WO2020045589A1 - 表面形状計測装置および表面形状計測方法 - Google Patents

表面形状計測装置および表面形状計測方法 Download PDF

Info

Publication number
WO2020045589A1
WO2020045589A1 PCT/JP2019/033990 JP2019033990W WO2020045589A1 WO 2020045589 A1 WO2020045589 A1 WO 2020045589A1 JP 2019033990 W JP2019033990 W JP 2019033990W WO 2020045589 A1 WO2020045589 A1 WO 2020045589A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
hologram
spherical wave
point
measurement
Prior art date
Application number
PCT/JP2019/033990
Other languages
English (en)
French (fr)
Inventor
邦弘 佐藤
Original Assignee
公立大学法人兵庫県立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人兵庫県立大学 filed Critical 公立大学法人兵庫県立大学
Priority to EP19855228.3A priority Critical patent/EP3845857A4/en
Priority to KR1020217008901A priority patent/KR20210048528A/ko
Priority to JP2020539599A priority patent/JP7231946B2/ja
Priority to US17/272,426 priority patent/US11635289B2/en
Priority to CN201980062353.5A priority patent/CN112739979B/zh
Publication of WO2020045589A1 publication Critical patent/WO2020045589A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02032Interferometers characterised by the beam path configuration generating a spatial carrier frequency, e.g. by creating lateral or angular offset between reference and object beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02038Shaping the wavefront, e.g. generating a spherical wavefront
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02047Interferometers characterised by particular imaging or detection techniques using digital holographic imaging, e.g. lensless phase imaging without hologram in the reference path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/021Interferometers using holographic techniques
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0808Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0866Digital holographic imaging, i.e. synthesizing holobjects from holograms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0033Adaptation of holography to specific applications in hologrammetry for measuring or analysing
    • G03H2001/0038Adaptation of holography to specific applications in hologrammetry for measuring or analysing analogue or digital holobjects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0445Off-axis recording arrangement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/045Fourier or lensless Fourier arrangement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0454Arrangement for recovering hologram complex amplitude
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0465Particular recording light; Beam shape or geometry
    • G03H2001/0469Object light being reflected by the object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/50Nature of the object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/50Geometrical property of the irradiating beam
    • G03H2222/52Divergent beam

