WO2023045978A1 - 2,6-哌啶二酮类化合物与其应用 - Google Patents

2,6-哌啶二酮类化合物与其应用 Download PDF

Info

Publication number
WO2023045978A1
WO2023045978A1 PCT/CN2022/120267 CN2022120267W WO2023045978A1 WO 2023045978 A1 WO2023045978 A1 WO 2023045978A1 CN 2022120267 W CN2022120267 W CN 2022120267W WO 2023045978 A1 WO2023045978 A1 WO 2023045978A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
room temperature
reaction
alkylene
stirred
Prior art date
Application number
PCT/CN2022/120267
Other languages
English (en)
French (fr)
Inventor
雷茂义
徐雨
王绍辉
罗云富
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Publication of WO2023045978A1 publication Critical patent/WO2023045978A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings

Definitions

  • the invention relates to a class of 2,6-piperidine diketone compounds and applications thereof. It specifically relates to the compound represented by formula (II), its stereoisomer and its pharmaceutically acceptable salt.
  • Interleukin-1 Receptor-Associated Kinase 4 Interleukin-1 Receptor-Associated Kinase 4, IRAK4 in the signaling pathway of Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1R) It acts as a link between the previous and the next, receiving upstream signals to activate the downstream JNK and NF- ⁇ B signaling pathways, which is closely related to the development and process of human inflammatory immune diseases and tumors.
  • TLR Toll-like receptor
  • MyD88 myeloid differentiation factor
  • IRAK4 can not only phosphorylate proteins, but also form a complex with MyD88 to exert its biological functions.
  • Protein degradation targeting chimera is a technology that uses the ubiquitin-proteasome system to target specific proteins and induce their degradation in cells.
  • the ubiquitin-proteasome system is the main pathway for intracellular protein degradation. Its normal physiological function is mainly responsible for removing denatured, mutated or harmful proteins in cells. The degradation of more than 80% of proteins in cells depends on the ubiquitin-proteasome system.
  • PROTACs use the cell's own protein destruction mechanism to remove specifically targeted proteins in the cell. So far, PROTAC technology has matured and can be used to target a variety of proteins, including scaffolding proteins, transcription factors, enzymes, and regulatory proteins.
  • idomides are known as Immunomodulatory Drugs (IMiDs), which activate the ubiquitination of the transcription factors IKZF1 and IKZF3 by the E3 ubiquitin ligase complex formed with Cereblon (CRBN), and then recognized by the proteasome and degradation, resulting in toxic effects on tumors.
  • IiDs Immunomodulatory Drugs
  • CRBN Cereblon
  • CRBN has been proven to have clear curative effects in various hematological malignancies, skin diseases such as leprosy and erythema nodosum, and autoimmune diseases such as systemic lupus erythematosus.
  • the present invention provides a compound represented by formula (II), its stereoisomer or a pharmaceutically acceptable salt thereof,
  • T IRAK selected from
  • L is selected from C 2-10 alkylene, any 2, 3 or 4 CH 2 on the C 2-10 alkylene are independently replaced by Ra, and the C 2-10 alkylene are independently optionally substituted by 1, 2, 3, 4, 5 or 6 halogens;
  • Ra are independently selected from -N(R)-, -O-, -C(O)NH-, -C 3-6 cycloalkyl- and -4-8 membered heterocycloalkyl-;
  • R is selected from H and C 1-4 alkyl
  • T1 is selected from CH and N;
  • Ring A is selected from C 6-10 aryl and 5-10 membered heteroaryl.
  • the aforementioned Ra are independently selected from -NH-, -N(CH 3 )-, -O-, -C(O)NH-, -cyclopropyl-, -cyclobutyl- , -cyclopentyl-, -cyclohexyl-, -piperidinyl-, -piperazinyl-, -azaspiro[3.3]heptyl-, -diazaspiro[3.3]heptyl- and - Azabicyclo[3.1.0]hexyl-, other variables are as defined herein.
  • the aforementioned Ra are independently selected from -NH-, -N(CH 3 )-, -O-, -C(O)NH-, Other variables are as defined herein.
  • the above-mentioned L is selected from C 4-10 alkylene, any 3 CH 2s of the C 4-10 alkylene are independently replaced by Ra, and the C 4-10 alkylene
  • the radicals are each independently optionally substituted by 1, 2, 3, 4, 5 or 6 halogens, and other variables are as defined in the present invention.
  • the above-mentioned L is selected from -C 3-6 cycloalkyl-CH 2 -Ra-C 1-3 alkylene-Ra-C 0-3 alkylene-, -C 3-6 Cycloalkyl-C 1-3 alkylene-4-8 membered heterocycloalkyl-C 1-3 alkylene-Ra-, and -C 3-6 cycloalkyl- C 1-3 alkylene- 4-8 membered heterocycloalkyl-C 1-3 alkylene-, said C 1-3 alkylene groups are independently optionally substituted by 1 or 2 halogens, and other variables are as defined in the present invention.
  • the above-mentioned L is selected from -cyclohexyl-CH 2 -N(R)-C 1-3 alkylene-OC 1-3 alkylene-, -cyclohexyl-CH 2 -4- 8-membered heterocycloalkyl-C 1-3 alkylene-N(R)-,-cyclohexyl-CH 2 -piperidinyl-C 1-3 alkylene-C(O)NH-,-cyclohexyl -CH 2 -piperidinyl-CF 2 -C(O)NH-, -cyclohexyl-CH 2 -piperazinyl-C 1-3 alkylene-C(O)NH- and -cyclohexyl-CH 2 -piperazinyl-C 1-3 alkylene-, other variables are as defined in the present invention.
  • the above-mentioned ring A is selected from phenyl and naphthyl, and other variables are as defined in the present invention.
  • the present invention also provides compounds represented by formulas (II-1), (II-2), (II-3) and (II-4), their stereoisomers or pharmaceutically acceptable salts thereof, Wherein, L and T 1 are as defined in formula (II).
  • the present invention also provides compounds represented by formulas (II-1a), (II-2a), (II-3a) and (II-4a), their stereoisomers or pharmaceutically acceptable salts thereof,
  • L 1 is selected from -C 1-3 alkylene-Ra-C 1-3 alkylene-Ra-C 0-3 alkylene-, -C 1-3 alkylene-4-8 membered hetero Cycloalkyl-C 1-3 alkylene-Ra- and -C 1-3 alkylene-4-8 membered heterocycloalkyl-C 1-3 alkylene-, the C 1-3 alkylene
  • Each group is independently optionally substituted by 1 or 2 halogen atoms;
  • T 1 and Ra are as defined in formula (II).
  • the present invention also provides the compound represented by formula (I), its stereoisomer or its pharmaceutically acceptable salt,
  • L is selected from C 1-10 alkylene, wherein 1, 2 or 3 CH 2 are optionally replaced by Ra, and the C 1-10 alkylene is optionally substituted by 1 or 2 halogen atoms;
  • Ra is selected from -N(R)-, -O-, -C(O)NH-, -C 3-6 cycloalkyl- or -4-8 membered heterocycloalkyl-;
  • R is selected from H or C 1-4 alkyl
  • T1 is selected from CH or N;
  • Ring A is selected from C 6-10 aryl or 5-10 membered heteroaryl
  • the "4-8 membered heterocycloalkyl and 5-10 membered heteroaryl" each contain 1, 2 or 3 heteroatoms independently selected from N, O, S or Se.
  • Ra described in formula (I) is selected from -N(CH 3 )-, -O-, -C(O)NH-, -cyclopropyl- or -piperazinyl-, other Variables are as defined herein.
  • Ra described in formula (I) is selected from -N(CH 3 )-, -O-, -C(O)NH- or Other variables are as defined herein.
  • the ring A described in formula (I) is selected from phenyl or naphthyl, and other variables are as defined in the present invention.
  • the present invention also provides compounds represented by formulas (I-1), (I-2) and (I-3), their stereoisomers or pharmaceutically acceptable salts thereof,
  • L 1 and T 1 are as defined in the present invention.
  • the present invention also provides the following compounds, their stereoisomers or pharmaceutically acceptable salts thereof,
  • the present invention also provides the following compounds, their stereoisomers or pharmaceutically acceptable salts thereof,
  • the above-mentioned compound is selected from:
  • the present invention also provides a pharmaceutical composition containing a therapeutically effective amount of the compound of the present invention, its isomer or a pharmaceutically acceptable salt thereof.
  • the present invention also provides the above-mentioned compounds, their stereoisomers, their pharmaceutically acceptable salts and their pharmaceutical compositions in the preparation of drugs for the treatment of tumors related to interleukin-1 receptor-associated kinase 4 degradation targeting chimeras Applications.
  • the tumor associated with the interleukin-1 receptor-related kinase 4 degradation targeting chimera is B-cell lymphoma.
  • the compounds of the present invention exhibit excellent degradation effects on target proteins IRAK4, IKZF1 and IKZF3.
  • the compound of the present invention exhibits excellent inhibitory effect on cell proliferation in lymphoma cell lines OCI-LY10, TMD-8 and SU-DHL-2.
  • the oral plasma systemic exposure of the compounds of the present invention is relatively high.
  • the pharmacokinetic properties of the compounds of the invention are superior in the rodent mouse, rat and non-rodent beagle dog.
  • the compound of the present invention has a significant tumor inhibitory effect in the human B-cell lymphoma OCI-LY10 cell SCID mouse xenograft tumor model, and has a dose-dependent effect.
  • the compound of the present invention has a significant tumor-inhibiting effect in the human lymphoma SU-DHL-2 cell subcutaneous xenograft tumor CB17 SCID mouse model.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms, which are suitable for use in contact with human and animal tissues within the scope of sound medical judgment , without undue toxicity, irritation, allergic reaction or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • “Pharmaceutical composition” means containing one or more compounds described in the present application, its isomers or pharmaceutically acceptable salts thereof, and other components such as physiological/pharmaceutically acceptable carriers and excipients.
  • the purpose of the pharmaceutical composition is to promote the administration to the organism, facilitate the absorption of the active ingredient and thus exert biological activity.
  • targeting chimera denotes a bifunctional molecule comprising two small-molecule ligands, one with high affinity for the target protein of interest, and a second that recruits an E3 ligase that renders the protein ubiquitous. Proteins are primed and targeted for proteolysis by the 26S proteasome.
  • terapéuticaally effective amount means an amount of a compound of the present invention that: (i) treats or prevents a particular disease, condition or disorder, (ii) alleviates, improves or eliminates the effects of a particular disease, condition or disorder one or more symptoms, or (iii) preventing or delaying the onset of one or more symptoms of a particular disease, condition, or disorder described herein.
  • a therapeutically effective amount of the drug reduces the number of cancer cells; reduces tumor size; inhibits (i.e., to some extent slows and preferably stops) cancer cell infiltration into surrounding organs; inhibits (i.e., to some extent slowing down and preferably stopping) tumor metastasis; inhibiting tumor growth to some extent; and/or alleviating to some extent one or more symptoms associated with cancer.
  • a drug can prevent the growth of and/or kill existing cancer cells, it can be cytostatic and/or cytotoxic.
  • pharmaceutically acceptable salt refers to the salts of the compounds of the present application, which are prepared from the compounds with specific substituents found in the present application and relatively non-toxic acids or bases.
  • base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of base in neat solution or in a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salts or similar salts.
  • acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the acid, either neat solution or in a suitable inert solvent.
  • Certain specific compounds of the present application contain basic and acidic functional groups and thus can be converted into either base or acid addition salts.
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound containing acid groups or bases by conventional chemical methods.
  • such salts are prepared by reacting the free acid or base form of these compounds with a stoichiometric amount of the appropriate base or acid in water or an organic solvent or a mixture of both.
  • treating includes inhibiting, slowing, stopping or reversing the progression or severity of an existing symptom or condition.
  • the compounds of the invention may exist in particular geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers isomers, (D)-isomers, (L)-isomers, and their racemic and other mixtures, such as enantiomerically or diastereomerically enriched mixtures, all of which are subject to the present within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All such isomers, as well as mixtures thereof, are included within the scope of the present invention.
  • enantiomer or “optical isomer” refer to stereoisomers that are mirror images of each other.
  • cis-trans isomers or “geometric isomers” arise from the inability to rotate freely due to the double bond or the single bond of the carbon atoms forming the ring.
  • diastereoisomer refers to stereoisomers whose molecules have two or more chiral centers and which are not mirror images of the molecules.
  • keys with wedge-shaped solid lines and dotted wedge keys Indicates the absolute configuration of a stereocenter, with a straight solid-line bond and straight dashed keys Indicates relative configurations, for example, with Indicates trans 1,4-disubstituted cyclohexane, with Represents cis-1,4-disubstituted cyclohexane.
  • the terms “enriched in an isomer”, “enriched in an isomer”, “enriched in an enantiomer” or “enantiomerically enriched” refer to one of the isomers or enantiomers
  • the content of the enantiomer is less than 100%, and the content of the isomer or enantiomer is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or Greater than or equal to 96%, or greater than or equal to 97%, or greater than or equal to 98%, or greater than or equal to 99%, or greater than or equal to 99.5%, or greater than or equal to 99.6%, or greater than or equal to 99.7%, or greater than or equal to 99.8%, or greater than or equal to 99.9%.
  • the terms “isomer excess” or “enantiomeric excess” refer to the difference between the relative percentages of two isomers or two enantiomers. For example, if the content of one isomer or enantiomer is 90% and the other isomer or enantiomer is 10%, then the isomer or enantiomeric excess (ee value) is 80% .
  • Optically active (R)- and (S)-isomers as well as D and L-isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If one enantiomer of a compound of the invention is desired, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, wherein the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure desired enantiomer.
  • a diastereoisomeric salt is formed with an appropriate optically active acid or base, and then a diastereomeric salt is formed by a conventional method known in the art. Diastereomeric resolution is performed and the pure enantiomers are recovered. Furthermore, the separation of enantiomers and diastereomers is usually accomplished by the use of chromatography using chiral stationary phases, optionally in combination with chemical derivatization methods (e.g. amines to amino groups formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute the compounds.
  • compounds may be labeled with radioactive isotopes such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C).
  • radioactive isotopes such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C).
  • heavy hydrogen can be used to replace hydrogen to form deuterated drugs.
  • the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon.
  • deuterated drugs can reduce toxic side effects and increase drug stability. , enhance the efficacy, prolong the biological half-life of drugs and other advantages. All changes in isotopic composition of the compounds of the invention, whether radioactive or not, are included within the scope of the invention.
  • linking group listed does not indicate its linking direction
  • its linking direction is arbitrary, for example,
  • the connecting group L in the middle is -MW-, at this time -MW- can connect ring A and ring B in the same direction as the reading order from left to right to form It can also be formed by connecting loop A and loop B in the opposite direction to the reading order from left to right
  • any one or more sites of the group can be linked to other groups through chemical bonds.
  • connection method of the chemical bond is not positioned, and there is an H atom at the connectable site, when the chemical bond is connected, the number of H atoms at the site will decrease correspondingly with the number of chemical bonds connected to become the corresponding valence group.
  • the chemical bonds that the site connects with other groups can use straight solid line bonds Straight dotted key or tilde express.
  • the straight-shaped solid-line bond in -OCH3 indicates that it is connected to other groups through the oxygen atom in the group;
  • the straight dotted line bond in indicates that the two ends of the nitrogen atom in the group are connected to other groups;
  • the wavy lines in indicate that the 1 and 2 carbon atoms in the phenyl group are connected to other groups, another example Indicates that any connectable site on the naphthalene ring can be connected to other groups through a chemical bond, including at least These 6 connection methods.
  • substituted means that any one or more hydrogen atoms on a specified atom are replaced by a substituent, which may include deuterium and hydrogen variants, as long as the valence of the specified atom is normal and the substituted compound is stable.
  • Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the type and number of substituents may be arbitrary on a chemically realizable basis.
  • any variable eg, R
  • its definition is independent at each occurrence.
  • said group may optionally be substituted with up to two R, with independent options for each occurrence of R.
  • substituents and/or variations thereof are permissible only if such combinations result in stable compounds.
  • substituted means that a specified atom or group can be replaced by another atom or group as specified.
  • CH 2 in CH 3 CH 2 CH 3 can be replaced by O, S, NH to obtain CH 3 OCH 3 , CH 3 SCH 3 and CH 3 NHCH 3 .
  • C n-n+m or C n -C n+m includes any specific instance of n to n+m carbons, for example C 1-12 includes C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , also including any range from n to n+m, for example, C 1-12 includes C 1- 3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12 etc.; similarly, n to n +m means that the number of atoms on the ring is n to n+m, for example, a 3-12-membered ring includes a 3-membered ring, a 4-membered ring, a 5-membered ring, a 6-membered ring, a 7-membered ring, an 8-membere
  • C 1-10 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 1 to 10 carbon atoms.
  • the C 1-10 alkyl group includes C 1-9 , C 1-8 , C 1-7 , C 1-6 , C 1-5 , C 1-4 , C 1-3 , C 1-2 , C 18 , C 17 , C 16 , C 15 , C 14 , C 13 , C 12 , C 11 , C 10 , C 1-9 , C 8 , C 7 , C 6 and C 5 alkyl, etc.; it can be Is monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine).
  • C 1-8 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl , s-butyl and t-butyl), pentyl (including n-pentyl, isopentyl and neopentyl), hexyl, heptyl, octyl, etc.
  • C 1-10 alkylene means a divalent C 1-10 alkyl group.
  • alkyl means a linking alkylene group.
  • alkylene denotes a saturated divalent hydrocarbyl group obtained by removing two hydrogen atoms from a saturated straight or branched chain hydrocarbon. Examples of alkylene groups represented as attached include, but are not limited to: -CH2-, -CH2CH2- , -CH ( CH3 ) CH2- , -CH( CH2CH3 )-, -CH 2 CH(CH 3 )-, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 -, etc.
  • C 1-4 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 1 to 4 carbon atoms.
  • the C 1-4 alkyl group includes C 1-3 alkyl group, C 1-2 alkyl group, C 2 alkyl group, C 3 alkyl group and methyl group; it can be monovalent (such as methyl), divalent (such as methylene) or polyvalent (such as methine).
  • C 1-6 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl , s-butyl and t-butyl) and so on.
  • C 3-6 cycloalkyl means a saturated cyclic hydrocarbon group composed of 3 to 6 carbon atoms, which is a monocyclic and bicyclic system, and the C 3-6 cycloalkyl includes C 3-5 , C 4-5 and C 5-6 cycloalkyl, etc.; it may be monovalent, divalent or multivalent.
  • Examples of C 3-6 cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • the term "4-8 membered heterocycloalkyl" by itself or in combination with other terms means a saturated cyclic group consisting of 4 to 8 ring atoms, respectively, whose 1, 2, 3 or 4 ring atoms is a heteroatom independently selected from O, S, N, and Se, and the remainder is carbon atoms, wherein the nitrogen atom is optionally quaternized, and the nitrogen and sulfur heteroatoms can be optionally oxidized (i.e., NO and S(O) p , p is 1 or 2). It includes monocyclic and bicyclic ring systems, wherein bicyclic ring systems include spiro, fused and bridged rings.
  • a heteroatom may occupy the attachment position of the heterocycloalkyl to the rest of the molecule.
  • the 4-8-membered heterocycloalkyl group includes 4-7-membered, 4-6-membered, 4-5-membered, 4-membered, 5-membered and 6-membered heterocycloalkyl groups and the like.
  • Examples of 4-8 membered heterocycloalkyl groups include, but are not limited to, azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothiophenyl ( Including tetrahydrothiophen-2-yl and tetrahydrothiophen-3-yl, etc.), tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2- piperidinyl and 3-piperidinyl, etc.), piperazinyl (including 1-piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), Dioxanyl, dithianyl, isoxazolidinyl, isothiazolid
  • C 6-10 aromatic ring and “C 6-10 aryl” in the present invention can be used interchangeably, and the term “C 6-10 aromatic ring” or “C 6-10 aryl” means that the A cyclic hydrocarbon group composed of 6 to 10 carbon atoms with a conjugated ⁇ -electron system, which can be a monocyclic, fused bicyclic or fused tricyclic system, wherein each ring is aromatic. It can be monovalent, divalent or multivalent, and the C 6-10 aryl group includes C 6-9 , C 9 , C 10 and C 6 aryl groups and the like. Examples of C 6-10 aryl include, but are not limited to, phenyl, naphthyl (including 1-naphthyl and 2-naphthyl, etc.).
  • the terms “5-10 membered heteroaryl ring” and “5-10 membered heteroaryl” can be used interchangeably in the present invention, and the term “5-10 membered heteroaryl” means that there are 5 to 10 rings
  • the nitrogen and sulfur heteroatoms may be optionally oxidized (ie, NO and S(O) p , where p is 1 or 2).
  • the 5-10 membered heteroaryl can be attached to the rest of the molecule through a heteroatom or a carbon atom.
  • the 5-10 membered heteroaryl group includes 5-8 membered, 5-7 membered, 5-6 membered, 5-membered and 6-membered heteroaryl groups and the like.
  • Examples of the 5-10 membered heteroaryl groups include, but are not limited to, pyrrolyl (including N-pyrrolyl, 2-pyrrolyl and 3-pyrrolyl, etc.), pyrazolyl (including 2-pyrazolyl and 3-pyrrolyl Azolyl, etc.), imidazolyl (including N-imidazolyl, 2-imidazolyl, 4-imidazolyl and 5-imidazolyl, etc.), oxazolyl (including 2-oxazolyl, 4-oxazolyl and 5- Oxazolyl, etc.), triazolyl (1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, 1H-1,2,4-triazolyl and 4H-1, 2,4-triazolyl, etc.), tetrazolyl, isoxazolyl (3-isoxazolyl, 4-isoxazolyl and 5-isoxazolyl, etc.), thiazolyl (including 2-thiazolyl
  • halogen or halogen by itself or as part of another substituent means a fluorine, chlorine, bromine or iodine atom.
  • the structure of the compounds of the present invention can be confirmed by conventional methods known to those skilled in the art. If the present invention involves the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, in single crystal X-ray diffraction (SXRD), the cultured single crystal is collected with a Bruker D8 venture diffractometer to collect diffraction intensity data, the light source is CuK ⁇ radiation, and the scanning method is: After scanning and collecting relevant data, the absolute configuration can be confirmed by further analyzing the crystal structure by direct method (Shelxs97).
  • SXRD single crystal X-ray diffraction
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and the methods well known to those skilled in the art Equivalent alternatives, preferred embodiments include but are not limited to the examples of the present invention.
  • the solvent used in the present invention is commercially available.
  • Ph represents phenyl
  • Me represents methyl
  • Et represents ethyl
  • M represents moles per liter
  • Boc represents tert-butoxycarbonyl, which is an amino protecting group.
  • compound BB-1-1 (40g, 416.29mmol) was dissolved in N,N-dimethylformamide (400mL), benzyl bromide (74.76g, 437.10mmol, 51.92mL) and carbonic acid were added Cesium (339.09g, 1.04mol), the reaction mixture was stirred and reacted at room temperature for 2 hours under nitrogen protection. After the reaction was complete, add water (1500mL) to the reaction solution, extract with ethyl acetate (5 ⁇ 1000mL), combine the organic phases, wash with 10% brine (3 ⁇ 1000mL), dry over anhydrous sodium sulfate, filter, and the filtrate Concentrate under reduced pressure to remove the solvent.
  • the compound BB-1-2 (58g, 311.48mmol) was dissolved in dichloromethane (500mL), cooled to 0°C, and diethylaminosulfur trifluoride (150.62g, 934.43mmol, 123.46 mL), the reaction mixture was stirred at room temperature for 16 hours.
  • compound BB-1-3 (26.5g, 127.28mmol) was dissolved in methanol (300mL), palladium hydroxide/carbon (5g, purity: 20%) and hydrochloric acid (2M, 25mL) were added, and the reaction mixture was heated to 60° C., and the reaction was stirred for 30 hours under hydrogen (50 psi) atmosphere. After the reaction was completed, the reaction solution was filtered through diatomaceous earth, the filter cake was rinsed with methanol (800 mL), the filtrate was collected, and the filtrate was concentrated under reduced pressure to remove the solvent to obtain compound BB-1-4.
  • compound BB-1-4 (30g, 254.06mmol) was dissolved in concentrated sulfuric acid (300mL, purity: 98%), then nitric acid (68.950g, 711.24mmol, 49.25mL, purity: 65-68%) was added dropwise %), the reaction mixture was stirred at 0°C for 10 minutes, then heated to 115°C and stirred for 16 hours.
  • the compound BB-1-5 (13.5g, 82.78mmol) and the crude product obtained above were dissolved in N,N-dimethylformamide (300mL), potassium carbonate (24g, 173.65mmol) was added, and the reaction mixture Heat to 80°C and stir the reaction for 16 hours. After the reaction was completed, the reaction solution was cooled to room temperature, water (100 mL) was added, extracted with ethyl acetate (40 mL ⁇ 2), the organic phases were combined, dried with anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to remove the solvent.
  • N,N-dimethylformamide 300mL
  • potassium carbonate 24g, 173.65mmol
  • compound BB-2-1 (50g, 289.00mmol) was dissolved in tetrahydrofuran (750mL), cooled to -5°C, and a n-hexane solution of lithium bis(trimethylsilyl)amide (1M, 578.00 mL), the reaction mixture was stirred at -5°C for 10 minutes, di-tert-butyl dicarbonate (63.07 g, 289.00 mmol, 66.39 mL) was added, the reaction mixture was slowly warmed to room temperature and stirred for 1 hour.
  • the compound BB-2-2 (39g, 142.79mmol) was dissolved in N,N-dimethylformamide (400mL), cooled to 0°C, and sodium hydride (8.57g, 214.19mmol, Purity: 60%), after reacting at 0-5°C for 30 minutes, bromomethylcyclopropane (23.13g, 171.35mmol, 16.41mL) was added, and the reaction mixture was slowly warmed to room temperature and stirred for 15 hours.
  • reaction solution was slowly added to water (1.5L), extracted with ethyl acetate (1L ⁇ 3), the organic phases were combined, washed with saturated brine (3L ⁇ 3), and the organic phase was washed with anhydrous sodium sulfate Dry, filter, and concentrate the filtrate under reduced pressure to remove the solvent.
  • compound BB-2-3 (47.53g, 145.26mmol) and ethyl 4-oxazolecarboxylate (20.5g, 145.26mmol) were dissolved in N,N-dimethylformamide (500mL) , tri(o-methylphenyl)phosphine (8.84g, 29.05mmol), palladium acetate (3.26g, 14.53mmol) and cesium carbonate (94.66g, 290.52mmol) were added, and the reaction mixture was heated to 80°C and stirred for 14 hours.
  • the compound BB-2-4 (18g, 46.46mmol) was dissolved in water (80mL) and tetrahydrofuran (400mL), and lithium hydroxide monohydrate (5.85g, 139.38mmol) was added, and the reaction mixture was heated at room temperature The reaction was stirred for 4 hours. After the reaction was completed, the reaction solution was concentrated under reduced pressure, adjusted to pH 2-3 with 2M hydrochloric acid, extracted with ethyl acetate (100mL ⁇ 5), the organic phases were combined, dried with anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to remove solvent to obtain compound BB-2-5.
  • compound BB-2-5 (5g, 13.91mmol) was dissolved in N,N-dimethylformamide (50mL), and N,N-diisopropylethylamine (5.39g, 41.74mmol, 7.27mL) and 2-(7-azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (6.35g, 16.70mmol), the reaction mixture was stirred for 0.5 hours , added compound BB-1 (4.18g, 15.30mmol), and continued to react for 1.5 hours.
  • the compound BB-2-6 (5g, 8.13mmol) was dissolved in tetrahydrofuran (50mL), cooled to -40°C, and a toluene solution of diisobutylaluminum hydride (1M, 48.81mL) was slowly added , after the dropwise addition was completed, the reaction mixture was warmed to 0° C. and stirred for 30 minutes.
  • the compound BB-2-7 (1g, 1.70mmol) was dissolved in dichloromethane (10mL), and Dess-Martin oxidant (1.45g, 3.41mmol) was added, and the reaction mixture was stirred at room temperature. 1 hour. After the reaction is complete, add saturated sodium sulfite solution (20 mL) to the reaction solution, extract with dichloromethane (3 ⁇ 20 mL), wash the organic phase with saturated brine (30 mL), dry over anhydrous sodium sulfate, filter, and concentrate the filtrate under reduced pressure Solvent was removed.
  • the compound BB-3-1 (200g, 930.04mmol) was dissolved in chloroform (1000mL) and ethyl acetate (1000mL), then copper bromide (415.45g, 1.86mol) was added, and the reaction mixture was heated to 90°C and the reaction was stirred for 16 hours. After the reaction was completed, cool to room temperature, filter, and rinse the filter cake with dichloromethane (1.5 L) to obtain a solution of compound BB-3-2, which was directly used in the next step.
  • compound BB-3-4 (3g, 10.60mmol) was added to N,N-dimethylformamide (20mL), followed by adding acrylamide (903.79mg, 12.72mmol) and tert-butanol Potassium (1.78g, 15.89mmol), the reaction mixture was stirred at room temperature for 1 hour. After the reaction was completed, the reaction solution was poured into 1N hydrochloric acid (15mL), water (25mL) was added, extracted with ethyl acetate (35mL ⁇ 3), the organic phases were combined, washed with saturated brine (30mL ⁇ 2), anhydrous Dry over sodium sulfate, filter, and concentrate the filtrate under reduced pressure to remove the solvent.
  • Step 1 Synthesis of Compound BB-4-1
  • the compound BB-4-2 (2.3g, 6.68mmol) was dissolved in ethyl acetate (20mL), then hydrochloric acid in ethyl acetate (4M, 40mL) was added, and the reaction mixture was stirred at room temperature for 16 hours . After the reaction was completed, the reaction solution was filtered, and the filter cake was rinsed with ethyl acetate (20 mL). The filter cake was collected and vacuum-dried to obtain the hydrochloride of compound BB-4.
  • Step 1 Synthesis of Compound BB-5-2
  • the compound BB-5-1 (200g, 930.04mmol) was dissolved in chloroform (1L) and ethyl acetate (1L), then copper bromide (415.45g, 1.86mol) was added, and the reaction mixture was heated to 90°C and the reaction was stirred for 12 hours. After the reaction was completed, cool to room temperature, filter, and rinse the filter cake with dichloromethane (300 mL ⁇ 2), collect the filtrate to obtain a solution of compound BB-5-2, which was directly used in the next step.
  • toluene (2 L) was added to one-half of the toluene solution of the above-mentioned compound BB-5-3, followed by the addition of ethoxymethylene triphenylphosphine (161.90 g, 464.73 mmol), The reaction mixture was heated to 130°C and stirred for 20 hours. After the reaction was completed, cool to room temperature, and combine the two batches.
  • the compound BB-5-4 (5.00g, 17.66mmol) was dissolved in N,N-dimethylformamide (50mL), followed by adding acrylamide (1.51g, 21.19mmol) and tert Potassium butoxide (2.97g, 26.49mmol), the reaction mixture was stirred at room temperature for 2 hours. After the reaction was completed, it was poured into 1M dilute hydrochloric acid (100 mL), and extracted with ethyl acetate (30 mL ⁇ 2). The organic phases were combined, washed with 10% brine (100 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the solvent was removed from the filtrate under reduced pressure.
  • the compound BB-5-4 (10g, 35.32mmol), tert-butyl carbamate (4.97g, 42.39mmol), potassium phosphate (22.49g, 105.96mmol), three (dibenzylidene acetone ) Dipalladium (646.88mg, 706.42 ⁇ mol) and 2-di-tert-butylphosphine-2',4',6'-triisopropylbiphenyl (599.95mg, 1.41mmol) were dissolved in toluene (100mL) and water ( 20 mL), the reaction mixture was heated to 110°C and stirred for 12 hours.
  • Step 3 Synthesis of the hydrochloride salt of compound BB-6
  • the compound BB-6-2 (6.6g, 19.17mmol) was dissolved in dichloromethane (20mL), then hydrochloric acid in ethyl acetate (4M, 150mL) was added, and the reaction mixture was stirred at room temperature for 4 hours . After the reaction was completed, the solvent was removed under reduced pressure to obtain the hydrochloride of compound BB-6.
  • the compound BB-7-1 (11.39g, 52.97mmol) was dissolved in chloroform (100mL) and ethyl acetate (100mL), then copper bromide (23.66g, 105.93mmol) was added, and the reaction mixture Heat to 110°C and stir the reaction for 16 hours. After the reaction was completed, it was cooled to room temperature, filtered, and the solvent was removed from the filtrate under reduced pressure, then water (20 mL) was added to the residue, and extracted with ethyl acetate (20 mL ⁇ 3). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and the solvent was removed from the filtrate under reduced pressure.
  • compound BB-7-2 (6.86g, 18.44mmol) was dissolved in dichloromethane (80mL), then triethylamine (1.87g, 18.44mmol) was slowly added dropwise, and the reaction mixture was slowly warmed to room temperature and The reaction was stirred for 1 hour. After the reaction was completed, the solvent was directly concentrated under reduced pressure to obtain the crude product of compound BB-7-3, which was directly used in the next step.
  • the compound BB-7-4 (4.77g, 16.85mmol) was dissolved in N,N-dimethylformamide (30mL), followed by adding acrylamide (1.20g, 16.85mmol) and Potassium tert-butoxide (1.89g, 16.85mmol), the reaction mixture was stirred at 0°C for 1 hour. After the reaction was completed, it was poured into saturated ammonium chloride solution (50 mL), a large amount of white solids were produced, and the solids were collected by filtration. The solid was slurried with methanol (20 mL ⁇ 2) at room temperature, filtered, and the filter cake was collected and dried in vacuo to obtain compound BB-7.
  • Step 1 Synthesis of Compound BB-8-1
  • the compound BB-7-4 (2g, 7.06mmol) was dissolved in toluene (50mL) and water (5mL), followed by adding tris(dibenzylideneacetone) dipalladium (647mg, 706.42 ⁇ mol ), 2-di-tert-butylphosphine-2',4',6'-triisopropylbiphenyl (450mg, 1.06mmol), potassium phosphate (6g, 28.26mmol) and tert-butyl carbamate (1.66g , 14.13mmol), the reaction mixture was heated to 100°C and stirred for 16 hours.
  • Step 2 Synthesis of the hydrochloride salt of compound BB-8
  • the compound BB-8-1 (1.32g, 4.13mmol) was dissolved in ethyl acetate (3mL), then a solution of hydrochloric acid in ethyl acetate (4M, 15mL) was added, and the reaction mixture was stirred at room temperature for 2 hours . After the reaction was completed, the solvent was directly concentrated under reduced pressure to obtain the hydrochloride of compound BB-8.
  • the compound BB-9-4 (1g, 3.00mmol), tris(dibenzylideneacetone) dipalladium (275mg, 300.14 ⁇ mol), 2-di-tert-butylphosphine-2',4 ',6'-triisopropylbiphenyl (191.18mg, 450.21mmol), potassium phosphate (2.55g, 12.01mmol) and tert-butyl carbamate (527.41mg, 4.50mmol) were dissolved in toluene (50mL) and water ( 5 mL) of the mixed solvent, the reaction mixture was heated to 100°C and stirred for 12 hours.
  • the compound BB-9-4 (1g, 3.00mmol) was dissolved in N,N-dimethylformamide (10mL), and then acrylamide (256mg, 3.60mmol) and tert-butanol were added successively Potassium (404.15mg, 3.60mmol), the reaction mixture was stirred at room temperature for 1 hour. After the reaction was completed, the reaction solution was slowly poured into saturated ammonium chloride aqueous solution (100 mL), stirred at room temperature for 1 hour, filtered, and the filter cake was collected.
  • triphenyl phosphite 149.14g, 480.67mmol was dissolved in dichloromethane (1.3L), cooled to -70°C, and liquid bromine (83.80g, 524.37mmol, 27.03 mL), after the dropwise addition, a solution of triethylamine (57.48g, 568.07mmol, 79.07mL) and compound BB-11-1 (77g, 436.98mmol) in dichloromethane (200mL) was added dropwise, and the dropwise addition was completed Afterwards, the reaction mixture was slowly warmed up to room temperature, and stirred for 15 hours.
  • reaction solution was slowly poured into saturated aqueous sodium sulfite (1.5 L), stirred for 10 minutes, and extracted with dichloromethane (1 L). The organic phase was washed with saturated brine (1 L), dried over anhydrous sodium sulfate, filtered, and the solvent was removed from the filtrate under reduced pressure. The resulting residue was separated by column chromatography (eluent: petroleum ether) to obtain compound BB-11-2.
  • the compound BB-11-2 (87g, 363.85mmol) was dissolved in toluene (1L), cooled to 0°C, and 2,3-dichloro-5,6-dicyano was slowly added in batches Benzoquinone (90.86g, 400.24mmol), the reaction mixture was slowly warmed up to room temperature, and stirred for 15 hours. After the reaction was complete, saturated aqueous sodium sulfite solution (2 L) was added dropwise, stirred for 10 minutes, then 1N aqueous sodium hydroxide solution (1 L) was added, and extracted with ethyl acetate (500 mL ⁇ 3).
  • the compound BB-11-3 (21.4g, 90.26mmol) was dissolved in dichloromethane (250mL), cooled to 0°C, and boron tribromide (27.13g, 108.31mmol, 10.44 mL), after the dropwise addition, the reaction mixture was warmed up to room temperature, and stirred for 3 hours. After the reaction was completed, the reaction solution was poured into ice water (500 mL), and extracted with dichloromethane (200 mL). The organic phase was washed with saturated brine (500 mL), dried over anhydrous sodium sulfate, filtered, and the solvent was removed from the filtrate under reduced pressure to obtain compound BB-11-4.
  • compound BB-11-4 (20g, 89.66mmol) was dissolved in methanesulfonic acid (200mL), and ethyl 4-chloroacetoacetate (22.14g, 134.49mmol) was added dropwise, and the reaction mixture was stirred at room temperature React for 15 hours. After the reaction was complete, the reaction solution was poured into ice water (1 L), stirred at room temperature for 10 minutes, filtered, and the filter cake was rinsed with water (200 mL ⁇ 3). The filter cake was collected and vacuum-dried to obtain compound BB-11-5.
  • compound BB-11-5 (29 g, 89.63 mmol) was added into an aqueous solution of sodium hydroxide (2M, 300 mL), the reaction mixture was heated to 80° C., and stirred for 3 hours. After the reaction was completed, it was cooled to room temperature, water (200 mL) was added, the pH was adjusted to 4 with 6N hydrochloric acid, and extracted with ethyl acetate (300 mL ⁇ 3). The organic phases were combined, washed with saturated brine (200 mL), dried over anhydrous sodium sulfate, filtered, and the solvent was removed from the filtrate under reduced pressure.
  • sodium hydroxide 2M, 300 mL
  • compound BB-11-7 (5g, 15.01mmol), tris(dibenzylideneacetone) dipalladium (961.96mg, 1.05mmol), 2-di-tert-butylphosphine-2', 4',6'-Triisopropylbiphenyl (892.16mg, 2.10mmol), potassium phosphate (12.74g, 60.03mmol) and tert-butyl carbamate (2.64g, 22.51mmol) were dissolved in toluene (50mL) and water (10 mL) of the mixed solvent, the reaction mixture was heated to 100°C and stirred for 15 hours.
  • Step 9 Synthesis of the hydrochloride salt of compound BB-11
  • the compound BB-11-9 (1.3g, 3.30mmol) was dissolved in ethyl acetate (5mL), then a solution of hydrochloric acid in ethyl acetate (4M, 50mL) was added, and the reaction mixture was stirred at room temperature for 3 hours . After the reaction was completed, the solvent was concentrated under reduced pressure to obtain the hydrochloride of compound BB-11.
  • Step 1 Synthesis of Compound BB-14-2
  • the compound BB-14-1 (150g, 632.67mmol) was dissolved in dichloromethane (3L), then acetyl chloride (49.66g, 632.67mmol, 45.15mL) was added, and the reaction mixture was cooled to 5 ⁇ At 15°C, aluminum trichloride (177.16 g, 1.33 mol) was added in batches, the reaction mixture was warmed up to room temperature, and stirred for 4 hours. Additional aluminum trichloride (29.53 g, 221.43 mmol) was added, and the stirring reaction was continued for 12 hours at room temperature.
  • Step 4 Synthesis of Compound BB-14-5
  • compound BB-14-5 (15g, 44.89mmol), tris(dibenzylideneacetone) dipalladium (1.44g, 1.57mmol) were added successively to a mixed solvent of toluene (150mL) and water (30mL) ), 2-di-tert-butylphosphine-2',4',6'-triisopropylbiphenyl (1.33g, 3.14mmol), potassium phosphate (38.11g, 179.55mmol) and tert-butyl carbamate ( 7.89g, 67.33mmol), the reaction mixture was heated to 100°C and stirred for 12 hours.
  • Step 7 Synthesis of the hydrochloride salt of compound BB-14
  • triphenyl phosphite (193.69g, 624.25mmol) was dissolved in dichloromethane (1L), cooled to -70°C, and liquid bromine (108.83g, 681.00mmol, 35.11mL) was added dropwise ), after the dropwise addition was completed, triethylamine (74.65g, 737.75mmol, 102.69mL) and compound BB-16-1 (100g, 567.50mmol) dissolved in dichloromethane (500mL) were added dropwise successively, and the dropwise addition was completed Afterwards, the reaction mixture was slowly warmed up to room temperature, and stirred for 15 hours.
  • the compound BB-16-2 (39.5g, 165.20mmol) was dissolved in toluene (500mL), cooled to 0°C, and 2,3-dichloro-5,6-dicyano was added in batches Benzoquinone (41.25g, 181.72mmol), the reaction mixture was slowly warmed up to room temperature, and stirred for 12 hours.
  • acetic anhydride 21.53g, 210.89mmol, 19.75mL
  • dichloromethane 400mL
  • boron trifluoride ether solution 63.68g, 210.89mmol, 55.38mL, purity: 47%)
  • stirred at -60°C for 10 minutes added dropwise a solution of compound BB-16-3 (25g, 105.44mmol) dissolved in dichloromethane (250mL), the reaction mixture was slowly warmed to room temperature, and stirred 12 hours. After the reaction was complete, ice water (200 mL) was added and extracted with dichloromethane (100 mL ⁇ 3).
  • the compound BB-16-4 (18.8g, 67.35mmol) was dissolved in dichloromethane (200mL), cooled to 0°C, and boron tribromide (20.25g, 80.82mmol, 7.79mL) was added dropwise ), stirred at 0°C for 1 hour. After the reaction was completed, the reaction solution was poured into ice water (300 mL), and extracted with dichloromethane (100 mL ⁇ 3). The organic phases were combined, washed with saturated brine (100 mL ⁇ 3), dried over anhydrous sodium sulfate, filtered, and the solvent was removed from the filtrate under reduced pressure to obtain compound BB-16-5.
  • Step 8 Synthesis of Compound BB-16-9
  • the compound BB-16-9 (3.0g, 8.10mmol) was dissolved in tetrahydrofuran (25mL), then acrylamide (690.82mg, 9.72mmol) and potassium tert-butoxide (1.36g, 12.15mmol) were added ), the reaction mixture was stirred at room temperature for 1 hour. After the reaction was completed, the reaction solution was poured into 1N hydrochloric acid (30 mL), and extracted with ethyl acetate (45 mL ⁇ 3). The organic phases were combined, washed with saturated brine (30 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the solvent was removed from the filtrate under reduced pressure.
  • Step 10 Synthesis of the hydrochloride salt of compound BB-16
  • compound BB-16-10 (1.3 g, 3.29 mmol) was added to hydrochloric acid in ethyl acetate solution (4M, 20 mL), and the reaction mixture was stirred at room temperature for 12 hours. After the reaction was completed, filter and rinse the filter cake with ethyl acetate (30 mL), collect the filter cake, and dry in vacuo to obtain the hydrochloride of compound BB-16.
  • N,N-dimethylformamide (422.74 ⁇ L) was added to a solution of compound BB-17-1 (21 g, 109.89 mmol) in dichloromethane (300 mL), and the reaction mixture was cooled to 0 ° C.
  • Oxalyl chloride (27.89g, 219.77mmol, 19.24mL) was added dropwise. After the dropwise addition, the temperature was raised to room temperature and stirred for 1 hour. After the reaction was completed, the reaction solution was concentrated under reduced pressure to obtain a residue that was directly used in the next step.
  • the compound BB-17-3 (25g, 90.23mmol) was dissolved in N,N-dimethylformamide (125mL), the reaction system was cooled to 0°C, and N-bromobutyl was added in batches Diimide (17.67g, 99.26mmol), the reaction mixture was stirred at 0°C for 2 hours. After the reaction was completed, the reaction solution was poured into water (200 mL), and solids were precipitated, filtered, and the filter cake was rinsed with water (100 mL ⁇ 3), collected and vacuum-dried to obtain compound BB-17-4.
  • compound BB-17-5 (10g, 53.70mmol) was dissolved in tetrahydrofuran (50mL), cooled to -10°C, and a solution of borane in tetrahydrofuran (1M, 59.07mL) was added dropwise, and the reaction mixture was The reaction was stirred at 0°C for 1 hour. After the reaction is complete, add methanol (10mL), stir at room temperature for 30 minutes, then add 2M hydrochloric acid (200mL), stir at room temperature for 30 minutes, extract with ethyl acetate (200mL ⁇ 2), combine the organic phases, and wash with saturated brine (100mL ⁇ 2).
  • the compound BB-17-6 (8.2g, 47.61mmol) was dissolved in tetrahydrofuran (80mL), then potassium hydroxide (4.01g, 71.42mmol), benzyl bromide (10.59g, 61.90mmol, 7.35mL), tetrabutylammonium iodide (3.52g, 9.52mmol) and potassium iodide (1.58g, 9.52mmol), and the reaction mixture was stirred at room temperature for 12 hours. After the reaction was completed, filter and rinse the filter cake with tetrahydrofuran (50 mL ⁇ 3), collect the filtrate, and concentrate the filtrate under reduced pressure to obtain a residue.
  • the compound BB-17-7 (5.9, 22.49mmol) was dissolved in tetrahydrofuran (50mL) and methanol (10mL), then lithium hydroxide monohydrate (4.72g, 112.45mmol) aqueous solution (10mL) was added, and the reaction mixture The reaction was stirred at room temperature for 12 hours. After the reaction was completed, the reaction solution was concentrated under reduced pressure to remove the solvent, added water (200mL), extracted with petroleum ether (200mL), discarded the organic phase, collected the water phase, adjusted the pH of the water phase to 5-6 with 6M hydrochloric acid, and added dichloromethane (100 mL ⁇ 3) extraction.
  • the compound BB-17-8 (5g, 20.14mmol) was dissolved in dichloromethane (50mL), cooled to 0°C, and N,N-dimethylformamide (147.18mg, 2.01 mmol, 154.92 ⁇ L) and oxalyl chloride (3.83g, 30.20mmol, 2.64mL), the reaction mixture was stirred at 0°C for 1 hour. After the reaction was completed, the reaction solution was directly concentrated under reduced pressure to remove the solvent to obtain compound BB-17-9, which was directly used in the next step.
  • the compound BB-17-4 (6.5g, 18.26mmol) was dissolved in dichloromethane (100mL), cooled to 0°C, triethylamine (5.54g, 54.78mmol, 7.62mL) was added and Compound BB-17-9 (5.36 g, 20.09 mmol) was dissolved in dichloromethane (100 mL), and the reaction mixture was returned to room temperature and stirred for 12 hours. After the reaction was complete, water (100 mL) was added and extracted with dichloromethane (100 mL ⁇ 2). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain a residue.
  • Step 8 Synthesis of Compound BB-17-11
  • the compound BB-17-10 (7.5g, 12.79mmol) was dissolved in N,N-dimethylformamide (80mL), then copper iodide (487.29mg, 2.56mmol) was added and Sodium sulfide nonahydrate (18.44g, 76.76mmol), the temperature of the reaction mixture was raised to 80°C, and the reaction was stirred for 6 hours. After the complete consumption of raw materials was tracked by LCMS, the reaction solution was cooled to room temperature, trifluoroacetic acid (20.42 g, 179.10 mmol, 13.26 mL) was added, and the reaction mixture was stirred at room temperature for 16 hours.
  • the compound BB-17-11 (5.89g, 12.79mmol) was dissolved in N,N-dimethylformamide (70mL), then potassium carbonate (3.54g, 25.59mmol) and iodomethane (3.63g , 25.59mmol, 1.59mL), the reaction mixture was stirred at room temperature for 12 hours. Additional potassium carbonate (3.54 g, 25.59 mmol) and iodomethane (1 mL) were added and the reaction was stirred for 1 hour. After the reaction was completed, the reaction solution was poured into water (200 mL), and extracted with ethyl acetate (200 mL ⁇ 3).
  • the compound BB-17-12 (4.08g, 8.60mmol) was dissolved in dichloromethane (20mL), then a solution of boron trichloride (1M, 100mL) in dichloromethane was added, and the reaction mixture was The reaction was stirred at room temperature for 1 hour. After the reaction was completed, the reaction solution was poured into saturated aqueous sodium bicarbonate solution (100 mL), and extracted with dichloromethane (50 mL ⁇ 3). The organic phases were combined, washed with saturated brine (100 mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain compound BB-17-13.
  • the compound BB-17-13 (3.4g, 8.85mmol) was dissolved in dioxane (70mL), and then the compound BB-17-2 (1.85g, 9.73mmol), 4,5 -bisdiphenylphosphine-9,9-dimethyloxaxanthene (1.02g, 1.77mmol), tris(dibenzylideneacetone)dipalladium (810.18mg, 884.75 ⁇ mol) and cesium carbonate ( 8.65g, 26.54mmol), the reaction mixture was heated to 80°C and stirred for 12 hours.
  • reaction liquid was cooled to room temperature, filtered, and the filter cake was rinsed with tetrahydrofuran (100 mL ⁇ 3), the filtrate was collected, and the filtrate was concentrated under reduced pressure to obtain a residue.
  • the compound BB-17-14 (2g, 4.05mmol) was dissolved in tetrahydrofuran (40mL), cooled to 0°C, methylmagnesium bromide (3M, 8.11mL) tetrahydrofuran solution was added dropwise, and the reaction mixture Stir the reaction at 0°C for 2 hours, add methylmagnesium bromide (3M, 1.35 mL) tetrahydrofuran solution, and continue stirring for 1 hour. After the reaction was completed, the reaction mixture was poured into saturated ammonium chloride (100 mL), and extracted with ethyl acetate (50 mL ⁇ 3).
  • the compound BB-17-15 (1.63g, 3.30mmol) was dissolved in dichloromethane (40mL), then triphenylphosphine (1.04g, 3.96mmol) and imidazole (337.25mg, 4.95mL) were added mmol), cooled to 0°C, added iodine (1.09g, 4.29mmol), and the reaction mixture was stirred at room temperature for 12 hours. After the reaction was completed, the reaction solution was poured into saturated sodium sulfite (200 mL), and extracted with dichloromethane (100 mL ⁇ 3).
  • Step 1 Synthesis of Compound BB-18-2
  • the compound BB-18-1 (200g, 1.32mol) was dissolved in ethanol (1.5L), and di-tert-butyl dicarbonate (346.51g, 1.59mol) was added in batches, and the reaction mixture was heated to 60 °C and stirred for 16 hours. After the reaction was completed, the reaction solution was cooled to room temperature, and concentrated under reduced pressure to remove the solvent. Add isopropanol (500 mL) to the residue, cool to 0° C., stir for 1 hour, filter, rinse the filter cake with isopropanol (200 mL), and collect the filtrate. The filtrate was concentrated under reduced pressure to obtain compound BB-18-2. MS-ESI m/z:196.1[M+H-56] + .
  • the tetrahydrofuran solution of lithium diisopropylamide (2M, 741.11mL) was cooled to -68°C, and dimethyl carbonate (36.72g, 407.61mmol, 34.31mL) and compound BB-18 were added dropwise -4 (92g, 370.55mmol) in tetrahydrofuran (920mL) was added dropwise in about 30 minutes, and the temperature was controlled at -50°C to -68°C and stirred for 30 minutes.
  • Step 6 Synthesis of the hydrochloride salt of compound BB-18
  • compound BB-2 (0.1g, 171.05 ⁇ mol) and compound WX001-3 hydrochloride (69.60mg, 171.05 ⁇ mol) were dissolved in tetrahydrofuran (4mL) and N,N-dimethylformamide (0.8mL), potassium acetate (50.36mg, 513.16 ⁇ mol) and acetic acid (5.14mg, 85.53 ⁇ mol) were added, the reaction mixture was stirred at room temperature for 2 hours, sodium acetate borohydride (145.01mg, 684.21 ⁇ mol) was added, and The reaction was stirred for 10 hours.
  • compound BB-2 (0.1g, 171.05 ⁇ mol) and compound WX002-2 hydrochloride (69.60mg, 171.05 ⁇ mol) were dissolved in tetrahydrofuran (4mL) and N,N-dimethylformamide (0.8mL), potassium acetate (50.36mg, 513.16 ⁇ mol) and acetic acid (5.14mg, 85.53 ⁇ mol, 4.89 ⁇ L) were added, the reaction mixture was stirred at room temperature for 2 hours, sodium acetate borohydride (145.01mg, 684.21 ⁇ mol ), continue to stir and react for 10 hours.
  • compound WX003-2 (553.26mg, 2.43mmol) was added to N,N-dimethylformamide (10mL), compound BB-3 (0.5g, 1.62mmol), cesium carbonate (2.11g, 6.49mmol), cuprous iodide (61.81mg, 324.54 ⁇ mol) and dichlorobis(triphenylphosphine)palladium (227.80mg, 324.54 ⁇ mol), the reaction mixture was heated to 80°C and stirred for 5 hours.
  • reaction solution was poured into 1mol/L hydrochloric acid (12mL), water (15mL) was added, extracted with ethyl acetate (15mL ⁇ 3), the organic phases were combined, washed with saturated brine (25mL ⁇ 2), Dry over anhydrous sodium sulfate, filter, and concentrate the filtrate under reduced pressure to remove the solvent.
  • MS-ESI m/z 399.2[M-55] + .
  • compound BB-2 (0.1g, 171.05 ⁇ mol) and compound WX004-3 hydrochloride (67.55mg, 171.05 ⁇ mol) were dissolved in tetrahydrofuran (4mL) and N,N-dimethylformamide (0.8mL), potassium acetate (50.36mg, 513.16 ⁇ mol) and acetic acid (5.14mg, 85.53 ⁇ mol) were added, the reaction mixture was stirred at room temperature for 2 hours, sodium acetate borohydride (145.01mg, 684.21 ⁇ mol) was added, and The reaction was stirred for 10 hours.
  • compound WX001-1 (387.74mg, 1.59mmol) was dissolved in N,N-dimethylformamide (10mL), followed by adding 2-(7-azabenzotriazole)-N, N,N',N'-tetramethyluronium hexafluorophosphate (482.81mg, 1.27mmol), N,N-diisopropylethylamine (410.27mg, 3.17mmol) and compound BB-9 hydrochloride (350mg, 1.06mmol), the reaction mixture was stirred at room temperature for 12 hours.
  • the obtained residue was first separated by preparative HPLC (chromatographic column: Boston Green ODS 150*30mm*5 ⁇ m; mobile phase: water (0.04% hydrochloric acid)-acetonitrile; acetonitrile%: 19%-34%, 10min), and then separated by preparative HPLC (Chromatographic column: Welch Xtimate C18 150*25mm*5 ⁇ m; mobile phase: water (10mM ammonium bicarbonate)-acetonitrile; acetonitrile%: 45%-75%, 11min) to obtain the target compound WX007.
  • MS-ESI m/z 890.8[M+H] + .
  • compound BB-10 300 mg, 837.55 ⁇ mol was dissolved in N,N-dimethylformamide (10 mL), followed by addition of compound WX003-2 (285.56 mg, 1.26 mmol), cesium carbonate (818.68mg, 2.51mmol), cuprous iodide (31.90mg, 167.51 ⁇ mol) and dichlorobis(triphenylphosphine)palladium (117.58mg, 167.51 ⁇ mol), the reaction mixture was heated to 80°C and stirred for 5 hours.
  • reaction solution was cooled to room temperature, poured into saturated ammonium chloride solution (100mL), extracted with ethyl acetate (10mL ⁇ 3), the organic phases were combined, washed with saturated brine (10mL), anhydrous sulfuric acid Dry over sodium, filter, and concentrate the filtrate under reduced pressure to remove the solvent.
  • compound BB-2 (91 mg, 147.64 ⁇ mol) was dissolved in tetrahydrofuran (5 mL) and N,N-dimethylformamide (1 mL), and then the hydrochloride of compound WX008-3 (65.69 mg, 147.64 ⁇ mol), potassium acetate (43.47mg, 442.93 ⁇ mol) and acetic acid (8.87mg, 8.44 ⁇ L, 147.64 ⁇ mol), the reaction mixture was stirred for 0.5 hours, then sodium triacetoxyborohydride (93.87mg, 442.93 ⁇ mol) was added, and continued The reaction was stirred for 1 hour.
  • compound BB-12 (0.1g, 279.18 ⁇ mol), compound WX003-2 (126.92mg, 558.37 ⁇ mol), cuprous iodide (10.63mg, 55.84 ⁇ mol), bistriphenylphosphine dichloro Palladium chloride (39.19 mg, 55.84 ⁇ mol) and N,N-diisopropylethylamine (72.17 mg, 558.37 ⁇ mol) were dissolved in dimethyl sulfoxide (2 mL), and the reaction mixture was heated to 85° C., and stirred for 2.5 hours .
  • the compound WX001-1 (102.70 mg, 365.82 ⁇ mol) was dissolved in N,N-dimethylformamide (2 mL), and 2-(7-azabenzotriazole)-N , N,N,N-Tetramethylurea hexafluorophosphonate (164.39mg, 432.33 ⁇ mol) and N,N-diisopropylethylamine (214.91mg, 1.66mmol), the reaction mixture was stirred at room temperature for 0.5 hours, The hydrochloride salt of compound BB-11 (0.11 g, 332.56 ⁇ mol) was added, and the reaction mixture was stirred at room temperature for 15 hours.
  • compound BB-2 (50mg, 85.53 ⁇ mol), compound WX011-2 hydrochloride (42.99mg, 94.08 ⁇ mol) and potassium acetate (25.18mg, 256.58 ⁇ mol) were dissolved in N,N-di In a mixed solvent of methylformamide (1 mL) and glacial acetic acid (0.1 mL), the reaction mixture was stirred at room temperature for 2 hours, sodium triacetylborohydride (54.38 mg, 256.58 ⁇ mol) was added, and the reaction mixture was stirred at room temperature for 15 Hour. After the reaction was completed, saturated ammonium chloride solution (10 mL) was added, and extracted with ethyl acetate (10 mL ⁇ 2).
  • compound BB-16-8 (1g, 2.99mmol) and compound WX003-2 (816.24mg, 3.59mmol) were dissolved in dimethylsulfoxide (10mL), and dichlorobis(triphenyl Phosphine) palladium (420.09mg, 598.51 ⁇ mol), cuprous iodide (113.99mg, 598.51 ⁇ mol) and N,N-diisopropylethylamine (773.51mg, 5.99mmol), the reaction mixture was heated to 85 ° C, stirred React for 2 hours. After the reaction was completed, cool to room temperature, add water (30 mL), and extract with ethyl acetate (3 ⁇ 20 mL).
  • compound BB-2 (0.1g, 171.05 ⁇ mol) and compound WX013-4 trifluoroacetate (107.45 mg, 205.26 ⁇ mol) were dissolved in N,N-dimethylformamide (3mL)
  • potassium acetate 50.36mg, 513.15 ⁇ mol
  • acetic acid 5.14mg, 85.53 ⁇ mol
  • sodium triacetoxyborohydride 145.01mg, 684.20 ⁇ mol
  • 1M hydrochloric acid solution (1 mL) was added, and the solvent was removed by concentration under reduced pressure.
  • compound BB-2 (0.1g, 171.05 ⁇ mol) and compound WX014-2 hydrochloride (78.33mg, 171.05 ⁇ mol) were dissolved in tetrahydrofuran (2mL) and N,N-dimethylformamide (0.4mL), potassium acetate (50.36mg, 513.16 ⁇ mol) and acetic acid (5.14mg, 85.53 ⁇ mol) were added, the reaction mixture was stirred at room temperature for 2 hours, and sodium triacetoxyborohydride (145.01mg, 684.21 ⁇ mol) was added , continue to stir the reaction for 10 hours.
  • compound BB-2 (70 mg, 119.74 ⁇ mol) and compound WX016-3 trifluoroacetate (68.95 mg, 131.71 ⁇ mol) were dissolved in N,N-dimethylformamide (4 mL) , add potassium acetate (35.25mg, 359.21 ⁇ mol) and acetic acid (3.60mg, 59.87 ⁇ mol), the reaction mixture was stirred at room temperature for 2 hours, added sodium triacetoxyborohydride (101.51mg, 478.95 ⁇ mol, 4eq), and continued to stir React for 10 hours.
  • the trifluoroacetic acid salt of compound WX014-2 (100 mg, 186.75 ⁇ mol) was dissolved in acetonitrile (2 mL), and then N,N-diisopropylethylamine (120.68 mg, 933.76 ⁇ mol, 162.64 ⁇ L) and compound BB-17 (112 mg, 167.01 ⁇ mol, purity: 89.98%), the reaction mixture was heated to 90° C. and stirred for 12 hours. After the reaction was completed, the reaction solution was concentrated under reduced pressure to remove the solvent.
  • titanocene dichloride (1.30g, 5.02mmol) and zinc powder (13.31g, 203.55mmol) were added to a dry reaction flask, tetrahydrofuran (100mL) was added to dissolve, difluorobromoacetic acid was added dropwise Ethyl ester (20.37g, 100.38mmol, 12.90mL) in tetrahydrofuran (20mL) solution (1/10 of the solution was added dropwise first, and the remaining solution was added dropwise after the reaction was initiated (obviously warming up)).
  • the compound WX018-5 (101.02 mg, 361.71 ⁇ mol) was dissolved in N,N-dimethylformamide (3 mL), and 2-(7-azabenzotriazole)-N , N,N',N'-tetramethyluronium hexafluorophosphate (229.22mg, 602.86 ⁇ mol) and N,N-diisopropylethylamine (233.74mg, 1.81mmol, 315.01 ⁇ L), the reaction mixture was stirred for 0.5 After 1 hour, the hydrochloride salt of compound BB-16 (0.1 g, 301.43 ⁇ mol) was added, and the reaction mixture was stirred and reacted for 12 hours.
  • compound BB-17 (0.075g, 124.29 ⁇ mol) and compound WX015-2 trifluoroacetate (0.125g, 185.93 ⁇ mol) were dissolved in acetonitrile (3mL), added N,N-di Isopropylethylamine (160.63 mg, 1.24 mmol, 216.49 ⁇ L), the temperature of the reaction mixture was raised to 90° C., and the reaction was stirred for 36 hours. After the reaction was completed, the reaction solution was concentrated under reduced pressure to remove the solvent.
  • the compound WX021-1 (30g, 142.01mmol) and ethoxyformylmethylenetriphenylphosphine (54.42g, 156.21mmol) were dissolved in toluene (450mL), and the reaction mixture was heated to 80°C , stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, the reaction solution was washed with water (3 ⁇ 200 mL), the organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain a yellow residue.
  • lithium borohydride (2.59g, 118.90mmol) was dissolved in tetrahydrofuran (100mL), and a solution of compound WX021-3 (10g, 35.29mmol) in tetrahydrofuran (20mL) was added, and the reaction mixture was heated to 30°C. Methanol (20 mL) was slowly added dropwise. After the dropwise addition, the reaction mixture was stirred for 12 hours.
  • compound BB-17 (0.1 g, 165.72 ⁇ mol) and compound WX021-7 trifluoroacetate (125 mg, 174.84 ⁇ mol) were dissolved in acetonitrile (3 mL), and N,N-diiso Propylethylamine (257.01 mg, 1.99 mmol, 346.38 ⁇ L), the temperature of the reaction mixture was raised to 90° C., and the reaction was stirred for 30 hours. After the reaction was completed, the reaction solution was concentrated under reduced pressure to remove the solvent.
  • the compound WX018-5 (600mg, 2.15mmol) was dissolved in N,N-dimethylformamide (6mL), and N,N-diisopropylethylamine (1.11g, 8.59mmol , 1.50mL) and 2-(7-azabenzotriazole)-N,N,N,N-tetramethyluronium hexafluorophosphate (1.09g, 2.86mmol), the reaction mixture was stirred for 0.5 hours, added The hydrochloride salt of compound BB-18 (403.46 mg, 1.43 mmol) was stirred for 12 hours.
  • the compound BB-2-7 (2g, 3.41mmol) was dissolved in dichloromethane (40mL), and triphenylphosphine (1.07g, 4.09mmol) and imidazole (348.15mg, 5.11mmol) were added , cooled to 0° C. in an ice bath, elemental iodine (1.12 g, 4.43 mmol) was added, and the reaction mixture was stirred at room temperature for 12 hours.
  • compound WX024-1 (196.30 mg, 281.83 ⁇ mol) was added to acetonitrile (2 mL), N,N-diisopropylethylamine (218.54 mg, 1.69 mmol) was added, and the reaction was stirred for 10 minutes. Then the trifluoroacetic acid salt of compound WX023-2 (220 mg, 422.75 ⁇ mol) was added, the reaction mixture was warmed up to 85° C., and stirred for 6 hours.
  • the compound WX001-1 (728.45mg, 2.98mmol) was dissolved in N,N-dimethylformamide (15mL), and then 2-(7-azabenzotriazole)- N,N,N',N'-tetramethyluronium hexafluorophosphate (1.89g, 4.97mmol) and N,N-diisopropylethylamine (1.93g, 14.91mmol, 2.60mL) were stirred for 30 minutes, then the hydrochloride salt of compound WX025-2 (0.7 g, 2.48 mmol) was added, and the stirring reaction was continued for 4.5 hours.
  • the trifluoroacetic acid salt of compound WX025-4 (252.98 mg, 521.16 ⁇ mol) was added to acetonitrile (7 mL), and N,N-diisopropylethylamine (367.39 mg, 2.84 mmol) was added, The reaction mixture was stirred for 10 minutes, then compound WX024-1 (330 mg, 473.78 ⁇ mol) was added, the temperature of the reaction mixture was raised to 85° C., and the reaction was stirred for 6 hours.
  • the trifluoroacetic acid salt of compound WX025-4 (125.49mg, 258.52 ⁇ mol) was added to acetonitrile (2mL), and N,N-diisopropylethylamine (133.64mg, 1.03mmol) was added , stirred and reacted for 10 minutes, compound BB-17 (104.00 mg, 172.35 ⁇ mol) was added, the temperature of the reaction mixture was raised to 85° C., and the reaction was stirred for 6 hours. After the reaction was completed, the reaction solution was concentrated under reduced pressure to obtain a crude product.
  • the compound WX001-1 (9.7g, 39.69mmol) was dissolved in N,N-dimethylformamide (50mL), and then N,N-diisopropylethylamine (8.55g , 66.15mmol) and 2-(7-azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (16.35g, 43.00mmol), the reaction mixture was at room temperature The reaction was stirred for 0.5 hour, and then compound BB-18-1 (5 g, 33.08 mmol) was added, and the reaction mixture was stirred and reacted at room temperature for 2 hours.
  • compound WX028-3 (2.5g, 5.97mmol) was dissolved in dichloromethane (40mL), and 4-dimethylaminopyridine (1.09g, 8.96mmol) and di-tert-butyl carbonate (2g, 9.16 mmol, 2.11 mL), the reaction mixture was stirred at 30°C for 1.5 hours, then absolute ethanol (2.75 g, 59.75 mmol) was added, and the reaction was continued for 1 hour.
  • the compound WX024-1 (0.2g, 287.14 ⁇ mol) was dissolved in acetonitrile (4mL), and the trifluoroacetate (225.35mg, 315.85 ⁇ mol) of the compound WX028-6 was added and N,N-di Isopropylethylamine (259.78 mg, 2.01 mmol), the temperature of the reaction mixture was raised to 90°C, and the reaction was stirred for 12 hours.
  • the trifluoroacetic acid salt of compound WX028-6 (170mg, 238.28 ⁇ mol) was dissolved in acetonitrile (2mL), and then N,N-diisopropylethylamine (153.97mg, 1.19mmol, 207.51 ⁇ L) and compound BB-17 (143.78 mg, 238.28 ⁇ mol), the reaction mixture was heated to 90° C., and stirred for 12 hours.
  • the hydrochloride (480mg, 518.13 ⁇ mol) of compound WX014 passes through supercritical fluid chromatography (separation condition, chromatographic column: REGIS (S, S) WHELK-O1 (250mm*25mm, 10 ⁇ m); Mobile phase: A: CO 2 ; B : EtOH/ACN (0.1%IPAm, v/v); B%: 65%-65%, 15min) separation, the collection retention time is the sample of 1.576min, then through preparative HPLC separation (chromatographic column: Phenomenex Luna 80*30mm *3 ⁇ m; mobile phase: water (0.04% hydrochloric acid)-acetonitrile; acetonitrile%: 1%-30%, 8min), the hydrochloride (ee%: 99.12%) of the target compound WX030 was obtained.
  • This experiment is to detect the degradation effect of the test compound on the target protein IRAK4 in the cell K562 IRAK4-HiBiT.
  • DR Degradation rate, DR
  • DR (%) (RLU vehicle control-RLU compound)/(RLU vehicle control-RLU positive control)*100%, the vehicle control is the blank control.
  • the compound of the present invention exhibits excellent target protein degradation in K562 IRAK4-HiBiT cells.
  • This experiment evaluates the degradation of IKZF1 and IKZF3 proteins in MM.1S cells by detecting the effects of the tested compounds on the expression levels of IKZF1 and IKZF3 proteins in MM.1S cells.
  • MM.1S cell from ATCC; Cat. No. CRL-2974.
  • MM.1S cells in the logarithmic growth phase were plated on a 96-well plate, with 1.2 ⁇ 10 5 per well, and cultured overnight;
  • the compound of the present invention exhibits excellent target protein degradation effect on IKZF1 and IKZF3 proteins in MM.1S cells.
  • the tumor cell lines were cultured in an incubator at 37°C, 5% CO 2 according to the above culture conditions. Passage regularly, and take cells in logarithmic growth phase for plating.
  • the culture plate was left at room temperature for 10 minutes to stabilize the luminescent signal.
  • IR Inhibition rate
  • IR (%) (1-RLU compound/RLU vehicle control)*100%. Calculate the inhibition rate of different concentrations of compounds in Excel, and then use GraphPad Prism software was used to make inhibition curves and calculate related parameters, including minimum inhibition rate, maximum inhibition rate and IC 50 .
  • the compound of the present invention exhibits an excellent effect of inhibiting cell proliferation in both lymphoma cell lines OCI-LY10 and TMD-8.
  • the tumor cell lines were cultured in an incubator at 37°C, 5% CO 2 according to the above culture conditions. Passage regularly, and take cells in logarithmic growth phase for plating.
  • Dosing with Echo655 instrument The dosing volume was 50 nL, the final concentration of DMSO was 0.1%, the culture plate was centrifuged at 1000 rpm for 1 min, and cultured in an incubator at 37° C., 5% CO 2 , and 100% relative humidity for 4 days.

