WO2020048284A1 - 一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法 - Google Patents

一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法 Download PDF

Info

Publication number
WO2020048284A1
WO2020048284A1 PCT/CN2019/099734 CN2019099734W WO2020048284A1 WO 2020048284 A1 WO2020048284 A1 WO 2020048284A1 CN 2019099734 W CN2019099734 W CN 2019099734W WO 2020048284 A1 WO2020048284 A1 WO 2020048284A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
molding
foaming
supercritical fluid
quantitative feeding
Prior art date
Application number
PCT/CN2019/099734
Other languages
English (en)
French (fr)
Inventor
冯云平
Original Assignee
广东奔迪新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东奔迪新材料科技有限公司 filed Critical 广东奔迪新材料科技有限公司
Priority to KR1020197029997A priority Critical patent/KR102443271B1/ko
Priority to JP2019558601A priority patent/JP7165413B2/ja
Priority to EP19789852.1A priority patent/EP3647014B1/en
Publication of WO2020048284A1 publication Critical patent/WO2020048284A1/zh
Priority to US16/925,502 priority patent/US11772308B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • B29C44/3453Feeding the blowing agent to solid plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/10Applying counter-pressure during expanding
    • B29C44/105Applying counter-pressure during expanding the counterpressure being exerted by a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3403Foaming under special conditions, e.g. in sub-atmospheric pressure, in or on a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3411Relieving stresses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/58Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/60Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials

