍(13.13mg,153.21μmol),将反应体系用氢气置换三次,反应混合物在室温和氢气(45Psi)保护下搅拌反应12小时。反应完毕后,将反应液过滤,滤液减压除去溶剂,所得残余物经过薄层层析分离(展开剂:二氯甲烷/甲醇=20/1,体积比),得到目标化合物WX057。MS–ESI m/z:727.4[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.85(s,1H),9.66(s,1H),8.69(s,1H),7.77(s,1H),7.40(d,J=9.2Hz,1H),7.15(d,J=8.8Hz,2H),7.06(d,J=8.8Hz,1H),7.03(d,J=2.0Hz,1H),6.98(dd,J=2.2,9.0Hz,1H),6.85(d,J=8.4Hz,2H),6.80(d,J=2.0Hz,1H),6.74(br s,4H),6.57(dd,J=2.4,8.8Hz,1H),5.09(s,2H),4.09(dd,J=4.8,11.6Hz,1H),3.86(t,J=6.4Hz,2H),3.10–3.06(m,4H),2.95–2.87(m,1H),2.77–2.69(m,1H),2.69–2.65(m,2H),2.35–2.29(m,4H),2.21–2.15(m, 1H),2.09(s,3H),2.08–2.04(m,1H),1.70–1.63(m,2H),1.53–1.44(m,2H),1.43–1.35(m,2H)。
实施例58
Figure PCTCN2021081375-appb-000383
合成路线:
Figure PCTCN2021081375-appb-000384
20℃下,将WX007–1(50mg,124.73μmol)溶于N,N–二甲基甲酰胺(20mL)中,随后加入O-(7-氮杂苯并三氮唑-1-基)-N,N,N,N-四甲基脲六氟膦盐(61.65mg,162.14μmol)和N,N-二异丙基乙胺(64.48mg,498.90μmol),反应混合物在20℃和氮气保护下搅拌反应0.5小时,随后加入中间体BB–22(66.18mg,137.20μmol,盐酸盐),反应混合物在20℃和氮气保护下继续搅拌反应2小时。反应完毕后,反应液冷却至室温,倒入水(50mL)中,用乙酸乙酯(10mL×3)萃取,合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过制备HPLC(流动相:乙腈/水;酸性体系:0.05%HCl)分离,得到目标化合物WX058。 1H NMR(400MHz,DMSO_d 6)δ:10.87(s,1H),8.37(br t,J=5.2Hz,1H),7.84(s,1H),7.47–7.38(m,5H),7.12(d,J=2.0Hz,1H),6.91(dd,J=2.6,9.0Hz,1H),4.56(t,J=7.0Hz,1H),4.13–4.07(m,1H),4.07-3.99(m,2H),3.35–3.19(m,4H),2.77–2.65(m,1H),2.63(s,3H),2.60–2.52(m,1H),2.41(s,3H),2.38–2.26(m,1H),2.13–2.04(m,1H),1.96–1.87(m,2H),1.59(s,3H)。
实施例59
Figure PCTCN2021081375-appb-000385
合成路线:
Figure PCTCN2021081375-appb-000386
20℃下,将WX007–1(50mg,124.73μmol)溶于N,N–二甲基甲酰胺(20mL)中,随后加入O-(7-氮杂苯并三氮唑-1-基)-N,N,N,N-四甲基脲六氟膦盐(61.65mg,162.15μmol)和N,N-二异丙基乙胺(64.48mg,498.92μmol),反应混合物在20℃和氮气保护下搅拌反应0.5小时,随后加入中间体BB–1(57.13mg,137.20μmol,盐酸盐),反应混合物在20℃和氮气保护下继续搅拌反应14小时。反应完毕后,反应液冷却至室温,倒入水(50mL)中,用乙酸乙酯(10mL×3)萃取,合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过制备HPLC(流动相:乙腈/水;酸性体系:0.05%HCl)分离,得到目标化合物WX059。 1H NMR(400MHz,DMSO_d 6)δ:10.86(d,J=4.4Hz,1H),8.54(br t,J=5.4Hz,1H),7.86(s,1H),7.48(d,J=8.8Hz,1H),7.38–7.33(m,2H),7.31–7.26(m,2H),7.17(d,J=2.4Hz,1H),6.94(br d,J=9.2Hz,1H),4.53(dd,J=5.8,8.2Hz,1H),4.10(dd,J=4.8,11.6Hz,1H),4.07–4.01(m,2H),3.62–3.53(m,1H),3.52–3.45(m,1H),3.35–3.29(m,1H),3.20–3.16(m,1H),2.76–2.64(m,1H),2.59(s,3H),2.58–2.53(m,1H),2.41(s,3H),2.37–2.27(m,1H),2.12–2.02(m,1H),1.60(s,3H)。
实施例60
Figure PCTCN2021081375-appb-000387
合成路线:
Figure PCTCN2021081375-appb-000388
20℃下,将WX007–1(50mg,124.73μmol)溶于N,N–二甲基甲酰胺(20mL)中,随后加入O-(7-氮杂苯并三氮唑-1-基)-N,N,N,N-四甲基脲六氟膦盐(61.65mg,162.15μmol)和N,N-二异丙基乙胺(64.48 mg,498.92μmol),反应混合物在20℃和氮气保护下搅拌反应0.5小时,随后加入中间体BB–15(45.61mg,123.02μmol,盐酸盐),反应混合物在20℃和氮气保护下继续搅拌反应14小时。反应完毕后,反应液冷却至室温,倒入水(50mL)中,用乙酸乙酯(10mL×3)萃取,合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过制备HPLC(流动相:乙腈/水;酸性体系:0.05%HCl)分离,得到目标化合物WX060。 1H NMR(400MHz,DMSO_d 6)δ:10.87(s,1H),8.27(br t,J=5.8Hz,1H),7.83(s,1H),7.48–7.40(m,5H),7.09(s,1H),6.88(dd,J=2.2,9.0Hz,1H),4.55(dd,J=6.2,8.2Hz,1H),4.14–4.06(m,1H),4.03–3.95(m,2H),3.32–3.12(m,4H),2.77–2.65(m,1H),2.62(s,3H),2.60–2.53(m,1H),2.41(s,3H),2.38–2.25(m,1H),2.13–2.04(m,1H),1.82–1.72(m,2H),1.67–1.61(m,2H),1.61(s,3H)。
实施例61
Figure PCTCN2021081375-appb-000389
合成路线:
Figure PCTCN2021081375-appb-000390
室温下,将WX007–1(50.00mg,124.73μmol)溶于N,N–二甲基甲酰胺(10mL)中,分别向其中加入N,N–二异丙基乙胺(80.60mg,623.63μmol)和O-(7-氮杂苯并三氮唑-1-基)-N,N,N,N-四甲基脲六氟膦盐(71.14mg,187.09μmol),混合溶液在室温下搅拌反应半小时。随后向其中加入中间体BB–34(51.12mg,124.73μmol,盐酸盐),反应混合物在室温下搅拌反应12小时。反应完毕后,向反应液中加入水(40mL),用乙酸乙酯(20mL×3)萃取。合并有机相,依次用饱和食盐水(40mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经制备HPLC(流动相:乙腈/水;酸性体系:0.05%HCl)分离,得到目标化合物WX061。MS–ESI m/z:756.5[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.89(s,1H),8.21(s,1H),8.12(s,1H),7.86(s,1H),7.54-7.37(m,5H),7.16(s,1H),6.99(d,J=8.4Hz,1H),4.52(t,J=7.0Hz,1H),4.46(s,2H),4.09(dd,J=4.0,11.6Hz,1H),3.30-3.01(m,6H),2.82-2.65(m,1H),2.65-2.55(m,4H),2.40(s,3H),2.37-2.27(m,1H),2.14-2.03(m,1H),1.61(s,3H),1.55-1.37(m,4H)。
实施例62
Figure PCTCN2021081375-appb-000391
合成路线:
Figure PCTCN2021081375-appb-000392
20℃下,将WX007–1(50mg,124.73μmol)溶于N,N–二甲基甲酰胺(20mL)中,随后加入O-(7-氮杂苯并三氮唑-1-基)-N,N,N,N-四甲基脲六氟膦盐(61.65mg,162.15μmol)和N,N-二异丙基乙胺(64.48mg,498.92μmol),反应混合物在20℃和氮气保护下搅拌反应0.5小时,随后加入中间体BB–16(57.12mg,124.73μmol,盐酸盐),反应混合物在20℃和氮气保护下继续搅拌反应14小时。反应完毕后,反应液冷却至室温,倒入水(50mL)中,用乙酸乙酯(10mL×3)萃取,合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX062。 1H NMR(400MHz,DMSO_d 6)δ:10.87(s,1H),8.31(br t,J=5.6Hz,1H),7.84(s,1H),7.51–7.40(m,5H),7.11(d,J=2.4Hz,1H),6.91(dd,J=2.4,8.8Hz,1H),4.53(t,J=7.0Hz,1H),4.15–4.04(m,3H),3.76(t,J=4.6Hz,2H),3.65–3.56(m,4H),3.48–3.40(m,2H),3.34–3.17(m,4H),2.77–2.65(m,1H),2.61(s,3H),2.59–2.53(m,1H),2.40(s,3H),2.38–2.28(m,1H),2.13–2.04(m,1H),1.61(s,3H)。
实施例63
Figure PCTCN2021081375-appb-000393
合成路线:
Figure PCTCN2021081375-appb-000394
步骤1:中间体WX063–2的合成