Abstract

提供了一种2,6-哌啶二酮类化合物与其应用,具体提供了式(II)所示化合物、其立体异构体及其药学上可接受的盐。

Description

2,6-哌啶二酮类化合物与其应用
本申请主张如下优先权
本申请要求1)于2021年09月26日向中国国家知识产权局提交的第2021111310410号中国专利申请的优先权和权益,和2)于2022年09月09日向中国国家知识产权局提交的第2022111046982号中国专利申请的优先权和权益,所述申请公开的内容通过引用整体并入本文中。
技术领域
本发明涉及一类2,6-哌啶二酮类化合物与其应用。具体涉及式(Ⅱ)所示合物、其立体异构体及其药学上可接受的盐。
背景技术
白细胞介素-1受体相关激酶4(Interleukin-1 Receptor-Associated Kinase 4,IRAK4)在Toll样受体家族(TLRs)与白细胞介素1型受体家族(IL-1R)的信号传导通路中起到承上启下的作用,接收上游信号从而激活其下游的JNK和NF-κB信号通路,对人类炎症免疫性疾病和肿瘤的发展与进程具有非常密切的关系。
Toll样受体(TLR)信号转导蛋白髓样分化因子(MyD88)经常在华氏巨球蛋白血症、淋巴浆细胞样淋巴瘤、抗免疫型大B细胞淋巴瘤和边缘区淋巴瘤等多种淋巴瘤中发生突变,突变比例分别为95-97%、79%、50-80%、15-29%和6-10%等。IRAK4几乎参与MyD88所有的生物学功能,成为一个具有非常大吸引力和无限潜力的药物靶点,特别是用于治疗MyD88驱动的淋巴瘤。
研究发现,IRAK4的功能不但可以对蛋白质磷酸化,还可以与MyD88形成复合物从而发挥其生物学功能。IRAK4激活JNK信号通路需要其磷酸化功能,然而激活NF-κB信号通路则不需要其磷酸化功能,说明IRAK4同时具备蛋白激酶和支架蛋白两种功能,在信号通路中发挥着作用。因此,传统的靶向IRAK4的小分子激酶抑制剂无法完全阻断IRAK4的所有生物学功能。
蛋白降解靶向嵌合体(Proteolysis Targeting Chimera,PROTAC)是一种应用泛素-蛋白酶体系统靶向特定蛋白质并诱导其在细胞内降解的技术。泛素-蛋白酶体系统是细胞内蛋白质降解的主要途径,其正常生理功能主要负责清除细胞内变性、突变或有害蛋白质,细胞内80%以上蛋白质的降解都依赖于泛素-蛋白酶体系统。PROTAC利用细胞自身的蛋白质破坏机制,清除细胞中的特异性靶向蛋白。迄今为止,PROTAC技术已日趋成熟,可用于靶向多种蛋白质,包括支架蛋白、转录因子、酶和调节蛋白等。另外,度胺类药物被称为免疫调节药物(Immunomodulatory Drugs,IMiDs),激活与Cereblon(CRBN)形成的E3泛素连接酶复合物对转录因子IKZF1与IKZF3的泛素化,然后被蛋白酶体识别与降解,从而对肿瘤产生毒性作用。CRBN作为抗肿瘤和免疫调节剂药物的重要靶点,已被证实在多种血液性恶性肿瘤、麻风结节性红斑等皮肤病、和系统性红斑狼疮等自免疫性疾病具有明确的疗效。
因此,开发靶向IRAK4的PROTAC和IMiD双功能分子,通过降解IRAK4,移除IRAK4,更彻底地阻断IRAK4的所有功能,进而从根本上对IRAK4信号通路进行全面抑制,同时具备良好的CRBN调节作用起到协同治疗作用,从而更好地发挥抗肿瘤作用,提高临床治疗效果。
发明内容
本发明提供式(Ⅱ)所示化合物、其立体异构体或其药学上可接受的盐,
Figure PCTCN2022120267-appb-000001
其中,
T IRAK选自
Figure PCTCN2022120267-appb-000002
L选自C 2-10亚烷基,所述C 2-10亚烷基上的任意2、3或4个CH 2分别独立地被Ra置换,所述C 2-10亚烷基分别独立地任选被1、2、3、4、5或6个卤素取代;
Ra分别独立地选自-N(R)-、-O-、-C(O)NH-、-C 3-6环烷基-和-4-8元杂环烷基-;
R选自H和C 1-4烷基;
T 1选自CH和N;
环A选自C 6-10芳基和5-10元杂芳基。
在本发明的一些方案中,上述Ra分别独立地选自-NH-、-N(CH 3)-、-O-、-C(O)NH-、-环丙基-、-环丁基-、-环戊基-、-环己基-、-哌啶基-、-哌嗪基-、-氮杂螺[3.3]庚烷基-、-二氮杂螺[3.3]庚烷基-和-氮杂双环[3.1.0]己基-,其他变量如本发明所定义。
在本发明的一些方案中,上述Ra分别独立地选自-NH-、-N(CH 3)-、-O-、-C(O)NH-、
Figure PCTCN2022120267-appb-000003
Figure PCTCN2022120267-appb-000004
其他变量如本发明所定义。
在本发明的一些方案中,上述L选自C 4-10亚烷基,所述C 4-10亚烷基的任意3个CH 2分别独立地被Ra 置换,所述C 4-10亚烷基分别独立地任选被1、2、3、4、5或6个卤素取代,其他变量如本发明所定义。
在本发明的一些方案中,上述L选自-C 3-6环烷基-CH 2-Ra-C 1-3亚烷基-Ra-C 0-3亚烷基-、-C 3-6环烷基-C 1- 3亚烷基-4-8元杂环烷基-C 1-3亚烷基-Ra-、和-C 3-6环烷基-C 1-3亚烷基-4-8元杂环烷基-C 1-3亚烷基-,所述C 1- 3亚烷基分别独立地任选被1或2个卤素取代,其他变量如本发明所定义。
在本发明的一些方案中,上述L选自-环己基-CH 2-N(R)-C 1-3亚烷基-O-C 1-3亚烷基-、-环己基-CH 2-4-8元杂环烷基-C 1-3亚烷基-N(R)-、-环己基-CH 2-哌啶基-C 1-3亚烷基-C(O)NH-、-环己基-CH 2-哌啶基-CF 2-C(O)NH-、-环己基-CH 2-哌嗪基-C 1-3亚烷基-C(O)NH-和-环己基-CH 2-哌嗪基-C 1-3亚烷基-,其他变量如本发明所定义。
在本发明的一些方案中,上述L选自
Figure PCTCN2022120267-appb-000005
Figure PCTCN2022120267-appb-000006
其他变量如本发明所定义。
在本发明的一些方案中,上述环A选自苯基和萘基,其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022120267-appb-000007
选自
Figure PCTCN2022120267-appb-000008
Figure PCTCN2022120267-appb-000009
Figure PCTCN2022120267-appb-000010
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022120267-appb-000011
选自
Figure PCTCN2022120267-appb-000012
Figure PCTCN2022120267-appb-000013
Figure PCTCN2022120267-appb-000014
其他变量如本发明所定义。
本发明还提供式(Ⅱ-1)、(Ⅱ-2)、(Ⅱ-3)和(Ⅱ-4)所示化合物、其立体异构体或其药学上可接受的盐,
Figure PCTCN2022120267-appb-000015
其中,L和T 1如式(Ⅱ)所定义。
本发明还提供式(Ⅱ-1a)、(Ⅱ-2a)、(Ⅱ-3a)和(Ⅱ-4a)所示化合物、其立体异构体或其药学上可接受的盐,
Figure PCTCN2022120267-appb-000016
其中, L 1选自-C 1-3亚烷基-Ra-C 1-3亚烷基-Ra-C 0-3亚烷基-、-C 1-3亚烷基-4-8元杂环烷基-C 1-3亚烷基-Ra-和-C 1-3亚烷基-4-8元杂环烷基-C 1-3亚烷基-,所述C 1-3亚烷基分别独立地任选被1或2个卤素原子取代;
T 1和Ra如式(Ⅱ)所定义。
本发明还提供式(Ⅰ)所示化合物、其立体异构体或其药学上可接受的盐,
Figure PCTCN2022120267-appb-000017
其中,
L 1选自C 1-10亚烷基,其中的1、2或3个CH 2任选被Ra置换,所述C 1-10亚烷基任选被1或2个卤素原子取代;
Ra选自-N(R)-、-O-、-C(O)NH-、-C 3-6环烷基-或-4-8元杂环烷基-;
R选自H或C 1-4烷基;
T 1选自CH或N;
环A选自C 6-10芳基或5-10元杂芳基;
所述“4-8元杂环烷基和5-10元杂芳基”各自包含1、2或3个独立选自N、O、S或Se的杂原子。
在本发明的一些方案中,式(Ⅰ)所述Ra选自-N(CH 3)-、-O-、-C(O)NH-、-环丙基-或-哌嗪基-,其他变量如本发明所定义。
在本发明的一些方案中,式(Ⅰ)所述Ra选自-N(CH 3)-、-O-、-C(O)NH-或
Figure PCTCN2022120267-appb-000018
其他变量如本发明所定义。
在本发明的一些方案中,式(Ⅰ)所述L 1选自
Figure PCTCN2022120267-appb-000019
Figure PCTCN2022120267-appb-000020
其他变量如本发明所定义。
在本发明的一些方案中,式(Ⅰ)所述环A选自苯基或萘基,其他变量如本发明所定义。
在本发明的一些方案中,式(Ⅰ)所述结构单元
Figure PCTCN2022120267-appb-000021
选自
Figure PCTCN2022120267-appb-000022
Figure PCTCN2022120267-appb-000023
Figure PCTCN2022120267-appb-000024
其他变量如本发明所定义。
本发明还提供式(I-1)、(I-2)和(I-3)所示化合物、其立体异构体或其药学上可接受的盐,
Figure PCTCN2022120267-appb-000025
其中,L 1和T 1如本发明所定义。
本发明还提供下列化合物、其立体异构体或其药学上可接受的盐,
Figure PCTCN2022120267-appb-000026
Figure PCTCN2022120267-appb-000027
Figure PCTCN2022120267-appb-000028
Figure PCTCN2022120267-appb-000029
Figure PCTCN2022120267-appb-000030
本发明还提供下列化合物、其立体异构体或其药学上可接受的盐,
Figure PCTCN2022120267-appb-000031
Figure PCTCN2022120267-appb-000032
Figure PCTCN2022120267-appb-000033
Figure PCTCN2022120267-appb-000034
Figure PCTCN2022120267-appb-000035
本发明的一些方案中,上述化合物选自:
Figure PCTCN2022120267-appb-000036
Figure PCTCN2022120267-appb-000037
Figure PCTCN2022120267-appb-000038
Figure PCTCN2022120267-appb-000039
Figure PCTCN2022120267-appb-000040
Figure PCTCN2022120267-appb-000041
Figure PCTCN2022120267-appb-000042
Figure PCTCN2022120267-appb-000043
Figure PCTCN2022120267-appb-000044
Figure PCTCN2022120267-appb-000045
本发明还提供一种药物组合物,其含有治疗有效量的本发明的化合物、其异构体或其药学上可接受的盐。
本发明还提供上述的化合物、其立体异构体、其药学上可接受的盐及其药物组合物在制备治疗与白细胞介素-1受体相关激酶4降解靶向嵌合体相关肿瘤的药物中的应用。
本发明的一些方案中,所述与白细胞介素-1受体相关激酶4降解靶向嵌合体相关肿瘤是B细胞淋巴瘤。
技术效果
本发明化合物展现出对靶蛋白IRAK4、IKZF1和IKZF3优异的降解作用。本发明化合物在淋巴瘤细胞系OCI-LY10、TMD-8与SU-DHL-2中均展现出优异细胞增殖的抑制作用。本发明化合物的口服血浆系统暴露量较高。在啮齿动物小鼠、大鼠和非啮齿类动物比格犬中,本发明化合物的药代动力学性质较优。本 发明化合物在人B细胞淋巴瘤OCI-LY10细胞SCID小鼠异种移植瘤模型中具有显著的抑制肿瘤作用,并具有剂量依赖性。本发明化合物在人淋巴瘤SU-DHL-2细胞皮下异种移植肿瘤CB17 SCID小鼠模型中具有显著的抑制肿瘤作用。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
“药物组合物”表示含有一种或多种本申请所述化合物、其异构体或其药学上可接受的盐,以及其他组分例如生理学/可药用的载体和赋形剂。药物组合物的目的是促进对生物体的给药,利于活性成分的吸收进而发挥生物活性。
术语“靶向嵌合体”表示包含两种小分子配体的双官能分子,一种具有针对目的靶蛋白的高亲和力,以及第二种用于募集E3连接酶,所述E3连接酶使蛋白质泛素化并靶向蛋白质以通过26S蛋白酶体进行蛋白水解。
术语“治疗有效量”或“有效量”意指本发明化合物实现以下作用的量:(i)治疗或预防特定疾病、病状或病症,(ii)减轻、改善或消除特定疾病、病状或病症的一或多种症状,或(iii)预防或延迟本文所述的特定疾病、病状、或病症的一或多种症状发作。在癌症的情况下,治疗有效量的药物可减少癌细胞数目;减小肿瘤尺寸;抑制(即,在一定程度上减缓和优选停止)癌细胞浸润至周围器官中;抑制(即,在一定程度上减缓和优选停止)肿瘤转移;在一定程度上抑制肿瘤生长;和/或在一定程度上缓解与癌症相关的一或多种症状。对于药物可阻止现有癌细胞生长和/或杀灭现有癌细胞的程度,其可具有细胞生长抑制性和/或细胞毒性。
术语“药学上可接受的盐”是指本申请化合物的盐,由本申请发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本申请的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本申请的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。本申请的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计 量的适当的碱或酸反应来制备。
术语“治疗”包括抑制、减缓、停止或逆转现有症状或病患的进展或严重程度。
除非另有说明,术语“异构体”意在包括几何异构体、顺反异构体、立体异构体、对映异构体、旋光异构体、非对映异构体和互变异构体。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2022120267-appb-000046
和楔形虚线键
Figure PCTCN2022120267-appb-000047
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2022120267-appb-000048
和直形虚线键
Figure PCTCN2022120267-appb-000049
表示相对构型,例如,用
Figure PCTCN2022120267-appb-000050
表示反式1、4-二取代的环己烷,用
Figure PCTCN2022120267-appb-000051
表示顺式1、4-二取代的环己烷。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构 体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2022120267-appb-000052
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2022120267-appb-000053
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2022120267-appb-000054
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2022120267-appb-000055
直形虚线键
Figure PCTCN2022120267-appb-000056
或波浪线
Figure PCTCN2022120267-appb-000057
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2022120267-appb-000058
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2022120267-appb-000059
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连,再如
Figure PCTCN2022120267-appb-000060
表示萘环上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure PCTCN2022120267-appb-000061
Figure PCTCN2022120267-appb-000062
这6种连接方式。
“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
术语“被置换”指特定的原子或基团可以被替换为指定的其他原子或基团。如CH 3CH 2CH 3中的CH 2可被O、S、NH置换得到CH 3OCH 3、CH 3SCH 3和CH 3NHCH 3
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1- 3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
除非另有规定,术语“C 1-10烷基”用于表示直链或支链的由1至10个碳原子组成的饱和碳氢基团。所述C 1-10烷基烷基包括C 1-9、C 1-8、C 1-7、C 1-6、C 1-5、C 1-4、C 1-3、C 1-2、C 18、C 17、C 16、C 15、C 14、C 13、C 12、C 11、C 10、C 1-9、C 8、C 7、C 6和C 5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-8烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)、己基、庚基、辛基等。术语“C 1-10亚烷基”表示二价的C 1-10烷基。
当烷基为连接基团时,则“烷基”表示连接的亚烷基基团。术语“亚烷基”表示从饱和的直链或支链烃中去掉两个氢原子所得到的饱和的二价烃基基团。烷基表示为连接的亚烷基基团的实例包括但不限于:-CH 2-、-CH 2CH 2-、-CH(CH 3)CH 2-、-CH(CH 2CH 3)-、-CH 2CH(CH 3)-、-CH 2CH 2CH 2-、-CH 2CH 2CH 2CH 2-等。
除非另有规定,术语“C 1-4烷基”用于表示直链或支链的由1至4个碳原子组成的饱和碳氢基团。所述 C 1-4烷基包括C 1-3烷基、C 1-2烷基、C 2烷基、C 3烷基和甲基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-6烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)等。
除非另有规定,“C 3-6环烷基”表示由3至6个碳原子组成的饱和环状碳氢基团,其为单环和双环体系,所述C 3-6环烷基包括C 3-5、C 4-5和C 5-6环烷基等;其可以是一价、二价或者多价。C 3-6环烷基的实例包括,但不限于,环丙基、环丁基、环戊基、环己基等。
除非另有规定,术语“4-8元杂环烷基”本身或者与其他术语联合分别表示由4至8个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S、N和Se的杂原子,其余为碳原子,其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。其包括单环和双环体系,其中双环体系包括螺环、并环和桥环。此外,就该“4-8元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述4-8元杂环烷基包括4-7元、4-6元、4-5元、4元、5元和6元杂环烷基等。4-8元杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、硫杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基、高哌啶基或二氧杂环庚烷基等。
除非另有规定,本发明术语“C 6-10芳环”和“C 6-10芳基”可以互换使用,术语“C 6-10芳环”或“C 6-10芳基”表示由6至10个碳原子组成的具有共轭π电子体系的环状碳氢基团,它可以是单环、稠合双环或稠合三环体系,其中各个环均为芳香性的。其可以是一价、二价或者多价,C 6-10芳基包括C 6-9、C 9、C 10和C 6芳基等。C 6-10芳基的实例包括但不限于苯基、萘基(包括1-萘基和2-萘基等)。
除非另有规定,本发明术语“5-10元杂芳环”和“5-10元杂芳基”可以互换使用,术语“5-10元杂芳基”是表示由5至10个环原子组成的具有共轭π电子体系的环状基团,其1、2、3或4个环原子为独立选自O、S、N和Se的杂原子,其余为碳原子。其可以是单环、稠合双环或稠合三环体系,其中各个环均为芳香性的。其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。5-10元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述5-10元杂芳基包括5-8元、5-7元、5-6元、5元和6元杂芳基等。所述5-10元杂芳基的实例包括但不限于吡咯基(包括N-吡咯基、2-吡咯基和3-吡咯基等)、吡唑基(包括2-吡唑基和3-吡唑基等)、咪唑基(包括N-咪唑基、2-咪唑基、4-咪唑基和5-咪唑基等)、噁唑基(包括2-噁唑基、4-噁唑基和5-噁唑基等)、三唑基(1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基和4H-1,2,4-三唑基等)、四唑基、异噁唑基(3-异噁唑基、4-异噁唑基和5-异噁唑基等)、噻唑基(包括2-噻唑基、4-噻唑基和5-噻唑基等)、呋喃基(包括2-呋喃基和3-呋喃基等)、噻吩基(包括2-噻吩基和 3-噻吩基等)、吡啶基(包括2-吡啶基、3-吡啶基和4-吡啶基等)、吡嗪基、嘧啶基(包括2-嘧啶基和4-嘧啶基等)、苯并噻唑基(包括5-苯并噻唑基等)、嘌呤基、苯并咪唑基(包括2-苯并咪唑基等)、苯并噁唑基、吲哚基(包括5-吲哚基等)、异喹啉基(包括1-异喹啉基和5-异喹啉基等)、喹喔啉基(包括2-喹喔啉基和5-喹喔啉基等)或喹啉基(包括3-喹啉基和6-喹啉基等)。
除非另有规定,术语“卤代素”或“卤素”本身或作为另一取代基的一部分表示氟、氯、溴或碘原子。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2022120267-appb-000063
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2022120267-appb-000064
软件命名,市售化合物采用供应商目录名称。
本发明所使用的溶剂可经市售获得。
本发明采用下述缩略词:Ph代表苯基;Me代表甲基;Et代表乙基;M表示摩尔每升;Boc代表叔丁氧羰基,是一种氨基保护基。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
参考例1:片段BB-1
Figure PCTCN2022120267-appb-000065
合成路线:
Figure PCTCN2022120267-appb-000066
步骤1:化合物BB-1-2的合成
室温和氮气保护下,将化合物BB-1-1(40g,416.29mmol)溶于N,N-二甲基甲酰胺(400mL)中,加入苄溴(74.76g,437.10mmol,51.92mL)和碳酸铯(339.09g,1.04mol),反应混合物在室温和氮气保护下搅拌反应2小时。反应完毕后,向反应液中加入水(1500mL),用乙酸乙酯(5×1000mL)萃取,合并有机相,用10%食盐水(3×1000mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-20/1,体积比),得到化合物BB-1-2。MS-ESI m/z:187.2[M+H] +.
步骤2:化合物BB-1-3的合成
室温和氮气保护下,将化合物BB-1-2(58g,311.48mmol)溶于二氯甲烷(500mL)中,降温至0℃,加入二乙氨基三氟化硫(150.62g,934.43mmol,123.46mL),反应混合物在室温下搅拌反应16小时。反应完毕后,降温至0℃,向反应液缓慢滴加甲醇(200mL),淬灭,减压浓缩除去溶剂,然后加入水(1000mL),用乙酸乙酯(3×1000mL)萃取,合并有机相,依次用饱和碳酸氢钠溶液(1000mL)和饱和食盐水(1000mL)洗涤,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-20/1,体积比),所得粗品加入石油醚(20mL),室温搅拌2小时,过滤,滤饼用石油醚(10mL)淋洗,收集滤饼,真空干燥,得到化合物BB-1-3。MS-ESI m/z:209.1[M+H] +. 1H NMR(400MHz,CDCl 3)δ:7.42-7.31(m,4H),7.26-7.21(m,2H),6.73(t,J=55.2Hz,1H),6.51(t,J=1.0Hz,1H),5.33(s,2H).
步骤3:化合物BB-1-4的合成
室温下,将化合物BB-1-3(26.5g,127.28mmol)溶于甲醇(300mL)中,加入氢氧化钯/碳(5g,纯度:20%)和盐酸(2M,25mL),反应混合物加热至60℃,并在氢气(50psi)氛围下搅拌反应30小时。反应完毕后,将反应液经硅藻土过滤,滤饼用甲醇(800mL)淋洗,收集滤液,滤液减压浓缩除去溶剂,得到 化合物BB-1-4。 1H NMR(400MHz,DMSO_d 6)δ:11.41(s,1H),7.84(d,J=2.0Hz,1H),7.00(t,J=54.8Hz,1H),6.51(t,J=1.2Hz,1H).
步骤4:化合物BB-1-5的合成
0℃下,将化合物BB-1-4(30g,254.06mmol)溶于浓硫酸(300mL,纯度:98%)中,然后滴加硝酸(68.950g,711.24mmol,49.25mL,纯度:65~68%),反应混合物在0℃下搅拌10分钟后,加热至115℃并搅拌反应16小时。反应完毕后,将反应液缓慢倒入到冰水(1000mL)中,用乙酸乙酯(3×500mL)萃取,合并有机相,依次用饱和碳酸氢钠溶液(500mL)和饱和食盐水(500mL)洗涤,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物BB-1-5。MS-ESI m/z:164.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:14.39(s,1H),9.00(s,1H),7.31(t,J=53.0Hz,1H).
步骤5:化合物BB-1-6的合成
室温和氮气保护下,将顺式4-羟基环己烷甲酸甲酯(35g,221.25mmol)溶于二氯甲烷(350mL)中,加入三乙胺(22.39g,221.25mmol,30.79mL),降温至0℃,滴加甲烷磺酰氯(31.99g,279.26mmol,21.61mL),反应混合物在0℃下搅拌反应0.5小时。反应完毕后,向反应液中缓慢加入水(300mL),用二氯甲烷(300mL)萃取,合并有机相,用饱和食盐水(300mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到粗品,直接用于下一步。
室温下,将化合物BB-1-5(13.5g,82.78mmol)和上述得到的粗品溶于N,N-二甲基甲酰胺(300mL)中,加入碳酸钾(24g,173.65mmol),反应混合物加热至80℃并搅拌反应16小时。反应完毕后,将反应液降温至室温,加入水(100mL),用乙酸乙酯(40mL×2)萃取,合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经柱层析分离(洗脱剂:乙酸乙酯/石油醚=1/3,体积比),得到化合物BB-1-6。 1H NMR(400MHz,CDCl 3)δ:8.22(s,1H),7.12(t,J=53.4Hz,1H),4.25-4.16(m,1H),3.72(s,3H),2.46-2.37(m,1H),2.36-2.28(m,2H),2.27-2.20(m,2H),1.89-1.77(m,2H),1.72-1.60(m,2H).
步骤6:化合物BB-1的合成
室温和氩气保护下,将湿钯碳(1.5g,纯度:10%)加入四氢呋喃(200mL)中,加入化合物BB-1-6(7.5g,24.73mmol),反应混合物在室温和氢气(15psi)氛围下搅拌反应15小时。反应完毕后,将反应液过滤,滤饼用二氯甲烷(50ml×2)淋洗,滤液减压浓缩除去溶剂。所得残余物经柱层析分离(洗脱剂:乙酸乙酯/石油醚=1/2,体积比),得到化合物BB-1。MS-ESI m/z:274.1[M+H] +.
参考例2:片段BB-2
Figure PCTCN2022120267-appb-000067
合成路线:
Figure PCTCN2022120267-appb-000068
步骤1:化合物BB-2-2的合成
室温和氮气保护下,将化合物BB-2-1(50g,289.00mmol)溶于四氢呋喃(750mL)中,降温至-5℃,加入二(三甲基硅)氨基锂的正己烷溶液(1M,578.00mL),反应混合物在-5℃下搅拌10分钟,加入二碳酸二叔丁酯(63.07g,289.00mmol,66.39mL),反应混合物缓慢升至室温并搅拌反应1小时。反应完毕后,将反应液缓慢加入到饱和氯化铵溶液(1000mL)中,用乙酸乙酯(1000mL×3)萃取,合并有机相,用饱和食盐水(2000mL×2)洗涤,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物BB-2-2。MS-ESI m/z:273.1[M+H] +,275.1[M+H+2] +. 1H NMR(400MHz,DMSO_d 6)δ:10.10(s,1H),8.14(d,J=5.2Hz,1H),8.04(d,J=1.6Hz,1H),7.27(dd,J=1.8,5.4Hz,1H),1.47(s,9H).
步骤2:化合物BB-2-3的合成
室温和氮气保护下,将化合物BB-2-2(39g,142.79mmol)溶于N,N-二甲基甲酰胺(400mL)中,降温至0℃,加入氢化钠(8.57g,214.19mmol,纯度:60%),0~5℃下反应30分钟后,加入溴甲基环丙烷(23.13g,171.35mmol,16.41mL),反应混合物缓慢升至室温并搅拌反应15小时。反应完毕后,将反应液缓慢加入到水(1.5L)中,用乙酸乙酯(1L×3)萃取,合并有机相,用饱和食盐水(3L×3)洗涤,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=50/1-20/1,体积比),得到化合物BB-2-3。 1H NMR(400MHz,CDCl 3)δ:8.17(d,J=5.2Hz,1H),7.96(d,J=1.6Hz,1H),7.15(dd,J=1.6,5.2Hz,1H),3.87(d,J=7.2Hz,2H),1.54(s,9H),1.21-1.14(m,1H),0.44-0.39(m,2H),0.27-0.23(m,2H).
步骤3:化合物BB-2-4的合成
室温和氮气保护下,将化合物BB-2-3(47.53g,145.26mmol)和4-恶唑甲酸乙酯(20.5g,145.26mmol)溶于N,N-二甲基甲酰胺(500mL)中,加入三(邻甲基苯基)膦(8.84g,29.05mmol),醋酸钯(3.26g,14.53mmol)和碳酸铯(94.66g,290.52mmol),反应混合物加热至80℃并搅拌14小时。反应完毕后,将反应液加入到水(1L)中,用乙酸乙酯(1L×3)萃取,合并有机相,用饱和食盐水(3L×3)洗涤,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1-2/1,体积比),得到化合物BB-2-4。MS-ESI m/z:388.2[M+H] +. 1H NMR(400MHz,CDCl 3)δ:8.49(d,J=5.2Hz,1H),8.37(s,1H),8.33(s,1H),7.70(dd,J=1.2,5.2Hz,1H),4.45(q,J=7.0Hz,2H),3.92(d,J=6.8Hz,2H),1.55(s,9H),1.42(t,J=7.2Hz,3H),1.22-1.13(m,1H),0.44-0.39(m,2H),0.27-0.22(m,2H).
步骤4:化合物BB-2-5的合成
室温和氮气保护下,将化合物BB-2-4(18g,46.46mmol)溶于水(80mL)和四氢呋喃(400mL)中,加入一水合氢氧化锂(5.85g,139.38mmol),反应混合物在室温下搅拌反应4小时。反应完毕后,将反应液减压浓缩,用2M盐酸调节pH至2-3,用乙酸乙酯(100mL×5)萃取,合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物BB-2-5。 1H NMR(400MHz,CDCl 3)δ:8.57(d,J=5.2Hz,1H),8.44(s,1H),8.38(s,1H),7.77(dd,J=1.2,5.2Hz,1H),3.94(d,J=6.8Hz,2H),1.55(s,9H),1.20-1.11(m,1H),0.45-0.39(m,2H),0.29-0.20(m,2H).
步骤5:化合物BB-2-6的合成
室温下,将化合物BB-2-5(5g,13.91mmol)溶于N,N-二甲基甲酰胺(50mL)中,加入N,N-二异丙基乙胺(5.39g,41.74mmol,7.27mL)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(6.35g,16.70mmol),反应混合物搅拌反应0.5小时,加入化合物BB-1(4.18g,15.30mmol),继续反应1.5小时。反应完毕后,将反应液倒入水(500mL)中,用乙酸乙酯(150mL×2)萃取,合并有机相,用10%食盐水(150mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经柱层析分离(洗脱剂:石油 醚/乙酸乙酯=2/1,体积比),得到化合物BB-2-6。MS-ESI m/z:615.4[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:9.77(s,1H),9.00(s,1H),8.59(d,J=5.2Hz,1H),8.29(s,1H),8.19(s,1H),7.68(dd,J=1.2,5.2Hz,1H),7.16(t,J=54.2Hz,1H),4.32-4.22(m,1H),3.86(d,J=6.8Hz,2H),3.62(s,3H),2.45-2.38(m,1H),2.11-1.99(m,4H),1.88-1.75(m,2H),1.61-1.54(m,1H),1.51(s,9H),1.22-1.12(m,1H),0.44-0.37(m,2H),0.27-0.19(m,2H).
步骤6:化合物BB-2-7的合成
室温和氮气保护下,将化合物BB-2-6(5g,8.13mmol)溶于四氢呋喃(50mL)中,降温至-40℃,缓慢加入二异丁基氢化铝的甲苯溶液(1M,48.81mL),滴加完毕后,反应混合物升温至0℃并搅拌反应30分钟。反应完毕后,向反应液中加入1M氢氧化钠溶液(10mL),再加入水(50mL),用乙酸乙酯(4×50mL)萃取,合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经柱层析分离(洗脱:石油醚/乙酸乙酯=1/0-1/3,体积比),得到化合物BB-2-7。MS-ESI m/z:587.4[M+H] +. 1H NMR(400MHz,CDCl 3)δ:9.07(s,1H),8.52(d,J=5.2Hz,1H),8.38(s,1H),8.33(s,2H),7.64-7.62(m,1H),7.01-6.65(m,1H),4.14-4.10(m,1H),3.94(d,J=7.2Hz,2H),3.54(d,J=6.4Hz,2H),2.29-2.23(m,2H),2.05-1.99(m,2H),1.88-1.78(m,2H),1.57(s,9H),1.23-1.14(m,4H),0.45-0.41(m,2H),0.29-0.25(m,2H).
步骤7:化合物BB-2的合成
室温和氮气保护下,将化合物BB-2-7(1g,1.70mmol)溶于二氯甲烷(10mL)中,加入戴斯-马丁氧化剂(1.45g,3.41mmol),反应混合物在室温下搅拌反应1小时。反应完毕后,向反应液中加入饱和亚硫酸钠溶液(20mL),用二氯甲烷(3×20mL)萃取,有机相用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=4/1-1/1,体积比),得到化合物BB-2。MS-ESI m/z:585.4[M+H] +. 1H NMR(400MHz,CDCl 3)δ:9.70(s,1H),9.08(s,1H),8.52(d,J=5.6Hz,1H),8.38(s,1H),8.34(s,1H),8.33(s,1H),7.63(dd,J=1.6,5.2Hz,1H),6.84(t,J=54.6Hz,1H),4.16-4.06(m,1H),3.94(d,J=6.8Hz,2H),2.41-2.33(m,1H),2.34-2.28(m,2H),2.25-2.19(m,2H),1.95-1.82(m,2H),1.57(s,9H),1.53-1.42(m,2H),1.24-1.17(m,1H),0.47-0.39(m,2H),0.30-0.24(m,2H).
参考例3:片段BB-3
Figure PCTCN2022120267-appb-000069
合成路线:
Figure PCTCN2022120267-appb-000070
步骤1:化合物BB-3-2的合成
室温和氮气保护下,将化合物BB-3-1(200g,930.04mmol)溶于氯仿(1000mL)和乙酸乙酯(1000mL)中,随后加入溴化铜(415.45g,1.86mol),反应混合物加热至90℃并搅拌反应16小时。反应完毕后,冷却至室温,过滤,滤饼用二氯甲烷(1.5L)淋洗,得到化合物BB-3-2的溶液,直接用于下一步。
步骤2:化合物BB-3-3的合成
将上述得到的化合物BB-3-2的溶液(3.5L)降温至0℃,随后缓慢滴加三乙胺(141.17g,1.40mol,194.18mL),滴加完毕后,反应混合物缓慢升温至室温并搅拌反应2小时。反应完毕后,加入水(2L),分液,水相用二氯甲烷(500mL)萃取。合并有机相,用饱和食盐水(1L×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到化合物BB-3-3。
步骤3:化合物BB-3-4的合成
室温和氮气保护下,将化合物BB-3-3(198.1g,929.93mmol)溶于甲苯(1.5L)中,随后加入乙氧甲酰基亚甲基三苯基膦(388.76g,1.12mol),反应混合物加热至130℃并搅拌反应36小时。反应完毕后,冷却至室温,减压浓缩除去溶剂,向所得残余物中加入甲基叔丁基醚(700mL×3),室温下搅拌20分钟,过滤,滤饼用甲基叔丁基醚(100mL)淋洗,收集滤液。滤液减压除去溶剂,所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-70/1,体积比),得到化合物BB-3-4。 1H NMR(400MHz,CDCl 3)δ:7.72(d,J=2.0Hz,1H),7.64(s,1H),7.41(dd,J=2.0Hz,8.8Hz,1H),7.36(d,J=8.8Hz,1H),4.21(q,J=7.0Hz,2H),3.66(d,J=0.8Hz,2H),1.30(t,J=7.2Hz,3H).
步骤4:化合物BB-3的合成
室温和氮气保护下,将化合物BB-3-4(3g,10.60mmol)加入至N,N-二甲基甲酰胺(20mL)中,依次加入丙烯酰胺(903.79mg,12.72mmol)和叔丁醇钾(1.78g,15.89mmol),反应混合物在室温下搅拌反应1小时。反应完毕后,将反应液倒入1N盐酸(15mL)中,加入水(25mL),用乙酸乙酯(35mL×3)萃取,合并有机相,用饱和食盐水(30mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物通过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1-1/1,体积比),得到化合物BB-3。MS-ESI m/z:308.0[M+H] +,310.0[M+H+2] +. 1H NMR(400MHz,DMSO_d 6)δ:10.87(s,1H),7.97(s,1H),7.85(d,J=2.0Hz,1H),7.57(d,J=8.4Hz,1H),7.45(dd,J=2.0,8.8Hz,1H),4.15(dd,J=4.8,12.4Hz,1H),2.78-2.67(m,1H),2.62-2.54(m,1H),2.43-2.29(m,1H),2.14-2.04(m,1H).
参考例4:片段BB-4
Figure PCTCN2022120267-appb-000071
合成路线:
Figure PCTCN2022120267-appb-000072
步骤1:化合物BB-4-1的合成
室温和氮气保护下,向甲苯(100mL)和水(20mL)混合溶剂中依次加入化合物BB-3-4(5g,17.66mmol)、氨基甲酸叔丁酯(2.48g,21.19mmol)、磷酸钾(11.25g,52.98mmol)、三(二亚苄基丙酮)二钯(323.44mg,353.21μmol)和2-二叔丁基膦-2',4',6'-三异丙基联苯(299.98mg,706.42μmol),反应混合物加热至110℃并搅拌反应16小时。反应完毕后,冷却至室温,加入水(100mL),过滤,滤饼用乙酸乙酯(100mL)淋洗,合并滤液,静置分液,收集有机相。有机相用无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:乙酸乙酯/石油醚=1/5,体积比),得到化合物BB-4-1。 1H NMR(400MHz,CDCl 3)δ:7.71(br s,1H),7.62(s,1H),7.37(d,J=8.8Hz,1H),7.15(dd,J=2.0Hz,8.8Hz,1H),6.58(s,1H),4.20(q,J=7.2Hz,2H),3.67(q,J=1.2Hz,2H),1.53(s,9H),1.29(t,J=7.2Hz,3H).
步骤2:化合物BB-4-2的合成
室温下,将化合物BB-4-1(5.6g,17.54mmol)和丙烯酰胺(1.50g,21.05mmol)溶于N,N-二甲基甲酰胺(100mL)中,随后加入叔丁醇钾(1.8g,16.04mmol),反应混合物在室温下搅拌反应2小时,再补加叔丁醇钾(0.6g,5.35mmol),反应混合物在室温下继续搅拌反应0.5小时。反应完毕后,将反应液倒入1M稀盐酸(300mL)中,搅拌10分钟,过滤,用水(100mL)淋洗滤饼,收集滤饼。所得滤饼经过柱层析分离(洗脱剂:乙酸乙酯/石油醚=1/1,体积比),得到化合物BB-4-2。 1H NMR(400MHz,CDCl 3)δ:8.32(br s,1H),7.72(br s,1H),7.53(s,1H),7.39(d,J=8.8Hz,1H),7.12(dd,J=2.0Hz,8.8Hz,1H),6.71(br s,1H),3.97(t,J=7.6Hz,1H),2.82-2.63(m,2H),2.39-2.29(m,2H),1.53(s,9H).
步骤3:化合物BB-4的盐酸盐的合成
室温下,将化合物BB-4-2(2.3g,6.68mmol)溶于乙酸乙酯(20mL)中,随后加入盐酸的乙酸乙酯溶 液(4M,40mL),反应混合物在室温下搅拌反应16小时。反应完毕后,将反应液过滤,滤饼用乙酸乙酯(20mL)淋洗,收集滤饼,真空干燥,得到化合物BB-4的盐酸盐。 1H NMR(400MHz,D 2O)δ:7.85(s,1H),7.67(d,J=8.8Hz,1H),7.56(d,J=1.6Hz,1H),7.34(dd,J=2.0Hz,8.8Hz,1H),4.24(dd,J=5.2Hz,12.4Hz,1H),2.91-2.74(m,2H),2.50-2.37(m,1H),2.35-2.25(m,1H).
参考例5:片段BB-5
Figure PCTCN2022120267-appb-000073
合成路线:
Figure PCTCN2022120267-appb-000074
步骤1:化合物BB-5-2的合成
室温和氮气保护下,将化合物BB-5-1(200g,930.04mmol)溶于氯仿(1L)和乙酸乙酯(1L)中,随后加入溴化铜(415.45g,1.86mol),反应混合物加热至90℃并搅拌反应12小时。反应完毕后,冷却至室温,过滤,滤饼用二氯甲烷(300mL×2)淋洗,收集滤液,得到化合物BB-5-2的溶液,直接用于下一步。
步骤2:化合物BB-5-3的合成
将上述得到的化合物BB-5-2(273g,928.76mmol)的溶液冷却至0℃,随后缓慢滴加三乙胺(140.97g,1.39mol,193.91mL),滴加完毕后,反应混合物缓慢升温至室温,搅拌反应1小时。反应完毕后,加入水(600mL),萃取分液,有机相用饱和食盐水(1L)洗涤,无水硫酸钠干燥,过滤,滤液减压除去一半溶剂,加入甲苯(500mL),继续减压浓缩除去残留的低沸点溶剂,得到化合物BB-5-3的甲苯溶液。
步骤3:化合物BB-5-4的合成
室温和氮气保护下,向二分之一的上述化合物BB-5-3的甲苯溶液中加入甲苯(2L),随后加入乙氧甲酰基亚甲基三苯基膦(161.90g,464.73mmol),反应混合物加热至130℃并搅拌反应20小时。反应完毕后,冷却至室温,两批次合并处理。减压浓缩除去溶剂,向所得残余物中加入甲基叔丁基醚(800mL),室温下搅拌30分钟,过滤,滤饼用甲基叔丁基醚(100mL×2)淋洗,滤液减压除去溶剂,所得残余物经柱层析分 离(洗脱剂:石油醚/乙酸乙酯=100/1-10/1,体积比),得到化合物BB-5-4。 1H NMR(400MHz,CDCl 3)δ:7.94(s,1H),7.88(s,1H),7.56(d,J=8.4Hz,1H),7.44(d,J=8.4Hz,1H),4.11(q,J=7.2Hz,2H),3.79(s,2H),1.19(t,J=7.2Hz,3H).
步骤4:化合物BB-5的合成
室温和氮气保护下,将化合物BB-5-4(5.00g,17.66mmol)溶于N,N-二甲基甲酰胺(50mL)中,随后依次加入丙烯酰胺(1.51g,21.19mmol)和叔丁醇钾(2.97g,26.49mmol),反应混合物在室温下搅拌反应2小时。反应完毕后,倒入1M稀盐酸(100mL)中,用乙酸乙酯(30mL×2)萃取。合并有机相,用10%食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:乙酸乙酯/石油醚=1/1,体积比),得到化合物BB-5。MS-ESI m/z:308.0[M+H] +,310.0[M+H+2] +. 1H NMR(400MHz,DMSO_d 6)δ:10.91(s,1H),7.94(s,1H),7.89(d,J=1.6Hz,1H),7.56(d,J=8.4Hz,1H),7.42(dd,J=1.6Hz,8.0Hz,1H),4.15(dd,J=4.8Hz,12.0Hz,1H),2.80-2.68(m,1H),2.58(dt,J=4.0Hz,17.2Hz,1H),2.38-2.25(m,1H),2.15-2.05(m,1H).
参考例6:片段BB-6
Figure PCTCN2022120267-appb-000075
合成路线:
Figure PCTCN2022120267-appb-000076
步骤1:化合物BB-6-1的合成
室温和氮气保护下,将化合物BB-5-4(10g,35.32mmol)、氨基甲酸叔丁酯(4.97g,42.39mmol)、磷酸钾(22.49g,105.96mmol)、三(二亚苄基丙酮)二钯(646.88mg,706.42μmol)和2-二叔丁基膦-2',4',6'-三异丙基联苯(599.95mg,1.41mmol)溶于甲苯(100mL)和水(20mL)中,反应混合物加热至110℃并搅拌反应12小时。反应完毕后,冷却至室温,加入水(100mL),用乙酸乙酯(70mL×3)萃取。合并有机相,用饱和食盐水(70mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。残余物中加入正庚烷(70mL), 室温搅拌10分钟,过滤,收集滤饼。向滤饼中再次加入正庚烷(50mL),室温搅拌10分钟,过滤,滤饼用正庚烷(10mL×3)淋洗,收集滤饼,真空干燥,得到化合物BB-6-1。MS-ESI m/z:264.2[M-55] +. 1H NMR(400MHz,CDCl 3)δ:7.77(s,1H),7.56(s,1H),7.44(d,J=8.4Hz,1H),7.06(dd,J=1.6Hz,8.4Hz,1H),6.58(s,1H),4.19(q,J=7.0Hz,2H),3.66(s,2H),1.54(s,9H),1.27(t,J=7.2Hz,3H).
步骤2:化合物BB-6-2的合成