Definitions

  • the present invention and the technical field of polymer particle foam molding relate to an in-mold foam molding device for thermoplastic polymer particles and a molding method thereof.
  • Chinese patent CN 102167840 discloses a method for preparing polymer microcellular foamed material by supercritical molding foaming, which includes the following steps: heating the foaming mold on the molding machine, and after reaching the foaming temperature, putting the polymer into The mold and the press are closed, the mold is sealed, the supercritical fluid is filled in the phase mold, the supercritical fluid swells and diffuses into the polymer, and then the mold is opened to release the pressure and foam to obtain the polymer microcellular foamed material.
  • the above method can only produce foamed products in the shape of particles, rods, sheets, and plates, and cannot meet the needs of a variety of foamed products with different shapes.
  • Chinese patent CN104097288A discloses a supercritical fluid-assisted polymer molding foaming device, which includes a supercritical fluid delivery system, a mold system, a temperature measurement device, a pressure measurement device, a pressure release device, a display and control system, etc.
  • the supercritical fluid delivery system is connected to the mold system, and the temperature measurement device, pressure measurement device, and pressure release device are connected to the mold system, respectively.
  • the mold system uses the upper and lower hot plates of the molding press for heating. Utilizing the super penetration and diffusion energy of supercritical fluid, under a certain temperature and supercritical fluid pressure, after a certain period of time, the supercritical fluid gradually diffuses into the polymer matrix, and then the pressure in the mold is quickly released to obtain a certain shape of foam.
  • the device can be used for free foaming or controllable foaming.
  • the above foaming device is only suitable for the preparation of small batches and simple shapes of foaming materials, or the preparation of standard foaming materials for testing. As such, it is not suitable for large-scale industrial production.
  • the above-mentioned foaming device and method are produced by preparing a preform of a certain simple shape in advance, putting it into a mold to utilize the penetration and diffusion capacity of a supercritical fluid, and under a certain temperature and supercritical fluid pressure, After a certain period of time, the supercritical fluid gradually diffuses into the polymer matrix, and then quickly releases the pressure in the mold to obtain a certain shape of the foamed material, which increases the complexity of the foaming process and increases the investment in equipment funds, which increases the production cost. Moreover, the production efficiency is low and the product cost is high, which is not suitable for large-scale industrial production.
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art, and provide a microcellular foamed molded product that can obtain polymer particles with fine cells, precise dimensions and light weight, effectively guarantee the consistency of foaming, and improve production. Efficiency, realizing automated production, thermoplastic polymer particle in-mold foam molding device and molding method suitable for most polymer particle foam compression molding.
  • the present invention provides a thermoplastic polymer particle in-mold foam molding device, which includes a supercritical fluid conveying system, a molded foaming system, a preheating quantitative feeding system, and a moving guide rail.
  • the fluid conveying system is in communication with the molding foaming system.
  • the moving guide is installed below the molding foaming system and the preheating quantitative feeding system.
  • the molding foaming system is installed on the moving rail.
  • the molding foam The system and the preheating dosing system are connected by moving guides.
  • the supercritical fluid delivery system includes a nitrogen pressurization station, a carbon dioxide pressurization station, a nitrogen liquid storage tank, and a carbon dioxide liquid storage tank.
  • the output end of the nitrogen liquid storage tank is connected to the inlet end of the nitrogen pressurization station.
  • the output end of the carbon dioxide liquid storage tank is connected to the inlet end of the carbon dioxide booster station, the inlet end of the nitrogen pressure booster station is connected to the inlet end of the carbon dioxide booster station, and the pipeline is connected to the molded foaming system.
  • an inlet valve is provided between the inlet end of the nitrogen booster station and the inlet end of the carbon dioxide booster station and the molded foaming system.
  • the molded foaming system includes a foaming mold, a booster clamping cylinder, a temperature control device, a pressure control device, a pressure release device, an exhaust valve, and a muffler, and the foaming mold is disposed on a moving guide rail. And can move left and right relative to the moving guide rail, the pressurized clamping cylinder is installed on the foaming mold, the temperature control device and pressure control device are installed on the foaming mold, and the pressure release device is installed on the hair mold On the bubble mold, the muffler is arranged on the pressure release device, and the foaming mold is provided with an exhaust valve.
  • the foaming mold and the preheating quantitative feeding system are connected by a moving guide and are set on the preheating quantitative Below the feeding system, the supercritical fluid delivery system is in communication with the inside of the foaming mold.
  • the foaming mold includes an upper mold plate and a lower mold plate, a plurality of forming mold cavities are arranged between the upper mold plate and the lower mold plate, and the lower mold plate is provided on a moving guide rail and can move left and right relative to the moving guide rail.
  • the booster mold clamping cylinder is installed on the upper mold plate and is connected with the upper mold plate to drive up and down movement of the upper mold plate.
  • the lower mold plate is connected to the preheating and quantitative feeding system through a moving guide rail and is set in the preform Below the heat dosing system.
  • the preheating and quantitative feeding system includes a polymer particle preheating device, a quantitative feeding device, and a temperature control device.
  • the polymer particle preheating device is in communication with the quantitative feeding device, and the temperature control device is disposed at On the polymer particle heating device, the quantitative feeding device is disposed above the lower template, and the quantitative feeding device is provided with several feeding heads corresponding to the molding cavity on the lower template.
  • the invention provides a molding method for an in-mold foam molding device for thermoplastic polymer particles, which includes the following steps:
  • the polymer particles are added to the polymer particle pre-heating device for pre-heating. According to the polymer particles added, the pre-heating temperature is adjusted by a temperature control device, and then the polymer particles are conveyed to the quantitative feeding device;
  • the supercritical fluid pressure is 5 to 30 MPa, and the supercritical fluid swells and diffuses into the polymer for 30 to 120 minutes.
  • the supercritical fluid is supercritical carbon dioxide or supercritical nitrogen or a mixture of both.
  • the obtained polymer molded microcellular foamed product has a volume expansion ratio of 10 to 50 times and an average pore diameter of 1 to 100 ⁇ m.
  • the preheating temperature is 5 to 10 ° C. below the melting point for semi-crystalline polymers, and 5 to 10 ° C. above the glass transition temperature for amorphous polymers.
  • the invention has a simple structure and includes a supercritical fluid conveying system, a molded foaming system, a preheating quantitative feeding system, and a moving guide rail.
  • the supercritical fluid conveying system is connected with the molded foaming system, and the moving guide rail is installed in the molded foaming system and Below the preheating quantitative feeding system, the molding foaming system is installed on the moving guide rail.
  • the molding foaming system and the preheating quantitative feeding system are connected by the moving guide rail, and the polymer particles are placed in the preheating quantitative feeding system. Preheat and inject polymer particles into the molded foam system.
  • the supercritical fluid delivery system fills the molded foam system with supercritical fluid. The supercritical fluid swells and diffuses into the polymer.
