WO2020045111A1 - 低温焼成用の銀インク - Google Patents

低温焼成用の銀インク Download PDF

Info

Publication number
WO2020045111A1
WO2020045111A1 PCT/JP2019/032068 JP2019032068W WO2020045111A1 WO 2020045111 A1 WO2020045111 A1 WO 2020045111A1 JP 2019032068 W JP2019032068 W JP 2019032068W WO 2020045111 A1 WO2020045111 A1 WO 2020045111A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
silver ink
less
protective agent
weight
Prior art date
Application number
PCT/JP2019/032068
Other languages
English (en)
French (fr)
Inventor
優輔 大嶋
勇一 牧田
佐藤 弘規
紀章 中村
健二郎 越路
政人 春日
久保 仁志
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to KR1020217003672A priority Critical patent/KR102517709B1/ko
Priority to JP2020539344A priority patent/JP7320515B2/ja
Priority to CN201980056009.5A priority patent/CN112639035A/zh
Priority to US17/272,070 priority patent/US20210324218A1/en
Publication of WO2020045111A1 publication Critical patent/WO2020045111A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/06Printing inks based on fatty oils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a silver ink in which a protective agent and silver particles are dispersed in a dispersion medium.
  • the present invention relates to a silver ink that can be fired at a low temperature of 70 ° C. or less and can form a low-resistance metal film.
  • metal ink has attracted attention for forming electrodes, wiring and conductive films on circuit boards of various electronic devices and transparent wiring boards such as touch panels and displays.
  • Metallic ink is a functional material in which fine particles of conductive metal are dispersed in a dispersion medium, and which is applied to an appropriate substrate to form a metal film that becomes an electrode or the like in a desired shape and pattern.
  • the process of forming a metal film using a metal ink has the advantage over a conventional thin film forming process such as sputtering that a vacuum atmosphere is not required and that the apparatus cost can be reduced.
  • the metal ink for example, there is a metal ink (silver ink) containing silver particles described in Patent Document 1.
  • the silver particles applied to the silver ink are obtained by reacting a silver compound with an amine to form a silver amine complex and thermally decomposing the silver amine complex.
  • the silver particles produced by this method have a fine and uniform particle size while being protected (coated) by the amine.
  • the metal ink containing such a protective agent and silver particles can form a metal film by sintering silver particles at a relatively low temperature.
  • Metal inks that have low-temperature sintering properties can broaden the choice of substrates, and in addition to metal and glass substrates, can be used to suitably form electrodes and wiring on resin substrates such as plastic and PET and organic material substrates such as polyimide. Can be formed.
  • the applicant of the present application has many studies on silver ink having low-temperature sinterability.
  • Patent Literatures 2 to 4 disclose silver inks having excellent low-temperature sinterability while adjusting the particle size of silver particles, the structure of an amine compound as a protective agent, and the like.
  • Patent No. 5795096 Patent No. 6068406 International Publication WO2017 / 033911 Patent No. 5732520 Patent No. 6189740 Patent No. 6270831
  • the dispersion medium and the protective agent are evaporated by applying the silver ink to the target such as the substrate entirely or partially, and then the silver particles are sintered. Progresses, and the metal film is fired.
  • the heating temperature for forming a metal film in a practical range is often set at a temperature between 100 ° C. and 200 ° C. (Patent Documents 2 to 4). ).
  • a metal ink that can be fired at about 70 ° C. and can form a low-resistance metal film that can function as a conductor is required.
  • previously known silver inks including the above prior art, cannot exceed this requirement.
  • the problem with the silver inks of the prior art is that, for example, those silver inks themselves sinter at temperatures below 100 ° C., but require a heating time of several tens of hours to several days to form a metal film. Is mentioned.
  • the electric resistance value volume resistance value
  • the present invention has been made in view of the above background, and provides a silver ink containing silver particles capable of forming a practical metal film even by firing at a low temperature of 70 ° C. or less. I do.
  • the baking of the silver ink is the evaporation and desorption of the protective agent and, at the same time, the bonding and sintering of the silver particles that have revealed the base surface. Therefore, the conventional idea is that the lowering of the firing temperature of the silver ink largely depends on the structure of the silver particles and the protective agent bonded thereto.
  • the present inventors have also studied the above-mentioned problem solving by using a protective agent mainly composed of an amine compound from this viewpoint. As a result, they have found that the molecular weight should be limited while using one or more amine compounds as a protective agent.
  • the present inventors have also confirmed that the required low-temperature sintering cannot be completely achieved only by the strict regulation of the protective agent. Therefore, further study was conducted, and as the direction, the composition of the entire silver ink was examined. As a result, it was determined that a certain restriction was required for the dispersion medium in which the silver particles and the protective agent were dispersed. In addition, they have found that the water content in the silver ink affects the low-temperature sinterability. The present inventors have considered the present invention by examining the preferable ranges of the protective agent, the dispersion medium, and the amount of water in each of the above elements.
  • the present invention provides a silver ink obtained by dispersing silver particles and a protective agent containing at least one amine compound in a dispersion medium, wherein the dispersion medium has a vapor pressure at 20 ° C. of 40 mmHg or less, and And 80% or more of a main solvent having a vapor pressure of 0.09 mmHg or more at 70 ° C with respect to the entire dispersion medium on a mass basis, and the amine compound contained in the protective agent has a mass average molecular weight of 115 or less.
  • the total amount of the amine compound contained in the protective agent is 1 part by weight or more and 14 parts by weight or less based on 100 parts by weight of silver particles, and further, the water content is 500 ppm by mass based on the whole silver ink. It is a silver ink characterized by being at least 50,000 ppm or less.
  • the silver ink according to the present invention is configured by dispersing silver particles and a protective agent in a dispersion medium, and further controls the water content of the entire silver ink.
  • a protective agent in a dispersion medium
  • the silver ink that is the object of the present invention is sometimes referred to as a silver paste depending on the content of silver particles and additives.
  • the silver ink means a dispersion liquid (silver dispersion liquid) in which silver particles and a protective agent are dispersed in a dispersion medium.
  • the technical scope of the silver ink of the present invention is not limited by the names of silver paste, silver slurry and the like.
  • (I) Silver Particles As the silver particles dispersed in the silver ink according to the present invention, those similar to the above-described conventional silver ink and silver paste are applied.
  • the silver particles preferably have an average particle size of 5 nm or more and 300 nm or less.
  • the average particle size of the silver particles is more preferably 7 nm and 150 nm, and still more preferably 10 nm or more and 100 nm or less.