将中间体BB–16(200mg,484.42μmol,盐酸盐)和化合物WX063–1(368.33mg,484.42μmol),N,N–二异丙基乙胺(187.82mg,1.45mmol,253.13μL)溶于N,N–二甲基甲酰胺(5mL)中,随后氮气置换三次,降温至0℃,加入O-(7-氮杂苯并三氮唑-1-基)-N,N,N,N-四甲基脲六氟膦盐(368.38mg,968.84μmol),反应混合物在25℃下搅拌2小时。反应完毕后,用乙酸乙酯(50mL)和半饱和食盐水(20mL)稀释反应液。分离有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到中间体WX063–2。
步骤2:化合物WX063的盐酸盐的合成
将中间体WX063–2(380mg,339.67μmol)加入到盐酸/乙酸乙酯溶液(4M,20mL)中,20℃下搅拌30分钟。反应完毕后,将反应液减压浓缩,所得粗品经制备HPLC(流动相:乙腈/水;酸性体系:0.04%HCl)分离,得到目标化合物WX063的盐酸盐。MS–ESI m/z:1018.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.88(s,1H),8.73(d,J=9.6Hz,1H),8.55(br t,J=5.6Hz,1H),8.47(d,J=10.0Hz,1H),8.12–8.02(m,4H),7.84(s,1H),7.81(d,J=8.4Hz,2H),7.48–7.38(m,5H),7.32(d,J=8.0Hz,2H),7.11(d,J=2.4Hz,1H),6.89(dd,J=2.6,9.0Hz,1H),4.40(s,4H),4.34–4.22(m,1H),4.15–4.02(m,3H),3.74(t,J=4.6Hz,2H),3.64–3.49(m,6H),3.46–3.37(m,2H),3.21–3.11(m,2H),3.06(d,J=7.2Hz,2H),2.79–2.68(m,1H),2.67–2.53(m,3H),2.41–2.28(m,1H),2.14–2.04(m,1H),1.71-1.56(m,3H),1.53–1.41(m,4H),1.40–1.29(m,2H),1.25–1.08(m,4H)。
实施例64
Figure PCTCN2021081375-appb-000395
合成路线:
Figure PCTCN2021081375-appb-000396
步骤1:中间体WX064–1的合成
将化合物WX063–1(100mg,131.52μmol)和N,N–二异丙基乙胺(50.99mg,394.55μmol,68.72μL)溶于N,N–二甲基甲酰胺(1mL)中,氮气置换三次,降温至0℃,加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(75.01mg,197.28μmol),反应液升温至20℃,搅拌30分钟,加入中间体BB–24(48.50mg,131.52μmol,盐酸盐),继续搅拌3小时。反应完毕后,向反应液中加入水(1mL)和乙酸乙酯(5mL),分液,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,得到中间体WX064–1。
步骤2:化合物WX064的盐酸盐的合成
将盐酸/乙酸乙酯(4M,20mL)加入到中间体WX064–1(100mg,93.05μmol)中,20℃搅拌2小时。反应完毕后,将反应液减压浓缩,所得残余物经制备HPLC(流动相:乙腈/水;酸性体系:0.05%HCl)分离,得到目标化合物WX064的盐酸盐。MS–ESI m/z:974.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.88(s,1H),8.66(br s,1H),8.57(br t,J=5.6Hz,1H),8.39(br s,1H),8.12–8.04(m,4H),7.85(s,1H),7.81(d,J=8.4Hz,2H),7.47–7.38(m,5H),7.33(d,J=8.4Hz,2H),7.11(d,J=2.4Hz,1H),6.89(dd,J=2.4,9.2Hz,1H),4.40(s,4H),4.33–4.22(m,1H),4.16–4.03(m,3H),3.77(t,J=4.6Hz,2H),3.65–3.56(m,2H),3.49–3.39(m,2H),3.21–3.11(m,2H),3.05(br d,J=7.2Hz,2H),2.78–2.66(m,1H),2.65–2.51(m,3H),2.41–2.28(m,1H),2.13–2.04(m,1H),1.72–1.55(m,3H),1.54–1.41(m,4H),1.40–1.30(m,2H),1.23–1.09(m,4H)。
实施例65
Figure PCTCN2021081375-appb-000397
合成路线:
Figure PCTCN2021081375-appb-000398
步骤1:中间体WX065–1的合成
将化合物WX063–1(112.22mg,147.59μmol)和N,N–二异丙基乙胺(57.22mg,442.76μmol,77.12μL,)溶于N,N–二甲基甲酰胺(1mL)中,氮气置换三次,降温至0℃,加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(112.23mg,295.17μmol),升温至20℃,搅拌30分钟,加入中间体BB–22(50mg,147.59μmol,盐酸盐),继续搅拌3小时。反应完毕后,向反应液中加入水(1mL)和乙酸乙酯(5mL),分液,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,得到中间体WX065–1。
步骤2:化合物WX065的盐酸盐的合成
将盐酸/乙酸乙酯(4M,20mL)加入到中间体WX065–1(120mg,114.87μmol)中,20℃搅拌2小时。反应完毕后,将反应液减压浓缩,所得残余物经制备HPLC分离(流动相:乙腈/水;酸性体系:0.05%HCl),得到目标化合物WX065的盐酸盐。MS–ESI m/z:944.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.87(s,1H),8.67(br d,J=9.2Hz,1H),8.60(br t,J=5.4Hz,1H),8.40(br d,J=10.0Hz,1H),8.12–8.05(m,4H),7.85(s,1H),7.81(d,J=8.4Hz,2H),7.46(d,J=8.8Hz,1H),7.44–7.38(m,4H),7.33(d,J=8.0Hz,2H),7.11(d,J=2.4Hz,1H),6.91(dd,J=2.2,9.0Hz,1H),4.41(s,2H),4.40(s,2H),4.33–4.22(m,1H),4.13–4.00(m,3H),3.48–3.40(m,2H),3.22–3.12(m,2H),3.06(d,J=7.2Hz,2H),2.79–2.52(m,4H),2.40–2.27(m,1H),2.14–2.04(m,1H),2.03–1.94(m,2H),1.73–1.57(m,3H),1.54–1.41(m,4H),1.41–1.29(m,2H), 1.25–1.09(m,4H)。
实施例66
Figure PCTCN2021081375-appb-000399
合成路线:
Figure PCTCN2021081375-appb-000400
步骤1:中间体WX066–1的合成
将中间体BB–15(50mg,158.05μmol,盐酸盐),化合物WX063–1(120.18mg,158.05μmol)和N,N–二异丙基乙胺(61.28mg,474.16μmol,82.59μL)溶于N,N–二甲基甲酰胺(1mL)中,随后氮气保护,降温至0℃,加入O–(7–氮杂苯并三氮唑–1–基)–N,N,N,N–四甲基脲六氟膦盐(120.19mg,316.10μmol),反应液在25℃下搅拌2小时。反应完毕后,用乙酸乙酯(50mL)和水(20mL)稀释反应液,分离有机相。有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,得到中间体WX066–1。
步骤4:化合物WX066的盐酸盐的合成
将中间体WX066–1(158.05μmol)溶于盐酸/乙酸乙酯溶液(4M,5mL),随后在20℃下搅拌1小时。反应完毕后,将反应液减压浓缩,所得粗品经制备HPLC(流动相:乙腈/水;酸性体系:0.05%HCl)分离,得到目标化合物WX066的盐酸盐。MS–ESI m/z:958.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.88(s,1H),8.63(d,J=9.2Hz,1H),8.53(br t,J=5.4Hz,1H),8.43(br d,J=8.8Hz,1H),8.12–8.02(m,4H),784(s,1H),7.80(d,J=8.0Hz,2H),7.48–7.37(m,5H),7.32(d,J=8.0Hz,2H),7.09(d,J=2.4Hz,1H),6.89(dd,J=2.2,9.0Hz,1H),4.41(s,2H),4.40(s,2H),4.33–4.22(m,1H),4.10(dd,J=4.8,12.0Hz,1H),4.05–3.93(m,2H),3.39–3.34(m,2H),3.22–3.13(m,2H),3.06(d,J=7.2Hz,2H),2.79–2.52(m,4H),2.40–2.26(m,1H),2.14–2.04(m,1H),1.82–1.57(m,7H),1.54–1.41(m,4H),1.41-1.29(m,2H),1.25–1.08(m,4H)。
实施例67
Figure PCTCN2021081375-appb-000401
合成路线:
Figure PCTCN2021081375-appb-000402
步骤1:中间体WX067–1的合成
将中间体WX055–2(700mg,1.19mmol)和4-(二甲氧基甲基)哌啶(284.07mg,1.78mmol,19.64μL)溶于甲苯(10mL)中,随后依次加入叔丁醇钾(400.39mg,3.57mmol),2-二环己基膦-2,4,6-三异丙基联苯(113.40mg,237.88μmol)和醋酸钯(40.05mg,178.41μmol),反应混合物在90℃下反应16小时。反应结束后,向反应液中加入乙酸乙酯(50mL)和水(20mL)稀释,分离有机相。有机相用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/1,体积比),得到中间体WX067–1。
步骤2:中间体WX067–2的合成
将湿钯碳(0.3g,纯度:10%)加入到甲醇(5mL)中,随后加入中间体WX067–1(450mg,674.82μmol),混合物在氢气(15Psi)保护下20℃反应16小时。反应结束后,反应液用硅藻土过滤,滤饼用甲醇(50mL×2)淋洗,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–0/1,体积比),得到中间体WX067–2。