  • the pressure release device is opened to release pressure and foam.
  • the polymer molded microcellular foamed product can be obtained.
  • the polymer particles can be directly added into the molding cavity without pre-foaming, without adding water and anti-sticking release agent.
  • the compression welding molding process does not require high-pressure water vapor heating molding, high adhesion, clean process, suitable for polymer materials that are easily hydrolyzed.
  • FIG. 1 is a structural schematic diagram of a thermoplastic polymer particle in-mold foam molding device provided by the present invention
  • FIG. 2 is another schematic structural diagram of a thermoplastic polymer particle in-mold foam molding device provided by the present invention.
  • an embodiment of the present invention provides a thermoplastic polymer particle in-mold foam molding device, which includes a supercritical fluid conveying system 1, a mold foaming system 2, and a preheating and quantitative feeding system.
  • the supercritical fluid conveying system 1 communicates with the molding foaming system 2
  • the moving guide rail 4 is installed under the molding foaming system 2 and the preheating quantitative feeding system 3
  • the molding foaming system 2 is installed On the moving guide rail 4, the molded foaming system 2 and the preheating quantitative feeding system 3 are connected through the moving guide rail 4, and this embodiment will be described in detail below with reference to the drawings.
  • the supercritical fluid conveying system 1 is in communication with the molding foaming system 2, and the moving guide rail 4 is installed below the molding foaming system 2 and the preheating quantitative feeding system 3, and the molding foaming system 2 is installed On the moving guide rail 4, the molded foaming system 2 and the preheating quantitative feeding system 3 are connected through the moving guide rail 4.
  • the supercritical fluid delivery system includes a nitrogen pressurization station 5, a carbon dioxide pressurization station 6, a nitrogen liquid storage tank 7, and a carbon dioxide liquid storage tank 8.
  • the output end of the nitrogen liquid storage tank 7 is connected to nitrogen.
  • the inlet end of the booster station 5 is connected, the output end of the carbon dioxide liquid storage tank 8 is connected to the inlet end of the carbon dioxide booster station 6, the inlet end of the nitrogen pressure booster station 5 is connected to the inlet end of the carbon dioxide booster station 6, It is in communication with the molded foaming system 2 through a pipe 9.
  • An inlet valve 10 is provided between the inlet end of the nitrogen booster station 5 and the carbon dioxide booster station 6 and the molded foaming system 2.
  • the molding foaming system 2 includes a foaming mold 11, a supercharging cylinder 12, a temperature control device 13, a pressure control device 14, a pressure release device 15, an exhaust valve 16, and a muffler 17.
  • the foaming mold 11 is provided on a moving guide rail. 4 and can move relative to the movable guide rail 4.
  • the pressurized clamping cylinder 12 is installed on the foaming mold 11, the temperature control device 13 and the pressure control device 14 are installed on the foaming mold 11, and the pressure release device 15 is installed.
  • the foaming mold 11 is provided, the muffler 17 is disposed on the pressure release device 15, the foaming mold 11 is provided with an exhaust valve 16, the foaming mold 11 and the preheating quantitative feeding system 3 are connected by a moving guide rail 4, and The supercritical fluid conveying system 1 is arranged below the preheating quantitative feeding system 3 and communicates with the inside of the foaming mold 11.
  • the foaming mold 11 includes an upper mold plate 111 and a lower mold plate 112. A plurality of forming mold cavities 113 are provided between the upper mold plate 111 and the lower mold plate 112.
  • the lower mold plate 112 is disposed on the moving guide rail 4 and can move left and right relative to the moving guide rail 4,
  • the booster mold clamping cylinder 12 is installed on the upper mold plate 111 and is drivingly connected to the upper mold plate 111, thereby driving the upper mold plate 111 to move up and down.
  • the lower mold plate 112 is connected to the preheat dosing system 3 by moving the guide rail 4 and is set. Beneath the preheating dosing system 3.
  • the preheating and quantitative feeding system 3 includes a polymer particle preheating device 18, a quantitative feeding device 19, and a temperature control device 20.
  • the polymer particle preheating device 18 is connected to the quantitative feeding device 19, and the temperature control device 20 is provided on the polymer particles.
  • a quantitative feeding device 19 is disposed above the lower die plate 112.
  • the quantitative feeding device 19 is provided with a plurality of feeding heads 21 corresponding to the molding cavity 113 on the lower die plate 112.
  • the polymer particles are directly added into the molding cavity 113 without pre-foaming, water and anti-stick release agent are not added, and high pressure water vapor heating is not required for the mold welding process. Molding, strong adhesion, clean process, suitable for easily hydrolyzed polymer materials, meanwhile, less heat is required during processing, high heating efficiency of polymer particles, uniform temperature of polymer particles, and effective guarantee of foaming consistency , Improve production efficiency, realize automatic production, suitable for most polymer particle foam molding.
  • This second embodiment provides a molding method for an in-mold foam molding device for thermoplastic polymer particles, including the following steps:
  • the polymer particles are added to the polymer particle pre-heating device 18 for pre-heating, and the pre-heating temperature is adjusted by the temperature control device 20 according to the added polymer particles, and then the polymer particles are conveyed to the quantitative feeding device 19 ;
  • the lower template 112 moves along the moving guide 4 to below the quantitative feeding device 19, and the quantitative feeding device 19 adds the pre-heated polymer particles into the molding cavity 113 of the lower template 112 through the feeding head 21 according to a certain weight ratio;
  • the pressure of the supercritical fluid is 5 to 30 MPa, and the supercritical fluid swells and diffuses to the polymer for 30 to 120 minutes.
  • the supercritical fluid is supercritical carbon dioxide or supercritical nitrogen or a mixture of both.
  • the polymer molded microcellular foamed product obtained by foaming has a volume expansion ratio of 10 to 50 times and an average pore diameter of 1 to 100 ⁇ m, and obtains microcellular foamed polymer particles with fine cells, precise dimensions and light weight. Moulded products.
  • the preheating temperature is 5 to 10 ° C below the melting point for semi-crystalline polymers.
  • the preheating temperature is 5 to 10 ° C above the glass transition temperature for amorphous polymers. Adjust the actual situation.
  • the polymer particles are selected from one or more of PE, PP, TPE, TPU, TPEE, PEBAX, PA series, PET, etc., and can be selected and processed according to the actual situation.
  • the present invention has a simple structure, and includes a supercritical fluid conveying system 1, a molded foaming system 2, a preheating quantitative feeding system 3, and a moving guide rail 4.
  • the supercritical fluid conveying system 1 is connected to the molded foaming system 2.
  • the mobile guide rail 4 is installed under the molded foaming system 2 and the preheating and quantitative feeding system 3, and the molded foaming system 2 is installed on the mobile guide rail 4.
  • the molding foaming system 2 and the preheating and quantitative feeding system 3 pass The moving guide rail 4 is connected, and the polymer particles are placed in the preheating quantitative feeding system 3 for preheating, and the polymer particles are injected into the molding foaming system 2.
  • the supercritical fluid delivery system 1 charges the molding foaming system 2 Into the supercritical fluid, the supercritical fluid swells and diffuses into the polymer, and the pressure release device 15 is opened to release the pressure and foam, and the polymer molded microporous foamed product can be obtained.
  • the polymer is polymerized.
  • the pellets can be directly added into the molding cavity 113 without pre-foaming, without adding water and anti-stick release agent, and the molding welding process does not require high-pressure steam heating and molding.
  • the adhesive force is large and the process is clean.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