Definitions

  • the present invention relates to a surface shape measuring device and a surface shape measuring method in digital holography.
  • a technique for analyzing light waves such as reflected light and transmitted light includes holography in which data of light intensity and phase are combined and recorded on a recording medium such as a photographic dry plate called a hologram.
  • a recording medium such as a photographic dry plate
  • light intensity and phase are acquired as digital data using a light receiving element and a semiconductor memory, or a hologram is generated on a computer for analysis.
  • Such holography is called digital holography.
  • Patent Document 1 a high-resolution tomographic imaging method using a reflection-type lensless holographic microscope and a wavelength-swept laser beam for measuring the internal structure of a cell or a living tissue in a culture solution at a high resolution is known (for example, Patent Document 1). 3).
  • object light with a large numerical aperture emitted from an object irradiated with illumination light having different incident directions is recorded as hologram data for each incident direction of the illumination light, and these multiple large numerical aperture holograms are combined into one hologram.
  • a method of synthesizing and reproducing an object beam under a synthetic numerical aperture exceeding 1 is known (for example, see Patent Document 4). According to this method, an ultra-high resolution three-dimensional microscope having a resolution exceeding a normal diffraction limit can be realized.
  • a holographic ellipsometry device using accurate recording of light waves by one-shot digital holography and plane wave expansion of the recorded light waves (for example, see Patent Document 5).
  • this ellipsometry device data of reflected light due to incident light having a large number of incident angles included in the non-parallel illumination light can be collectively recorded on the hologram, so that the ellipsometry is performed for each of a large number of wave vectors corresponding to the incident angles.
  • the measurement angles ⁇ and ⁇ can be obtained, and the measurement efficiency can be improved.
  • an image sensor two imaging lenses, a cube beam splitter, an element having a Fizeau reference plane, and an object to be measured are arranged in series, and interference fringes of reflected light from the reference plane and the object to be measured are recorded.
  • An interferometer for performing shape measurement is known (for example, see Patent Document 6).
  • Patent Document 6 uses Fizeau interference which is a general method of measuring flatness. However, due to the use of a reference plane, Fizeau interference using this method is used. It has the following problems inherent in the total.
  • the Fizeau interferometer is one of the most accurate and high-speed flatness measurement devices, and has been adopted as a flatness measurement device in standardization laboratories in various countries.
  • interference fringes formed by light reflected by a reference plane of a transparent glass plate serving as a reference and light reflected by a surface to be measured are recorded.
  • the reference plane is slightly shifted in the perpendicular direction to shift the phase of the interference fringes, record multiple interference fringes with different phases, and measure using the recorded multiple interference fringes. Analyze the planar shape of the surface.
  • the result of the measurement is a comparison between the reference plane and the surface to be measured, and the absolute shape of the reference plane needs to be corrected in order to measure the absolute value of the flatness.
  • the three-sheet matching method is used for the absolute shape correction.
  • the optical system of the Fizeau interferometer has a relatively small number of optical components and can have a simple structure.
  • a tilt adjustment mechanism and a vertical movement mechanism for an object to be measured and A turntable for absolute shape correction is required.
  • the accuracy of the measurement is affected by the uncertainty of the phase shift, the uncertainty due to environmental fluctuations, and the like, in addition to the uncertainty in the reference plane shape correction. It is difficult to suppress the uncertainty of the combined measurement to 10 nm or less.
  • the diameter of a measurable object is limited to about 300 mm or less, and it is difficult to further increase the diameter.
  • the contrast of interference fringes is reduced on a surface to be measured whose reflectance is greatly different from that of a reference plane made of glass, and it becomes difficult to perform highly accurate measurement.
  • the present invention solves the above-described problems, and can improve measurement accuracy with a simple configuration without requiring a physical reference plane as a comparison target of shape measurement and without using a mechanical adjustment mechanism. It is an object to provide a surface shape measuring device and a surface shape measuring method.
  • a surface profile measuring apparatus is characterized in that, in a surface profile measuring apparatus using holography, object light (O) which is reflected light of spherical wave illumination light (Q) illuminating a surface to be measured.
  • An image sensor uses two light data of the in-line spherical wave reference light (L) that is in-line with respect to the object light (O) as an object light off-axis hologram (I OR ) and a reference light off-axis hologram (I LR ), respectively.
  • a data acquisition unit that acquires using the data acquisition unit, and an image reproduction unit that acquires surface shape data by reproducing an image of the surface to be measured from the data acquired by the data acquisition unit.
  • a reference optical focal point is a focal point (P L) becomes mirror images each other, it is configured to be incident on the image sensor line spherical wave reference beam (L) passes through the virtual plane (VP) obliquely having an optical system, an image reproduction unit, two off-axis holograms (I oR, I LR) data, location information of the reference light focusing point (P L), and the reference light focusing point (P L)
  • An object light hologram generator that generates an object light hologram (g) representing a light wave of the object light (O) by a calculation process using that the light emitted from the object is a spherical wave;
  • a reproduction object light hologram generation unit that generates a reproduction object light hologram (h v )
  • the surface shape measurement method is the surface shape measurement method for measuring the shape of a measured surface of an object by using holography, wherein the condensing point of the in-line spherical wave reference light (L) is located on the optical axis of the image sensor.
  • the reference light converging point (P L ) which is a converging point of the spherical wave illumination light (Q), is disposed at a position off the optical axis, and the reference light converging point (P Q ) is disposed.
  • a virtual plane (VP) is set, which is a plane that vertically bisects a line segment connecting the focal point (P L ) and the illumination light focal point (P Q ), and the measured surface is a virtual plane (VP).
  • An object is placed so as to be in contact with the object light, and data of the object light (O), which is the reflected light of the spherical wave illumination light (Q) reflected from the surface to be measured, is converted to an object light off-axis hologram (I OR ) using an image sensor. ), And passes through a virtual plane (VP) in a state where no object is placed.
  • the data of the inline spherical wave reference light (L) incident on the image sensor is acquired as a reference light off-axis hologram (I LR ) using an image sensor, and the data of the two types of off-axis holograms (I OR , I LR ) is obtained.
  • J OL a complex amplitude in-line hologram
  • the in-line spherical wave reference light (L) is a spherical wave light
  • an in-line reference light hologram (j L ) representing the light wave of the in-line spherical wave reference light (L) on the hologram surface which is the light receiving surface of the image sensor is generated, and the complex amplitude in-line hologram (J OL ) and the in-line reference light hologram are generated.
  • the calculation processing performs light propagation converting the object hologram (g) A position where the object light (O) converges is detected, and the position is set as a shape measurement reference point (S1) having information obtained by improving the position information of the reference light converging point (P L ).
  • the phase data of the reflected light of the spherical wave illumination light from the surface to be measured is acquired, and the phase distribution on the plane cut surface of the spherical wave obtained analytically is obtained. Since the shape measurement is performed in comparison, a high-precision surface shape measurement can be realized without requiring a material reference plane such as a glass substrate.
  • FIG. 3 is a flowchart illustrating a surface shape measurement method according to the first embodiment of the present invention.
  • 9 is a flowchart showing a method for determining a virtual plane with high accuracy in the measurement method.
  • FIG. 9 is a side view showing a state in which an object light off-axis hologram is obtained by the surface shape measuring device according to the second embodiment.
  • FIG. 4 is a side view showing a state where a reference light off-axis hologram is obtained by the same device.
  • FIG. 9 is a side view showing a state in which an object light off-axis hologram is obtained by the surface shape measurement device according to the third embodiment.
  • FIG. 13 is a side view showing a state in which an object light off-axis hologram is obtained by the surface shape measurement device according to the fourth embodiment.
  • FIG. 14 is a configuration diagram around an image sensor of the surface shape measurement device according to the fifth embodiment.
  • FIG. 14 is a block diagram of a surface shape measuring device according to a sixth embodiment.
  • Example 1 An image showing the phase distribution of a complex amplitude hologram on the surface of a plane mirror sample, obtained using the surface shape measuring apparatus according to the present invention.
  • FIG. 11 is an image showing a surface height distribution obtained using the phase distribution of FIG. 10.
  • (A) is a diagram of a height distribution on a straight line in the x direction of FIG.
  • (b) is a diagram of a height distribution on a straight line in the y direction of FIG. (Example 2) An image showing a surface height distribution obtained for another flat mirror sample.
  • (A) is a diagram of a height distribution on a straight line in the x direction of FIG. 13
  • (b) is a diagram of a height distribution on a straight line in the y direction of FIG. (Example 3)
  • (A) is a diagram of a height distribution on a straight line in the x direction of FIG. 15, and (b) is a diagram of a height distribution on a straight line in the y direction of FIG.
  • Example 4 An image showing a surface height distribution obtained for a negative pattern USAF test target.
  • (A) is a diagram of a height distribution on a straight line in the x direction of FIG. 17, and (b) is a diagram of a height distribution on a straight line in the y direction of FIG. (Example 5)
  • 20 is an enlarged image of a portion surrounded by a square in FIG.
  • FIG. 21 is a diagram of a height distribution showing a measurement result on a measurement line (i) in the image of FIG. 20.
  • FIG. 21 is a diagram of a height distribution showing a measurement result on a measurement line (ii) in the image of FIG. 20.
  • FIG. 20 is a diagram of a measured height distribution of spacers obtained for the measurement target in FIG. 19.
  • the present surface shape measuring method is a method of measuring the shape of the surface to be measured of the object 4 using holography, and includes a process from an optical system setting step (# 1) to a surface shape measuring step. Steps up to (# 8) are provided.
  • the optical system setting step (# 1) so as to be mirror images of each other with respect to the virtual plane VP set virtually illumination light condensing points P Q inline spherical wave reference is the focal point of a spherical wave illumination light Q
  • a reference light condensing point PL which is a condensing point of the light L , is set.
  • the image sensor 5 is arranged from the reference light condensing points P L on the straight line passing through the virtual plane VP obliquely, the reference point P O is set to indicate the position of the object 4 at the intersection positions of the straight line and the virtual plane VP Is done.
  • the hologram of each of the spherical wave lights Q and L is acquired by the image sensor 5 using the off-axis reference light R, and the hologram of each light source is reproduced and confirmed on a computer, thereby confirming the object. 4 is fixed. Thereafter, the position and orientation of the sample stage 7 and the entire optical system are adjusted.
  • the spherical wave lights Q and L and the off-axis reference light R are mutually coherent laser lights emitted from one light source.
  • each of the light condensing points P Q and P L that is, the light source of each of the spherical wave lights Q and L is set by, for example, a pinhole position of a pinhole plate. Further, a hologram of the reflected light of the spherical wave illumination light Q is obtained by disposing the reference plane substrate 70 having the reference plane at the position of the virtual plane VP.
  • the accuracy required for such confirmation, adjustment, and setting is about several tens of ⁇ m, which can be adjusted by a mechanical operation using a screw or the like.
  • the process of improving the measurement accuracy to the order of nm (nanometer) is performed by post-processing in a computer at the time of image reproduction without using a piezoelectric element or the like.
  • the object 4 as the measurement surface is in contact with the virtual plane VP is placed at the position of the reference point P O.
  • the arrangement of the object 4 is performed by fixing the object 4 to the sample stage 7 adjusted in advance.
  • the measured surface of the object 4 is obliquely illuminated by the spherical wave illumination light Q, and the reflected light emitted from the object 4 and incident on the image sensor 5, that is, the data of the object light O, is reflected on the object using the off-axis reference light R. It is obtained as a light off-axis hologram I OR.
  • the off-axis reference light R as the reference light off-axis hologram ILR .
  • the data of these two types of off-axis holograms I OR and I LR are not acquired at the same time. Therefore, the irradiation conditions of the off-axis reference light R need to be kept the same when acquiring each data.
  • the light receiving surface of the image sensor 5 is determined by using the object light off-axis hologram IOR , the reference light off-axis hologram I LR , and the in-line spherical wave reference light L as spherical wave light.
  • An object light hologram g representing a light wave of the object light O on the hologram surface 50 where (z 0) is generated by data processing in the computer.
  • the object hologram g is converted into the hologram at the position of the reference point P O by light propagation calculation. Converting a hologram into a hologram at another position by light propagation calculation is called light propagation conversion. Transformed hologram is rotated converted according to the virtual plane inclination alpha O is the inclination angle of the virtual plane VP to the hologram surface 50, the reconstructed object hologram h V for measurement in a virtual plane VP are generated.
  • a position where the object light O is condensed by performing light propagation conversion on the object light hologram g is detected by calculation processing, and the position is set as a reference point S1 for shape measurement.
  • Position information of the reference point S1 is the positional information of the reference light focal point P L is a higher precision information. By using the position information of the reference point S1, highly accurate measurement of the surface to be measured becomes possible.
  • spherical wave hologram generation step (# 7) the hologram of the spherical wave light emitted from the reference points S1 for shape measurement is in the virtual plane VP, as a spherical wave hologram s V, is analytically generated.
  • Spherical wave hologram s V is a reference plane in the conventional physical reference wafer as a reference plane in such Fizeau interferometer is realized in a computer.
  • the surface shape measuring step (# 8) by dividing the reconstructed object beam holograms h V spherical wave hologram s V, and to a object light O and the spherical wave light hologram s V, a complex amplitude inline hologram for measurement Measurement Hologram J V OS is generated.
  • the phase distribution of the measurement hologram J V OS, the height distribution of the surface to be measured of the object 4, i.e., the surface shape of the object 4 are determined.
  • Initial setting of the sample stage 7 and the optical system shown in FIG. 2 is performed, for example, as follows.
  • the setting of the position and orientation of the sample table 7 has the same meaning as the setting of the position and orientation of the virtual plane VP.
  • the reference light focal point P L is the focal point of the line spherical wave reference beam L arranged on the optical axis of the image sensor 5, illumination is the focal point of a spherical wave illumination light Q to the outside from the optical axis position to place the light focal point P Q.
  • Virtual plane VP is a line segment connecting the reference light condensing points P L and the illumination optical focal point P Q perpendicularly a bisecting plane.
  • Reference point P O indicating a position of the object 4 at the intersection position between the virtual plane VP and the optical axis is set.
  • the position of the reference point P O is placed in a state in which the sample stage 7 is adjusted.
  • the sample table 7 is adjusted so that the measured surface of the object 4 is in contact with the virtual plane VP when the object 4 is fixed to the sample table 7.
  • the adjustment of the sample stage 7 is performed as follows.
  • a reference plane substrate 70 having a reference plane is fixed to the sample stage 7 and illuminated by the spherical wave illumination light Q, and data of the reflected light from the reference plane is converted to the object light off-axis hologram I using the off-axis reference light R.
  • the data of the in-line spherical wave reference light L that passes through the virtual plane VP and enters the image sensor 5 is converted into the reference light off-axis hologram I LR using the off-axis reference light R.
  • the respective condensing points of the in-line spherical wave reference light L and the spherical wave illumination light Q are arranged.
  • the interference fringes I LR formed by the in- line spherical wave reference light L and the off-axis reference light R are provided.
  • a reference plane substrate 70 having a high flatness reference plane such as an optical flat is fixed to the sample table 7 as the object 4 and illuminated with the spherical wave illumination light Q.
  • Illumination light condensing point P Q as symmetrical points with respect to a reference plane of the reference plane substrate 70 approaches the reference beam focal point P L, in other words, the reference plane of the reference plane board 70, the reference light condensing
  • the distance z O and the inclination ⁇ O of the sample table 7 are mechanically adjusted so as to coincide with a plane that vertically bisects a line segment connecting the point P L and the illumination light converging point P Q to obtain a reference plane. and the object beam O and the off-axis reference beam R is reflected light from the interference fringes I OR one-shot recording making.
  • complex amplitude off-axis holograms J OR and J LR representing respective real image components are extracted from each interference fringe I OR and I LR , and J OR is divided by J LR to obtain a complex amplitude in-line hologram J. Get OL .
  • the phase ( ⁇ O ⁇ L ) of the complex amplitude in-line hologram J OL represents a phase difference between the in-line spherical wave reference light L on the hologram surface 50 and the object light O (which is regarded as a spherical wave).
  • phase components exp of J OL [i ( ⁇ O - ⁇ L)] is closer to the distribution of a constant value on the hologram surface 50 . Further, when the symmetric point of the point P Q away from the point P L, the phase components exp [i ( ⁇ O - ⁇ L )] is the distribution value changes.
  • the distance z O and the inclination angle ⁇ O are adjusted so that the change of the phase component exp [i ( ⁇ O ⁇ L )] of the complex amplitude in-line hologram J OL becomes sufficiently small.
  • the tangent plane is determined as the virtual plane VP, and the adjustment of the sample stage 7 is completed.
  • the reference light L and the illumination light Q are symmetrical with respect to the determined virtual plane VP, and the surface distribution of the phase difference ( ⁇ O ⁇ L ) between the illumination light Q and the reference light L on the virtual plane VP changes. It becomes a small and almost constant value.
  • the phase change at the stage of determining the virtual plane VP ⁇ ( ⁇ O - ⁇ L) is smaller than 4 ⁇ t / ⁇
  • ⁇ ( ⁇ O - ⁇ L ) ⁇ 4 ⁇ t / ⁇ needs to be adjusted mechanically. It is difficult to make such an adjustment mechanically only with a screw without using a piezoelectric drive element such as PZT or the like, and a measurement accuracy ⁇ t on the order of nm cannot be expected. Through the processing, the measurement accuracy ⁇ t can be improved.
  • hologram data and its processing The hologram data and its processing will be described based on mathematical expressions.
  • Off-axis reference light R, in-line spherical wave reference light L, object light O, and the like are involved in the hologram.
  • the origin of the xyz right-handed orthogonal coordinate system is set at the center of the hologram surface 50 (the light receiving surface of the image sensor 5) (the coordinate system for the virtual plane VP is x'y'z '; see FIG. 2).
  • the direction from the hologram surface 50 toward the light source of the object light O is the positive direction of the z-axis.
  • the position coordinates (x, y), the object light O (x, y, t), the off-axis reference light R (x, y, t), and the in-line spherical wave reference light L (x, y, t) are obtained.
  • And are represented by the following equations (1), (2), and (3), respectively, in a general form. These lights are mutually coherent lights having an angular frequency ⁇ . Coefficients, arguments, subscripts, and the like in each expression are interpreted as general expressions and meanings. In the following equations, the designation of the position coordinates (x, y, z), the spatial frequency (u, v, w), and the like are omitted as appropriate.
  • the light intensity I OR (x, y) of the combined light generated by O (x, y, t) and R (x, y, t) in the above equation, and L (x, y, t) and R (x, y) , T), the light intensity I LR (x, y) of the combined light is represented by the following equations (4) and (5), respectively.
  • These light intensities I OR and I LR are acquired as hologram data through the image sensor 5.
  • the first term on the right side is the light intensity component of the object light O or the in-line spherical wave reference light L
  • the second term is the light intensity component of the off-axis reference light R.
  • the third and fourth terms of each equation are a direct image component and a conjugate image component formed by modulating the object light O or the in-line spherical wave reference light L with the off-axis reference light R, respectively.
  • the direct image component (real image component) of the third term is the information of the object light O or the reference light L required for the data processing method, that is, O 0 exp (i ⁇ O ) and L 0 of the above equations (1) and (3). It is a term including exp (i ⁇ L ).
  • the direct image component of the third term is obtained by calculating the phase portions [i ⁇ O ] and [i ⁇ L ] of the object light O or the reference light L in the above equations (1) and (3) defining these lights. It is the same as the parts [i ⁇ O ] and [i ⁇ L ].
  • phase parts [ ⁇ i ⁇ O ] and [ ⁇ i ⁇ L ] of the object light O or the reference light L of the fourth term are the phase parts [i ⁇ ] of the above equations (1) and (3) which define these lights. O], it has become a complex conjugate of [i ⁇ L], paragraph 4 called conjugate image component.
  • the direct image component (the third term) becomes the light intensity component (the first and second terms) and the conjugate image component.
  • a hologram separated from (4) can be obtained.
  • Doing division process to divide the above equation (6) in equation (7) can be removed and amplitude R 0 and phase phi R of off-axis reference beam R from the equation (6).
  • This process is a process of performing phase subtraction, that is, a process of performing frequency conversion, and is a process of heterodyne modulation.
  • the complex amplitude inline hologram J OL of the object light O for inline spherical wave reference beam L is obtained by the following equation (8).
  • Inline spherical wave reference beam L is the data of the reference beam R at the reference light for saving acquired as the reference hologram I LR is off-axis hologram and serves as a reference light in the digital processing of the hologram data Having.
  • Inline spherical wave reference beam L is used to generate a hologram that does not include data of the reference light R complex amplitude inline hologram J OL.
  • the reference light hologram I LR acquires one off-axis hologram I LR and obtains one complex when the off-axis reference light R is maintained under the same conditions and a plurality of object light holograms I j OR are acquired. What is necessary is just to create the amplitude hologram JLR .
  • This multiplication process is a process of removing the component of the in-line spherical wave reference light L from the above equation (8), and the light wave O 0 (x, y) exp (i ( ⁇ O (x, y)) of the object light O ), which is used to mean that it contains all the data necessary to reproduce the lightwave, and will be used in the same way in the following. If the amplitude L 0 (x, y) of the in-line spherical wave reference light L changes slowly and can be ignored, it may be left.
  • Multiplication factor mentioned above L 0 (x, y) exp (i ( ⁇ L (x, y)) is a spherical wave emitted from the converging point P L inline spherical wave reference beam L is propagated through the air, a hologram representing a light wave reaching the image sensor 5 i.e. the hologram surface 50, which will be referred to as in-line reference hologram j L.
  • line reference hologram j L is propagated propagated through air to the hologram surface 50 If we and reaches the hologram surface 50 as a spherical wave. Accordingly, the multiplication factors are analytically obtained using the positional information of the focal point P L.
  • the wavefront on the hologram surface 50 is a wavefront deformed from a spherical wave.
  • the hologram j L is not analytically obtained, but the distance ⁇ from the converging point PL of the in-line spherical wave reference light L to the hologram surface 50 and the thickness A of the beam combiner 3 are determined. By being given, it is calculated by light propagation calculation using plane wave expansion (described later).
  • a planar target formed by describing a pattern whose dimensions are accurately determined on a transparent planar glass substrate is fixed to the adjusted sample table 4 so that the pattern contacts the virtual plane VP. .
  • the object light g on the hologram surface 50 is obtained from the recorded interference fringes I OR and I LR, and the plane wave expansion and light propagation calculation of the object light g and the rotation conversion are performed as described below to obtain a focal point on the target surface. Play the image.
  • Reconstructed object beam h V includes a distance z O and the distance ⁇ as parameters. At least as a reference point z-coordinate values of the reproduction surface focus reproduced image is obtained in P O, the distance z O is Motomari, as the parameter value when the size of the focus reproduced image matches the actual dimensions of the target, the distance ⁇ is I get it. Moreover, reconstructed object beam h V includes in addition to the inclination angle alpha O distance z O and the distance ⁇ as parameters. When the in-focus reproduced image is obtained over the entire surface, the inclination angle ⁇ O is obtained as the value of the rotation conversion angle.
  • Inline spherical wave reference beam L is a light used only to reproduce the hologram
  • the distance ⁇ to see the light convergence point P L is a distance measured in mm.
  • the shape measurement, the reference beam focal point P L is not used and the reference point light sources are searched in the vicinity of the reference light focal point P L to be set therein and the reference point for shape measurement to be newly set Used.
  • This reference point is the original mirror image point of the illumination light converging point P Q.
  • Reference point is set to come to the original position of the mirror image point in substantially the illumination light convergence point P Q, using a correlation function calculated by the post-processing on a computer.
  • the distance z O and the inclination ⁇ O of the reference plane were mechanically adjusted.
  • a method of determining a reference point light source for shape measurement with high accuracy by calculation using a correlation function between a point light source and a reproduction object light will be described. Determining a reference point light source with high accuracy, it is to match the reference point light source for shape measurement in the point of symmetry P1 of the illumination light converging point P Q. To do this, we obtain the position immediately considered point P1 and is close to the reference beam focal point P L by numerical calculation using a correlation function of light.
