WO2011089820A1 - 複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置 - Google Patents

複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置 Download PDF

Info

Publication number
WO2011089820A1
WO2011089820A1 PCT/JP2010/073185 JP2010073185W WO2011089820A1 WO 2011089820 A1 WO2011089820 A1 WO 2011089820A1 JP 2010073185 W JP2010073185 W JP 2010073185W WO 2011089820 A1 WO2011089820 A1 WO 2011089820A1
Authority
WO
WIPO (PCT)
Prior art keywords
hologram
axis
light
complex amplitude
line
Prior art date
Application number
PCT/JP2010/073185
Other languages
English (en)
French (fr)
Inventor
邦弘 佐藤
Original Assignee
兵庫県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兵庫県 filed Critical 兵庫県
Priority to JP2011550821A priority Critical patent/JP5352763B2/ja
Priority to EP10843984.5A priority patent/EP2527928B1/en
Priority to US13/574,565 priority patent/US8416669B2/en
Publication of WO2011089820A1 publication Critical patent/WO2011089820A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0866Digital holographic imaging, i.e. synthesizing holobjects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0445Off-axis recording arrangement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0454Arrangement for recovering hologram complex amplitude
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0454Arrangement for recovering hologram complex amplitude
    • G03H2001/0456Spatial heterodyne, i.e. filtering a Fourier transform of the off-axis record
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0465Particular recording light; Beam shape or geometry
    • G03H2001/0473Particular illumination angle between object or reference beams and hologram
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0808Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
    • G03H2001/0816Iterative algorithms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0808Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
    • G03H2001/0825Numerical processing in hologram space, e.g. combination of the CGH [computer generated hologram] with a numerical optical element
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0866Digital holographic imaging, i.e. synthesizing holobjects from holograms
    • G03H2001/0883Reconstruction aspect, e.g. numerical focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2236Details of the viewing window
    • G03H2001/2239Enlarging the viewing window
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/10Modulation characteristics, e.g. amplitude, phase, polarisation
    • G03H2210/13Coloured object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/62Moving object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/10Spectral composition
    • G03H2222/17White light
    • G03H2222/18RGB trichrome light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/33Pulsed light beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/40Particular irradiation beam not otherwise provided for
    • G03H2222/42Reference beam at recording stage
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/40Particular irradiation beam not otherwise provided for
    • G03H2222/46Reconstruction beam at reconstruction stage
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/50Geometrical property of the irradiating beam
    • G03H2222/52Divergent beam