本发明公开了一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法,包括超临界流体输送系统、模压发泡系统、预热定量供料系统和移动导轨,超临界流体输送系统与模压发泡系统相连通,本发明结构简单,通过将聚合物颗粒一步发泡成型的方法,聚合物颗粒无需经过预发泡,直接加入到成型模腔内,无需加入水和防粘隔离剂,且模压熔接成型工艺无需高压水蒸气加温模塑,粘结力大,过程清洁,适合易水解的聚合物材料,同时,加工过程中热量需求较少,聚合物颗粒的加热效率高,聚合物颗粒温度均匀,得到泡孔细密、尺寸精确、轻质的聚合物颗粒微孔发泡模压成型制品,提高生产效率,实现自动化生产,适合大多数的聚合物的颗粒发泡模压成型。

Description

一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法 技术领域
本发明及聚合物颗粒发泡成型技术领域,更具体地说,是涉及一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法。
背景技术
目前,工业上大都采用间歇式反应釜发泡法生产聚合物发泡珠粒,其工艺过程是:将热塑性聚合物树脂组合物挤出,通过水下切粒,切成平均粒径在0.5至4mm的聚合物颗粒;然后将聚合物颗粒、水和水分散介质一起加入恒温的高压反应釜中,通过加热装置将反应釜中的聚合物颗粒加热至高于聚合物软化点的温度,在搅拌的作用下,充入超临界流体进行渗透、溶胀,达到扩散平衡,形成聚合物-超临界流体均相体系;然后体系内压力释放而得到聚合物发泡珠粒。卸压得到发泡珠粒经水槽水洗后取出表面粘附的分散剂,最终通过水蒸气模塑成型的方法将聚合物珠粒熔接成各式各样成型的使用产品。
中国专利CN 102167840 A公开了一种超临界模压发泡制备聚合物微孔发泡材料的方法,包括以下步骤,将模压机上的发泡模具升温,待达到发泡温度后,将聚合物放入模具,模压机合模,模具密封,相模具内充入超临界流体,超临界流体向聚合物溶胀扩散,然后模压机开模泄压发泡,即可得到聚合物微孔发泡材料。然而,上述方法只能制作形状为粒子、棒、片和板的发泡制品,无法适应多种不同形状的发泡制品的需求。
中国专利CN 104097288 A公开了一种超临界流体辅助聚合物模压发 泡装置,该装置包括超临界流体输送系统、模具系统、温度测量装置、压力测量装置、压力释放装置、显示和控制系统等,超临界流体输送系统与模具系统相连,温度测量装置、压力测量装置、压力释放装置分别与模具系统相连。模具系统利用模压机的上、下热板进行加热。利用超临界流体超强的渗透和扩散能量,在一定的温度和超临界流体压力作用下,经过一定时间,超临界流体逐渐扩散进聚合物基体,然后快速释放模内压力获得一定形状的发泡材料,该装置可用于自由发泡、也可用于可控发泡,然而,上述发泡装置只适合小批量、形状简单的发泡材料的制备,或制备标准的用于测试的发泡材料试样,不适合规模化的工业生产制备。
以上所述的发泡装置和方法,其生产方式是通过预先制备某种简单形状的预制品,放入模具利用超临界流体的渗透和扩散能力,在一定的温度和超临界流体压力作用下,经过一定时间,超临界流体逐渐扩散进聚合物基体,然后快速释放模内压力获得一定形状的发泡材料,增加了发泡工艺的复杂型,且增加了设备资金的投入,使得生产成本增加,且生产效率低,产品成本高,不适合规模化的工业生产。
发明内容
本发明的目的在于克服现有技术中的上述缺陷,提供一种能够得到泡孔细密、尺寸精确、轻质的聚合物颗粒微孔发泡模压成型制品,有效保证发泡的一致性,提高生产效率,实现自动化生产,适合大多数的聚合物的颗粒发泡模压成型的热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法。
为实现上述目的,本发明提供了一种热塑性聚合物颗粒模内模塑发泡成型装置,包括超临界流体输送系统、模压发泡系统、预热定量供料系统 和移动导轨,所述超临界流体输送系统与模压发泡系统相连通,所述移动导轨装设在模压发泡系统和预热定量供料系统的下方,所述模压发泡系统装设在移动导轨上,所述模压发泡系统和预热定量供料系统通过移动导轨相连。
作为优选的,所述超临界流体输送系统包括氮气增压站、二氧化碳增压站、氮气液态储罐和二氧化碳液态储罐,所述氮气液态储罐的输出端与氮气增压站的进口端相连通,所述二氧化碳液态储罐的输出端与二氧化碳增压站的进口端相连通,所述氮气增压站的进口端与二氧化碳增压站的进口端相连接,并通过管道与模压发泡系统相连通,所述氮气增压站的进口端和二氧化碳增压站的进口端与模压发泡系统之间设置有进气阀。