  • the focal point of the object light O reflected light of the illumination light Q
  • the position coordinates (x1, y1, ⁇ ) are detected and set as a tentative focal point P1 (x1, y1, ⁇ ) (# 62).
  • the detected condensing point P1 (x1, y1, z1) is set as a reference point S1 for shape measurement, and a reference light point light source is set there (# 64).
  • the correlation function C is given by the following equation (17).
  • the correlation function C (x1, y1, ⁇ ) includes the coordinates (x1, y1) of the virtual point light source on the plane as a parameter.
  • the coordinates (x1, y1) are obtained by numerical calculation as a parameter value at which the absolute value
  • the phase of the reference light L1 generated by the reference point light source S1 can be accurately calculated using an analytical solution of a spherical wave.
  • the phase of the illumination light Q and the phase of the reference light L1 coincide with each other over the entire virtual plane VP.
  • a measurement hologram J V OS (x ′, y ′) for measuring the surface to be measured is obtained.
  • the height distribution t (x ′, y ′) of the measured surface is obtained from the optical path difference between the illumination light Q reflected on the measured surface and the illumination light Q reflected on the virtual plane VP.
  • the phase of the in-line spherical wave reference light L1 having the reference point S1 as a light source matches the phase of the illumination light Q on the virtual plane VP.
  • the height distribution t (x ′, y ′) is obtained by the following equation (18) using the phase ( ⁇ O ⁇ L1 ) of the measurement hologram J V OS .
  • the phase theta O is reconstructed object beam holograms h V from the resulting reconstructed object beam phase
  • the phase theta L1 is the reference light
  • the angle ⁇ (x ', y') are coordinates ( x ′, y ′) is the incident angle of the illumination light Q.
  • the surface shape measuring device 1 is a device for measuring the shape of the measured surface of the object 4 using holography, and is acquired by the data acquisition unit 10 for acquiring a hologram of the measured surface of the object 4 and the data acquisition unit 10. And an image reproducing unit 12 for reproducing an image on the surface to be measured from the hologram.
  • the data acquisition unit 10 includes an image sensor 5 that converts light intensity into an electric signal and outputs the signal as hologram data, and a sample that fixes the object 4 so that a measured surface of the object 4 is in contact with a virtual plane VP that is virtually set.
  • a table 7 and an optical system 2 for transmitting each light are provided.
  • the image sensor 5 is connected to a control unit and a computer 11 as a memory.
  • the optical system 2 includes two optical systems for the spherical wave illumination light Q and the in-line spherical wave reference light L, which are arranged symmetrically on both sides of a virtual plane VP that is virtually set, and immediately before the image sensor 5.
  • a beam combiner 3 composed of a cube-type beam splitter and an optical system for off-axis reference light R are provided.
  • the spherical wave illumination light Q is a light that illuminates the measured surface of the object 4 from an oblique direction and causes the image sensor 5 to record reflected light including information on the surface shape of the object 4, that is, object light O.
  • a lens 21 for condensing parallel light and a pinhole plate 22 having a pinhole at the condensing position. The position of the pinhole, a focal point i.e. the illumination light convergence point P Q of the illumination light Q, the position of the point source of the spherical wave light.
  • the in-line spherical wave light L includes, on its optical path, a lens 25 for condensing parallel light, and a pinhole plate 26 having a pinhole at the condensing position. Position of the pinhole of the pinhole plate 26, a focal point or reference light convergence point P L in-line reference light L, the position of the point source of the spherical wave light.
  • the in-line spherical wave light L becomes in-line light with respect to the object light O composed of the reflected light of the illumination light Q.
  • the recording of the reference lights L and R is used to replace the component of the off-axis reference light R in the recording hologram of the object light with the component of the in-line spherical wave light L and to remove the component, thereby making the recording hologram in-line.
  • the object light O and the in-line spherical wave reference light L pass through the beam combiner 3 and enter the image sensor 5 from the front. That is, the center normal direction of the light receiving surface of the image sensor 5, an illumination optical focal point P Q and the reference light condensing point P L is optically becomes line, and present in optically the same positions.
  • the off-axis reference light R enters the beam combiner 3 from the side, is reflected by the internal reflecting mirror 30, and enters the image sensor 5.
  • the optical path includes a small-diameter lens 23 for diameter expansion and a large-diameter lens 24 for collimation, and generates off-axis reference light R formed in a spherical wave shape.
  • the reference and the light convergence point P L is the focal point of the illumination light condensing points P Q inline spherical wave reference beam L is condensing point of the spherical wave illumination light Q with respect to the virtual plane VP
  • the illumination light Q obliquely illuminates the surface to be measured
  • the reflected object light O enters the image sensor 5
  • the in-line spherical wave reference light L obliquely passes through the virtual plane VP.
  • Each light is propagated so as to be incident on the image sensor 5.
  • the beam combiner 3 combines the object light O or the in-line spherical wave reference light L and the off-axis reference light R and causes the combined light to enter the image sensor.
  • a cube-type beam splitter can be used as the beam combiner 3.
  • the image reproducing unit 12 is provided in the computer 11 together with the data storage unit 6.
  • the image reproducing unit 12 includes a software group for executing the surface shape measuring method described in the first embodiment and a memory.
  • the object light which is reflected light is used by using the spherical wave illumination light Q and the off-axis reference light R.
  • An O recording hologram IOR is obtained.
  • the recording hologram I LR of the off-axis reference light R is obtained using the in-line reference light L.
  • the acquired off-axis holograms I OR and I LR are processed by the surface shape measurement method described in the first embodiment, and a measured value of the surface shape is obtained.
  • the surface shape measuring apparatus 1 of the present embodiment includes the cube-shaped beam combiner 3, the light passing through the beam combiner 3 by the plane wave expansion method taking the refractive index of the beam combiner 3 into consideration. Propagation calculations need to be performed.
  • the processing relating to the beam combiner 3 will be described.
  • N in the above equation is the refractive index of the beam combiner 3.
  • the above equation (19) is a fundamental calculation equation, and it is necessary for the actual calculation to perform the light propagation calculation with the number of calculation points satisfying the sampling theorem.
  • the in-line reference light hologram j L of the above equation (19) obtained by the above-described procedure is a light wave of the in-line spherical wave reference light L that has passed through the beam combiner 3 and reached the hologram surface 50.
  • U and v in the above equation (20) are Fourier spatial frequencies in the x and y directions, respectively.
  • z-direction Fourier spatial frequency w, w n, as in the above equation (21) is determined from the dispersion equation plane wave (equation of wave number and wavelength).
  • the dispersion equation includes the refractive index n in the form (n / ⁇ ) 2 .
  • the above equations (20) and (21) are calculation equations in consideration of the size A and the refractive index n of the beam combiner 3 existing on the optical path.
  • the surface profile measuring apparatus 1 of the present embodiment is different from the surface profile measuring apparatus 1 of the second embodiment in that the optical system 2 includes a condenser lens 27 that collects the object light O and the in-line spherical wave reference light L;
  • the pupil plate 27a is disposed at a position where light is condensed by the condenser lens 27 and limits the amount of light passing therethrough.
  • the imaging lens 27b is disposed in combination with the pupil plate 27a.
  • the two lenses provided before and after the pupil plate 27a are lenses that form an image of the object light O and the in-line spherical wave reference light L on the image sensor 5.
  • a hologram with a large diameter can be recorded, the surface shape of a large object can be measured.
  • a method of recording a large-diameter hologram a method of arranging a large number of image sensors on a plane or a method of moving the image sensor on a plane can be considered.
  • the reflected light is collected using a lens.
  • a large-diameter hologram can be recorded by one image sensor 5.
  • the in-line spherical wave reference light L or the object light O is projected onto the light receiving surface of the image sensor 5 using the condenser lens, and the interference fringes formed by the off-axis reference light R are recorded.
  • the width of the spatial frequency band of the recording hologram can be adjusted by opening and closing the pupil of the pupil plate 27a.
  • the spatial frequency bandwidth is narrow, and when the surface to be measured has fine irregularities, the bandwidth is wide.
  • the two lenses, the condensing lens 27 and the imaging lens 27b, form an image of the light on the surface to be measured on the light receiving surface of the image sensor 5, so that the shape of the surface to be measured can be obtained without reproducing the object light. Observation and shape measurement become possible.
  • the surface shape measurement device 1 of the present embodiment is different from the surface shape measurement device 1 of the third embodiment in that the condensing lens 27, the pupil plate 27a, and the imaging lens 27b are replaced with a concave mirror 28 and a pupil plate 28a. And an imaging lens 28b.
  • the concave mirror 28 for example, a condensing elliptical mirror is used.
  • the concave mirror 28 and the imaging lens 28b form the image light of the object light O and the in-line spherical wave reference light L on the image sensor 5.
  • a hologram having a large diameter can be recorded by a small image sensor, and the shape of the surface to be measured can be observed and measured without regenerating the object light.
  • the optical system 2 of the surface profile measuring apparatus 1 of the present embodiment differs from the optical system 2 of the above-described second embodiment (FIG. 4) in that a wavelength filter is inserted between the beam combiner 3 and the image sensor 5. It is provided with two pairs of such a wavelength filter and an image sensor.
  • a pair of the wavelength filter F1 that transmits one wavelength ⁇ 1 and the image sensor 51 is arranged on the surface of the beam combiner 3 that faces the incident surface 31 of the object light O.
  • the other set of the wavelength filter F2 and the image sensor 52 which passes the wavelength lambda 2, the off-axis reference beam R at the beam combiner 3 is arranged on the side opposite to the surface to be incident.
  • a modulated wave HW J 1 V OS / J 2 V OS is generated.
  • ⁇ B ⁇ 1 ⁇ 2 / ( ⁇ 2 ⁇ 1 )
  • the propagation directions of the light coincide at all points in space, and the phase components are exp (2 ⁇ r / ⁇ 1 ⁇ 1 ) and exp (2 ⁇ r / ⁇ 2 ⁇ 2 ).
  • a wave having a phase component of exp (2 ⁇ r / ⁇ B ⁇ B ) can be created.
  • ⁇ B and ⁇ B are given by the following equation (22).
  • the wavelength ⁇ B matches the wavelength of the beat wave generated by the two illumination lights.
  • the propagation directions of the two reflected lights emitted from each point on the measurement surface coincide.
  • the propagation directions of the two reflected lights emitted from the minute surface on the measurement surface such that interference and diffraction of light near the surface can be ignored also coincide. Therefore, when the reflected light of the light wavelength ⁇ 1 is divided by the reflected light of the light wavelength ⁇ 2 , it is possible to create a light wave of the wavelength ⁇ B , which functions similarly to the case of the illumination light Q and has a larger wavelength.
  • Equation (23) is equivalent to equation (18) for a single wavelength.
  • the above equation (23) is basically equivalent to the equation (18) for a single wavelength.
  • the surface shape measurement device 1 and the surface shape measurement method of the present embodiment can arbitrarily determine whether to use both data of the hologram recorded for two wavelengths or to use either one of the data at the time of post-processing.
  • equation (23) may be used, and when using data of a single wavelength, equation (18) may be used.
  • Holograms having different wavelengths can be recorded by one-shot using the optical system shown in FIG.
  • a wavelength filter F1 which each by transmitting light wavelength lambda 1 of light to separate light wavelength components to block the light of the light wavelength lambda 2, is transmitted through the optical wavelength lambda 2 of the light light and using a wavelength filter F2 for blocking light of wavelength lambda 1.
  • optical system 2 for the measurement method of the present embodiment for example, using the optical system of FIG. 4 having only one image sensor 5 without a wavelength filter, two types of off-axis holograms are used. I j OR and I j LR may be acquired at different times for each wavelength.
  • an optical system of the off-axis reference light R may be provided for each wavelength.
  • the two off-axis reference beams R1 and R2 can be arranged off-axis with each other, and one-shot recording of holograms having different wavelengths can be performed.
  • the separation into holograms for each wavelength can be performed by post-processing due to the effect of the off-axis arrangement. From the one-shot recorded holograms, in the spatial frequency domain by performing a filtering process, the complex amplitude component of the optical wavelength lambda 1 and the light wavelength lambda 2 of the complex amplitude component can be taken out separately.
  • the recordable measurement surface is narrower than when the optical system of FIG. 8 is used. Conversely, in the case of the optical system shown in FIG. 8, the recordable measurement surface can be enlarged. However, since two holograms are recorded by different image sensors 51 and 52, two reproductions are performed when the object light O is reproduced. Light position adjustment is required.
  • the synthesized wavelength ⁇ B ( ⁇ 1 ⁇ 2 ) / ( ⁇ 2 - ⁇ 1 ) is changed to any of the original wavelengths ⁇ 1 , since longer than lambda 2, to extend the height region measurable.
  • the surface shape measuring device 1 and the surface shape measuring method using light having different wavelengths can be extended to an apparatus and a method using not only two wavelengths but also a plurality of wavelengths of three or more wavelengths. In the present method, measurement can be performed by post-processing recorded hologram data, which is greatly different from the conventional method using a beat wave.
  • two wavelengths are selected by post-processing, and a plurality of combinations such as a difference (1 / ⁇ 1 ⁇ 1 / ⁇ 2 ) are created, Is used to make a plurality of combinations, for example, a sum and a difference (1 / ⁇ 1 + 1 / ⁇ 2 -1 / ⁇ 3 ), and the measurement is performed by interpolating the measurement areas with each other. it can.
  • the surface shape measuring device 1 of the present embodiment can be embodied by, for example, the surface shape measuring device 1 shown in FIGS. 5 and 6, and therefore these figures are also referred to.
  • the surface shape measuring device 1 includes a data acquisition unit 10 for acquiring a hologram on a surface to be measured, and an image reproducing unit 12 for reproducing an image on the surface to be measured from the hologram acquired by the data acquisition unit 10.
  • the surface shape measuring device 1 further includes a control unit 11 composed of a computer that controls the data acquisition unit 10 and the image reproduction unit 12, and a memory 11a that stores a calculation program such as FFT, control data, and the like. .
  • the data acquisition unit 10 includes an optical system 2 that generates and propagates light, a beam combiner 3 that is a cube-type beam splitter used as a beam combiner, and an image that converts light intensity into an electric signal and outputs it as hologram data. It has a sensor 5 and a data storage unit 6 for storing data acquired by the image sensor 5. The data storage unit 6 is provided in the control unit 11 together with the image reproduction unit 12. Further, the data acquisition unit 10 includes a sample stage 7 whose position and orientation can be adjusted in relation to the arrangement of the optical system 2 and the image sensor 5.
  • the image reproducing unit 12 includes hologram generating units 13 to 16 and 18, a reference point detecting unit 17, a shape measuring unit 19, and a display unit 20 in order to perform the processes in the respective steps shown in FIGS. ing.
  • the complex amplitude hologram generation unit 13 removes the component of the off-axis reference light R from the object light off-axis hologram I OR and the reference light off-axis hologram I LR to obtain a complex amplitude related to the object light O and the in-line spherical wave reference light L. Generate an in-line hologram JOL .
  • Object hologram generating unit 15 using an in-line reference hologram j L, the complex amplitude inline hologram J OL, produces the object hologram g representing the light wave of the object light O the hologram surface 50.
  • the reproduction object light hologram generator 16 converts the object light hologram g into a hologram at the position of the virtual plane VP by light propagation calculation, and converts the converted hologram to a virtual plane inclination ⁇ O which is the inclination of the virtual plane VP with respect to the hologram plane 50. and rotation transformation by, for generating a reconstructed object beam hologram h V for measurement in a virtual plane VP.
  • the reference point detection unit 17 calculates the light propagation of the object light hologram g, detects the focal point of the object light by calculating the correlation function, and sets that point as the reference point S1 for shape measurement.
  • the spherical wave light hologram s V is a hologram in the virtual plane VP of spherical waves corresponding to emitted inline spherical wave reference beam L from the reference light converging point P L analytically produced.
  • the shape measuring unit 19 generates a measurement hologram J V OS for the object light O and the spherical wave light hologram s V by dividing the reproduction object light hologram h V by the spherical wave light hologram s V , and generates a complex amplitude for measurement. obtaining the height distribution of the surface to be measured of the object 4 from the phase distribution of the in-line hologram J V OS.
  • the display unit 20 displays an image obtained by the image sensor 5, an intensity image of each hologram, a phase distribution image, and the like.
  • the data of the object light off-axis hologram I OR and the reference light off-axis hologram I LR stored in the data storage unit 6 are processed by the image reproducing unit 12 and displayed on the display unit 20.
  • the display unit 20 is an FPD such as a liquid crystal display device, displays data other than images, and serves as a user interface. Except for the display unit 20, each unit of the image reproducing unit 12 is configured using a program that operates on a computer and software including a subroutine group thereof.
  • Example 1 The flatness measurement of the first embodiment will be described with reference to FIGS.
  • a flat mirror of a float glass substrate having a flatness specification of 4 ⁇ to 5 ⁇ as a sample for flatness measurement
  • a complex amplitude in-line hologram for shape measurement was obtained using the optical system shown in FIGS.
  • a green semiconductor-excited solid-state laser (wavelength: 532 nm, output: 50 mW) was used as a light source, and a monochrome camera link CCD camera (number of pixels: 6600 ⁇ 4400, pixel pitch: 5.5 ⁇ m) was used as an image sensor.
  • FIG. 10 shows the phase distribution of a complex amplitude in-line hologram on the mirror surface of a plane mirror having a flatness specification of 4 to 5 ⁇ .
  • FIG. 11 shows a two-dimensional distribution of the surface height obtained using the phase distribution of FIG. The measurement range was 15 mm ⁇ 15 mm, and the difference PV between the maximum value and the minimum value of the surface height was 431.7 nm, and the standard deviation RMS of the height was 69.0 nm. In the measurement range, the PV value is smaller than ⁇ , and satisfies the flatness specifications of 4 ⁇ to 5 ⁇ .
  • FIGS. 12A and 12B show the height distribution on the straight line in each of the x-axis direction and the y-axis direction shown in FIG. About 160 m was obtained as the radius of curvature in the x-axis direction shown in FIG.
  • Example 2 The flatness measurement of the second embodiment will be described with reference to FIGS.
  • a flat mirror having a flatness specification of ⁇ / 4 as a sample for flatness measurement
  • a complex amplitude in-line hologram for shape measurement was obtained using the apparatus used in Example 1.
  • FIG. 13 shows a two-dimensional distribution of the surface height of a flat mirror having a flatness specification of ⁇ / 4.
  • the difference PV between the maximum value and the minimum value of the surface height was 81.3 nm, and the standard deviation RMS of the height was 15.3 nm. In the measurement range, the PV value is smaller than ⁇ / 4, and satisfies the flatness specification ⁇ / 4.
  • FIG. 13 shows a two-dimensional distribution of the surface height of a flat mirror having a flatness specification of ⁇ / 4.
  • the difference PV between the maximum value and the minimum value of the surface height was 81.3 nm, and the standard deviation RMS of the height was 15.3 nm.
  • the PV value is
  • the resolution of the surface shape measurement is determined by the bandwidth of the spatial frequency filtering performed on the reproduced object light.
  • the image resolution in Examples 2 and 3 is about 78 ⁇ m.
  • Example 3 Third Embodiment
  • the flatness measurement of the third embodiment will be described with reference to FIGS.
  • a complex amplitude in-line hologram for shape measurement was obtained using the apparatus used in Example 1 using a precision optical flat mirror having a flatness specification of ⁇ / 20 as a sample for flatness measurement.
  • FIG. 15 shows a two-dimensional distribution of the surface height of a plane mirror having a flatness specification of ⁇ / 4.
  • the difference PV between the maximum value and the minimum value of the surface height was 19.6 nm, and the standard deviation RMS of the height was 2.5 nm. In the measurement range, the PV value is smaller than ⁇ / 20, and satisfies the flatness specification ⁇ / 20.
  • FIGS. 16A and 16B show height distributions on straight lines in the x-axis direction and the y-axis direction shown in FIG.
  • the recorded object light contains weak multiple reflection light generated on the surface of the cube beam splitter (beam combiner) and the surface of the cover glass fixed on the front of the image sensor.
  • the propagation direction of the multiple reflected light and the propagation direction of the reflected light from the measured surface can be shifted.
  • spatial filtering is performed in the real space, thereby removing the influence of the multiple reflection light from the recording hologram.
  • the resolution of surface shape measurement is determined by the bandwidth of spatial frequency filtering performed on the reproduced object beam.
  • the high-frequency components of the height distribution include, in addition to the scattered light due to the surface roughness of the surface to be measured, scattered light generated on the cube-type beam splitter surface and the cover glass surface of the image sensor, and noise generated on the image sensor. It is thought that there is. In order to achieve high accuracy of surface shape measurement and surface roughness measurement, it is necessary to remove scattered light generated on the beam splitter surface or the cover glass surface.
  • Example 4 Fourth Embodiment The flatness measurement of the fourth embodiment will be described with reference to FIGS.
  • a complex amplitude in-line hologram for shape measurement was obtained using the apparatus used in Example 1.
  • FIG. 17 shows a two-dimensional distribution of height on the target surface. The measurement range is 15 mm ⁇ 15 mm, with the high part representing the chrome surface and the low part representing the surface of the glass substrate.
  • the resolution of the surface shape measurement is determined by the bandwidth of the spatial frequency filtering performed on the reproduced object light.
  • the resolution of the image shown in FIG. 17 is approximately 24 ⁇ m.
  • FIGS. 18A and 18B show the height distribution on the straight line in each of the x-axis direction and the y-axis direction shown in FIG. Glass surface and chrome surface can be clearly distinguished.
  • the chromium thickness is constant over the entire measurement range, with a value of approximately 60 nm.
  • the results in FIGS. 17 and 18 show that the glass substrate is curved in a gentle saddle shape. About 500 m is obtained as the radius of curvature in each of the x-axis direction and the y-axis direction.
  • Example 5 The flatness measurement of the fifth embodiment will be described with reference to FIGS.
  • the surface shape of a color filter for a liquid crystal display was measured using the surface shape measuring apparatus 1 according to the fifth embodiment.
  • the surface profile measuring device 1 is a device capable of one-shot recording and measurement using single-wavelength light and two-wavelength light.
  • the color filter to be measured has a structure in which an RGB filter is attached to a black matrix. On the color filter, columnar photo spacers having a height of about 4 ⁇ m and a diameter of about 16 ⁇ m are staggered at equal intervals.
  • Two types of measurement were performed, that is, measurement with a single wavelength using He-Ne laser light.
  • FIG. 19 shows the measurement results of the height distribution of the color filters in the range of a diameter of 4 mm
  • FIG. 20 shows an enlarged view of a square portion in FIG.
  • the portions where the height of the color filter is low are black and the portions where the color filter is high are white, but the portion of the columnar photo spacer a is indicated by a black dot for easy viewing.
  • images without distortion are obtained, and the fine structure of the color filter and the height distribution of each part can be clearly identified.
  • the measurement results show that the flatness of the filter is maintained with very high accuracy.
  • FIG. 21 shows the measurement results along the straight line (i) in the x-axis direction in FIG. 20
  • FIG. 22 shows the measurement results along the straight line (ii) in the y-axis direction in FIG.
  • Each of the straight lines (i) and (ii) includes two columnar photospacers a.
  • a broken line from the peak of the photo spacer a to the lower part indicates a portion where the light intensity of the reproduction light was too small to measure accurately. This indicates that the reflected light from the side of the photo spacer did not reach the image sensor (CCD).
  • FIG. 23 shows the measurement results by numbering each photo spacer in the recording range. From this measurement result, it can be seen that a uniform photospacer having a uniform height of 4 ⁇ m is formed with high accuracy, and that useful measurement has been performed. From the results of this example, it can be seen that the surface profile measuring apparatus 1 and the method according to the fifth embodiment enable highly accurate height distribution measurement over a wide range from nm to several tens of ⁇ m. Further, in this embodiment, the object light is recorded in one shot and the measurement result is obtained by post-processing in the computer, and it can be seen that high-speed and high-accuracy shape measurement can be realized.
  • the novelty and advantages of the present invention over the prior art include the following: (1) high-speed measurement by one-shot recording of light waves; (2) high-precision absolute flatness measurement of a measured surface; 3) Because a reference plane or a collimating lens is not used, the diameter of the flatness measurement can be increased. (4) The flatness can be measured for a measured surface having a wide range of reflection coefficient. (5) Reproduction on the measured surface (6) No adjustment mechanism such as movement or rotation is required, which makes it possible to measure the surface shape and surface roughness with high resolution using the reflected light, and the configuration of the recording optical system becomes very simple.
  • the present invention can be applied to a wide range of applications utilizing these advantages in the fields of optics, digital holography, optical measurement, interference measurement, and fine shape measurement. Further, from the viewpoint of technical application, use in fields such as precision measurement, nanotechnology, substrate shape measurement, semiconductor substrate inspection, and optical component inspection can be considered. Specific examples of use include surface shape measurement of thin glass substrates, photomasks, large wafers, and the like, surface shape measurement of optical components, measurement of an industrial reference plane, and the like.