步骤3:中间体WX067–3的合成
将中间体WX067–2(220mg,452.12μmol)溶于四氢呋喃(9mL)中,随后加入硫酸(2M,9.04mL),反应液在20℃下反应12小时。反应结束后,向反应液中加入饱和碳酸氢钠调节pH至7,用乙酸乙酯(50mL×2)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到中间体WX067– 3。
步骤4:化合物WX067的合成
将中间体BB-33(196.13mg,560.69μmol,盐酸盐)溶于甲醇(2mL)和二氯甲烷(2mL)中,随后加入醋酸钠(70.76mg,862.59μmol),反应混合物在20℃下搅拌0.5小时。随后加入中间体WX067–3(190mg,431.30μmol)和氰基硼氢化钠(81.31mg,1.29mmol),反应液在20℃下继续搅拌12小时。反应结束后,向反应液中加入饱和碳酸氢钠水溶液调节pH为6–7,用乙酸乙酯(20mL×2)萃取,合并有机相,减压浓缩除去溶剂。所得残余物经过薄层层析分离(展开剂:二氯甲烷/甲醇=18/1–15/1,体积比),得到目标化合物WX067。MS–ESI m/z:738.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.86(s,1H),9.66(s,1H),8.67(s,1H),7.78(s,1H),7.40(d,J=8.8Hz,1H),7.17(d,J=8.8Hz,2H),7.06(d,J=8.8Hz,1H),7.04(d,J=2.0Hz,1H),6.99(dd,J=2.2,9.0Hz,1H),6.86(d,J=8.4Hz,2H),6.79(d,J=2.0Hz,1H),6.77–6.67(m,4H),6.57(dd,J=2.2,8.6Hz,1H),5.06(s,2H),4.08(dd,J=4.8,12.0Hz,1H),3.63–3.51(m,2H),3.16–2.99(m,4H),2.79–2.65(m,1H),2.64–2.53(m,5H),2.41–2.26(m,3H),2.24–2.15(m,2H),2.13–2.03(m,4H),1.81–1.71(m,2H),1.70–1.58(m,1H),1.22–1.09(m,2H)。
实施例68
Figure PCTCN2021081375-appb-000403
合成路线:
Figure PCTCN2021081375-appb-000404
步骤1:中间体WX068–1的合成
将中间体WX055–2(500mg,849.57μmol)溶于甲苯(10mL)中,依次加入4-(2,2-二甲氧基乙基)哌啶(171.02mg,849.57μmol),叔丁醇钾(285.99mg,2.55mmol),醋酸钯(28.61mg,127.44μmol),2–二环己基膦–2,4,6–三异丙基联苯(81.00mg,169.91μmol),氮气置换三次,反应液升温至90℃并在氮气保护下搅拌16小时。反应结束后,将反应液冷却至室温,加入乙酸乙酯(10mL)稀释,经硅藻土过滤,滤饼用乙酸乙酯(5mL×2)淋洗,收集滤液,减压浓缩除去溶剂。所得粗品经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/1,体积比),得到中间体WX068–1。
步骤2:中间体WX068–2的合成
将中间体WX068–1(500mg,705.29μmol),湿钯碳(0.5g,10%含量)溶于甲醇(5mL)和四氢呋喃(10mL)中,氢气置换三次,反应混合物在15℃和氢气保护(15Psi)下搅拌15小时。反应结束后,将反应液经硅藻土过滤,滤饼用四氢呋喃(10mL×2)淋洗,收集滤液,减压浓缩除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–1/1,体积比),得到中间体WX068–2。
步骤3:中间体WX068–3的合成
将中间体WX068–2(50mg,94.58μmol)溶于四氢呋喃(2mL)中,随后加入硫酸(2M,1.89mL),反应液在20℃搅拌1小时。反应结束后,向反应液中加入饱和碳酸氢钠溶液调节pH至7,用乙酸乙酯(10mL×3)萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到中间体WX068–3。
步骤4:化合物WX068的合成
将中间体BB-33(40.02mg,114.40μmol,盐酸盐)溶于甲醇(1mL)和二氯甲烷(1mL)中,随后加入乙酸钠(14.44mg,175.99μmol),反应混合物在20℃下搅拌0.5小时。随后依次加入中间体WX068–3(40mg,88.00μmol)和氰基硼氢化钠(16.59mg,263.99μmol),继续搅拌反应12小时。反应结束后,将反应液减压浓缩除去溶剂,加入二氯甲烷/甲醇混合溶液(5mL,10/1,体积比)稀释,滴加饱和碳酸氢钠水溶液调节pH为6–7,用乙酸乙酯(5mL×3)萃取。合并有机相,用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,所得残余物经过薄层层析分离(展开剂:二氯甲烷/甲醇=18:1–15:1,体积比),得到目标化合物WX068。MS–ESI m/z:752.3[M+H] +1H NMR(400MHz,DMSO_d 6)δ:10.85(s,1H),9.66(s,1H),8.66(s,1H),7.77(s,1H),7.40(d,J=9.2Hz,1H),7.17(d,J=8.4Hz,2H),7.06(d,J=8.4Hz,1H),7.03(d,J=2.0Hz,1H),6.99(dd,J=2.0,9.2Hz,1H),6.86(d,J=8.4Hz,2H),6.79(d,J=2.0Hz,1H),6.76–6.66(m,4H),6.57(dd,J=2.6,8.6Hz,1H),5.05(s,2H),4.09(dd,J=4.2,11.8Hz,1H),3.60–3.51(m,2H),3.11–3.03(m,4H),2.78–2.68(m,1H),2.60–2.54(m,5H),2.42–2.29(m,5H),2.14–2.04(m,4H),1.75–1.67(m,2H),1.45–1.36(m,3H),1.22–1.13(m,2H)。
测试例1:人肺癌NCI–H2228细胞的ALK蛋白水平及其磷酸化水平的体外测试
实验目的
用WB(Western Blot,蛋白质印迹法)的方法,研究化合物在不同浓度条件下对人肺癌细胞NCI–H2228(EML4–ALK融合突变)内ALK蛋白水平及其磷酸化水平(p–ALK)的调控。
实验方案
1)将NCI–H2228细胞解冻并传代2次;
2)将NCI–H2228细胞以每孔6×10 5个细胞接种在6孔板中,隔夜贴壁后用一定浓度的受试化合物处理;
3)处理24小时后,将培养的细胞样品上清弃去,用DPBS(杜氏磷酸盐缓冲液)洗涤2次,然后用一定量100℃预热的2%SDS裂解液(SDS Lysis Buffer)裂解细胞,收集后以100℃变性15分钟;
4)上述裂解液变性冷却后进行蛋白定量测试(Pierce BCA蛋白测定试剂盒,Thermo),然后以5倍上样缓冲液(含二硫苏糖醇(DDT),碧云天)按相同蛋白浓度定容,再以100℃还原变性10分钟;
5)通过SDS–PAGE分离上述样品(10~20μg蛋白),并转移到PVDF膜(Biorad)上;
6)根据目的蛋白分子量裁剪条带,以封闭液(5%牛血清白蛋白TBS–T溶液,其中TBS–T溶液为含0.2%Tween–20的Tris–HCl缓冲液)封闭1小时,再用一抗(anti–ALK(#3633,CST)、anti–p–ALK(#6941,CST)和anti–β-actin(#4970,CST),以封闭液分别按1:1000、1:1000和1:2000稀释配制)4℃孵育过夜;
7)最后用HRP连接的二抗(anti–rabbit IgG(#7074,CST),以封闭液按1:2000稀释配制)室温孵育1小时,然后用化学发光底物(Clarity ECL,Biorad)检测膜上的条带。
实验结果
测试结果如图1所示。
结论
本发明化合物可降低人肺癌细胞NCI–H2228内ALK蛋白水平和磷酸化水平。
测试例2:化合物对ALK激酶的抑制活性
实验目的
根据时间分辨荧光共振能量转移方法来检测化合物对ALK激酶的抑制活性,即荧光信号665nm/615nm比值来表示酶的活性。
实验试剂
实验缓冲溶液:50mM羟乙基哌嗪乙磺酸缓冲溶液(HEPES)(pH 7.5),10mM MgCl 2,1mM EDTA,0.01%聚氧乙烯月桂醚(Brij 35),2mM二硫苏糖醇(DTT)。
酶:重组人源ALK(基因登录号BAG10812.1;1058-1620(末端)氨基酸)用杆状病毒表达系统以N端GST融合蛋白(90kDa)来表达。
酶的底物:50nM ULight-poly GT多肽。
酶作用物:30μM ATP。
检测:铕标记的抗磷酸酪氨酸(PT66)抗体。
实验操作步骤
1.通过声学技术将100%DMSO溶解的化合物加到384孔板中;
2.将重组人源ALK酶和酶的底物(50nM ULight–poly GT多肽)或将酶的作用物(30μM ATP)溶解到新鲜制备的实验缓冲液中;
3.将上述ALK酶和酶的底物缓冲溶液转移到反应孔中;
4.然后,将酶的作用物缓冲溶液加到上述反应孔中以启动反应;
5.在室温下孵育1小时;
6.添加检测混合物(PT66抗体和EDTA)以终止反应,并在室温下孵育60分钟。
7.然后,使用酶标仪读板,得到665nm/615nm荧光信号比值。
数据分析:原始数据中Emission ratio(665nm/615nm)参与抑制率的计算,使用XLfit软件205mode(4 Parameters Logistic Model)分析浓度及抑制率,得到IC50数值以及曲线。
实验结果
测试结果见表2。
表2 本发明化合物对ALK激酶活性测试结果
化合物 IC50(nM) 化合物 IC50(nM)
WX001 21.8 WX003 33.8
WX002的盐酸盐 15.6 WX006 12.2
结论
本发明化合物对ALK激酶展现出优异的抑制作用。
测试例3:在人肺癌细胞NCI–H2228中的抗增殖作用评估
实验目的
本实验通过检测受试化合物在人肺癌细胞NCI–H2228中对细胞增殖的抑制作用。
实验材料:
1.细胞系及培养方法
细胞系 肿瘤类型 生长特点 培养方法
NCI–H2228 肺癌 贴壁 RPMI-1640+10%FBS
2.培养基及试剂
培养基及试剂 生产商 货号
RPMI 1640 GIBCO 22400-089
Dulbecco's PBS Hyclone SH30256.01
FBS Hyclone SY30087.03
Antibiotic-antimycotic GIBCO 15240-062