Definitions

  • the present invention relates to a method for generating a complex amplitude in-line hologram from an off-axis digital hologram and an image recording apparatus using the method.
  • Holography divides laser light into coherent illumination light and reference light, receives the object light generated by illuminating the model object with the illumination light and the reference light propagated through another path on the photographic plate surface, This is a technique for recording an interference pattern on a light receiving surface on a photographic plate.
  • a hologram is obtained by developing the dry plate. By applying reproduction illumination light to the hologram, a stereoscopic image (virtual image) of the object can be reproduced and viewed at the position where the object was.
  • Computer holography is a technique that expresses an object as data inside a computer, performs physical simulation of light reflection, diffraction, and interference on the computer, and calculates data of an interference pattern on an arbitrary surface defined as a hologram surface.
  • a hologram is produced using some display device. Since an object is defined by data on a computer, a model object is unnecessary and optical correction is possible. Further, the interference patterns recorded in the memory can be displayed one after another on a reflective liquid crystal display or the like to materialize the hologram, and the object image can be continuously reproduced by irradiating the reference light.
  • an interference pattern is detected and electronically recorded by a CCD image sensor or a CMOS image sensor instead of a photographic plate, and the light intensity distribution of the recorded interference pattern is numerically processed by a computer to calculate an object light wave to generate a hologram.
  • a computer calculates an object light wave to generate a hologram.
  • wavefront information of object light can be acquired in the form of a two-dimensional complex amplitude distribution on the image sensor surface. Based on this wavefront information, object images at various viewpoints and positions can be obtained as in the above-described computer holography.
  • a conventional hologram using a photographic plate or the like is data of only the real part because the phase information of the object light is fixed and recorded by a method called interference instead of recording the instantaneous phase of the light wave (object light wavefront information).
  • the complex amplitude is composed of a plurality of data such as amplitude and phase, or real part and imaginary part. Accordingly, in order to obtain the complex amplitude, a plurality of pieces of hologram data are required.
  • Phase shift digital holography is known as a technique for obtaining only light modulation interference fringes (see, for example, Patent Document 1).
  • phase shift digital holography the phase state of the reference light with respect to the object light is changed in three or four stages, and a plurality of different hologram data are acquired.
  • a method of shifting the phase of the reference light there is a method of inserting a thin glass plate into the propagation path of the reference light or moving the position of a mirror that reflects the reference light using a piezo element.
  • a piezo element three types of hologram data are acquired in a state where the phase of the reference light is shifted by ⁇ / 2, and the complex amplitude of the object light is calculated from simultaneous equations between the pixel data of the three holograms.
  • a phase shift method using a spatial light modulation element has been proposed as a method for eliminating the wavelength dependency and simultaneously shifting the phases of the three colors of red, blue, and green reference light by the same value (see, for example, Patent Document 2). .
  • phase shift digital holography using a spatial light modulation element is excellent as a still three-dimensional imaging technique, but in order to obtain a single complex amplitude hologram, a plurality of sheets are obtained by shifting the phase state of the reference light. It is necessary to sequentially record the holograms. In other words, unless a plurality of holograms having different phase states are recorded simultaneously, the recording is performed in the course of time in principle. Therefore, there is an application limit for capturing a three-dimensional image of a time-varying subject or a moving subject. is there. Thus, there is a method of acquiring a plurality of hologram data at once by changing the phase state of the reference light for each pixel on the light receiving surface.
  • the cross-section of the reference light has a phase distribution.
  • the information of the interference pattern in which the phase of the reference light is changed in four stages of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2 is recorded in the hologram.
  • each 1/4 of the pixel data in one hologram forms four types of holograms (see, for example, Patent Document 3).
  • the method using the phase shift array element requires that the pixel positions of the optical deflection array element, the phase shift array element, and the light receiving element are exactly matched, and high alignment accuracy of the apparatus is required. In addition, there is a problem such as error correction when the pixel position is shifted due to disturbance. In addition, it seems difficult to reduce the cost of such a phase shift array element with high accuracy. Furthermore, since the phase shift of light has wavelength dependence, it is considered difficult to colorize a recorded image. Therefore, high-speed acquisition of the phase shift hologram is realized by a simple configuration in which the phase state of the reference light on the light receiving surface is different for each pixel only by the geometrical arrangement relationship between the parallel reference light and the light receiving surface. A method has been proposed (see, for example, Patent Document 4).
  • Patent Document 4 The method disclosed in Patent Document 4 described above enables a single shot recording of a color three-dimensional image by oblique irradiation of parallel reference light and post-processing of hologram data.
  • the phase of the reference light is periodically distributed on the surface of the light receiving element by obliquely irradiating the light receiving element such as a CCD with parallel reference light, and the object light wavefront is recorded as an off-axis hologram by a single shot.
  • three or four interference fringe holograms having different reference light phase states are taken out by data processing such as spatial sampling of recorded hologram data and data interpolation.
  • a complex amplitude in-line hologram in which only the object light wavefront from which the noise component has been removed is recorded using the plurality of extracted interference fringe holograms is generated.
  • a complex amplitude in-line hologram is required based on a single hologram recorded by a single shot that does not involve the passage of time. Real-time imaging is possible.
  • the method for generating a complex amplitude in-line hologram described in Patent Document 4 described above uses spatial sampling and data interpolation, and therefore has the following problems.
  • Spatial sampling limits the spatial frequency band of the hologram, resulting in a narrow viewing angle of the recordable three-dimensional image.
  • the viewing angle for example, in the development of an imaging apparatus aimed at realizing a three-dimensional display, imaging of a three-dimensional image having a wide viewing angle has become a problem.
  • the complex amplitude in-line hologram needs to have a wide spatial frequency band.
  • the data interpolation has a problem that an error occurs in the obtained complex amplitude hologram.
  • the present invention solves the above-described problems, and with a simple configuration, a single off-axis hologram can be processed at high speed without limiting the spatial frequency band and without causing errors due to interpolation or the like. It is an object of the present invention to provide a method for generating a complex amplitude in-line hologram capable of realizing high-speed recording and an image recording apparatus using the method.
  • a method for generating a complex amplitude in-line hologram is a method for generating a complex amplitude in-line hologram from an off-axis hologram, wherein a single off-axis hologram obtained by off-axis holography is added to an inline for reproduction.
  • a complex amplitude in-line hologram is generated by sequentially performing a modulation step and a filtering step.
  • the filtering step instead of the modulation step and the filtering step, filtering for applying spatial frequency filtering to one off-axis hologram obtained by off-axis holography And a modulation step of performing spatial heterodyne modulation on the hologram filtered by the filtering step based on the phase of the inline reference light for reproduction and the phase of the off-axis reference light used to obtain the off-axis hologram.
  • the modulation step may be performed after the filtering step.
  • a complex amplitude in-line hologram is generated from a single off-axis hologram by a modulation step and a filtering step without performing spatial sampling or data interpolation.
  • Complex amplitude in-line holograms can be generated without limitation and without errors due to interpolation.
  • the spatial frequency band of the generated hologram can be expanded to the recordable limit determined by the pixel pitch of the light receiving element, and a three-dimensional image with a wide viewing angle can be recorded.
  • existing data processing techniques can be used for the modulation step and the filtering step, the configuration is simple, and high-speed processing is possible.
  • the reference light used for off-axis hologram acquisition is not limited to parallel light, and more general reference light such as a spherical wave can be used.
  • the phase of the reference light may be any spatial phase distribution as long as its phase distribution is known.
  • An image recording apparatus is an image recording apparatus that generates a complex amplitude in-line hologram from an off-axis hologram in which an object image is recorded, and electronically records the hologram as image information of the object.
  • An off-axis hologram acquisition unit that records an image as an off-axis hologram by off-axis holography
  • a hologram conversion unit that generates a complex amplitude in-line hologram from the off-axis hologram acquired by the off-axis hologram acquisition unit
  • a storage unit that electronically records the complex amplitude inline hologram as image information of the object, and the hologram conversion unit uses the off-axis reference light used for obtaining the phase of the inline reference light for reproduction and the off-axis hologram.
  • a modulation unit that performs spatial heterodyne modulation on an off-axis hologram based on the phase
  • a filtering unit that performs spatial frequency filtering on the hologram modulated by the modulation unit, and uses these modulation unit and filtering unit to provide a complex amplitude inline A hologram is generated.
  • the hologram conversion unit performs filtering by a filtering unit that performs spatial frequency filtering on the off-axis hologram instead of the modulation unit and the filtering unit, and filtering by the filtering unit.
  • a modulation unit that performs spatial heterodyne modulation based on the phase of the in-line reference beam for reproduction and the phase of the off-axis reference beam used to acquire the off-axis hologram.
  • a complex amplitude in-line hologram is generated using the unit.
  • FIG. 1A is a flowchart for explaining processing of a method for generating a complex amplitude inline hologram according to the first embodiment of the present invention
  • FIG. 1B is a flowchart for explaining a modification of the method
  • FIG. 2A is a block diagram for explaining the process of the method
  • FIG. 2B is a block diagram for explaining the process of the modification
  • FIG. 3 is a plan view of an apparatus for obtaining an off-axis hologram that is a processing target of the method.
  • FIG. 4 is a flowchart for explaining the process of setting the reference light for reproduction in the method.
  • FIG. 5 is a plan view for explaining the relationship between the spatial frequency and the viewing angle in the method.
  • FIG. 1A is a flowchart for explaining processing of a method for generating a complex amplitude inline hologram according to the first embodiment of the present invention
  • FIG. 1B is a flowchart for explaining a modification of the method.
  • FIG. 2A is a
  • FIG. 6 is a diagram for explaining the spatial frequency distribution of an off-axis hologram in the same method.
  • 7A is a spatial frequency distribution diagram when the off-axis angle of the reference light is appropriate when the viewing angle is narrow
  • FIG. 7B is a spatial frequency distribution diagram when the coaxial off-axis angle is too small
  • FIG. 7C is a spatial frequency distribution diagram when the coaxial removal angle is too large.
  • FIG. 8A is a plan view showing a state in which an off-axis hologram in the method is acquired by reference light composed of spherical waves
  • FIG. 8B is a plan view when the reference light is parallel light.
  • FIG. 9A is a spatial frequency distribution diagram of an off-axis hologram when the viewing angle is narrow to which the method is applied, and FIG. 9B is a case where spatial heterodyne modulation is performed on the hologram of FIG. 9A.
  • FIG. 9C is a spatial frequency distribution diagram, and FIG. 9C is a spatial frequency distribution diagram when spatial frequency filtering is performed on the hologram of FIG. 9B.
  • FIGS. 10A and 10B are spatial frequency distribution diagrams of an off-axis hologram when the viewing angle is wide to which the generation method of the complex amplitude inline hologram according to the second embodiment is applied, and FIG. 10B is an application of the method. It is a spatial frequency distribution diagram in a difficult case.
  • FIG. 10A and 10B are spatial frequency distribution diagrams of an off-axis hologram when the viewing angle is wide to which the generation method of the complex amplitude inline hologram according to the second embodiment is applied, and FIG. 10B is an application of the method
  • FIG. 11 is a flowchart for explaining the processing of the method.
  • FIG. 12 is a block diagram for explaining the processing of this method.
  • FIG. 13 is a block diagram of an image recording apparatus according to the third embodiment.
  • FIG. 14 is a plan view of an off-axis hologram acquisition unit of the apparatus.
  • FIG. 15A is a diagram showing a part of an off-axis hologram when the viewing angle obtained by the apparatus is narrow
  • FIG. 15B is a part of the real part of the complex amplitude in-line hologram generated from the hologram.
  • FIG. 15C shows a part of the imaginary part of the hologram.
  • FIG. 16A, 16B, and 16C are red, green, and blue color images respectively reproduced from the complex amplitude in-line hologram
  • FIG. 16D is a color image that is reproduced from the hologram.
  • FIG. 17A is a side view showing a state in which an off-axis hologram is acquired by the same apparatus when the viewing angle is wide
  • FIG. 17B is a plan view thereof.
  • FIG. 18 is a reproduced image of an off-axis hologram obtained under the same arrangement.
  • FIG. 19 is a diagram illustrating the reproduced image and the spatial frequency distribution in association with each other.
  • FIG. 20 is a reproduction image of a complex amplitude in-line hologram generated from the off-axis hologram.
  • FIG. 20 is a reproduction image of a complex amplitude in-line hologram generated from the off-axis hologram.
  • FIG. 21 is a diagram illustrating the reproduced image and the spatial frequency distribution in association with each other.
  • FIG. 22A is a spatial frequency distribution diagram of an off-axis hologram when the viewing angle is narrow
  • FIG. 22B is a monochrome reproduction image reproduced from the hologram.
  • FIG. 23A is a spatial frequency distribution diagram of a complex amplitude in-line hologram when the viewing angle is narrow
  • FIG. 23B is a monochrome reproduction image reproduced from the hologram.
  • FIG. 24 is a graph showing how the light intensity difference of the object light converges with the number of repeated calculations n in each of the four types of amplitude ratios R 0 / O 0 in the iterative approximation method when the viewing angle is wide.
  • (First embodiment) 1 to 9 show a method for generating a complex amplitude in-line hologram according to the first embodiment.
  • this generation method includes one off-axis hologram I acquired by off-axis holography, and off-axis reference light used to acquire the hologram I.
  • R data is obtained (S1)
  • the reproduction in-line reference beam R ′ is set (S2)
  • the hologram I is subjected to spatial heterodyne modulation based on the phases of the reference beams R and R ′ (S3).
  • each process is demonstrated in detail, referring another figure.
  • the modulation step (S3) and the filtering step (S4) may be reversed in order as shown in FIGS. 1B and 2B, which will be described later.
  • the data of the hologram I and the reference light R in step (S1) are data acquired by, for example, the off-axis hologram acquisition device 11 shown in FIG.
  • the hologram acquisition device 11 includes a laser 2 that is a monochromatic coherent light source, a beam splitter BS that emits the laser light 21 from the laser 2 into reference light 22 and illumination light 23, and a mirror M that reflects the reference light 22.
  • the lens system 4 for producing the illumination light L, the light receiving element 5 for receiving the object light O emitted from the reference light R and the object 9 illuminated by the illumination light L, and the control for controlling the laser 2 and the light receiving element 5 A device 6 is provided.
  • the lens system 4 includes, for example, a lens 41 that spreads the illumination light 23 and a collimator lens 41 that uses the spread lens as parallel light.
  • the object 9 as a subject is arranged on the imaging axis in the center front direction of the light receiving surface 51 of the light receiving element 5.
  • the reference light R is emitted from the direction inclined with respect to the imaging axis, that is, from the off-axis direction (off-axis direction) toward the center of the light receiving surface 51.
  • a monochromatic off-axis hologram is electronically acquired by the hologram acquisition device 11.
  • This generation method only needs to acquire one hologram among a plurality of off-axis holograms having different phase states acquired in so-called phase shift digital holography. Accordingly, such a hologram acquisition apparatus 11 is easily configured.
  • the data of the reference light R is measured by, for example, irradiating the light receiving surface 51 with measurement parallel light together with the reference light R, and recording the interference fringes, or the optical arrangement of each optical member in the hologram acquisition device 11 It can be easily obtained by calculation based on other optical conditions.
  • the wavelength ⁇ of the in-line reference light R ′ for reproduction in step (S 2) is the same as the wavelength ⁇ of the reference light R, and the optical axis thereof is usually the central front direction of the light receiving surface 51. Further, the optical axis of the reference light R ′ can be set in a direction in which the intensity of the object light O from the object 9 is maximized. In this case, as shown in FIG. 4, the image is reproduced from the hologram I (S21), and the optical axis shift between the object light O and the off-axis reference light R is detected from the reproduced image (S22). The optical axis of the reference light R ′ is obtained using the deviation of the optical axis (S23). Thereby, the optical axis of the in-line reference light for reproduction can be set more appropriately and reliably.
  • the phase of the reference light R ′ can be arbitrarily set as appropriate.
  • the concept of the spatial frequency, the viewing angle, the spatial frequency distribution of the off-axis hologram I, and the relationship between them will be described with reference to FIGS.
  • the angle at which the object 9 is desired from the center point 50 is defined as the viewing angle ⁇
  • the center point 50 The incident angle of a certain object beam O and the incident angle of a reference beam R that are incident on the beam are denoted by ⁇ O and ⁇ R , respectively.
  • the vertical direction in the figure is the off-axis direction y, and ⁇ R is the off-axis angle (off-axis angle).
  • the reference light R is not limited to a spherical wave or a plane wave, and is arbitrary.
  • the light receiving element 5 is, for example, a CCD image sensor, and each light sensor portion of the CCD image sensor serving as a pixel is two-dimensionally arranged in an off-axis direction y and its orthogonal direction to form a light receiving surface 51. It shall be.
  • the corner pixels are arranged at a pixel pitch d.
  • the object light O and the reference light R form interference fringes on the light receiving surface 51, and the pitch of the fringes is P.
  • the object 9 is a white flat plate parallel to the light receiving surface 51.
  • the maximum spatial frequency bandwidth of the hologram I that can be recorded using the light receiving element 5 is generally the spatial sampling frequency f S determined from the pixel pitch d of the light receiving element 5.
  • This spatial frequency distribution is a one-dimensional spatial frequency distribution of the off-axis hologram I in the off-axis direction y when a subject with uniform brightness (for example, an object 9 made of a white flat plate) is recorded.
  • R 0 2 , O 0 2 , 2O 0 R 0 cos ( ⁇ O ⁇ R ) in the figure are components of the light intensity I (the intensity of the off-axis hologram I) on the light receiving surface 51, respectively.