Abstract

本発明は、物質的な参照平面を必要とせず、機械的な調整機構によらずに測定精度を向上できる表面形状計測装置および表面形状計測方法を提供する。仮想平面VPに対し、照明光集光点Pと参照光集光点Pとが互いに鏡像配置とされ、球面波照明光Qの反射光である物体光Oとインライン球面波参照光Lの各データがホログラムに記録される。仮想平面VPにおいて、計測用の再生物体光ホログラムhが生成され、参照光集光点Pから放たれる球面波光を表す球面波光ホログラムsが解析的に生成される。再生物体光ホログラムhを球面波光ホログラムsで除算して得られる位相分布から物体4の被測定面における高さ分布が得られる。被測定面からの反射光の位相データを取得し、解析的に得られる球面波の平面切断面における位相分布と比較して、ガラス基板などの参照平面を必要とせず、高精度の表面形状計測が実現される。

Description

表面形状計測装置および表面形状計測方法
 本発明は、デジタルホログラフィにおける表面形状計測装置および表面形状計測方法に関する。
 従来から、反射光や透過光などの光波を解析する技術に、光の強度と位相のデータを併せてホログラムと呼ばれる写真乾板などの記録媒体に記録して解析するホログラフィがある。近年のホログラフィは、受光素子と半導体メモリなどを用いて、光波の強度と位相をデジタルデータとして取得したり、計算機上でホログラムを生成したりして、解析することが行われている。このようなホログラフィは、デジタルホログラフィと呼ばれる。
 デジタルホログラフィにおいて、ホログラムデータの取得や処理の高速化と高精度化を達成するための種々の技術が提案され、撮像に応用されている。例えば、ワンショットで記録したホログラムデータに空間周波数フィルタリングと空間ヘテロダイン変調とを適用して、物体像再生用の複素振幅インラインホログラムを高速かつ正確に生成するデジタルホログラフィが知られている(例えば、特許文献1参照)。
 従来の光学顕微鏡の問題を解決するため、ホログラフィを用いることにより、結像レンズを用いることなく大開口数の物体光を正確にワンショット記録する方法、および記録された物体光を平面波展開によって高分解能3次元像を正確に計算機再生する方法が知られている(例えば、特許文献2参照)。この方法によれば、無歪な高分解能3次元動画像を記録し再生できるレンズレス3次元顕微鏡が実現される。このような顕微鏡は、結像レンズを用いないので、従来の光学顕微鏡が有する、媒質や結像レンズの影響を受ける問題を解決できる。
 また、培養液中細胞や生体組織の内部構造を高分解能で計測するために、反射型レンズレスホログラフィック顕微鏡と波長掃引レーザ光を用いる高分解能断層撮像法が知られている(例えば、特許文献3参照)。
 さらに、入射方向の異なる照明光を照射した物体から放射される大開口数の物体光を、照明光の入射方向毎にホログラムデータとして記録し、これらの複数の大開口数ホログラムを一つのホログラムに合成して、1を超える合成開口数のもとで物体光を再生する方法が知られている(例えば、特許文献4参照)。この方法によれば、通常の回折限界を超える分解能を持つ超高分解能3次元顕微鏡が実現できる。
 加えて、ワンショットディジタルホログラフィによる光波の正確な記録と記録光波の平面波展開を用いるホログラフィックエリプソメトリ装置が知られている(例えば、特許文献5参照)。このエリプソメトリ装置によれば、非平行の照明光が含む多数の入射角を有する入射光による反射光のデータを一括してホログラムに記録できるので、入射角に対応する多数の波数ベクトル毎にエリプソメトリ角Ψ,Δを求めることができ、測定効率が向上できる。
 また、撮像素子、2つの結像用レンズ、キューブ型ビームスプリッタ、フィゾー参照平面を有する素子および被測定物を直列に配置し、参照平面と被測定部からの反射光の干渉縞を記録して形状計測を行う干渉測定装置が知られている(例えば、特許文献6参照)。
国際公開第2011/089820号 国際公開第2012/005315号 国際公開第2014/054776号 国際公開第2015/064088号 国際公開第2018/038064号 米国特許第8269981号明細書
 しかしながら、上述した特許文献1乃至5に示されるようなホログラフィは、顕微観察や比較的狭い面積の形状計測などに適用されるが、例えば、大面積化が進む半導体ウエハなどの平面度測定や表面形状の計測への対応が望まれている。また、上述した特許文献6に示される干渉測定装置は、平面度の一般的な測定方法であるフィゾー干渉を用いるものであるが、参照平面を用いることに起因して、この方法を用いるフィゾー干渉計に内在する下記のような問題を有している。
 フィゾー干渉計は、最も高精度で高速な平面度測定ができる装置の一つとされ、各国の標準器研究所における平面度測定装置として採用されている。フィゾー干渉測定では、基準となる透明ガラス板の参照平面で反射した光と被測定面で反射した光が作る干渉縞を記録する。測定精度を高めるために、参照平面をわずかに垂線方向に移動して干渉縞の位相をシフトさせ、位相が違う複数枚の干渉縞を記録し、記録した複数枚の干渉縞を使って被測定面の平面形状を解析する。こうして測定した結果は、あくまでも参照平面と被測定面との比較であり、平面度の絶対値を測定するには参照平面の絶対形状補正が必要である。絶対形状補正には3枚合わせ法が用いられている。
 また、フィゾー干渉計の光学系は、光学部品数が比較的少なく構造もシンプルにできるが、測定の基準となる参照平面やコリメートレンズの他に、被測定器物の傾き調節機構や垂直移動機構および絶対形状補正のための回転台などが必要である。測定の精度は、参照平面形状補正における不確かさに加え、位相シフトの不確かさ、環境ゆらぎによる不確かさなどの影響を受ける。これらを合わせた測定の不確かさを10nm以下に抑えることは難しい。他の問題点として、参照平面やコリメートレンズを使用しているため、測定可能な器物の直径はおよそ300mm以下に制限され、それ以上の大口径化は難しい。また、ガラス製の参照平面に比べて反射率が大きく異なる被測定面に対しては、干渉縞のコントラストが低下し、高精度な測定が難しくなる、という問題がある。
 本発明は、上記課題を解消するものであって、簡単な構成により、形状測定の比較対象としての物質的な参照平面を必要とせず、機械的な調整機構によらずに測定精度を向上できる表面形状計測装置および表面形状計測方法を提供することを目的とする。
 上記課題を達成するために、本発明の表面形状計測装置は、ホログラフィを用いる表面形状計測装置において、被測定面を照明する球面波照明光(Q)の反射光である物体光(O)と物体光(O)に対してインラインとなるインライン球面波参照光(L)の2つの光のデータをそれぞれ物体光オフアクシスホログラム(IOR)および参照光オフアクシスホログラム(ILR)としてイメージセンサを用いて取得するデータ取得部と、データ取得部によって取得されたデータから被測定面の画像を再生して表面形状のデータを取得する画像再生部と、を備え、データ取得部は、被測定面に接するように仮想的に設定した仮想平面(VP)に対して球面波照明光(Q)の集光点である照明光集光点(P)とインライン球面波参照光(L)の集光点である参照光集光点(P)とが互いに鏡像配置となり、インライン球面波参照光(L)が仮想平面(VP)を斜めに通過してイメージセンサに入射するように構成された光学系を備え、画像再生部は、2種類のオフアクシスホログラム(IOR,ILR)のデータ、参照光集光点(P)の位置情報、および参照光集光点(P)から放たれる光が球面波であることを用いる計算処理によって、物体光(O)の光波を表す物体光ホログラム(g)を生成する物体光ホログラム生成部と、物体光ホログラム(g)を光伝播変換および回転変換して、仮想平面(VP)における再生物体光ホログラム(h)を生成する再生物体光ホログラム生成部と、計算処理によって、物体光ホログラム(g)に光伝搬変換を行って物体光(O)が集光する位置を検出してその位置を、参照光集光点(P)の位置情報を高精度化した情報を有する、形状計測用の参照点(S1)として設定する参照点検出部と、参照点(S1)から放たれた球面波光の仮想平面(VP)におけるホログラムである球面波光ホログラム(s)を解析的に生成する解析光ホログラム生成部と、再生物体光ホログラム(h)を球面波光ホログラム(s)で除算して計測用ホログラム(J OS=h/s)を生成し、計測用ホログラム(J OS)の位相分布から物体の被測定面における高さ分布を求める形状計測部と、を備えることを特徴とする。
 また、本発明の表面形状計測方法は、物体の被測定面の形状をホログラフィを用いて計測する表面形状計測方法において、イメージセンサの光軸上にインライン球面波参照光(L)の集光点である参照光集光点(P)を配置し、光軸から外れた位置に球面波照明光(Q)の集光点である照明光集光点(P)を配置し、参照光集光点(P)と照明光集光点(P)とを結ぶ線分を垂直に2等分する平面である仮想平面(VP)を設定し、被測定面が仮想平面(VP)に接するように物体を配置し、被測定面から反射される球面波照明光(Q)の反射光である物体光(O)のデータを、イメージセンサを用いて物体光オフアクシスホログラム(IOR)として取得し、物体が配置されていない状態で、仮想平面(VP)を通過してイメージセンサに入射するインライン球面波参照光(L)のデータを、イメージセンサを用いて参照光オフアクシスホログラム(ILR)として取得し、2種類のオフアクシスホログラム(IOR,ILR)のデータから、物体光(O)とインライン球面波参照光(L)の両方の情報を含む複素振幅インラインホログラム(JOL)を生成し、インライン球面波参照光(L)が球面波光であることを用いる計算処理によって、イメージセンサの受光面であるホログラム面におけるインライン球面波参照光(L)の光波を表すインライン参照光ホログラム(j)を生成し、複素振幅インラインホログラム(JOL)とインライン参照光ホログラム(j)とを用いて、物体光(O)の光波を表す物体光ホログラム(g)を生成し、物体光ホログラム(g)を光伝播変換および回転変換して、仮想平面(VP)における再生物体光ホログラム(h)を生成し、計算処理によって、物体光ホログラム(g)に光伝搬変換を行って物体光(O)が集光する位置を検出してその位置を、参照光集光点(P)の位置情報を高精度化した情報を有する、形状計測用の参照点(S1)として設定し、参照点(S1)から放たれた球面波光の仮想平面(VP)におけるホログラムである球面波光ホログラム(s)を解析的に生成し、再生物体光ホログラム(h)を球面波光ホログラム(s)で除算して計測用ホログラム(J OS=h/s)を生成し、計測用ホログラム(J OS)の位相分布から物体の被測定面における高さ分布を求める、ことを特徴とする。
 本発明の表面形状計測装置および表面形状計測方法によれば、被測定面からの球面波照明光の反射光の位相データを取得し、解析的に得られる球面波の平面切断面における位相分布と比較して形状計測を行うので、ガラス基板などの物質的な参照平面を必要とせず、高精度の表面形状計測を実現できる。
本発明の第1の実施形態に係る表面形状計測方法を示すフローチャート。 同計測方法を説明するための概念図。 同計測方法における仮想平面の高精度な決定方法を示すフローチャート。 第2の実施形態に係る表面形状計測装置により物体光オフアクシスホログラムを取得する様子を示す側面図。 同装置により参照光オフアクシスホログラムを取得する様子を示す側面図。 第3の実施形態に係る表面形状計測装置により物体光オフアクシスホログラムを取得する様子を示す側面図。 第4の実施形態に係る表面形状計測装置により物体光オフアクシスホログラムを取得する様子を示す側面図。 第5の実施形態に係る表面形状計測装置のイメージセンサ周辺の構成図。 第6の実施形態に係る表面形状計測装置のブロック構成図。 (実施例1)本発明に係る表面形状計測装置を用いて求めた、平面ミラー試料の表面における、複素振幅ホログラムの位相分布を示す画像。 図10の位相分布を用いて求めた表面高さ分布を示す画像。 (a)は図11のx方向の直線上における高さ分布の図、(b)は同図のy方向の直線上における高さ分布の図。 (実施例2)他の平面ミラー試料について求めた表面高さ分布を示す画像。 (a)は図13のx方向の直線上における高さ分布の図、(b)は同図のy方向の直線上における高さ分布の図。 (実施例3)さらに他の平面ミラー試料について求めた表面高さ分布を示す画像。 (a)は図15のx方向の直線上における高さ分布の図、(b)は同図のy方向の直線上における高さ分布の図。 (実施例4)ネガパターンUSAFテストターゲットについて求めた表面高さ分布を示す画像。 (a)は図17のx方向の直線上における高さ分布の図、(b)は同図のy方向の直線上における高さ分布の図。 (実施例5)本発明に係る表面形状計測装置を用いて測定された液晶ディスプレイ用フィルタの高さ分布を示す画像。 図19の四角で囲んだ部分の拡大画像。 図20の画像における測定線(i)上における測定した結果を示す高さ分布の図。 図20の画像における測定線(ii)上における測定した結果を示す高さ分布の図。 図19の測定対象について得られたスペーサの高さ測定値分布の図。
 以下、本発明の一実施形態に係る表面形状計測装置および表面形状計測方法について、図面を参照して説明する。
 (第1の実施形態:表面形状計測方法)
 図1乃至図4を参照して、第1の実施形態に係る表面形状計測方法を説明する。図1、図2に示すように、本表面形状計測方法は、物体4の被測定面の形状をホログラフィを用いて計測する方法であって、光学系設定工程(#1)から表面形状計測工程(#8)までの工程を備えている。
 光学系設定工程(#1)では、仮想的に設定した仮想平面VPに関して互いに鏡像配置となるように、球面波照明光Qの集光点である照明光集光点Pとインライン球面波参照光Lの集光点である参照光集光点Pとが設定される。また、参照光集光点Pから仮想平面VPを斜めに通過する直線上にイメージセンサ5を配置し、直線と仮想平面VPとの交点位置に物体4の位置を示す基準点Pが設定される。これらの構成のもとで、イメージセンサ5によって、各球面波光Q,Lのホログラムがオフアクシス参照光Rを用いて取得され、コンピュータ上で各光源のホログラムを再生して確認することにより、物体4を固定する。その後、試料台7の位置と姿勢および光学系の全体が調整される。各球面波光Q,L、およびオフアクシス参照光Rは、一つの光源から放たれた互いにコヒーレントなレーザ光である。
 各集光点P,P、すなわち各球面波光Q,Lの光源、の位置は、例えば、ピンホール板のピンホール位置によって設定される。また、仮想平面VPの位置に、参照平面を有する参照平面基板70を配置して、球面波照明光Qの反射光のホログラムが取得される。このような確認、調整、および設定に要求される制度は、ねじなどで機械的な操作で調整できる数10μm程度である。測定精度をnm(ナノメータ)オーダに高精度化する処理は、圧電素子などを用いることなく、画像再生時に、コンピュータ内の後処理で行われる。
 物体光ホログラム取得工程(#2)では、被測定面が仮想平面VPに接するように物体4が基準点Pの位置に配置される。物体4の配置は、予め調整された試料台7に固定することによって行われる。物体4の被測定面が、球面波照明光Qによって斜め照明され、その物体4から放たれてイメージセンサ5に入射する反射光すなわち物体光Oのデータが、オフアクシス参照光Rを用いて物体光オフアクシスホログラムIORとして取得される。
 参照光ホログラム取得工程(#3)では、参照平面基板70と物体4のいずれも配置されない状態で、仮想平面VPを斜めに通過してイメージセンサ5に入射するインライン球面波参照光Lのデータが、オフアクシス参照光Rを用いて参照光オフアクシスホログラムILRとして取得される。これらの2種類のオフアクシスホログラムIOR,ILRのデータは、同時には取得されない。従って、オフアクシス参照光Rの照射条件などは、各データの取得の際に、同じに保つ必要がある。
 物体光ホログラム生成工程(#4)では、物体光オフアクシスホログラムIORと参照光オフアクシスホログラムILR、およびインライン球面波参照光Lが球面波光であることを用いて、イメージセンサ5の受光面(z=0)であるホログラム面50における物体光Oの光波を表す物体光ホログラムgがコンピュータ内のデータ処理で生成される。
 計測用物体光ホログラム生成工程(#5)では、物体光ホログラムgが光伝播計算によって基準点Pの位置におけるホログラムに変換される。ホログラムを光伝播計算によって別の位置におけるホログラムに変換することを光伝播変換という。変換されたホログラムは、ホログラム面50に対する仮想平面VPの傾角である仮想面傾角αに従って回転変換され、仮想平面VPにおける計測用の再生物体光ホログラムhが生成される。
 参照点検出工程(#6)では、計算処理によって、物体光ホログラムgに光伝搬変換を行って物体光Oが集光する位置が検出され、その位置が形状計測用の参照点S1とされる。参照点S1の位置情報は、参照光集光点Pの位置情報を高精度化した情報である。この参照点S1の位置情報を用いることにより、被測定面の高精度な測定が可能になる。
 球面波光ホログラム生成工程(#7)では、形状計測用の参照点S1から放たれた球面波光のホログラムが、仮想平面VPにおいて、球面波光ホログラムsとして、解析的に生成される。球面波光ホログラムsは、フィゾー干渉計などにおいて基準平面となる従来の物理的な参照基板における参照平面を、コンピュータ内で実現する。
 表面形状計測工程(#8)では、再生物体光ホログラムhを球面波光ホログラムsで除算することにより、物体光Oと球面波光ホログラムsとに関する、計測用の複素振幅インラインホログラムである計測用ホログラムJ OSが生成される。その計測用ホログラムJ OSの位相分布から、物体4の被測定面における高さ分布、すなわち、物体4の表面形状が求められる。
 (仮想平面の設定の詳細)
 図2に示す試料台7および光学系の最初の設定は、例えば、次のように行われる。なお、試料台7の位置と姿勢の設定は、仮想平面VPの位置と姿勢の設定と同じ意味になる。イメージセンサ5の光軸上にインライン球面波参照光Lの集光点である参照光集光点Pを配置し、光軸から外れた位置に球面波照明光Qの集光点である照明光集光点Pを配置する。これらの、各光源(P,P)とイメージセンサ5の配置設定は、以後、固定される。
 仮想平面VPは、参照光集光点Pと照明光集光点Pとを結ぶ線分を垂直に2等分する平面である。仮想平面VPと光軸との交点位置に物体4の位置を示す基準点Pが設定される。基準点Pの位置に、試料台7が調整された状態で設置される。試料台7は、物体4を試料台7に固定したときに、物体4の被測定面が仮想平面VPに接するように調整される。この試料台7の調整は、以下のように行われる。
 参照平面を有する参照平面基板70を試料台7に固定して球面波照明光Qによって照明し、その参照平面からの反射光のデータを、オフアクシス参照光Rを用いて物体光オフアクシスホログラムIORとして取得する。参照平面基板70が配置されていない状態で、仮想平面VPを通過してイメージセンサ5に入射するインライン球面波参照光Lのデータを、オフアクシス参照光Rを用いて参照光オフアクシスホログラムILRとして取得する。物体光オフアクシスホログラムIORの実像成分を参照光オフアクシスホログラムILRの実像成分で除算して得られる複素振幅インラインホログラムJOLの位相分布の変化が低減するように、試料台7の位置と傾きすなわち姿勢を変えることによって、試料台7の調整を行う。
 より具体的に説明する。インライン球面波参照光Lと球面波照明光Qの各集光点を配置し、最初は、物体4が無い状態として、インライン球面波参照光Lとオフアクシス参照光Rとが作る干渉縞ILRを記録する。次に、オプティカルフラットのような高い平面度の参照平面を有する参照平面基板70を、物体4として試料台7に固定して、球面波照明光Qで照明する。照明光集光点Pの、参照平面基板70の参照平面に関しての対称点が、参照光集光点Pに近づくように、言い換えると、参照平面基板70の参照平面が、参照光集光点Pと照明光集光点Pとを結ぶ線分を垂直に2等分する平面に一致するように、試料台7の距離zと傾角αを機械的に調整し、参照平面からの反射光である物体光Oとオフアクシス参照光Rとが作る干渉縞IORをワンショット記録する。
 空間周波数フィルタリングを行って、各干渉縞IORとILRから、それぞれの実像成分を表す複素振幅オフアクシスホログラムJORとJLRを取り出し、JORをJLRで除算して複素振幅インラインホログラムJOLを得る。複素振幅インラインホログラムJOLの位相(θ-θ)は、ホログラム面50におけるインライン球面波参照光Lと(球面波と見なされる)物体光Oの位相差を表す。照明光集光点Pの対称点が参照光集光点Pに近づくと、JOLの位相成分exp[i(θ-θ)]がホログラム面50上で一定値の分布に近づく。また、点Pの対称点が点Pから離れると、位相成分exp[i(θ-θ)]は値が変化する分布となる。
 点Pの対称点と参照光集光点Pとの距離が、z軸に垂直な方向に分解能δ=λ/(2NA)以上、またはz軸方向に焦点深度DOF=λ/(2NA)以上、離れると、位相成分exp[i(θ-θ)]の分布は、ホログラム面上で振動的に変化する。ここに、NAは記録ホログラムの開口数である。
 複素振幅インラインホログラムJOLの位相成分exp[i(θ-θ)]の変化が十分に小さくなるように距離zと傾き角αを調整して、参照平面基板70の参照平面に接する平面を仮想平面VPとして決定して、試料台7の調整を完了する。参照光Lと照明光Qは、決定された仮想平面VPを挟んで対称になり、仮想平面VPにおける照明光Qと参照光Lの位相差(θ-θ)の面分布は、変化が小さいほぼ一定の値になる。
 ところで、表面形状の凹凸高tの測定を、精度Δtで行う場合、仮想平面VPの決定の段階で位相変化Δ(θ-θ)が4πΔt/λより小、Δ(θ-θ)<4πΔt/λ、となるように機械的に調整する必要がある。このような調整は、PZTなどの圧電駆動素子などを使わずに、ネジだけで機械的に行うことは困難であり、nmオーダーの測定精度Δtは望めないが、画像再生時のコンピュータ内の後処理によって、測定精度Δtの向上が可能である。
 (ホログラムデータとその処理)
 ホログラムデータとその処理を数式表現に基づいて説明する。ホログラムには、オフアクシス参照光R、インライン球面波参照光L、物体光Oなどが関与する。ここで、xyz右手系直交座標系の原点がホログラム面50(イメージセンサ5の受光面)の中央に設定される(仮想平面VPに関する座標系はx’y’z’、図2参照)。ホログラム面50から物体光Oの光源に向かう向きがz軸の正の向きである。位置座標(x,y)を用いて、物体光O(x,y,t)、オフアクシス参照光R(x,y,t)、およびインライン球面波参照光L(x,y,t)を、それぞれ一般的な形で、下式(1)(2)(3)で表す。これらの光は互いにコヒーレントな角周波数ωの光である。各式中の係数、引数、添え字などは、一般的な表現と意味に解釈される。以下の各式において、位置座標(x,y,z)、空間周波数(u,v,w)の明示などは、適宜省略される。