  • the particle size of the silver particles is the particle size of the individual particles dispersed in the silver ink, and is the particle size of the silver particles not including the protective agent portion. Specifically, the size of only metal particles observed with an electron microscope such as SEM or TEM is defined as the particle diameter. At this time, even if the particles are in contact with each other, if the grain boundary is clearly observed, each particle is determined as an individual particle.
  • the average particle diameter of the metal particles 1000 or more (preferably, about 3000) arbitrary particles are selected based on an electron microscope image such as a TEM, and the long diameter and short diameter of each particle are measured. Then, it is preferable to calculate the particle size by the biaxial method and calculate the average value of the selected particles.
  • the content of the silver particles in the silver ink can be set in a range of 20% by mass or more and 85% by mass or less based on the mass of the metal based on the mass of the entire silver ink.
  • the content of silver particles is less than 20%, a metal film having a uniform film thickness for securing sufficient conductivity cannot be formed, and the resistance value of the metal film increases.
  • the content of silver particles exceeds 85%, aggregation of silver particles is likely to occur, which may impair workability of coating and printing.
  • the content of silver particles is more preferably 30% by mass or more and 75% by mass or less.
  • “100 parts by weight of silver particles” means that the content of silver particles defined by the mass of metal as described above is 100 parts by weight.
  • the dispersion medium is an important component that maintains the dispersion state of the silver particles and spreads the silver particles when applying the silver ink.
  • certain restrictions are required for the dispersion medium. Specifically, it is necessary to use a solvent whose vapor pressure at 20 ° C. is 40 mmHg or less and whose vapor pressure at 70 ° C. is 0.09 mmHg or more as a main solvent.
  • the reason why the solvent having the above-mentioned vapor pressure characteristics is used as the main solvent is to optimize the balance between the low-temperature sinterability and the characteristics of the metal film in addition to ensuring the handleability of the silver ink. That is, the application and printing of the silver ink is generally performed at normal temperature. The reason why the vapor pressure at 20 ° C. is 40 mmHg or less is to maintain the ink state at that time. On the other hand, at the time of sintering, a solvent having a high vapor pressure at the sintering temperature and evaporating quickly is preferable. However, in the process of sintering silver ink, sintering proceeds through the proximity of silver particles and the desorption of the protective agent.
  • the present invention sets the vapor pressure at 70 ° C. to 0.09 mmHg or more. This is because low-temperature sintering at 70 ° C. or less is unlikely to occur in a silver ink using a solvent having a solvent of less than 0.09 mmHg as a dispersion medium, regardless of the amount of water or the like.
  • the main solvent include alcohol having the above-mentioned vapor pressure characteristics or a mixed solvent containing alcohol.
  • Alcohols include monohydric alcohols containing one OH group in one molecule, as well as polyhydric alcohols (diols and the like) containing two or more OH groups.
  • a further specific configuration of the main solvent is optimized based on the relationship between the content, viscosity, configuration of the protective agent, and the like of the silver particles in the silver ink. The detailed description of the specific main solvent will be given in the description of the specific composition of the silver ink described later.
  • the dispersion medium of the silver ink according to the present invention contains the main solvent having the above-mentioned vapor pressure characteristics in an amount of 80% or more based on the whole dispersion medium by mass. If the content of the main solvent is less than 80%, it is difficult to contribute to low-temperature firing.
  • the content of the main solvent may be 100% based on the entire dispersion medium.
  • a solvent that does not exhibit the above-described vapor pressure characteristics can be included. For example, even if the solvent has a vapor pressure of more than 40 mmHg at 20 ° C., it can be mixed with the dispersion medium as long as it is less than 20% of the entire dispersion medium.
  • the specific configuration of the dispersion medium in the present invention will be described later in the description of the specific composition of the silver ink.
  • the method for measuring the vapor pressure of the dispersion medium is not particularly limited, and any known measurement method can be adopted as long as it can measure the vapor pressure at 20 ° C. and 70 ° C.
  • any known measurement method can be adopted as long as it can measure the vapor pressure at 20 ° C. and 70 ° C.
  • a static method, a boiling point method, an isoteniscope method, a gas flow method, a differential calorimetry (DSC) method, an absolute method, and the like can be applied.
  • the vapor pressure at each temperature may be listed in various physical property databases, which can be referred to.
  • the present invention specifies the structure of the protective agent for achieving low-temperature sintering of silver ink.
  • the protective agent for the silver ink of the present invention essentially contains an amine compound. Then, it is necessary that the mass average molecular weight of the amine compound contained in the protective agent is 115 or less.
  • the reason why the mass average molecular weight of the amine compound is limited is that a silver ink using an amine compound having a mass average molecular weight of more than 115 as a protective agent forms a metal film by firing, but achieves a desired low resistance value. It is difficult. That is, a high molecular weight amine compound becomes an obstacle to low-temperature sintering.
  • the reason why the amine compound in the protective agent of the present invention is specified by the mass average molecular weight is that the use of a plurality of types of amine compounds as a protective agent in a silver ink is considered.
  • a high molecular weight amine compound is useful for suppressing aggregation of silver particles, and has an effect of increasing dispersibility of silver ink.
  • the low-molecular-weight amine compound volatilizes and evaporates quickly at the time of baking and has little residue on the metal film while appropriately suppressing aggregation of silver particles. Therefore, a plurality of amine compounds are often applied according to the content of silver particles in silver ink and required characteristics.
  • the protective agent is specified by the weight average molecular weight.
  • the mass average molecular weight is a molecular weight calculated for one or more amine compounds contained in a silver ink as a protective agent by dividing the molecular weight of the amine compound by a mass fraction.
  • the amine compound serving as a protective agent will be specifically described.
  • a (mono) amine having one amino group or a diamine having two amino groups can be applied.
  • the number of hydrocarbon groups bonded to the amino group is preferably one or two, that is, a primary amine (RNH 2 ) or a secondary amine (R 2 NH) is preferred.
  • RNH 2 primary amine
  • R 2 NH secondary amine
  • a diamine it is preferable that at least one amino group has a primary amine or a secondary amine.
  • the hydrocarbon group bonded to the amino group may be a chain hydrocarbon having a linear or branched structure, or may be a hydrocarbon group having a cyclic structure. Further, oxygen may be partially contained.
  • the above-mentioned amine compounds such as monoamine and diamine, are used alone or in combination.
  • the amine compound of the protective agent of the present invention are amine compounds having 4 to 6 carbon atoms.