作为优选的,所述模压发泡系统包括发泡模具、增压锁模缸、温度控制装置、压力控制装置、压力释放装置、排气阀和消音器,所述发泡模具设置在移动导轨上,并可相对移动导轨左右运动,所述增压锁模缸装设在发泡模具上,所述温度控制装置和压力控制装置装设在发泡模具上,所述压力释放装置装设在发泡模具上,所述消音器设置在压力释放装置上,所述发泡模具上装设有排气阀,所述发泡模具和预热定量供料系统通过移动导轨相连,并设置在预热定量供料系统的下方,所述超临界流体输送系统与发泡模具的内部相连通。
作为优选的,所述发泡模具包括上模板和下模板,所述上模板和下模板之间设置有若干个成型模腔,所述下模板设置在移动导轨上,并可相对移动导轨左右运动,所述增压锁模缸装设在上模板上,并与上模板传动连接,从而驱动上模板的上下运动,所述下模板通过移动导轨与预热定量供料系统相连,并设置在预热定量供料系统的下方。
作为优选的,所述预热定量供料系统包括聚合物颗粒预加热装置、定量加料装置和温控装置,所述聚合物颗粒预加热装置与定量加料装置相连通,所述温控装置设置在聚合物颗粒加热装置上,所述定量加料装置设置在下模板的上方,所述定量加料装置上设置有若干个与下模板上成型模腔相对应的加料头。
本发明提供一种用于热塑性聚合物颗粒模内模塑发泡成型装置的成型方法,包括以下步骤:
1)将聚合物粒子加入聚合物颗粒预加热装置内进行预加热,根据加入的聚合物颗粒,通过温控装置对预热温度进行调节,然后将聚合物颗粒输送到定量加料装置内;
2)下模板沿移动导轨运动至定量加料装置的下方,定量加料装置按一定重量比将预加热后的聚合物颗粒通过加料头加入到下模板的成型模腔内;
3)注料完成的下模板沿移动导轨运动到上模板的下方,增压锁模缸驱动上模板向下运动,与下模板进行锁模密封;
4)打开进气阀,从超临界流体输送系统向发泡模具内充入超临界流体,将充入的温度和压力调节至目标温度和压力,超临界流体向聚合物溶胀扩散,打开压力释放装置进行泄压发泡,即可得到产品形状、尺寸精度、泡孔细密和制品密度可控的聚合物模压成型微孔发泡制品。
作为优选的,所述超临界流体压力为5至30MPa,所述超临界流体向聚合物溶胀扩散30至120分钟。
作为优选的,所述超临界流体为超临界二氧化碳或超临界氮气或其二者的混合物。
作为优选的,所述得到的聚合物模压成型微孔发泡制品的体积膨胀倍率为10至50倍,平均孔径为1至100μm。
作为优选的,所述预热温度,对于半结晶聚合物,预热温度低于其熔点5至10℃,对于无定型聚合物,预热温度高于玻璃化温度5至10℃。
与现有技术相比,本发明的有益效果在于:
本发明结构简单,包括超临界流体输送系统、模压发泡系统、预热定量供料系统和移动导轨,超临界流体输送系统与模压发泡系统相连通,移动导轨装设在模压发泡系统和预热定量供料系统的下方,模压发泡系统装设在移动导轨上,模压发泡系统和预热定量供料系统通过移动导轨相连,将聚合物颗粒置于预热定量供料系统内进行预热,并将聚合物颗粒注入到模压发泡系统内,超临界流体输送系统对模压发泡系统充入超临界流体,超临界流体向聚合物溶胀扩散,打开压力释放装置泄压发泡,即可得到聚合物模压成型微孔发泡制品,通过将聚合物颗粒一步发泡成型的方法,聚合物颗粒无需经过预发泡,直接加入到成型模腔内,无需加入水和防粘隔离剂,且模压熔接成型工艺无需高压水蒸气加温模塑,粘结力大,过程清洁,适合易水解的聚合物材料,同时,加工过程中热量需求较少,聚合物颗粒的加热效率高,聚合物颗粒温度均匀,得到泡孔细密、尺寸精确、轻质的聚合物颗粒微孔发泡模压成型制品,有效保证发泡的一致性,提高生产效率,实现自动化生产,适合大多数的聚合物的颗粒发泡模压成型。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来 讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的一种热塑性聚合物颗粒模内模塑发泡成型装置的结构示意图
图2是本发明提供的一种热塑性聚合物颗粒模内模塑发泡成型装置的另一结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
请参考图1和图2,本发明的实施例提供了一种热塑性聚合物颗粒模内模塑发泡成型装置,包括超临界流体输送系统1、模压发泡系统2、预热定量供料系统3和移动导轨4,超临界流体输送系统1与模压发泡系统2相连通,移动导轨4装设在模压发泡系统2和预热定量供料系统3的下方,模压发泡系统2装设在移动导轨4上,模压发泡系统2和预热定量供料系统3通过移动导轨4相连,下面结合附图对本实施例进行详细说明。
如图1所示,超临界流体输送系统1与模压发泡系统2相连通,移动导轨4装设在模压发泡系统2和预热定量供料系统3的下方,模压发泡系统2装设在移动导轨4上,模压发泡系统2和预热定量供料系统3通过移动导轨4相连。
具体而言,如图2所示,超临界流体输送系统包括氮气增压站5、二 氧化碳增压站6、氮气液态储罐7和二氧化碳液态储罐8,氮气液态储罐7的输出端与氮气增压站5的进口端相连通,二氧化碳液态储罐8的输出端与二氧化碳增压站6的进口端相连通,氮气增压站5的进口端与二氧化碳增压站6的进口端相连接,并通过管道9与模压发泡系统2相连通,氮气增压站5的进口端和二氧化碳增压站6的进口端与模压发泡系统2之间设置有进气阀10。