室温下,将化合物BB-6-1(9.8g,30.69mmol)和丙烯酰胺(2.62g,36.83mmol)溶于N,N-二甲基甲酰胺(100mL)中,随后加入叔丁醇钾(6.20g,55.24mmol),反应混合物在室温下搅拌反应1小时。反应完毕后,将反应液倒入0.5M盐酸(120mL)中,然后加入水(300mL),用乙酸乙酯(150mL×3)萃取。合并有机相,用饱和食盐水(150mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。向所得残余物中加入甲基叔丁基醚(70mL),室温搅拌0.5小时,过滤,用甲基叔丁基醚(10mL×3)淋洗滤饼,收集滤饼,真空干燥,得到化合物BB-6-2。 1H NMR(400MHz,DMSO_d 6)δ:10.88(s,1H),9.47(s,1H),7.78(s,2H),7.43(d,J=8.8Hz,1H),7.23(dd,J=1.4Hz,8.6Hz,1H),4.07(dd,J=4.8Hz,12.0Hz,1H),2.78-2.65(m,1H),2.62-2.53(m,1H),2.35-2.23(m,1H),2.15-2.06(m,1H),1.49(s,9H).
步骤3:化合物BB-6的盐酸盐的合成
室温下,将化合物BB-6-2(6.6g,19.17mmol)溶于二氯甲烷(20mL)中,随后加入盐酸的乙酸乙酯溶液(4M,150mL),反应混合物在室温下搅拌反应4小时。反应完毕后,减压除去溶剂,得到化合物BB-6的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:10.92(s,1H),10.06(s,2H),7.98(s,1H),7.66(d,J=8.4Hz,1H),7.57(d,J=1.6Hz,1H),7.21(dd,J=1.8Hz,8.2Hz,1H),4.16(dd,J=4.8Hz,12.0Hz,1H),2.81-2.69(m,1H),2.63-2.54(m,1H),2.39-2.26(m,1H),2.16-2.07(m,1H).
参考例7:片段BB-7
Figure PCTCN2022120267-appb-000077
合成路线:
Figure PCTCN2022120267-appb-000078
步骤1:化合物BB-7-2的合成
室温和氮气保护下,将化合物BB-7-1(11.39g,52.97mmol)溶于氯仿(100mL)和乙酸乙酯(100mL)中,随后加入溴化铜(23.66g,105.93mmol),反应混合物加热至110℃并搅拌反应16小时。反应完毕后,冷却至室温,过滤,滤液减压除去溶剂,然后向残余物中加入水(20mL),用乙酸乙酯(20mL×3)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-100/1,体积比),得到化合物BB-7-2。 1H NMR(400MHz,CDCl 3)δ:12.39(s,1H),7.81(dd,J=1.2Hz,8.0Hz,1H),7.76(dd,J=1.2Hz,8.0Hz,1H),6.88(t,J=8.0Hz,1H),4.47(s,2H).
步骤2:化合物BB-7-3的合成
0℃下,将化合物BB-7-2(6.86g,18.44mmol)溶于二氯甲烷(80mL)中,随后缓慢滴加三乙胺(1.87g,18.44mmol),反应混合物缓慢升温至室温并搅拌反应1小时。反应完毕后,直接减压浓缩除去溶剂,得到化合物BB-7-3的粗品,直接用于下一步。
步骤3:化合物BB-7-4的合成
室温和氮气保护下,将化合物BB-7-3的粗品(3.93g,18.45mmol)溶于甲苯(80mL)中,随后加入乙氧甲酰基亚甲基三苯基膦(9.64g,27.67mmol),反应混合物加热至130℃并搅拌反应36小时。反应完毕后,冷却至室温,减压浓缩除去溶剂,然后向残余物中加入水(100mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-100/1,体积比),得到化合物BB-7-4。 1H NMR(400MHz,CDCl 3)δ:7.72(s,1H),7.52(dd,J=0.8Hz,7.6Hz,1H),7.48(dd,J=0.8Hz,7.6Hz,1H),7.15(t,J=7.6Hz,1H),4.20(q,J=7.2Hz,2H),3.70(d,J=0.8Hz,2H),1.28(t,J=7.2Hz,3H).
步骤4:化合物BB-7的合成
0℃和氮气保护下,将化合物BB-7-4(4.77g,16.85mmol)溶于N,N-二甲基甲酰胺(30mL)中,随后依次加入丙烯酰胺(1.20g,16.85mmol)和叔丁醇钾(1.89g,16.85mmol),反应混合物在0℃下搅拌反应1小时。反应完毕后,倒入饱和氯化铵溶液(50mL)中,有大量白色固体产生,过滤,收集固体。固体用甲 醇(20mL×2)室温打浆,过滤,收集滤饼,真空干燥,得到化合物BB-7。 1H NMR(400MHz,DMSO_d 6)δ:10.92(s,1H),8.04(s,1H),7.62(dd,J=0.8Hz,7.6Hz,1H),7.56(d,J=7.6Hz,1H),7.21(t,J=7.6Hz,1H),4.17(dd,J=4.8Hz,12.0Hz,1H),2.79-2.70(m,1H),2.63-2.55(m,1H),2.40-2.27(m,1H),2.16-2.08(m,1H).
参考例8:片段BB-8
Figure PCTCN2022120267-appb-000079
合成路线:
Figure PCTCN2022120267-appb-000080
步骤1:化合物BB-8-1的合成
室温和氮气保护下,将化合物BB-7-4(2g,7.06mmol)溶于甲苯(50mL)和水(5mL)中,随后依次加入三(二亚苄基丙酮)二钯(647mg,706.42μmol)、2-二-叔丁基膦-2’,4’,6’-三异丙基联苯(450mg,1.06mmol)、磷酸钾(6g,28.26mmol)和氨基甲酸叔丁酯(1.66g,14.13mmol),反应混合物加热至100℃并搅拌反应16小时。反应完毕后,冷却至室温,将反应液倒入水(20mL)中,用乙酸乙酯(10mL×3)萃取。合并有机相,用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/0-10/1,体积比),得到化合物BB-8-1。 1H NMR(400MHz,CDCl 3)δ:7.93(br s,1H),7.62(s,1H),7.24-7.20(m,2H),6.97(s,1H),4.20(q,J=6.8Hz,2H),3.69(d,J=0.8Hz,2H),1.56(s,9H),1.28(t,J=7.2Hz,3H).
步骤2:化合物BB-8的盐酸盐的合成
室温下,将化合物BB-8-1(1.32g,4.13mmol)溶于乙酸乙酯(3mL)中,随后加入盐酸的乙酸乙酯溶液(4M,15mL),反应混合物在室温下搅拌反应2小时。反应完毕后,直接减压浓缩除去溶剂,得到化合物BB-8的盐酸盐。
参考例9:片段BB-9
Figure PCTCN2022120267-appb-000081
合成路线:
Figure PCTCN2022120267-appb-000082
步骤1:化合物BB-9-2的合成
0℃下,将浓硫酸(103.08g,1.03mol,56.02mL,纯度:98%)缓慢滴加到化合物BB-9-1(25g,112.07mmol)和4-氯乙酰乙酸乙酯(18.45g,112.07mmol)的混合物中,控制内温在0-5℃。滴加完毕后,反应混合物升温至室温,搅拌反应12小时。4个批次合并处理。反应完毕后,在搅拌下将反应液缓慢倒入冰水(3L)中,室温搅拌10分钟,过滤,收集滤饼,真空干燥,得到化合物BB-9-2。MS-ESI m/z:323.0[M+H] +,325.0[M+H+2] +.
步骤2:化合物BB-9-3的合成
室温下,将氢氧化钠(17.65g,441.36mmol)溶于水(700mL)中,随后加入化合物BB-9-2(54.40g,110.34mmol,纯度:65.63%),反应混合物升温至80℃并搅拌反应12小时。3个批次合并处理。反应完毕后,冷却至室温,过滤,滤饼用水(500mL)洗涤,收集滤饼,真空干燥,得到化合物BB-9-3。 1H NMR(400MHz,DMSO_d 6)δ:8.50(d,J=9.2Hz,1H),8.26(d,J=2.4Hz,1H),7.84(s,1H),7.76(d,J=1.6Hz,2H),7.63(dd,J=2.0Hz,8.8Hz,1H),3.50(s,2H).
步骤3:化合物BB-9-4的合成
室温下,将化合物BB-9-3(33.16g,101.37mmol)溶于乙醇(300mL)中,然后缓慢滴加浓硫酸(27.19g,271.68mmol,14.78mL,纯度:98%),反应混合物升温至80℃,搅拌反应12小时。2个批次合并处理。反应完毕后,冷却至室温,减压浓缩除去溶剂。向所得残余物中加入水(600mL),用乙酸乙酯(200mL×2)萃取。合并有机相,依次用氢氧化钠水溶液(2M,300mL)和饱和食盐水(500mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到化合物BB-9-4。 1H NMR(400MHz,CDCl 3)δ:8.13-8.06(m,2H),7.78(s,1H),7.69-7.60(m,3H),4.23(q,J=7.2Hz,2H),4.03(s,2H),1.27(t,J=7.2Hz,3H).
步骤4:化合物BB-9-5的合成
室温和氮气保护下,将化合物BB-9-4(1g,3.00mmol),三(二亚苄基丙酮)二钯(275mg,300.14μmol),2-二-叔丁基膦-2’,4’,6’-三异丙基联苯(191.18mg,450.21mmol),磷酸钾(2.55g,12.01mmol)和氨基甲酸叔丁酯(527.41mg,4.50mmol)溶于甲苯(50mL)和水(5mL)的混合溶剂中,反应混合物加热至100℃,搅拌反应12小时。反应完毕后,冷却至室温,反应液倒入水(20mL)中,用乙酸乙酯(10mL×3)萃取。合并有机相,用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/0-10/1,体积比),得到化合物BB-9-5。MS-ESI m/z:392.2[M+Na] +. 1H NMR(400MHz,CDCl 3)δ:8.14(d,J=9.2Hz,1H),8.12(br s,1H),7.74(s,1H),7.67(d,J=9.2Hz,1H),7.62(d,J=8.8Hz,1H),7.45(dd,J=2.2Hz,9.0Hz,1H),6.64(br s,1H),4.22(q,J=7.0Hz,2H),4.04(s,2H),1.57(s,9H),1.27(t,J=7.2Hz,3H).
步骤5:化合物BB-9-6的合成
0℃和氮气保护下,将化合物BB-9-5(1.13g,2.74mmol,纯度:89.57%)和丙烯酰胺(234mg,3.29mmol)溶于N,N-二甲基甲酰胺(10mL)中,再加入叔丁醇钾(368.93mg,3.29mmol),反应混合物在0℃下搅拌反应1小时。反应完毕后,反应液慢慢倒入饱和氯化铵水溶液(30mL)中,用乙酸乙酯(15mL×3)萃取。合并有机相,用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物中加入甲醇(10mL),室温下搅拌0.5小时,过滤,收集滤饼,真空干燥,得到化合物BB-9-6。MS-ESI m/z:417.0[M+Na] +. 1H NMR(400MHz,CDCl 3)δ:8.13(br s,1H),8.08(br s,1H),7.90(d,J=8.8Hz,1H),7.71(d,J=9.2Hz,1H),7.67-7.62(m,2H),7.48(dd,J=2.4Hz,8.8Hz,1H),6.67(br s,1H),4.47(dd,J=5.4Hz,8.6Hz,1H),2.85-2.71(m,2H),2.55-2.40(m,2H),1.57(s,9H).
步骤6:化合物BB-9的盐酸盐的合成
室温下,将化合物BB-9-6(421mg,1.07mmol)溶于盐酸/二氧六环溶液(4M,20mL)中,反应混合物在室温下搅拌反应12小时。反应完毕后,将反应液冷却后,倒入饱和氯化铵溶液(100mL)中,用乙酸乙酯(10mL×3)萃取,合并有机相,用饱和食盐水(10mL)洗涤,无水硫酸钠干燥后,过滤旋干。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/1,体积比),得到化合物BB-9的盐酸盐。MS-ESI m/z: 294.9[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.95(br s,1H),8.23(d,J=9.2Hz,1H),8.04(s,1H),7.88-7.81(m,3H),7.48-7.42(m,1H),4.66(dd,J=4.4Hz,12.4Hz,1H),2.92-2.81(m,1H),2.69-2.60(m,1H),2.46-2.38(m,1H),2.31-2.23(m,1H).
参考例10:片段BB-10
Figure PCTCN2022120267-appb-000083
合成路线:
Figure PCTCN2022120267-appb-000084
化合物BB-10的合成
室温和氮气保护下,将化合物BB-9-4(1g,3.00mmol)溶于N,N-二甲基甲酰胺(10mL)中,再依次加入丙烯酰胺(256mg,3.60mmol)和叔丁醇钾(404.15mg,3.60mmol),反应混合物在室温下搅拌反应1小时。反应完毕后,反应液慢慢倒入饱和氯化铵水溶液(100mL)中,室温下搅拌1小时,过滤,收集滤饼。所得滤饼中加入甲醇(20mL),室温下搅拌0.5小时,过滤,收集滤饼,真空干燥,得到化合物BB-10。MS-ESI m/z:357.7[M+H] +,359.7[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.15(d,J=2.0Hz,1H),8.06(br s,1H),7.87(d,J=8.8Hz,1H),7.72-7.65(m,4H),4.47(dd,J=5.2Hz,9.6Hz,1H),2.89-2.74(m,2H),2.58-2.41(m,2H).
参考例11:片段BB-11
Figure PCTCN2022120267-appb-000085
合成路线:
Figure PCTCN2022120267-appb-000086
步骤1:化合物BB-11-2的合成
室温和氮气保护下,将亚磷酸三苯酯(149.14g,480.67mmol)溶于二氯甲烷(1.3L)中,降温至-70℃,逐滴滴加液溴(83.80g,524.37mmol,27.03mL),滴加完毕后,再依次滴加三乙胺(57.48g,568.07mmol,79.07mL)和化合物BB-11-1(77g,436.98mmol)的二氯甲烷(200mL)溶液,滴加完毕后,反应混合物缓慢升温至室温,搅拌反应15小时。反应完毕后,反应液缓慢倒入饱和亚硫酸钠水溶液(1.5L)中,搅拌10分钟,用二氯甲烷(1L)萃取。有机相用饱和食盐水(1L)洗涤,无水硫酸钠干燥,过滤,滤液减 压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚),得到化合物BB-11-2。
步骤2:化合物BB-11-3的合成
室温和氮气保护下,将化合物BB-11-2(87g,363.85mmol)溶于甲苯(1L)中,降温至0℃,分批缓慢加入2,3-二氯-5,6-二氰基苯醌(90.86g,400.24mmol),反应混合物缓慢升温至室温,搅拌反应15小时。反应完毕后,滴加饱和亚硫酸钠水溶液(2L),搅拌10分钟,再加入1N氢氧化钠水溶液(1L),用乙酸乙酯(500mL×3)萃取。合并有机相,用饱和食盐水(1L)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物加入石油醚(500mL),搅拌10分钟,过滤,滤饼用石油醚(50mL×2)淋洗,收集滤液,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚),得到化合物BB-11-3。 1H NMR(400MHz,CDCl 3)δ:8.12(d,J=9.2Hz,1H),7.68(d,J=8.4Hz,1H),7.60(d,J=7.6Hz,1H),7.26-7.20(m,2H),7.11(d,J=2.4Hz,1H),3.92(s,3H).
步骤3:化合物BB-11-4的合成
室温和氮气保护下,将化合物BB-11-3(21.4g,90.26mmol)溶于二氯甲烷(250mL)中,降温至0℃,缓慢滴加三溴化硼(27.13g,108.31mmol,10.44mL),滴加完毕后,反应混合物升温至室温,搅拌反应3小时。反应完毕后,反应液倒入冰水(500mL)中,用二氯甲烷(200mL)萃取。有机相用饱和食盐水(500mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到化合物BB-11-4。 1H NMR(400MHz,CDCl 3)δ:8.15(d,J=8.8Hz,1H),7.65-7.59(m,2H),7.25(t,J=7.8Hz,1H),7.19(dd,J=2.4Hz,9.2Hz,1H),7.14(d,J=2.4Hz,1H),5.03(s,1H).
步骤4:化合物BB-11-5的合成
室温下,将化合物BB-11-4(20g,89.66mmol)溶于甲烷磺酸(200mL)中,逐滴滴加4-氯乙酰乙酸乙酯(22.14g,134.49mmol),反应混合物室温下搅拌反应15小时。反应完毕后,反应液倒入冰水(1L)中,室温下搅拌10分钟,过滤,滤饼用水(200mL×3)淋洗,收集滤饼,真空干燥,得到化合物BB-11-5。 1H NMR(400MHz,DMSO_d 6)δ:8.58(d,J=9.2Hz,1H),8.49(d,J=9.2Hz,1H),8.02(d,J=7.2Hz,1H),7.74(d,J=9.2Hz,1H),7.65(dd,J=7.6Hz,8.4Hz,1H),6.93(s,1H),5.41(s,2H).
步骤5:化合物BB-11-6的合成
室温下,将化合物BB-11-5(29g,89.63mmol)加入到氢氧化钠(2M,300mL)的水溶液中,反应混合物加热至80℃,搅拌反应3小时。反应完毕后,冷却至室温,加入水(200mL),用6N盐酸调节pH至4,用乙酸乙酯(300mL×3)萃取。合并有机相,用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物中加入甲基叔丁基醚(50mL),室温下搅拌10分钟,过滤,滤饼用甲基叔丁基醚(10mL×2)淋洗,收集滤饼,真空干燥,得到化合物BB-11-6。MS-ESI m/z:305.0[M+H] +,306.9[M+H+2] +. 1H NMR(400MHz,DMSO_d 6)δ:12.68(br s,1H),8.24(d,J=8.4Hz,1H),8.12(t,J=4.6Hz,2H),7.96(d,J=9.2 Hz,1H),7.90(d,J=7.6Hz,1H),7.54(t,J=7.8Hz,1H),4.09(s,2H).
步骤6:化合物BB-11-7的合成
室温下,将化合物BB-11-6(18g,58.99mmol)溶于乙醇(180mL)中,加入浓硫酸(5.31g,53.09mmol,2.89mL,纯度:98%),反应混合物升温到80℃,搅拌反应15小时。反应完毕后,冷却至室温,减压浓缩除去溶剂,残余物中加入乙酸乙酯(300mL)和饱和碳酸氢钠水溶液(500mL),萃取分液。有机相用饱和食盐水(300mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。残余物中加入石油醚(50mL),室温搅拌10分钟,过滤,滤饼用石油醚(20mL×2)淋洗,收集滤饼,真空干燥,得到化合物BB-11-7。 1H NMR(400MHz,CDCl 3)δ:8.22(t,J=8.4Hz,2H),7.84-7.78(m,2H),7.75(d,J=9.2Hz,1H),7.41(dd,J=7.6Hz,8.4Hz,1H),4.23(q,J=7.0Hz,2H),4.06(d,J=0.8Hz,2H),1.26(t,J=7.2Hz,3H).
步骤7:化合物BB-11-8的合成
室温和氮气保护下,将化合物BB-11-7(5g,15.01mmol),三(二亚苄基丙酮)二钯(961.96mg,1.05mmol),2-二-叔丁基膦-2’,4’,6’-三异丙基联苯(892.16mg,2.10mmol),磷酸钾(12.74g,60.03mmol)和氨基甲酸叔丁酯(2.64g,22.51mmol)溶于甲苯(50mL)和水(10mL)的混合溶剂中,反应混合物加热至100℃,搅拌反应15小时。反应完毕后,冷却至室温,过滤,滤饼用乙酸乙酯(30mL×3)淋洗,滤液用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。残余物中加入甲基叔丁基醚(50mL),室温搅拌10分钟,过滤,滤饼用甲基叔丁基醚(10mL×2)淋洗,收集滤饼,真空干燥,得到化合物BB-11-8。
步骤8:化合物BB-11-9的合成
室温和氮气保护下,将化合物BB-11-8(4.2g,11.37mmol)和丙烯酰胺(888.93mg,12.51mmol)溶于N,N-二甲基甲酰胺(40mL)中,降温至0℃,滴加用N,N-二甲基甲酰胺(10mL)溶解的叔丁醇钾(2.55g,22.74mmol),反应混合物升温至室温,搅拌反应2小时。反应完毕后,反应液倒入0.2N盐酸(200mL)中,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物中加入二氯甲烷(20mL),室温下搅拌10分钟,过滤,滤饼用二氯甲烷(10mL)淋洗,收集滤饼,真空干燥,得到化合物BB-11-9。 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),9.28(s,1H),8.05-7.92(m,3H),7.79(d,J=9.6Hz,1H),7.58-7.47(m,2H),4.68(dd,J=4.4Hz,12.0Hz,1H),2.95-2.81(m,1H),2.70-2.56(m,1H),2.47-2.34(m,1H),2.33-2.22(m,1H),1.49(s,9H).
步骤9:化合物BB-11的盐酸盐的合成
室温下,将化合物BB-11-9(1.3g,3.30mmol)溶于乙酸乙酯(5mL)中,随后加入盐酸的乙酸乙酯溶液(4M,50mL),反应混合物在室温下搅拌反应3小时。反应完毕后,减压浓缩除掉溶剂,得到化合物BB-11的盐酸盐。
参考例12:片段BB-12
Figure PCTCN2022120267-appb-000087
合成路线:
Figure PCTCN2022120267-appb-000088
化合物BB-12的合成
室温和氮气保护下,将丙烯酰胺(234.67mg,3.30mmol)和化合物BB-11-7(1g,3.00mmol)溶于N,N-二甲基甲酰胺(15mL)中,随后加入叔丁醇钾(370.47mg,3.30mmol),反应混合物在室温下搅拌反应0.5小时。反应完毕后,反应液倒入0.1N盐酸(10mL)中,用二氯甲烷(5mL×2)萃取。合并有机相,用饱和食盐水(5mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物中加入二氯甲烷(5mL),室温下搅拌1小时,过滤,滤饼用二氯甲烷(1mL)淋洗。收集滤饼,真空干燥,得到化合物BB-12。MS-ESI m/z:358.1[M+H] +,360.1[M+H+2] +.
参考例14:片段BB-14
Figure PCTCN2022120267-appb-000089
合成路线:
Figure PCTCN2022120267-appb-000090
步骤1:化合物BB-14-2的合成
室温和氮气保护下,将化合物BB-14-1(150g,632.67mmol)溶于二氯甲烷(3L)中,随后加入乙酰氯(49.66g,632.67mmol,45.15mL),反应混合物冷却至5~15℃,分批加入三氯化铝(177.16g,1.33mol),反应混合物升温至室温,搅拌反应4小时。补加三氯化铝(29.53g,221.43mmol),室温下继续搅拌反应12小时。反应完毕后,反应液缓慢倒入冰水(3L)中,萃取分液,水相再次用二氯甲烷(2L×2)萃取。合并有机相,用饱和食盐水(6L×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到化合物BB-14-2。MS-ESI m/z:265.1[M+H] +,267.1[M+H+2] +.
步骤2:化合物BB-14-3的合成
室温和氮气保护下,将化合物BB-14-2(200g,754.43mmol)和碳酸二甲酯(271.83g,3.02mol,254.04mL)溶于四氢呋喃(2L)中,降温至0℃,缓慢加入叔丁醇钾(507.93g,4.53mol),反应混合物升温至70℃,搅拌反应12小时。反应完毕后,冷却至室温,减压浓缩除去溶剂,残余物中加入冰水(4L),用6N盐酸调节pH=2~3,有大量固体析出,过滤,滤饼依次用水(1L)和甲基叔丁基醚(1L)淋洗,收集滤饼,真空干燥,得到化合物BB-14-3。MS-ESI m/z:291.0[M+H] +,293.0[M+H+2] +. 1H NMR(400MHz,DMSO_d 6)δ:9.18(d,J=9.2Hz,1H),8.30(d,J=1.2Hz,1H),8.16(d,J=8.8Hz,1H),7.79(d,J=7.6Hz,1H),7.56(d,J=8.8Hz,1H),5.83(s,1H).
步骤3:化合物BB-14-4的合成
室温下,将化合物BB-14-3(200g,687.06mmol),乙酸钠(309.99g,3.78mol)和盐酸羟胺(262.59g,3.78mol)溶于乙醇(2L)中,反应混合物升温至至80℃,搅拌反应12小时。反应完毕后,冷却至室温,倒入水(2L)中,减压浓缩除去溶剂,用2N盐酸调节pH=2~3,用乙酸乙酯/四氢呋喃=1/1(2L×3,体积比)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压除去溶剂。残余物中加入甲基叔丁基醚(600mL),室温搅拌1小时,过滤,收集滤饼,真空干燥,得到化合物BB-14-4。MS-ESI m/z:306.0[M+H] +,308.0[M+H+2] +.
步骤4:化合物BB-14-5的合成
室温下,将浓硫酸(33.38g,333.49mmol,18.14mL,纯度:98%)溶于乙醇(1.3L)中,加入化合物BB-14-4(135g,373.32mmol,纯度:84.65%),反应混合物升温至75℃,搅拌反应16小时。反应完毕后,冷却至室温,减压浓缩除去溶剂。残余物中加入乙醇(600mL),室温下搅拌5分钟,过滤,滤饼用乙醇(100mL×2)淋洗,收集滤饼,真空干燥,得到化合物BB-14-5。MS-ESI m/z:334.1[M+H] +,336.0[M+H+2] +. 1H NMR(400MHz,DMSO_d 6)δ:8.47(d,J=1.6Hz,1H),8.19(d,J=9.2Hz,1H),8.08(d,J=8.8Hz,1H),8.00(d,J=9.2Hz,1H),7.89(dd,J=2.0Hz,8.8Hz,1H),4.51(s,2H),4.14(q,J=7.2Hz,2H),1.16(t,J=7.2Hz,3H).
步骤5:化合物BB-14-6的合成
室温和氮气保护下,向甲苯(150mL)和水(30mL)混合溶剂中依次加入化合物BB-14-5(15g,44.89mmol),三(二亚苄基丙酮)二钯(1.44g,1.57mmol),2-二-叔丁基膦-2’,4’,6’-三异丙基联苯(1.33g,3.14mmol),磷酸钾(38.11g,179.55mmol)和氨基甲酸叔丁酯(7.89g,67.33mmol),反应混合物加热至100℃,搅拌反应12小时。反应完毕后,冷却至室温,加入水(100mL)和乙酸乙酯(150mL),萃取分液,水相再次用乙酸乙酯(200mL×3)萃取。合并有机相,用饱和食盐水(200mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1-1/1,体积比),得到化合物BB-14-6。MS-ESI m/z:371.2[M+H] +. 1H NMR(400MHz,CDCl 3)δ:8.20(br s,1H),8.03(d,J=8.8Hz,1H),7.90(d,J=9.2Hz,1H),7.67(d,J=9.2Hz,1H),7.53(dd,J=2.0Hz,8.8Hz,1H),6.75(s,1H),4.31(s,2H),4.21(q,J=7.2Hz,2H),1.57(s,9H),1.20(t,J=7.2Hz,3H).
步骤6:化合物BB-14-7的合成
室温和氮气保护下,将化合物BB-14-6(7.3g,19.71mmol)和丙烯酰胺(1.54g,21.68mmol)溶于四氢呋喃(70mL)中,冷却至0℃,加入叔丁醇钾(2.43g,21.68mmol),反应混合物升温至室温,搅拌反应1小时。反应完毕后,反应液倒入0.1N盐酸(30mL)中,用乙酸乙酯(80mL×3)萃取。合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物中加入二氯甲烷(5mL),室温下搅拌5分钟,过滤,滤饼用二氯甲烷(3mL)淋洗,收集滤饼,真空干燥,得到化合物BB-14-7。MS-ESI m/z:396.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.12(s,1H),9.66(s,1H),8.36(s,1H),8.13(d,J=8.8Hz,1H),8.07(d,J=8.8Hz,1H),7.85(d,J=9.2Hz,1H),7.68(dd,J=2.0Hz,8.8Hz,1H),5.00(dd,J=4.8Hz,11.6Hz,1H),2.89-2.76(m,1H),2.68-2.60(m,1H),2.59-2.53(m,1H),2.42-2.30(m,1H),1.52(s,9H).
步骤7:化合物BB-14的盐酸盐的合成
室温下,将化合物BB-14-7(1g,2.53mmol)溶于乙酸乙酯(5mL)中,随后加入盐酸的乙酸乙酯溶液(4M,20mL),反应混合物室温下搅拌反应1小时。反应完毕后,过滤,滤饼用乙酸乙酯(3mL×3)淋洗,收集滤饼,真空干燥,得到化合物BB-14的盐酸盐。MS-ESI m/z:295.9[M+H] +.
参考例15:片段BB-15
Figure PCTCN2022120267-appb-000091
合成路线:
Figure PCTCN2022120267-appb-000092
化合物BB-15的合成
室温和氮气保护下,将化合物BB-14-5(3g,8.98mmol)和丙烯酰胺(701.92mg,9.88mmol)溶于四氢呋喃(70mL)中,冷却至0℃,分批加入叔丁醇钾(1.21g,10.77mmol),反应混合物升温至室温,搅拌反应1小时。反应完毕后,反应液倒入1N盐酸(20mL)中,用乙酸乙酯(40mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物中加入甲基叔丁基醚(20mL),室温下搅拌10分钟,过滤,滤饼用甲基叔丁基醚(5mL×2)淋洗,收集滤饼,真空干燥,得到化合物BB-15。MS-ESI m/z:359.0[M+H] +,361.0[M+H+2] +. 1H NMR(400MHz,DMSO_d 6)δ:11.14(s,1H),8.47(d,J=2.0Hz,1H),8.24-8.17(m,2H),8.01(d,J=9.2Hz,1H),7.85(dd,J=2.0Hz,8.8Hz,1H),5.06(dd,J=4.8Hz,11.6Hz,1H),2.89-2.78(m,1H),2.70-2.56(m,2H),2.44-2.34(m,1H).
参考例16:片段BB-16
Figure PCTCN2022120267-appb-000093
合成路线:
Figure PCTCN2022120267-appb-000094
步骤1:化合物BB-16-2的合成
室温和氮气保护下,将亚磷酸三苯酯(193.69g,624.25mmol)溶于二氯甲烷(1L)中,冷却至-70℃,逐滴滴加液溴(108.83g,681.00mmol,35.11mL),滴加完毕后,再依次滴加三乙胺(74.65g,737.75mmol,102.69mL)和用二氯甲烷(500mL)溶解的化合物BB-16-1(100g,567.50mmol),滴加完毕后,反应混合物缓慢升温至室温,搅拌反应15小时。反应完毕后,倒入饱和亚硫酸钠水溶液(700mL)中,搅拌10分钟,用二氯甲烷(800mL)萃取。有机相用饱和食盐水(800mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1-7/1,体积比),得到化合物BB-16-2。 1H NMR(400MHz,DMSO_d 6)δ:7.33(d,J=8.0Hz,1H),6.84-6.75(m,2H),6.33(t,J=4.8Hz,1H),3.75(s,3H),2.76(t,J=8.0Hz,2H),2.32-2.25(m,2H).
步骤2:化合物BB-16-3的合成
室温和氮气保护下,将化合物BB-16-2(39.5g,165.20mmol)溶于甲苯(500mL)中,冷却至0℃,分批加入2,3-二氯-5,6-二氰基苯醌(41.25g,181.72mmol),反应混合物缓慢升温至室温,搅拌反应12小时。反应完毕后,冷却至0~10℃,滴加饱和亚硫酸钠水溶液(1L)和1N氢氧化钠水溶液(1L),过滤,滤饼 用乙酸乙酯(300mL×3)淋洗,滤饼丢弃,滤液用乙酸乙酯(500mL×3)萃取。合并有机相,用饱和食盐水(500mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚),得到化合物BB-16-3。MS-ESI m/z:237.1[M+H] +,239.1[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.05(d,J=9.2Hz,1H),7.60(d,J=8.0Hz,1H),7.53(d,J=7.2Hz,1H),7.22-7.13(m,2H),7.04(s,1H),3.85(s,3H).
步骤3:化合物BB-16-4的合成
室温和氮气保护下,将乙酸酐(21.53g,210.89mmol,19.75mL)置于二氯甲烷(400mL)中,冷却至-60℃,滴加三氟化硼乙醚溶液(63.68g,210.89mmol,55.38mL,纯度:47%),-60℃下搅拌10分钟,滴加二氯甲烷(250mL)溶解的化合物BB-16-3(25g,105.44mmol)溶液,反应混合物缓慢升温至室温,搅拌反应12小时。反应完成后,加入冰水(200mL),用二氯甲烷(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=100/1-20/1),得到化合物BB-16-4。MS-ESI m/z:279.0[M+H] +,281.0[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.34(d,J=9.2Hz,1H),7.72(d,J=8.4Hz,1H),7.67(dd,J=0.8Hz,7.2Hz,1H),7.38(d,J=9.2Hz,1H),7.31(dd,J=7.6Hz,8.8Hz,1H),4.01(s,3H),2.65(s,3H).
步骤4:化合物BB-16-5的合成
室温和氮气保护下,将化合物BB-16-4(18.8g,67.35mmol)溶于二氯甲烷(200mL)中,冷却至0℃,滴加三溴化硼(20.25g,80.82mmol,7.79mL),0℃下搅拌反应1小时。反应完成后,反应液倒入冰水(300mL)中,用二氯甲烷(100mL×3)萃取。合并有机相,用饱和食盐水(100mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到化合物BB-16-5。 1H NMR(400MHz,CDCl 3)δ:13.05(s,1H),8.41(d,J=9.2Hz,1H),8.04(d,J=8.8Hz,1H),7.70(dd,J=0.8Hz,7.6Hz,1H),7.40(dd,J=7.6Hz,8.4Hz,1H),7.25(d,J=9.6Hz,1H),2.85(s,3H).
步骤5:化合物BB-16-6的合成
室温和氮气保护下,将化合物BB-16-5(13g,49.04mmol)和碳酸二甲酯(17.67g,196.15mmol,16.51mL)溶于四氢呋喃(130mL)中,冷却至0~10℃,分批加入叔丁醇钾(33.02g,294.23mmol),反应混合物升温至70℃,搅拌反应12小时。反应完毕后,冷却至室温,减压浓缩除去溶剂,残余物中加入冰水(200mL),用甲基叔丁基醚(70mL×2)萃取。水相用6N盐酸调节pH=2,有大量固体析出,过滤,滤饼用水(30mL×2)洗涤,收集滤饼,真空干燥,得到化合物BB-16-6。MS-ESI m/z:291.0[M+H] +,293.0[M+H+2] +. 1H NMR(400MHz,DMSO_d 6)δ:13.28(br s,1H),9.38(t,J=7.2Hz,1H),8.43(dd,J=6.8Hz,9.2Hz,1H),7.96(t,J=7.2Hz,1H),7.71-7.65(m,1H),7.63-7.56(m,1H),5.92-5.87(m,1H).
步骤6:化合物BB-16-7的合成
室温下,将化合物BB-16-6(22g,75.58mmol),乙酸钠(43.40g,529.03mmol)和盐酸羟胺(36.76g,529.03mmol)溶于乙醇(400mL)中,反应混合物升温至至80℃,搅拌反应12小时。反应完毕后,冷却至室温,减压浓缩除去溶剂。残余物中加入水(100mL)和甲基叔丁基醚(50mL),室温搅拌0.5小时,过滤,滤饼用甲基叔丁基醚(20mL×3)淋洗,收集滤饼,真空干燥,得到化合物BB-16-7。MS-ESI m/z:306.0[M+H] +,308.0[M+H+2] +. 1H NMR(400MHz,DMSO_d 6)δ:8.40(d,J=9.2Hz,1H),8.27(d,J=8.4Hz,1H),8.05(d,J=9.2Hz,1H),7.96(d,J=7.6Hz,1H),7.62(t,J=8.0Hz,1H),4.25(s,2H).
步骤7:化合物BB-16-8的合成
室温下,将化合物BB-16-7(15g,49.00mmol)溶于乙醇(300mL)中,加入浓硫酸(1.29g,12.87mmol,0.7mL,纯度:98%),反应混合物升温至80℃,搅拌反应12小时。冷却至室温,补加浓硫酸(4mL,纯度:98%),反应混合物升温至80℃,搅拌反应3小时。反应完毕后,冷却至室温,减压浓缩除去溶剂。残余物中加入0~10℃饱和碳酸氢钠溶液(100mL),用乙酸乙酯(70mL×3)萃取。合并有机相,用饱和食盐水(70mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到化合物BB-16-8。MS-ESI m/z:334.0[M+H] +,336.0[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.50(d,J=9.6Hz,1H),8.10(d,J=8.4Hz,1H),7.88(dd,J=0.8Hz,7.6Hz,1H),7.81(d,J=9.2Hz,1H),7.52(t,J=8.0Hz,1H),4.34(s,2H),4.22(q,J=7.2Hz,2H),1.21(t,J=7.2Hz,3H).
步骤8:化合物BB-16-9的合成
室温和氮气保护下,向甲苯(90mL)和水(30mL)混合溶剂中依次加入化合物BB-16-8(9.5g,28.43mmol),三(二亚苄基丙酮)二钯(1.30g,1.42mmol),2-二-叔丁基膦-2’,4’,6’-三异丙基联苯(1.21g,2.84mmol),磷酸钾(24.14g,113.72mmol)和氨基甲酸叔丁酯(3.66g,31.27mmol),反应混合物加热至100℃,搅拌反应12小时。反应完毕后,冷却至室温,加入水(200mL),用乙酸乙酯(150mL×3)萃取。合并有机相,用饱和食盐水(200mL×2))洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=6/1-2/1,体积比),得到化合物BB-16-9。MS-ESI m/z:371.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:8.48(s,1H),8.28(d,J=9.2Hz,1H),7.95-7.87(m,2H),7.75-7.60(m,2H),4.50(s,2H),4.14(q,J=7.2Hz,2H),1.50(s,9H),1.16(t,J=7.2Hz,3H).
步骤9:化合物BB-16-10的合成
室温和氮气保护下,将化合物BB-16-9(3.0g,8.10mmol)溶于四氢呋喃(25mL)中,随后加入丙烯酰胺(690.82mg,9.72mmol)和叔丁醇钾(1.36g,12.15mmol),反应混合物室温下搅拌反应1小时。反应完毕后,反应液倒入1N盐酸(30mL)中,用乙酸乙酯(45mL×3)萃取。合并有机相,用饱和食盐水(30mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1-1/1,体积比),得到化合物BB-16-10。MS-ESI m/z:396.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ: 11.14(s,1H),9.47(s,1H),8.28(d,J=9.6Hz,1H),8.04(br d,J=6.8Hz,1H),7.93(d,J=9.2Hz,1H),7.75-7.59(m,2H),5.07(dd,J=4.6Hz,11.4Hz,1H),2.93-2.77(m,1H),2.71-2.56(m,2H),2.43-2.31(m,1H),1.50(s,9H).
步骤10:化合物BB-16的盐酸盐的合成
室温下,将化合物BB-16-10(1.3g,3.29mmol)加入盐酸的乙酸乙酯溶液(4M,20mL)中,反应混合物在室温下搅拌反应12小时。反应完毕后,过滤,滤饼用乙酸乙酯(30mL)淋洗,收集滤饼,真空干燥,得到化合物BB-16的盐酸盐。MS-ESI m/z:296.1[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.14(s,1H),8.34(d,J=9.6Hz,1H),7.96(d,J=9.2Hz,1H),7.85(t,J=8.0Hz,1H),7.61(t,J=7.8Hz,1H),7.33(d,J=7.6Hz,1H),5.03(dd,J=4.6Hz,11.4Hz,1H),2.90-2.76(m,1H),2.70-2.55(m,2H),2.42-2.30(m,1H).
参考例17:片段BB-17
Figure PCTCN2022120267-appb-000095
合成路线:
Figure PCTCN2022120267-appb-000096
步骤1:化合物BB-17-2的合成
室温和氮气保护下,向化合物BB-17-1(21g,109.89mmol)的二氯甲烷(300mL)溶液中加入N,N-二甲基甲酰胺(422.74μL),反应混合物冷却至0℃,滴加草酰氯(27.89g,219.77mmol,19.24mL),滴加完毕后,升温至室温搅拌反应1小时。反应完毕后,将反应液减压浓缩得到残余物直接用于下一步。将粗品溶于四氢呋喃(100mL)中,冷却至0℃,加入氨水(169.08mL,纯度:25%),反应混合物在室温下搅拌反应1小时。反应完毕后,将反应液减压浓缩除去四氢呋喃,所得残余物过滤,收集滤饼,真空干燥得到化 合物BB-17-2。MS-ESI m/z:191.0[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:8.33-8.25(m,2H),8.09(dd,J=2.4,6.4Hz,1H),8.04(s,1H),7.87(s,1H).
步骤2:化合物BB-17-4的合成
室温和氮气保护下,将化合物BB-17-3(25g,90.23mmol)溶于N,N–二甲基甲酰胺(125mL)中,反应体系冷却至0℃,分批加入N-溴代丁二酰亚胺(17.67g,99.26mmol),反应混合物在0℃下搅拌反应2小时。反应完毕后,将反应液倒入水(200mL)中,有固体析出,过滤,用水(100mL×3)淋洗滤饼,收集滤饼,真空干燥,得到化合物BB-17-4。MS-ESI m/z:355.8[M+H] +,357.8[M+H+2] +. 1H NMR(400MHz,DMSO_d 6)δ:7.84(s,1H),7.13(s,1H),5.66(s,2H),3.81(s,3H).
步骤3:化合物BB-17-6的合成
室温和氮气保护下,将化合物BB-17-5(10g,53.70mmol)溶于四氢呋喃(50mL)中,降温至-10℃,滴加硼烷的四氢呋喃(1M,59.07mL)溶液,反应混合物在0℃下搅拌反应1小时。反应完毕后,加入甲醇(10mL),室温搅拌30分钟,再加入2M盐酸(200mL),室温搅拌30分钟,用乙酸乙酯(200mL×2)萃取,合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到残余物。所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-7/3,体积比),得到化合物BB-17-6。 1H NMR(400MHz,CDCl 3)δ:3.67(s,3H),3.47(d,J=6.4Hz,2H),2.32-2.20(m,1H),2.05-1.98(m,2H),1.92-1.83(m,2H),1.56-1.38(m,3H),1.07-0.93(m,2H).
步骤4:化合物BB-17-7的合成
室温和氮气保护下,将化合物BB-17-6(8.2g,47.61mmol)溶于四氢呋喃(80mL)中,随后加入氢氧化钾(4.01g,71.42mmol)、苄溴(10.59g,61.90mmol,7.35mL)、四丁基碘化胺(3.52g,9.52mmol)和碘化钾(1.58g,9.52mmol),反应混合物室温下搅拌反应12小时。反应完毕后,过滤,滤饼用四氢呋喃淋洗(50mL×3),收集滤液,滤液减压浓缩得到残余物。所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-19/1,体积比),得到化合物BB-17-7。 1H NMR(400MHz,CDCl 3)δ:7.39-7.27(m,5H),4.50(s,2H),3.29(d,J=6.0Hz,2H),2.32-2.19(m,1H),2.08-1.97(m,2H),1.96-1.86(m,2H),1.72-1.58(m,1H),1.53-1.38(m,2H),1.09-0.95(m,2H).
步骤5:化合物BB-17-8的合成
室温下,将化合物BB-17-7(5.9,22.49mmol)溶于四氢呋喃(50mL)和甲醇(10mL)中,随后加入一水合氢氧化锂(4.72g,112.45mmol)水溶液(10mL),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液减压浓缩除去溶剂,加入水(200mL),用石油醚萃取(200mL),有机相丢弃,收集水相,水相 用6M盐酸调节pH=5~6,用二氯甲烷(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物BB-17-8。MS-ESI m/z:266.2[M+18] +. 1H NMR(400MHz,CDCl 3)δ:11.27(s,1H),7.40-7.27(m,5H),4.51(s,2H),3.30(d,J=6.4Hz,2H),2.35-2.23(m,1H),2.11-2.00(m,2H),1.98-1.87(m,2H),1.75-1.56(m,1H),1.53-1.39(m,2H),1.11-0.91(m,2H).
步骤6:化合物BB-17-9的合成
室温和氮气保护下,将化合物BB-17-8(5g,20.14mmol)溶于二氯甲烷(50mL)中,降温至0℃,依次加入N,N–二甲基甲酰胺(147.18mg,2.01mmol,154.92μL)和草酰氯(3.83g,30.20mmol,2.64mL),反应混合物在0℃下搅拌反应1小时。反应完毕后,反应液直接减压浓缩除去溶剂,得到化合物BB-17-9,直接用于下一步。
步骤7:化合物BB-17-10的合成
室温和氮气保护下,将化合物BB-17-4(6.5g,18.26mmol)溶于二氯甲烷(100mL)中,降温至0℃,加入三乙胺(5.54g,54.78mmol,7.62mL)和化合物BB-17-9(5.36g,20.09mmol)的二氯甲烷(100mL)溶液,反应混合物恢复室温并搅拌反应12小时。反应完毕后,加入水(100mL),用二氯甲烷(100mL×2)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩得到残余物。残余物中加入乙酸乙酯(50mL),室温搅拌30分钟,过滤,收集固体,真空干燥得到化合物BB-17-10。MS-ESI m/z:585.8[M+H] +,587.8[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.76(s,1H),8.08(s,1H),7.52(s,1H),7.40-7.27(m,5H),4.52(s,2H),3.92(s,3H),3.33(d,J=6.4Hz,2H),2.35-2.24(m,1H),2.16-2.06(m,2H),2.05-1.93(m,2H),1.78-1.68(m,1H),1.65-1.51(m,2H),1.20-1.03(m,2H).
步骤8:化合物BB-17-11的合成