  • butylamine having 4 carbon atoms (molecular weight 73.14), 1,4-diaminobutane (88.15 molecular weight), 3-methoxypropylamine (89.14 molecular weight), and pentylamine having 5 carbon atoms ( Molecular weight 87.17), 2,2-dimethylpropylamine (molecular weight 87.17), 3-ethoxypropylamine (molecular weight 103.17), N, N-dimethyl-1,3-propanediamine (molecular weight 102.18) And hexylamine having 6 carbon atoms (molecular weight 101.19).
  • a protective agent having a weight average molecular weight of 115 or less, mainly using these amine compounds.
  • an amine compound having a relatively high molecular weight can also be used.
  • examples of such an amine compound include heptylamine having 7 carbon atoms, benzylamine, N, N-diethyl-1,3-diaminopropane, octylamine having 8 carbon atoms, 2-ethylhexylamine, nonylamine having 9 carbon atoms, Examples thereof include decylamine having several tens, diaminodecane, undecylamine having 11 carbons, dodecylamine having 12 carbons, and diaminododecane.
  • These relatively high molecular weight amine compounds can also be used alone as long as they have a molecular weight of 115 or less. Further, under the condition that the weight average molecular weight is 115 or less, it is possible to use a combination of an amine compound having a low molecular weight (amine compound having a molecular weight of 115 or less) and an amine compound having a high molecular weight (an amine compound having a molecular weight of 116 or more). Permissible.
  • the silver ink of the present invention also requires that the total amount of the above-mentioned amine compounds contained in the protective agent is 1 part by weight or more and 14 parts by weight or less based on 100 parts by weight of silver particles. Even if the amine compound has a limited mass average molecular weight as described above, if the amount is more than 14 parts by weight with respect to 100 parts by weight of the silver particles, desorption from the surface of the silver particles does not easily proceed, and This is because it hinders low-temperature firing. Further, an amine compound in an amount less than 1 part by weight based on 100 parts by weight of the silver particles hardly functions as a protective agent, and may cause aggregation and precipitation of silver particles in the silver ink.
  • ⁇ ⁇ ⁇ As a method for measuring the content of the amine compound for calculating the mass average molecular weight and the weight part described above, gas chromatography (GC), GC-MS, TG-MS and the like can be applied. When a plurality of types of amine compounds are used, the content can be measured by appropriately combining these analytical means.
  • GC gas chromatography
  • TG-MS TG-MS
  • a protective agent other than the amine compound can be used.
  • fatty acids having 4 to 26 carbon atoms are exemplified.
  • decanoic acid alias: capric acid, carbon number 10
  • undecanoic acid alias: undecylic acid, carbon number 11
  • dodecanesanic acid alias: lauric acid, carbon number 12
  • tridecanoic acid alias: tridecylic acid, C13
  • tetradecanoic acid alias: myristic acid, carbon number 14
  • pentadecanoic acid alias: pentadecylic acid, carbon number 15
  • hexadecanoic acid alias: palmitic acid,
  • unsaturated fatty acids palmitoleic acid (C 16), oleic acid (C 18), linoleic acid (C 18), linolenic acid (C 18), arachidonic acid (C 20), erucic acid ( Carbon number 22), nervonic acid (alias: cis-15-tetracosenoic acid, carbon number 24) and the like.
  • a more specific configuration relating to the type and content of the protective agent is optimized by the content of the silver particles and the configuration of the dispersion medium. This will be described later in the description of the specific composition of the silver ink.
  • (IV) Water Content Specifying the water content in the silver ink is one of the salient features of the present invention. This is because conventionally, in metal ink, water (moisture) is a component to be avoided.
  • an organic solvent is often used as the dispersion medium of the metal ink.
  • an organic solvent such as an alcohol and an alkane is used. The reason why the organic solvent is used as the dispersion medium of the metal ink is to maintain the dispersion state of the metal particles in the ink. That is, when an amine compound (alkylamine) or the like is applied as a protective agent for the metal ink, the surface of the metal particles is covered with hydrophobic side chains.
  • the present inventors have found that the presence of moisture, which has been repelled as described above, is effective in the low-temperature baking of silver ink by adding a small amount thereof. It is not clear why low-temperature sintering is possible with a small amount of moisture.
  • the present inventors consider that the water molecules induced the elimination of the amine compound as a protective agent, thereby promoting the progress of sintering of the silver particles. And, it is considered that the action of the water molecule becomes remarkable by the constitution of the dispersion medium and the protective agent. Furthermore, it was also confirmed that if the water content was very small, no problem occurred in the dispersion state of silver particles in the silver ink.
  • the water content in the silver ink is 500 ppm or more and 50,000 ppm or less based on the mass of the entire silver ink. If it is less than 500 ppm, the effect of suppressing low-temperature firing is low, and the resistance value of the metal film tends to increase. On the other hand, if it exceeds 50,000 ppm, the amount of water adsorbed on the surface of silver particles becomes excessive, and aggregation of silver particles starting from the adsorbed water occurs, so that a uniform dispersion state cannot be maintained.
  • the water content is preferably from 700 ppm to 50,000 ppm, more preferably from 1,000 ppm to 50,000 ppm.
  • the regulation of the water content is an essential requirement that is always required irrespective of the physical properties of the silver particles, the composition of the dispersion medium, and the type and content of the protective agent.
  • the water in the silver ink includes water molecules and the like adsorbed on solid components such as silver particles, in addition to the state of being dissolved or dispersed as water in the dispersion medium.
  • a quantitative analysis by Karl Fischer titration or the like is preferable.
  • the water in the silver ink is derived not only from water intentionally added to the silver ink so as to have the content described above, but also from water mixed in a silver particle production process and a washing process described later. .
  • the silver ink according to the present invention includes the silver particles, the dispersion medium, and the protective agent described above.
  • the specific configuration of the preferred silver ink in the present invention will be described in more detail.
  • the silver ink of the present invention can be classified according to the configuration (dispersion medium) that can be set in consideration of the use (viscosity) of the silver ink and the content of silver particles.
  • the silver ink according to the present invention is (A) a silver ink having a relatively low silver particle content and a main solvent of an alcohol-containing solvent (a mixed solvent of alcohol and alkane) (hereinafter, this silver ink is referred to as a silver ink). 1), and (B) a silver ink having a relatively high silver particle content and containing alcohol (alcohol having a molecular weight of 150 or more and 250 or less) as a main solvent (hereinafter, this silver ink is referred to as a second ink). Silver ink) in some cases).
  • a silver ink having a relatively low silver particle content and a main solvent of an alcohol-containing solvent a mixed solvent of alcohol and alkane
  • A-1) Silver particle content of the first silver ink
  • the silver particle content of the first silver ink is relatively low, and is less than 60% by mass based on the entire silver ink. It is preferred that More preferably, it is set to 55% or less.