  • R light intensity, light intensity of object light O, and light intensity of light modulation interference fringes due to interference between reference light and object light see equations (1), (2), and (3) below).
  • the light intensity spread of the object light O and the light intensity of the light modulation interference fringes are defined by the viewing angle ⁇ and the wavelength ⁇ , that is, ⁇ / ⁇ .
  • the light intensity spread center of the light modulation interference fringe is defined by the off-axis angle ⁇ R and the wavelength ⁇ , that is, ⁇ R / ⁇ .
  • the light intensity distribution of the object light O and the light intensity distribution of the light modulation interference fringes overlap or separate from each other depending on the numerical values such as ⁇ , ⁇ R , and ⁇ , and the spatial sampling frequency f S. Or stick out of the range.
  • FIG. 7A shows a case where there is no overlap in distribution
  • FIG. 7B shows a case where there is an overlap
  • FIG. It shows the case where protrudes from the range of the frequency f S.
  • one off-axis hologram is used. A complex amplitude in-line hologram is generated from I.
  • FIG. 8 shows the difference between the case where the reference wave R is a spherical wave and a parallel wave.
  • FIG. 8A particularly shows a case where the reference wave R is a spherical wave, and the light source, the object 9 and the light receiving surface 51 of the light receiving element 5 are on the same circumference C.
  • approximately any point on the light receiving surface 51 is equal.
  • FIG. 9 (a) is basically the same as FIG. 6 and FIG. 7 (a).
  • Is expressed in the following general formulas (1), (2), and (3), the light intensity I (x, y)
  • 2 is expressed by the following equation (4).
  • the first term on the right side of Equation (4) represents the light intensity of the object light
  • the second term represents the light intensity of the reference light
  • the third term represents a light modulation interference fringe created by modulating the reference light with the object light.
  • the third term is regarded as a combination of a direct image component for recording the direct image and a conjugate image component for recording the conjugate image by recording the amplitude O 0 and the phase ⁇ 0 of the object light.
  • the direct image component and the conjugate image component are separated and recorded in different spatial frequency bands. For example, the left and right rectangular spectral intensity waveforms in FIG.
  • the direct image component and the conjugate image component of the light modulation interference fringe are not overlapped with the component of the light intensity O 0 2 of the object light so that the three-dimensional image is off-axis. It is assumed that the hologram I was recorded.
  • the spatial heterodyne modulation H of the off-axis hologram I is performed to obtain the in-line hologram I H for the reference light R ′.
  • the spatial heterodyne modulation H is obtained by multiplying both sides of the equation (4) by a factor exp [i ( ⁇ R ⁇ R ′)] having a phase difference ( ⁇ R ⁇ R ′) of the reference beams R and R ′. As a result, the following equation (5) is calculated.
  • the second and third terms on the right side of Equation (5) are obtained from the light modulation interference fringes of the third term on the right side of Equation (4).
  • An image is directly reproduced from the second term on the right side of Expression (5), and a conjugate image is reproduced from the third term. Therefore, when only the second term in which the image is directly recorded by spatial frequency filtering of the equation (5) is separated and extracted, an accurate complex amplitude in-line hologram for image reproduction is obtained.
  • the first term and the third term on the right side of the equation (5) include the phases ⁇ R and ⁇ R ′ of both of the reference beams R and R ′, while the second term represents the reference beam R ′. Only the phase ⁇ R ′ is included.
  • FIG. 9 (b) Spatial frequency distribution of the modulated hologram I H is the distribution shown in Figure 9 (b).
  • the waveform shown in FIG. 9B is a waveform obtained by moving the entire waveform shown in FIG. 9A to the left and turning back the portion protruding from the range determined by the spatial sampling frequency f S from the right. Yes.
  • FIGS. 9A and 9B are multi-component holograms including a plurality of terms in equations (4) and (5). Further, FIG. 9A is bilaterally symmetric and corresponds to a real number, and FIG. 9B is bilaterally asymmetric and corresponds to a complex number. The waveform portion located at the center of this figure corresponds to the complex amplitude inline hologram J to be obtained.
  • the spatial frequency filtering W in step (S4) is performed.
  • the filtering W performs fast Fourier transform (FFT) on the hologram I H to form a hologram I HF, and the central portion of the spatial frequency distribution with respect to the hologram I HF Is subjected to a filtering process using a window w that leaves the waveform ⁇ I HF >, and a fast Fourier transform (inverse transform) is again performed on the hologram ⁇ I HF > to generate a final complex amplitude in-line hologram J.
  • FFT fast Fourier transform
  • 9C shows the spatial frequency distribution of the generated one-component complex amplitude in-line hologram J, which is actually left-right asymmetric and represents complex amplitude when viewed in detail without approximation (modeling). Since the complex amplitude in-line hologram J records only a direct image, its bandwidth in the off-axis direction is half that of the light modulation interference fringe in which the direct image and the conjugate image are recorded.
  • the spatial frequency filtering (S4) is performed after the spatial heterodyne modulation (S3).
  • the spatial frequency filtering (S13) is performed first.
  • steps (S11) and (S12) are the same as steps (S1) and (S2).
  • step (S13) holograms I F , ⁇ I F >, I ′ are respectively obtained by Fourier transform, filtering, and inverse Fourier transform.
  • step (S14) the final complex amplitude hologram J of one component is obtained.
  • the complex amplitude in-line hologram J is generated from the single off-axis hologram I by the modulation step and the filtering step without performing spatial sampling or data interpolation.
  • the complex amplitude inline hologram J can be generated without limiting the viewing angle ⁇ and without including errors due to interpolation. Therefore, the spatial frequency band of the generated hologram J can be expanded to the recordable limit determined by the pixel pitch d of the light receiving element, and a three-dimensional image with a wide viewing angle can be recorded.
  • existing data processing techniques can be used for the modulation step and the filtering step, the configuration is simple, and high-speed processing is possible.
  • the necessary off-axis hologram I can be easily obtained, an image can be recorded in real time. Can do.
  • the spatial distribution of the amplitude and phase of the reference light is expressed in a general form in the equations (1) to (5). This indicates that the reference light R used for obtaining the off-axis hologram I is not limited to parallel light, and more general reference light such as a spherical wave can be used.
  • the phase of the reference light may be any spatial phase distribution as long as its phase distribution is known.
  • FIG. 11 and FIG. 12 show the second embodiment.
  • the light intensity O 0 2 distribution of the object light O in the spatial frequency distribution and the light intensity 2O 0 R 0 cos ( ⁇ O ⁇ R ) distributions are related to each other.
  • FIGS. 10A and 10B when the light intensity of the object light O is larger than the light intensity of the light modulation interference fringes, the influence of the object light O is removed by the following iterative approximation method. Complex amplitude in-line holograms can be generated.
  • FIG. 10C when the light intensity of the object light O is smaller than the light intensity of the light modulation interference fringes, the repeated approximation may not converge.
  • the light intensity component O 0 2 (n) of the object light is calculated from the hologram J (n) (# 5), and the change O 0 2 of the calculated light intensity component is calculated. It is determined whether (n) ⁇ O 0 2 (n ⁇ 1) has decreased to within the allowable range (# 6).
  • step (# 4) If it is not within the allowable range (NO in # 6), from step (# 4) The above process is repeated, and if it is within the allowable range (YES in # 6), the hologram J (n) at that time is taken as the final result, and the process is terminated.
  • the data of the light intensity component R 0 2 in the pre-processing step (# 2) is obtained if it is available as known, and if it is not available, it is obtained approximately from the hologram I, or light from a past measurement example or the like.
  • a function form of the intensity component R 0 2 may be determined and the function form obtained from the function form may be used.
  • a hologram acquisition step of electronically acquiring the off-axis hologram I through the light receiving element 5 by off-axis holography, and before or after the hologram acquisition step A reference light measurement process for obtaining the intensity of only the reference light R on the light receiving surface 51 of the light receiving element 5 may be executed.
  • the hologram acquisition step is performed in a state where the intensity of the reference light R on the light receiving surface 51 is larger than the intensity of the object light O (see FIG. 10). That is, the condition under which the above iterative approximate calculation surely converges is considered to be that the light intensity of the object light itself of the first term of Equation (4) is smaller than the light modulation interference fringe of the third term. When the term becomes large, it may not converge. Therefore, when the hologram is recorded, the amplitude R 0 of the reference light may be made larger than the amplitude O 0 of the object light in order to converge this repeated calculation.
  • a complex amplitude in-line hologram with reduced can be generated.
  • the off-axis hologram I acquired by making the intensity of the reference light R larger than the intensity of the object light O is more reliably converged by approximation, so the influence of the light intensity component of the reference light and the object light is more reliably achieved.
  • a complex amplitude in-line hologram J can be generated.
  • the light modulation interference fringes overlap with the 0th order light (reference light and object light) in the two-dimensional spatial frequency domain, and only one off-axis hologram is obtained by performing spatial heterodyne modulation and spatial frequency filtering only once. Even if it is not possible to extract a complex amplitude in-line hologram free from noise, according to the present embodiment, it is possible to remove the influence of zero-order light and generate a complex amplitude in-line hologram J with a wide band (wide viewing angle). can do.
  • the maximum frequency bandwidth of the direct image component is perpendicular to the spatial sampling frequency f S in the off-axis direction. In the direction, it becomes possible to expand each up to the spatial sampling frequency f S.
  • the image recording apparatus 1 includes an off-axis hologram acquisition unit 11 that records an object image as an off-axis hologram I by off-axis holography, and an off-axis hologram I acquired by the off-axis hologram acquisition unit 11.
  • Hologram conversion unit 12 that generates a complex amplitude inline hologram
  • a storage unit 13 that electronically records complex amplitude inline hologram J generated by the hologram conversion unit 12 as image information of an object
  • the hologram conversion unit 12 uses the generation method of the complex amplitude in-line hologram shown in the first and second embodiments.
  • the hologram conversion unit 12, the storage unit 13, and the control unit 14 can be configured by a general computer and software.
  • the off-axis hologram acquisition unit 11 can use the hologram acquisition apparatus 11 shown in FIG. 3 when generating and recording a monochrome hologram J. Further, in order to generate and record a color complex amplitude in-line hologram J, as shown in FIG. 3, a plurality of, for example, red, green, and blue three-color lasers 2 having different wavelength regions are connected to the hologram acquisition unit 11. A plurality of lens systems 3 corresponding to each laser, a plurality of beam splitters BS, and a plurality of mirrors M may be provided. As the light receiving element 5, either a single color light receiving element or a color light receiving element may be used.
  • the operation of acquiring the hologram I with one laser 2 may be performed a plurality of times by switching the lasers 2 to each other.
  • a plurality of lasers 2 are operated simultaneously, the reference light R and the illumination light L are mixed, for example, white light is obtained, and the hologram I is acquired by one operation. be able to.
  • the image recording apparatus 1 can acquire an object image as a color off-axis hologram I and generate a color complex amplitude in-line hologram J.
  • the off-axis hologram acquisition unit 11 uses a pulse laser as the laser 2 and serves as a light source for coherent light.
  • Each reference light R is converted into a spherical wave by each lens system 3, and the center (light source) position of the spherical wave, the subject (object) position, and the position of the light receiving surface 51 of the light receiving element 5 are the same.
  • the configuration is arranged on the circumference C. Such an arrangement makes it possible to record a hologram with a large viewing zone angle.
  • the optical systems such as the mirror M and the lens system 3 constituting the hologram acquisition unit 11 are shown in a widely dispersed state. However, these optical systems are configured in a compact manner.
  • each reference light R is irradiated to the light receiving element 5 as a spherical wave, and the light source position of the spherical wave can be set on the same circumference C.
  • high-speed continuous acquisition of a single off-axis hologram is easy, and generation of a complex amplitude in-line hologram can be performed by post-processing. Can be easily recorded. If complex amplitude inline holograms are generated at high speed, complex amplitude inline holograms of moving images can be generated and recorded or distributed in real time.
  • a pulse laser as the laser 2 of the image recording apparatus 1, an image can be recorded at a higher speed than when a continuous laser is used, and a phenomenon that changes at a high speed can be recorded.
  • a plurality of lasers are used as the laser 2 of the image recording apparatus 1 to generate a color complex amplitude in-line hologram, and an instantaneous color image or a continuous color image of a moving subject or a changing subject is recorded.
  • the reference light R and the object light O are directly recorded on the light receiving surface 51 without passing through the imaging lens, so that high-quality color without chromatic aberration or distortion is recorded. Imaging and recording of a three-dimensional moving image can be realized.
  • the pixel pitch d of the light receiving element 5 is 4 ⁇ m
  • the viewing angle ⁇ is narrow using the pixel pitch d and the wavelength ⁇ , for example, 0 ⁇ ⁇ ⁇ ⁇ / 4d
  • the viewing angle ⁇ is wide, for example, ⁇ / 4d ⁇ ⁇ ⁇ ⁇ / 2d. Is done.
  • the viewing angle of interest is the viewing angle in the off-axis direction (off-axis direction).
  • FIGS. 15B and 15C are displayed with 256 gradations after being normalized using the effective value of the amplitude.
  • the interference fringes shown in FIG. 15A record not only the light modulation interference fringes created by the object light and the reference light, but also interference fringes (0th order light) created by the object light itself and the reference light itself, as shown in FIG. b) A high-frequency interference fringe having a low contrast as compared with (c).
  • the direct image component (light modulation interference fringe) formed by the object light and the reference light has a higher contrast than that in FIG. It is obtained as a clear low frequency interference fringe.
  • FIG. 16 (a), 16 (b), and 16 (c) show images of three colors, red, green, and blue, respectively reproduced from the complex amplitude inline hologram J by numerical calculation.
  • FIG. 16D shows a color image obtained by superimposing three color images reproduced from the complex amplitude inline hologram J. This color image is a high-quality color image without color misregistration. From the result of this image reproduction, it can be confirmed that the complex amplitude inline hologram J of three colors of red, green and blue is accurately recorded.
  • FIGS. 17A and 17B show a second embodiment.
  • three dice were imaged as subjects with a large viewing angle ⁇ .
  • An off-axis hologram I was obtained by arranging the light source of the reference light R at a position off-axis in both the vertical and horizontal directions.
  • FIG. 18 shows a monochromatic image reproduced from the off-axis hologram I.
  • FIG. 19 is an explanatory diagram of FIG. As shown in these figures, a direct image and a conjugate image are reproduced from the off-axis hologram I separately in the upper half and the lower half of the figure. In addition to the direct image and the conjugate image, zero-order light is reproduced, and the image quality of the direct image is significantly deteriorated due to the reproduced light.
  • FIG. 20 shows a monochromatic image reproduced from the complex amplitude inline hologram J. The direct image is reproduced by being divided into upper right and upper left in FIG. 19, but is reproduced in the center of the figure as a continuous image by performing spatial heterodyne modulation in FIG. FIG.
  • FIG. 21 is an explanatory diagram of FIG. As shown in these drawings, a high-quality image with higher contrast is reproduced from the complex amplitude inline hologram J. From this result, the complex amplitude inline hologram J is accurately obtained by the image recording apparatus 1. I understand that.
  • the field of view shown in FIGS. 18 and 19 represents a recordable field of view determined by the pixel pitch of the light receiving element, and a direct image and a conjugate image are reproduced over the entire field of view.
  • a direct image and a conjugate image are reproduced over the entire field of view.
  • FIGS. 20 and 21 only the direct image is reproduced from the complex amplitude in-line hologram J, and the conjugate image is separated and removed by filtering with the vertical window w (parts of regions A and B in FIG. 21).
  • the field of view is narrowing up and down.
  • Maximum bandwidth of the vertical and horizontal directions of the complex amplitude inline hologram J is equal to 1/2 and the spatial sampling frequency f S of the spatial sampling frequency f S, respectively.
  • FIGS. 1 and 2 show a third embodiment.
  • four dice each having a side length of 18 mm, 18 mm, 15 mm, and 12 mm were stacked at a position of 78 cm from the light receiving element, and a color three-dimensional image was recorded by the image recording apparatus 1.
  • 22A and 22B show a spatial frequency distribution and a reproduced image based on the recorded off-axis hologram. The direct image, the zero-order light, and the conjugate image are reproduced on the right, center, and left of the reproduced image by the off-axis hologram, respectively.
  • 23A and 23B show a spatial frequency distribution and a reproduced image based on a complex amplitude inline hologram generated from an off-axis hologram. Only the direct image is reproduced in the center of the reproduced image by the complex amplitude in-line hologram. In addition, the visual field in the horizontal direction of the reproduced image is limited to 1 ⁇ 4 of the entire visual field.
  • FIG. 24 shows an example of the second embodiment.
  • a complex amplitude in-line hologram can be created by performing repeated calculations for a subject with a large viewing angle.
  • O 0 2 (n) is the light intensity obtained by calculation from the complex amplitude hologram J (n)
  • O 0 2 is the convergence value of the object light intensity obtained by repeated calculation.
  • the amplitude ratio R 0 / O 0 between the reference light and the object light needs to be set to a value larger than about 3, and the amplitude ratio R 0 / O 0
  • the light intensity O 0 2 (n) does not converge to a constant value.
  • the convergence speed is high, and the light intensity O 0 2 (n) converges to a constant value O 0 2 by several iterations. Further, the convergence speed does not depend much on the value of the amplitude ratio R 0 / O 0 .
  • a method for generating a complex amplitude inline hologram and an image recording apparatus using the method according to the present invention include a video technology field for recording a three-dimensional image of a moving subject, an information field, a medical field, a biological science field, a design support field, an industrial measurement.
  • the present invention can be applied to color three-dimensional imaging methods and imaging apparatuses used in fields, virtual reality, and the like.
  • This apparatus for recording without passing through the imaging lens can accurately record a three-dimensional image without distortion, and can perform three-dimensional high-speed imaging by using a pulse laser. Taking advantage of these advantages, it can be applied to the measurement of the position and displacement of a moving subject and the non-contact and non-destructive high-speed precision measurement of a three-dimensional shape. Further, it can be applied to high-speed three-dimensional imaging of instantaneously changing phenomena such as collisions and explosions.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Holo Graphy (AREA)