Figure JPOXMLDOC01-appb-M000001
 上式におけるO(x,y,t)とR(x,y,t)が作る合成光の光強度IOR(x,y)、およびL(x,y,t)とR(x,y,t)が作る合成光の光強度ILR(x,y)は、それぞれ下式(4)(5)で表される。これらの光強度IOR,ILRが、イメージセンサ5を通して、ホログラムのデータとして取得される。
Figure JPOXMLDOC01-appb-M000002
 上式(4)(5)において、右辺の第1項は物体光Oまたはインライン球面波参照光Lの光強度成分、第2項はオフアクシス参照光Rの光強度成分である。また、各式の第3項と第4項は、それぞれ物体光Oまたはインライン球面波参照光Lがオフアクシス参照光Rによって変調されて作られる、直接像成分と共役像成分である。
 上記第3項の直接像成分(実像成分)が、本データ処理方法にとって必要な物体光Oまたは参照光Lの情報すなわち上式(1)(3)のOexp(iφ)とLexp(iφ)を含む項である。この第3項の直接像成分は、その物体光Oまたは参照光Lの位相部分[iφ],[iφ]が、これらの光を定義している上式(1)(3)の位相部分[iφ],[iφ]と同じである。他方、第4項の物体光Oまたは参照光Lの位相部分[-iφ],[-iφ]は、これらの光を定義している上式(1)(3)の位相部分[iφ],[iφ]の複素共役になっており、第4項が共役像成分と呼ばれる。
 オフアクシス参照光Rを用いることにより、そのオフアクシスの効果によって、ホログラムを空間周波数空間において表現したときに直接像成分(第3項)が光強度成分(第1,2項)および共役像成分(第4項)から分離するホログラムを取得できる。空間周波数フィルタリングを適用して上式(4)(5)の第3項のみを取り出すことにより、物体光Oを記録した物体光複素振幅ホログラムJORと、インライン球面波参照光Lを記録した複素振幅ホログラムJLRが、それぞれ下式(6)(7)のように得られる。これらの複素振幅ホログラムは、オフアクシス参照光Rの成分を含むホログラムである。
Figure JPOXMLDOC01-appb-M000003
 空間周波数フィルタリングは、上式(4)(5)を空間周波数空間における表現に変換するフーリエ変換と、バンドパスフィルタによるフィルタリングと、その後の、逆フーリエ変換とによって行われる。なお、受光素子における画素が画素ピッチdで2次元配列されているとすると、受光素子を用いて記録可能なホログラムの最高空間周波数は、空間周波数fs=1/dとなる。
 上記の式(6)を式(7)で割る除算処理を行うと、式(6)からオフアクシス参照光Rの振幅Rと位相φとを取り除くことができる。この処理は、位相の引き算を行う処理、すなわち周波数変換を行う処理であり、ヘテロダイン変調の処理である。これにより、インライン球面波参照光Lに対する物体光Oの複素振幅インラインホログラムJOLが下式(8)のように得られる。
Figure JPOXMLDOC01-appb-M000004
 インライン球面波参照光Lは、参照光Rのデータをオフアクシスホログラムである参照光ホログラムILRとして取得して保存するための参照光であり、かつ、ホログラムデータのディジタル処理における基準光としての役割を有する。インライン球面波参照光Lは、参照光Rのデータを含まないホログラムである複素振幅インラインホログラムJOLを生成するために用いられる。参照光ホログラムILRは、オフアクシス参照光Rが同じ条件下に維持されて複数の物体光ホログラムI ORが取得される場合、1枚のオフアクシスホログラムILRを取得し、1枚の複素振幅ホログラムJLRを作成しておけばよい。
 (インライン球面波参照光Lの成分と乗算因子)
 次に、式(8)において、両辺に乗算因子L(x,y)exp(i(φ(x,y))を乗じることにより、振幅因子L(x,y)による振幅変調と、位相因子exp(i(φ(x,y))によるヘテロダイン変調が実行され、イメージセンサ5の表面(ホログラム面、xy平面、または面z=0)における物体光Oの光波を表す物体光ホログラムg(x,y)が下式(9)のように得られる。物体光ホログラムg(x,y)を生成する工程は、物体光Oを再生する工程である。物体光ホログラムg(x,y)の絶対値の2乗|g(x,y)|をディスプレイに表示して、ホログラム面50における物体光Oの光強度分布を画像として見ることができる。
Figure JPOXMLDOC01-appb-M000005
 この乗算の処理は、上式(8)からインライン球面波参照光Lの成分を除去する処理であり、物体光Oの光波O(x,y)exp(i(φ(x,y))だけを含んでいるホログラムgを生成する。このホログラムの用語は、光波を再生するために必要なデータを全て含んでいるという意味で用いられており、以下においても同様の意味で用いられる。インライン球面波参照光Lの振幅L(x,y)は、緩やかに変化して無視できる場合、残しておいてもよい。
 上述の乗算因子L(x,y)exp(i(φ(x,y))は、インライン球面波参照光Lの集光点Pから発せられる球面波が、空気中を伝播し、イメージセンサ5すなわちホログラム面50に到達した光波を表すホログラムであり、これをインライン参照光ホログラムjと称することにする。インライン参照光ホログラムjは、空気中を伝播してホログラム面50に伝播する場合、球面波としてホログラム面50に到達する。従って、乗算因子は、集光点Pの位置情報を用いて解析的に得られる。
 なお、後述の図4における光学系のように、インライン球面波参照光Lがビーム結合器3などを通過する場合、ホログラム面50における波面は、球面波から変形した波面となる。この場合は、ホログラムjは、解析的には求められないが、インライン球面波参照光Lの集光点Pからホログラム面50までの距離ρと、ビーム結合器3の厚寸法Aとを与えられることにより、平面波展開を用いる光伝播計算によって算出される(後述)。
 (距離ρとz、および傾角αの測定)
 表面形状を測定するには被測定面における反射光を、被測定面すなわち仮想平面に平行な位置で、再生する必要がある。従って、複素振幅インラインホログラムを使って反射光を再生するには、イメージセンサ5すなわちホログラム面50から被測定面すなわち仮想平面VPまでの距離zと、ホログラム面50に対する仮想平面VPの傾角α、およびホログラム面50からインライン球面波参照光Lの集光点である参照光集光点Pまでの距離ρが必要になる。これらの値は他の測定手段によっても測定できるが、ホログラフィを使ったターゲット画像の記録と再生によって高い精度で求めることができる。
 図2に示す光学系において、透明な平面ガラス基板に寸法が正確に分かったパターンを記載して形成された平面ターゲットを調整済みの試料台4に、パターンが仮想平面VPに接するように固定する。次に、インライン球面波参照光Lで照明して、ターゲットを透過したインライン球面波参照光Lである物体光Oとオフアクシス参照光Rとが作る干渉縞IORを記録する。記録した干渉縞IORとILRとから、ホログラム面50における物体光gを求め、下記のように物体光gの平面波展開と光伝播計算、および回転変換を行って、ターゲット面上の合焦点画像を再生する。
 (平面波展開と光伝播計算)
 電磁波に関するヘルムホルツ方程式の厳密解として平面波がある。この厳密解である平面波を用いて物体光Oの光波を展開することができる。この平面波展開は、上式(9)の物体光ホログラムg(x,y)をフーリエ変換することにより実行される。すなわち、フーリエ変換が平面波展開である。平面波展開の結果、物体光Oについての空間周波数スペクトルG(u,v)が、下式(10)のように得られる。空間周波数スペクトルG(u,v)は、波数ベクトル(u,v)を有する平面波の複素振幅であり、複素振幅G(u,v)とも称される。ホログラム面50から距離z平行移動した位置における物体光Oの空間周波数スペクトルH(u,v)は下式(11)となり、物体光h(x,y,z)は下式(12)によって得られる。
Figure JPOXMLDOC01-appb-M000006
 (回転変換)
 傾角αによる回転変換後の空間周波数スペクトルH(u’,v’)は下式(13)となり、回転変換のヤコビアンJ(u’,v’)は下式(14)となる。したがって、回転変換後の再生物体光h(x’,y’,z)は下式(15)となる。
Figure JPOXMLDOC01-appb-M000007
 基準点Pにおいて、回転変換前のホログラム面50に平行な再生画像は|h|、回転変換後の仮想平面VPに平行な再生画像は|hによって得られる。再生物体光hは、パラメータとして距離zと距離ρを含んでいる。少なくとも基準点Pにおいて合焦点再生画像が得られる再生面のz座標値として、距離zが求まり、合焦点再生画像の寸法がターゲットの実寸法と一致したときのパラメータ値として、距離ρが求まる。また、再生物体光hは、パラメータとして距離zと距離ρの他に傾き角αを含んでいる。全面で合焦点再生画像が得られるとき、その回転変換角の値として傾角αが求まる。
 (相関関数を用いた形状計測用の参照点と仮想平面の高精度な決定)
 次に、仮想平面VPの高精度な決定を説明する。ここで距離と測定精度について述べる。インライン球面波参照光Lは、ホログラムを再生するためだけに用いられる光であり、参照光集光点Pまでの距離ρはmm単位で測定される距離である。形状計測には、参照光集光点Pは用いず、参照光集光点Pの近傍で探索されて新たに設定される形状計測用の参照点およびそこに設定される参照点光源を用いる。この参照点は、照明光集光点Pの本来の鏡像点である。参照点は、実質的に照明光集光点Pの本来の鏡像点の位置に来るように、相関関数計算を用いた、計算機上の後処理によって設定される。
 必要な測定精度を確保するには、基準点Pと照明光集光点P間の距離Dと、基準点Pと形状計測用の参照点光源との間の距離Dとの差ΔDQS=|D-D|を、必要な測定精度よりも小さくすることが必要である。これは計算機上の後処理で実現される。この後処理は、有効桁数を増やす処理である。
 上述の参照平面基板を用いた仮想平面VPの決定では、参照平面の距離zと傾角αを機械的に調整した。ここでは、点光源と再生物体光の相関関数を用いた計算によって、形状計測用の参照点光源を高い精度で決定する方法を説明する。参照点光源を高精度に決定することは、形状計測用の参照点光源を照明光集光点Pの対称点P1に一致させることである。これを行うために、参照光集光点Pのすぐ近くにあると考えられる点P1の位置を光の相関関数を用いた数値計算により求める。
 図3のフローチャートに示すように、照明光Qの反射光である物体光Oについての物体光ホログラムgを、光伝播計算により参照光集光点Pの位置z=ρに伝播させ、生成されるホログラムを評価ホログラムh0=h(x,y,ρ)とする(#61)。次に、点光源を表すプローブ関数fpと評価ホログラムh0との相関関数計算により、評価ホログラムh0の面内において、物体光O(照明光Qの反射光)が集光している集光点の位置座標(x1,y1,ρ)を検出して仮集光点P1(x1,y1,ρ)とする(#62)。
 評価ホログラムh0=h(x,y,ρ)を光伝播計算により光軸方向に試験伝播させ、仮集光点P1の光軸直交面内の位置(x1,y1)を固定して相関関数計算を行い、光軸方向における物体光Oの集光点を検出し、その集光点P1の位置座標(x1,y1,z1),z1=ρ+Δρを検出する(#63)。検出された集光点P1(x1,y1,z1)を、形状計測用の参照点S1に設定し、そこに参照光点光源を設定する(#64)。
 上記の処理を、数式を用いて具体的に説明する。評価ホログラムh0=h(x,y,ρ)は下式(16)で与えられる(#61)。プローブ関数fpは座標(x1,y1,ρ)に置いた仮想点光源fp=δ(x-x1)δ(y-y1)である。相関関数Cは下式(17)で与えられる。
Figure JPOXMLDOC01-appb-M000008
 相関関数C(x1,y1,ρ)は、パラメータとして平面上の仮想点光源の座標(x1,y1)を含んでいる。相関関数の絶対値|C(x1,y1,ρ)|が最大になるパラメータ値として座標(x1,y1)が数値計算によって求まる(#62)。
 次に、上式(16)において(x1,y1)の値を固定し、ρをパラメータz1に変えて、絶対値|C(x1,y1,z1)|が最大になるときのz1の値を求める。これにより、鏡像点P1の位置座標(x1,y1,z1)が検出される(#63)。このような相関関数を用いた計算により、分解能δ=λ/(2NA)よりずっと高い精度で座標(x1,y1)が求まり、焦点深度DOF=(2NA)よりずっと高い精度でz1の値が求まる。以上の計算により、参照光集光点Pの位置またはその近傍において、参照点S1となるる点P1の座標(x1,y1,z1)を、数値計算によって精度良く決定することができる(#64)。
 上記のように、相関関数Cを用いて、位相成分がξ=C/|C|となる形状計測用の参照点S1を新たに点P1に配置し、この参照点S1に設定した点光源(以下、参照点光源S1)が作る光(球面波光である)をインライン球面波参照光L1とする。参照点光源S1が作る参照光L1の位相は、球面波の解析解を用いて正確に計算できる。仮想平面VPにおいて、照明光Qの位相と参照光L1の位相とは、仮想平面VP全域に亘って互いに一致することになる。
 再生物体光ホログラムh(x’,y’)を球面波光ホログラムs(x’,y’)で除算すると、被測定面を計測するための計測用ホログラムJ OS(x’,y’)が求まる。被測定面の高さ分布t(x’,y’)は被測定面で反射する照明光Qと仮想平面VPで反射する照明光Qの光路差から求まる。参照点S1を光源とするインライン球面波参照光L1の位相は、仮想平面VP上で照明光Qの位相と一致する。従って、高さ分布t(x’,y’)は、計測用ホログラムJ OSの位相(θ-θL1)を用いて、下式(18)で得られる。ここに、位相θは再生物体光ホログラムhから得られる再生物体光の位相、位相θL1は参照点光源S1が作る参照光L1の位相、角度α(x’,y’)は座標(x’,y’)における照明光Qの入射角である。
Figure JPOXMLDOC01-appb-M000009
 (第2の実施形態:表面形状計測装置)
 図4、図5を参照して、第2の実施形態に係る表面形状計測装置1を説明する。表面形状計測装置1は、物体4の被測定面の形状をホログラフィを用いて計測する装置であり、物体4の被測定面のホログラムを取得するデータ取得部10と、データ取得部10によって取得されたホログラムから被測定面における画像を再生する画像再生部12と、を備えている。
 データ取得部10は、光強度を電気信号に変換してホログラムデータとして出力するイメージセンサ5と、物体4の被測定面が仮想的に設定した仮想平面VPに接するように物体4を固定する試料台7と、各光を伝播させる光学系2と、を備えている。イメージセンサ5は、制御部およびメモリとしてのコンピュータ11に接続されている。
 光学系2は、仮想的に設定された仮想平面VPの両側に対称に配置された、球面波照明光Q用およびインライン球面波参照光L用の2つの光学系と、イメージセンサ5の直前に配置された、キューブ型ビームスプリッタから成るビーム結合器3と、オフアクシス参照光R用の光学系とを備えている。
 球面波照明光Qは、物体4の被測定面を斜め方向から照明して、物体4の表面形状の情報を含む反射光、すなわち物体光Oを、イメージセンサ5に記録させる光である。照明光Qの光路には、平行光を集光するレンズ21と、その集光位置にピンホールを有するピンホール板22とが備えられている。そのピンホールの位置が、照明光Qの集光点すなわち照明光集光点Pであり、球面波光の点光源の位置となる。
 インライン球面波光Lは、照明光Qと同様に、その光路には、平行光を集光するレンズ25と、その集光位置にピンホールを有するピンホール板26とが備えられている。ピンホール板26のピンホールの位置が、インライン参照光Lの集光点すなわち参照光集光点Pであり、球面波光の点光源の位置となる。インライン球面波光Lは、照明光Qの反射光から成る物体光Oに対してインライン光となる。参照光LとRの記録は、物体光の記録ホログラムにおけるオフアクシス参照光Rの成分を、インライン球面波光Lの成分で置き換えて除去し、記録ホログラムをインライン化するために用いられる。
 物体光Oとインライン球面波参照光Lは、ビーム結合器3を通過してイメージセンサ5に正面から入射する。すなわち、イメージセンサ5の受光面の中心垂線方向に、照明光集光点Pと参照光集光点Pとが、光学的にインラインとなり、かつ光学的に同じ位置に存在する。
 オフアクシス参照光Rは、ビーム結合器3に、その側方から入射され、内部反射鏡30で反射されてイメージセンサ5に入射する。その光路には、拡径用の小径レンズ23と、コリメート用の大径レンズ24とを備え、球面波状に形成されたオフアクシス参照光Rを生成する。
 光学系2は、仮想平面VPに対して球面波照明光Qの集光点である照明光集光点Pとインライン球面波参照光Lの集光点である参照光集光点Pとが互いに鏡像配置となるように設定されている。また、光学系2は、照明光Qが被測定面を斜め照明し、その反射光である物体光Oがイメージセンサ5に入射し、インライン球面波参照光Lが仮想平面VPを斜めに通過してイメージセンサ5に入射するように、各光を伝播させる。
 ビーム結合器3は、物体光Oまたはインライン球面波参照光Lとオフアクシス参照光Rとを合波してイメージセンサに入射させる。ビーム結合器3として、キューブ型ビームスプリッタを用いることができる。
 画像再生部12は、データ保存部6とともに、コンピュータ11に備えられている。画像再生部は12、第1の実施形態で説明した表面形状計測方法を実行するソフトウエア群とメモリとを備えて構成されている。
 物体4の被測定面の表面形状計測では、図4に示すように、物体4が配置された状態で、球面波照明光Qとオフアクシス参照光Rとを用いて、反射光である物体光Oの記録ホログラムIORが取得される。また、図5に示すように、物体が取り除かれた状態で、インライン参照光Lを用いて、オフアクシス参照光Rの記録ホログラムILRが取得される。
 取得されたオフアクシスホログラムIOR,ILRが、第1の実施形態で説明した表面形状計測方法によって処理されて、表面形状の計測値が得られる。ところで、本実施形態の表面形状計測装置1は、キューブ型のビーム結合器3を備えているので、ビーム結合器3の屈折率を考慮した平面波展開法によってビーム結合器3を通過する光の光伝播計算を行う必要がある。以下では、ビーム結合器3に関する処理を説明する。
 (ビーム結合器通過後の球面波の算出)
 ホログラム面50において、複素振幅ホログラムJOLから、物体光ホログラムgを生成するには、ビーム結合器3を通過してホログラム面50に到達したインライン球面波参照光Lの光波(インライン参照光ホログラムj)が必要である。インライン参照光ホログラムjは、ビーム結合器3を通過したことにより、球面波ではない。そこで、インライン球面波参照光Lの集光点Pの位置からイメージセンサ5の入射面であるホログラム面50に至る光波の光伝播計算を行って、ホログラム面50におけるインライン球面波参照光L、すなわちインライン参照光ホログラムjを生成する。
 光伝播計算は平面波展開を使って行う。集光点Pにおいて参照光Lを平面波展開し、空気中およびビーム結合器3内を伝播させてホログラム面50における各平面波成分を計算し、計算した平面波成分を足し挙げてインライン参照光ホログラムjを求める。集光点Pの位置z=ρのxy平面に、インライン球面波参照光Lの点光源bδ(x)δ(y)が存在する。この点光源の空間周波数スペクトルB(u、v)は、一定値b、すなわちB(u、v)=bである。そこで、平面波の伝播により、z=0のホログラム面50におけるインライン球面波参照光L、すなわちインライン参照光ホログラムjは、下式(19)となる。
Figure JPOXMLDOC01-appb-M000010
 上式におけるnは、ビーム結合器3の屈折率である。上式(19)は、原点z=0から集光点Pまでの距離ρとビーム結合器3の寸法Aの関数になるが、原点からビーム結合器3までの距離には無関係になる。つまり、ビーム結合器3をどの位置に置いても同じ式になる。上式(19)は、原理的な計算式であって、実際の計算には、サンプリング定理を満たす計算点数で光伝播計算を行う必要がある。
 (ホログラム面における物体光g(x,y))
 上述の手順で得られる、上式(19)のインライン参照光ホログラムjは、ビーム結合器3を通過してホログラム面50に到達したインライン球面波参照光Lの光波である。このホログラムjから成る乗算因子j=L(x,y)exp(i(φ(x,y))を上式(8)に乗じることにより、イメージセンサ5の表面(ホログラム面、xy平面、または面z=0)における物体光Oの光波を表す物体光ホログラムg(x,y)が上式(9)と同様に得られる。
 (光伝播計算)
 ホログラム面における物体光ホログラムg(x,y)をフーリエ変換する平面波展開の結果、物体光Oについての空間周波数スペクトルG(u,v)が下式(20)のように得られる。表現上、上式(10)と同じになる。平面波の光伝播計算により、物体4の被測定面の位置z=zにおいて、ホログラム面50に平行な面における物体光h(x,y)が、下式(21)によって得られる。
Figure JPOXMLDOC01-appb-M000011
 上式(20)中のu,vは、それぞれx方向とy方向のフーリエ空間周波数である。z方向のフーリエ空間周波数w,wは、上式(21)のように、平面波の分散式(波数と波長の関係式)から求められる。分散式は、(n/λ)の形で屈折率nを含む。上式(20)(21)は、光路上に存在するビーム結合器3の大きさAと屈折率nとを考慮した計算式となっている。
 上式(21)によって、物体4の被測定面の位置z=zにおけるホログラム面50に平行な物体光h(x,y)が得られたので、上式(13)~(18)の回転変換、相関関数を用いた仮想平面の高精度な決定、高さ分布の算出の処理により、表面形状計測を実行して測定結果を得ることができる。上式(13)~(18)の処理は、空気中の事象の処理であり、ビーム結合器3などの屈折率nの影響を考慮する必要はない。
 (第3の実施形態)
 図6を参照して、第3の実施形態に係る表面形状計測装置1を説明する。本実施形態の表面形状計測装置1は、第2の実施形態の表面形状計測装置1において、光学系2が、物体光Oとインライン球面波参照光Lとを集光する集光レンズ27と、集光レンズ27による集光位置に配置されて通過光量を制限する瞳孔板27aと、瞳孔板27aに組み合わせて配置された結像レンズ27bと、を備えているものである。瞳孔板27aの前後に備えられた2つのレンズは、物体光Oとインライン球面波参照光Lとをイメージセンサ5に結像させるレンズである。