  • the first silver ink is a silver ink having a relatively low viscosity, based on the silver particle content and the properties of the dispersion medium described below.
  • A-2) Structure of Dispersion Medium of First Silver Ink As for the dispersion medium of the first silver ink, a mixed solvent of alcohol and alkane is preferably used as a main solvent occupying 80% or more of the dispersion medium. This is because the above-described vapor pressure characteristics can be exhibited and can contribute to low-temperature firing.
  • at least one of the alcohol and the alkane is mixed.
  • the alcohol it is preferable to mix at least one of propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol and the like.
  • 1-butanol has a vapor pressure at 20 ° C. of 4.5 mmHg, which is equal to or less than a reference value of 40 mmHg. Further, the vapor pressure at 70 ° C. has a vapor pressure sufficiently exceeding 0.9 mmHg.
  • the alkane is preferably a mixture of at least one of heptane, octane, nonane, decane, undecane, dodecane, tetradecane and the like. More preferred are heptane, octane, decane and dodecane.
  • the vapor pressure of heptane at 20 ° C. is 34 mmHg, which is equal to or less than the reference value of 40 mmHg.
  • the vapor pressure of heptane at 70 ° C. has a vapor pressure well exceeding 0.9 mmHg.
  • a solvent in which an alcohol and an alkane are mixed in this ratio is suitable.
  • a mixed solvent having a ratio outside the above range is applied, particle aggregation or precipitation may occur, making it difficult to uniformly disperse the particles.
  • the dispersion medium of the silver ink according to the present invention contains the above-mentioned mixed solvent of alcohol and alkane in an amount of 80% or more by mass based on the total weight of the dispersion medium.
  • the dispersion medium of the first silver ink may contain a solvent that does not have the above-described vapor pressure characteristics (the vapor pressure at 20 ° C. is 40 mmHg or less and the vapor pressure at 70 ° C. is 0.09 mmHg or more). it can.
  • the solvent that can be contained in the dispersion medium of the first silver ink include methanol (vapor pressure at 20 ° C. of 95 mmHg), ethanol (vapor pressure at 20 ° C.
  • A-3) Protecting agent for first silver ink In the first silver ink, one or more of the above-described amine compounds can be basically used as the protective agent as long as the mass average molecular weight is 115 or less. However, more preferably, N, N-dimethyl-1,3-diaminopropane, n-pentylamine, 3-methylbutylamine, 2-methylbutylamine, n-hexylamine, 3-methoxypropylamine, 3-ethoxypropylamine , Etc. apply. In addition, amine compounds having a relatively high molecular weight can be used as long as the above-mentioned restrictions are satisfied.
  • n-octylamine 2-ethylhexylamine, n-decylamine, n-undecylamine, n-dodecylamine, n-tetradecylamine, stearylamine, oleylamine, and the like can be used.
  • the total content of the amine compound in the first silver ink is naturally 1 part by weight or more and 14 parts by weight or less based on 100 parts by weight of the silver particles.
  • the total content of the amine compound in the first silver ink should be 3 parts by weight or more and 14 parts by weight or less with respect to 100 parts by weight of silver particles, in relation to the main solvent and other protective agents described below. preferable.
  • the silver ink of the present invention can use a protective agent other than an amine compound.
  • a fatty acid as an auxiliary protective agent.
  • the fatty acid contributes to the dispersibility of silver particles together with the amine compound, and also has the effect of improving workability when applying silver ink.
  • the various fatty acids having 4 to 26 carbon atoms described above can be used. Particularly preferably, oleic acid, erucic acid, lignoceric acid and nervonic acid are applied.
  • the content of the fatty acid as an auxiliary protective agent is preferably 0.01 mmol / g or more and 0.06 mmol / g or less based on the mass of silver particles (the number of moles per 1 g of silver particles). If it is less than 0.01 mmol / g, there is no effect as a protective agent. If it exceeds 0.06 mmol / g, the electrical resistance of the formed metal film may increase.
  • the content of amine compound (mmol / g) / the content of fatty acid (mmol / g)) is preferably 5.0 or more. If this ratio is less than 5.0, that is, if the ratio of fatty acids is high, a metal film having a high resistance value may be formed. This ratio is more preferably 10.0 or more. The upper limit of this ratio does not need to be particularly limited.
  • a suitable metal film By using a suitable amine-rich protective agent, a suitable metal film can be formed. However, if there is an excess of the amine compound with respect to the fatty acid, the effect of the fatty acid is reduced, so the ratio is preferably set to 120.0 or less.
  • Second silver ink (B-1) Silver particle content of the second silver ink
  • the silver particle content of the second silver ink is relatively high, and is 60% or more by mass based on the entire silver ink. It is preferred that The second silver ink is a silver ink having a relatively high viscosity, based on the silver particle content and the properties of the dispersion medium described below. This silver ink is suitable for forming a thick metal film by increasing the silver particle content and increasing the viscosity.
  • an alcohol solvent having a molecular weight of 150 or more and 250 or less is preferably used as a main solvent occupying 80% or more.
  • an alcohol solvent having a molecular weight of 150 or more and 250 or less is preferably used as a main solvent occupying 80% or more.
  • the silver particles are uniformly dispersed and a suitable metal film is formed at a low temperature during coating and sintering.
  • the reason for selecting an alcohol having such a molecular weight range is that it is possible to increase both the viscosity of the ink to form a thick film and to ensure low-temperature sinterability.
  • An alcohol having this molecular weight range has a vapor pressure at 70 ° C. of 0.09 mmHg or more, and can exhibit sufficient volatility as a main solvent of a low-temperature sintering ink.
  • alcohol suitable as the main solvent of the second silver ink include terpineol (molecular weight: 216.32), dihydroterpineol (molecular weight: 156.27), 2,2,4-trimethyl-1,3-pentanediol mono Isobutyrate (molecular weight: 216.32; product name: Niska NG-120) and the like. More preferred is 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate.
  • the vapor pressure of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate at 20 ° C. is 0.01 mmHg, which is much lower than the reference value of 40 mmHg.
  • the vapor pressure of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate at 70 ° C. is 0.11 mmHg, which satisfies the reference value of 0.09 mmHg or more.
  • the main solvent of the second silver ink is preferably composed of at least one of these alcohols.