Abstract

 複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置において、単一のオフアクシスホログラムから、空間周波数帯域を制限することなく、また、補間などによる誤差を生じることなく、高速処理と高速記録を実現可能とする。本生成方法は、オフアクシスホログラフィによって取得された1枚のオフアクシスホログラム(I)と、ホログラム(I)を取得するために用いたオフアクシス参照光(R)のデータを入手し(S1)、再生用インライン参照光(R')の設定を行い(S2)、ホログラム(I)に対し、参照光(R,R')の位相に基づいて空間ヘテロダイン変調を施す変調工程(S3)と、変調工程によって変調されたホログラムに空間周波数フィルタリングを施すフィルタリング工程(S4)とを順に行うことにより複素振幅インラインホログラム(J)を生成する。空間サンプリングを行わない分、視野角(ψ)の制限が緩和される。

Description

複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置
 本発明は、オフアクシスデジタルホログラムから複素振幅インラインホログラムを生成する方法および該方法を用いる画像記録装置に関する。
 ホログラフィは、レーザ光を互いにコヒーレントな照明光と参照光に分け、モデルとなる物体を照明光により照射して発生した物体光と別経路を伝播してきた参照光とを写真乾板面で受光し、受光面での干渉パターンを写真乾板に記録する技術である。この乾板を現像したものがホログラムである。ホログラムに再生照明光を当てることによって物体のあった位置に物体の立体像(虚像)を再生して見ることができる。計算機ホログラフィは、計算機内部のデータとして物体を表現し、光の反射、回折、干渉の物理シミュレーションを計算機上で行い、ホログラム面として定めた任意の面における干渉パターンのデータを計算する技術である。計算結果に基づき、何らかの表示デバイスを用いてホログラムを製作する。物体を計算機上のデータで定義するので、モデルとなる物体が不要であり、光学的な補正が可能である。また、メモリに記録した干渉パターンを反射型液晶ディスプレイなどに次々と表示してホログラムを実体化すると共に参照光を照射して物体像を連続的に再生できる。
 ディジタルホログラフィは、写真乾板ではなくCCD画像センサやCMOS画像センサなどによって干渉パターンを検出して電子的に記録し、記録した干渉パターンの光強度分布を計算機で数値処理し物体光波を算出してホログラムを作成する技術である。ディジタルホログラフィを用いれば、画像センサ面における2次元の複素振幅分布の形で物体光の波面情報を取得できる。この波面情報に基づいて、上述の計算機ホログラフィと同様に、様々な視点や位置での物体像が得られる。ところで、一般に、ホログラフィによる3次元像の撮像においては、参照光が物体光に変調されて作られる光変調干渉縞の他に、参照光や物体光そのもの、および、物体表面で散乱された物体光の相互混合や光路上で発生した散乱を受けた参照光の相互混合などによって作られる光混合干渉縞などが記録される。このうちで像再生に必要であるのは光変調干渉縞であり、他の光成分は像再生に悪影響を及ぼし再生像の画質を低下させる。この光変調干渉縞だけを取得して物体光波面情報として記録するためには、上述の複素振幅分布を取得する必要がある。従来の写真乾板などを用いるホログラムは、光波の瞬時位相(物体光波面情報)を記録する代わりに干渉という方法によって物体光の位相情報を固定化して記録するので、実数部のみのデータである。複素振幅は、振幅と位相、あるいは実数部と虚数部といった複数のデータから成る。従って、複素振幅を求めるには、複数枚のホログラムデータが必要である。光変調干渉縞だけを取得する技術として位相シフトデジタルホログラフィが知られている(例えば、特許文献1参照)。
 位相シフトデジタルホログラフィでは、物体光に対する参照光の位相状態を3段階又は4段階に変化させ、互いに異なる複数枚のホログラムデータを取得する。参照光の位相をシフトする方法として、薄いガラス板を参照光の伝播経路に挿入したり、参照光を反射するミラーの位置をピエゾ素子を用いて移動させたりする方法がある。例えば、ピエゾ素子を用いて、参照光の位相をπ/2ずつシフトさせた状態で3種類のホログラムデータを取得し、3枚のホログラムの各画素データ間の連立方程式から物体光の複素振幅を求める。しかしながら、この方法による画像記録においては、一般に位相シフトのための制御パラメータに対するシフト量が波長依存性を有するので、カラーのホログラム取得が難しいという欠点がある。この波長依存性を無くして赤青緑の3色参照光の位相を同時に同じ値だけシフトする方法として、空間光変調素子を用いた位相シフト法が提案されている(例えば、特許文献2参照)。
 しかしながら、空間光変調素子を用いる位相シフトデジタルホログラフィは、静止3次元像の撮像技術としては優れているが、1枚の複素振幅ホログラムを得るために、参照光の位相状態をシフトさせて複数枚のホログラムを逐次記録する必要がある。つまり、位相状態の異なる複数のホログラムの記録を同時に行わない限り、原理的に時間経過の中での記録となるので、時間変化する被写体や動く被写体の3次元像を撮像するには適用限界がある。そこで、参照光の位相状態を受光面の画素毎に異ならせて、複数枚のホログラムデータを一括して取得する方法がある。例えば、隣接する素子が互いにπ/2ずつ位相を異ならせるようにアレイ配置した位相シフトアレイ素子を参照光の伝播経路に挿入して、参照光の断面に位相分布を持たせることにより、1枚のホログラムに参照光の位相が0,π/2,π,3π/2の4段階に変化させた干渉パターンの情報を記録する。この場合、一枚のホログラム中の画素データの1/4ずつが4種類のホログラムをそれぞれ形成している(例えば、特許文献3参照)。
 位相シフトアレイ素子を用いる方法は、光偏向アレイ素子と位相シフトアレイ素子および受光素子それぞれの画素位置を厳密に一致させる必要があり、装置の高い位置合わせ精度が要求される。また、外乱によって画素位置がずれた場合の誤り訂正などの課題がある。また、このような位相シフトアレイ素子を高精度で低コスト化するのは難しいと思われる。さらに、光の位相シフトが波長依存性を持つので、記録画像のカラー化が難しいと考えられる。そこで、平行参照光と受光面との幾何学的な配置関係のみによって受光面上における参照光の位相状態を画素毎に異ならせる、という簡単な構成によって、位相シフトホログラムの高速取得化を実現する方法が提案されている(例えば、特許文献4参照)。
 上述の特許文献4に示される方法は、平行参照光の斜め照射およびホログラムデータの後処理によってカラー3次元像を単一ショット記録可能とする。この方法は、CCDのような受光素子に平行参照光を斜め照射させることにより、受光素子表面に参照光の位相を周期的に分布させ、物体光波面をオフアクシスホログラムとして単一ショットによって記録する。その後、記録ホログラムデータの空間サンプリングやデータ補間などのデータ処理によって、異なる参照光位相状態の3枚または4枚の干渉縞ホログラムを取り出す。取り出された複数枚の干渉縞ホログラムを用いてノイズ成分を取り除いた物体光波面のみが記録された複素振幅インラインホログラムが生成される。この方法は、時間経過を伴わない単一ショット記録による1枚のホログラムに基づいて複素振幅インラインホログラムが求められるので、処理の高速化やパルスレーザの使用により、原理的に、動く3次元像のリアルタイム撮像が可能になる。
特許第3471556号公報 特開2007-114463号公報 特開2005-283683号公報 特開2008-122565号公報
 しかしながら、上述した特許文献4に示される複素振幅インラインホログラムの生成方法は、空間サンプリングやデータ補間を用いるものであり、そのため、次のような課題がある。空間サンプリングは、ホログラムの空間周波数帯域を制限し、その結果、記録可能な3次元像の視野角が狭くなる。視野角については、例えば、3次元ディスプレイの実現を目標とした撮像装置の開発において、広い視野角を持つ3次元像の撮像が課題となっている。この課題を解決するには、複素振幅インラインホログラムに広い空間周波数帯域を持たせる必要がある。また、データ補間は、得られた複素振幅ホログラムに誤差を生じるという問題がある。
 本発明は、上記課題を解消するものであって、簡単な構成により、単一のオフアクシスホログラムから、空間周波数帯域を制限することなく、また、補間などによる誤差を生じることなく、高速処理と高速記録を実現できる複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置を提供することを目的とする。
 本発明の一態様に係る複素振幅インラインホログラムの生成方法は、オフアクシスホログラムから複素振幅インラインホログラムを生成する方法であって、オフアクシスホログラフィによって取得された1枚のオフアクシスホログラムに、再生用インライン参照光の位相およびオフアクシスホログラムを取得するために用いたオフアクシス参照光の位相に基づいて空間ヘテロダイン変調を施す変調工程と、変調工程によって変調されたホログラムに空間周波数フィルタリングを施すフィルタリング工程と、を備え、変調工程とフィルタリング工程とを順に行うことにより複素振幅インラインホログラムを生成することを特徴とする。
 また、本発明の一態様に係る複素振幅インラインホログラムの生成方法は、上記の変調工程とフィルタリング工程とに替えて、オフアクシスホログラフィによって取得された1枚のオフアクシスホログラムに空間周波数フィルタリングを施すフィルタリング工程と、フィルタリング工程によってフィルタリングされたホログラムに、再生用インライン参照光の位相および前記オフアクシスホログラムを取得するために用いたオフアクシス参照光の位相に基づいて空間ヘテロダイン変調を施す変調工程と、を備え、フィルタリング工程の後に変調工程を行うようにすることができる。
 このような構成によれば、空間サンプリングやデータ補間を行うことなく、変調工程とフィルタリング工程とによって、単一のオフアクシスホログラムから複素振幅インラインホログラムを生成するので、空間周波数帯域、従って視野角を制限することなく、また、補間による誤差を含むことなく、複素振幅インラインホログラムを生成できる。従って、生成されたホログラムの空間周波数帯域は、受光素子の画素ピッチから決まる記録可能限界まで拡大することができ、広視野角の3次元像を記録することができる。また、変調工程とフィルタリング工程には、既存のデータ処理技術を用いることができ、構成が簡単であり、高速処理が可能である。単色の1枚の複素振幅インラインホログラムの生成には、単色の1枚のオフアクシスホログラムが与えられればよく、必要なオフアクシスホログラムは容易に得られるので、リアルタイムで画像を記録することができる。また、オフアクシスホログラム取得に用いられる参照光は、平行光に限られず、より一般的な参照光、例えば球面波などを用いることができる。その参照光の位相も、その位相分布が既知で有ればよく、任意の空間位相分布とすることができる。
 本発明の一態様に係る画像記録装置は、物体像を記録したオフアクシスホログラムから複素振幅インラインホログラムを生成し、そのホログラムを物体の画像情報として電子的に記録する画像記録装置であって、物体像をオフアクシスホログラフィによってオフアクシスホログラムとして記録するオフアクシスホログラム取得部と、オフアクシスホログラム取得部によって取得されたオフアクシスホログラムから複素振幅インラインホログラムを生成するホログラム変換部と、ホログラム変換部によって生成された複素振幅インラインホログラムを物体の画像情報として電子的に記録する記憶部と、を備え、ホログラム変換部は、再生用インライン参照光の位相およびオフアクシスホログラムを取得するために用いたオフアクシス参照光の位相に基づいてオフアクシスホログラムに空間ヘテロダイン変調を施す変調部と、変調部によって変調されたホログラムに空間周波数フィルタリングを施すフィルタリング部と、を備え、これらの変調部およびフィルタリング部を用いて複素振幅インラインホログラムを生成することを特徴とする。
 また、本発明の一態様に係る画像記録装置は、上記のホログラム変換部が、上記の変調部とフィルタリング部とに替えて、オフアクシスホログラムに空間周波数フィルタリングを施すフィルタリング部と、フィルタリング部によってフィルタリングされたホログラムに、再生用インライン参照光の位相およびオフアクシスホログラムを取得するために用いたオフアクシス参照光の位相に基づいて空間ヘテロダイン変調を施す変調部と、を備え、これらの変調部およびフィルタリング部を用いて複素振幅インラインホログラムを生成することを特徴とする。
 このような構成によれば、単一のオフアクシスホログラムの高速連続取得は容易であり、また、複素振幅インラインホログラムの生成は、後処理で行うことができるので、変形する物体や移動する物体の時系列画像を容易に記録することができる。複素振幅インラインホログラムの生成を高速で行えば、リアルタイムで動画像の複素振幅インラインホログラムを生成して、記録したり、配信したりすることができる。
図1(a)は本発明の第1の実施形態に係る複素振幅インラインホログラムの生成方法の処理を説明するフローチャートであり、図1(b)は同方法の変形例を説明するフローチャートである。 図2(a)は同方法の処理を説明するブロック図であり、図2(b)は同変形例の処理を説明するブロック図である。 図3は同方法の処理対象であるオフアクシスホログラムを取得する装置の平面図である。 図4は同方法における再生用参照光設定の処理を説明するフローチャートである。 図5は同方法における空間周波数と視野角との関連を説明する平面図である。 図6は同方法におけるオフアクシスホログラムの空間周波数分布を説明する図である。 図7(a)は視野角が狭い場合において、参照光の軸外し角度が適切な場合の空間周波数分布図であり、図7(b)は同軸外し角度が小さすぎる場合の空間周波数分布図であり、図7(c)は同軸外し角度が大きすぎる場合の空間周波数分布図である。 図8(a)は同方法におけるオフアクシスホログラムを球面波からなる参照光によって取得する様子を示す平面図であり、図8(b)は同参照光が平行光の場合の平面図である。 図9(a)は同方法を適用する視野角が狭い場合のオフアクシスホログラムの空間周波数分布図であり、図9(b)は図9(a)のホログラムに空間ヘテロダイン変調を行った場合の空間周波数分布図であり、図9(c)は図9(b)のホログラムに空間周波数フィルタリングを行った場合の空間周波数分布図である。 図10(a)(b)は第2の実施形態に係る複素振幅インラインホログラムの生成方法を適用する視野角が広い場合のオフアクシスホログラムの空間周波数分布図、(b)は同方法の適用が難しい場合の空間周波数分布図である。 図11は同方法の処理を説明するフローチャートである。 図12は同方法の処理を説明するブロック図である。 図13は第3の実施形態に係る画像記録装置のブロック構成図である。 図14は同装置のオフアクシスホログラム取得部の平面図である。 図15(a)は同装置によって取得した視野角が狭い場合のオフアクシスホログラムの一部を示す図であり、図15(b)は同ホログラムから生成した複素振幅インラインホログラムの実数部分の一部を示す図であり、図15(c)は同ホログラムの虚数部分の一部を示す図である。 図16(a)(b)(c)は同複素振幅インラインホログラムからそれぞれ再生した赤色、緑色、青色の色画像であり、図16(d)は同ホログラムから再生したカラー画像である。 図17(a)は同装置によって視野角が広い場合の配置でオフアクシスホログラムを取得する様子を示す側面図であり、図17(b)は同平面図である。 図18は同配置のもとで取得したオフアクシスホログラムの再生像である。 図19は同再生像と空間周波数分布とを対応付けて説明する図である。 図20は同オフアクシスホログラムから生成した複素振幅インラインホログラムの再生像である。 図21は同再生像と空間周波数分布とを対応付けて説明する図である。 図22(a)は視野角が狭い場合のオフアクシスホログラムの空間周波数分布図であり、図22(b)は同ホログラムから再生した単色再生画像である。 図23(a)は視野角が狭い場合の複素振幅インラインホログラムの空間周波数分布図であり、図23(b)は同ホログラムから再生した単色再生画像である。 図24は視野角が広い場合の繰り返し近似の手法において物体光の光強度差が繰り返し計算回数nと共に収束する様子を4種類の振幅比R/Oの各場合について示すグラフである。