 大きい口径のホログラムを記録できれば、大きい器物の表面形状計測が可能になる。大口径ホログラムを記録する方法として、平面上に多数のイメージセンサを並べる方法や平面上でイメージセンサを移動させる方法なども考えられるが、本実施形態のように、レンズを使って反射光を集光させると、1つのイメージセンサ5で大口径ホログラムを記録できる。集光用レンズを用いてインライン球面波参照光Lまたは物体光Oをイメージセンサ5の受光面に投射し、オフアクシス参照光Rによって作られる干渉縞を記録する。記録ホログラムの空間周波数帯域の幅は、瞳孔板27aの瞳孔を開閉することによって調整できる。被測定面が滑らかで平面度が高い場合には、空間周波数帯域幅は狭くなり、被測定面に微細な凹凸がある場合には帯域幅は広くなる。
 集光レンズ27と結像レンズ27bの2つのレンズは、被測定面上の光をイメージセンサ5の受光面上に結像するので、物体光の再生を行わなくても、被測定面の形状観察や形状測定が可能になる。
 (第4の実施形態)
 図7を参照して、第4の実施形態に係る表面形状計測装置1を説明する。本実施形態の表面形状計測装置1は、第3の実施形態の表面形状計測装置1における集光レンズ27と、瞳孔板27aと、結像レンズ27bとに替えて、凹面鏡28と、瞳孔板28aと、結像レンズ28bとを備えるものである。凹面鏡28は、たとえば、集光用楕円面ミラーが用いられる。本表面形状計測装置1においても、凹面鏡28と結像レンズ28bとが、物体光Oとインライン球面波参照光Lとをイメージセンサ5に結像させる。
 本表面形状計測装置1においても、小さなイメージセンサによって大きい口径のホログラムを記録でき、また、物体光の再生を行わなくても、被測定面の形状観察や形状測定が可能になる。
 (第5の実施形態)
 図8を参照して、第5の実施形態に係る表面形状計測装置1および表面形状計測方法を説明する。本実施形態の装置および方法は、測定可能な高さの範囲を拡張するものであり、その拡張を実現するために、異なる波長(λ,j=1,2)の光を用いる。本実施形態の表面形状計測装置1の光学系2は、上述の第2の実施形態(図4)の光学系2において、ビーム結合器3とイメージセンサ5との間に波長フィルタを挿入し、そのような波長フィルタとイメージセンサの組を2対備えたものである。
 すなわち、一方の波長λを通過させる波長フィルタF1とイメージセンサ51の組が、ビーム結合器3における物体光Oの入射面31に対向する面側に配置されている。他方の波長λを通過させる波長フィルタF2とイメージセンサ52の組は、ビーム結合器3におけるオフアクシス参照光Rが入射する面に対向する面側に配置されている。
 (波長の異なる光波間の位相差を用いた表面形状計測)
 本実施形態の表面形状計測方法において、以下の処理が行われる。異なる波長λ,j=1,2の光によって、物体光Oおよびインライン球面波参照光Lのデータが各波長λ,λ毎に、2種類のオフアクシスホログラムI OR,I LR,j=1,2として取得される。次に、各波長λ,λ毎に、計測用ホログラムJ OS=h /s ,j=1,2が生成され、生成された2つの計測用ホログラムJ OS,j=1,2の比を求めるヘテロダイン変換が実行される。ヘテロダイン変換の結果、変調波HW=J OS/J OSが生成される。この変調波(HW)に含まれる変調波長λ=λλ/(λ-λ)および変調位相分布θ(x’,y’)=θ-θを用いて、物体の被測定面における高さ分布が求められる。
 上述の処理の背景と効果を説明する。例えば、第2の実施形態に示した単色レーザ光の位相を用いる表面形状計測では、光波長λを大きく超える高さを計測することは難しい。また、λ/2を超える段差に対しては高さの測定値にλ/2の整数倍の不確さが生じる。ところで、伝搬方向が一致した光波長の異なる2つの光波に対して演算処理を行うと、長い波長を持つ波を作成できる。この波の位相を用いると、計測可能な高さの範囲を大幅に広げることができる。
 同じ点光源から放たれる光波長λとλの球面波照明光Qは空間の全ての点において光の伝搬方向が一致し、位相成分はそれぞれexp(2πr/λ-θ)およびexp(2πr/λ-θ)と表される。光波長λの球面波照明光Qを光波長λの球面波照明光Qで除算すると、位相成分がexp(2πr/λ-θ)の波を作成できる。ここに、λおよびθは、下式(22)で与えられる。波長λは2つの照明光が作るビート波の波長と一致する。
Figure JPOXMLDOC01-appb-M000012
 被測定面を光源の位置が同じで異なる波長を有する2つの球面波で照明すると、測定面上の各点から放たれる2つの反射光の伝搬方向は一致する。また、表面近くの光の干渉や回折が無視できるような測定面上の微小面から放たれる2つの反射光の伝搬方向も一致する。従って、光波長λの反射光を光波長λの反射光で除算すると、照明光Qの場合と同様に機能し、かつ波長が大きくなった、波長λの光波を作成できる。このことは、作成した波長λの波を使うことにより、第2の実施形態等に示した計測法に従って表面形状計測が可能になることを示す。被測定面と仮想平面VPとにおける波長λの2つの波の位相差をΔθ(x’,y’)と表すと、被測定表面の高さt(x’,y’)は、下式(23)で与えられる。この式(23)は、単一波長の場合の式(18)と同等である。
Figure JPOXMLDOC01-appb-M000013
 上式(23)は、基本的に、単一波長の場合の式(18)と同等の式である。本実施形態の表面形状計測装置1および表面形状計測方法は、2波長について記録したホログラムの両方のデータを用いるか、何れか一方のデータを用いるかを、後処理時に任意に決定できる。両波長のデータを用いる場合、式(23)を用いればよく、単波長のデータを用いる場合、式(18)を用いればよい。
 異なる波長のホログラムは、図8の光学系を用いて、ワンショット記録することができる。この場合、光波長λに対するオフアクシス参照光Rの他に、光波長λに対するオフアクシス参照光Rを用意する。この光学系では、それぞれの光波長成分を分離するために光波長λの光を透過させて光波長λの光を遮断する波長フィルタF1と、光波長λの光を透過させて光波長λの光を遮断する波長フィルタF2を用いている。
 本実施形態の計測方法のための他の光学系2として、例えば、波長フィルタを備えずに、1つのイメージセンサ5だけを備えている図4の光学系を用いて、2種類のオフアクシスホログラムI OR,I LRを、各波長毎に、別時間で取得してもよい。
 さらに他の光学系2として、図4の光学系において、オフアクシス参照光Rの光学系を各波長毎に設けてもよい。この場合、2つのオフアクシス参照光R1,R2を、互いにオフアクシスの配置にして、波長の異なるホログラムをワンショット記録することができる。波長毎のホログラムへの分離は、オフアクシス配置の効果により、後処理によって行うことができる。ワンショット記録したホログラムから、空間周波数領域において、フィルタリング処理を行うことにより、光波長λの複素振幅成分と光波長λの複素振幅成分を分離して取り出すことができる。
 なお、オフアクシス参照光R用に、互いにオフアクシス配置とされた2つの光学系を用いる場合、記録可能な測定面が、図8の光学系を用いる場合よりも狭くなる。逆に、図8の光学系の場合、記録可能な測定面を大きくできるが、2つのホログラムをそれぞれ別のイメージセンサ51,52で記録するので、物体光Oの再生の際に、2つの再生光の位置調整が必要になる。
 本実施形態の表面形状計測装置1および表面形状計測方法によれば、合成された波長λ=(λλ)/(λ-λ)が、もとの何れの波長λ,λよりも長くなるので、測定可能な高さ領域を拡張できる。このような異なる波長の光を用いる表面形状計測装置1および表面形状計測方法は、2波長に限らず、3波長以上の複数波長を用いる装置および方法に拡張することができる。本方法は、記録されたホログラムデータを後処理することによって、計測を実施することができ、この点は従来のビート波を用いる方法とは大きく異なる。そこで、例えば、3波長λ,λ,λの場合、後処理によって、2波長を選んで、例えば差(1/λ-1/λ)などの組合せを複数作ったり、3波長を全部使って、例えば和と差(1/λ+1/λ-1/λ)などの組合せを複数作ったりして、各組合せによって測定領域を互いに補間して計測を実施することができる。
 (第6の実施形態)
 図9を参照して、第6の実施形態に係る表面形状計測装置1を説明する。本実施形態の表面形状計測装置1は、例えば、図5、図6に示した表面形状計測装置1によって具現化できるため、これらの図も併せて参照する。表面形状計測装置1は、被測定面のホログラムを取得するデータ取得部10と、データ取得部10によって取得されたホログラムから被測定面における画像を再生する画像再生部12と、を備えている。表面形状計測装置1は、さらに、データ取得部10および画像再生部12を制御するコンピュータから成る制御部11と、FFT等の計算用プログラム、制御用データ等を記憶するメモリ11aとを備えている。
 データ取得部10は、光を生成し伝播させる光学系2と、ビーム結合器として用いられるキューブ型ビームスプリッタであるビーム結合器3と、光強度を電気信号に変換してホログラムデータとして出力するイメージセンサ5と、イメージセンサ5で取得されたデータを保存するデータ保存部6と、を有する。データ保存部6は、画像再生部12とともに、制御部11に備えられている。また、データ取得部10は、光学系2とイメージセンサ5の配置構成に関連して位置や姿勢の調整が可能な試料台7を備えている。
 画像再生部12は、図1、図3に示した各工程の処理を行うため、各ホログラム生成部13~16,18、参照点検出部17、形状計測部19、および表示部20を有している。
 複素振幅ホログラム生成部13は、物体光オフアクシスホログラムIORと参照光オフアクシスホログラムILRとからオフアクシス参照光Rの成分を除去して、物体光Oとインライン球面波参照光Lに関する複素振幅インラインホログラムJOLを生成する。
 計算参照光ホログラム生成部14は、参照光集光点Pから放たれる光が球面波であることに基づき、イメージセンサの受光面であるホログラム面50におけるインライン球面波参照光Lの光波を表すインライン参照光ホログラムjを生成する。
 物体光ホログラム生成部15は、インライン参照光ホログラムjを用いて、複素振幅インラインホログラムJOLから、ホログラム面50における物体光Oの光波を表す物体光ホログラムgを生成する。
 再生物体光ホログラム生成部16は、物体光ホログラムgを光伝播計算によって仮想平面VPの位置におけるホログラムに変換し、変換されたホログラムをホログラム面50に対する仮想平面VPの傾角である仮想面傾角αによって回転変換して、仮想平面VPにおける計測用の再生物体光ホログラムhを生成する。
 参照点検出部17は、物体光ホログラムgの光伝播計算を行い、相関関数計算によって、物体光の集光点を検出し、その点を形状計測用の参照点S1に設定する。
 解析光ホログラム生成部18は、参照光集光点Pから放たれるインライン球面波参照光Lに対応する球面波の仮想平面VPにおけるホログラムである球面波光ホログラムsを解析的に生成する。
 形状計測部19は、再生物体光ホログラムhを球面波光ホログラムsで除算することにより、物体光Oと球面波光ホログラムsとに関する計測用ホログラムJ OSを生成し、計測用の複素振幅インラインホログラムJ OSの位相分布から物体4の被測定面における高さ分布を求める。
 表示部20は、イメージセンサ5によって得られる画像、各ホログラムの強度画像や位相分布画像などを表示する。データ保存部6に保存された物体光オフアクシスホログラムIORと参照光オフアクシスホログラムILRのデータは、画像再生部12によって処理されて、表示部20に表示される。表示部20は、液晶表示装置などのFPDであり、画像以外のデータを表示し、ユーザインターフェイスとなる。画像再生部12の各部は、表示部20を除いて、コンピュータ上で動作するプログラムとそのサブルーティン群を含むソフトウエアを用いて構成される。
 (実施例1)
 図10、図11、図12を参照して、実施例1の平面度測定を説明する。平面度仕様が4λ~5λのフロートガラス基板の平面ミラーを平面度測定の試料として、図4、図5に示す光学系を用いて形状計測用の複素振幅インラインホログラムを得た。光源は緑色半導体励起固体レーザ(波長532nm,出力50mW)を用い、イメージセンサはモノクロカメラリンクCCDカメラ(画素数6600×4400、画素ピッチ5.5μm)を用いた。インライン球面波参照光および球面波照明光に用いる各球面波光は、開口数NA=0.1の対物レンズと開口径3μmのピンホールを使って発生させた。イメージセンサ面から567mm離れた位置にピンホールを置き、13.9mm離れた位置に被測定面を設置した。記録ホログラム(画素数4096×4096)の開口数はNA=0.02である。
 図10は、平面度仕様4~5λの平面ミラーのミラー表面における複素振幅インラインホログラムの位相分布を示す。図11は、図10の位相分布を使って求めた表面高さの2次元分布を示す。測定範囲は15mm×15mmであり、表面高さの最大値と最低値の差PV=431.7nm、高さの標準偏差RMS=69.0nmが得られた。測定範囲においてPV値はλより小さく、平面度の仕様4λ~5λを満たしている。図12(a)(b)は、図11に示したx軸方向およびy軸方向それぞれの直線上の高さ分布を示す。図12(a)に示すx軸方向の曲率半径として、およそ160mが得られた。
 (実施例2)
 図13、図14を参照して、実施例2の平面度測定を説明する。平面度仕様がλ/4の平面ミラーを平面度測定の試料として、実施例1で用いた装置を用いて形状計測用の複素振幅インラインホログラムを得た。図13は平面度仕様λ/4の平面ミラーの表面高さの2次元分布を示す。表面高さの最大値と最低値の差PV=81.3nm、高さの標準偏差RMS=15.3nmが得られた。測定範囲においてPV値はλ/4より小さく、平面度の仕様λ/4を満たしている。図14は、図13に示したx軸方向およびy軸方向の直線上の高さ分布を示す。図14(b)に示すy軸方向の曲率半径として、およそ750mが得られた。表面形状計測の分解能は、再生物体光に対して行った空間周波数フィルタリングの帯域幅から決まる。実施例2,3における画像の分解能はおよそ78μmである。
 (実施例3)
 図15、図16を参照して、実施例3の平面度測定を説明する。平面度仕様がλ/20の精密オプティカルフラットミラーを平面度測定の試料として、実施例1で用いた装置を用いて、形状計測用の複素振幅インラインホログラムを得た。図15は平面度仕様λ/4の平面ミラーの表面高さの2次元分布を示す。表面高さの最大値と最低値の差PV=19.6nm、高さの標準偏差RMS=2.5nmが得られた。測定範囲においてPV値はλ/20より小さく、平面度の仕様λ/20を満たしている。図16(a)(b)は、図15に示すx軸方向およびy軸方向それぞれの直線上の高さ分布を示す。
 記録した物体光には、キューブ型ビームスプリッタ(ビーム結合器)の表面およびイメージセンサ前面に固定したカバーガラスの表面で生じた微弱な多重反射光が加わっている。ビームスプリッタとカバーガラスの表面をイメージセンサ面から僅かに傾けることにより、これらの多重反射光の伝播方向と、被測定面からの反射光の伝播方向とを、ずらすことができる。本実施例では、このことを利用して、実空間で空間フィルタリングを行うことにより、記録ホログラムから多重反射光の影響を除去した。
 表面形状計測の分解能は、再生物体光に対して行う空間周波数フィルタリングの帯域幅で決まる。図16(a)の測定結果は、高分解能δ=33μmと低分解能δ=530μmの2種類の分解能で求めた高さ分布である。図16(b)の測定結果も同様である。
 高さ分布の高周波成分には、被測定面の表面粗さによる散乱光の他に、キューブ型のビームスプリッタ表面およびイメージセンサのカバーガラス表面で生じる散乱光、およびイメージセンサで生じる雑音が加わっていると考えられる。表面形状計測や表面粗さ計測の高精度化を達成するには、ビームスプリッタ表面やカバーガラス表面で生じる散乱光を取り除く必要がある。
 (実施例4)
 図17、図18を参照して、実施例4の平面度測定を説明する。ネガパターンUSAFテストターゲットを表面形状計測の試料として、実施例1で用いた装置を用いて、形状計測用の複素振幅インラインホログラムを得た。図17は、ターゲット表面における高さの2次元分布を示す。測定範囲は15mm×15mmであり、高さの高い部分がクロム表面を表し、低い部分がガラス基板の面を表す。表面形状計測の分解能は再生物体光に対して行った空間周波数フィルタリングの帯域幅から決まる。図17に示す画像の分解能はおよそ24μmである。
 図18(a)(b)は、図17に示すx軸方向およびy軸方向それぞれの直線上の高さ分布を示す。ガラス面とクロム面をはっきりと区別できる。クロム厚は測定範囲全体に亘って一定であり、その値はおよそ60nmになっている。また、図17と図18の結果は、ガラス基板が緩やかな鞍形状に湾曲していることを示す。各x軸方向およびy軸方向の曲率半径として、およそ500mが得られる。
 (実施例5)
 図19乃至図23を参照して、実施例5の平面度測定を説明する。本実施例5は、第5の実施形態に係る表面形状計測装置1を用いて、液晶ディスプレイ用カラーフィルタの表面形状計測を行った。この表面形状計測装置1は、単一波長光および2波長光によるワンショット記録と計測が可能な装置である。計測対象のカラーフィルタは、ブラックマトリクスにRGBフィルタを取り付けた構造となっており、カラーフィルタ上には高さ約4μm、直径約16μmの柱状のフォトスペーサが等間隔に千鳥配置されている。
 本実施例において、柱状のフォトスペーサの高さを計測するための波長λ=756nmおよび786nmの2波長のレーザ光による計測と、低い部分の高さを計測するための波長λ=632.8nmのHe-Neレーザ光による単一波長による計測と、の2通りの計測を行った。
 図19は、直径4mmの範囲のカラーフィルタの高さ分布の計測結果を示し、図20は、図19中の四角部分の拡大図を示す。これらの画像において、カラーフィルタの高さが低いところが黒く、高いところが白くなっているが、柱状のフォトスペーサaの部分は、見やすくするため黒点で示されている。これらの画像に示されるように、歪みの無い画像が得られ、カラーフィルタの細かい構造や各部の高さ分布をはっきりと識別できる。また、計測結果から、フィルタの平坦さは非常に高い精度で保たれていることが分かる。
 図21は、図20におけるx軸方向の直線(i)に沿った計測結果を示し、図22は、図20におけるy軸方向の直線(ii)に沿った計測結果を示す。各直線(i)(ii)上に、柱状のフォトスペーサaが2個づつ含まれている。
 図21、図22において、フィルタ部分b,c(周期の短い低い山)は、波長λ=632.8nmのレーザー光を用いて計測した結果であり、フォトスペーサa(周期の長い高い山)は波長がλ=756nmと786nmのレーザー光を用いて計測した結果である。後者の2つのレーザー光が作るビート波長λは、λ=19.8μmであり、これにより、高さ約4μmの柱状のフォトスペーサaの計測が可能になる。フォトスペーサaのピークから下方に向かう破線は、再生光の光強度が小さくて正確に計測できなかった部分を示す。これは、フォトスペーサの側部からの反射光がイメージセンサ(CCD)に到達しなかったことを示す。
 図23は、記録範囲における各フォトスペーサに番号を付けて、計測結果を並べて示している。この測定結果から、一様な高さ4μmのフォトスペーサが高い精度で形成されていることが分かり、有用な計測ができていることが分かる。本実施例の結果から、第5の実施形態に係る表面形状計測装置1および方法により、nmから数10μmまでの広いレンジに亘って、高精度な高さ分布計測が可能であることが分かる。また、本実施例は、物体光をワンショット記録してコンピュータ内の後処理で計測結果を得たものであり、高速かつ高精度な形状計測を実現できることが分かる。
 なお、本発明は、上記構成に限られることなく種々の変形が可能である。例えば、上述した各実施形態の構成を互いに組み合わせた構成とすることができる。
 従来の技術に対する本発明の新規性と優位性として下記が挙げられる:(1)光波のワンショット記録により高速測定ができる、(2)被測定面の高精度な絶対平面度測定ができる、(3)参照平面やコリメートレンズを使用しないので平面度測定の大口径化ができる、(4)広範囲の反射係数を持つ被測定面に対して平面度測定ができる、(5)被測定面における再生反射光を用いて高分解能な表面形状や表面粗さの測定ができる、(6)移動や回転などの調整機構が不要であり、記録用光学系の構成が非常に簡単になる。
 上記優位性から、本発明は、光学やディジタルホログラフィ、光計測、干渉計測、微細形状測定の分野においてこれらの利点を活かした広い用途に適用できる。また、技術応用の観点からは、精密計測やナノテクノロジ、基盤形状計測、半導体基板検査、光学部品検査などの分野における使用が考えられる。具体的な使用例としては、薄いガラス基板、フォトマスク、大型ウエハなどの表面形状計測、光学部品の表面形状計測、工業用基準平面の計測、などが挙げられる。
 1  表面形状計測装置
 10  データ取得部
 12  画像再生部
 13  複素振幅ホログラム生成部
 14  計算参照光ホログラム生成部
 15  物体光ホログラム生成部
 16  再生物体光ホログラム生成部
 17  参照点検出部
 18  解析光ホログラム生成部
 19  形状計測部
 2  光学系
 27  集光レンズ
 27a  瞳孔板
 27b  結像レンズ
 28  凹面鏡
 28a  瞳孔板
 28b  結像レンズ
 3  ビーム結合器(キューブ型ビームスプリッタ)
 4  物体
 5  イメージセンサ
 50  ホログラム面
 6  データ保存部
 7  試料台
 C  相関関数
 HW  変調波
 ILR,I LR  参照光オフアクシスホログラム
 IOR,I OR  物体光オフアクシスホログラム
 JOL  物体光の複素振幅インラインホログラム
 J OS,J OS  計測用ホログラム(計測用の複素振幅インラインホログラム)
 L  インライン球面波参照光
 O  物体光
 P  インライン球面波参照光の集光点
 P  基準点
 P  オフアクシス参照光の集光点
 Q  照明光
 R  オフアクシス参照光
 S1  形状計測用の参照点(参照点光源)
 VP  仮想平面
 fp  仮想点光源(プローブ関数)
 g  物体光ホログラム
 h0  評価ホログラム
 h  再生物体光ホログラム
 j  インライン参照光ホログラム
 s  球面波光ホログラム
 α  傾角
 ρ  イメージセンサからインライン球面波参照光の集光点までの距離
 λ  変調波長
 λ,λ,λ  波長
 θ  変調位相