  • the dispersion medium of the second silver ink contains the above-mentioned alcohol as a main solvent in an amount of 80% or more based on the mass of the entire silver ink. As long as this condition is satisfied, the dispersion medium of the second silver ink can contain an alcohol having a molecular weight outside the above range. Further, a solvent that does not have the above-mentioned vapor pressure characteristics (the vapor pressure at 20 ° C. is 40 mmHg or less and the vapor pressure at 70 ° C. is 0.09 mmHg or more) may be included.
  • alcohols having a lower molecular weight than the above alcohols can include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol and the like. Further, it may include an alkane used in a main solvent of the first silver ink.
  • alkanes can include hexane, heptane, octane, nonane, decane.
  • the content of the main solvent composed of alcohol having a molecular weight of 150 to 250 is more preferably 90% to 100% based on the mass of the silver ink.
  • (B-3) Protecting agent for second silver ink (amine compound)
  • one or more of the above-described amine compounds can be basically used as long as the mass average molecular weight is 115 or less. More preferably, 3-methoxypropylamine (molecular weight 89.14), 3-ethoxypropylamine (molecular weight 103.17), n-hexylamine (molecular weight 101.19), 2,2-dimethylpropylamine (molecular weight 87.14). A low molecular weight amine compound such as 17) is applied.
  • a relatively high-molecular-weight amine compound having a molecular weight of 116 or more can also be used as long as the above-mentioned limit of the mass average molecular weight (115 or less) is provided.
  • n-octylamine, 2-ethylhexylamine, n-decylamine, n-dodecylamine, stearylamine, oleylamine and the like can be used.
  • the total content of the amine compound is naturally 1 part by weight or more and 14 parts by weight or less based on 100 parts by weight of the silver particles.
  • the total content of the amine compound in the second silver ink is more preferably 1 part by weight or more and 10 parts by weight or less.
  • additives other than silver particles, a protective agent, and a dispersion medium may be added. Specifically, it is an additive for adjusting the viscosity and improving the applicability (printability) of the metal ink using the high-viscosity main solvent and the protective agent described above. Specifically, celluloses such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, oxyethyl cellulose, benzyl cellulose, and propyl cellulose are added.
  • high molecular weight ethyl cellulose having a number average molecular weight of 40,000 to 90,000 is preferable.
  • high molecular weight ethyl cellulose and low molecular weight ethyl cellulose having a number average molecular weight of 5,000 to 30,000 may be added.
  • the amount of the above-mentioned celluloses added is preferably 1.0% or more and 5.0% or less based on the mass of the whole silver ink.
  • the silver ink according to the present invention described above is a silver ink that can be fired at a low temperature of 70 ° C. or lower.
  • the low-temperature baking is not performed simply because it is sufficient to form a metal film by heating at 70 ° C.
  • Low-temperature baking is intended to mean that a metal film can be formed by heating at a temperature of 70 ° C. or less within 3 hours, and the volume resistance of the metal film can be 20 ⁇ cm or less.
  • the lower limit of the firing temperature does not need to be particularly set, but the silver ink according to the present invention can be sintered at room temperature by using a suitable dispersion medium and protective agent.
  • the silver ink of the present invention is a conductor formed when the ink coating film formed on the PET substrate is baked at 70 ° C. for 30 minutes to 180 minutes by a bar coating method or a screen printing method. Is preferable to have a volume resistance of 5 ⁇ cm to 20 ⁇ cm.
  • the silver ink according to the present invention can be manufactured by dispersing silver particles having a protective agent bonded thereto in the above-described dispersion medium.
  • a method for producing silver particles it is preferable to employ a silver amine complex method using a silver amine complex as a precursor.
  • a silver amine complex is formed by reacting a thermally decomposable silver compound such as silver oxalate as a starting material with an amine compound serving as a protective agent. Then, this silver amine complex is heated as a precursor to obtain silver particles. According to the silver amine complex method, fine silver particles having a uniform particle size can be produced.
  • silver oxalate As a silver compound as a starting material, silver oxalate, silver nitrate, silver acetate, silver carbonate, silver oxide, silver nitrite, silver benzoate, silver cyanate, and citric acid Silver and silver lactate are preferred. Among these silver compounds, silver oxalate (Ag 2 C 2 O 4 ) or silver carbonate (Ag 2 CO 3 ) is particularly preferred. Silver oxalate and silver carbonate can be decomposed at relatively low temperatures to produce silver particles without a reducing agent.
  • silver oxalate is explosive in a dry state
  • water or an organic solvent alcohol, alkane, alkene, alkyne, ketone, ether, ester, carboxylic acid, fatty acid, aromatic, amine, amide, nitrile, etc.
  • silver carbonate is unlikely to explode unlike silver oxalate, but it is easy to mix with an amine compound or a fatty acid as a protective agent by pre-wetting, so that water or an organic solvent is mixed. Is preferred.
  • silver oxalate or silver carbonate is in a wet state, it is preferable to mix 5 to 200 parts by weight of water or an organic solvent with respect to 100 parts by weight of the silver compound.
  • a silver-amine complex serving as a precursor of silver particles is formed by mixing and reacting the silver compound and the amine compound.
  • This amine compound also acts as a protective agent in the silver ink. Therefore, as the amine compound used here, an amine compound adjusted so as to have the above-mentioned mass average molecular weight of 115 or less is applied.
  • a silver ink using a fatty acid as a protecting agent together with an amine compound it is preferable to add the amine compound and then add the fatty acid, or to add the amine compound and the fatty acid simultaneously.
  • a silver-amine complex is formed by the reaction between the silver compound and the amine compound, and a reaction system for producing silver particles is formed. Thereafter, silver particles are generated by heating the reaction system.
  • the heating temperature at this time is preferably equal to or higher than the decomposition temperature of the generated silver-amine complex.
  • the decomposition temperature of the silver-amine complex varies depending on the type of amine coordinated to the silver compound. In the case of the silver complex of the amine compound applied in the present invention, the specific decomposition temperature is 90 to 130 ° C. .
  • silver particles bound with the protective agent are precipitated. These silver particles can be recovered by solid-liquid separation of the reaction solution. After the silver particles are collected, washing is performed to obtain silver particles that are used as a raw material of the silver ink. This washing step also has the effect of adjusting the amount of the protective agent adsorbed on the silver particles.
  • the content of the washing step is relatively important.
  • moisture may be adsorbed to the silver particles depending on a solvent used as a washing liquid, a reaction atmosphere, or the like.
  • the washing step was also an opportunity to remove water from the silver particles.
  • alcohol such as methanol, ethanol, propanol, and butanol, and octane are used.
  • those solvents having a low water content are also preferable. By using such a solvent, the moisture of the silver particles is absorbed.