 以下、本発明の実施形態に係る複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置について、図面を参照して説明する。なお、各用語は適宜簡略した表現が用いられる。
 (第1の実施形態)
 図1乃至図9は、第1の実施形態に係る複素振幅インラインホログラムの生成方法について示す。本生成方法は、図1(a)、図2(a)に示すように、オフアクシスホログラフィによって取得された1枚のオフアクシスホログラムIと、ホログラムIを取得するために用いたオフアクシス参照光Rのデータを入手し(S1)、再生用インライン参照光R’の設定を行い(S2)、ホログラムIに対し、参照光R,R’の位相に基づいて空間ヘテロダイン変調を施す変調工程(S3)と、変調工程によって変調されたホログラムに空間周波数フィルタリングを施すフィルタリング工程(S4)とを順に行うことにより複素振幅インラインホログラムJを生成する。以下、他の図を参照しながら、各工程を詳細説明する。なお、変調工程(S3)と、フィルタリング工程(S4)とは、図1(b)、図2(b)に示すように、順番を逆にしてもよく、これについては後述する。
 ステップ(S1)におけるホログラムI、および参照光Rのデータは、例えば、図3に示すオフアクシスホログラム取得装置11によって取得されるデータである。ホログラム取得装置11は、単色のコヒーレント光源であるレーザ2と、レーザ2からのレーザ光21を参照光22と照明光23とに分けて出射するビームスプリッタBSと、参照光22を反射するミラーMと、ミラーMで反射した参照光22を球面波状に広げられた参照光Rとするレンズ系3と、照明光23を反射するミラーM1と、ミラーM1で反射した照明光23を広げて平行光にして照明光Lをつくるレンズ系4と、参照光Rおよび物体9が照明光Lによって照明されて放射する物体光Oを受光する受光素子5と、レーザ2と受光素子5とを制御する制御装置6を備えている。レンズ系4は、例えば、照明光23を広げるレンズ41と広げたレンズを平行光とするコリメートレンズ41とによって構成される。被写体である物体9は、受光素子5の受光面51の中央正面方向の撮像軸上に配置される。参照光Rは、撮像軸に対して傾いた方向、すなわちオフアクシス方向(軸外し方向)から受光面51の中央に向けて照射される。このホログラム取得装置11によって、単色のオフアクシスホログラムが電子的に取得される。本生成方法は、いわゆる位相シフトデジタルホログラフィにおいて取得される互いに位相状態の異なる複数のオフアクシスホログラムのうち、1枚のホログラムが取得できればよい。従い、そのようなホログラム取得装置11は容易に構成される。参照光Rのデータは、例えば、参照光Rと共に測定用の平行光を受光面51に照射し、その干渉縞を記録することにより実測したり、ホログラム取得装置11における各光学部材の光学的配置その他の光学的条件に基づいて演算したりして、容易に求めることができる。
 ステップ(S2)における再生用インライン参照光R’は、その波長λは参照光Rの波長λと同じであり、その光軸は、通常、受光面51の中央正面方向とすればよい。また、参照光R’の光軸を、物体9からの物体光Oの強度が最大となる方向に設定することもできる。この場合、図4に示すように、ホログラムIから像を再生し(S21)、その再生像から物体光Oと、オフアクシス参照光Rとの光軸のずれを検出し(S22)、検出した光軸のずれを用いて参照光R’の光軸を求める(S23)。これにより、より適切かつ確実に再生用インライン参照光の光軸を設定することができる。参照光R’の位相は適宜任意に設定することができる。
 ここで、図5、図6、図7により、空間周波数、視野角、およびオフアクシスホログラムIの空間周波数分布などの概念と、これらの相互の関連について説明する。図5に示すように、受光素子5の正面前方に物体9があるとし、受光面51の中央点50に注目して、中央点50から物体9を望む角度を視野角ψとし、中央点50に入射する、ある物体光Oの入射角と参照光Rの入射角とをそれぞれθ,θとする。図の上下方向を軸外し方向yとしており、θはオフアクシス角(軸外し角)である。なお、参照光Rは、球面波または平面波に限らず任意である。また、受光素子5は、例えば、CCD画像センサであり、画素となるCCD画像センサの各光センサ部が、軸外し方向yとその直交方向とに2次元配列されて受光面51を構成しているものとする。角画素は画素ピッチdで配列されている。物体光Oと参照光Rとは、受光面51に干渉縞を形成し、その縞のピッチをPとする。簡単のため、物体9が受光面51に平行な白色平板であるとする。
 図5の構成において、一般に、受光素子5を用いて記録可能なホログラムIの最高空間周波数帯域幅は、受光素子5の画素ピッチdから決まる空間サンプリング周波数fとなる。ここで、空間サンプリング周波数fは、f=1/dである。すなわち、最高空間周波数帯域幅は、画素ピッチdによって制限される。縞のピッチPは、P=λ/(sinθ+sinθ)、近軸の場合、P=λ/(θ+θ)となる。また、中心軸上、すなわちθ=0において、P(中心軸上)=λ/θ=1/f,P=1/f =λ/(θ+ψ/2),P=1/f =λ/(θ-ψ/2),f =1/P=θ/λ+ψ/(2λ),f =1/P=θ/λ-ψ/(2λ)の記号を定義する。
 上述の各記号の意味は、図6の空間周波数分布図に示されている。この空間周波数分布は、明るさが一様な被写体(例えば、白色平板からなる物体9)を記録したときの軸外し方向yにおけるオフアクシスホログラムIの1次元空間周波数分布である。図中のR ,O ,2Ocos(φ-φ)は、それぞれ、受光面51における光強度I(オフアクシスホログラムIの強度)の成分であって、参照光Rの光強度、物体光Oの光強度、参照光と物体光の干渉による光変調干渉縞の光強度である(後述、式(1)(2)(3)参照)。この分布図において、物体光Oの光強度と光変調干渉縞の光強度の広がり幅は視野角ψと波長λ、すなわちψ/λによって規定されている。また、光変調干渉縞の光強度の広がり中心は、軸外し角θと波長λ、すなわちθ/λによって規定されている。
 従って、上述のψ,θ,λ等の数値の如何によって、物体光Oの光強度分布と光変調干渉縞の光強度分布とが、互いに重なったり、離れたり、また、空間サンプリング周波数fの範囲からはみ出したりする。例えば、視野角ψが狭い(小さい)場合において、図7(a)は分布に重なりがない場合、図7(b)は重なりがある場合、図7(c)は重なりがないが、空間サンプリング周波数fの範囲からはみ出している場合を示している。重ならない限界を示す条件は、ψ/λ=f/4、すなわち、重ならないで視野角ψを広げられる(大きくする)限界が、ψ=λf/(4=λ/(4d)であることがわかる。この条件は、軸外し方向yについての条件であり、軸外し角θは、θ/λ=(ψ/λ)×(3/2)、すなわち、θ=3ψ/2=3λ/(8d)に調整されている場合である。本実施形態は、図6や、図7(a)に示したような、光強度分布が重ならない場合に、1枚のオフアクシスホログラムIから複素振幅インラインホログラムを生成する。
 図8は、参照波Rが球面波の場合と平行波の場合との違いを示すものである。図8(a)は、特に、参照波Rが球面波であって、その光源と物体9と受光素子5の受光面51とが、同一の円周C上にある場合を示す。この場合、受光面51上の点から物体9の点9aと参照光Rの光源とを望む角度α,βなどは、受光面51上の両端の点5a,5bにおいて等しく(α=β)、また、近似的に、受光面51上のいずれの点でも等しくなる。ところが、図8(b)に示すように、参照光Rが平行光の場合には、このような条件は成り立たず、α≠βである。従って、参照光Rとして点光源から放射される球面波を用いることにより、平行参照光と比べて、面積のより広い受光面によって、視域角の大きいホログラムの記録が可能になる。
 次に、図1(a)、図2(a)に戻って、ステップ(S3)の変調工程を説明する。ここでは、さらに、図9(a)(b)(c)を参照する。図9(a)は、基本的に図6、図7(a)と同じである。受光面51における角周波数ωの物体光O(x,y,t)、記録用のオフアクシス参照光R(x,y,t)、および再生用インライン参照光R’(x,y,t)を一般的な形でそれぞれ下記の式(1)(2)(3)で表すと、素子表面における光強度I(x,y)=|O(x,y,t)+R(x,y,t)|は式(4)となる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-I000002
 式(4)右辺の第1項は物体光の光強度、第2項は参照光の光強度、第3項は参照光が物体光によって変調されて作られる光変調干渉縞を表す。第3項は物体光の振幅Oと位相φを記録し、直接像を記録する直接像成分と、共役像を記録する共役像成分と、の合成と見做される。一般に、光強度I(x,y)を電子的にオフアクシスホログラムIとして記録すると、直接像成分と共役像成分とが分離されて、それぞれ異なる空間周波数帯域に記録される。例えば、図9(a)における左右の矩形のスペクトル強度波形が、直接像成分と共役像成分とに対応する。ここで、上述したように、空間周波数領域において、光変調干渉縞の直接像成分と共役像成分とが、物体光の光強度O の成分と重ならないようにして3次元像をオフアクシスホログラムIとして記録したものとする。
 次に、再生像と同一軸上にある再生用インライン参照光R’を想定し、オフアクシスホログラムIの空間ヘテロダイン変調Hを行って参照光R’に対するインラインホログラムIを求める。空間ヘテロダイン変調Hは、式(4)の両辺に参照光R,R’の各位相の差(φ-φ’)を有する因子exp[i(φ-φ’)]を乗じて行われ、これにより下記の式(5)が算出される。
Figure JPOXMLDOC01-appb-M000003
 この変調Hにより、式(4)の右辺第3項の光変調干渉縞から、式(5)の右辺第2項と第3項が得られる。式(5)の右辺第2項からは直接像が再生され、第3項からは共役像が再生される。そこで、式(5)を空間周波数フィルタリングして直接像を記録した第2項のみを分離して取り出すと、像再生のための正確な複素振幅インラインホログラムが求められる。さらに述べると、式(5)の右辺第1項と第3項は、参照光R,R’の両方の位相φ,φ’を含んでいるが、第2項は参照光R’の位相φ’だけを含むものとなっている。すなわち、式(5)の右辺第2項はインライン成分のみからなり、右辺第1,3項はオフアクシス成分を含むものである。変調されたホログラムIの空間周波数分布は図9(b)に示す分布となる。この図9(b)の波形は、図9(a)の波形全体を左方に移動させ、空間サンプリング周波数fで定まる範囲からはみ出した部分を、右方から折り返えした波形となっている。図9(a)(b)は、式(4)(5)における複数項を含む多成分のホログラムである。また、図9(a)は左右対称であって実数に対応し、図9(b)は左右非対称であって複素数に対応している。この図の中央部に位置する波形部分が求める複素振幅インラインホログラムJに対応する。
 上述の図9(b)の中央部に位置する波形を取り出すために、ステップ(S4)の空間周波数フィルタリングWが行われる。このフィルタリングWは、図2(a)に示すように、ホログラムIに対して、高速フーリエ変換(FFT)を施してホログラムIHFとし、このホログラムIHFに対して、空間周波数分布の中央部を残すウインドウwによってフィルタリング処理を行ってホログラム<IHF>とし、ホログラム<IHF>に再度、高速フーリエ変換(逆変換)を施して、最終の複素振幅インラインホログラムJを生成する。図9(c)は、近似(モデル化)せずに細かくみると実際は左右非対称であって複素振幅を表すものであり、生成された1成分の複素振幅インラインホログラムJの空間周波数分布を示す。複素振幅インラインホログラムJは、直接像のみを記録するので、軸外し方向におけるその帯域幅は直接像と共役像を記録した光変調干渉縞の半分になる。
 上の説明では、空間ヘテロダイン変調(S3)を行った後に、空間周波数フィルタリング(S4)を行ったが、図1(b)、図2(b)に示すように、先に空間周波数フィルタリング(S13)を行って、その後に、空間ヘテロダイン変調(S14)を行っても同じ結果が得られる。すなわち、ステップ(S11)(S12)は、ステップ(S1)(S2)と同様であり、ステップ(S13)において、フーリエ変換、フィルタリング、逆フーリエ変換によってそれぞれホログラムI,<I>,I’が得られ、ステップ(S14)において、1成分の最終の複素振幅ホログラムJが得られる。
 第1の実施形態によれば、空間サンプリングやデータ補間を行うことなく、変調工程とフィルタリング工程とによって、単一のオフアクシスホログラムIから複素振幅インラインホログラムJを生成するので、空間周波数帯域、従って視野角ψを制限することなく、また、補間による誤差を含むことなく、複素振幅インラインホログラムJを生成できる。従って、生成されたホログラムJの空間周波数帯域は、受光素子の画素ピッチdから決まる記録可能限界まで拡大することができ、広視野角の3次元像を記録することができる。また、変調工程とフィルタリング工程には、既存のデータ処理技術を用いることができ、構成が簡単であり、高速処理が可能である。単色の1枚の複素振幅インラインホログラムJの生成には、単色の1枚のオフアクシスホログラムIが与えられればよく、必要なオフアクシスホログラムIは容易に得られるので、リアルタイムで画像を記録することができる。また、式(1)から式(5)において参照光の振幅と位相の空間分布を一般的な形で表していることに注意する必要がある。このことは、オフアクシスホログラムI取得に用いられる参照光Rは、平行光に限られず、より一般的な参照光、例えば球面波などを用いることができることを示している。その参照光の位相も、その位相分布が既知で有ればよく、任意の空間位相分布とすることができる。
 (第2の実施形態)
 図10、図11、図12は第2の実施形態について示す。本実施形態は、図10に示すように、視野角ψが広い場合であって空間周波数分布における物体光Oの光強度O 分布と光変調干渉縞の光強度2Ocos(φ-φ)分布とが、互いに重なっている場合に関する。図10(a)(b)に示すように、物体光Oの光強度が光変調干渉縞の光強度よりも大きい場合には、以下に示す繰り返し近似の手法によって、物体光Oの影響を取り除いた複素振幅インラインホログラムを生成することができる。図10(c)に示すように、物体光Oの光強度が光変調干渉縞の光強度よりも小さい場合には、繰り返し近似が収束しないことがある。