模压发泡系统2包括发泡模具11、增压锁模缸12、温度控制装置13、压力控制装置14、压力释放装置15、排气阀16和消音器17,发泡模具11设置在移动导轨4上,并可相对移动导轨4左右运动,增压锁模缸12装设在发泡模具11上,温度控制装置13和压力控制装置14装设在发泡模具11上,压力释放装置15装设在发泡模具11上,消音器17设置在压力释放装置15上,发泡模具11上装设有排气阀16,发泡模具11和预热定量供料系统3通过移动导轨4相连,并设置在预热定量供料系统3的下方,超临界流体输送系统1与发泡模具11的内部相连通。
发泡模具11包括上模板111和下模板112,上模板111和下模板112之间设置有若干个成型模腔113,下模板112设置在移动导轨4上,并可相对移动导轨4左右运动,增压锁模缸12装设在上模板111上,并与上模板111传动连接,从而驱动上模板111的上下运动,下模板112通过移动导轨4与预热定量供料系统3相连,并设置在预热定量供料系统3的下方。
预热定量供料系统3包括聚合物颗粒预加热装置18、定量加料装置19和温控装置20,聚合物颗粒预加热装置18与定量加料装置19相连通,温控装置20设置在聚合物颗粒加热装置18上,定量加料装置19设置在下模板112的上方,定量加料装置19上设置有若干个与下模板112上成型 模腔113相对应的加料头21。
通过将聚合物颗粒一步发泡成型的方法,聚合物颗粒无需经过预发泡,直接加入到成型模腔113内,无需加入水和防粘隔离剂,且模压熔接成型工艺无需高压水蒸气加温模塑,粘结力大,过程清洁,适合易水解的聚合物材料,同时,加工过程中热量需求较少,聚合物颗粒的加热效率高,聚合物颗粒温度均匀,有效保证发泡的一致性,提高生产效率,实现自动化生产,适合大多数的聚合物的颗粒发泡模压成型。
实施例二
本实施例二提供了一种用于热塑性聚合物颗粒模内模塑发泡成型装置的成型方法,包括以下步骤:
1)将聚合物粒子加入聚合物颗粒预加热装置18内进行预加热,根据加入的聚合物颗粒,通过温控装置20对预热温度进行调节,然后将聚合物颗粒输送到定量加料装置19内;
2)下模板112沿移动导轨4运动至定量加料装置19的下方,定量加料装置19按一定重量比将预加热后的聚合物颗粒通过加料头21加入到下模板112的成型模腔113内;
3)注料完成的下模板112沿移动导轨4运动到上模板111的下方,增压锁模缸12驱动上模板111向下运动,与下模板112进行锁模密封;
4)打开进气阀10,从超临界流体输送系统1向发泡模具11内充入超临界流体,将充入的温度和压力调节至目标温度和压力,超临界流体向聚合物溶胀扩散,打开压力释放装置15进行泄压发泡,即可得到产品形状、尺寸精度、泡孔细密和制品密度可控的聚合物模压成型微孔发泡制品。
较佳的,本实施例中,超临界流体压力为5至30MPa,超临界流体向 聚合物溶胀扩散30至120分钟。
其中,超临界流体为超临界二氧化碳或超临界氮气或其二者的混合物。
其中,发泡得到的聚合物模压成型微孔发泡制品的体积膨胀倍率为10至50倍,平均孔径为1至100μm,得到泡孔细密、尺寸精确、轻质的聚合物颗粒微孔发泡模压成型制品。
较佳的,预热温度,对于半结晶聚合物,预热温度低于其熔点5至10℃,对于无定型聚合物,预热温度高于玻璃化温度5至10℃,预热温度可根据实际情况进行调节。
其中,聚合物颗粒选自PE、PP、TPE、TPU、TPEE、PEBAX、PA系列,PET等中的一种以上,可根据实际情况进行选择加工。
综上所述,本发明结构简单,包括超临界流体输送系统1、模压发泡系统2、预热定量供料系统3和移动导轨4,超临界流体输送系统1与模压发泡系统2相连通,移动导轨4装设在模压发泡系统2和预热定量供料系统3的下方,模压发泡系统2装设在移动导轨4上,模压发泡系统2和预热定量供料系统3通过移动导轨4相连,将聚合物颗粒置于预热定量供料系统3内进行预热,并将聚合物颗粒注入到模压发泡系统2内,超临界流体输送系统1对模压发泡系统2充入超临界流体,超临界流体向聚合物溶胀扩散,打开压力释放装置15泄压发泡,即可得到聚合物模压成型微孔发泡制品,通过将聚合物颗粒一步发泡成型的方法,聚合物颗粒无需经过预发泡,直接加入到成型模腔113内,无需加入水和防粘隔离剂,且模压熔接成型工艺无需高压水蒸气加温模塑,粘结力大,过程清洁,适合易水解的聚合物材料,同时,加工过程中热量需求较少,聚合物颗粒的加热 效率高,聚合物颗粒温度均匀,有效保证发泡的一致性,提高生产效率,实现自动化生产,适合大多数的聚合物的颗粒发泡模压成型。
上述实施例为本发明较佳的实施方式,但发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本放的保护范围之内。