0.25%Trypsin GIBCO 25200072
DMSO SIGMA D2650
2-mercaptoethanol SIGMA 60-24-2
3.多孔板
Greiner
Figure PCTCN2021081375-appb-000405
96-孔板,平底黑板(带盖及透明底),#655090。
4.细胞活性实验所用试剂及仪器
(1)Promega CellTiter-Glo发光法细胞活性检测试剂盒(Promega-G7573)。
(2)2104
Figure PCTCN2021081375-appb-000406
读板器,PerkinElmer。
实验方案
1.细胞培养
将肿瘤细胞系按上述培养条件在37℃,5%CO 2的培养箱中进行培养。定期传代,取处于对数生长期的细胞用于铺板。
2.细胞铺板
(1).用台盼兰进行细胞染色并计数活细胞;
(2).将细胞浓度调整至合适浓度;
Cell line Density(per 96-well)
NCI–H2228 7000
(3).按上表所示在培养板中每孔加入90μL细胞悬液,在空白对照空中加入不含细胞的培养液;
(4).将培养板在37℃,5%CO 2,及100%相对湿度的培养箱中培养过夜。
3.化合物存储板制备
制备化合物起始浓度400倍浓度的母液存储板:将化合物用DMSO从最高浓度梯度稀释至最低浓度。每次现用现配。
4.化合物起始浓度10倍浓度的工作液的配制及化合物处理细胞
(1).在V形底的96孔板中加入78μL细胞培养液,从化合物起始浓度400倍浓度的母液存储板中吸取2μL化合物加入96孔板的细胞培养液中。在溶媒对照和空白对照中加入2μL DMSO。加入化合物或DMSO后用排枪吹打混匀。
(2).加药:取10μL的化合物起始浓度10倍浓度的工作液加入到细胞培养板中。在溶媒对照和空白对照中加入10μL DMSO–细胞培养液混合液。
(3).将96孔细胞板放回培养箱中培养3天。
5.CellTiter–Glo发光法细胞活性检测
以下步骤按照Promega CellTiter–Glo发光法细胞活性检测试剂盒(Promega–G7573)的说明书来进行。
(1).将CellTiter–Glo缓冲液融化并放置至室温;
(2).将CellTiter–Glo底物放置至室温;
(3).在一瓶CellTiter-Glo底物中加入10mL CellTiter–Glo缓冲液以溶解底物,从而配制CellTiter–Glo工作液;
(4).缓慢涡旋震荡使充分溶解;
(5).取出细胞培养板放置30分钟使其平衡至室温;
(6).在每孔中加入50μL(等于每孔中细胞培养液一半体积)的CellTiter–Glo工作液。用铝箔纸包裹细胞板以避光;
(7).将培养板在轨道摇床上振摇2分钟以诱导细胞裂解;
(8).培养板在室温放置10分钟以稳定发光信号;
(9).在2104 EnVision读板器上检测发光信号。
6.数据分析
用下列公式来计算检测化合物的抑制率(Inhibition rate,IR):IR(%)=(RLU溶媒对照–RLU化合物)/(RLU溶媒对照–RLU空白对照)*100%.在Excel中计算不同浓度化合物的抑制率,然后用GraphPad Prism软件作抑制曲线图和计算相关参数,包括最小抑制率,最大抑制率及IC50。
实验结果:
测试结果见表3。
表3 本发明化合物在NCI–H2228细胞系中的细胞增殖抑制作用
化合物 NCI–H2228 IC50(nM)
WX001 91
WX002的盐酸盐 160
结论:本发明化合物在人肺癌细胞NCI–H2228中展现出优异细胞增殖的抑制作用。
测试例4:化合物的小鼠药代动力学评价
实验目的
本研究受试动物选用C57BL雄性小鼠,应用LC/MS/MS法定量测定小鼠静脉注射或口服给予测试化合物不同时间点的血浆中的药物浓度,以评价受试药物在小鼠体内的药代动力学特征。
实验材料
C57BL/6(C57)小鼠(雄性,17-20g,7~10周龄,上海灵畅)。
实验操作
将测试化合物的澄清溶液经尾静脉注射到C57小鼠体内(过夜禁食),或灌胃给予到C57小鼠(过夜禁食)。静脉注射给药于给药后0.0833,0.25,0.5,1,2,4,8和24h从隐静脉采血200μL,置于添加了EDTA-K2的抗凝管(江苏康健医疗用品有限公司)中,在4℃,将混合物充分涡旋混合并在3200g下离心10分钟;口服灌胃给药于给药后0.25,0.5,1,2,4,6,8和24h从隐静脉采血,置于添加了EDTA-K2的抗凝管(江苏康健医疗用品有限公司)中,将混合物充分涡旋混合并以3200g离心10分钟。采用LC-MS/MS法测定血药浓度,使用Phoenix WinNonlin 6.3药动学软件,以非房室模型Linear/log trapezoidal法计算相关药代动力学参数。
实验结果
测试结果见表4。
表4 本发明化合物在小鼠中的药代动力学参数
Figure PCTCN2021081375-appb-000407
结论
本发明化合物在小鼠体内具有低的血浆清除率,和可接受的口服灌胃生物利用度。
测试例5:化合物在人肺癌NCI–H2228细胞皮下异种移植肿瘤NOD SCID小鼠模型的体内药效学研究细胞培养
人肺癌细胞NCI–H2228(
Figure PCTCN2021081375-appb-000408
CRL–5935 TM),体外贴壁单层培养,培养条件为RPMI 1640培养基中加10%胎牛血清,100U/mL青霉素和100μg/mL链霉素,37℃,5%CO 2孵箱培养。一周两次用胰酶–EDTA进行常规消化处理传代。当细胞饱和度为80%–90%,数量到达要求时,收取细胞,计数,接种。
实验动物
NOD SCID小鼠,雌性,6-8周龄,体重18–22克。
实验方案
将0.2mL(10×10 6个)NCI–H2228细胞(加基质胶,体积比为1:1)皮下接种于每只小鼠的右后背,肿瘤平均体积达到171mm 3时开始分组给药。七天为一个给药周期,每天给药一次,将实验化合物皮下注射给药,一共给药四个周期。受试化合物WX001和WX002皮下注射剂量均为50mg/kg。每周两次用游标卡尺测量肿瘤直径,肿瘤体积以立方毫米计量,通过以下的公式计算:V=0.5a×b 2,其中a和b分别是肿瘤的长径和短径。受试化合物的抑瘤疗效通过使用TGI(%)来评价。TGI(%),反映肿瘤生长抑制率。TGI(%)=[1–(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。
实验结果
测试结果见表5。
表5 测试化合物在人肺癌细胞NCI–H2228细胞皮下异种移植肿瘤NOD SCID模型测试结果
Figure PCTCN2021081375-appb-000409
结论
本发明化合物在人肺癌NCI–H2228细胞皮下异种移植肿瘤模型上展示了的缩瘤作用。
测试例6:人急性髓系白血病细胞MV4-11的BRD4蛋白水平及c-Myc蛋白水平的体外测试
实验目的
用WB(Western Blot,蛋白质印迹法)的方法,研究化合物在不同浓度条件下对人急性髓系白血病细胞MV4-11内BRD4蛋白水平及下游c-Myc表达的影响。
实验材料
5.细胞系及培养方法
细胞系 来源(货号) 肿瘤类型 生长特点 培养方法
MV4-11 ATCC(CRLP9591) 人急性髓系白血病 悬浮 1640+10%FBS
6.培养基及试剂
培养基及试剂 生产商 货号
RMPI-1640 GIBCO 22400089
FBS Hyclone RB35950
实验方案
1)将MV4-11细胞复苏并培养至合适状态;
2)将MV4-11细胞以每孔1.5×10 6个细胞接种在6孔板中,隔夜贴壁后用一定浓度的受试化合物处理;
3)处理24小时后,将培养的细胞样品上清弃去,用DPBS(杜氏磷酸盐缓冲液,21-031-CVR,CORNING)洗涤2次,然后用一定量100℃预热的2%SDS裂解液(SDS Lysis Buffer,P0013G,碧云天)裂解细胞,收集后以100℃变性20分钟;
4)上述裂解液变性冷却后进行蛋白定量测试(BCA蛋白定量试剂盒,P0011,碧云天),然后以5倍上样缓冲液(含还原试剂(Reducing buffer),NP0009,Thermo)按相同蛋白浓度定容,再以100℃还原变性10分钟;
5)通过SDS–PAGE分离上述样品(10~20μg总蛋白),并转移到PVDF膜(Biorad)上;
6)根据目的蛋白分子量裁剪条带,以封闭液(3%牛血清白蛋白TBS–T溶液,其中TBS–T溶液为含0.2%Tween–20的Tris–HCl缓冲液)封闭1小时,再用一抗BRD4(#13440S,CST)、c-Myc(#5605,CST)和anti–β-actin(#3700,CST),以封闭液分别按1:1000、1:1000和1:2000稀释配制4℃孵育过夜;
7)最后用HRP连接的二抗(anti–rabbit IgG(#7074,CST),anti-mouse IgG(#7076,CST)以封闭液按1:2000稀释配制)室温孵育1小时,然后用化学发光底物(Clarity ECL,Biorad)检测膜上的条带。
实验结果
测试结果如图2所示。
结论
本发明化合物可降低人急性髓系白血病细胞MV4-11内BRD4蛋白水平并抑制c-Myc的表达。
测试例7:在人急性髓系白血病细胞MV4-11中的抗增殖作用评估
实验目的
本实验通过ATP荧光活性检测法(CellTiter–Glo)检测受试化合物在人急性髓系白血病细胞MV4-11中对细胞增殖的抑制作用。
实验材料
1.细胞系及培养方法
细胞系 来源(货号) 肿瘤类型 生长特点 培养方法
MV4-11 ATCC(CRLP9591) 人急性髓系白血病 悬浮 1640+10%FBS
2.培养基及试剂
培养基及试剂 生产商 货号
RMPI-1640 GIBCO 22400089
FBS HyClone RB35945
CTG Promega G7573
3.多孔板
Greiner
Figure PCTCN2021081375-appb-000410
96–孔板,平底黑板(带盖及透明底),#655090。
4.细胞活性实验所用试剂及仪器
(3)Promega CellTiter–Glo发光法细胞活性检测试剂盒(Promega–G7573)。
(4)2104
Figure PCTCN2021081375-appb-000411
读板器,PerkinElmer。
实验方案
5.细胞培养
将肿瘤细胞系按上述培养条件在37℃,5%CO 2的培养箱中进行培养。定期传代,取处于对数生长期的细胞用于铺板。
6.细胞铺板
(1).用台盼兰进行细胞染色并计数活细胞;
(2).将细胞浓度调整至合适浓度;
(3).在培养板中每孔加入90μL细胞悬液,每孔含有细胞6000个。Blank组及其他孔,未接种细胞,只加入90μL培养液;
(4).将培养板在37℃,5%CO 2,及100%相对湿度的培养箱中培养过夜。
7.第一批化合物加药:
(1)配置10×药物溶液:取无菌圆底96孔板,WX007、WX008、WX009、WX010、WX011和WX012化合物母液浓度为10mM,取5μL化合物加入5μL 1640培养基到第一个孔,混匀,得到5mM浓度,取第一个孔化合物5μL到装有45μL1640培养基的第三个孔,混匀,得到500μM,从第三个孔取5μL到装有45μL 1640培养基的第四个孔,混匀,得到50μM,从第四个孔取20μL到装有180μL1640培养基的第五个孔,混匀,得到5μM母液。另取新的取无菌圆底96孔板,第一个孔取5μM化合物60μL,取5μM化合物30μL到第二个加入了60μL 1640培养基中,依此类推,3倍稀释,得到共9个浓度。空白对照组加入等体积DMSO,一样的稀释方式。
(2)配制终浓度药物溶液:在90μL培养液中加入10μL上面配置的10×药物溶液,3个复孔。对照组加入等体积DMSO溶液,细胞板轻弹混匀,blank组加入10μL 1640培养基。轻轻拍打混匀,放回37℃,5%CO 2培养4天。
8.第二批化合物加药:
(1)配置药物溶液:取无菌圆底96孔板,每个化合物stock浓度为10mM,取2μL化合物加入18μL DMSO到第一个孔,混匀,得到1mM浓度;取第一个孔化合物10μL到装有90μL 1640培养基的第三个孔,混匀,得到100μM;
(2)WX058、WX059、WX060和WX042,从上面得到的第三个孔中取12μL到装有108μL 1640培养基的第四个孔,混匀,得到10μM最大浓度的药物。
(3)另取新的取无菌圆底96孔板,将(2)中各药物的最大浓度药物60μL放在第一个孔,从第一个孔取60μL到第二个加入了60μL 1640培养基中,依此类推,2倍稀释,得到共9个浓度。
(4)空白对照组加入等体积DMSO,一样的稀释方式。
(5)在90μL培养液中加入10μL上面配置的梯度药物溶液,3个复孔。对照组加入等体积DMSO溶液,细胞板轻弹混匀,空白对照组加入10μL 1640培养基。轻轻拍打混匀,放回37℃,5%CO 2培养4天。
9.CellTiter–Glo发光法细胞活性检测
以下步骤按照Promega CellTiter–Glo发光法细胞活性检测试剂盒(Promega–G7573)的说明书来进行,整个过程避光进行。
(1).将CellTiter–Glo缓冲液融化并放置至室温;
(2).将CellTiter–Glo底物放置至室温;
(3).在一瓶CellTiter–Glo底物中加入10mL CellTiter–Glo缓冲液以溶解底物,从而配制CellTiter–Glo工作液;
(4).缓慢涡旋震荡使充分溶解;
(5).取出细胞培养板放置5分钟使其平衡至室温;
(6).在每孔中加入100μL(等于每孔中细胞培养液一半体积)的CellTiter–Glo工作液;
(7).将培养板在轨道摇床上避光振摇10分钟;
(8).在2105EnVision读板器上检测发光信号。
10.数据分析
用下列公式来计算检测化合物的抑制率(Inhibition rate,IR):IR(%)=(RLU溶媒对照–RLU化合物)/(RLU溶媒对照–RLU空白对照)*100%。在Excel中计算不同浓度化合物的抑制率,然后用GraphPad Prism软件作抑制曲线图和计算相关参数,包括最小抑制率,最大抑制率及IC 50
实验结果:
测试结果见表6。
表6 本发明化合物在H358细胞系中的细胞增殖抑制作用
化合物 MV4-11 IC 50(nM) 化合物 MV4-11 IC 50(nM)
WX007 201.6 WX012 70.6
WX008 22.47 WX058 11.31
WX009 51.68 WX059 16.58
WX010 61.28 WX060 17.01
WX011 73.79 WX042 35.35
结论:本发明化合物在人急性髓系白血病细胞MV4-11中展现出优异的细胞增殖抑制作用。
测试例8:人非小细胞肺癌细胞H358的PDEδ蛋白水平的体外测试
实验目的
用WB(Western Blot,蛋白质印迹法)的方法,研究化合物在不同浓度条件下对非小细胞肺癌细胞H358内PDEδ蛋白水平的影响。
实验材料
1.细胞系及培养方法
细胞系 来源(货号) 肿瘤类型 生长特点 培养方法
H358 ECACC(95111733) 人非小细胞肺癌 贴壁 1640+10%FBS
2.培养基及试剂
培养基及试剂 生产商 货号
RMPI-1640 GIBCO 22400089
FBS ExCell Bio FSP500
实验方案
1)将H358细胞复苏并培养至合适状态;
2)将H358细胞以每孔4.5×10 5个细胞接种在6孔板中,隔夜贴壁后用一定浓度的受试化合物处理;
3)处理8小时后,将培养的细胞样品上清弃去,用DPBS(杜氏磷酸盐缓冲液,21-031-CVR,CORNING)洗涤2次,然后用一定量100℃预热的2%SDS裂解液(SDS Lysis Buffer,P0013G,碧云天)裂解细胞,收集后以100℃变性15分钟;
4)上述裂解液变性冷却后进行蛋白定量测试(BCA蛋白定量试剂盒,P0011,碧云天),然后以5倍上样缓冲液(含还原试剂(Reducing buffer),NP0009,Thermo)按相同蛋白浓度定容,再以100℃还原变性10分钟;
5)通过SDS–PAGE分离上述样品(10~20μg总蛋白),并转移到PVDF膜(Biorad)上;
6)根据目的蛋白分子量裁剪条带,以封闭液(3%牛血清白蛋白TBS–T溶液,其中TBS–T溶液为含0.2%Tween–20的Tris–HCl缓冲液)封闭1小时,再用一抗PDEδ(NBP2-38346,Novus)和anti–β-actin(#4970,CST),以封闭液分别按1:1000和1:2000稀释配制4℃孵育过夜;
7)最后用HRP连接的二抗(anti–rabbit IgG(#7074,CST),以封闭液按1:2000稀释配制)室温孵育1小时,然后用化学发光底物(Clarity ECL,Biorad)检测膜上的条带。
实验结果
测试结果如图3所示。
结论
本发明化合物可降低人非小细胞肺癌细胞H358内PDEδ蛋白水平。

Claims (20)

  1. 式(I)所示化合物或其药学上可接受的盐,
    PTM-L-ULM
    (I)
    其中,
    PTM选自结合于靶向蛋白的药物或其衍生物;
    L为连接PTM和ULM的链;
    ULM选自式(III-1)和(III-2)所示结构,
    Figure PCTCN2021081375-appb-100001
    E选自键、-CH 2-、-NR 1-、-O-、-S-、-S(=O)-、-S(=O) 2-、-C(=O)、和-C(=O)NR 2-;
    R 1和R 2分别独立地选自H和C 1-3烷基;
    环X、环Y和环Z分别独立地选自苯基、噻吩基、呋喃基、三氮唑基、恶唑基、异恶唑基、吡咯基和吡啶基。
  2. 根据权利要求1所述化合物或其药学上可接受的盐,其中,ULM选自式(II-11)、(II-12)、(II-13)、(II-1)、(II-2)、(II-3)、(II-4)、(III-21)、(III-22)、(III-23)和(III-24)所示结构,
    Figure PCTCN2021081375-appb-100002
    Figure PCTCN2021081375-appb-100003
    T 1、T 2和T 3分别独立地选自CH和N;
    E 1、E 2和E 3分别独立地选自键、-CH 2-、-NR 1-、-O-、-S-、-S(=O)-、-S(=O) 2-、-C(=O)、和-C(=O)NR 2-;
    R 1和R 2分别独立地选自H和C 1-3烷基;
    环A、环B和环C分别独立地选自苯基、噻吩基、呋喃基、吡咯基和吡啶基。
  3. 根据权利要求1所述化合物或其药学上可接受的盐,其中,环A选自苯基和噻吩基。
  4. 根据权利要求1、2或3任意一项所述化合物或其药学上可接受的盐,其中,ULM选自式(II-11-1)、(II-11-2)、(II-1-1)和(II-2-1)所示结构,
    Figure PCTCN2021081375-appb-100004
    其中,T 1和E 1如权利要求2所定义。
  5. 根据权利要求2所述化合物或其药学上可接受的盐,其中,环B选自苯基。
  6. 根据权利要求1、2或5任意一项所述化合物或其药学上可接受的盐,其中,ULM选自式(II-12-1)和(III-21-1)所示结构,
    Figure PCTCN2021081375-appb-100005
    其中,T 2和E 2如权利要求2所定义。
  7. 根据权利要求2所述化合物或其药学上可接受的盐,其中,环C选自苯基。
  8. 根据权利要求1、2或7任意一项所述化合物或其药学上可接受的盐,其中,ULM选自式(II-13-1)、(II-3-1)、(II-4-2)、(III-22-1)、(III-23-1)和(III-24-1)所示结构,
    Figure PCTCN2021081375-appb-100006
    其中,T 3和E 3如权利要求2所定义。
  9. 根据权利要求1、2、5或7任意一项所述化合物或其药学上可接受的盐,其中,ULM选自
    Figure PCTCN2021081375-appb-100007
  10. 根据权利要求1所述化合物或其药学上可接受的盐,其中,PTM选自作用于ALK、BET、CDK、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、RAS、BTK、VEGFR、 JAK、HER2、HDAC、Akt、PI3K、mTOR、AR、ER、PDEδ、SRC、MDM2、RAF、IRAK4、STAT3和c-Myc的药物或其衍生物。
  11. 根据权利要求10所述化合物或其药学上可接受的盐,其中,PTM选自作用于ALK、BRD4、CDK4/6、CDK8、CDK9、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、KRAS、BTK、VEGFR、HER2、HDAC、Akt、PI3K、mTOR、AR、ER、PDEδ、SRC、JAK、MDM2、RAF、IRAK4、STAT3和c-Myc的药物或其衍生物。
  12. 根据权利要求11所述化合物或其药学上可接受的盐,其中,PTM选自,
    Figure PCTCN2021081375-appb-100008
    Figure PCTCN2021081375-appb-100009
    Figure PCTCN2021081375-appb-100010
    Figure PCTCN2021081375-appb-100011
    其中,
    Figure PCTCN2021081375-appb-100012
    选自单键和双键;
    T 10、T 11、T 12和T 13分别独立地选自N和CR ccc,且T 10、T 11、T 12和T 13至多2个选自N;
    R a选自H、
    Figure PCTCN2021081375-appb-100013