 本生成方法は、図11、図12に示すように、第1の実施形態と同様にオフアクシスホログラムIと参照光Rのデータを入手し、参照光R’の設定を行う(#1)。その後、ホログラムIからオフアクシス参照光Rの光強度成分R を差し引くことにより参照光の光強度成分を除いて成る基礎ホログラムI(n),n=0を生成し(前処理工程、#2)、前処理工程によって生成された基礎ホログラムI(n),n=0に対して第1の実施形態と同様に変調工程(S3またはS14)およびフィルタリング工程(S4またはS13)を行って参照光R’に対する複素振幅インラインホログラムJ(n),n=0を生成し、その生成されたホログラムJ(n)を用いて物体光の光強度成分O (n),n=0を算出する(生成算出工程、#3)。その後、近似工程(#4)と、算出判定工程(#5,#6)とを繰り返すことにより物体光Oの影響を除いて参照光R’に対する複素振幅インラインホログラムJ(n)を生成する。
 近似工程(#4)では、基礎ホログラムI(0)から光強度成分O (n)を差し引いて、n=n+1(引数のインクリメント)とし、差し引いた結果を、新たな基礎ホログラムI(n)とし、さらに、基礎ホログラムI(n)からホログラムJ(n)を生成する。次の算出判定工程(#5,#6)では、ホログラムJ(n)から物体光の光強度成分O (n)を算出し(#5)、算出した光強度成分の変化O (n)-O (n-1)が許容範囲内まで減少しているか否かを判定し(#6)、許容範囲内でなければ(#6でNO)、ステップ(#4)からの処理を繰り返し、許容範囲内であれば(#6でYES)、その時点でのホログラムJ(n)を最終結果とし、処理を終了する。
 上記前処理工程(#2)における光強度成分R のデータは、既知として入手できれば入手したものを用い、入手できなければホログラムIから近似的に求めて、または過去の測定例などから光強度成分R の関数形を決定し、その関数形から求めたものを用いてもよい。また、上述の生成方法を適用することを想定する場合には、オフアクシスホログラムIをオフアクシスホログラフィにより受光素子5を介して電子的に取得するホログラム取得工程と、ホログラム取得工程の前または後に、受光素子5の受光面51における参照光Rのみの強度を取得する参照光測定工程と、を実行すればよい。この場合に、ホログラム取得工程は、受光面51における参照光Rの強度を、物体光Oの強度よりも大きくした状態で行う(図10参照)。すなわち、上述の繰り返し近似計算が確実に収束する条件は、式(4)の第1項の物体光自身による光強度が第3項の光変調干渉縞に比べて小さいことと考えられ、第1項が大きくなると収束しなくなる場合がある。そこで、ホログラムを記録する際には、この繰り返し計算を収束させるために参照光の振幅Rを物体光の振幅Oより大きくすればよい。
 第2の実施形態によれば、直接像成分の空間周波数帯域幅が空間サンプリング周波数の1/4以上となるような視野角の大きい3次元像について、参照光と物体光の光強度成分の影響を減少させた複素振幅インラインホログラムを生成することができる。また、参照光Rの強度を物体光Oの強度よりも大きくして取得したオフアクシスホログラムIは近似の収束がより確実に行われるので、より確実に参照光と物体光の光強度成分の影響を除いて、複素振幅インラインホログラムJを生成することができる。
 さらに述べると、2次元空間周波数領域において光変調干渉縞が0次光(参照光と物体光)と重なってしまい、空間ヘテロダイン変調と空間周波数フィルタリングを各1回行うだけでは1枚のオフアクシスホログラムからノイズのない複素振幅インラインホログラムを取り出すことができない場合であっても、本実施形態によると、0次光の影響を取り除くことができ、広帯域(広い視野角)の複素振幅インラインホログラムJを生成することができる。従って、光変調干渉縞と0次光の空間周波数帯を重ねて記録できるので、軸外しの方向には直接像成分の最大周波数帯域幅を空間サンプリング周波数fの1/2まで、それと垂直な方向には空間サンプリング周波数fまで、それぞれ拡大することが可能になる。
 (第3の実施形態)
 図13乃至図21は第3の実施形態の画像記録装置について示す。図13に示すように、画像記録装置1は、物体像をオフアクシスホログラフィによってオフアクシスホログラムIとして記録するオフアクシスホログラム取得部11と、オフアクシスホログラム取得部11によって取得されたオフアクシスホログラムIから複素振幅インラインホログラムを生成するホログラム変換部12と、ホログラム変換部12によって生成された複素振幅インラインホログラムJを物体の画像情報として電子的に記録する記憶部13と、これらの各部を制御する制御部14とを備えており、ホログラム変換部12は、上述の第1の実施形態および第2の実施形態で示した複素振幅インラインホログラムの生成方法を用いるものである。ホログラム変換部12、記憶部13、および制御部14は、一般的なコンピュータとソフトウエアによって構成することができる。
 オフアクシスホログラム取得部11は、単色のホログラムJを生成記録する場合は、図3に示したホログラム取得装置11を用いることができる。また、カラーの複素振幅インラインホログラムJを生成記録するには、図3に示すように、ホログラム取得部11に、互いに波長領域の異なる複数の、例えば、赤色、緑色、青色3色のレーザ2と、各レーザに対応する複数のレンズ系3と、複数のビームスプリッタBSと、複数のミラーMとを備えればよい。受光素子5は、単色用の受光素子か、カラー用の受光素子のいずれを用いてもよい。単色用の受光素子を用いてカラー画像を記録する場合には、1つのレーザ2でホログラムIを取得する動作を、レーザ2を互いに切り替えて複数回行えばよい。カラー用の受光素子を用いる場合には、複数のレーザ2を同時に動作させて、参照光Rと照明光Lとを混合して、例えば白色光にして、1回の動作でホログラムIを取得することができる。画像記録装置1により、物体像をカラーのオフアクシスホログラムIとして取得し、カラーの複素振幅インラインホログラムJを生成することができる。
 また、オフアクシスホログラム取得部11は、レーザ2として、パルスレーザを用いてコヒーレント光の光源とするのが好適である。また、各参照光Rは、各レンズ系3によってレーザ光を球面波とし、その球面波の中心(光源)位置と、被写体(物体)位置と、受光素子5の受光面51位置とを、同一の円周C上に配置する構成とするのが好適である。このような配置により、視域角の大きいホログラムの記録が可能になる。なお、図14において、ホログラム取得部11を構成するミラーM、レンズ系3などの各光学系が、広範囲に分散した状態で示されているが、これらの光学系は、それぞれコンパクトに構成して受光素子5の周辺にまとめることができる。この場合においても、各参照光Rを球面波として受光素子5に照射させるものとし、その球面波の光源位置を同一の円周C上に設定することができる。
 第3の実施形態によれば、単一のオフアクシスホログラムの高速連続取得は容易であり、また、複素振幅インラインホログラムの生成は、後処理で行うことができるので、変形する物体や移動する物体の時系列画像を容易に記録することができる。また、複素振幅インラインホログラムの生成を高速で行えば、リアルタイムで動画像の複素振幅インラインホログラムを生成して、記録したり、配信したりすることができる。画像記録装置1のレーザ2として、パルスレーザを用いることにより、連続レーザを用いる場合に比べて、より高速に画像を記録することができ、高速で変化する現象の記録ができる。また、画像記録装置1のレーザ2として、複数のレーザを用いて、カラーの複素振幅インラインホログラムを生成し、移動する被写体や変化する被写体の瞬時的なカラー画像または連続的なカラー画像を記録することができる。また、オフアクシスホログラフィの一般的な性質として、参照光Rと物体光Oが結像用レンズを通さずに、直接受光面51に到達して記録されるので、色収差や歪みの無い高画質カラー3次元動画像の撮像記録を実現することができる。
 (第3の実施形態の第1の実施例:視野角が狭い場合)
 図15、図16は第1の実施例を示す。視野角の小さい被写体として1辺の長さが12mmのサイコロを受光素子から50cmの位置に置き、画像記録装置1によってカラー3次元画像を記録した。ここでは、レーザ2として連続発振レーザを用いて、静止物体であるサイコロを1回の撮影で、オフアクシスホログラムIを取得し、複素振幅インラインホログラムを生成して記録した。視野角ψはψ=1.2/50=0.024rdであり、受光素子5の画素ピッチd=4μm、レーザ光の波長λとして短波長側の青色についてλ=0.47μmとすると、λ/4d=0.0294である。従って、記録条件は、ψ<λ/4dとなって、視野角が狭い場合になっている。なお、画素ピッチd、波長λを用いて、視野角ψが狭い場合は例えば0≦ψ≦λ/4dと表され、視野角ψが広い場合は例えばλ/4d≦ψ≦λ/2dと表される。注目する視野角は、オフアクシス方向(軸外し方向)における視野角である。
 図15(a)(b)(c)は、それぞれ緑色レーザ光で記録した干渉縞、取得したオフアクシスホログラムIから求めた複素振幅インラインホログラムJの実数成分、および虚数成分の拡大図を示す。図15(b)(c)の実数成分および虚数成分は、振幅の実効値を用いて正規化した後に256階調で表示している。図15(a)に示す干渉縞は、物体光と参照光が作る光変調干渉縞だけでなく物体光自身および参照光自身が作る干渉縞(0次光)も記録されており、図15(b)(c)と比べてコントラストの低い高周波数の干渉縞となっている。これに対して図15(b)(c)に示す複素振幅インラインホログラムJでは、物体光と参照光が作る直接像成分(光変調干渉縞)が、図15(a)と比べてコントラストの高い鮮明な低周波数干渉縞として得られている。
 図16(a)(b)(c)は、それぞれ複素振幅インラインホログラムJから数値計算によって再生した赤色、緑色、青色3色の画像を示す。図16(d)は、複素振幅インラインホログラムJから再生した3色の画像を重ねて合わせて求めたカラー画像を示す。このカラー画像は、色ずれの無い高画質のカラー画像となっている。この画像再生の結果から、赤色、緑色、青色3色の複素振幅インラインホログラムJが正確に記録されていることが確認できる。
 (第3の実施形態の第2の実施例:視野角が広い場合)
 図17~図21は第2の実施例を示す。図17(a)(b)に示すように、視野角ψの大きい被写体として3つのサイコロを撮像した。各サイコロは、受光素子からz1=60cmの位置に1辺12mmのサイコロを置き、z2=64cmとz3=68cmの位置に1辺18mmのサイコロをそれぞれ置き、直接像と共役像が重ならないように参照光Rの光源を上下と左右の両方向に軸外しをした位置に配置してオフアクシスホログラムIを取得した。図18は、オフアクシスホログラムIから再生した単色画像を示す。図19は、図18の説明図である。これらの図に示されるように、オフアクシスホログラムIからは直接像と共役像がそれぞれ図の上半分と下半分に分離して再生されている。また、直接像と共役像の他に0次光が再生され、この再生光のために直接像の画質が著しく劣化している。図20は、複素振幅インラインホログラムJから再生した単色画像を示す。直接像は、図19において右上と左上とに分割されて再生されているが、図20においては空間ヘテロダイン変調を行うことによって連続した画像として図の中央に再生されている。図21は、図20の説明図である。これらの図に示されるように、複素振幅インラインホログラムJからは、よりコントラストの高い高画質な画像が再生されており、この結果から画像記録装置1により複素振幅インラインホログラムJが正確に得られていることが分かる。
 また、図18、図19に示す視野は受光素子の画素ピッチから決まる記録可能な視野を表し、視野全体に亘って直接像と共役像が再生されている。図20、図21に示すように複素振幅インラインホログラムJからは直接像のみが再生され、上下方向のウインドウwによるフィルタリングによって共役像を分離して取り除いた分(図21の領域A,Bの部分)だけ視野が上下方向に狭くなっている。複素振幅インラインホログラムJの上下方向および左右方向の最大帯域幅はそれぞれ空間サンプリング周波数fの1/2および空間サンプリング周波数fに等しくなっている。これらの結果は、画像記録装置1により3次元像の視野角を理論的な記録可能限界まで拡大できていることを示している。
 (第3の実施形態の第3の実施例)
 図22、図23は第3の実施例を示す。視野角の小さい被写体として1辺の長さがそれぞれ18mm、18mm、15mm、12mmの4つのサイコロを受光素子から78cmの位置に積み上げて配置し、画像記録装置1によってカラー3次元画像を記録した。図22(a)(b)は、記録されたオフアクシスホログラムに基づく空間周波数分布と再生画像を示す。オフアクシスホログラムによって、直接像、0次光、および共役像が、それぞれ、再生画像の右、中央、および左に再生されている。図23(a)(b)は、オフアクシスホログラムから生成された複素振幅インラインホログラムに基づく空間周波数分布と再生画像を示している。複素振幅インラインホログラムによって、再生画像の中央に直接像のみが再生されている。また、再生画像の左右方向視野は視野全体の1/4に制限されている。
 (第2の実施形態の実施例)
 図24は第2の実施形態の実施例を示す。視野角の大きい被写体に対しては繰返し計算を行って複素振幅インラインホログラムを作成することができる。繰返し計算の収束状況は、物体光の光強度差δO =O (n)-O 、または、それを規格化した値δO /O が繰返し計算回数nとともに小さくなることによって判断される。ここで、O (n)は複素振幅ホログラムJ(n)から計算して求めた光強度であり、O は繰返し計算で求めた物体光強度の収束値である。光強度O (n)が収束するためには参照光と物体光との振幅比R/Oをおよそ3より大きい値に設定する必要があり、振幅比R/Oがそれ以下の値のときには光強度O (n)は一定値に収束しなくなる。このような収束条件が満たされる場合、図24から分かるように、収束の速度は大きく、光強度O (n)は数回の繰返しによって一定値O に収束する。また、収束の速度は振幅比R/Oの値にあまり依存しない。
 本発明に係る複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置は、動く被写体の3次元像を記録する映像技術分野、情報分野、医療分野、生物科学分野、設計支援分野、工業計測分野、バーチャルリアリティ、などで使われるカラー3次元撮像方法および撮像装置の用途に適用できる。結像レンズを通さず記録する本装置は、歪みの無い3次元像を正確に記録でき、パルスレーザを用いることにより、3次元高速撮像ができる。これらの利点を活かして、動く被写体の位置や変位の測定、および3次元形状の非接触かつ非破壊な高速精密測定などに適用できる。また、衝突や爆発などの瞬時に変化する現象の高速3次元撮像に適用できる。
 なお、本発明は、上記構成に限られることなく種々の変形が可能である。例えば、上述した各実施形態の構成を互いに組み合わせた構成とすることができる。
 本願は日本国特許出願2010-012425に基づいており、その内容は、上記特許出願の明細書及び図面を参照することによって結果的に本願発明に合体されるべきものである。
 1  画像記録装置
 11  オフアクシスホログラム取得部、オフアクシスホログラム取得装置
 12  ホログラム変換部
 13  記憶部
 2  レーザ
 5  受光素子
 51  受光面
 9  物体(被写体)
 I  オフアクシスホログラム
 Ib,Ib(n)  基礎ホログラム
 J,J(n)  複素振幅インラインホログラム
 O  物体光
 O  物体光の振幅
 R  参照光
 R  参照光の振幅
 R’  再生用インライン参照光
 φ  参照光の位相
 φ’  再生用インライン参照光の位相
 λ  波長
 ψ  視野角