室温和氮气保护下,将化合物BB-17-10(7.5g,12.79mmol)溶于N,N–二甲基甲酰胺(80mL)中,随后加入碘化亚铜(487.29mg,2.56mmol)和九水合硫化钠(18.44g,76.76mmol),反应混合物升温至80℃,搅拌反应6小时。LCMS跟踪原料消耗完全后,将反应液冷却至室温,加入三氟乙酸(20.42g,179.10mmol,13.26mL),反应混合物室温下搅拌反应16小时。再补加三氟乙酸(7mL),继续搅拌反应2小时。反应完毕后,将反应液倒入水(300mL)中,用乙酸乙酯(200mL)稀释,过滤,滤饼用乙酸乙酯(100mL×2)淋洗,收集滤液,分液,水相用乙酸乙酯(200mL×2)萃取。合并有机相,用10%食盐水(300mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物BB-17-11。MS-ESI m/z:459.9[M+H] +,461.9[M+H+2] +.
步骤9:化合物BB-17-12的合成
室温下,将化合物BB-17-11(5.89g,12.79mmol)溶于N,N–二甲基甲酰胺(70mL)中,随后加入碳酸钾(3.54g,25.59mmol)和碘甲烷(3.63g,25.59mmol,1.59mL),反应混合物室温下搅拌反应12小时。补加碳酸钾(3.54g,25.59mmol)和碘甲烷(1mL),继续搅拌反应1小时。反应完毕后,将反应液倒入水(200mL)中,用乙酸乙酯(200mL×3)萃取。合并有机相,依次用10%食盐水(200mL×2)和饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到残余物。残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-4/1,体积比),得到化合物BB-17-12。MS-ESI m/z:473.9[M+H] +,475.9[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.41(s,1H),8.14(s,1H),7.41-7.27(m,5H),4.53(s,2H),3.97(s,3H),3.36(d,J=6.4Hz,2H),3.12-3.00(m,1H),2.36-2.23(m,2H),2.06-1.99(m,2H),1.84-1.74(m,1H),1.73-1.61(m,2H),1.26-1.13(m,2H).
步骤10:化合物BB-17-13的合成
室温和氮气保护下,将化合物BB-17-12(4.08g,8.60mmol)溶于二氯甲烷(20mL)中,随后加入三氯化硼(1M,100mL)的二氯甲烷溶液,反应混合物在室温下搅拌反应1小时。反应完毕后,将反应液倒入饱和碳酸氢钠水溶液(100mL)中,用二氯甲烷(50mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物BB-17-13。MS-ESI m/z:383.9[M+H] +,386.0[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.40(s,1H),8.14(s,1H),3.97(s,3H),3.54(d,J=6.0Hz,2H),3.10-3.00(m,1H),2.36-2.23(m,2H),2.07-1.95(m,2H),1.75-1.55(m,4H),1.28-1.13(m,2H).
步骤11:化合物BB-17-14的合成
室温和氮气保护下,将化合物BB-17-13(3.4g,8.85mmol)溶于二氧六环(70mL)中,随后加入化合物BB-17-2(1.85g,9.73mmol)、4,5-双二苯基膦-9,9-二甲基氧杂氧杂蒽杂蒽(1.02g,1.77mmol)、三(二亚苄基丙酮)二钯(810.18mg,884.75μmol)和碳酸铯(8.65g,26.54mmol),反应混合物升温至80℃并搅拌反应12小时。反应完毕后,将反应液冷却至室温,过滤,滤饼用四氢呋喃(100mL×3)淋洗,收集滤液,滤液减压浓缩得到残余物。残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-11/9,体积比),得到化合物BB-17-14。MS-ESI m/z:494.0[M+H] + . 1H NMR(400MHz,DMSO_d 6)δ:12.79(s,1H),9.41(s,1H),8.50(s,1H),8.45(d,J=7.6Hz 1H),8.39(t,J=7.8Hz,1H),8.21(d,J=7.2Hz,1H),4.45(t,J=5.4Hz,1H),3.97(s,3H),3.27(t,J=5.8Hz,2H),3.11-3.00(m,1H),2.23-2.12(m,2H),1.93-1.82(m,2H),1.62-1.50(m,2H),1.49-1.36(m,1H),1.17-1.03(m,2H).
步骤12:化合物BB-17-15的合成
室温和氮气保护下,将化合物BB-17-14(2g,4.05mmol)溶于四氢呋喃(40mL)中,降温至0℃,滴加甲基溴化镁(3M,8.11mL)四氢呋喃溶液,反应混合物在0℃下搅拌反应2小时,补加甲基溴化镁(3M,1.35 mL)四氢呋喃溶液,继续搅拌反应1小时。反应完毕后,将反应混合物倒入饱和氯化铵(100mL)中,用乙酸乙酯(50mL×3)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩得到残余物。残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-1/1,体积比),得到化合物BB-17-15。MS-ESI m/z:494.0[M+H] + . 1H NMR(400MHz,DMSO_d 6)δ:12.55(s,1H),9.06(s,1H),8.47(d,J=8.0Hz,1H),8.38(t,J=7.8Hz,1H),8.18(dd,J=0.8,7.6Hz,1H),7.89(s,1H),6.07(s,1H),4.45(t,J=5.2Hz,1H),3.27(t,J=5.8Hz,2H),3.08-2.98(m,1H),2.20-2.13(m,2H),1.90-1.83(m,2H),1.63(s,6H),1.59-1.50(m,2H),1.49-1.38(m,1H),1.15-1.06(m,2H).
步骤13:化合物BB-17的合成
室温和氮气保护下,将化合物BB-17-15(1.63g,3.30mmol)溶于二氯甲烷(40mL)中,随后加入三苯基磷(1.04g,3.96mmol)和咪唑(337.25mg,4.95mmol),冷却至0℃,加入碘(1.09g,4.29mmol),反应混合物在室温下搅拌反应12小时。反应完毕后,将反应液倒入饱和亚硫酸钠(200mL)中,用二氯甲烷(100mL×3)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩得到残余物。残余物先经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-7/3,体积比),再经2次制备HPLC分离(色谱柱:Phenomenex luna C18(250*70mm,15μm);流动相:水(0.2%甲酸)-乙腈;B%:60%-90%,30min)和(色谱图:Phenomenex Luna C18 75*30mm*3μm;流动相:水(0.2%甲酸)-乙腈;B%:45%-85%,8min),得到化合物BB-17。MS-ESI m/z:603.9[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:12.55(s,1H),9.07(s,1H),8.47(d,J=7.6Hz,1H),8.38(t,J=8.0Hz,1H),8.18(d,J=8.0Hz,1H),7.89(s,1H),6.07(s,1H),3.27(d,J=6.4Hz,2H),3.08-2.97(m,1H),2.22-2.13(m,2H),2.02-1.92(m,2H),1.71-1.56(m,8H),1.55-1.42(m,1H),1.28-1.10(m,2H).
参考例18:片段BB-18
Figure PCTCN2022120267-appb-000097
合成路线:
Figure PCTCN2022120267-appb-000098
步骤1:化合物BB-18-2的合成
室温和氮气保护下,将化合物BB-18-1(200g,1.32mol)溶于乙醇(1.5L)中,分批加入二碳酸二叔丁酯(346.51g,1.59mol),反应混合物升温至60℃并搅拌反应16小时。反应完成后,将反应液冷却至室温,减压浓缩除去溶剂。向残余物中加入异丙醇(500mL),冷却至0℃,搅拌1小时,过滤,滤饼用异丙醇(200mL)淋洗,收集滤液。滤液减压浓缩得到化合物BB-18-2。MS-ESI m/z:196.1[M+H-56] +.
步骤2:化合物BB-18-3的合成
室温和氮气保护下,将化合物BB-18-2(200g,795.93mmol)、醋酸钾(97.94g,1.19mol)和盐酸羟胺(60.84g,875.53mmol)溶于甲醇(1.2L)中,反应混合物室温下搅拌16小时,再升温至50℃反应1小时,补加盐酸羟胺(11.06g,159.19mmol),继续反应1小时。反应完毕后,将反应液冷却至室温,加入水(1.5L)和甲基叔丁基醚(1.5L),搅拌5分钟,分液,水相用甲基叔丁基醚(500mL×2)萃取。合并有机相,用10%食盐水(500mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物BB-18-3。MS-ESI m/z:211.1[M+H-56] +. 1H NMR(400MHz,DMSO_d 6)δ:12.27(s,1H),11.67(s,1H),7.82(s,1H),7.69(d,J=7.2Hz,1H),7.23(d,J=8.0Hz,1H),6.86(t,J=8.0Hz,1H),2.27(s,3H),1.46(s,9H).
步骤3:化合物BB-18-4的合成
室温和氮气保护下,将化合物BB-18-3(100g,375.53mmol)和三乙胺(49.40g,488.19mmol)溶于四氢呋喃(1L)中,缓慢加入N,N'-羰基二咪唑(66.98g,413.08mmol),反应混合物升温至70℃并搅拌反应1小时。反应完毕后,将反应液冷却至室温,加入水(1L),用甲基叔丁基醚和石油醚混合溶剂(体积比1/1,500mL×2)萃取,有机相用10%食盐水(500mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物BB-18-4。MS-ESI m/z:249.1[M+H] +. 1H NMR(400MHz,CDCl 3)δ:8.16(s,1H),7.30(s,1H),7.00(s,1H),2.59(s,3H),1.57(s,9H).
步骤4:化合物BB-18-5的合成
室温和氮气保护下,将二异丙基氨基锂(2M,741.11mL)的四氢呋喃溶液冷却至-68℃,逐滴加入碳酸二甲酯(36.72g,407.61mmol,34.31mL)和化合物BB-18-4(92g,370.55mmol)的四氢呋喃(920mL)溶液,约30分钟滴加完毕,控制温度在-50℃~-68℃搅拌反应30分钟。反应完毕后,将反应液缓慢倒入饱和氯化铵(1.5L)中,用乙酸乙酯(500mL×3)萃取,有机相用饱和食盐水(500mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物BB-18-5。MS-ESI m/z:307.1[M+H] +.
步骤5:化合物BB-18-6的合成
室温和氮气保护下,将化合物BB-18-5(10g,32.65mmol)和丙烯酰胺(2.78g,39.18mmol)溶于四氢呋喃(100mL)中,降温至0-5℃,滴加叔丁醇钾四氢呋喃溶液(1M,48.97mL),滴加完毕后,保温搅拌2小时。反应完毕后,将反应液倒入1M盐酸(150mL)中,用乙酸乙酯(150mL×2)萃取。合并有机相,用饱和食盐水(150mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到粗品。向粗品中加入甲基叔丁基醚(150mL),混合物室温下搅拌30分钟,过滤,滤饼用甲基叔丁基醚(50mL)淋洗,收集滤饼,真空干燥得到化合物BB-18-6。 1H NMR(400MHz,DMSO_d 6)δ:11.10(s,1H),9.55(s,1H),7.69(d,J=7.6Hz,1H),7.54(d,J=7.6Hz,1H),7.30(t,J=8.0Hz,1H),4.60(dd,J=4.8,12.0Hz,1H),2.84-2.72(m,1H),2.66-2.57(m,1H),2.57-2.43(m,1H),2.25-2.15(m,1H),1.49(s,9H).
步骤6:化合物BB-18的盐酸盐的合成
室温下,将化合物BB-18-6(9.4g,27.22mmol)溶于乙酸乙酯(50mL)中,加入盐酸的乙酸乙酯溶液(4M,150mL),反应混合物在室温下搅拌反应12小时。反应完毕后,过滤,滤饼用乙酸乙酯(20mL)淋洗,收集滤饼,得到化合物BB-18的盐酸盐。 1H NMR(400MHz,DMSO_d 6)δ:11.09(s,1H),8.32(s,2H),7.31(d,J=7.6Hz,1H),7.26-7.16(m,2H),4.59(dd,J=4.8,12.0Hz,1H),2.83-2.71(m,1H),2.65-2.56(m,1H),2.55-2.42(m,1H),2.25-2.15(m,1H).
实施例1
Figure PCTCN2022120267-appb-000099
合成路线:
Figure PCTCN2022120267-appb-000100
步骤1:化合物WX001-2的合成
室温下,将化合物WX001-1(612.43mg,1.85mmol,纯度:84.92%)和三乙胺(720.96mg,7.12mmol)溶于N,N-二甲基甲酰胺(5mL)中,加入2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(880.46mg,2.32mmol),反应混合物在室温下搅拌反应1小时,加入化合物BB-4的盐酸盐(0.5g,1.78mmol),继续搅拌反应4小时。反应完毕后,加入甲基叔丁基醚(20mL),搅拌5分钟,过滤,滤饼用甲基叔丁基醚(5mL)淋洗,滤饼丢弃,收集滤液。向滤液中加入水(50mL)和二氯甲烷(100mL),分液,收集有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物WX001-2,直接用于下一步。MS-ESI m/z:471.3[M+H] +.
步骤2:化合物WX001-3的盐酸盐的合成
室温下,将化合物WX001-2(0.8g,1.70mmol)溶于二氯甲烷(5mL)中,加入盐酸/乙酸乙酯溶液(4M,20mL),反应混合物在室温下搅拌反应2小时。反应完毕后,将反应液过滤,滤饼用乙酸乙酯(20mL)淋洗,收集滤饼,得到化合物WX001-3的盐酸盐。MS-ESI m/z:371.1[M+H] + . 1H NMR(400MHz,D 2O)δ:7.78(s,1H),7.64(d,J=2.0Hz,1H),7.57(d,J=8.8Hz,1H),7.30(dd,J=2.0,8.8Hz,1H),4.21(dd,J=5.2,12.4Hz,1H),4.06(s,2H),3.62-3.56(m,4H),3.55-3.50(m,4H),2.90-2.75(m,2H),2.51-2.38(m,1H),2.33-2.24(m,1H).步骤3:化合物WX001-4的合成
室温和氮气保护下,将化合物BB-2(0.1g,171.05μmol)和化合物WX001-3的盐酸盐(69.60mg,171.05μmol)溶于四氢呋喃(4mL)和N,N-二甲基甲酰胺(0.8mL)中,加入醋酸钾(50.36mg,513.16μmol)和醋酸(5.14mg,85.53μmol),反应混合物在室温下搅拌反应2小时,加入醋酸硼氢化钠(145.01mg,684.21μmol),继续搅拌反应10小时。反应完毕后,向反应液中加入饱和氯化铵溶液(10mL),用乙酸乙酯(20mL×3)萃取,合并有机相,用10%食盐水(30mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物WX001-4。MS-ESI m/z:939.5[M+H] +.
步骤4:化合物WX001的盐酸盐的合成
室温和氮气保护下,将化合物WX001-4(160mg,170.39μmol)溶于二氯甲烷(5mL)和三氟乙酸(5mL)中,反应混合物在室温下搅拌反应2小时。反应完毕后,将反应液减压浓缩除去溶剂。所得残余物经制备HPLC分离(色谱柱:Phenomenex luna C18 80*40mm*3μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:13%-33%,7min),得到目标化合物WX001的盐酸盐。MS-ESI m/z:839.5[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),9.98(s,1H),9.14(s,1H),8.27-8.15(m,1H),8.06(d,J=5.2Hz,1H),7.93(s,2H),7.69(s,1H),7.57(d,J=8.8Hz,1H),7.48(d,J=8.8Hz,1H),7.37-7.03(m,2H),4.37-4.17(m,3H),4.13(dd,J=4.4,12.0Hz,2H),3.41-3.32(m,5H),3.15-3.03(m,2H),2.86-2.73(m,2H),2.69-2.55(m,2H),2.35-2.17(m,2H),2.16-1.99(m,5H),1.98-1.88(m,1H),1.87-1.67(m,3H),1.55(d,J=7.2Hz,1H),1.27-1.07(m,3H),0.55(d,J=7.2Hz,2H),0.34(d,J=4.0Hz,2H).
实施例2
Figure PCTCN2022120267-appb-000101
合成路线:
Figure PCTCN2022120267-appb-000102
步骤1:化合物WX002-1的合成
室温下,将化合物WX001-1(0.5g,1.78mmol)和三乙胺(632.58mg,6.25mmol)溶于N,N-二甲基甲酰胺(10mL)中,加入2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(812.61mg,2.14mmol),反应混合物搅拌反应1小时,加入化合物BB-6的盐酸盐(522.08mg,1.33mmol),继续搅拌反应19小时。反应完毕后,将反应液过滤,滤饼用N,N-二甲基甲酰胺(5mL)洗涤,再用甲基叔丁基醚(20mL)洗涤,收集滤饼,真空干燥,得到化合物WX002-1。MS-ESI m/z:471.3[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.88(s,1H),9.93(s,1H),8.05(d,J=1.2Hz,1H),7.83(s,1H),7.49(d,J=8.4Hz,1H),7.38(dd,J=1.2,8.4Hz,1H),4.10(dd,J=4.8,12.0Hz,1H),3.43-3.36(m,4H),3.35-3.33(m,2H),3.22-3.16(m,2H),2.79-2.64(m,2H),2.63-2.52(m,2H),2.37-2.24(m,1H),2.16-2.06(m,1H),1.40(s,9H).
步骤2:化合物WX002-2的盐酸盐的合成
室温下,将化合物WX002-1(0.8g,1.70mmol)溶于乙酸乙酯(10mL)中,加入盐酸/乙酸乙酯(4M,40mL),反应混合物在室温下搅拌反应15小时。反应完毕后,将反应液过滤,滤饼用乙酸乙酯(5mL)洗涤,收集滤饼,真空干燥,得到化合物WX002-2的盐酸盐。MS-ESI m/z:371.3[M+H] +. 1H NMR(400MHz,D 2O)δ:7.75(d,J=1.6Hz,1H),7.66(s,1H),7.43(d,J=8.4Hz,1H),7.19(dd,J=1.2,8.4Hz,1H),4.31(s,2H),4.10-4.03(m,1H),3.80-3.72(m,4H),3.71-3.63(m,4H),2.78-2.61(m,2H),2.33-2.20(m,1H),2.18-2.09(m,1H).
步骤3:化合物WX002-3的合成
室温和氮气保护下,将化合物BB-2(0.1g,171.05μmol)和化合物WX002-2的盐酸盐(69.60mg,171.05μmol)溶于四氢呋喃(4mL)和N,N-二甲基甲酰胺(0.8mL)中,加入醋酸钾(50.36mg,513.16μmol)和醋酸(5.14mg,85.53μmol,4.89μL),反应混合物在室温下搅拌反应2小时,加入醋酸硼氢化钠(145.01mg,684.21μmol),继续搅拌反应10小时。反应完毕后,向反应液中加入饱和氯化铵溶液(10mL),用乙酸乙酯(20mL×3)萃取,合并有机相,用10%食盐水(30mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物WX002-3。MS-ESI m/z:939.5[M+H] +.
步骤4:化合物WX002的盐酸盐的合成
室温和氮气保护下,将化合物WX002-3(160mg,170.39μmol)溶于二氯甲烷(5mL)和三氟乙酸(5mL)中,反应混合物搅拌反应2小时。反应完毕后,将反应液减压浓缩除去溶剂。所得残余物经制备HPLC分离(色谱柱:Phenomenex luna C18 80*40mm*3μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:13%-33%,7min),得到目标化合物WX002的盐酸盐。MS-ESI m/z:839.5[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.91(s,1H),9.94(s,1H),9.13(s,1H),8.19(s,1H),8.10-8.04(m,2H),7.88(s,1H),7.66(s,1H),7.55(d,J=8.6Hz,1H),7.38(dd,J=1.4,8.4Hz,1H),7.34-7.04(m,2H),4.31-4.22(m,1H),4.12(dd,J=4.6,11.8H,2H),3.50-3.25(m,7H),3.08(s,2H),2.80-2.65(m,2H),2.62-2.53(m,2H),2.38-2.25(m,2H),2.15-2.01(m,5H),1.98-1.88(m,1H),1.87-1.77(m,2H),1.54(d,J=6.8Hz,1H),1.27-1.10(m,3H),0.60-0.53(m,2H),0.36-0.30(m,2H).
实施例4
Figure PCTCN2022120267-appb-000103
合成路线:
Figure PCTCN2022120267-appb-000104
步骤1:化合物WX004-1的合成
室温和氮气保护下,将化合物WX003-2(553.26mg,2.43mmol)加入至N,N-二甲基甲酰胺(10mL)中,依次加入化合物BB-3(0.5g,1.62mmol),碳酸铯(2.11g,6.49mmol),碘化亚铜(61.81mg,324.54μmol)和二氯双(三苯基膦)钯(227.80mg,324.54μmol),反应混合物加热至80℃并搅拌反应5小时。反应完毕后,将反应液倒入1mol/L盐酸(12mL)中,加入水(15mL),用乙酸乙酯(15mL×3)萃取,合并有机相,用饱和食盐水(25mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物通过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1-1/1,体积比),得到化合物WX004-1。MS-ESI m/z:399.2[M-55] +. 1H NMR(400MHz,DMSO_d 6)δ:10.90(s,1H),7.97(s,1H),7.74(s,1H),7.59(d,J=8.4Hz,1H),7.38(dd,J=1.2,8.4Hz,1H),4.37(s,2H),4.16(dd,J=4.8,12.0Hz,1H),3.51(t,J=6.4Hz,2H),3.22(t,J=7.0Hz,2H),2.77(s,3H),2.74-2.66(m,1H),2.61-2.54(m,1H),2.41-2.28(m,1H),2.15-2.05(m,1H),1.78-1.69(m,2H),1.38(s,9H).
步骤2:化合物WX004-2的合成
室温下,将化合物WX004-1(0.6g,1.32mmol)加入至四氢呋喃(20mL)中,加入湿钯碳(0.1g,1.32mmol,纯度:10%)和氢氧化钯/碳(0.1g,1.32mmol,纯度:10%),反应混合物在室温和氢气(15psi)氛围下搅拌反应12小时。反应完毕后,将反应液过滤,滤饼用乙酸乙酯(30mL)淋洗,收集滤液,滤液减压浓缩除去溶剂,得到化合物WX004-2。MS-ESI m/z:403.2[M-55] +.
步骤3:化合物WX004-3的盐酸盐的合成
室温下,将化合物WX004-2(0.1g,218.08μmol)加入至盐酸/乙酸乙酯(4mol/L,4mL)中,反混合物在室温下搅拌反应1小时。反应完毕后,将反应液过滤,滤饼用乙酸乙酯(15mL)淋洗,收集滤饼,得到化合物WX004-3的盐酸盐。MS-ESI m/z:359.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.89(s,1H),8.73(s,1H),7.86(s,1H),7.47(d,J=8.4Hz,1H),7.39(s,1H),7.15(dd,J=1.6,8.4Hz,1H),4.12(dd,J=4.8,12.0Hz,1H),3.43(t,J=6.0Hz,2H),3.38(t,J=6.6Hz,2H),3.34(s,3H),2.95-2.88(m,2H),2.81-2.74(m,1H),2.73-2.67(m,2H),2.62-2.54(m,1H),2.38-2.27(m,1H),2.14-2.05(m,1H),1.88-1.78(m,4H).
步骤4:化合物WX004-4的合成
室温和氮气保护下,将化合物BB-2(0.1g,171.05μmol)和化合物WX004-3的盐酸盐(67.55mg,171.05μmol)溶于四氢呋喃(4mL)和N,N-二甲基甲酰胺(0.8mL)中,加入醋酸钾(50.36mg,513.16μmol)和醋酸(5.14mg,85.53μmol),反应混合物在室温下搅拌反应2小时,加入醋酸硼氢化钠(145.01mg,684.21μmol),继续搅拌反应10小时。反应完毕后,向反应液中加入饱和氯化铵溶液(10mL),用乙酸乙酯(3×30mL)萃取,合并有机相,用饱和食盐水(2×30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物WX004-4。MS-ESI m/z:927.6[M+H] +.
步骤5:化合物WX004的盐酸盐的合成
室温和氮气保护下,将化合物WX004-4(150mg,161.80μmol)溶于二氯甲烷(5mL)和三氟乙酸(5mL)中,反应混合物在室温下搅拌反应2小时。反应完毕后,将反应液减压浓缩除去溶剂。所得残余物经过制备HPLC分离(色谱柱:Phenomenex luna C18 80*40mm*3μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:17%-37%,7min),得到目标化合物WX004的盐酸盐。MS-ESI m/z:827.5[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.90(s,1H),10.12(s,1H),9.95(s,1H),9.15(s,1H),8.18(d,J=28.8Hz,1H),8.17-8.03(m,2H),7.86(s,1H),7.69(s,1H),7.47(d,J=8.4Hz,1H),7.40(s,1H),7.34-7.04(m,3H),4.13(dd,J=5.0,12.2Hz,2H),3.44(t,J=5.8Hz,2H),3.41-3.33(m,4H),3.24-3.10(m,1H),3.09-2.97(m,2H),2.96-2.87(m,1H),2.81-2.65(m,6H),2.62-2.55(m,1H),2.39-2.27(m,2H),2.15-2.03(m,4H),2.02-1.89(m,3H),1.87-1.80(m,4H),1.27-1.07(m,3H),0.61-0.51(m,2H),0.39-0.30(m,2H).
实施例7
Figure PCTCN2022120267-appb-000105
合成路线:
Figure PCTCN2022120267-appb-000106
步骤1:化合物WX007-1的合成
室温下,将化合物WX001-1(387.74mg,1.59mmol)溶于N,N-二甲基甲酰胺(10mL)中,随后依次加入2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(482.81mg,1.27mmol),N,N-二异丙基乙胺(410.27mg,3.17mmol)和化合物BB-9的盐酸盐(350mg,1.06mmol),反应混合物在室温下搅拌反应12小时。反应完毕后,将反应液倒入水(50mL)中,用乙酸乙酯(10mL×3)萃取,合并有机相,用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱 剂:石油醚/乙酸乙酯=5/1-1/1,体积比),得到化合物WX007-1。MS-ESI m/z:521.1[M+H] +. 1H NMR(400MHz,CDCl 3)δ:9.25(s,1H),8.28(s,1H),8.10(s,1H),7.95(d,J=8.8Hz,1H),7.77-7.70(m,2H),7.69-7.64(m,2H),4.48(dd,J=5.0,8.2Hz,1H),3.61-3.51(m,4H),3.24(s,2H),2.90-2.76(m,2H),2.70-2.59(m,4H),2.56-2.46(m,2H),1.49(s,9H).
步骤2:化合物WX007-2的盐酸盐的合成
将化合物WX007-1(100mg,180.19μmol,纯度:93.8%)溶于盐酸/二氧六环(4mol/L,7.5mL)中,反应混合物在室温下搅拌反应12小时。反应完毕后,将反应液减压浓缩除去溶剂。所得残余物加入乙酸乙酯(20mL),再减压浓缩除去溶剂,得到化合物WX007-2的盐酸盐。MS-ESI m/z:421.1[M+H] +.
步骤3:化合物WX007-3的合成
室温下,将化合物BB-2(77mg,131.71μmol)和化合物WX007-2的盐酸盐(60.18mg,131.71μmol)溶于四氢呋喃(5mL)和N,N-二甲基甲酰胺(1mL)中,随后加入醋酸钾(38.78mg,395.13μmol)和醋酸(3.95mg,65.86μmol),反应混合物在氮气保护下搅拌反应0.5小时,加入三乙酰氧基硼氢化钠(83.74mg,395.13μmol),继续搅拌反应0.5小时。反应完毕后,加入饱和氯化铵溶液(20mL),用乙酸乙酯萃取(20mL×3),合并有机相,用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物WX007-3。MS-ESI m/z:889.5[M+H-100] +.
步骤4:化合物WX007的合成
室温下,将化合物WX007-3(130mg,131.44μmol)溶于二氯甲烷(3mL)中,加入三氟乙酸(3mL),反应混合物加热至40℃并搅拌反应1小时。反应完毕后,减压浓缩除去溶剂。所得残余物先经过制备HPLC分离(色谱柱:Boston Green ODS 150*30mm*5μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:19%-34%,10min),再经过制备HPLC分离(色谱柱:Welch Xtimate C18 150*25mm*5μm;流动相:水(10mM碳酸氢铵)-乙腈;乙腈%:45%-75%,11min),得到目标化合物WX007。MS-ESI m/z:890.8[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.94(s,1H),9.92(s,1H),9.72(s,1H),8.88(s,1H),8.36(d,J=2.0Hz,1H),8.17-8.08(m,3H),7.97(s,1H),7.79-7.70(m,3H),7.15-6.96(m,4H),4.63(dd,J=4.2,11.8Hz,1H),4.24-4.10(m,1H),3.18-3.14(m,3H),2.94-2.81(m,1H),2.68-2.63(m,1H),2.61-2.54(m,4H),2.30-2.23(m,2H),2.17-2.12(m,2H),2.08-1.95(m,4H),1.93-1.85(m,2H),1.78-1.70(m,2H),1.63-1.55(m,1H),1.22(s,3H),1.09-1.00(m,2H),0.84(t,J=6.4Hz,1H),0.48-0.40(m,2H),0.24-0.17(m,2H).
实施例8
Figure PCTCN2022120267-appb-000107
合成路线:
Figure PCTCN2022120267-appb-000108
步骤1:化合物WX008-1的合成
室温和氮气保护下,将化合物BB-10(300mg,837.55μmol)溶于N,N-二甲基甲酰胺(10mL)中,随后依次加入化合物WX003-2(285.56mg,1.26mmol),碳酸铯(818.68mg,2.51mmol),碘化亚铜(31.90mg,167.51μmol)和二氯双(三苯基膦)钯(117.58mg,167.51μmol),反应混合物升温至80℃并搅拌反应5小时。反应完毕后,将反应液冷却至室温,倒入饱和氯化铵溶液(100mL)中,用乙酸乙酯(10mL×3)萃取,合并有机相,用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1-1/1,体积比),得到化合物WX008-1。MS-ESI m/z:405.2[M+H-100] +. 1H NMR(400MHz,CDCl 3)δ:8.15-8.01(m,2H),7.92(d,J=8.4Hz,1H),7.73(d,J=9.2Hz,1H),7.69(d,J=7.6Hz,2H),7.61(dd,J=1.6,8.8Hz,1H),4.50(dd,J=5.2,8.8Hz,1H),4.43(s,2H),3.65(t,J=6.2Hz,2H),3.35(t,J=6.6Hz,2H),2.89(s,3H),2.85-2.78(m,2H),2.58-2.41(m,2H),1.94-1.83(m,2H),1.47(s,9H).
步骤2:化合物WX008-2的合成
室温下,将化合物WX008-1(160mg,317.10μmol)溶于四氢呋喃(10mL)中,随后依次加入湿钯碳(0.2g,317.10μmol,纯度:10%)和氢氧化钯/碳(0.2g,317.10μmol,纯度:20%),反应混合物在室温和氢气氛围(15psi)下搅拌反应2小时。反应完毕,过滤,滤液减压浓缩除去溶剂,得到化合物WX008-2。MS-ESI m/z:409.1[M+H-100] +. 1H NMR(400MHz,CDCl 3)δ:8.09(s,1H),7.92(d,J=8.4Hz,1H),7.78(s,1H),7.72(d,J=9.2Hz,1H),7.67-7.63(m,2H),7.45(d,J=1.4,8.6Hz,1H),4.52(dd,J=5.6,8.0Hz,1H),3.45(q,J=6.6Hz,4H),3.36-3.28(m,2H),2.92-2.85(m,5H),2.82-2.76(m,2H),2.55-2.46(m,2H),2.04-1.95(m,2H),1.86-1.78(m,2H),1.46(s,9H).
步骤3:化合物WX008-3的盐酸盐的合成
室温下,将化合物WX008-2(100mg,196.62μmol)溶于乙酸乙酯(5mL)中,加入盐酸/乙酸乙酯溶液(4M,5mL),反应混合物在室温下搅拌反应12小时。反应完毕后,减压浓缩除掉溶剂。所得残余物加入乙酸乙酯(20mL),再减压浓缩除掉溶剂,得到化合物WX008-3的盐酸盐。MS-ESI m/z:409.2[M+H] +.
步骤4:化合物WX008-4的合成
室温下,将化合物BB-2(91mg,147.64μmol)溶于四氢呋喃(5mL)和N,N-二甲基甲酰胺(1mL)中,随后加入化合物WX008-3的盐酸盐(65.69mg,147.64μmol),醋酸钾(43.47mg,442.93μmol)和醋酸(8.87mg,8.44μL,147.64μmol),反应混合物搅拌反应0.5小时,再加入三乙酰氧基硼氢化钠(93.87mg,442.93μmol),继续搅拌反应1小时。反应完毕后,加入饱和氯化铵溶液(20mL),用乙酸乙酯(20mL×3)萃取,合并有机相,用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:二氯甲烷/甲醇=1/0-20/1,体积比),得到化合物WX008-4。MS-ESI m/z:977.6[M+H] +.
步骤5:化合物WX008的盐酸盐的合成
室温下,将化合物WX008-4(110mg,100.36μmol,纯度:89.15%)溶于二氯甲烷(3mL)中,随后加入三氟乙酸(3mL),反应混合物加热至40℃并搅拌反应1小时。反应完毕后,减压浓缩除去溶剂。所得残余物经过制备HPLC分离(色谱柱:Boston Green ODS 150*30mm*5μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:25%-45%,10min),得到目标化合物WX008的盐酸盐。MS-ESI m/z:877.5[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:10.96(s,1H),9.89(s,1H),9.54(s,1H),9.07(s,1H),8.17(s,1H),8.07(d,J=6.0Hz,2H),7.98(s,1H),7.84(s,1H),7.77(dd,J=8.8,16.0Hz,2H),7.57(s,1H),7.46(d,J=8.4Hz,1H),7.35-7.00(m,2H),4.64(dd,J=3.8,11.8Hz,1H),4.23(t,J=11.8Hz,1H),3.31-3.24(m,2H),3.20-3.11(m,2H),3.10-2.97(m,3H),2.96-2.86(m,2H),2.82(t,J=7.4Hz,2H),2.76(d,J=4.0Hz,3H),2.67-2.59(m,1H),2.42-2.31(m,1H),2.30-2.21(m,1H),2.10-1.74(m,12H),1.27-1.10(m,4H),0.61-0.51(m,2H),0.36-0.27(m,2H).
实施例10
Figure PCTCN2022120267-appb-000109
合成路线:
Figure PCTCN2022120267-appb-000110
步骤1:化合物WX010-1的合成
室温和氮气保护下,将化合物BB-12(0.1g,279.18μmol),化合物WX003-2(126.92mg,558.37μmol),碘化亚铜(10.63mg,55.84μmol),双三苯基膦二氯化钯(39.19mg,55.84μmol)和N,N-二异丙基乙胺(72.17mg,558.37μmol)溶于二甲基亚砜(2mL)中,反应混合物升温至85℃,搅拌反应2.5小时。反应完毕后,冷却至室温,向反应液中加入水(2mL),用二氯甲烷(5mL×2)萃取。合并有机相,用饱和食盐水(5mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得残余物经层析板分离(洗脱剂:乙酸乙酯/石油 醚=1/1,体积比)纯化,得到化合物WX010-1。MS-ESI m/z:405.2[M+H-100] +. 1H NMR(400MHz,CDCl 3)δ:8.35(d,J=9.2Hz,1H),8.12(s,1H),7.99(d,J=8.4Hz,1H),7.76(d,J=9.2Hz,1H),7.71(d,J=6.8Hz,1H),7.69(s,1H),7.53(t,J=8.0Hz,1H),4.54(s,2H),4.50(dd,J=5.4,9.0Hz,1H),3.70(t,J=6.4Hz,2H),3.36(t,J=6.4Hz,2H),2.89(s,3H),2.85-2.77(m,2H),2.57-2.42(m,2H),1.96-1.86(m,2H),1.46(s,9H).
步骤2:化合物WX010-2的合成
室温下,将化合物WX010-1(60mg,118.91μmol)溶于四氢呋喃(5mL)中,随后依次加入湿钯碳(10mg,纯度:10%)和氢氧化钯/碳(10mg,纯度:20%),反应混合物在室温和氢气氛围(15psi)下,搅拌反应15小时。反应完毕后,过滤,滤饼用四氢呋喃(10mL×2)淋洗,收集滤液,滤液减压浓缩,得到化合物WX010-2。MS-ESI m/z:409.2[M+H-100] +.
步骤3:化合物WX010-3的三氟乙酸盐的合成
室温下,将化合物WX010-2(60mg,117.97μmol)溶于二氯甲烷(1mL)中,加入三氟乙酸(184.80mg,1.62mmol),反应混合物室温下搅拌反应2小时。反应完毕后,减压浓缩除去溶剂,得到化合物WX010-3的三氟乙酸盐。MS-ESI m/z:409.2[M+H] +.
步骤4:化合物WX010-4的合成
室温和氮气保护下下,将化合物BB-2(50mg,85.53μmol),化合物WX010-3的三氟乙酸盐(53.63mg,102.63μmol)和乙酸钾(25.18mg,256.58μmol)溶于N,N-二甲基甲酰胺(1mL)和冰乙酸(0.1mL)的混合溶剂中,反应混合物室温下搅拌反应2小时,加入三乙酰基硼氢化钠(54.38mg,256.58μmol),继续搅拌反应15小时。反应完毕后,向反应液中加入饱和氯化铵溶液(8mL),用乙酸乙酯(10mL×2)萃取。合并有机相,用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物WX010-4。MS-ESI m/z:977.6[M+H] +.
步骤5:化合物WX010的三氟乙酸盐的合成
室温下,将化合物WX010-4(0.1g,102.34μmol)溶于二氯甲烷(2mL)中,滴加三氟乙酸(3.08g,27.01mmol),反应混合物室温下搅拌反应4小时。反应完毕后,减压浓缩除去溶剂,所得粗品经制备HPLC分离(色谱柱:Phenomenex luna C18 80*30mm*3μm;流动相:水(0.1%三氟乙酸)-乙腈;乙腈%:20%-50%,8min),得到目标化合物WX010的三氟乙酸盐。MS-ESI m/z:877.6[M+H] +. 1H NMR(400MHz,MeOD_d 4)δ:8.81(s,1H),8.16(d,J=1.6Hz,1H),8.12(d,J=9.6Hz,1H),8.06(d,J=8.4Hz,1H),7.99(d,J=6.4Hz,1H),7.84(s,1H),7.74(d,J=9.6Hz,1H),7.70(s,1H),7.53(t,J=7.8Hz,1H),7.45(d,J=6.4Hz,1H),7.41(d,J=6.8Hz,1H),6.93(t,J=54.4Hz 1H),4.65(dd,J=5.0Hz,10.2Hz,1H),4.11-4.02(m,1H),3.65-3.53(m,4H),3.31-3.20(m,4H),3.18-3.07(m,2H),3.01-2.88(m,2H),2.87(s,3H),2.79-2.71(m,1H),2.55-2.40(m,2H),2.17-1.75(m,12H),1.29- 1.17(m,3H),0.75-0.68(m,2H),0.45-0.38(m,2H).
实施例11
Figure PCTCN2022120267-appb-000111
合成路线:
Figure PCTCN2022120267-appb-000112
步骤1:化合物WX011-1的合成
室温和氮气保护下,将化合物WX001-1(102.70mg,365.82μmol)溶于N,N-二甲基甲酰胺(2mL)中,加入2-(7-氮杂苯并三氮唑)-N,N,N,N-四甲基脲六氟膦酯(164.39mg,432.33μmol)和N,N-二异丙基乙胺(214.91mg,1.66mmol),反应混合物室温下搅拌反应0.5小时,加入化合物BB-11的盐酸盐(0.11g,332.56μmol),反应混合物室温下搅拌反应15小时。反应完毕后,向反应液中加入水(5mL),用乙酸乙酯(2mL×2) 萃取。合并有机相,用饱和食盐水(5mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经层析板分离(展开剂:乙酸乙酯)纯化,得到化合物WX011-1。MS-ESI m/z:521.2[M+H] +.
步骤2:化合物WX011-2的盐酸盐的合成
室温下,将化合物WX011-1(0.12g,230.51μmol)溶于乙酸乙酯(1mL)中,加入盐酸的乙酸乙酯溶液(4M,6mL),反应混合物室温下搅拌反应1小时。反应完毕后,减压浓缩除去溶剂,得到化合物WX011-2的盐酸盐。MS-ESI m/z:421.2[M+H] +.
步骤3:化合物WX011-3的合成
室温和氮气保护下,将化合物BB-2(50mg,85.53μmol),化合物WX011-2的盐酸盐(42.99mg,94.08μmol)和乙酸钾(25.18mg,256.58μmol)溶于N,N-二甲基甲酰胺(1mL)和冰乙酸(0.1mL)的混合溶剂中,反应混合物室温下搅拌反应2小时,加入三乙酰基硼氢化钠(54.38mg,256.58μmol),反应混合物室温下搅拌反应15小时。反应完毕后,加入饱和氯化铵溶液(10mL),用乙酸乙酯(10mL×2)萃取。合并有机相,用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物WX011-3。MS-ESI m/z:467.3[(M-56)/2+H] +.
步骤4:化合物WX011的三氟乙酸盐的合成
室温下,将化合物WX011-3(80mg,80.88μmol)溶于二氯甲烷(1mL)中,加入三氟乙酸(308.00mg,2.70mmol,0.2mL),反应混合物室温下搅拌反应5小时。反应完毕后,减压浓缩除去溶剂,所得残余物经制备HPLC(色谱柱:Phenomenex luna C18 100*40mm*5μm;流动相:水(0.1%三氟乙酸)-乙腈;乙腈%:25%-70%,8min)分离,得到目标化合物WX011的三氟乙酸盐。MS-ESI m/z:889.5[M+H] +. 1H NMR(400MHz,MeOD_d 4)δ:8.79(s,1H),8.26(s,1H),8.13(d,J=7.6Hz,1H),7.97(d,J=6.8Hz,1H),7.93(d,J=9.2Hz,1H),7.88(s,1H),7.77(d,J=9.6Hz,1H),7.70(s,1H),7.67-7.60(m,2H),7.44(dd,J=0.8Hz,6.8Hz,1H),7.09-6.79(m,1H),4.67(dd,J=5.4Hz,10.6Hz,1H),4.31-4.19(m,1H),3.60(s,2H),3.53-3.38(m,3H),3.28(s,2H),3.24-3.18(m,2H),3.16-3.00(m,4H),2.96-2.85(m,1H),2.81-2.72(m,1H),2.56-2.41(m,2H),2.23(d,J=11.6Hz,2H),2.10-1.65(m,6H),1.43-1.27(m,2H),1.26-1.17(m,1H),0.74-0.67(m,2H),0.43-0.37(m,2H).
实施例13
Figure PCTCN2022120267-appb-000113
合成路线:
Figure PCTCN2022120267-appb-000114
步骤1:化合物WX013-1的合成
室温和氮气保护下,将化合物BB-16-8(1g,2.99mmol)和化合物WX003-2(816.24mg,3.59mmol)溶于二甲基亚砜(10mL)中,加入二氯双(三苯基膦)钯(420.09mg,598.51μmol),碘化亚铜(113.99mg,598.51μmol)和N,N-二异丙基乙胺(773.51mg,5.99mmol),反应混合物升温至85℃,搅拌反应2小时。反应完毕后,冷却至室温,加入水(30mL),用乙酸乙酯(3×20mL)萃取。合并有机相,用10%食盐水(3×40mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-4/1,体积比),得到化合物WX013-1。MS-ESI m/z:381.2[M+H-100] +. 1H NMR(400MHz,CDCl 3)δ:8.54(d,J=9.2Hz,1H),8.11(d,J=8.4Hz,1H),7.79(d,J=9.2Hz,1H),7.75(dd,J=1.0Hz,7.4Hz,1H),7.62(d,J=8.0Hz,1H),4.54(s,2H),4.34(s,2H),4.22(q,J=7.2Hz,2H),3.70(t,J=6.4Hz,2H),3.36(t,J=6.6Hz,2H),2.89(s,3H),1.95-1.86(m,2H),1.46(s,9H),1.20(t,J=7.0Hz,3H).
步骤2:化合物WX013-2的合成