Claims (8)

  1.  ホログラフィを用いる表面形状計測装置において、
     被測定面を照明する球面波照明光(Q)の反射光である物体光(O)と前記物体光(O)に対してインラインとなるインライン球面波参照光(L)の2つの光のデータをそれぞれ物体光オフアクシスホログラム(IOR)および参照光オフアクシスホログラム(ILR)としてイメージセンサを用いて取得するデータ取得部と、
     前記データ取得部によって取得されたデータから前記被測定面の画像を再生して表面形状のデータを取得する画像再生部と、を備え、
     前記データ取得部は、
     前記被測定面に接するように仮想的に設定した仮想平面(VP)に対して前記球面波照明光(Q)の集光点である照明光集光点(P)と前記インライン球面波参照光(L)の集光点である参照光集光点(P)とが互いに鏡像配置となり、前記インライン球面波参照光(L)が前記仮想平面(VP)を斜めに通過して前記イメージセンサに入射するように構成された光学系を備え、
     前記画像再生部は、
     前記2種類のオフアクシスホログラム(IOR,ILR)のデータ、前記参照光集光点(P)の位置情報、および前記参照光集光点(P)から放たれる光が球面波であることを用いる計算処理によって、前記物体光(O)の光波を表す物体光ホログラム(g)を生成する物体光ホログラム生成部と、
     前記物体光ホログラム(g)を光伝播変換および回転変換して、前記仮想平面(VP)における再生物体光ホログラム(h)を生成する再生物体光ホログラム生成部と、
     計算処理によって、前記物体光ホログラム(g)に光伝搬変換を行って前記物体光(O)が集光する位置を検出してその位置を、前記参照光集光点(P)の位置情報を高精度化した情報を有する、形状計測用の参照点(S1)として設定する参照点検出部と、
     前記参照点(S1)から放たれた球面波光の前記仮想平面(VP)におけるホログラムである球面波光ホログラム(s)を解析的に生成する解析光ホログラム生成部と、
     前記再生物体光ホログラム(h)を前記球面波光ホログラム(s)で除算して計測用ホログラム(J OS=h/s)を生成し、前記計測用ホログラム(J OS)の位相分布から前記物体の被測定面における高さ分布を求める形状計測部と、を備えることを特徴とする表面形状計測装置。
  2.  前記データ取得部は、前記イメージセンサの直前に配置され、前記物体光(O)または前記インライン球面波参照光(L)と、前記2種類のオフアクシスホログラム(IOR,ILR)を取得するために用いられるオフアクシス参照光(R)と、を合波して前記イメージセンサに入射させるための、キューブ型ビームスプリッタから成るビーム結合器を備え、
     前記画像再生部は、前記ビーム結合器の屈折率を考慮した平面波展開法によって前記ビーム結合器を通過する光の光伝播計算を行うことにより、前記参照光集光点(P)から放たれて前記ビーム結合器を通過し、前記イメージセンサの受光面であるホログラム面に至る光波であって、前記インライン球面波参照光(L)に相当する光波を表すインライン参照光ホログラム(j)を計算処理によって生成する、ことを特徴とする請求項1に記載の表面形状計測装置。
  3.  前記光学系は、前記物体光(O)と前記インライン球面波参照光(L)とを集光する集光レンズと、前記集光レンズによる集光位置に配置されて通過光量を制限する瞳孔板と、前記瞳孔板に組み合わせて配置された結像レンズと、を備えて、前記物体光(O)と前記インライン球面波参照光(L)とを前記イメージセンサに結像させる、ことを特徴とする請求項1または請求項2に記載の表面形状計測装置。
  4.  前記光学系は、前記物体光(O)と前記インライン球面波参照光(L)とを集光する凹面鏡と、前記凹面鏡による集光位置に配置されて通過光量を制限する瞳孔板と、前記瞳孔板に組み合わせて配置された結像レンズと、を備えて、前記物体光(O)と前記インライン球面波参照光(L)とを前記イメージセンサに結像させる、ことを特徴とする請求項1または請求項2に記載の表面形状計測装置。
  5.  物体の被測定面の形状をホログラフィを用いて計測する表面形状計測方法において、
     イメージセンサの光軸上にインライン球面波参照光(L)の集光点である参照光集光点(P)を配置し、前記光軸から外れた位置に球面波照明光(Q)の集光点である照明光集光点(P)を配置し、前記参照光集光点(P)と照明光集光点(P)とを結ぶ線分を垂直に2等分する平面である仮想平面(VP)を設定し、
     前記被測定面が前記仮想平面(VP)に接するように前記物体を配置し、前記被測定面から反射される前記球面波照明光(Q)の反射光である物体光(O)のデータを、前記イメージセンサを用いて物体光オフアクシスホログラム(IOR)として取得し、
     前記物体が配置されていない状態で、前記仮想平面(VP)を通過して前記イメージセンサに入射する前記インライン球面波参照光(L)のデータを、前記イメージセンサを用いて参照光オフアクシスホログラム(ILR)として取得し、
     前記2種類のオフアクシスホログラム(IOR,ILR)のデータから、前記物体光(O)と前記インライン球面波参照光(L)の両方の情報を含む複素振幅インラインホログラム(JOL)を生成し、
     前記インライン球面波参照光(L)が球面波光であることを用いる計算処理によって、前記イメージセンサの受光面であるホログラム面における前記インライン球面波参照光(L)の光波を表すインライン参照光ホログラム(j)を生成し、
     前記複素振幅インラインホログラム(JOL)と前記インライン参照光ホログラム(j)とを用いて、前記物体光(O)の光波を表す物体光ホログラム(g)を生成し、
     前記物体光ホログラム(g)を光伝播変換および回転変換して、前記仮想平面(VP)における再生物体光ホログラム(h)を生成し、
     計算処理によって、前記物体光ホログラム(g)に光伝搬変換を行って前記物体光(O)が集光する位置を検出してその位置を、前記参照光集光点(P)の位置情報を高精度化した情報を有する、形状計測用の参照点(S1)として設定し、
     前記参照点(S1)から放たれた球面波光の前記仮想平面(VP)におけるホログラムである球面波光ホログラム(s)を解析的に生成し、
     前記再生物体光ホログラム(h)を前記球面波光ホログラム(s)で除算して計測用ホログラム(J OS=h/s)を生成し、前記計測用ホログラム(J OS)の位相分布から前記物体の被測定面における高さ分布を求める、ことを特徴とする表面形状計測方法。
  6.  異なる波長(λ,j=1,2)の光によって、前記物体光(O)および前記インライン球面波参照光(L)のデータを前記各波長(λ,λ)毎に、前記2種類のオフアクシスホログラム(I OR,I LR,j=1,2)として取得し、
     前記各波長(λ,λ)毎に、前記計測用ホログラム(J OS=h /s ,j=1,2)を生成し、
     前記2つの計測用ホログラム(J OS,j=1,2)の比を求めるヘテロダイン変換の結果である変調波(HW=J OS/J OS)を生成し、前記変調波(HW)に含まれる変調波長(λ=λλ/(λ-λ))および変調位相分布(θ(x’,y’)=θ-θ)を用いて、前記物体の被測定面における高さ分布を求める、ことを特徴とする請求項5に記載の表面形状計測方法。
  7.  前記被測定面が前記仮想平面(VP)に接するように前記物体を配置するために試料台が用いられ、
     前記試料台の調整は、
     前記試料台に、参照平面を有する参照平面基板を固定して前記参照平面基板からの反射光のデータを前記物体光オフアクシスホログラム(IOR)として取得し、
     前記物体光オフアクシスホログラム(IOR)と前記参照光オフアクシスホログラム(ILR)とを用いて前記複素振幅インラインホログラム(JOL)を生成し、
     前記複素振幅インラインホログラム(JOL)の位相分布の変化が低減するように前記試料台の位置と傾きを変えることによって行う、ことを特徴とする請求項5または請求項6に記載の表面形状計測方法。
  8.  光伝播計算により、前記物体光ホログラム(g)を前記参照光集光点(P)の位置(z=ρ)に伝播させて成る評価ホログラム(h0)を生成し、
     点光源を表すプローブ関数(fp)と前記評価ホログラム(h0)との相関関数計算により、前記評価ホログラム(h0)の面内において、前記物体光(O)が集光した位置(x1,y1,ρ)を検出して仮集光点(P1)とし、
     前記評価ホログラム(h0)を光伝播計算により前記光軸方向に試験伝播させ、前記評価ホログラム(h0)の面内における前記仮集光点(P1)の位置を固定して前記相関関数計算を行い、前記光軸方向において前記物体光(O)が集光した位置(x1,y1,z1)を検出してその位置を、前記形状計測用の参照点(S1)に設定する、ことを特徴とする請求項5乃至請求項7のいずれか一項に記載の表面形状計測方法。
PCT/JP2019/033990 2018-08-29 2019-08-29 表面形状計測装置および表面形状計測方法 WO2020045589A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19855228.3A EP3845857A4 (en) 2018-08-29 2019-08-29 SURFACE SHAPE MEASURING DEVICE AND SURFACE SHAPE MEASURING METHOD
KR1020217008901A KR20210048528A (ko) 2018-08-29 2019-08-29 표면 형상 계측 장치 및 표면 형상 계측 방법
JP2020539599A JP7231946B2 (ja) 2018-08-29 2019-08-29 表面形状計測装置および表面形状計測方法
US17/272,426 US11635289B2 (en) 2018-08-29 2019-08-29 Surface shape measurement device and surface shape measurement method
CN201980062353.5A CN112739979B (zh) 2018-08-29 2019-08-29 表面形状测量装置以及表面形状测量方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018160900 2018-08-29
JP2018-160900 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020045589A1 true WO2020045589A1 (ja) 2020-03-05