Claims (9)

  1.  オフアクシスホログラムから複素振幅インラインホログラムを生成する方法であって、
     オフアクシスホログラフィによって取得された1枚のオフアクシスホログラムに、再生用インライン参照光の位相および前記オフアクシスホログラムを取得するために用いたオフアクシス参照光の位相に基づいて空間ヘテロダイン変調を施す変調工程と、
     前記変調工程によって変調されたホログラムに空間周波数フィルタリングを施すフィルタリング工程と、を備え、
     前記変調工程と前記フィルタリング工程とを順に行うことにより複素振幅インラインホログラムを生成することを特徴とする複素振幅インラインホログラムの生成方法。
  2.  オフアクシスホログラムから複素振幅インラインホログラムを生成する方法であって、
     オフアクシスホログラフィによって取得された1枚のオフアクシスホログラムに空間周波数フィルタリングを施すフィルタリング工程と、
     前記フィルタリング工程によってフィルタリングされたホログラムに、再生用インライン参照光の位相および前記オフアクシスホログラムを取得するために用いたオフアクシス参照光の位相に基づいて空間ヘテロダイン変調を施す変調工程と、を備え、
     前記フィルタリング工程と前記変調工程とを順に行うことにより複素振幅インラインホログラムを生成することを特徴とする複素振幅インラインホログラムの生成方法。
  3.  前記変調工程と前記フィルタリング工程のいずれの工程よりも前に前記オフアクシスホログラムから前記オフアクシス参照光の光強度成分を差し引くことにより参照光の光強度成分を除いて成る基礎ホログラムを生成する前処理工程と、
     前記前処理工程によって生成された基礎ホログラムに対して前記変調工程と前記フィルタリング工程とを行い、これによって生成された複素振幅インラインホログラムを用いて物体光の光強度成分を算出する生成算出工程と、
     前記算出された物体光の光強度成分を前記基礎ホログラムから差し引き、これによって得られたオフアクシスホログラムに対して前記変調工程と前記フィルタリング工程とを行い、これによって複素振幅インラインホログラムを生成する近似工程と、
     前記近似工程によって生成された複素振幅インラインホログラムを用いて物体光の光強度成分を算出すると共に、その光強度成分が許容範囲まで減少しているか否かを判定する算出判定工程と、をさらに備え、
     前記算出判定工程において物体光の光強度成分が許容範囲まで減少していないと判定されたときに、その物体光の光強度成分を用いて前記近似工程と算出判定工程とを繰り返すことにより物体光の影響を除いて複素振幅インラインホログラムを生成することを特徴とする請求項1または請求項2に記載の複素振幅インラインホログラムの生成方法。
  4.  前記オフアクシスホログラムをオフアクシスホログラフィにより受光素子を介して電子的に取得するホログラム取得工程と、
     前記ホログラム取得工程の前または後に、前記受光素子の受光面における参照光のみの強度を取得する参照光測定工程と、をさらに備え、
     前記ホログラム取得工程は、受光面における参照光の強度を、物体光の強度よりも大きくした状態で行われることを特徴とする請求項3に記載の複素振幅インラインホログラムの生成方法。
  5.  前記オフアクシスホログラムから像を再生し、その再生像から、物体光と前記オフアクシスホログラムの取得に用いた参照光との光軸のずれを検出し、前記光軸のずれを用いて前記再生用インライン参照光の光軸を設定する光軸設定工程をさらに備えることを特徴とする請求項1乃至請求項4のいずれか一項に記載の複素振幅インラインホログラムの生成方法。
  6.  物体像を記録したオフアクシスホログラムから複素振幅インラインホログラムを生成し、そのホログラムを物体の画像情報として電子的に記録する画像記録装置であって、
     物体像をオフアクシスホログラフィによってオフアクシスホログラムとして記録するオフアクシスホログラム取得部と、
     前記オフアクシスホログラム取得部によって取得されたオフアクシスホログラムから複素振幅インラインホログラムを生成するホログラム変換部と、
     前記ホログラム変換部によって生成された複素振幅インラインホログラムを物体の画像情報として電子的に記録する記憶部と、を備え、
     前記ホログラム変換部は、再生用インライン参照光の位相および前記オフアクシスホログラムを取得するために用いたオフアクシス参照光の位相に基づいて前記オフアクシスホログラムに空間ヘテロダイン変調を施す変調部と、前記変調部によって変調されたホログラムに空間周波数フィルタリングを施すフィルタリング部と、を備え、これらの変調部およびフィルタリング部を用いて複素振幅インラインホログラムを生成することを特徴とする画像記録装置。
  7.  物体像を記録したオフアクシスホログラムから複素振幅インラインホログラムを生成し、そのホログラムを物体の画像情報として電子的に記録する画像記録装置であって、
     物体像をオフアクシスホログラフィによってオフアクシスホログラムとして記録するオフアクシスホログラム取得部と、
     前記オフアクシスホログラム取得部によって取得されたオフアクシスホログラムから複素振幅インラインホログラムを生成するホログラム変換部と、
     前記ホログラム変換部によって生成された複素振幅インラインホログラムを物体の画像情報として電子的に記録する記憶部と、を備え、
     前記ホログラム変換部は、前記オフアクシスホログラムに空間周波数フィルタリングを施すフィルタリング部と、前記フィルタリング部によってフィルタリングされたホログラムに、再生用インライン参照光の位相および前記オフアクシスホログラムを取得するために用いたオフアクシス参照光の位相に基づいて空間ヘテロダイン変調を施す変調部と、を備え、これらの変調部およびフィルタリング部を用いて複素振幅インラインホログラムを生成することを特徴とする画像記録装置。
  8.  前記オフアクシスホログラム取得部は、コヒーレント光の光源としてパルスレーザを用いることを特徴とする請求項6または請求項7に記載の画像記録装置。
  9.  前記オフアクシスホログラム取得部は、互いに波長領域の異なる複数のレーザを用いて物体像をカラーのオフアクシスホログラムとして記録し、
     前記ホログラム変換部は、前記カラーのオフアクシスホログラムからカラーの複素振幅インラインホログラムを生成することを特徴とする請求項6乃至請求項8のいずれか一項に記載の画像記録装置。
PCT/JP2010/073185 2010-01-22 2010-12-22 複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置 WO2011089820A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011550821A JP5352763B2 (ja) 2010-01-22 2010-12-22 複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置
EP10843984.5A EP2527928B1 (en) 2010-01-22 2010-12-22 Generation method for complex amplitude in-line hologram and image recording device using said method
US13/574,565 US8416669B2 (en) 2010-01-22 2010-12-22 Generation method for complex amplitude in-line hologram and image recording device using said method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-012425 2010-01-22
JP2010012425 2010-01-22