    和NH 2
    R b选自H和CH 3
    R c选自H和
    Figure PCTCN2021081375-appb-100014
    R d选自H、NH 2
    Figure PCTCN2021081375-appb-100015
    R e选自H和
    Figure PCTCN2021081375-appb-100016
    R f选自H和OH;
    R g选自H和OH;
    R h选自H和
    Figure PCTCN2021081375-appb-100017
    R i选自H和CH 3
    R j选自H和CH 3
    R k选自H、NH 2、NHCH 3
    Figure PCTCN2021081375-appb-100018
    R l选自H、
    Figure PCTCN2021081375-appb-100019
    R m选自H和
    Figure PCTCN2021081375-appb-100020
    R n选自H、NH 2、NHCH 2CH 3
    Figure PCTCN2021081375-appb-100021
    R o选自H和CH 3
    R p选自H和CH 3
    R q选自H、
    Figure PCTCN2021081375-appb-100022
    R r选自H和
    Figure PCTCN2021081375-appb-100023
    R s选自H、F和Cl;
    R t选自H和Br;
    R aa选自H和苯基;
    R bb和R cc分别独立地选自H和CN;
    R dd、R ff、R hh、R ii和R jj分别独立地选自H、OCH 3
    Figure PCTCN2021081375-appb-100024
    R ee选自H和F;
    R gg选自H和Cl;
    R kk选自H、OH和
    Figure PCTCN2021081375-appb-100025
    R ll和R mm分别独立地选自H、F、Cl、Br、I、OH和OCH 3
    R nn选自H、OH和
    Figure PCTCN2021081375-appb-100026
    R oo选自H和OH;
    R pp选自H、OH和
    Figure PCTCN2021081375-appb-100027
    R qq和R ss分别独立地选自H、F、Cl、Br、I、OH和OCH 3
    R tt选自H、OH和
    Figure PCTCN2021081375-appb-100028
    R uu选自H、F、Cl、Br、I、OH和OCH 3
    R vv选自H和
    Figure PCTCN2021081375-appb-100029
    R ww选自H和
    Figure PCTCN2021081375-appb-100030
    R xx选自H和OH;
    R yy、R zz和R aaa分别独立地选自H和
    Figure PCTCN2021081375-appb-100031
    R bbb选自H和
    Figure PCTCN2021081375-appb-100032
    R ccc选自H、F、Cl、Br和I;
    R ddd选自H和NH 2
  13. 根据权利要求12所述化合物或其药学上可接受的盐,其中,PTM选自,
    Figure PCTCN2021081375-appb-100033
    Figure PCTCN2021081375-appb-100034
    Figure PCTCN2021081375-appb-100035
  14. 根据权利要求1所述化合物或其药学上可接受的盐,其中,L选自C 1-20烷基,L上的1、2或3个CH 2被环丙基置换,L上的1、2、3、4、5或6个CH 2任选被选自-NH-、=N-、-O-、-S-、-C(=O)-、-C(=O)O-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-S(=O)-、-S(=O) 2-、-S(=O) 2NH-、=NO-、-P(=O)(OH)-、-P(=O)(R)-、-P(=O)(NHR)-、-P(=O)(NR 2)-、-P(=O)(R)NH-、C 2-4烯基、C 2-4炔基、C 6-12芳基、5-12元杂芳基、C 3-14环烷基和3-14元杂环烷基的原子或基团置换,L任选被1、2、3、4、5或6个R取代,R选自H、F、Cl、Br、I、OH、NH、CN、C 1-3烷基、C 6-12芳基和C 5-10杂芳基。
  15. 根据权利要求14所述化合物或其药学上可接受的盐,其中,L选自式(II-5)、(II-6)和(IV-1)所示结构
    Figure PCTCN2021081375-appb-100036
    其中,
    E 8选自3-8元单杂环烷基、5-14元桥杂环烷基和5-14元螺杂环烷基;
    E 9和E 10分别独立地选自O和NH;
    T 4、T 7、T 8和T 9分别独立地选自CH和N;
    R 7、R 8和R 9分别独立地选自H和C 1-3烷基;
    m2、m3、m5、m6、m7、m8和m9分别独立地选自0或1;
    m1、m4和m10分别独立地选自0~15;
    且m1、m2、m3、m4、m5、m6、m7、m8、m9和m10至少一个不为0;
    且m3和m6至少有一个为1;
    m12和m13分别独立地选自0或1;
    m11、m14和m15分别独立地选自0~15;
    且m11、m12、m13、m14和m15至少一个不为0;
    m17、m20和m23分别独立地选自0~15;
    m16、m18、m19、m21、m22和m24分别独立地选自0或1;
    且m16、m17、m18、m19、m20、m21、m22、m23和m24至少一个不为0;
    且m18和m19至少有一个为1。
  16. 根据权利要求1、14或15任意一项所述化合物或其药学上可接受的盐,其中,L选自式(IV-1-1)所示结构
    Figure PCTCN2021081375-appb-100037
    其中,
    E 9和E 10分别独立地选自O和NH;
    R 9选自H和CH 3
    m16选自0或1;
    m17选自0、1、2或3;
    m20选自0、1、2或3;
    m21和m22分别独立地选自0或1;
    m24选自0或1。
  17. 根据权利要求1所述化合物或其药学上可接受的盐,其中,L选自式(I-4)、(I-5)、(I-6)、(II-7)、(II-8)、(IV-2)、(P-1)和(P-2)所示结构
    Figure PCTCN2021081375-appb-100038
    其中,
    R 3、R 4、R 5和R 6分别独立地选自H和C 1-3烷基;
    n1、n4和n5分别独立地选自0~15,n2和n3分别独立地选自0或1,且n1、n2、n3、n4和n5至少一个不为0;
    n6、n7、n10和n11分别独立地选自0~15,n8和n9分别独立地选自0或1,且n6、n7、n8、n9、n10和n11至少一个不为0;
    n12、n13、n16和n17分别独立地选自0~15,n14和n15分别独立地选自0或1,且n12、n13、n14、n15、n16和n17至少一个不为0;
    n19和n22分别独立地选自0~15,n18、n20和n21分别独立地选自0或1,且n18、n19、n20、n21和n22至少一个不为0;
    E 4和E 5分别独立地选自键、O、NH和S(=O) 2
    E 6和E 7分别独立地选自O和NH;E 8选自O和NH;
    环D选自苯基、哌啶基、哌嗪基、1,2,3-三氮唑基、环丁基和N-杂环丁基;
    E 11选自O和NH;
    n23选自0或1,n24选自0~15,且n23和n24至少一个不为0;
    环F和环G分别独立地选自哌啶基和哌嗪基;
    n25选自1~15;
    n26选自0和1。
  18. 根据权利要求1或17所述化合物或其药学上可接受的盐,其中,L选自NH、
    Figure PCTCN2021081375-appb-100039
    Figure PCTCN2021081375-appb-100040
    Figure PCTCN2021081375-appb-100041
  19. 下式所示化合物或其药学上可接受的盐,
    Figure PCTCN2021081375-appb-100042
    Figure PCTCN2021081375-appb-100043
    Figure PCTCN2021081375-appb-100044
    Figure PCTCN2021081375-appb-100045
    Figure PCTCN2021081375-appb-100046
    Figure PCTCN2021081375-appb-100047
    Figure PCTCN2021081375-appb-100048
    Figure PCTCN2021081375-appb-100049
  20. 根据权利要求1~19任意一项所述的化合物或其药学上可接受的盐在制备治疗与ALK、BET、CDK、PARP、EGFR、γ-secretase、CBFβ-SMMHC、WEE1、MEK、BCR-ABL、MET、RAS、BTK、VEGFR、JAK、HER2、HDAC、Akt、PI3K、mTOR、AR、ER、PDEδ、SRC、MDM2、RAF、IRAK4、STAT3和c-Myc相关疾病的药物中的应用。
PCT/CN2021/081375 2020-03-17 2021-03-17 蛋白降解调节剂与其使用方法 WO2021185291A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21771463.3A EP4122925A4 (en) 2020-03-17 2021-03-17 PROTEOLYSIS REGULATOR AND METHOD OF USE
JP2022556672A JP2023517393A (ja) 2020-03-17 2021-03-17 タンパク質分解調整剤およびその使用方法
CN202180024213.6A CN115380026B (zh) 2020-03-17 2021-03-17 蛋白降解调节剂与其使用方法
US17/906,557 US20230158152A1 (en) 2020-03-17 2021-03-17 Proteolysis regulator and method for using same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202010187846 2020-03-17