  • the silver ink of the present invention a small amount of water is added, contrary to the conventional method. Therefore, as long as the water content is within the range of the limited water content, it is not necessary to remove water from the silver particles in the washing step, but it may be added.
  • a certain amount of water can be contained in the silver ink by washing with a solvent containing a small amount of water that is released to the atmosphere.
  • the water content in the solvent may reach the water content specified in the present invention in some cases.
  • the washing step may be performed using a solvent that has a low water content and stored and managed, or may be washed with a dehydrated solvent.
  • the conditions of the washing step are the same as those of the conventional silver particle washing step.
  • the amount of the solvent is preferably 1 to 10 times the weight of silver. It is preferable that the number of times of washing be 1 to 5 times.
  • the washing operation is preferably performed by mixing and stirring the silver particles and the solvent, and then performing solid-liquid separation by filtration, centrifugation, or the like. This operation is preferably performed a plurality of times with one washing.
  • the silver ink according to the present invention can be manufactured by dispersing the washed silver particles in a dispersion medium.
  • the amount of water can be adjusted by appropriately adding water.
  • a practical metal film having a low resistance value can be formed even by firing at a low temperature of 70 ° C. or less.
  • FIG. 3 is a diagram illustrating a volume resistance of the silver ink manufactured in the first embodiment after firing.
  • silver particles mainly composed of hexylamine (molecular weight: 101.2) as an amine compound serving as a protective agent are dispersed in a mixed solvent (main solvent) of alcohol (hexanol) and alkane (decane).
  • An ink (corresponding to the first silver ink) was produced.
  • a plurality of types of silver inks were manufactured by adjusting the water content in the silver inks, and their low-temperature sinterability was evaluated.
  • silver particles were produced by a thermal decomposition method, and dispersed in a solvent to produce a metal ink.
  • a thermal decomposition method for a thermal decomposition method
  • silver particles were produced by a thermal decomposition method, and dispersed in a solvent to produce a metal ink.
  • 25 g of silver oxalate (silver: 17.75 g) as a starting material was added with 10 g of methanol and wetted.
  • an amine compound serving as a protective agent was added to the silver oxalate.
  • N, N-dimethyl-1,3-diaminopropane (16.82 g (164.61 mmol)
  • hexylamine serving as a main protective agent is added.
  • the metal ink manufactured in the above process has a silver concentration of 50% by mass.
  • the composition of the silver ink produced through the above steps was analyzed to determine the content of the amine compound as a protective agent.
  • the composition analysis was performed by GC-MS.
  • GC-MS analyzer # 7890B manufactured by Agilent Technologies, Inc. was used for the GC part, and JMS-Q1500GC manufactured by JEOL Ltd., which is a quadrupole mass spectrometer, was used for the MS part. Photoionization was used as the ionization method. Further, a pyrolizer manufactured by Frontier Lab Co., Ltd. was installed and used in the GC sample introduction part. Upon analysis, the metal ink was diluted 12.5-fold by volume, and then 5 ⁇ L was used for analysis. Other measurement conditions were as follows.
  • the water content in the silver ink was measured by Karl Fischer titration.
  • the silver ink was baked at 150 ° C., the water was dried and vaporized, and quantified by a Karl Fischer moisture meter (MKC-610, manufactured by Kyoto Electronics Industry Co., Ltd.).
  • the composition of the silver ink based on these analyzes was as shown in Table 1 below.
  • this silver ink contains an amine compound (hexylamine, N, N-dimethyl-1,3-diaminopropane, dodecylamine) and a fatty acid (erucic acid) as protective agents.
  • the mass average molecular weight of the entire amine compound was calculated to be 110.98. It also contains 4.84 parts by weight of an amine compound based on 100 parts by weight of silver particles.
  • the water content of the entire silver ink was 200 ppm on a mass basis. In the following evaluation tests, this base silver ink was designated as No. Called B1.
  • water was added to the silver ink produced above to produce a silver ink having a water content of 500 ppm, 1000 ppm, 5000 ppm, 10,000 ppm, and 50,000 ppm based on the total mass of the silver ink. Adjustment of the water content was carried out by sampling a small amount of silver ink, weighing it, adding water that is insufficient to a target value from the measured mass of the ink, and stirring.
  • Silver ink (water content: 500 ppm (No. A1), 1000 ppm (No. A2), 5000 ppm (No. A3), 10,000 ppm (No. A4), 50,000 ppm (No. A5)) manufactured through the above steps.
  • the possibility of low-temperature sintering was examined.
  • the evaluation test of the low-temperature sintering property was performed by applying to a PET substrate using a fully automatic film applicator (manufactured by TQC). The ink was dropped on a 75 ⁇ L film, and printed by sweeping at a speed of 10 mm / sec with an applicator having a gap set to 50 ⁇ m to form a silver ink film having a size of 100 ⁇ 150 mm.
  • Second Embodiment In the present embodiment, a plurality of types of silver inks having different configurations of the dispersion medium, the type of the protective agent (amine compound), the content of silver particles, and the like are manufactured.
  • 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (Niska NG-120, a vapor obtained by a static method) as a main solvent corresponding to the second silver ink of the present invention.
  • a pressure: 0.01 mmHg (at 20 ° C.) and 0.18 mmHg (at 70 ° C.) were applied to produce a silver ink having a silver content of 70% by mass (No. A6).
  • This silver ink applied silver particles produced using methoxypropylamine as a protective agent.
  • the method for producing silver particles is basically the same as the method of the first embodiment.
  • Table 2 shows the results of a composition analysis (GC-MS, Karl Fischer titration) of the silver ink.
  • This silver ink contains only methoxypropylamine, which is an amine compound, as a protective agent, and the average molecular weight of the entire amine compound is 89.14. It also contains 1.43 parts by weight of an amine compound per 100 parts by weight of silver particles. Since the water content of this silver ink after production was 400 ppm on a mass basis, which is less than the lower limit (500 ppm), the water content was adjusted to 700 ppm by adding water before the evaluation test.
  • the silver ink of A6 had a high viscosity (100,000 mPa ⁇ S) and it was difficult to apply it uniformly using an applicator, it was applied using a screen printing machine (LS-150 manufactured by Neuron Seimitsu Kogyo Co., Ltd.).
  • a silver ink film of 40 ⁇ 40 mm was prepared with a coating condition of 1.5 mm clearance and a printing speed of 100 mm / sec. This was similarly fired at 70 ° C. in air to form a metal film.
  • the volume resistance was measured by the same method as in the first embodiment.