Publications (1)

Publication Number Publication Date
WO2011089820A1 true WO2011089820A1 (ja) 2011-07-28

Family

ID=44306636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073185 WO2011089820A1 (ja) 2010-01-22 2010-12-22 複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置

Country Status (4)

Country Link
US (1) US8416669B2 (ja)
EP (1) EP2527928B1 (ja)
JP (1) JP5352763B2 (ja)
WO (1) WO2011089820A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099220A1 (ja) * 2011-01-21 2012-07-26 兵庫県 3次元形状計測方法および3次元形状計測装置
JP2013246424A (ja) * 2012-05-29 2013-12-09 Kyoto Institute Of Technology デジタルホログラフィ装置
WO2014054776A1 (ja) 2012-10-05 2014-04-10 公立大学法人兵庫県立大学 ホログラフィック断層顕微鏡、ホログラフィック断層画像生成方法、およびホログラフィック断層画像用のデータ取得方法
JP2017107080A (ja) * 2015-12-10 2017-06-15 日本電信電話株式会社 空間位相変調素子、および空間位相変調方法
CN109254425A (zh) * 2018-09-12 2019-01-22 北京理工大学 一种复振幅空间光调制器及复振幅空间光调制方法
WO2019044336A1 (ja) 2017-08-30 2019-03-07 公立大学法人兵庫県立大学 ホログラフィック撮像装置および同装置に用いるデータ処理方法
WO2020045584A1 (ja) 2018-08-29 2020-03-05 公立大学法人兵庫県立大学 ホログラフィック撮像装置およびホログラフィック撮像方法
WO2020045589A1 (ja) 2018-08-29 2020-03-05 公立大学法人兵庫県立大学 表面形状計測装置および表面形状計測方法
US10635049B2 (en) 2016-08-24 2020-04-28 University Of Hyogo Ellipsometry device and ellipsometry method
WO2023079741A1 (ja) 2021-11-08 2023-05-11 大塚電子株式会社 光学測定方法および光学測定システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10337851B2 (en) * 2015-04-02 2019-07-02 Ramot At Tel-Aviv University Ltd. Fast phase processing of off-axis interferograms
US10466649B1 (en) * 2015-08-06 2019-11-05 Centauri, Llc Systems and methods for simultaneous multi-channel off-axis holography
CN106872408B (zh) * 2017-04-26 2023-05-30 赣南师范大学 一种浮游生物成像检测装置
FR3073047B1 (fr) * 2017-11-02 2021-01-29 Commissariat Energie Atomique Procede optique d'estimation d'un volume representatif de particules presentes dans un echantillon
KR102581470B1 (ko) 2017-11-22 2023-09-21 삼성전자주식회사 영상 데이터를 처리하는 방법 및 장치
US11454929B2 (en) * 2018-08-23 2022-09-27 Dualitas Ltd Method of hologram calculation
FR3087009B1 (fr) * 2018-10-09 2020-10-09 Commissariat Energie Atomique Procede de determination de parametres d'une particule
CN114237000B (zh) * 2021-12-15 2023-05-23 中国工程物理研究院激光聚变研究中心 一种离轴数字全息优化重建方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526815A (ja) * 1998-10-07 2002-08-20 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) ディジタル・ホログラムを数値的に再構成することにより、振幅コントラスト画像と定量的位相コントラスト画像を同時に形成する方法と装置
JP3471556B2 (ja) 1997-03-27 2003-12-02 理化学研究所 位相シフトディジタルホログラフィ装置
JP2005283683A (ja) 2004-03-26 2005-10-13 Japan Science & Technology Agency デジタルホログラフィ装置及びデジタルホログラフィを用いた像再生方法
JP2007114463A (ja) 2005-10-20 2007-05-10 Matsushita Electric Ind Co Ltd 3次元カラー画像記録装置
JP2008122565A (ja) 2006-11-10 2008-05-29 Hyogo Prefecture ホログラフィによる画像記録装置および画像記録方法
JP2010012425A (ja) 2008-07-04 2010-01-21 Kobelco Eco-Solutions Co Ltd 下水汚泥焼却処理装置に対する灰付着性予測方法及び該方法を用いた下水汚泥焼却方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2761346A1 (en) * 1996-11-15 1998-05-22 Marsupial Holdings, Inc. In-line holographic mask for micromachining
US7068375B2 (en) * 2003-01-23 2006-06-27 Ut-Battelle Llc Direct-to-digital holography reduction of reference hologram noise and fourier space smearing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471556B2 (ja) 1997-03-27 2003-12-02 理化学研究所 位相シフトディジタルホログラフィ装置
JP2002526815A (ja) * 1998-10-07 2002-08-20 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) ディジタル・ホログラムを数値的に再構成することにより、振幅コントラスト画像と定量的位相コントラスト画像を同時に形成する方法と装置
JP2005283683A (ja) 2004-03-26 2005-10-13 Japan Science & Technology Agency デジタルホログラフィ装置及びデジタルホログラフィを用いた像再生方法
JP2007114463A (ja) 2005-10-20 2007-05-10 Matsushita Electric Ind Co Ltd 3次元カラー画像記録装置
JP2008122565A (ja) 2006-11-10 2008-05-29 Hyogo Prefecture ホログラフィによる画像記録装置および画像記録方法
JP2010012425A (ja) 2008-07-04 2010-01-21 Kobelco Eco-Solutions Co Ltd 下水汚泥焼却処理装置に対する灰付着性予測方法及び該方法を用いた下水汚泥焼却方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2527928A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099220A1 (ja) * 2011-01-21 2012-07-26 兵庫県 3次元形状計測方法および3次元形状計測装置
JP5467321B2 (ja) * 2011-01-21 2014-04-09 公立大学法人兵庫県立大学 3次元形状計測方法および3次元形状計測装置
JPWO2012099220A1 (ja) * 2011-01-21 2014-06-30 公立大学法人兵庫県立大学 3次元形状計測方法および3次元形状計測装置
US9036900B2 (en) 2011-01-21 2015-05-19 University Of Hyogo Three-dimensional shape measurement method and three-dimensional shape measurement device
JP2013246424A (ja) * 2012-05-29 2013-12-09 Kyoto Institute Of Technology デジタルホログラフィ装置
WO2014054776A1 (ja) 2012-10-05 2014-04-10 公立大学法人兵庫県立大学 ホログラフィック断層顕微鏡、ホログラフィック断層画像生成方法、およびホログラフィック断層画像用のデータ取得方法
US9581961B2 (en) 2012-10-05 2017-02-28 University Of Hyogo Holographic microscope, holographic image generation method, and method for acquiring data for holographic image
JP2017107080A (ja) * 2015-12-10 2017-06-15 日本電信電話株式会社 空間位相変調素子、および空間位相変調方法
US10635049B2 (en) 2016-08-24 2020-04-28 University Of Hyogo Ellipsometry device and ellipsometry method
WO2019044336A1 (ja) 2017-08-30 2019-03-07 公立大学法人兵庫県立大学 ホログラフィック撮像装置および同装置に用いるデータ処理方法
JPWO2019044336A1 (ja) * 2017-08-30 2020-10-01 公立大学法人兵庫県立大学 ホログラフィック撮像装置および同装置に用いるデータ処理方法
JP7161777B2 (ja) 2017-08-30 2022-10-27 兵庫県公立大学法人 ホログラフィック撮像装置および同装置に用いるデータ処理方法
US11644791B2 (en) 2017-08-30 2023-05-09 University Of Hyogo Holographic imaging device and data processing method therefor
WO2020045584A1 (ja) 2018-08-29 2020-03-05 公立大学法人兵庫県立大学 ホログラフィック撮像装置およびホログラフィック撮像方法
WO2020045589A1 (ja) 2018-08-29 2020-03-05 公立大学法人兵庫県立大学 表面形状計測装置および表面形状計測方法
US11635289B2 (en) 2018-08-29 2023-04-25 University Of Hyogo Surface shape measurement device and surface shape measurement method
CN109254425A (zh) * 2018-09-12 2019-01-22 北京理工大学 一种复振幅空间光调制器及复振幅空间光调制方法
WO2023079741A1 (ja) 2021-11-08 2023-05-11 大塚電子株式会社 光学測定方法および光学測定システム
KR20230067574A (ko) 2021-11-08 2023-05-16 오츠카덴시가부시끼가이샤 광학 측정 방법 및 광학 측정 시스템

Also Published As

Publication number Publication date
EP2527928A1 (en) 2012-11-28
JP5352763B2 (ja) 2013-11-27
EP2527928B1 (en) 2019-07-17
EP2527928A4 (en) 2013-07-10
JPWO2011089820A1 (ja) 2013-05-23
US8416669B2 (en) 2013-04-09
US20120294136A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
JP5352763B2 (ja) 複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置
JP5162733B2 (ja) ホログラフィによる画像記録装置および画像記録方法
US11644791B2 (en) Holographic imaging device and data processing method therefor
JP5339535B2 (ja) デジタルホログラフィ装置及び位相板アレイ
JP6721698B2 (ja) 撮像装置
US9500470B2 (en) Apparatus and method for measuring quality of holographic image
JP6424313B2 (ja) ホログラフィック顕微鏡および高分解能ホログラム画像用のデータ処理方法
JP4294526B2 (ja) デジタルホログラフィ装置及びデジタルホログラフィを用いた像再生方法
WO2012002207A1 (ja) 偏光イメージング装置および偏光イメージング方法
JP2007114463A (ja) 3次元カラー画像記録装置
JP6192017B2 (ja) デジタルホログラフィ装置
Kozacki et al. Holographic capture and display systems in circular configurations
JP7122153B2 (ja) ホログラム記録装置及び像再生装置
JP6628103B2 (ja) デジタルホログラフィ記録装置、デジタルホログラフィ再生装置、デジタルホログラフィ記録方法、およびデジタルホログラフィ再生方法
JP7352292B2 (ja) ホログラフィック撮像装置およびホログラフィック撮像方法
JP2014013234A (ja) 拡散照明を伴う断層撮像システム
JP2007071584A (ja) デジタルホログラフィを利用した変位分布計測方法及び装置
JP6270615B2 (ja) 標本像データ生成装置、及び、標本像データ生成方法
JP2007279221A (ja) ホログラムデータ作成装置、ホログラムデータ作成方法及びホログラムデータ作成プログラム
WO2017065130A1 (ja) 像再生装置、像再生方法、およびデジタルホログラフィ装置
JP2021173822A (ja) インコヒーレントディジタルホログラム撮像装置およびその撮像方法
Kukoowicz et al. Wide-Angle Digital Holography with large multi-object and aliasing-free

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843984

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550821

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13574565

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010843984

Country of ref document: EP