CN202010187846.6 2020-03-17
CN202011400367 2020-12-01
CN202011400367.4 2020-12-01
CN202011583584.1 2020-12-28
CN202011583584 2020-12-28
CN202110182231.9 2021-02-09
CN202110182231 2021-02-09

Publications (1)

Publication Number Publication Date
WO2021185291A1 true WO2021185291A1 (zh) 2021-09-23

Family

ID=77770306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081375 WO2021185291A1 (zh) 2020-03-17 2021-03-17 蛋白降解调节剂与其使用方法

Country Status (5)

Country Link
US (1) US20230158152A1 (zh)
EP (1) EP4122925A4 (zh)
JP (1) JP2023517393A (zh)
CN (1) CN115380026B (zh)
WO (1) WO2021185291A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573534A (zh) * 2022-03-30 2022-06-03 八叶草健康产业研究院(厦门)有限公司 一种5-溴苯并呋喃酮的制备方法
WO2022194221A1 (zh) * 2021-03-17 2022-09-22 南京明德新药研发有限公司 呋喃稠环取代的戊二酰亚胺类化合物
WO2022262782A1 (zh) * 2021-06-17 2022-12-22 南京明德新药研发有限公司 戊二酰亚胺取代的异噁唑稠环化合物及其应用
WO2023045978A1 (zh) * 2021-09-26 2023-03-30 南京明德新药研发有限公司 2,6-哌啶二酮类化合物与其应用
WO2023088406A1 (zh) * 2021-11-18 2023-05-25 正大天晴药业集团股份有限公司 稠合酰亚胺类衍生物
WO2023125944A1 (zh) * 2021-12-31 2023-07-06 正大天晴药业集团股份有限公司 含有杂环的化合物
CN116535423A (zh) * 2022-01-26 2023-08-04 武汉誉祥医药科技有限公司 抑制/诱导降解egfr激酶的化合物及其药物组合物和应用
WO2023227696A1 (en) * 2022-05-25 2023-11-30 Katholieke Universiteit Leuven New derivatives for treating trpm3 mediated disorders
WO2024034593A1 (ja) * 2022-08-09 2024-02-15 アステラス製薬株式会社 G12v変異krasタンパクの分解を誘導するための複素環化合物
WO2024037616A1 (zh) * 2022-08-19 2024-02-22 正大天晴药业集团股份有限公司 包含环己基的化合物
WO2024055994A1 (zh) * 2022-09-14 2024-03-21 南京明德新药研发有限公司 萘并呋喃取代的戊二酰亚胺类化合物的晶型、制备方法及其应用
WO2024098692A1 (zh) * 2022-11-08 2024-05-16 杭州格博生物医药有限公司 Wee1蛋白激酶降解剂及其用途
WO2024146502A1 (en) * 2023-01-03 2024-07-11 Beijing Neox Biotech Limited Wee1 degrading compounds
TWI853707B (zh) 2022-09-14 2024-08-21 大陸商上海齊魯製藥研究中心有限公司 萘并呋喃取代的戊二醯亞胺類化合物的晶型、製備方法及其應用
US12097261B2 (en) 2021-05-07 2024-09-24 Kymera Therapeutics, Inc. CDK2 degraders and uses thereof
WO2024199147A1 (zh) * 2023-03-24 2024-10-03 漳州片仔癀药业股份有限公司 2,6-哌啶二酮类化合物的晶型、制备方法及其应用
WO2024199135A1 (zh) * 2023-03-24 2024-10-03 漳州片仔癀药业股份有限公司 2,6-哌啶二酮类化合物盐型和晶型的制备方法及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023518423A (ja) * 2020-03-19 2023-05-01 カイメラ セラピューティクス, インコーポレイテッド Mdm2分解剤およびそれらの使用
US12115154B2 (en) 2020-12-16 2024-10-15 Srx Cardio, Llc Compounds for the modulation of proprotein convertase subtilisin/kexin type 9 (PCSK9)
EP4428133A1 (en) * 2023-03-07 2024-09-11 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Bifunctional protein targeting chimeras (protacs) comprising arylidene-indolinone scaffold as dcaf11 ligand and use thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245023A (zh) * 2008-11-14 2011-11-16 康瑟特制药公司 取代的二氧代哌啶基邻苯二甲酰亚胺衍生物
CN104797256A (zh) * 2012-09-10 2015-07-22 细胞基因公司 用于治疗局部晚期乳腺癌的方法
WO2019060693A1 (en) * 2017-09-22 2019-03-28 Kymera Therapeutics, Inc. CRBN LIGANDS AND USES THEREOF
CN109641874A (zh) * 2016-05-10 2019-04-16 C4医药公司 用于靶蛋白降解的c3-碳连接的戊二酰亚胺降解决定子体
WO2020048546A1 (zh) * 2018-09-07 2020-03-12 南京明德新药研发有限公司 三环取代哌啶二酮类化合物
WO2020048548A1 (zh) * 2018-09-07 2020-03-12 正大天晴药业集团股份有限公司 一种作用于crbn蛋白的三并环类化合物
WO2020048547A1 (zh) * 2018-09-07 2020-03-12 南京明德新药研发有限公司 三环并呋喃取代哌啶二酮类化合物

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9508538D0 (en) * 1995-04-27 1995-06-14 Zeneca Ltd Quinazoline derivatives
KR100620772B1 (ko) * 1998-05-15 2006-09-13 와이어쓰 에스트로겐과 2-페닐-1-[4-(2-아미노에톡시)-벤질]-인돌을 포함하는 약제학적 조성물
WO2003068746A1 (en) * 2002-02-11 2003-08-21 Bayer Pharmaceuticals Corporation Aryl ureas as kinase inhibitors
SI2130537T1 (sl) * 2002-03-13 2013-01-31 Array Biopharma, Inc. N3-alkilirani derivati benzimidazola kot inhibitorji mek
US8748618B2 (en) * 2009-05-13 2014-06-10 University Of Virginia Patent Foundation Inhibitors of inv(16) leukemia
CN103159680A (zh) * 2011-12-14 2013-06-19 爱美尼迪药物有限公司 咪唑二酮类化合物及其用途
KR20220101015A (ko) * 2014-04-14 2022-07-18 아비나스 오퍼레이션스, 인코포레이티드 단백질분해의 이미드-기초된 조절인자 및 연관된 이용 방법
CN107257800B (zh) * 2014-12-23 2020-06-30 达纳-法伯癌症研究所股份有限公司 通过双功能分子诱导靶蛋白降解的方法
EP3368538B1 (en) * 2015-11-01 2021-09-01 The Regents of The University of Colorado, A Body Corporate Wee 1 kinase inhibitors and methods of making and using the same
US11192898B2 (en) * 2016-04-06 2021-12-07 The Regents Of The University Of Michigan MDM2 protein degraders
AU2017254708B2 (en) * 2016-04-22 2021-09-16 Dana-Farber Cancer Institute, Inc. Degradation of cyclin-dependent kinase 4/6 (CDK4/6) by conjugation of CDK4/6 inhibitors with E3 ligase ligand and methods of use
EP3351544A1 (en) * 2017-01-12 2018-07-25 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Benzene disulfonamide for the treatment of cancer
MX2019009046A (es) * 2017-01-31 2019-10-30 Arvinas Operations Inc Ligandos de cereblon y compuestos bifuncionales que comprenden el mismo.