室温和氮气保护下,将化合物WX013-1(0.8g,1.66mmol)和丙烯酰胺(130.16mg,1.83mmol)溶于四氢呋喃(10mL)中,冷却至0℃,加入叔丁醇钾(224.16mg,2.00mmol),反应混合物室温下搅拌反应1小时。反应完毕后,将反应液缓慢加入到1N盐酸中调节pH至3~4,加入水(10mL),用乙酸乙酯(3×20mL)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=3/1-1/1,体积比),得到化合物WX013-2。MS-ESI m/z:406.2[M+H-100] +. 1H NMR(400MHz,CDCl 3)δ:8.59(d,J=9.2Hz,1H),8.07(s,1H),8.04(d,J=8.4Hz,1H),7.82(d,J=9.2Hz,1H),7.77(dd,J=0.8,7.2Hz,1H),7.65(t,J=7.8Hz,1H),4.74(dd,J=5.0Hz,8.2Hz,1H),4.54(s,2H),3.70(t,J=6.2Hz,2H),3.37(t,J=6.2Hz,2H),2.99-2.91(m,1H),2.90(s,3H),2.84-2.68(m,2H),2.64-2.53(m,1H),1.96-1.86(m,2H),1.46(s,9H).
步骤3:化合物WX013-3的合成
室温下,将湿钯碳(20mg,纯度:10%)和氢氧化钯/碳(20mg,纯度:20%)溶于四氢呋喃(3mL)中,加入化合物WX013-2(150mg,296.70μmol)和三乙胺(30.02mg,296.70μmol),反应混合物在室温和氢气环境下(15psi)搅拌反应12小时。反应完毕后,经硅藻土过滤,用乙酸乙酯(20mL)淋洗滤饼,滤液减压浓缩,得到化合物WX013-3。MS-ESI m/z:410.2[M+H-100]+.1H NMR(400MHz,CDCl3)δ:8.31(d,J=9.2Hz,1H),8.12(s,1H),7.91(d,J=8.4Hz,1H),7.75(d,J=9.6Hz,1H),7.62(t,J=7.6Hz,1H),7.45(d,J=6.8Hz,1H),4.77(dd,J=5.4Hz,7.8Hz,1H),3.52-3.45(m,4H),3.38-3.30(m,2H),3.24(t,J=7.6Hz,2H),2.91-2.85(m,4H),2.82-2.68(m,2H),2.62-2.52(m,1H),2.05-1.98(m,2H),1.90-1.81(m,2H),1.47(s,9H).
步骤4:化合物WX013-4的三氟乙酸盐合成
室温下,将化合物WX013-3(120mg,235.48μmol)溶于二氯甲烷(3mL)和三氟乙酸(0.5mL)中,反应混合物室温下搅拌反应1小时。反应完毕后,减压浓缩除去溶剂,得到化合物WX013-4的三氟乙酸盐。MS-ESI m/z:410.3[M+H] +.
步骤5:化合物WX013-5的合成
室温和氮气保护下,将化合物BB-2(0.1g,171.05μmol)和化合物WX013-4的三氟乙酸盐(107.45mg,205.26μmol)溶于N,N-二甲基甲酰胺(3mL)中,加入醋酸钾(50.36mg,513.15μmol)和醋酸(5.14mg,85.53μmol),反应混合物室温下搅拌反应2小时,加入三乙酰氧基硼氢化钠(145.01mg,684.20μmol),继续搅拌反应1小时。反应完毕后,加入1M盐酸溶液(1mL),减压浓缩除去溶剂。所得残余物经制备HPLC分离(色谱柱:Phenomenex luna C18 80*40mm*3μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:40%-60%,7min),得到化合物WX013-5。MS-ESI m/z:978.5[M+H] +. 1H NMR(400MHz,CDCl 3)δ:9.06(s,1H),8.40 (d,J=5.6Hz,2H),8.41(s,1H),8.33(s,1H),8.29(t,J=4.8Hz,2H),7.92(d,J=8.4Hz,1H),7.78(d,J=9.2Hz,1H),7.65-7.57(m,2H),7.44(d,J=7.2Hz,1H),7.00-6.65(m,1H),4.82-4.73(m,1H),4.09-4.00(m,1H),3.94(d,J=6.8Hz,2H),3.52(t,J=5.6Hz,4H),3.30-3.16(m,3H),2.96-2.85(m,2H),2.81(s,3H),2.78-2.70(m,2H),2.62-2.50(m,1H),2.26-2.12(m,4H),1.93-1.75(m,5H),1.73-1.62(m,4H),1.58(s,9H),1.26-1.15(m,3H),0.47-0.40(m,2H),0.31-0.25(m,2H).
步骤6:化合物WX013的盐酸盐的合成
室温和氮气保护下,将化合物WX013-5(50mg,51.12μmol)溶于二氯甲烷(2mL)和三氟乙酸(2mL)中,反应混合物室温下搅拌反应1.5小时。反应完毕后,减压浓缩除去溶剂。所得残余物经制备HPLC分离(色谱柱:Phenomenex luna C18 80*40mm*3μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:14%-34%,7min),得到目标化合物WX013的盐酸盐。MS-ESI m/z:878.4[M+H] +. 1H NMR(400MHz,MeOD_d 4)δ:8.80(s,1H),8.40(d,J=9.2Hz,1H),8.17(s,1H),8.11(d,J=8.4Hz,1H),7.97(d,J=6.8Hz,1H),7.81(d,J=9.6Hz,1H),7.72(d,J=1.2Hz,1H),7.64(t,J=7.8Hz,1H),7.49(d,J=6.8Hz,1H),7.45(dd,J=1.4Hz,6.6Hz,1H),6.91(t,J=54.6Hz,1H),4.97(dd,J=4.8Hz,10.0Hz,1H),4.19-4.07(m,1H),3.62-3.55(m,4H),3.27-3.08(m,4H),3.04-2.94(m,1H),2.89(s,3H),2.87-2.59(m,4H),2.54-2.45(m,1H),2.17-1.77(m,13H),1.30-1.15(m,3H),0.74-0.68(m,2H),0.44-0.38(m,2H).
实施例14
Figure PCTCN2022120267-appb-000115
合成路线:
Figure PCTCN2022120267-appb-000116
步骤1:化合物WX014-1的合成
室温和氮气保护下,将化合物WX001-1(93.09mg,331.57μmol)溶于N,N-二甲基甲酰胺(2mL)中,加入N,N-二异丙基乙胺(194.78mg,1.51mmol)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(171.92mg,452.14μmol),反应混合物室温下搅拌反应0.5小时,加入化合物BB-16的盐酸盐(0.1g,301.43μmol),反应混合物室温下搅拌反应11.5小时。反应完毕后,加入水(20mL),用乙酸乙酯(3×20mL)萃取。合并有机相,用10%食盐水(2×30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=3/1-1/1,体积比),得到化合物WX014-1。MS-ESI m/z:522.3[M+H] +.
步骤2:化合物WX014-2的盐酸盐的合成
室温下,将化合物WX014-1(0.1g,191.73μmol)溶于二氯甲烷(1mL)中,加入盐酸的乙酸乙酯溶液(4M,2mL),反应混合物室温下搅拌反应12小时。反应完毕后,减压浓缩除去溶剂,得到化合物WX014-2的盐酸盐。MS-ESI m/z:422.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.15(s,1H),10.75(s,1H),9.58(s,1H),8.36(d,J=9.2Hz,1H),8.16(d,J=7.2Hz,1H),8.00(d,J=9.6Hz,1H),7.76(t,J=7.8Hz,1H),7.71(d,J=6.8Hz,1H),5.10(dd,J=4.6,11.4Hz,1H),4.35-4.10(m,2H),3.41-3.34(m,6H),2.92-2.80(m,2H),2.70-2.66(m,1H),2.65-2.61(m,1H),2.60-2.56(m,1H),2.44-2.36(m,1H).
步骤3:化合物WX014-3的合成
室温和氮气保护下,将化合物BB-2(0.1g,171.05μmol)和化合物WX014-2的盐酸盐(78.33mg,171.05μmol)溶于四氢呋喃(2mL)和N,N-二甲基甲酰胺(0.4mL)中,加入醋酸钾(50.36mg,513.16μmol)和醋酸(5.14mg,85.53μmol),反应混合物室温下搅拌反应2小时,加入三乙酰氧基硼氢化钠(145.01mg,684.21μmol),继续搅拌反应10小时。反应完毕后,加入饱和氯化铵溶液(20mL),用乙酸乙酯(3×20mL)萃取。合并有机相,用10%食盐水(2×30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物WX014-3。MS-ESI m/z:990.6[M+H] +.
步骤4:化合物WX014的盐酸盐的合成
室温和氮气保护下,将化合物WX014-3(0.2g,202.01μmol)溶于二氯甲烷(7mL)和三氟乙酸(7mL)中,反应混合物室温下搅拌反应2小时。反应完毕后,减压浓缩除去溶剂。所得残余物经制备HPLC(色谱柱:Phenomenex luna C18 80*40mm*3μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:12%-32%,7min)分离,得到目标化合物WX014的盐酸盐。MS-ESI m/z:890.5[M+H] +. 1H NMR(400MHz,MeOD_d 4)δ:8.79(s,1H),8.29(d,J=9.6Hz,1H),8.26(s,1H),8.19(dd,J=1.2Hz,6.8Hz,1H),7.97(d,J=6.8Hz,1H),7.86(d,J=9.2Hz,1H),7.79-7.69(m,3H),7.45(dd,J=1.2Hz,6.8Hz,1H),6.94(t,J=54.6Hz,1H),5.00(dd,J=5.0Hz,10.2Hz,1H),4.30-4.23(m,1H),4.21(s,2H),3.86-3.54(m,8H),3.20(d,J=6.4Hz,2H),2.94-2.63(m,4H),2.58-2.47(m,1H),2.22(d,J=11.6Hz,2H),2.11(d,J=12.0Hz,2H),2.05-1.88(m,3H),1.42-1.30(m,2H),1.27-1.16(m,1H),0.75-0.68(m,2H),0.45-0.38(m,2H).
实施例15
Figure PCTCN2022120267-appb-000117
合成路线:
Figure PCTCN2022120267-appb-000118
步骤1:化合物WX015-1的合成
室温和氮气保护下,将化合物WX001-1(93.09mg,331.57μmol)溶于N,N-二甲基甲酰胺(2mL)中,加入N,N-二异丙基乙胺(194.78mg,1.51mmol)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(171.92mg,452.14μmol),反应混合物室温下搅拌反应0.5小时,加入化合物BB-14的盐酸盐(0.1g,301.43μmol),继续反应1.5小时。反应完毕后,加入水(20mL),用乙酸乙酯(4×20mL)萃取。合并有机相,用10%食盐水(2×30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物WX015-1。MS-ESI m/z:522.3[M+H] +.
步骤2:化合物WX015-2的盐酸盐的合成
室温下,将化合物WX015-1(155mg,297.18μmol)溶于二氯甲烷(3mL)中,加入盐酸的乙酸乙酯溶液(4M,5mL),反应混合物室温下搅拌反应12小时,然后升温至40℃搅拌反应2小时。反应完毕后,减压浓缩除去溶剂,得到化合物WX015-2的盐酸盐。MS-ESI m/z:422.2[M+H] +.
步骤3:化合物WX015-3的合成
室温和氮气保护下,将化合物BB-2(0.1,171.05μmol)和化合物WX015-2的盐酸盐(78.33mg,171.05μmol)溶于N,N-二甲基甲酰胺(3mL)中,加入醋酸钾(50.36mg,513.15μmol)和醋酸(5.14mg,85.53μmol),反应混合物室温下搅拌反应2小时,加入三乙酰氧基硼氢化钠(145.01mg,684.20μmol),继续反应10小时。反应完毕后,加入饱和氯化铵溶液(20mL),用乙酸乙酯(4×20mL)萃取。合并有机相,用10%食盐水(2×30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物WX015-3。MS-ESI m/z:990.6[M+H] +.
步骤4:化合物WX015的盐酸盐的合成
室温下,将化合物WX015-3(160mg,161.61μmol)溶于二氯甲烷(6mL)和三氟乙酸(6mL)中,反应混合物室温下搅拌反应2小时。反应完毕后,减压浓缩除去溶剂,所得残余物经制备HPLC(色谱柱:Phenomenex luna C18 80*40mm*3μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:14%-34%,7min)分离,得到目标化合物WX015的盐酸盐。MS-ESI m/z:890.4[M+H] +. 1H NMR(400MHz,MeOD_d 4)δ:8.79(s,1H),8.42(d,J=2.0Hz,1H),8.26(s,1H),8.19(d,J=8.8Hz,1H),8.01(d,J=9.2Hz,1H),7.96(d,J=6.8Hz,1H),7.88(dd,J=2.0Hz,8.8Hz,1H),7.77(d,J=9.2Hz,1H),7.69(s,1H),7.43(dd,J=1.6Hz,6.8Hz,1H),6.93(t,J=54.4Hz,1H),4.95(dd,J=5.0Hz,10.2Hz,1H),4.32-4.19(m,1H),4.05(s,2H),3.88-3.49(m,8H),3.29(s,1H),3.21(d,J=6.4Hz,2H),2.95-2.74(m,2H),2.73-2.61(m,1H),2.58-2.45(m,1H),2.22(d,J=10.4Hz,2H),2.12(d,J=12.8Hz,2H),2.07-1.70(m,4H),1.45-1.30(m,2H),1.29-1.17(m,1H),0.75-0.67(m,2H),0.44-0.37(m,2H).
实施例16
Figure PCTCN2022120267-appb-000119
合成路线:
Figure PCTCN2022120267-appb-000120
步骤1:化合物WX016-1的合成
室温和氮气保护下,将化合物BB-15(0.2g,556.83μmol)和化合物WX003-2(164.54mg,723.88μmol)溶于二甲基亚砜(5mL)中,加入二氯双(三苯基膦)钯(78.17mg,111.37μmol),碘化亚铜(21.21mg,111.37μmol)和N,N-二异丙基乙胺(143.93mg,1.11mmol),反应混合物升温至85℃搅拌反应2小时。反应完毕后,冷却至室温,加入水(30mL),用乙酸乙酯(3×30mL)萃取。合并有机相,用10%食盐水(3×40mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=3/1-1/1,体积比),得到化合物WX016-1。MS-ESI m/z:406.2[M+H-100] +. 1H NMR(400MHz,CDCl 3)δ:8.18(s,1H),8.13(d,J=1.2Hz,1H),7.97(t,J=9.2Hz,2H),7.75(d,J=8.8Hz,1H),7.71(dd,J=1.6Hz,8.4Hz,1H),4.72(dd,J=5.2Hz,8.4Hz,1H),4.43(s,2H),3.65(t,J=6.4Hz,2H),3.35(t,J=6.8Hz,2H),2.89(s,3H),2.84-2.68(m,3H),2.65-2.53(m,1H),1.93-1.85(m,2H),1.47(s,9H).
步骤2:化合物WX016-2的合成
室温下,将湿钯碳(20mg,纯度:10%)和氢氧化钯/碳(20mg,纯度:20%)溶于四氢呋喃(3mL)中,加入化合物WX016-1(0.1g,197.80μmol)和三乙胺(20.02mg,197.80μmol),反应混合物在室温和氢气环境下(15psi)搅拌反应12小时。反应完毕后,过滤,滤液减压浓缩除去溶剂。所得残余物通过层析板分离(展开剂:石油醚/乙酸乙酯=1/1)纯化,得到化合物WX016-2。MS-ESI m/z:410.2[M+H-100] +. 1H NMR (400MHz,CDCl 3)δ:8.20(s,1H),7.96(d,J=2.4Hz,1H),7.94(d,J=2.4Hz,1H),7.82(s,1H),7.70(d,J=8.8Hz,1H),7.55(dd,J=1.6Hz,8.4Hz,1H),4.75(dd,J=4.8Hz,8.4Hz,1H),3.51-3.41(m,4H),3.36-3.26(m,2H),2.96-2.88(m,3H),2.87(s,3H),2.83-2.66(m,2H),2.63-2.51(m,1H),2.04-1.94(m,2H),1.87-1.77(m,2H),1.46(s,9H).
步骤3:化合物WX016-3的三氟乙酸盐的合成
室温下,将化合物WX016-2(70mg,137.36μmol)溶于二氯甲烷(3mL)和三氟乙酸(0.5mL)中,反应混合物室温下搅拌反应40分钟。反应完毕后,减压浓缩除去溶剂,得到化合物WX016-3的三氟乙酸盐。MS-ESI m/z:410.2[M+H] +.
步骤4:化合物WX016-4的合成
室温和氮气保护下,将化合物BB-2(70mg,119.74μmol)和化合物WX016-3的三氟乙酸盐(68.95mg,131.71μmol)溶于N,N-二甲基甲酰胺(4mL)中,加入醋酸钾(35.25mg,359.21μmol)和醋酸(3.60mg,59.87μmol),反应混合物室温下搅拌反应2小时,加入三乙酰氧基硼氢化钠(101.51mg,478.95μmol,4eq),继续搅拌反应10小时。反应完毕后,加入饱和氯化铵溶液(20mL),用乙酸乙酯(2×20mL)萃取。合并有机相,用10%食盐水(2×30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂,得到化合物WX016-4。MS-ESI m/z:978.4[M+H] +.
步骤5:化合物WX016的盐酸盐的合成
室温和氮气保护下,将化合物WX016-4(110mg,112.46μmol)溶于二氯甲烷(4mL)和三氟乙酸(4mL)中,反应混合物室温下搅拌反应2小时。反应完毕后,减压浓缩除去溶剂。所得残余物经制备HPLC(色谱柱:Phenomenex luna C18 80*40mm*3μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:13%-30%,7min)纯化,得到目标化合物WX016的盐酸盐。MS-ESI m/z:878.5[M+H] +. 1H NMR(400MHz,MeOD_d 4)δ:8.77(s,1H),8.13(d,J=8.0Hz,1H),8.11(s,1H),8.02(d,J=9.2Hz,1H),7.99-7.95(m,1H),7.89(s,1H),7.75-7.68(m,2H),7.61(d,J=8.0Hz,1H),7.46-7.42(m,1H),6.89(t,J=54.4Hz,1H),4.93(dd,J=5.2Hz,10.4Hz,1H),4.21-4.09(m,1H),3.62-3.53(m,3H),3.17-3.02(m,2H),2.93(t,J=7.4Hz,3H),2.86(s,3H),2.85-2.72(m,2H),2.70-2.58(m,1H),2.57-2.43(m,1H),2.23-1.76(m,13H),1.34-1.14(m,4H),0.74-0.68(m,2H),0.44-0.39(m,2H).
实施例17
Figure PCTCN2022120267-appb-000121
合成路线:
Figure PCTCN2022120267-appb-000122
步骤1:化合物WX014-2的三氟乙酸盐的合成
室温和氮气保护下,将化合物WX014-1(100mg,191.73μmol)溶于二氯甲烷(1mL)中,随后加入三氟乙酸(308.00mg,2.70mmol,0.2mL),反应混合物在室温下搅拌反应12小时。反应完毕后,反应液减压浓缩得到化合物WX014-2的三氟乙酸盐。MS-ESI m/z:422.1[M+H] +.
步骤2:化合物WX017的甲酸盐的合成
室温和氮气保护下,将化合物WX014-2的三氟乙酸盐(100mg,186.75μmol)溶于乙腈(2mL)中,随后加入N,N-二异丙基乙胺(120.68mg,933.76μmol,162.64μL)和化合物BB-17(112mg,167.01μmol,纯度:89.98%),反应混合物升温至90℃并搅拌反应12小时。反应完毕后,反应液减压浓缩除去溶剂。残余物经制备HPLC分离(色谱柱:Phenomenex Luna C18 75*30mm*3μm;流动相:水(0.2%甲酸)-乙腈;乙腈%:30%-60%,8min),得到目标化合物WX017的甲酸盐。MS-ESI m/z:897.0[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:12.55(s,1H),11.14(s,1H),10.13(s,1H),9.07(s,1H),8.46(t,J=7.6Hz,1H),8.38(t,J=8.0Hz,1H),8.23-8.16(m,2H),8.15-8.08(m,1H),8.01(d,J=9.2Hz,1H),7.89(s,1H),7.79(d,J=7.6Hz,1H),7.72(t,J=8.0Hz,1H),6.08(s,1H),5.09(dd,J=4.8Hz,11.6Hz,1H),3.30-3.23(m,2H),3.13-3.02(m,1H),2.92-2.79(m,1H),2.78-2.51 (m,10H),2.45-2.34(m,2H),2.32-2.25(m,1H),2.19(d,J=10.8Hz,2H),1.94(d,J=10.8Hz,2H),1.70-1.55(m,9H),1.18-1.02(m,2H).
实施例18
Figure PCTCN2022120267-appb-000123
合成路线:
Figure PCTCN2022120267-appb-000124
步骤1:化合物WX018-2的合成
室温和氮气保护下,将二氯二茂钛(1.30g,5.02mmol)和锌粉(13.31g,203.55mmol)加入到干燥的反应瓶中,加入四氢呋喃(100mL)溶解,滴加二氟溴乙酸乙酯(20.37g,100.38mmol,12.90mL)的四氢呋喃(20mL)溶液(先滴加1/10的溶液,反应引发后(明显升温)再滴加剩余的溶液)。滴加完毕后,继续搅拌0.5小时,过滤,滤液加入到化合物WX018-1(10g,50.19mmol)的四氢呋喃(50mL)溶液中,搅拌反应12小时。反应完毕后,滴加1M盐酸调节pH=3,加入水(100mL),用乙酸乙酯(100mL×3)萃取,有机相用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得残余物经过柱层析(洗脱剂:石油醚/乙酸乙酯=0/1-1/0,体积比),得到化合物WX018-2。MS-ESI m/z:268.0[M+H-56] +. 1H NMR(400MHz,CDCl 3)δ:4.37(q,J=7.2Hz,2H),4.20-3.92(m,2H),3.17-2.94(m,2H),2.33(s,1H),1.87-1.74(m,2H),1.72-1.65(m,2H),1.47(s,9H),1.38(t,J=7.2Hz,3H).
步骤2:化合物WX018-3的合成
室温和氮气保护下,将化合物WX018-2(1g,3.09mmol),氯化亚砜(2.21g,18.56mmol)和吡啶(1.47g,18.56mmol)加入二氧六环(15mL)中,反应混合物在室温下搅拌1.5小时,然后加入4-二甲氨基吡啶(37.78mg,309.28μmol),继续搅拌反应12小时。反应完毕后,向反应液中加入水(20mL),用乙酸乙酯(30mL×3)萃取,有机相用饱和食盐水(20mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析(洗脱剂:石油醚/乙酸乙酯=20/1-9/1,体积比),得到化合物WX018-3。MS-ESI m/z:206.2[M+H-100] +. 1H NMR(400MHz,CDCl 3)δ:6.18(s,1H),4.34(q,J=7.0Hz,2H),4.02(d,J=2.0Hz,2H),3.54(t,J=5.6Hz,2H),2.25(s,2H),1.48(s,9H),1.36(t,J=7.2Hz,3H)
步骤3:化合物WX018-4的合成
室温和氮气保护下,将湿氢氧化钯(0.5g,712.07μmol,纯度:20%)加入氢化瓶中,然后加入甲醇(20mL)和化合物WX018-3(1.5g,4.91mmol),氢气置换三次,反应混合物在室温和40psi下搅拌反应12小时。反应完毕后,过滤,用甲醇(50mL×4)淋洗滤饼,收集滤液,滤液减压浓缩除去残余溶剂。所得残余物经柱层析(洗脱剂:石油醚/乙酸乙酯=20/1-10/1,体积比),得到化合物WX018-4。MS-ESI m/z:252.2[M+H-56] +. 1H NMR(400MHz,CDCl 3)δ:4.35(q,J=7.0Hz,2H),4.30-4.15(m,2H),2.68(t,J=12.8Hz,2H),2.32-2.14(m,1H),1.73(d,J=12.8Hz,2H),1.49(d,J=4.8Hz,1H),1.47(s,9H),1.43(d,J=4.4Hz,1H),1.37(t,J=7.0Hz,3H).
步骤4:化合物WX018-5的合成
室温和氮气保护下,将化合物WX018-4(0.26g,845.99μmol)溶于乙醇(5mL)和水(2mL)的混合溶剂中,加入一水合氢氧化锂(71.00mg,1.69mmol),反应混合物室温下搅拌反应12小时。反应完毕后,减压浓缩,残余物用1M盐酸调节pH=2-3,有固体析出,过滤,收集滤饼,真空干燥得到化合物WX018- 5。MS-ESI m/z:224.0[M+H-56] +. 1H NMR(400MHz,DMSO_d 6)δ:4.05-3.94(m,2H),2.80-2.63(m,2H),2.37-2.21(m,1H),1.71-1.61(m,2H),1.39(s,9H),1.27-1.12(m,2H).
步骤5:化合物WX018-6的合成
室温和氮气保护下,将化合物WX018-5(101.02mg,361.71μmol)溶于N,N–二甲基甲酰胺(3mL)中,加入2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(229.22mg,602.86μmol)和N,N–二异丙基乙胺(233.74mg,1.81mmol,315.01μL),反应混合物搅拌0.5小时,加入化合物BB-16的盐酸盐(0.1g,301.43μmol),反应混合物继续搅拌反应12小时。反应完毕后,向反应液中加入水(20mL),有固体析出,过滤,收集固体,真空干燥得到化合物WX018-6。MS-ESI m/z:457.1[M+H-100] +. 1H NMR(400MHz,DMSO_d 6)δ:11.15(s,1H),11.02(s,1H),8.31-8.18(m,1H),8.05(q,J=9.2Hz,2H),7.83-7.71(m,1H),7.58(d,J=7.6Hz,1H),5.18-5.04(m,1H),4.15-4.04(m,2H),2.90-2.80(m,2H),2.74-2.61(m,4H),2.44-2.34(m,2H),1.42(s,9H),1.18-1.10(m,3H).
步骤6:化合物WX018-7的盐酸盐的合成
室温下,将化合物WX018-6(110mg,197.64μmol)溶于乙酸乙酯(2mL)中,加入盐酸的乙酸乙酯溶液(3mL,4M),反应混合物搅拌反应2小时。反应完毕后,过滤,用乙酸乙酯(5mL×3)淋洗滤饼,收集滤饼,真空干燥得到化合物WX018-7的盐酸盐。MS-ESI m/z:457.2[M+H] +.
步骤7:化合物WX018-8的合成
室温和氮气保护下,将化合物WX018-7的盐酸盐(97mg,196.79μmol)溶于四氢呋喃(5mL)和N,N-二甲基甲酰胺(1mL)中,加入化合物BB-2(115.05mg,196.79μmol),乙酸钾(57.94mg,590.38μmol)和冰乙酸(5.91mg,98.40μmol,5.63μL),反应混合物搅拌2小时,然后加入三乙酰氧基硼氢化钠(166.83mg,787.17μmol),反应混合物继续搅拌反应1小时。反应完毕后,向反应液中加入饱和氯化铵水溶液(20mL),用乙酸乙酯(30mL×3)萃取,有机相用饱和食盐水(30mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂得到化合物WX018-8。MS-ESI m/z:1025.4[M+H] +.
步骤8:化合物WX018的盐酸盐的合成
室温下,将化合物WX018-8(0.2g,195.11μmol)溶于乙酸乙酯(2mL)中,加入盐酸的乙酸乙酯溶液(4.98mL,4M),反应混合物搅拌反应2小时。反应完毕后,过滤,用乙酸乙酯(5mL×3)淋洗滤饼,收集滤饼。滤饼经制备HPLC分离(色谱柱:Phenomenex Luna 80*30mm*3μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:10%-30%,8min),得到目标化合物WX018的盐酸盐。MS-ESI m/z:925.5[M+H] +. 1H NMR(400MHz,MeOD_d 4)δ:8.80(s,1H),8.30-8.23(m,2H),8.15(d,J=9.2Hz,1H),7.97(d,J=6.8Hz,1H),7.89(d,J=9.6Hz,1H),7.78(t,J=8.0Hz,1H),7.72-7.68(m,1H),7.68-7.61(m,1H),7.45(dd,J=1.6Hz,6.8Hz,1H),6.94(t,J=54.6 Hz,1H),5.01(dd,J=5.0Hz,10.2Hz,1H),4.32-4.19(m,1H),3.79(d,J=12.0Hz,2H),3.30-3.27(m,1H),3.24-3.00(m,4H),2.97-2.63(m,4H),2.59-2.46(m,1H),2.34-2.15(m,4H),2.14-1.90(m,7H),1.42-1.27(m,3H),1.26-1.17(m,1H),0.75-0.66(m,2H),0.45-0.36(m,2H).
实施例19
Figure PCTCN2022120267-appb-000125
合成路线:
Figure PCTCN2022120267-appb-000126
化合物WX019的甲酸盐的合成
室温和氮气保护下,将化合物BB-17(0.1g,165.72μmol)和化合物WX018-7的三氟乙酸盐(0.15g,262.94μmol)溶于乙腈(3mL)中,加入N,N-二异丙基乙胺(214.18mg,1.66mmol,288.65μL),反应混合物升温至90℃并搅拌反应14小时。反应完毕后,将反应液减压浓缩除去溶剂。所得残余物经过制备HPLC分离(色谱柱:Phenomenex Luna C18 200*40mm*10μm;流动相:水(0.2%甲酸)-乙腈;乙腈%:20%-50%,8min),得到目标化合物WX019的甲酸盐。MS-ESI m/z:932.3[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:12.55(s,1H),11.15(s,1H),10.99(s,1H),9.07(s,1H),8.47(d,J=8.0Hz,1H),8.38(t,J=7.8Hz,1H),8.27-8.22(m,1H),8.19(d,J=8.8Hz,1H),8.06(q,J=9.6Hz,2H),7.89(s,1H),7.77(t,J=8.0Hz,1H),7.58(d,J=7.2Hz,1H),6.07(s,1H),5.11(dd,J=4.2Hz,11.4Hz,1H),3.13-2.96(m,3H),2.92-2.80(m,1H),2.71-2.57(m,2H),2.48-2.24(m,3H),2.22-2.12(m,4H),1.99-1.88(m,4H),1.86-1.77(m,2H),1.63(s,6H),1.62-1.51(m,4H),1.18-1.01(m,2H).
实施例20
Figure PCTCN2022120267-appb-000127
合成路线:
Figure PCTCN2022120267-appb-000128
步骤1:化合物WX015-2三氟乙酸盐的合成
室温和氮气保护下,将化合物WX015-1(0.1g,191.73μmol)溶于二氯甲烷(3mL)中,加入三氟乙酸(459.10mg,4.03mmol,298.11μL),反应混合物室温下搅拌反应4小时。反应完毕后,将反应液减压浓缩,得到化合物WX015-2的三氟乙酸盐。MS-ESI m/z:422.1[M+H] + .
步骤2:化合物WX020的甲酸盐的合成
室温和氮气保护下,将化合物BB-17(0.075g,124.29μmol)和化合物WX015-2的三氟乙酸盐(0.125g,185.93μmol)溶于乙腈(3mL)中,加入N,N-二异丙基乙胺(160.63mg,1.24mmol,216.49μL),反应混合物升温至90℃,搅拌反应36小时。反应完毕后,将反应液减压浓缩除去溶剂。所得残余物经过制备HPLC分离(色谱柱:Phenomenex Luna C18 75*30mm*3μm;流动相:水(0.2%甲酸)-乙腈;乙腈%:10%-45%,8min),得到目标化合物WX020的甲酸盐。MS-ESI m/z:897.4[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:12.54(s,1H),11.13(s,1H),10.01(s,1H),9.06(s,1H),8.50(d,J=2.0Hz,1H),8.46(d,J=7.6Hz,1H),8.38(t,J=7.8Hz,1H),8.18(d,J=7.6Hz,2H),8.12(d,J=9.2Hz,1H),7.95-7.86(m,3H),6.07(s,1H),5.03(dd,J=4.6Hz,11.4Hz, 1H),3.20(s,2H),3.12-2.99(m,1H),2.91-2.76(m,2H),2.70-2.62(m,3H),2.58-2.53(m,4H),2.43-2.31(m,3H),2.22-2.12(m,4H),1.97-1.85(m,2H),1.72-1.49(m,10H),1.16-0.99(m,2H).
实施例21
Figure PCTCN2022120267-appb-000129
合成路线:
Figure PCTCN2022120267-appb-000130
步骤1:化合物WX021-2的合成
室温和氮气保护下,将化合物WX021-1(30g,142.01mmol)和乙氧甲酰基亚甲基三苯基膦(54.42g,156.21mmol)溶于甲苯(450mL)中,反应混合物升温至80℃,搅拌反应12小时。反应完毕后,冷却至 室温,反应液用水(3×200mL)洗涤,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩得到黄色残余物。残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-4/1,体积比),得到化合物WX021-2。MS-ESI m/z:226.2[M+H-56] +. 1H NMR(400MHz,CDCl 3)δ:5.67-5.63(m,1H),4.14(q,J=7.2Hz,2H),4.05-3.87(m,4H),3.29(d,J=2.4Hz,2H),3.00(s,2H),1.43(s,9H),1.27(t,J=7.2Hz,3H).
步骤2:化合物WX021-3的合成
室温和氮气保护下,将化合物WX021-2(37g,131.51mmol)溶于乙醇(400mL)中,加入钯碳(3.8g,纯度:10%),氢气置换三次,反应混合物在室温下25psi搅拌反应12小时。反应完毕后,过滤,滤饼用乙酸乙酯(700mL)淋洗,滤液减压浓缩得到化合物WX021-3。MS-ESI m/z:228.2[M+H-56] +. 1H NMR(400MHz,CDCl 3)δ:4.11(q,J=7.0Hz,2H),3.93(s,2H),3.80(s,2H),2.60-2.45(m,1H),2.40-2.29(m,4H),1.91-1.82(m,2H),1.43(s,9H),1.24(t,J=7.0Hz,3H).
步骤3:化合物WX021-4的合成
室温和氮气保护下,将硼氢化锂(2.59g,118.90mmol)溶于四氢呋喃(100mL)中,加入化合物WX021-3(10g,35.29mmol)的四氢呋喃(20mL)溶液,反应混合物升温至30℃,缓慢滴加甲醇(20mL),滴加完毕后,反应混合物继续搅拌反应12小时。反应完毕后,将反应液倒入水(300mL)中,用乙酸乙酯(3×300mL)萃取,有机相用饱和食盐水(400mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物WX021-4。 1H NMR(400MHz,CDCl 3)δ:3.92(s,2H),3.80(s,2H),3.57(t,J=6.6Hz,2H),2.33-2.18(m,3H),1.84-1.75(m,2H),1.63(q,J=6.8Hz,2H),1.43(s,9H).
步骤4:化合物WX021-5的合成
室温和氮气保护下,将化合物WX021-4(5.3g,21.96mmol)溶于二氯甲烷(70mL)中,加入戴斯-马丁过碘烷(12.11g,28.55mmol),反应混合物搅拌反应1.5小时。反应完毕后,反应液减压浓缩。残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-4/1,体积比),得到化合物WX021-5。 1H NMR(400MHz,CDCl 3)δ:9.69(s,1H),3.95(s,2H),3.81(s,2H),2.67-2.51(m,3H),2.45-2.32(m,2H),1.92-1.81(m,2H),1.42(s,9H).
步骤5:化合物WX021-6的合成
室温和氮气保护下,将化合物WX021-5(0.5g,2.09mmol)和化合物BB-14的盐酸盐(0.6g,1.81mmol)溶于四氢呋喃(15mL)中,加入醋酸钾(709.99mg,7.23mmol)和醋酸(217.22mg,3.62mmol),反应混合物搅拌2小时,加入三乙酰氧基硼氢化钠(1.53g,7.23mmol),继续搅拌1小时。反应完毕后,向反应液中加入水(20mL),用乙酸乙酯(20mL×4)萃取。合并有机相,用饱和食盐水(80mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=2/1-1/1, 体积比),得到化合物WX021-6。MS-ESI m/z:419.2[M+H-100] +. 1H NMR(400MHz,CDCl 3)δ:8.18(s,1H),7.80(d,J=3.2Hz,1H),7.77(d,J=3.6Hz,1H),7.61(d,J=9.2Hz,1H),7.03(dd,J=2.4Hz,8.8Hz,1H),7.00(d,J=2.4Hz,1H),4.69(dd,J=5.2Hz,8.0Hz,1H),3.95(s,2H),3.83(s,2H),3.16(t,J=7.0Hz,2H),2.94-2.84(m,1H),2.80-2.63(m,2H),2.58-2.48(m,1H),2.40-2.25(m,3H),1.91-1.83(m,2H),1.77(q,J=7.0Hz,2H),1.44(s,9H).
步骤6:化合物WX021-7的三氟乙酸盐的合成
室温和氮气保护下,将化合物WX021-6(0.18g,347.09μmol)溶于二氯甲烷(6mL)中,加入三氟乙酸(893.20mg,7.83mmol,0.58mL),反应混合物在室温下搅拌反应3小时。反应完毕后,将反应液减压浓缩除去溶剂,得到化合物WX021-7的三氟乙酸盐。MS-ESI m/z:419.1[M+H] +.
步骤7:化合物WX021的合成
室温和氮气保护下,将化合物BB-17(0.1g,165.72μmol)和化合物WX021-7的三氟乙酸盐(125mg,174.84μmol)溶于乙腈(3mL)中,加入N,N-二异丙基乙胺(257.01mg,1.99mmol,346.38μL),反应混合物升温至90℃,搅拌反应30小时。反应完毕后,将反应液减压浓缩除去溶剂。所得残余物先经过制备HPLC分离(色谱柱:Waters Xbridge BEH C18 100*30mm*10μm;流动相:水(10mM碳酸氢铵)-乙腈;乙腈%:50%-70%,8min),然后再经过薄层层析板分离(展开剂:二氯甲烷/甲醇=5/1,体积比),得到目标化合物WX021。MS-ESI m/z:894.4[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:12.54(s,1H),11.11(s,1H),9.06(s,1H),8.46(d,J=7.6Hz,1H),8.38(t,J=7.8Hz,1H),8.19(d,J=8.0Hz,1H),7.94-7.86(m,3H),7.71(d,J=9.2Hz,1H),7.12(dd,J=2.2Hz,9.0Hz,1H),6.99(d,J=2.4Hz,1H),6.08(s,1H),5.92(t,J=5.4Hz,1H),4.93(dd,J=4.8Hz,11.2Hz,1H),3.31-3.21(m,4H),3.07-3.00(m,3H),2.87-2.78(m,1H),2.69-2.52(m,3H),2.42-2.18(m,5H),2.16-2.11(m,2H),1.88-1.81(m,3H),1.73-1.66(m,2H),1.63(s,6H),1.59-1.41(m,3H),1.29-1.20(m,1H),1.18-1.03(m,2H).
实施例23
Figure PCTCN2022120267-appb-000131
合成路线:
Figure PCTCN2022120267-appb-000132
步骤1:化合物WX023-1的合成
室温和氮气保护下,将化合物WX018-5(600mg,2.15mmol)溶于N,N-二甲基甲酰胺(6mL)中,加入N,N-二异丙基乙胺(1.11g,8.59mmol,1.50mL)和2-(7-氮杂苯并三氮唑)-N,N,N,N-四甲基脲六氟磷酸酯(1.09g,2.86mmol),反应混合物搅拌0.5小时,加入化合物BB-18的盐酸盐(403.46mg,1.43mmol),继续搅拌12小时。反应完毕后,向反应溶液中加入乙酸乙酯(30mL)和10%食盐水(15mL),分离有机相,水相用乙酸乙酯(20mL)萃取,合并有机相,用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到粗品。粗品通过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-0/1,体积比),得化合物WX023-1。MS-ESI m/z:451.2[M+H-56] +. 1H NMR(400MHz,DMSO_d 6)δ:11.13(s,1H),10.99(s,1H),7.80(d,J=7.6Hz,1H),7.62(d,J=7.6Hz,1H),7.42(t,J=7.8Hz,1H),4.65(dd,J=5.2Hz,12.0Hz,1H),4.13-4.02(m,2H),2.84-2.75(m,3H),2.68-2.54(m,2H),2.28-2.18(m,1H),1.89-1.75(m,2H),1.41(s,9H),1.38-1.22(m,3H).
步骤2:化合物WX023-2三氟乙酸盐的合成
室温和氮气保护下,将化合物WX023-1(600mg,1.18mmol)溶于二氯甲烷(5mL)中,加入三氟乙酸(1.85g,16.21mmol,1.20mL),反应混合物在室温下搅拌反应2小时。反应完毕后,将反应液减压浓缩得到化合物WX023-2的三氟乙酸盐。MS-ESI m/z:407.1[M+H] +.
步骤3:化合物WX023的甲酸盐的合成
室温和氮气保护下,将化合物BB-17(150mg,248.58μmol)加入到乙腈(2mL)中,加入N,N-二异丙基乙胺(149.01mg,1.15mmol),搅拌反应10分钟,加入化合物WX023-2的三氟乙酸盐(200mg,384.32μmol),反应混合物升温至85℃,搅拌反应6小时。反应完毕后,将反应液减压浓缩得到粗品。粗品经制 备HPLC分离(色谱柱:Phenomenex Luna C18 75*30mm*3μm;流动相:水(0.2%甲酸)-乙腈;乙腈%:20%-50%,8min),得到目标化合物WX023的甲酸盐。MS-ESI m/z:882.9[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:12.56(s,1H),11.13(s,1H),11.00(s,1H),9.08(s,1H),8.47(d,J=8.0Hz,1H),8.39(t,J=7.8Hz,1H),8.19(d,J=8.0Hz,1H),8.14(s,1H),7.90(s,1H),7.80(d,J=8.0Hz,1H),7.63(d,J=7.6Hz,1H),7.42(t,J=7.8Hz,1H),6.08(s,1H),4.65(dd,J=5.2Hz,12.0Hz,1H),3.19-3.00(m,3H),2.87-2.72(m,1H),2.68-2.53(m,2H),2.41-2.28(m,3H),2.27-2.07(m,5H),1.93(d,J=11.6Hz,2H),1.84(d,J=11.6Hz,2H),1.76-1.51(m,11H),1.18-1.03(m,2H).
实施例24
Figure PCTCN2022120267-appb-000133
合成路线:
Figure PCTCN2022120267-appb-000134
步骤1:化合物WX024-1的合成
室温和氮气保护下,将化合物BB-2-7(2g,3.41mmol)溶于二氯甲烷(40mL)中,加入三苯基膦(1.07g,4.09mmol)和咪唑(348.15mg,5.11mmol),冰浴冷却至0℃,加入单质碘(1.12g,4.43mmol),反应混合物在室温下搅拌反应12小时。反应完毕后,将反应液倒入饱和亚硫酸钠水溶液(50mL)中,用二氯甲烷(80mL×3)萃取,合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去残余溶剂。所得残余物经过柱层析(洗脱剂:石油醚/乙酸乙酯=5/1-3/1,体积比),得到化合物WX024-1。MS-ESI m/z:697.0[M+H] +. 1H NMR(400MHz,CDCl 3)δ:9.07(s,1H),8.52(d,J=4.8Hz,1H),8.37(s,1H),8.33(s,1H),8.32(s,1H),7.64(dd,J=1.2Hz,5.2Hz,1H),6.83(t,J=54.8Hz,1H),4.16-4.03(m,1H),3.95(d,J=7.2Hz,2H),3.17(d,J=6.0Hz,2H),2.28-2.18(m,2H),2.15-2.07(m,2H),1.93-1.80(m,2H),1.60-1.54(m,10H),1.32-1.17(m,3H),0.48-0.40(m,2H),0.31-0.25(m,2H).
步骤2:化合物WX024-2的合成
室温和氮气保护下,将化合物WX024-1(196.30mg,281.83μmol)加入到乙腈(2mL)中,加入N,N-二异丙基乙胺(218.54mg,1.69mmol),搅拌反应10分钟,然后加入化合物WX023-2的三氟乙酸盐(220mg,422.75μmol),反应混合物升温至85℃,搅拌反应6小时。反应完毕后,将反应液冷却至室温,加入乙 酸乙酯(20mL)和水(10mL),分离有机相,水相用乙酸乙酯(15mL×2)萃取,合并有机相,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物WX024-2。MS-ESI m/z:975.3[M+H] +.
步骤3:化合物WX024的甲酸盐的合成
室温和氮气保护下,将化合物WX024-2(270mg,276.92μmol)溶于二氯甲烷(5mL)中,加入三氟乙酸(770.00mg,6.75mmol,0.5mL),搅拌反应5小时。反应完毕后,将反应液减压浓缩得到粗品。粗品经制备HPLC分离(色谱柱:Phenomenex Luna C18 75*30mm*3μm;流动相:水(0.2%甲酸)-乙腈;乙腈%:1%-30%,8min),得到目标化合物WX024的甲酸盐。MS-ESI m/z:875.5[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.12(s,1H),10.97(s,1H),9.69(s,1H),8.92(s,1H),8.20-8.12(m,2H),7.79(d,J=8.0Hz,1H),7.61(d,J=7.6Hz,1H),7.41(t,J=7.8Hz,1H),7.32-6.99(m,4H),4.64(dd,J=4.8Hz,12.0Hz,1H),4.27-4.14(m,1H),3.18(t,J=6.2Hz,2H),3.01(d,J=10.8Hz,2H),2.86-2.73(m,1H),2.66-2.52(m,2H),2.36-2.14(m,4H),2.10-1.87(m,6H),1.85-1.70(m,4H),1.68-1.49(m,3H),1.15-0.99(m,3H),0.50-0.42(m,2H),0.26-0.18(m,2H).