  • Table 3 shows the results of the study in this embodiment. Table 3 also shows the results of the silver inks of the first embodiment (No. A1 to No. A5, No. B1).
  • the silver ink (No. B2, B3) having an amine content of more than 14 with respect to 100 parts by weight of the silver particles has a volume resistivity value of the fired metal film of more than 20 ⁇ cm.
  • the value of the mass average molecular weight of the amine compound in the protective agent exceeds 115 (No. B4), the volume resistance value exceeds 20 ⁇ cm, which is also not a suitable silver ink. .
  • the silver ink to which excess water was added was precipitated after the addition of water, and could not be evaluated as a silver ink (No. B5). Also, when the amount of the amine compound as a protective agent was too small, precipitation occurred (No. B6).
  • the protective agent is an additive for suppressing the aggregation of silver particles and ensuring dispersibility. If the amount is too small, the protective agent does not function as a silver ink.
  • the silver ink according to the present invention optimizes the configuration of the amine compound serving as a protective agent, and contains a small amount of water which was conventionally considered not to be contained.
  • the silver ink according to the present invention has a low-temperature sintering property, and a suitable conductive film having a low resistance value can be formed even at a firing temperature of 70 ° C. or less.
  • INDUSTRIAL APPLICABILITY The present invention is useful for forming electrodes, wiring, and metal films on circuit boards of various electronic devices and transparent substrates such as touch panels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)

Abstract

本発明は、銀粒子と少なくとも1種のアミン化合物を含む保護剤とが分散媒に分散された銀インクに関する。この銀インクは、20℃における蒸気圧が40mmHg以下であり、且つ、70℃における蒸気圧が0.09mmHg以上である溶媒を主溶媒として含む分散媒を適用する。主溶媒は、分散媒全体に対して質量基準で80%以上含まれる。また、保護剤であるアミン化合物の質量平均分子量が115以下であり、保護剤に含まれるアミン化合物の合計量が、銀粒子100重量部に対して1重量部以上14重量部以下となる。そして、本発明の銀インクは、水分含有量が500ppm以上50000ppm以下であることを特徴としている。本発明に係る銀インクによれば、70℃以下の低温での焼成によっても実用的な金属膜を形成可能である。

Description

低温焼成用の銀インク
 本発明は、保護剤及び銀粒子を分散媒に分散させた銀インクに関する。特に、70℃以下の低温で焼成可能であり、低抵抗の金属膜を形成することができる銀インクに関する。
 各種電子デバイスの回路基板やタッチパネル・ディスプレイ等の透明配線基板へ電極・配線・導電膜を形成するため、金属インクの使用が注目されている。金属インクは、導電性金属の微粒子が分散媒に分散したものであり、適宜の基板に塗布することで所望の形状・パターンで電極等となる金属膜を形成する機能材料である。金属インクによる金属膜の形成プロセスは、スパッタリング等の従来の薄膜形成プロセスに対して、真空雰囲気とする必要がなく、装置コストも抑えることができるという利点がある。
 金属インクとしては、例えば、特許文献1記載の銀粒子を含む金属インク(銀インク)がある。この銀インクに適用される銀粒子は、銀化合物とアミンとを反応させて銀アミン錯体を生成し、これを熱分解することで得られる。この方法により製造される銀粒子は、アミンによって保護(被覆)された状態で、微細且つ均一な粒径となっている。このような保護剤及び銀粒子を含む金属インクは、比較的低温で銀粒子を焼結させて金属膜を形成することができる。
 低温焼結性を有する金属インクは、基板の選択肢を広げることができ、金属・ガラス基板に加えて、プラスチック、PET等の樹脂基板やポリイミド等の有機材料基板に対して好適に電極・配線を形成することができる。本願出願人は、低温焼結性を有する銀インクに関し、多くの検討実績を有する。例えば、特許文献2~特許文献4には、銀粒子の粒径、保護剤であるアミン化合物の構成等を調整しつつ、低温焼結性に優れた銀インクが開示されている。
 また、銀インク等の金属インクにおいて、低温焼結性を含む各種特性を左右するのは銀粒子の構成によるところが大きいと考えられる。本願出願人は、金属インクに好適な銀粒子の製造プロセスについても検討しており、様々粒径範囲の銀粒子の製造方法を公開している(例えば、特許文献5~特許文献7)。
特開2014-40630号公報 特許第5795096号明細書 特許第6068406号明細書 国際公開WO2017/033911号 特許第5732520号明細書 特許第6189740号明細書 特許第6270831号明細書
 上記した銀インクによる金属膜の形成においては、基板等の対象物に対して全面的又は部分的に銀インクを塗布後、加熱することで分散媒及び保護剤が蒸発し、銀粒子の焼結が進行して金属膜が焼成される。低温焼結性を謳う従来の銀インクにおいては、実用的な範囲の金属膜を形成するための加熱温度として100℃~200℃の間で設定されることが多い(特許文献2~特許文献4)。
 近年、ディスプレイ等の各種デバイスにおいて、有機エレクトロニクスの適用が進行している。有機エレクトロニクス材料には、これまで使用されてきた半導体・電子材料より、高温への耐性が更に低い材料も多い。銀インク等の金属インクを有機エレクトロニクスへ応用するためには、更なる低温焼結性が要求される。