JP7366031B2 (ja) * 2017-09-22 2023-10-20 カイメラ セラピューティクス, インコーポレイテッド タンパク質分解剤およびそれらの使用
WO2019113071A1 (en) * 2017-12-05 2019-06-13 Icahn School Of Medicine At Mount Sinai Compositions and methods for treating alk-mediated cancer
IL315310A (en) * 2017-12-26 2024-10-01 Kymera Therapeutics Inc IRAK joints and used in them
US11220515B2 (en) * 2018-01-26 2022-01-11 Yale University Imide-based modulators of proteolysis and associated methods of use
WO2019196812A1 (zh) * 2018-04-09 2019-10-17 上海科技大学 蛋白降解靶向化合物、其抗肿瘤应用、其中间体及中间体应用
JP2021521192A (ja) * 2018-04-13 2021-08-26 アルビナス・オペレーションズ・インコーポレイテッドArvinas Operations, Inc. セレブロンリガンドおよび同リガンドを含む二機能性化合物
US20220356185A1 (en) * 2018-07-06 2022-11-10 Kymera Therapeutics, Inc. Mertk degraders and uses thereof
EP3817822A4 (en) * 2018-07-06 2022-07-27 Kymera Therapeutics, Inc. PROTEIN DEGRADANTS AND USES THEREOF
WO2021047627A1 (zh) * 2019-09-12 2021-03-18 南京明德新药研发有限公司 一种可降解蛋白的并环类化合物及其应用
US11905276B2 (en) * 2019-09-12 2024-02-20 Medshine Discovery Inc. Bicyclic compound that acts as CRBN protein regulator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245023A (zh) * 2008-11-14 2011-11-16 康瑟特制药公司 取代的二氧代哌啶基邻苯二甲酰亚胺衍生物
CN104797256A (zh) * 2012-09-10 2015-07-22 细胞基因公司 用于治疗局部晚期乳腺癌的方法
CN109641874A (zh) * 2016-05-10 2019-04-16 C4医药公司 用于靶蛋白降解的c3-碳连接的戊二酰亚胺降解决定子体
WO2019060693A1 (en) * 2017-09-22 2019-03-28 Kymera Therapeutics, Inc. CRBN LIGANDS AND USES THEREOF
WO2020048546A1 (zh) * 2018-09-07 2020-03-12 南京明德新药研发有限公司 三环取代哌啶二酮类化合物
WO2020048548A1 (zh) * 2018-09-07 2020-03-12 正大天晴药业集团股份有限公司 一种作用于crbn蛋白的三并环类化合物
WO2020048547A1 (zh) * 2018-09-07 2020-03-12 南京明德新药研发有限公司 三环并呋喃取代哌啶二酮类化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4122925A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194221A1 (zh) * 2021-03-17 2022-09-22 南京明德新药研发有限公司 呋喃稠环取代的戊二酰亚胺类化合物
US12097261B2 (en) 2021-05-07 2024-09-24 Kymera Therapeutics, Inc. CDK2 degraders and uses thereof
WO2022262782A1 (zh) * 2021-06-17 2022-12-22 南京明德新药研发有限公司 戊二酰亚胺取代的异噁唑稠环化合物及其应用
WO2023045978A1 (zh) * 2021-09-26 2023-03-30 南京明德新药研发有限公司 2,6-哌啶二酮类化合物与其应用
WO2023088406A1 (zh) * 2021-11-18 2023-05-25 正大天晴药业集团股份有限公司 稠合酰亚胺类衍生物
WO2023125944A1 (zh) * 2021-12-31 2023-07-06 正大天晴药业集团股份有限公司 含有杂环的化合物
CN116535423A (zh) * 2022-01-26 2023-08-04 武汉誉祥医药科技有限公司 抑制/诱导降解egfr激酶的化合物及其药物组合物和应用
CN114573534A (zh) * 2022-03-30 2022-06-03 八叶草健康产业研究院(厦门)有限公司 一种5-溴苯并呋喃酮的制备方法
WO2023227696A1 (en) * 2022-05-25 2023-11-30 Katholieke Universiteit Leuven New derivatives for treating trpm3 mediated disorders
WO2024034593A1 (ja) * 2022-08-09 2024-02-15 アステラス製薬株式会社 G12v変異krasタンパクの分解を誘導するための複素環化合物
WO2024037616A1 (zh) * 2022-08-19 2024-02-22 正大天晴药业集团股份有限公司 包含环己基的化合物
WO2024055994A1 (zh) * 2022-09-14 2024-03-21 南京明德新药研发有限公司 萘并呋喃取代的戊二酰亚胺类化合物的晶型、制备方法及其应用
TWI853707B (zh) 2022-09-14 2024-08-21 大陸商上海齊魯製藥研究中心有限公司 萘并呋喃取代的戊二醯亞胺類化合物的晶型、製備方法及其應用
WO2024098692A1 (zh) * 2022-11-08 2024-05-16 杭州格博生物医药有限公司 Wee1蛋白激酶降解剂及其用途
WO2024146502A1 (en) * 2023-01-03 2024-07-11 Beijing Neox Biotech Limited Wee1 degrading compounds
WO2024199147A1 (zh) * 2023-03-24 2024-10-03 漳州片仔癀药业股份有限公司 2,6-哌啶二酮类化合物的晶型、制备方法及其应用
WO2024199135A1 (zh) * 2023-03-24 2024-10-03 漳州片仔癀药业股份有限公司 2,6-哌啶二酮类化合物盐型和晶型的制备方法及其应用

Also Published As

Publication number Publication date
EP4122925A1 (en) 2023-01-25
CN115380026B (zh) 2023-11-07
JP2023517393A (ja) 2023-04-25
US20230158152A1 (en) 2023-05-25
EP4122925A4 (en) 2024-04-17
CN115380026A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2021185291A1 (zh) 蛋白降解调节剂与其使用方法
WO2022171147A1 (zh) 嘧啶并芳香环类化合物
WO2020048546A1 (zh) 三环取代哌啶二酮类化合物
TW201920115A (zh) 化合物、組合物及方法
WO2020048548A1 (zh) 一种作用于crbn蛋白的三并环类化合物
EP3640247B1 (en) Syk inhibitor and use method therefor
WO2020048547A1 (zh) 三环并呋喃取代哌啶二酮类化合物
US20220313829A1 (en) Egfr protein degradant and anti-tumor application thereof
WO2020239076A1 (zh) 作为甲状腺素受体-β激动剂的哒嗪酮类衍生物及其应用
TW201512191A (zh) 作為jak抑制劑之聯吡唑衍生物
WO2020035065A1 (zh) 作为ret抑制剂的吡唑衍生物
KR20230145361A (ko) G12d 변이 kras 단백의 분해를 유도하기 위한 퀴나졸린화합물
TW201427971A (zh) 二氫吡唑gpr40調節劑
WO2023217045A1 (zh) 选择性抑制parp1的氟代喹喔啉酮衍生物
TW202012396A (zh) 具乙烯磺醯胺部分之k-ras調節劑
WO2022194221A1 (zh) 呋喃稠环取代的戊二酰亚胺类化合物
ES2705623T3 (es) Derivados de tetrahidroquinolina como inhibidores del bromodominio
WO2022194269A1 (zh) 新型egfr降解剂
WO2021115335A1 (zh) 作为周期蛋白依赖性激酶9抑制剂的化合物及其应用
WO2023138662A9 (zh) 苯并嘧啶类化合物及其应用
WO2021244634A1 (zh) 咪唑并吡啶类化合物及其用途
WO2022262782A1 (zh) 戊二酰亚胺取代的异噁唑稠环化合物及其应用
WO2023280317A1 (zh) 苄氨基三并环类化合物及其应用
CN113993867A (zh) 作为fgfr和vegfr双重抑制剂的并环类化合物
WO2023241618A1 (zh) 氨基嘧啶类化合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021771463

Country of ref document: EP

Effective date: 20221017