Claims (10)

  1. 一种热塑性聚合物颗粒模内模塑发泡成型装置,其特征在于:包括超临界流体输送系统(1)、模压发泡系统(2)、预热定量供料系统(3)和移动导轨(4),所述超临界流体输送系统(1)与模压发泡系统(2)相连通,所述移动导轨(4)装设在模压发泡系统(2)和预热定量供料系统(3)的下方,所述模压发泡系统(2)装设在移动导轨(4)上,所述模压发泡系统(2)和预热定量供料系统(3)通过移动导轨(4)相连。
  2. 根据权利要求1所述的一种热塑性聚合物颗粒模内模塑发泡成型装置,其特征在于:所述超临界流体输送系统(1)包括氮气增压站(5)、二氧化碳增压站(6)、氮气液态储罐(7)和二氧化碳液态储罐(8),所述氮气液态储罐(7)的输出端与氮气增压站(5)的进口端相连通,所述二氧化碳液态储罐(8)的输出端与二氧化碳增压站(6)的进口端相连通,所述氮气增压站(5)的进口端与二氧化碳增压站(6)的进口端相连接,并通过管道(9)与模压发泡系统(2)相连通,所述氮气增压站(5)的进口端和二氧化碳增压站(6)的进口端与模压发泡系统(2)之间设置有进气阀(10)。
  3. 根据权利要求1所述的一种热塑性聚合物颗粒模内模塑发泡成型装置,其特征在于:所述模压发泡系统(2)包括发泡模具(11)、增压锁模缸(12)、温度控制装置(13)、压力控制装置(14)、压力释放装置(15)、排气阀(16)和消音器(17),所述发泡模具(11)设置在移动导轨(4)上,并可相对移动导轨(4)左右运动,所述增压锁模缸(12)装设在发泡模具(11)上,所述温度控制装置(13)和压力控制装置(14)装设在 发泡模具(11)上,所述压力释放装置(15)装设在发泡模具(11)上,所述消音器(17)设置在压力释放装置(15)上,所述发泡模具(11)上装设有排气阀(16),所述发泡模具(11)和预热定量供料系统(3)通过移动导轨(4)相连,并设置在预热定量供料系统(3)的下方,所述超临界流体输送系统(1)与发泡模具(11)的内部相连通。
  4. 根据权利要求3所述的一种热塑性聚合物颗粒模内模塑发泡成型装置,其特征在于:所述发泡模具(11)包括上模板(111)和下模板(112),所述上模板(111)和下模板(112)之间设置有若干个成型模腔(113),所述下模板(112)设置在移动导轨(4)上,并可相对移动导轨(4)左右运动,所述增压锁模缸(12)装设在上模板(111)上,并与上模板(111)传动连接,从而驱动上模板(111)的上下运动,所述下模板(112)通过移动导轨(4)与预热定量供料系统(3)相连,并设置在预热定量供料系统(3)的下方。
  5. 根据权利要求4所述的一种热塑性聚合物颗粒模内模塑发泡成型装置,其特征在于:所述预热定量供料系统(3)包括聚合物颗粒预加热装置(18)、定量加料装置(19)和温控装置(20),所述聚合物颗粒预加热装置(18)与定量加料装置(19)相连通,所述温控装置(20)设置在聚合物颗粒加热装置(18)上,所述定量加料装置(19)设置在下模板(112)的上方,所述定量加料装置(19)上设置有若干个与下模板(112)上成型模腔(113)相对应的加料头(21)。
  6. 一种用于权利要求1至5所述的热塑性聚合物颗粒模内模塑发泡成型装置的成型方法,其特征在于,包括以下步骤:
    1)将聚合物粒子加入聚合物颗粒预加热装置(18)内进行预加热, 根据加入的聚合物颗粒,通过温控装置(20)对预热温度进行调节,然后将聚合物颗粒输送到定量加料装置(19)内;
    2)下模板(112)沿移动导轨(4)运动至定量加料装置(19)的下方,定量加料装置(19)按一定重量比将预加热后的聚合物颗粒通过加料头(21)加入到下模板(112)的成型模腔(113)内;
    3)注料完成的下模板(112)沿移动导轨(4)运动到上模板(111)的下方,增压锁模缸(12)驱动上模板(111)向下运动,与下模板(112)进行锁模密封;
    4)打开进气阀(10),从超临界流体输送系统(1)向发泡模具(11)内充入超临界流体,将充入的温度和压力调节至目标温度和压力,超临界流体向聚合物溶胀扩散,打开压力释放装置(15)进行泄压发泡,即可得到产品形状、尺寸精度、泡孔细密和制品密度可控的聚合物模压成型微孔发泡制品。
  7. 根据权利要求6所述的一种用于热塑性聚合物颗粒模内模塑发泡成型装置的成型方法,其特征在于:所述超临界流体压力为5至30MPa,所述超临界流体向聚合物溶胀扩散30至120分钟。
  8. 根据权利要求6所述的一种用于热塑性聚合物颗粒模内模塑发泡成型装置的成型方法,其特征在于:所述超临界流体为超临界二氧化碳或超临界氮气或其二者的混合物。
  9. 根据权利要求6所述的一种用于热塑性聚合物颗粒模内模塑发泡成型装置的成型方法,其特征在于:所述得到的聚合物模压成型微孔发泡制品的体积膨胀倍率为10至50倍,平均孔径为1至100μm。
  10. 根据权利要求6所述的一种用于热塑性聚合物颗粒模内模塑发泡 成型装置的成型方法,其特征在于:所述预热温度,对于半结晶聚合物,预热温度低于其熔点5至10℃,对于无定型聚合物,预热温度高于玻璃化温度5至10℃。
PCT/CN2019/099734 2018-09-08 2019-08-08 一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法 WO2020048284A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197029997A KR102443271B1 (ko) 2018-09-08 2019-08-08 열가소성 폴리머 입자의 인몰드 발포 성형 장치 및 그의 성형 방법
JP2019558601A JP7165413B2 (ja) 2018-09-08 2019-08-08 熱可塑性ポリマー粒子の型内モールド発泡成形装置及びその成形方法
EP19789852.1A EP3647014B1 (en) 2018-09-08 2019-08-08 In-mold foam molding device for thermoplastic polymer particle, and molding method therefor
US16/925,502 US11772308B2 (en) 2018-09-08 2020-07-10 Intra-mode moulding foam molding device of thermoplastic polymer particle and molding method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811046576.6A CN109016320A (zh) 2018-09-08 2018-09-08 一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法
CN201811046576.6 2018-09-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/925,502 Continuation-In-Part US11772308B2 (en) 2018-09-08 2020-07-10 Intra-mode moulding foam molding device of thermoplastic polymer particle and molding method for same