Family

ID=69643611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033990 WO2020045589A1 (ja) 2018-08-29 2019-08-29 表面形状計測装置および表面形状計測方法

Country Status (7)

Country Link
US (1) US11635289B2 (ja)
EP (1) EP3845857A4 (ja)
JP (1) JP7231946B2 (ja)
KR (1) KR20210048528A (ja)
CN (1) CN112739979B (ja)
TW (1) TWI797377B (ja)
WO (1) WO2020045589A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113008133A (zh) * 2021-03-04 2021-06-22 苏州慧利仪器有限责任公司 一种检测用柱面镜头
WO2022138716A1 (ja) 2020-12-25 2022-06-30 大塚電子株式会社 光学測定システムおよび光学測定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220142148A (ko) 2021-04-14 2022-10-21 주식회사 엘지에너지솔루션 이차전지 노칭용 이물제거장치
CN113405459B (zh) * 2021-07-16 2023-03-21 中国科学院长春光学精密机械与物理研究所 一种用于cmm系统的控制方法
KR102521324B1 (ko) * 2022-03-03 2023-04-20 (주)오로스 테크놀로지 입사각을 갖는 오프-액시스 광학계의 정렬 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089820A1 (ja) 2010-01-22 2011-07-28 兵庫県 複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置
WO2012005315A1 (ja) 2010-07-07 2012-01-12 兵庫県 ホログラフィック顕微鏡、微小被写体のホログラム画像記録方法、高分解能画像再生用ホログラム作成方法、および画像再生方法
WO2012099220A1 (ja) * 2011-01-21 2012-07-26 兵庫県 3次元形状計測方法および3次元形状計測装置
US8269981B1 (en) 2009-03-30 2012-09-18 Carl Zeiss Smt Gmbh Method and an apparatus for measuring a deviation of an optical test surface from a target shape
WO2014054776A1 (ja) 2012-10-05 2014-04-10 公立大学法人兵庫県立大学 ホログラフィック断層顕微鏡、ホログラフィック断層画像生成方法、およびホログラフィック断層画像用のデータ取得方法
WO2015064088A1 (ja) 2013-10-28 2015-05-07 公立大学法人兵庫県立大学 ホログラフィック顕微鏡および高分解能ホログラム画像用のデータ処理方法
JP2016099122A (ja) * 2014-11-18 2016-05-30 株式会社ミツトヨ 非接触位置決め方法および非接触位置決め装置
JP2017181591A (ja) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 デジタルホログラフィ装置
WO2018038064A1 (ja) 2016-08-24 2018-03-01 公立大学法人兵庫県立大学 エリプソメトリ装置およびエリプソメトリ方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688715A (ja) * 1992-09-07 1994-03-29 Kowa Co ホログラム原器作成方法及びそれを用いた非接触式形状検査装置
US6525875B1 (en) * 1998-04-15 2003-02-25 Vincent Lauer Microscope generating a three-dimensional representation of an object and images generated by such a microscope
US6747771B2 (en) * 2002-09-03 2004-06-08 Ut-Battelle, L.L.C. Off-axis illumination direct-to-digital holography
JP5347787B2 (ja) * 2009-07-13 2013-11-20 株式会社ニコン 軸外しホログラフィック顕微鏡
JP2011089820A (ja) 2009-10-21 2011-05-06 Clarion Co Ltd ナビゲーション装置及びその表示方法
JP5652639B2 (ja) 2010-06-21 2015-01-14 日本パルスモーター株式会社 リニアモータの可動子
JP6024324B2 (ja) 2012-09-13 2016-11-16 コクヨ株式会社 筆記具
CN103034109A (zh) * 2012-12-13 2013-04-10 浙江科技学院 双ccd镜像重叠调节及单曝光同轴数字全息记录装置
CN103207532B (zh) * 2013-04-21 2014-10-22 中国科学院光电技术研究所 一种同轴检焦测量系统及其测量方法
JP6135424B2 (ja) 2013-09-26 2017-05-31 日本精工株式会社 シール付転がり軸受ユニットの製造方法
JP6248298B2 (ja) 2015-05-20 2017-12-20 株式会社アクセル 静止画情報処理方法
CN106292238B (zh) * 2015-05-20 2019-03-05 华中科技大学 一种反射式离轴数字全息显微测量装置
DE112015006609B4 (de) * 2015-06-09 2021-10-21 Mitsubishi Electric Corporation Bilderzeugungsgerät, Bilderzeugungsverfahren und Musterlichterzeugungsgerät
US10303120B2 (en) 2016-03-28 2019-05-28 Fuji Xerox Co., Ltd. Digital holographic apparatus
JP6724473B2 (ja) * 2016-03-28 2020-07-15 富士ゼロックス株式会社 デジタルホログラフィ装置
US10378963B2 (en) * 2016-06-24 2019-08-13 Ushio Denki Kabushiki Kaisha Optical system phase acquisition method and optical system evaluation method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8269981B1 (en) 2009-03-30 2012-09-18 Carl Zeiss Smt Gmbh Method and an apparatus for measuring a deviation of an optical test surface from a target shape
WO2011089820A1 (ja) 2010-01-22 2011-07-28 兵庫県 複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置
WO2012005315A1 (ja) 2010-07-07 2012-01-12 兵庫県 ホログラフィック顕微鏡、微小被写体のホログラム画像記録方法、高分解能画像再生用ホログラム作成方法、および画像再生方法
WO2012099220A1 (ja) * 2011-01-21 2012-07-26 兵庫県 3次元形状計測方法および3次元形状計測装置
WO2014054776A1 (ja) 2012-10-05 2014-04-10 公立大学法人兵庫県立大学 ホログラフィック断層顕微鏡、ホログラフィック断層画像生成方法、およびホログラフィック断層画像用のデータ取得方法
WO2015064088A1 (ja) 2013-10-28 2015-05-07 公立大学法人兵庫県立大学 ホログラフィック顕微鏡および高分解能ホログラム画像用のデータ処理方法
JP2016099122A (ja) * 2014-11-18 2016-05-30 株式会社ミツトヨ 非接触位置決め方法および非接触位置決め装置
JP2017181591A (ja) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 デジタルホログラフィ装置
WO2018038064A1 (ja) 2016-08-24 2018-03-01 公立大学法人兵庫県立大学 エリプソメトリ装置およびエリプソメトリ方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3845857A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138716A1 (ja) 2020-12-25 2022-06-30 大塚電子株式会社 光学測定システムおよび光学測定方法
KR20230123956A (ko) 2020-12-25 2023-08-24 오츠카덴시가부시끼가이샤 광학 측정 시스템 및 광학 측정 방법
CN113008133A (zh) * 2021-03-04 2021-06-22 苏州慧利仪器有限责任公司 一种检测用柱面镜头
CN113008133B (zh) * 2021-03-04 2023-02-17 苏州慧利仪器有限责任公司 一种检测用柱面镜头

Also Published As

Publication number Publication date
US20220349699A1 (en) 2022-11-03
KR20210048528A (ko) 2021-05-03
CN112739979B (zh) 2022-09-09
US11635289B2 (en) 2023-04-25
JPWO2020045589A1 (ja) 2021-08-26
EP3845857A4 (en) 2021-09-29
CN112739979A (zh) 2021-04-30
TWI797377B (zh) 2023-04-01
EP3845857A1 (en) 2021-07-07
TW202020400A (zh) 2020-06-01
JP7231946B2 (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
WO2020045589A1 (ja) 表面形状計測装置および表面形状計測方法
JP4772961B2 (ja) ディジタル・ホログラムを数値的に再構成することにより、振幅コントラスト画像と定量的位相コントラスト画像を同時に形成する方法
US11644791B2 (en) Holographic imaging device and data processing method therefor
US7880891B1 (en) Total internal reflection holographic microscope
US7649160B2 (en) Wave front sensing method and apparatus
JP3926264B2 (ja) 凹面及びホログラムを有する非球面測定装置及び方法
US10635049B2 (en) Ellipsometry device and ellipsometry method
JP7352292B2 (ja) ホログラフィック撮像装置およびホログラフィック撮像方法
Osten et al. Digital holography and its application in MEMS/MOEMS inspection
Kebbel et al. Application of digital holographic microscopy for inspection of micro-optical components
JP2012145361A (ja) デジタルホログラフィ装置
JP2022162306A (ja) 表面形状計測装置および表面形状計測方法
WO2022138716A1 (ja) 光学測定システムおよび光学測定方法
Ferraro et al. Digital holography: recent advancements and prospective improvements for applications in microscopy
Kühn et al. Digital holographic microscopy for nanometric quality control of micro-optical components
WO2023042339A1 (ja) 光学測定システムおよび光学測定方法
Osten et al. 12 Digital Holography and Its
Tay Micro-components evaluation using laser interferometry
Zhao et al. Acquisition and Processing of Three-Dimensional Information by Digital Holography
Pedrini et al. Resolution enhanced technologies in digital holography
Tiziani et al. 9.1 Interferometry: 9 Interferometry
García Pulsed Electronic Speckle Pattern lnterferometry (ESPI)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539599

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217008901

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019855228

Country of ref document: EP

Effective date: 20210329