实施例25
Figure PCTCN2022120267-appb-000135
合成路线:
Figure PCTCN2022120267-appb-000136
步骤1:化合物WX025-2的盐酸盐的合成
室温和氮气保护下,将化合物WX025-1(700mg,2.03mmol)加入到盐酸的乙酸乙酯溶液(4M,10mL)中,搅拌反应1小时。反应完毕后,将反应液减压浓缩得到化合物WX025-2的盐酸盐。MS-ESI m/z:246.2[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.04(s,1H),7.47(d,J=8.4Hz,1H),6.77(s,1H),6.72(dd,J=1.4Hz,8.6Hz,1H),4.41(dd,J=5.0Hz,11.4Hz,1H),2.79-2.68(m,1H),2.62-2.54(m,1H),2.47-2.35(m,1H),2.21-2.10(m,1H).
步骤2:化合物WX025-3的合成
室温和氮气保护下,将化合物WX001-1(728.45mg,2.98mmol)溶于N,N-二甲基甲酰胺(15mL)中,然后加入2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(1.89g,4.97mmol)和N,N-二异丙基乙胺(1.93g,14.91mmol,2.60mL),搅拌反应30分钟,然后加入化合物WX025-2的盐酸盐(0.7g,2.48mmol),继续搅拌反应4.5小时。反应完毕后,向反应液中加入水(10mL)和乙酸乙酯(30mL),室温下搅拌15分钟,过滤,收集滤饼;滤液用乙酸乙酯(30mL×3)萃取,合并有机相,用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到粗品。粗品经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0-0/1,体积比),所得粗品加入乙酸乙酯(10mL),室温下搅拌1小时,过滤,收集滤饼,真空干燥,得到化合物WX025-3。MS-ESI m/z:472.3[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.09(s,1H),10.26(s,1H),8.23(s,1H),7.77(d,J=8.4Hz,1H),7.51(d,J=8.8Hz,1H),4.55(dd,J=4.6Hz,11.8Hz,1H),3.43-3.35(m,4H),3.24(s,2H),2.82-2.71(m,1H),2.64-2.56(m,1H),2.49-2.42(m,5H),2.27-2.12(m,1H),1.40(s,9H).
步骤3:化合物WX025-4的三氟乙酸盐的合成
室温和氮气保护下,将化合物WX025-3(400mg,848.35μmol)溶于二氯甲烷(4mL)中,加入三氟乙酸(1.23g,10.80mmol,0.8mL),反应混合物搅拌反应1小时。反应完毕后,将反应液减压浓缩,得到化合物WX025-4的三氟乙酸盐。MS-ESI m/z:372.3[M+H] +.
步骤4:化合物WX025-5的合成
室温和氮气保护下,将化合物WX025-4的三氟乙酸盐(252.98mg,521.16μmol)加入乙腈(7mL)中,加入N,N-二异丙基乙胺(367.39mg,2.84mmol),反应混合物搅拌10分钟,然后加入化合物WX024-1(330mg,473.78μmol),反应混合物升温至85℃,搅拌反应6小时。反应完毕后,将反应液冷却至室温,然后倒入饱和氯化铵水溶液(10mL)中,用乙酸乙酯(10mL×3)萃取。合并有机相,用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到粗品。粗品经柱层析(洗脱剂:石油醚/乙酸乙酯=1/0–5/1,体积比),得到化合物WX025-5。MS-ESI m/z:940.6[M+H] +.
步骤5:化合物WX025的盐酸盐的合成
室温和氮气保护下,将化合物WX025-5(300mg,319.15μmol)溶于乙酸乙酯(1mL)中,然后加入盐酸的乙酸乙酯溶液(4M,3.00mL),反应混合物搅拌反应2小时。反应完毕后,将反应溶液过滤,用乙酸乙酯(2mL×2)淋洗,收集滤饼得到粗品。向粗品中加入乙腈(1mL)和水(1mL)的混合溶液,室温下搅拌0.5小时,过滤,收集滤饼,真空干燥,得到目标化合物WX025的盐酸盐。MS-ESI m/z:840.5[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:11.11(s,1H),9.91(s,1H),9.13(s,1H),8.23(d,J=1.2Hz,1H),8.20(s,1H),8.09(d,J=6.8Hz,1H),7.82(d,J=8.4Hz,1H),7.64(s,1H),7.51(dd,J=1.2Hz,8.8Hz,1H),7.36-7.05(m,2H),4.58(dd,J=4.8Hz,12.0Hz,1H),4.34-4.22(m,1H),3.99-3.84(m,2H),3.78-3.70(m 2H),3.47-3.37(m,4H),3.36-3.28(m,4H),3.12-2.98(m,2H),2.87-2.73(m,1H),2.66-2.58(m,1H),2.26-2.17(m,1H),2.13-2.01(m,4H),1.98-1.88(m,1H),1.87-1.75(m,2H),1.32-1.09(m,3H),0.61-0.54(m,2H),0.37-0.31(m,2H).
实施例26
Figure PCTCN2022120267-appb-000137
合成路线:
Figure PCTCN2022120267-appb-000138
化合物WX026的甲酸盐的合成
室温和氮气保护下,将化合物WX025-4的三氟乙酸盐(125.49mg,258.52μmol)加入到乙腈(2mL)中,加入N,N-二异丙基乙胺(133.64mg,1.03mmol),搅拌反应10分钟,加入化合物BB-17(104.00mg,172.35μmol),反应混合物升温至85℃,搅拌反应6小时。反应完毕后,将反应溶液减压浓缩得到粗品。粗品经制备HPLC分离(色谱柱:Phenomenex Luna C18 75*30mm*3μm;流动相:水(0.2%甲酸)-乙腈;乙腈%:30%-70%,8min),得到目标化合物WX026的甲酸盐。MS-ESI m/z:847.0[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:12.55(s,1H),11.09(s,1H),10.16(s,1H),9.07(s,1H),8.47(d,J=7.6Hz,1H),8.39(t,J=7.8Hz,1H),8.23(s,1H),8.19(dd,J=0.6Hz,7.8Hz,1H),7.90(s,1H),7.78(d,J=8.8Hz,1H),7.49(dd,J=1.4Hz,8.6Hz,1H),6.08(s,1H),4.55(dd,J=5.0Hz,11.8Hz,1H),3.30(s,2H),3.22(s,2H),3.11-3.01(m,1H),2.82-2.72(m,1H),2.66-2.55(m,5H),2.47-2.41(m,2H),2.28-2.13(m,5H),1.98-1.87(m,2H),1.72-1.50(m,10H),1.17-1.00(m,2H).
实施例28
Figure PCTCN2022120267-appb-000139
合成路线:
Figure PCTCN2022120267-appb-000140
步骤1:化合物WX028-1的合成
室温和氮气保护下,将化合物WX001-1(9.7g,39.69mmol)溶于N,N-二甲基甲酰胺(50mL)中,随后依次加入N,N-二异丙基乙胺(8.55g,66.15mmol)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(16.35g,43.00mmol),反应混合物在室温下搅拌反应0.5小时,然后再加入化合物BB-18-1(5g,33.08mmol),反应混合物在室温下继续搅拌反应2小时。反应完毕后,加入水(200mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂。所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=2/1,体积比),得到化合物WX028-1。MS-ESI m/z:378.3[M+H] +.
步骤2:化合物WX028-2的合成
室温和氮气保护下,将化合物WX028-1(4g,10.60mmol)和碳酸二甲酯(3.82g,42.39mmol,3.57mL)溶于四氢呋喃(50mL)中,加入叔丁醇钾(7.14g,63.59mmol),反应混合物升温至90℃,搅拌反应4小时。反应完毕后,减压浓缩除去溶剂,加入冰水(50mL)溶解,用甲基叔丁基醚(50mL×2)萃取,收集水相,用6M盐酸调节pH=7,水相减压浓缩得到化合物WX028-2。MS-ESI m/z:404.2[M+H] +. 1H NMR(400MHz,D 2O)δ:7.78(d,J=7.6Hz,1H),7.60(d,J=7.6Hz,1H),7.19(t,J=7.8Hz,1H),5.17(s,1H),3.58-3.45(m,4H),3.27(s,2H),2.62-2.50(m,4H),1.42(s,9H).
步骤3:化合物WX028-3的合成
室温下,将化合物WX028-2(4.2g,10.41mmol)溶于乙醇(80mL)中,加入乙酸钠(3.42g,41.64mmol)和盐酸羟胺(2.53g,36.44mmol),反应混合物升温至80℃,搅拌反应5小时。反应完毕后,反应液冷却至室温,过滤,滤饼用二氯甲烷(50mL×2)淋洗,滤液浓缩除去大部分溶剂,加入水(100mL),用二氯甲烷(50mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物WX028-3。MS-ESI m/z:419.1[M+H] +.
步骤4:化合物WX028-4的合成
30℃下,将化合物WX028-3(2.5g,5.97mmol)溶于二氯甲烷(40mL)中,加入4-二甲氨基吡啶(1.09g,8.96mmol)和碳酸二叔丁酯(2g,9.16mmol,2.11mL),反应混合物在30℃下搅拌反应1.5小时后,加入无水乙醇(2.75g,59.75mmol),继续反应1小时。反应完毕后,倒入水(50mL)中,分液,水相再次用二氯甲烷(30mL)萃取,合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩得到粗品。所得粗品经柱层析(洗脱剂:乙酸乙酯/石油醚=1/5)分离纯化,得到化合物WX028-4。MS-ESI m/z:447.3[M+H] +. 1H NMR(400MHz,CDCl 3)δ:9.79(s,1H),8.46(d,J=7.6Hz,1H),7.41(d,J=7.6Hz,1H),7.32(t,J=8.0Hz,1H),4.22(q,J=7.0Hz,2H),4.04(s,2H),3.63-3.54(m,4H),3.26(s,2H),2.69-2.58(m,4H),1.48(s,9H),1.26(t,J=7.2Hz,3H).
步骤5:化合物WX028-5的合成
室温和氮气保护下,将化合物WX028-4(0.92g,2.06mmol)和丙烯酰胺(175.75mg,2.47mmol)溶于四氢呋喃(20mL)中,冷却至0℃,滴加叔丁醇钾的四氢呋喃溶液(1M,3.09mL),反应混合物在0℃下搅拌反应1.5小时。反应完毕后,向反应液中加入0.05M盐酸(70mL),用乙酸乙酯(40mL×2)萃取,合并有机相。用饱和食盐水(40mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到粗品。所得粗品经柱层析纯化(洗脱剂:石油醚/乙酸乙酯=5/1-1/1),得到化合物WX028-5。MS-ESI m/z:472.2[M+H] +. 1H NMR(400MHz,CDCl 3)δ:9.83(s,1H),8.49(d,J=6.4Hz,1H),8.10(s,1H),7.42(d,J=7.6Hz,1H),7.35(t,J=7.8Hz,1H),4.34(dd,J=5.0Hz,9.0Hz,1H),3.66-3.52(m,4H),3.27(s,2H),3.06-2.95(m,1H),2.83-2.73(m,1H),2.71-2.56(m,5H),2.53-2.43(m,1H),1.49(s,9H).
步骤6:化合物WX028-6的三氟乙酸盐的合成
室温下,将化合物WX028-5(3g,6.36mmol)溶于二氯甲烷(40mL)中,滴加三氟乙酸(9.24g,81.04mmol),反应混合物室温下搅拌4小时。反应完成后,减压浓缩除去溶剂得到化合物WX028-6的三氟乙酸盐。MS-ESI m/z:372.0[M+H] +.
步骤7:化合物WX028-7的合成
室温和氮气保护下,将化合物WX024-1(0.2g,287.14μmol)溶于乙腈(4mL)中,加入化合物WX028-6的三氟乙酸盐(225.35mg,315.85μmol)和N,N–二异丙基乙胺(259.78mg,2.01mmol),反应混合物升温至90℃,搅拌反应12小时。反应完毕后,将反应液冷却至室温,倒入水(30mL)中,用乙酸乙酯(50mL×3)萃取,有机相用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去残余溶剂。向所得残余物中加入甲基叔丁基醚(3mL),室温下搅拌0.5小时,过滤,用甲基叔丁基醚(3mL×2)淋洗滤饼,收集滤饼,真空干燥得到化合物WX028-7。MS-ESI m/z:940.5[M+H] +
步骤8:化合物WX028的盐酸盐的合成
室温下,将化合物WX028-7(0.21g,223.40μmol)溶于乙酸乙酯(2mL)中,加入盐酸/乙酸乙酯(5mL,4M),室温下搅拌反应1小时。反应完毕后,过滤,用乙酸乙酯(3mL×3)淋洗滤饼,收集滤饼。滤饼经制备HPLC分离(色谱柱:Phenomenex Luna 80*30mm*3μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:1%-30%,8min),得到目标化合物WX028的盐酸盐。MS-ESI m/z:840.4[M+H] +. 1H NMR(400MHz,MeOD_d 4)δ:8.80(s,1H),8.26(s,1H),8.13(d,J=7.6Hz,1H),7.97(d,J=7.2Hz,1H),7.71(d,J=0.8Hz,1H),7.63(d,J=8.0Hz,1H),7.45(dd,J=1.4Hz,7.0Hz,1H),7.39(t,J=7.8Hz,1H),6.93(t,J=54.4Hz,1H),4.56(dd,J=5.0,11.0Hz,1H),4.32-4.20(m,1H),4.09-3.97(m,2H),3.87-3.41(m,8H),3.29(s,2H),3.25-3.16(m,2H),2.86-2.77(m,2H),2.65-2.50(m,1H),2.43-2.34(m,1H),2.23(d,J=12.0Hz,2H),2.11(d,J=13.2Hz,2H),2.06-1.88(m,3H),1.45–1.30(m,2H),1.28-1.14(m,1H),0.77-0.64(m,2H),0.46-0.35(m,2H).
实施例29
Figure PCTCN2022120267-appb-000141
合成路线:
Figure PCTCN2022120267-appb-000142
步骤1:化合物WX029的甲酸盐的合成
室温和氮气保护下,将化合物WX028-6的三氟乙酸盐(170mg,238.28μmol)溶于乙腈(2mL)中,随后加入N,N-二异丙基乙胺(153.97mg,1.19mmol,207.51μL)和化合物BB-17(143.78mg,238.28μmol),反应混合物升温至90℃,搅拌反应12小时。反应完毕后,反应液减压浓缩除去溶剂,残余物经制备HPLC分离(色谱柱:Phenomenex Luna C18 75*30mm*3μm;流动相:水(0.2%甲酸)-乙腈;乙腈%:20%-50%,8min),得到化合物WX029的甲酸盐。MS-ESI m/z:847.3[M+H] +. 1H NMR(400MHz,DMSO_d 6)δ:12.55(s,1H),11.12(s,1H),10.02(s,1H),9.07(s,1H),8.46(J=7.6Hz,1H),8.38(t,J=8.0Hz,1H),8.18(dd,J=0.6,7.8Hz,1H),8.15(s,1H),8.10(d,J=7.6Hz,1H),7.89(s,1H),7.59(dd,J=0.8Hz,8.0Hz,1H),7.36(t,J=7.8Hz,1H),6.07(s,1H),4.63(dd,J=4.8Hz,12.0Hz,1H),3.25(s,2H),3.11-2.99(m,1H),2.85-2.72(m,1H),2.70-2.51(m,8H),2.48–2.43(m,2H),2.28–2.13(m,5H),1.93(d,J=11.2Hz,2H),1.71-1.52(m,9H),1.17-0.99(m,2H).
实施例30和实施例31
Figure PCTCN2022120267-appb-000143
合成路线:
Figure PCTCN2022120267-appb-000144
化合物WX030的盐酸盐或WX031的盐酸盐的合成
化合物WX014的盐酸盐(480mg,518.13μmol)经过超临界流体色谱(分离条件,色谱柱:REGIS(S,S)WHELK-O1(250mm*25mm,10μm);流动相:A:CO 2;B:EtOH/ACN(0.1%IPAm,v/v);B%:65%-65%,15min)分离,收集保留时间为1.576min的样品,再经制备HPLC分离(色谱柱:Phenomenex Luna 80*30mm*3μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:1%-30%,8min),得到目标化合物WX030的盐酸盐(ee%:99.12%)。收集保留时间为2.770min的样品,再经制备HPLC分离(色谱柱:Phenomenex Luna 80*30mm*3μm;流动相:水(0.04%盐酸)-乙腈;乙腈%:1%-30%,8min),得到目标化合物WX031的盐酸盐(ee%:96.36%)。以上保留时间对应的SFC分析方法:色谱柱:(S,S)-WHELK-O1,50×4.6mm I.D.,3.5μm;流动相:A:CO2;B:EtOH:ACN=1:1(0.1%IPAm,v/v),4min。
化合物WX030的盐酸盐: 1H NMR(400MHz,MeOD_d 4)δ:11.15(s,1H),10.62(s,1H),9.88(s,1H),9.11(s,1H),8.34(d,J=9.2Hz,1H),8.20(s,1H),8.18-8.12(m,1H),8.08(d,J=6.4Hz,1H),8.00(d,J=9.6Hz,1H),7.80-7.70(m,2H),7.66-7.54(m,1H),7.36-7.03(m,2H),5.10(dd,J=4.8Hz,11.2Hz,1H),4.38-4.20(m,2H),4.18-3.27(m,12H),3.18-2.98(m,2H),2.93-2.80(m,1H),2.72-2.54(m,2H),2.45-2.35(m,1H),2.17-1.99(m,4H),1.97-1.66(m,3H),1.33-1.06(m,3H),0.63-0.48(m,2H),0.38-0.27(m,2H).
化合物WX031的盐酸盐: 1H NMR(400MHz,MeOD_d 4)δ:11.15(s,1H),10.44(s,1H),9.86(s,1H),9.09(s,1H),8.31(d,J=9.2Hz,1H),8.20(s,1H),8.18-8.12(m,1H),8.09(d,J=6.4Hz,1H),8.00(d,J=9.2Hz,1H),7.79-7.69(m,2H),7.61-7.47(m,1H),7.34-7.02(m,2H),5.10(dd,J=4.8Hz,11.2Hz,1H),4.40-4.21(m,2H),4.18-3.27(m,12H),3.15-2.95(m,2H),2.94-2.79(m,1H),2.71-2.58(m,2H),2.45-2.35(m,1H),2.13-1.62(m,7H),1.32-1.06(m,3H),0.61-0.50(m,2H),0.38-0.24(m,2H).
生物测试
实验例1:在细胞K562 IRAK4-HiBiT中的靶蛋白降解作用评估
实验目的:本实验通过检测受试化合物在细胞K562 IRAK4-HiBiT中对靶蛋白IRAK4的降解作用。
实验材料:
1.细胞和培养基
细胞:K562 IRAK4-HiBiT cells
培养基:RPMI 1640+10%胎牛血清+2mM谷氨酰胺+1mM丙酮酸钠+青霉素/链霉素
阳性对照:1000nM;阴性对照:0.1%DMSO
表1试剂与耗材
Figure PCTCN2022120267-appb-000145
Figure PCTCN2022120267-appb-000146
表2仪器
仪器名称 生产商 仪器型号
ECHO移液器 Labcyte Echo 550
Bravo自动液体工作站 Agilent 16050-101
Envision读板器 Perkin Elmer 2104
自动加样器 Thermofisher Multidrop Combi
细胞计数器 Thermo Countess II FL
实验方案:
第1天
1.化合物的准备
(1).将待测化合物的粉末用DMSO溶解到10mM作为储存浓度,用移液器手动吸取9μL 10mM的待测化合物,至LDV板的第1列和第13列;
(2).用multidrop Combi加6μL DMSO至第2-12列以及14-24列;
(3).用Bravo将待测化合物进行3倍稀释化(3μL+6μL),从第1-11列及第13-23列;
(4).按照板布局,用Echo将25nL化合物溶液(LDV板第1-24列)转移到实验板;
(5).用Echo将25nL的1mM阳性对照的溶液转移到测定板中作为100%降解对照(即LC,HPE),25nLDMSO转移到测定板作为0%对照(即HC,ZPE)。
2.细胞铺板
(1).弃去细胞培养基,DPBS清洗一次,胰酶消化细胞,细胞计数,制备细胞悬液2×10 -5cells/mL;
(2).用MultiDrop Combi中速加入25μL/孔的细胞悬液至含有待测化合物的实验板;
(3).将含有细胞的实验板放回培养箱中37℃、5%CO 2培养16~18小时。
第2天
(1).用MultiDrop Combi高速往实验板中加入25μL/孔检测试剂(NanoGlo裂解溶液+底物+LgBit蛋白)至测定板,震荡10min;
(2).离心2000rpm×1min除去气泡;
(3).Envision,US Luminescence检测方法读板。
3.数据分析
用下列公式来计算检测化合物的降解率(Degradation rate,DR):DR(%)=(RLU溶媒对照-RLU化合物)/(RLU溶媒对照-RLU阳性对照)*100%,溶媒对照即空白对照.在Excel中计算不同浓度化合物的降解率,然后用XLFit软件作抑制曲线图和计算相关参数,包括最小降解率,最大降解率及DC 50
测试结果见表3。
表3本发明化合物在细胞K562IRAK4-HiBiT中的靶蛋白降解作用
化合物编号 DC 50(nM) 最大降解率(%)
WX001的盐酸盐 76.43 54.34
WX002的盐酸盐 13.54 100.04
WX013的盐酸盐 48.70 101.24
WX014的盐酸盐 4.87 108.46
WX010的三氟乙酸盐 50.24 81.68
WX011的三氟乙酸盐 9.60 104.57
WX007 35.09 97.41
WX008的盐酸盐 121.69 82.20
WX015的盐酸盐 47.08 100.00
WX016的盐酸盐 70.73 93.12
WX017的甲酸盐 4.00 73.88
WX018的盐酸盐 7.91 119.43
WX019的甲酸盐 15.08 92.05
WX020的甲酸盐 29.86 75.09
WX023的甲酸盐 7.16 114.38
WX024的甲酸盐 1.75 117.09
WX025的盐酸盐 2.53 105.26
WX026的甲酸盐 0.78 80.30
WX028的盐酸盐 2.11 1113.90
WX029的甲酸盐 4.26 111.86
WX030的盐酸盐 4.18 110.35
WX031的盐酸盐 2.91 107.77
结论:本发明化合物在细胞K562 IRAK4-HiBiT中展现出优异的靶蛋白降解作用。
实验例2:In Cell Western分析MM.1S细胞中IKZF1和IKZF3蛋白的表达水平
实验目的:本实验通过检测受试化合物对MM.1S细胞中IKZF1和IKZF3蛋白表达水平的影响,评估受试化合物对MM.1S细胞中IKZF1和IKZF3蛋白的降解作用。
实验材料:
细胞系:MM.1S cell(来源于ATCC;货号CRL-2974)
阴性对照:0.1%DMSO
表4试剂与耗材
试剂与耗材 供应商 货号
96孔黑色底透酶标板 晶安生物 J09603
D-PBS缓冲液 Bioleaper P220610030051
组织固定液 Meilumbio MA0192-Jan-28G
TritonX-100 Solution(10%sterile) Beyotime ST797-500ML
Intercept Blocking Buffer LI-COR 211114
Ikaros(D6N9Y)Rabbit mAb Cell Signaling 14859S
Aiolos(D1C1E)Rabbit mAb Cell Signaling 15103S
GAPDH mouse mAb proteintech 60004-1-Ig
吐温20 国药集团化学试剂有限公司 30189328
IRDye 800CW Goat anti-mouse LI-COR D00812-08
IRDye 680RD Goat anti-Rabbit LI-COR D00891-05
表5仪器
仪器名称 供应商 仪器型号
双色红外激光成像仪 LI-COR Odyssey-CLx
脱色摇床 QILNBEIER TS-1000
冰箱 海尔集团 BCD-256KT
实验方案:
1)取对数生长期的MM.1S细胞铺96孔板,每孔1.2×10 5,过夜培养;
2)第二天加药处理,起始浓度300nM,三倍稀释,三复孔,10个浓度梯度(含DMSO),培养箱孵育24h;
3)离心,小心去除细胞上清,沿着孔壁加入150μL的4%多聚甲醛固定液,不要碰到底部细胞,室温孵育20min;
4)配置破膜液:取0.5mL的10%Triton X-100加入49.5mL的PBS,混匀;
5)沿着孔壁加入200μL的破膜液,不要碰到底部细胞,室温,摇床上,孵育5min;
6)重复洗涤4次;
7)沿着孔壁加入150μL的Licor INERCEPT封闭液(intertent Blacking buffer),不要碰到底部细胞,室温,摇床上孵育1.5h;
8)Ikaros(D6N9Y)Rabbit mAb、Aiolos(D1C1E)Rabbit mAb和GAPDH mouse mAb(proteintech,60004-1-Ig)均按照1:100的比例,使用抗体稀释液稀释;
9)取50μL的混合抗体加入孔中,各3个复孔,4℃,摇床上孵育过夜:
10)配置PBST(PBS含0.1%的tween 20);
11)去掉一抗,沿着孔壁加入200μL的PBST,不要碰到底部细胞,室温,摇床上,孵育5min;
12)重复洗涤4次;
13)配置二抗稀释液:Licor INTERCEPT封闭液中加入终浓度为0.2%的tween 20;
14)避光稀释荧光二抗,(1:800稀释)取400μL的二抗稀释液,加入IRDye 800CW和IRDye 680CW各0.5μL;(一抗对应的荧光二抗)
15)每孔加入50μL的稀释好的荧光二抗,室温,摇床上,避光孵育60min;
16)去掉二抗,沿着孔壁加入200μL的PBST,不要碰到底部细胞,室温,摇床上,避光孵育5min;
17)重复洗涤4次;洗完后立马上机使用Odyssey Gel Imaging System双色波长700nm及800nm检测。
3.数据分析
运用GraphPad Prism 6软件,带入抑制率数据后拟合曲线并计算出DC 50值。
蛋白抑制率=(1-RLs/RLv)*100%
RR(Raw Ratio)=700nm/800nm
RLs=样本处理细胞的RR
RLv=溶剂处理细胞的RR
测试结果见表6。
表6本发明化合物对MM.1S细胞中IKZF1和IKZF3蛋白的降解作用
Figure PCTCN2022120267-appb-000147
结论:
本发明化合物对MM.1S细胞中IKZF1和IKZF3蛋白展现出优异的靶蛋白降解作用。
实验例3:在淋巴瘤细胞系OCI-LY10与TMD-8中的抗增殖作用评估
实验目的:本实验通过检测受试化合物分别在弥漫性大B细胞淋巴瘤细胞系OCI-LY10与TMD-8中对细胞增殖的抑制作用。
实验材料:
表7细胞系及培养方法
细胞系 肿瘤类型 生长特点 培养基
OCI-LY10 淋巴瘤 悬浮 IMDM+20%FBS+55μMβ-巯基乙醇
TMD-8 淋巴瘤 悬浮 MEM+10%FBS
表8培养基及试剂
培养基及试剂 生产商 货号
Dulbecco's PBS Hyclone SH30256.01
胎牛血清(FBS) GIBCO 10099-141
Antibiotic-antimycotic GIBCO 15240-062
0.25%Trypsin GIBCO 25200072
DMSO SIGMA D2650
β-巯基乙醇 SIGMA 60-24-2
MEM GIBCO 11095-080
IMDM GIBCO 12440-053
1.多孔板
Greiner
Figure PCTCN2022120267-appb-000148
96-孔板,平底白板(带盖及透明底),#3610。
2.细胞活性实验所用试剂及仪器
(1)Promega CellTiter-Glo发光法细胞活性检测试剂盒(Promega-G7573)。
(2)2104
Figure PCTCN2022120267-appb-000149
读板器,PerkinElmer。
实验方案:
1.细胞培养
将肿瘤细胞系按上述培养条件在37℃,5%CO 2的培养箱中进行培养。定期传代,取处于对数生长期的细胞用于铺板。
2.细胞铺板
(1).用台盼兰进行细胞染色并计数活细胞。
(2).将细胞浓度调整至合适浓度。
表9细胞系及种板密度
细胞系 种板密度(个/孔)
OCI-LY10 5000
TMD-8 5000
(3).按上图所示在培养板中每孔加入100μL细胞悬液。
(4).将培养板在37℃,5%CO 2,及100%相对湿度的培养箱中培养过夜。
3.化合物存储板制备
制备化合物起始浓度1000倍浓度的母液存储板:将化合物用DMSO从最高浓度梯度稀释至最低浓度。每次现用现配。
4. 1000倍化合物工作液的配制及化合物处理细胞
(1).化合物起始浓度5倍浓度的工作液的配制:3倍稀释化合物时,从化合物起始浓度1000倍浓度的母液中吸取30μL化合物,后面几个孔中加入20μL DMSO,依次从上一个浓度吸取10μL到下一个浓度。5倍稀释化合物时,从化合物起始浓度1000倍浓度的母液中吸取30μL化合物,后面几个孔中加入24μL DMSO,依次从上一个浓度吸取6μL到下一个浓度。在溶媒对照中加入20μL DMSO。用培养基将1000倍化合物稀释200倍,即1μL 1000倍稀释的化合物加入199μL培养基,用排枪吹打混匀。
(2).加药:取25μL 5倍的化合物加入到细胞培养板中。
(3).将96孔细胞板放回培养箱中培养OCI-LY10(3倍稀释或者5倍稀释,加药共孵育5天),TMD-8(3倍稀释或者5倍稀释,加药共孵育5天)。
5.CellTiter-Glo发光法细胞活性检测
以下步骤按照Promega CellTiter-Glo发光法细胞活性检测试剂盒(Promega-G7573)的说明书来进行。
(1).将CellTiter-Glo缓冲液融化并放置至室温。
(2).将CellTiter-Glo底物放置至室温。
(3).在一瓶CellTiter-Glo底物中加入10mL CellTiter-Glo缓冲液以溶解底物,从而配制CellTiter-Glo
工作液。
(4).缓慢涡旋震荡使充分溶解。
(5).取出细胞培养板放置30分钟使其平衡至室温。
(6).在每孔中加入60μL(等于每孔中细胞培养液一半体积)的CellTiter-Glo工作液。用铝箔纸包裹
细胞板以避光。
(7).将培养板在轨道摇床上振摇2分钟以诱导细胞裂解。
(8).培养板在室温放置10分钟以稳定发光信号。
(9).在2104 EnVision读板器上检测发光信号。
6.数据分析
用下列公式来计算检测化合物的抑制率(Inhibition rate,IR):IR(%)=(1-RLU化合物/RLU溶媒对照)*100%.在Excel中计算不同浓度化合物的抑制率,然后用GraphPad Prism软件作抑制曲线图和计算相关参数,包括最小抑制率,最大抑制率及IC 50
测试结果见表10。
表10本发明化合物在OCI-LY10与TMD-8细胞系中的细胞增殖抑制作用
Figure PCTCN2022120267-appb-000150
“/”代表未检测
结论:本发明化合物在淋巴瘤细胞系OCI-LY10与TMD-8中均展现出优异的抑制细胞增殖的作用。
实验例4:在淋巴瘤细胞系SU-DHL-2中的抗增殖作用评估
实验目的:本实验通过检测受试化合物在淋巴瘤细胞系SU-DHL-2中对细胞增殖的抑制作用。
表11细胞系及培养方法
细胞系 肿瘤类型 生长特点 培养方法
SU-DHL-2 淋巴瘤 悬浮 RPMI1640+10%FBS(EXCELL)+1%青霉素/链霉素
表12培养基及试剂
培养基及试剂 生产商 货号
RPMI 1640 GIBCO 22400-089
Dulbecco's PBS Thermo SH30028.02B
胎牛血清(FBS) Hyclone 11H233
Antibiotic-antimycotic GIBCO 15240-062
DMSO SIGMA D2650
1.多孔板
Greiner CELLSTAR 384-孔板,平底黑板(带盖),#781090。
2.细胞活性实验所用试剂及仪器
(1)Promega CellTiter–Glo发光法细胞活性检测试剂盒(Promega–G7573)。
(2)2104
Figure PCTCN2022120267-appb-000151
读板器,PerkinElmer。
实验方案:
1.细胞培养
将肿瘤细胞系按上述培养条件在37℃,5%CO 2的培养箱中进行培养。定期传代,取处于对数生长期的细胞用于铺板。
2.细胞铺板
(1).用台盼兰进行细胞染色并计数活细胞。
(2).将细胞浓度调整至合适浓度。
表13细胞系和种板密度
细胞系 种板密度(个/孔)
SU-DHL-2 1500
(3).按上图所示在培养板中每孔加入50μL细胞悬液。
(4).将培养板在37℃,5%CO 2,及100%相对湿度的培养箱中培养过夜。
3.化合物存储板制备
用Echo655仪器加药。加药体积为50nL,DMSO终浓度为0.1%,将培养板1000rpm离心1min,在37℃,5%CO 2,及100%相对湿度的培养箱中培养4天。
4.CellTiter–Glo发光法细胞活性检测
以下步骤按照Promega CellTiter-Glo发光法细胞活性检测试剂盒(Promega-G7573)的说明书来进行。
(1)将CellTiter-Glo缓冲液融化并放置至室温。
(2)将CellTiter-Glo底物放置至室温。
(3)在一瓶CellTiter-Glo底物中加入CellTiter-Glo缓冲液以溶解底物,从而配制CellTiter-Glo工作液。
(4)缓慢涡旋震荡使充分溶解。
(5)取出细胞培养板放置30分钟使其平衡至室温。
(6)在每孔中加入25μL(等于每孔中细胞培养液一半体积)的CellTiter-Glo工作液。用铝箔纸包裹 细胞板以避光。
(7)将培养板在轨道摇床上振摇2分钟以诱导细胞裂解。
(8)培养板在室温放置10分钟以稳定发光信号。
(9)在2104EnVision读板器上检测发光信号
5.数据分析
用下列公式来计算检测化合物的抑制率(Inhibition rate,IR):IR(%)=(1–(RLU化合物–RLU空白对照)/(RLU溶媒对照–RLU空白对照))*100%。在Excel中计算不同浓度化合物的抑制率,然后用GraphPad Prism软件作抑制曲线图和计算相关参数,包括最小抑制率,最大抑制率及IC 50
表14本发明化合物在SU-DHL-2细胞系中的细胞增殖抑制作用
化合物编号 SU-DHL-2IC 50(nM) 最大抑制率(%)
WX018的盐酸盐 11.74 100.27
WX004的盐酸盐 64.52 99.05
WX026的甲酸盐 0.91 100.08
WX014的盐酸盐 28.70 93.55
WX011的三氟乙酸盐 25.20 99.89
结论:
本发明化合物在淋巴瘤细胞系SU-DHL-2中展现出优异的抑制细胞增殖的作用。
实验例5:化合物的小鼠药代动力学评价
实验目的:
本研究受试动物选用C57BL/6N或CD-1雄性小鼠,应用LC/MS/MS法定量测定小鼠静脉注射或灌胃给予测试化合物不同时间点的血浆中的药物浓度,以评价本发明化合物在小鼠体内的药代动力学特征。
实验材料:
C57BL/6N小鼠(雄性,20-30g,7~10周龄,北京维通利华)或CD-1小鼠(雄性,20-35g,7~10周龄,北京维通利华)。
实验操作A:
将测试化合物的澄清或悬浮溶液经尾静脉注射到C57BL/6N小鼠或CD-1小鼠体内(过夜禁食或给食)(溶媒:10%DMSO/10%solutol/80%H 2O或5%DMSO/10%solutol/85%H 2O),或灌胃给予到C57BL/6N小鼠或CD-1小鼠体内(过夜禁食或给食)。静脉注射给药于0h(给药前)和给药后0.083,0.25,0.5,1, 2,4,6,8,24h从脸颊穿刺采血50μL,置于添加了肝素钠的抗凝管中,将混合物充分涡旋混合并在2~8℃下6000g下离心3分钟;口服灌胃给药于0h(给药前)和给药后0.083,0.25,0.5,1,2,4,6,8,24h从脸颊穿刺采血,置于添加了肝素钠的抗凝管中,将混合物充分涡旋混合并在2~8℃下6000g离心3分钟。采用LC-MS/MS法测定血药浓度,使用Phoenix WinNonlin8.2.0药动学软件,以非房室模型线性对数梯形法计算相关药代动力学参数。
实验操作B:
将测试化合物的澄清溶液经尾静脉注射到CD-1小鼠体内(过夜禁食)(溶媒:10%DMSO/10%solutol/80%H 2O或5%DMSO/10%solutol/85%H 2O),灌胃给予到CD-1小鼠体内(过夜禁食)。静脉注射给药于0h(给药前)和给药后0.083,0.25,0.5,1,2,4,8,24h从隐静脉采血,置于EDTA-K2抗凝管中,将混合物充分涡旋混合并在4℃下3200g离心10分钟得血浆;口服灌胃给药于0h(给药前)和给药后0.083,0.25,0.5,1,2,4,8,24h从隐静脉采血,置于EDTA-K2抗凝管中,将混合物充分涡旋混合并在4℃下3200g离心10分钟得血浆。采用LC-MS/MS法测定血药浓度,使用Phoenix WinNonlin 6.3药动学软件,以非房室模型线性对数梯形法计算相关药代动力学参数。
测试结果见表15。
表15本发明化合物在小鼠中的药代动力学参数
Figure PCTCN2022120267-appb-000152
Figure PCTCN2022120267-appb-000153
“/”代表未检测。
结论:本发明化合物的口服血浆系统暴露量(AUC 0-inf)较高。在啮齿动物小鼠中,其药代动力学性质较优。
实验例7:化合物的比格犬药代动力学评价
实验目的:
本研究受试动物选用雄性比格犬,应用LC/MS/MS法定量测定比格犬静脉注射或灌胃给予测试化合物不同时间点的血浆中的药物浓度,以评价本发明化合物在比格犬体内的药代动力学特征。
实验材料:
比格犬(雄性,7-10kg,北京玛斯生物技术有限公司)。
实验操作:
将测试化合物的澄清溶液经外周静脉缓慢注射到比格犬体内(给食)(溶媒:5%DMSO/10%Solutol/85%H 2O),或灌胃给予到比格犬体内(给食)。静脉注射给药于给药后0.083,0.25,0.5,1,2,4,6,8,24h从外周静脉采血0.5mL,置于EDTA-2K抗凝管中,在2-8℃下3200g离心10分钟,分离上清液;口服灌胃给药后0.083,0.25,0.5,1,2,4,6,8,24h从外周静脉采血0.5mL,置于EDTA-2K抗凝管中,在2-8℃下3200g离心10分钟,分离上清液。采用LC-MS/MS法测定血浆药物浓度,使用Phoenix WinNonlin6.3药动学软件,以非房室模型线性对数梯形法计算相关药代动力学参数。
测试结果见表16。
表16本发明化合物在比格犬中的药代动力学参数
Figure PCTCN2022120267-appb-000154
Figure PCTCN2022120267-appb-000155
结论:
本发明化合物的口服血浆系统暴露量(AUC 0-inf)较高。在非啮齿类动物比格犬中,其药代动力学性质较优。
实验例8:化合物在人B细胞淋巴瘤OCI-LY10细胞SCID小鼠异种移植瘤模型的体内药效学研究
实验目的:
本研究使用人B细胞淋巴瘤OCI-LY10细胞SCID小鼠异种移植瘤模型评价受试化合物的抗肿瘤作用。
实验材料:
1.实验动物:SCID小鼠,雌性,6–8周龄,体重17-20克。北京维通利华实验动物技术有限公司。
2.细胞株:人B细胞淋巴瘤OCI-LY10细胞株购买于南京科佰生物科技有限公司,货号为CBP60558。
表17试剂信息
名称 生产厂家 批号 保存条件
IMDM培养基 美国GIBCO公司 2323369 4℃
胎牛血清(FBS) 美国GIBCO公司 2305262RP -20℃
基质胶(Matrigel) CORNING 2062001 -20℃
表18仪器
名称 生产厂家 型号
SHJ系列洁净工作台 上海上净净化设备有限公司 CA-1390-1
CO 2隔水细胞培养箱 Thermo Scientific Forma 3111
倒置显微镜 Olympus CKX41SF
电动吸引器 上海医疗器械工业(集团)有限公司 YX930D
Eppendorf AG离心机 Eppendorf 5811XG639987
百分之一天平 上海民桥精密科学仪器有限公司 SL502N
千分之一天平 上海菁海仪器有限公司 JA2003N
电子数显卡尺 SHAHE (0~150)mm
模型建立:
OCI-LY10细胞培养于含20%FBS的IMDM培养基中,维持在5%CO 2的37℃饱和湿度培养箱中。收集对 数生长期OCI-LY10细胞,重悬于IMDM基础培养基中,1:1加入Matrigel,调整细胞浓度至4×10 7/mL。在无菌条件下,接种0.1mL细胞悬液至SCID鼠右侧背部皮下,接种浓度为4×10 6/0.1mL/小鼠。
实验方案:
药效学实验动物待肿瘤长到一定大小时,淘汰肿瘤体积过大、过小或肿瘤形状不规则的动物,挑选肿瘤体积167.65~231.29mm 3的动物,根据肿瘤体积采用随机分组法将动物分组,每组6只小鼠,肿瘤平均体积约201.15mm 3。分组当日记为Day 0,并按照动物体重开始给药。药效学实验周期为28天,每天给药一次,给药间隔24小时,灌胃给药。实验期间每周测定2次动物体重和肿瘤大小。每日观察并记录临床症状。
受试化合物的给药剂量分别为10mg/kg、30mg/kg和100mg/kg,溶媒:10%DMSO/10%Solutol/80%H 2O。肿瘤体积(tumor volume,TV)计算公式为:1/2×a×b 2,其中a、b分别为肿瘤测量的长和宽。抑瘤率TGI(%)计算公式为:TGI(%)=[1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。相对肿瘤增殖率T/C(%):计算公式如下:T/C%=T RTV/C RTV×100%(T RTV:治疗组平均RTV;C RTV:阴性对照组平均RTV)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为RTV=Vt/V 0,其中V 0是分组给药时(即Day 0)测量所得肿瘤体积,Vt为某一次测量时的肿瘤体积,T RTV与C RTV取同一天数据。
数据分析:
本研究中,实验数据均以Mean±SEM表示。
统计分析基于试验结束时RTV的数据运用IBM SPSS Statistics软件进行分析。两组间比较用T test进行分析,三组或多组间比较用one-way ANOVA进行分析,如果方差齐(F值无显著性差异),应用Tukey‘s法进行分析,如果方差不齐(F值有显著性差异),应用Games-Howell法进行检验。p<0.05认为有显著性差异。
实验结果:测试结果见表19和20。
表19本发明化合物在人B细胞淋巴瘤OCI-LY10细胞皮下异种移植瘤模型的抑瘤药效评价
Figure PCTCN2022120267-appb-000156
Figure PCTCN2022120267-appb-000157
注:a.平均值±SEM。
表20本发明化合物在人B细胞淋巴瘤OCI-LY10异种移植瘤模型各组间相对肿瘤体积比较的p值
Figure PCTCN2022120267-appb-000158
注:p值运用IBM SPSS Statistics软件进行分析。
结论:
本发明化合物在人B细胞淋巴瘤OCI-LY10细胞SCID小鼠异种移植瘤模型中具有显著的抑制肿瘤作用,并具有剂量依赖性。
实验例9:化合物对人淋巴瘤SU-DHL-2细胞皮下异种移植肿瘤CB17 SCID小鼠模型的体内药效学研究实验目的:
本研究使用SU-DHL-2皮下异种移植肿瘤CB17 SCID小鼠模型评价受试化合物的抗肿瘤作用。
实验材料:
1.实验动物:CB17 SCID小鼠,雌性,6–8周龄,体重18-22克。北京维通利华实验动物技术有限公司。
2.细胞株:人淋巴瘤SU-DHL-2细胞(货号:ATCC-CRL-2956)。
表21试剂信息
名称 生产厂家 货号 批号 有效期 保存条件
1640培养基 gibco 22400089 2462009 2023-02-28 4℃
基质胶 Corning 354234 2013002 2022-10-19 -20℃
100x双抗(青霉 meilunbio MA0110 MA0110-Apr-15H 2023-04-14 -20℃
素、链霉素)          
PBS HyClone SH30256.01 AG29791799 2023-08-31 4℃
胎牛血清 ExCell Bio FND500 11H233 2023-08 -20℃
表22仪器
Figure PCTCN2022120267-appb-000159
模型建立:
细胞培养:人淋巴瘤SU-DHL-2细胞(ATCC-CRL-2956)体外悬浮培养,培养条件为RPMI 1640培养基中加10%灭活胎牛血清,100U/mL青霉素和100μg/mL链霉素,37℃ 5%CO 2孵箱培养。一周两次进行常规处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,接种。
肿瘤细胞接种及分组:将0.2mL(10×10 6个)(PBS:matrigel=1:1)SU-DHL-2细胞皮下接种于每只小鼠的右后背,肿瘤平均体积达到约139mm 3时开始分组给药。分组当日记为Day 0,并按照动物体重开始给药。实验方案:
药效学实验七天为一个给药周期,每天给药一次,给药间隔24小时,将受试化合物灌胃给药,一共给药三个周期。实验期间每周测定2次动物体重和肿瘤大小,每日观察并记录临床症状。
受试化合物的给药剂量分别为10mg/kg、30mg/kg和100mg/kg,溶媒:10%DMSO/10%Solutol/80%water。肿瘤体积(tumor volume,TV)计算公式为:1/2×a×b 2,其中a、b分别为肿瘤测量的长和宽。抑瘤率TGI(%)计算公式为:TGI(%)=[1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。相对肿瘤增殖率T/C(%):计算公式如下:T/C%=T RTV/C RTV×100%(T RTV:治疗组平均RTV;C RTV:阴性对照组平均RTV)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为RTV=Vt/V 0,其中V 0是分组给药时(即Day 0)测量所得肿瘤体积,Vt为某一次测量时的肿瘤体积,T RTV与C RTV取同一天数据。
数据分析:
统计分析基于试验结束时RTV的数据运用SPSS软件进行分析。两组间比较用T test进行分析,三组或多组间比较用one-way ANOVA进行分析,如果方差齐(F值无显著性差异),应用Tukey‘s法进行分析,如 果方差不齐(F值有显著性差异),应用Games-Howell法进行检验。p<0.05认为有显著性差异。
实验结果:测试结果见表23和24。
表23本发明化合物在淋巴瘤SU-DHL-2细胞皮下异种移植瘤模型的抑瘤药效评价
Figure PCTCN2022120267-appb-000160
注:a.平均值±SEM。
表24本发明化合物在淋巴瘤SU-DHL-2异种移植瘤模型各组间相对肿瘤体积比较的p值
Figure PCTCN2022120267-appb-000161
注:p值运用one-way ANOVA进行分析肿瘤体积相对值(RTV)所得,数据方差不齐,应用Games-Howell进行分析。
结论:
本发明化合物在人淋巴瘤SU-DHL-2细胞皮下异种移植肿瘤CB17 SCID小鼠模型中具有显著的抑制肿瘤作用。