Publications (1)

Publication Number Publication Date
WO2020048284A1 true WO2020048284A1 (zh) 2020-03-12

Family

ID=64624232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099734 WO2020048284A1 (zh) 2018-09-08 2019-08-08 一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法

Country Status (6)

Country Link
US (1) US11772308B2 (zh)
EP (1) EP3647014B1 (zh)
JP (1) JP7165413B2 (zh)
KR (1) KR102443271B1 (zh)
CN (1) CN109016320A (zh)
WO (1) WO2020048284A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114683464A (zh) * 2020-12-31 2022-07-01 青岛海尔电冰箱有限公司 电器包装用泡沫底座、制作其的模具及制作其的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109016320A (zh) * 2018-09-08 2018-12-18 广东奔迪新材料科技有限公司 一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法
CN109955423B (zh) * 2019-04-30 2024-04-02 广东奔迪新材料科技有限公司 一种大型超高压热塑性聚合物发泡成型装置及其方法
CN110157086A (zh) * 2019-05-17 2019-08-23 东莞海瑞斯新材料科技有限公司 一种直接在模内形成发泡产品的物理发泡方法
CN111086145A (zh) * 2019-06-19 2020-05-01 江苏集萃先进高分子材料研究所有限公司 一种粒子熔合超临界模压发泡生产工艺及装置
CN111055421A (zh) * 2019-12-31 2020-04-24 晋江兴迅新材料科技有限公司 一种热塑性弹性体的环保发泡工艺及成型设备
CN111055420B (zh) * 2019-12-31 2024-09-06 福建兴迅新材料科技有限公司 一种环保型鞋底的发泡成型工艺及发泡成型设备
CN113199688A (zh) * 2021-04-29 2021-08-03 华东理工大学 一种pet发泡材料及其制造方法
CN114311487A (zh) * 2022-02-21 2022-04-12 山东大学 一种聚合物超临界流体混合发泡系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053663A (ja) * 1996-08-09 1998-02-24 Shin Etsu Polymer Co Ltd シリコーン系ゴム発泡体の製造方法
US20040080070A1 (en) * 2002-10-23 2004-04-29 Industrial Technology Research Institute Method of manufacturing polymeric foam using supercritical fludis
CN102167840A (zh) 2011-04-12 2011-08-31 姜修磊 超临界模压发泡制备聚合物微孔发泡材料的方法
CN203282653U (zh) * 2013-04-09 2013-11-13 青岛科技大学 一种超临界流体辅助聚合物模压发泡装置
CN104097288A (zh) 2013-04-09 2014-10-15 青岛科技大学 一种超临界流体辅助聚合物模压发泡装置
CN205097443U (zh) * 2015-11-04 2016-03-23 宁波格林美孚新材料科技有限公司 一种热塑性颗粒材料发泡装置
CN205660984U (zh) * 2016-06-02 2016-10-26 宁波博睿迪塑胶有限公司 新型超临界模压发泡装置
CN109016320A (zh) * 2018-09-08 2018-12-18 广东奔迪新材料科技有限公司 一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法
CN208867422U (zh) * 2018-09-08 2019-05-17 广东奔迪新材料科技有限公司 一种热塑性聚合物颗粒模内模塑发泡成型装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE790999A (fr) * 1971-11-29 1973-03-01 Pont A Mousson Procede et machine perfectionnes pour la fabrication de pieces moulees en matiere plastique expansee
US4196160A (en) * 1978-08-25 1980-04-01 Sealed Air Corporation Method and apparatus for forming foam cushions
JPS60132743A (ja) * 1983-12-21 1985-07-15 Inoue Japax Res Inc 成形装置
IT1240949B (it) * 1990-06-12 1993-12-27 Bazzica Engineering Di Carlo Bazzica & C. S.A.S. Metodo e macchina per la produzione di pezzi di polistirolo espanso.
US5158986A (en) * 1991-04-05 1992-10-27 Massachusetts Institute Of Technology Microcellular thermoplastic foamed with supercritical fluid
DE10141619C1 (de) * 2001-08-24 2002-11-28 Hennecke Gmbh Verfahren und Vorrichtung zum diskontinuierlichen Herstellen von Polyurethan-Blockschaum
JP2003261707A (ja) * 2002-03-07 2003-09-19 Fujikura Ltd 樹脂発泡体の製法
US20130116354A1 (en) * 2011-11-07 2013-05-09 Battelle Memorial Institute High performance foam and composite foam structures and processes for making same
CN204800908U (zh) * 2015-07-10 2015-11-25 佛山伊之密精密橡胶机械有限公司 橡胶机的移模结构
TWI614111B (zh) * 2015-12-16 2018-02-11 寶成工業股份有限公司 熱可塑高分子之發泡鞋底及熱可塑高分子之發泡鞋底的製作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053663A (ja) * 1996-08-09 1998-02-24 Shin Etsu Polymer Co Ltd シリコーン系ゴム発泡体の製造方法
US20040080070A1 (en) * 2002-10-23 2004-04-29 Industrial Technology Research Institute Method of manufacturing polymeric foam using supercritical fludis
CN102167840A (zh) 2011-04-12 2011-08-31 姜修磊 超临界模压发泡制备聚合物微孔发泡材料的方法
CN203282653U (zh) * 2013-04-09 2013-11-13 青岛科技大学 一种超临界流体辅助聚合物模压发泡装置
CN104097288A (zh) 2013-04-09 2014-10-15 青岛科技大学 一种超临界流体辅助聚合物模压发泡装置
CN205097443U (zh) * 2015-11-04 2016-03-23 宁波格林美孚新材料科技有限公司 一种热塑性颗粒材料发泡装置
CN205660984U (zh) * 2016-06-02 2016-10-26 宁波博睿迪塑胶有限公司 新型超临界模压发泡装置
CN109016320A (zh) * 2018-09-08 2018-12-18 广东奔迪新材料科技有限公司 一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法
CN208867422U (zh) * 2018-09-08 2019-05-17 广东奔迪新材料科技有限公司 一种热塑性聚合物颗粒模内模塑发泡成型装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114683464A (zh) * 2020-12-31 2022-07-01 青岛海尔电冰箱有限公司 电器包装用泡沫底座、制作其的模具及制作其的方法
CN114683464B (zh) * 2020-12-31 2023-11-14 青岛海尔电冰箱有限公司 电器包装用泡沫底座、制作其的模具及制作其的方法

Also Published As

Publication number Publication date
JP2022500271A (ja) 2022-01-04
EP3647014B1 (en) 2022-01-05
JP7165413B2 (ja) 2022-11-04
EP3647014A1 (en) 2020-05-06
KR20220107097A (ko) 2022-08-02
CN109016320A (zh) 2018-12-18
EP3647014A4 (en) 2021-05-26
US20200338794A1 (en) 2020-10-29
KR102443271B1 (ko) 2022-09-14
US11772308B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2020048284A1 (zh) 一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法
KR102376525B1 (ko) 초임계 유체에 의한 무몰드 입체 구조 발포 제품의 제조방법
US3504068A (en) Process for molding completely expanded polyolefin particles
US3255286A (en) Production of shaped articles from cellular thermoplastic materials
CN104097288A (zh) 一种超临界流体辅助聚合物模压发泡装置
CN203282653U (zh) 一种超临界流体辅助聚合物模压发泡装置
US3761560A (en) Fibre-glass moulding process
CN109955423B (zh) 一种大型超高压热塑性聚合物发泡成型装置及其方法
CN210477572U (zh) 一种粒子熔合超临界模压发泡生产装置
JP3839726B2 (ja) 超臨界流体を用いた成形方法
CN111086145A (zh) 一种粒子熔合超临界模压发泡生产工艺及装置
CN105835301A (zh) 一种橡胶件快速硫化成型工艺及模具
CN111055420B (zh) 一种环保型鞋底的发泡成型工艺及发泡成型设备
CN208867422U (zh) 一种热塑性聚合物颗粒模内模塑发泡成型装置
JPH0885129A (ja) 発泡構造体の製造方法、及び成形装置
CN216658663U (zh) 一种用于可降解材料的模压珠粒发泡与后处理装置
CN111976171B (zh) 原位聚合碳纤维增强聚甲基丙烯酸甲酯复合材料成型方法
CN212331602U (zh) A级防火保温材料生产设备
CN113001864B (zh) 一种基于发泡注塑制坯的聚合物微发泡装置和工艺
CN102179937A (zh) 一种橡胶筒料成型的加工方法及加工装置
CN111055421A (zh) 一种热塑性弹性体的环保发泡工艺及成型设备
CN118305934A (zh) 一种用于碳纤维增强复合材料的热压成型装置
CN112356373A (zh) 一种聚合物颗粒连续发泡方法及连续发泡装置
CN109693406A (zh) 一种直接成型无内胎轮胎生产工艺
CN117325478A (zh) 一种双真空设备及双真空工艺

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019558601

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019789852

Country of ref document: EP

Effective date: 20191029

NENP Non-entry into the national phase

Ref country code: DE