Claims (17)

  1. 式(II)所示化合物、其立体异构体或其药学上可接受的盐,
    Figure PCTCN2022120267-appb-100001
    其中,
    T IRAK选自
    Figure PCTCN2022120267-appb-100002
    L选自C 2-10亚烷基,其中,所述C 2-10亚烷基上的任意2、3或4个CH 2分别独立地被Ra置换,所述C 2-10亚烷基分别独立地任选被1、2、3、4、5或6个卤素取代;
    Ra分别独立地选自-N(R)-、-O-、-C(O)NH-、-C 3-6环烷基-和-4-8元杂环烷基-;
    R选自H和C 1-4烷基;
    T 1选自CH和N;
    环A选自C 6-10芳基和5-10元杂芳基。
  2. 根据权利要求1所述的化合物、其立体异构体或其药学上可接受的盐,其中,Ra分别独立地选自-NH-、-N(CH 3)-、-O-、-C(O)NH-、-环丙基-、-环丁基-、-环戊基-、-环己基-、-哌啶基-、-哌嗪基-、-氮杂螺[3.3]庚烷基-、-二氮杂螺[3.3]庚烷基-和-氮杂双环[3.1.0]己基-。
  3. 根据权利要求2所述的化合物、其立体异构体或其药学上可接受的盐,其中,Ra分别独立地选自-NH-、-N(CH 3)-、-O-、-C(O)NH-、
    Figure PCTCN2022120267-appb-100003
  4. 根据权利要求1所述的化合物、其立体异构体或其药学上可接受的盐,其中,L选自C 4-10亚烷基,所述C 4-10亚烷基的任意3个CH 2分别独立地被Ra置换,所述C 4-10亚烷基分别独立地任选被1、2、3、4、5或6个卤素取代。
  5. 根据权利要求4所述的化合物、其立体异构体或其药学上可接受的盐,其中,L选自-C 3-6环烷基-CH 2-Ra-C 1-3亚烷基-Ra-C 0-3亚烷基-、-C 3-6环烷基-C 1-3亚烷基-4-8元杂环烷基-C 1-3亚烷基-Ra-、和-C 3-6环烷基-C 1-3 亚烷基-4-8元杂环烷基-C 1-3亚烷基-,所述C 1-3亚烷基分别独立地任选被1或2个卤素原子取代。
  6. 根据权利要求5所述的化合物、其立体异构体或其药学上可接受的盐,其中,L选自-环己基-CH 2-N(R)-C 1-3亚烷基-O-C 1-3亚烷基-、-环己基-CH 2-4-8元杂环烷基-C 1-3亚烷基-N(R)-、-环己基-CH 2-哌啶基-C 1-3亚烷基-C(O)NH-、-环己基-CH 2-哌啶基-CF 2-C(O)NH-、-环己基-CH 2-哌嗪基-C 1-3亚烷基-C(O)NH-和-环己基-CH 2-哌嗪基-C 1-3亚烷基-。
  7. 根据权利要求6所述的化合物、其立体异构体或其药学上可接受的盐,其中,L选自
    Figure PCTCN2022120267-appb-100004
  8. 根据权利要求1所述的化合物、其立体异构体或其药学上可接受的盐,其中,环A选自苯基或萘基。
  9. 根据权利要求1所述的化合物、其立体异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2022120267-appb-100005
    选自
    Figure PCTCN2022120267-appb-100006
    Figure PCTCN2022120267-appb-100007
  10. 根据权利要求1所述的化合物、其立体异构体或其药学上可接受的盐,其选自式(Ⅱ-1)、(Ⅱ-2)、(Ⅱ-3)和(Ⅱ-4)所示的结构,
    Figure PCTCN2022120267-appb-100008
    Figure PCTCN2022120267-appb-100009
    其中,L和T 1如权利要求1所定义。
  11. 根据权利要求1所述的化合物、其立体异构体或其药学上可接受的盐,其选自式(Ⅱ-1a)、(Ⅱ-2a)、(Ⅱ-3a)和(Ⅱ-4a)所示的结构,
    Figure PCTCN2022120267-appb-100010
    其中,
    L 1选自-C 1-3亚烷基-Ra-C 1-3亚烷基-Ra-C 0-3亚烷基-、-C 1-3亚烷基-4-8元杂环烷基-C 1-3亚烷基-Ra-和-C 1-3亚烷基-4-8元杂环烷基-C 1-3亚烷基-,所述C 1-3亚烷基分别独立地任选被1或2个被卤素原子取代;
    T 1和Ra如权利要求1所定义。
  12. 下列化合物、其立体异构体或其药学上可接受的盐,
    Figure PCTCN2022120267-appb-100011
    Figure PCTCN2022120267-appb-100012
    Figure PCTCN2022120267-appb-100013
    Figure PCTCN2022120267-appb-100014
    Figure PCTCN2022120267-appb-100015
  13. 根据权利要求12所述的化合物、其立体异构体或其药学上可接受的盐,其化合物选自:
    Figure PCTCN2022120267-appb-100016
    Figure PCTCN2022120267-appb-100017
    Figure PCTCN2022120267-appb-100018
    Figure PCTCN2022120267-appb-100019
    Figure PCTCN2022120267-appb-100020
  14. 根据权利要求13所述的化合物、其立体异构体或其药学上可接受的盐,其化合物选自:
    Figure PCTCN2022120267-appb-100021
    Figure PCTCN2022120267-appb-100022
    Figure PCTCN2022120267-appb-100023
    Figure PCTCN2022120267-appb-100024
    Figure PCTCN2022120267-appb-100025
    Figure PCTCN2022120267-appb-100026
    Figure PCTCN2022120267-appb-100027
    Figure PCTCN2022120267-appb-100028
    Figure PCTCN2022120267-appb-100029
    Figure PCTCN2022120267-appb-100030
  15. 一种药物组合物,其含有治疗有效量的权利要求1-14任意一项所述的化合物、其立体异构体或其药学上可接受的盐。
  16. 权利要求1-14任意一项所述的化合物、其立体异构体或其药学上可接受的盐、或者权利要求15所述的药物组合物在制备治疗与白细胞介素-1受体相关激酶4降解靶向嵌合体相关肿瘤的药物中的应用。
  17. 根据权利要求16所述的应用,其特征在于,所述与白细胞介素-1受体相关激酶4降解靶向嵌合体相关肿瘤是B细胞淋巴瘤。
PCT/CN2022/120267 2021-09-26 2022-09-21 2,6-哌啶二酮类化合物与其应用 WO2023045978A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111131041.0 2021-09-26
CN202111131041 2021-09-26
CN202211104698.2 2022-09-09
CN202211104698 2022-09-09

Publications (1)

Publication Number Publication Date
WO2023045978A1 true WO2023045978A1 (zh) 2023-03-30

Family

ID=85720074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120267 WO2023045978A1 (zh) 2021-09-26 2022-09-21 2,6-哌啶二酮类化合物与其应用

Country Status (1)

Country Link
WO (1) WO2023045978A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024037616A1 (zh) * 2022-08-19 2024-02-22 正大天晴药业集团股份有限公司 包含环己基的化合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105385A (zh) * 2017-12-26 2020-12-18 凯麦拉医疗公司 Irak降解剂和其用途
WO2020264499A1 (en) * 2019-06-28 2020-12-30 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2021127190A1 (en) * 2019-12-17 2021-06-24 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2021127283A2 (en) * 2019-12-17 2021-06-24 Kymera Therapeutics, Inc. Irak degraders and uses thereof
CN113423427A (zh) * 2018-11-30 2021-09-21 凯麦拉医疗公司 Irak降解剂和其用途
WO2021185291A1 (zh) * 2020-03-17 2021-09-23 南京明德新药研发有限公司 蛋白降解调节剂与其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105385A (zh) * 2017-12-26 2020-12-18 凯麦拉医疗公司 Irak降解剂和其用途
CN113423427A (zh) * 2018-11-30 2021-09-21 凯麦拉医疗公司 Irak降解剂和其用途
WO2020264499A1 (en) * 2019-06-28 2020-12-30 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2021127190A1 (en) * 2019-12-17 2021-06-24 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2021127283A2 (en) * 2019-12-17 2021-06-24 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2021185291A1 (zh) * 2020-03-17 2021-09-23 南京明德新药研发有限公司 蛋白降解调节剂与其使用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024037616A1 (zh) * 2022-08-19 2024-02-22 正大天晴药业集团股份有限公司 包含环己基的化合物

Similar Documents

Publication Publication Date Title
CN112654619B (zh) 三环并呋喃取代哌啶二酮类化合物
CN105324362B (zh) Ido抑制剂
CN112533916B (zh) 一种作用于crbn蛋白的三并环类化合物
CN109803651A (zh) 免疫调节剂化合物
CN109415387A (zh) 精氨酸酶抑制剂及其治疗应用
WO2020048546A1 (zh) 三环取代哌啶二酮类化合物
CN115380026A (zh) 蛋白降解调节剂与其使用方法
CN108623615A (zh) 吡唑[3,4-d]嘧啶-3-酮的大环衍生物、其药物组合物及应用
CN108929263A (zh) 芳酰胺类Kv2.1抑制剂及其制备方法、药物组合物和用途
CN109069869A (zh) 双环pad4抑制剂
WO2022166890A1 (zh) 取代的哒嗪苯酚类衍生物
JP7447080B2 (ja) Pad4阻害剤としての置換チエノピロール
CN115594734B (zh) 酮酰胺衍生物及其应用
CN106414473A (zh) 多烯大环内酯衍生物
CN107108641A (zh) 大环lrrk2激酶抑制剂
CN105026375B (zh) Ship1调节剂和与其相关的方法
WO2023036175A1 (zh) 戊二酰亚胺类化合物与其应用
WO2023045978A1 (zh) 2,6-哌啶二酮类化合物与其应用
CN115698012A (zh) 环修饰的脯氨酸短肽化合物及其应用
WO2023284651A1 (zh) N-(2-氨基苯基)苯甲酰胺类化合物及其应用
WO2023138662A1 (zh) 苯并嘧啶类化合物及其应用
WO2022247757A1 (zh) 氟取代的嘧啶并吡啶类化合物及其应用
WO2022194221A1 (zh) 呋喃稠环取代的戊二酰亚胺类化合物
WO2022188709A1 (zh) 噻吩类化合物及其应用
CN112574278A (zh) 作为蛋白降解剂杂环类化合物及其制备方法和医药应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872024

Country of ref document: EP

Kind code of ref document: A1