 具体的には、70℃程度で焼成可能であり、導電体として機能し得る低抵抗な金属膜を形成できる金属インクが必要である。しかしながら、上記従来技術を含むこれまで知られている銀インクは、この要求に超えることができない。従来技術の銀インクにおける課題として、例えば、それらの銀インクは、100℃未満の温度で焼結そのものは生じるが、金属膜の形成には数十時間~数日間の加熱時間が要求される点が挙げられる。また、従来の銀インクでは、焼結しても電気抵抗値(体積抵抗値)が高くなることがある。
 本発明は上記のような背景のもとになされたものであり、銀粒子を含む銀インクであって、70℃以下の低温での焼成によっても実用的な金属膜を形成可能なものを提供する。
 上記のとおり、銀インクの焼成とは、保護剤の蒸発脱離と、それと同時に素地面を現した銀粒子同士の近接と焼結による結合である。よって、銀インクの焼成温度の低温化は、銀粒子及びそれに結合する保護剤の構成に大きく依存するというのが従来の発想である。本発明者等も、この観点によりアミン化合物を主体とする保護剤の構成により、上記課題解決の検討を行った。その結果として、保護剤として1種以上のアミン化合物を使用しつつ、その分子量を限定すべきであることを見出した。
 但し、本発明者等は、保護剤の厳密な規定のみでは、要求される低温焼結を完全に達成することができないことも確認した。そこで、更なる検討を行うこととし、その方向性として銀インク全体の構成の検討を行うこととした。その結果、銀粒子及び保護剤を分散させる分散媒についても一定の制限が必要であるとした。そして、これに加え、銀インク中の水分含有量が低温焼結性に影響を及ぼすことを見出した。本発明者等は、以上の保護剤、分散媒、水分量のそれぞれの要素における好適範囲を検討して本発明に想到した。
 即ち、本発明は、銀粒子と、少なくとも1種のアミン化合物を含む保護剤とを分散媒に分散してなる銀インクにおいて、前記分散媒は、20℃における蒸気圧が40mmHg以下であり、且つ、70℃における蒸気圧が0.09mmHg以上である主溶媒を、分散媒全体に対して質量基準で80%以上含んでなり、前記保護剤に含まれるアミン化合物の質量平均分子量が115以下であり、前記保護剤に含まれるアミン化合物の合計量が、銀粒子100重量部に対して1重量部以上14重量部以下であり、更に、水分含有量が、銀インク全体に対して質量基準で500ppm以上50000ppm以下であることを特徴とする銀インクである。
 以上のとおり、本発明に係る銀インクは、銀粒子及び保護剤を分散媒に分散させて構成され、更に、銀インク全体に対する水分含有量を制御してなる。以下、これらの各構成について詳細に説明する。
 尚、上記した特許文献1~3からも分かるように、本発明の対象である銀インクは、銀粒子の含有量や添加剤によっては銀ペーストと称されることがある。本発明においては、銀インクとは、銀粒子及び保護剤を分散媒に分散させた分散液(銀分散液)の意義である。本発明の銀インクの技術的範囲は、銀ペースト、銀スラリー等の称呼によって制限されることはない。
(I)銀粒子
 本発明に係る銀インクにおいて分散する銀粒子は、上記した従来の銀インク、銀ペーストと同様のものが適用される。銀粒子は、平均粒径が5nm以上300nm以下のものが好ましい。銀粒子の平均粒径は、より好ましくは7nm150nmとし、更に好ましくは、10nm以上100nm以下とする。
 尚、銀粒子の粒径とは、銀インク中で分散している個々の粒子の粒径であって、保護剤部分を含まない銀粒子の粒径である。具体的には、SEMやTEM等の電子顕微鏡で観察される金属粒子のみの大きさを粒子径とする。このとき、粒子同士が接しているものでも粒界が明瞭に観察されている場合には、それぞれの粒子を個別の粒子として判定する。尚、金属粒子の平均粒径の測定に際しては、TEM等の電子顕微鏡像を基に、任意の粒子を1000個以上(好ましくは3000個程度)選定し、個々の粒子の長径及び短径を測定して二軸法にて粒径を算出し、選定した粒子の平均値を算出するのが好ましい。
 銀インク中の銀粒子の含有量は、銀インク全体の質量に対する金属質量で20質量%以上85質量%以下の範囲で設定できる。銀粒子の含有量が20%未満の場合は、十分な導電性を確保するための均一な膜厚の金属膜を形成できず金属膜の抵抗値が高くなる。銀粒子の含有量が85%を超える場合は、銀粒子の凝集が生じ易くなり、塗布・印刷の作業性を損なう可能性がある。銀粒子の含有量は、より好ましくは30質量%以上75質量%以下とする。尚、本発明における「銀粒子100重量部」とは、上記のように金属質量で規定された銀粒子の含有量を100重量部とすることを意味する。
(II)分散媒
 銀インクにおいて分散媒は、銀粒子の分散状態を維持すると共に、銀インク塗布の際に銀粒子を塗り広げる作用を有する重要な構成である。本発明においては、分散媒について一定の制限を要求する。具体的には、20℃における蒸気圧が40mmHg以下であり、且つ、70℃における蒸気圧が0.09mmHg以上の溶媒を主溶媒とすることを要する。
 上述の蒸気圧特性を有する溶媒を主溶媒とするのは、銀インクの取扱い性確保に加えて、低温焼結性と金属膜の特性とのバランスを最適化するためである。即ち、銀インクの塗布・印刷は常温下でなされるのが一般的である。20℃における蒸気圧を40mmHg以下とするのは、その際にインク状態を維持するためである。一方、焼結の際には焼結温度における蒸気圧が高く速やかに揮発する溶媒が好ましい。但し、銀インクの焼結過程においては、銀粒子同士の近接や保護剤の脱離を経て焼結が進行する。そのため、蒸気圧の高い溶媒を単純に選択して適用することは好ましくとは言い難い。更に、本発明においては、ここに後述する水分による焼結促進の影響もある。本発明は、これらを考慮して、70℃における蒸気圧を0.09mmHg以上とした。0.09mmHg未満の溶媒を分散媒とする銀インクでは、如何に水分量等を適切にしても70℃以下の低温焼結は生じ難くなるからである。
 主溶媒の具体例としては、上記の蒸気圧特性を有するアルコール又はアルコールを含む混合溶媒である。アルコールは、1分子中にOH基を1つ含む一価アルコールの他、2以上のOH基を含む多価アルコール(ジオール等)が対象となる。主溶媒の更なる具体的構成は、銀インク中の銀粒子の含有量・粘度・保護剤の構成等との関連に基づき適正化される。具体的な主溶媒についての詳細な説明は、後述する銀インクの具体的組成の説明において示す。
 本発明に係る銀インクの分散媒は、上記した蒸気圧特性を有する主溶媒を、分散媒全体に対して質量基準で80%以上含んでなる。上記主溶媒の含有量が80%未満の分散媒では、低温焼成に寄与することが困難となる。上記主溶媒の含有量は、分散媒全体に対して100%であっても良い。また、上記主溶媒の含有量が80%以上であれば、上記した蒸気圧特性を示さない溶媒を含むことができる。例えば、20℃における蒸気圧が40mmHgを超える溶媒であっても、分散媒全体に対して20%未満であれば分散媒に混合することができる。本発明における分散媒の具体的な構成については、後述する銀インクの具体的組成の説明において示す。
 尚、分散媒の蒸気圧の測定方法には特に制限はなく、20℃及び70℃における蒸気圧を測定できるものであれば公知の測定方法が採用できる。例えば、静止法、沸点法、アイソテニスコープ法、気体流通法、示差熱量測定(DSC)法、絶対法などが適用できる。また、分散媒の種類によっては、その各温度における蒸気圧が各種の物性データベースに掲載されていることがあり、これを参照することもできる。
(III)保護剤
 本発明は、銀インクの低温焼結の達成のため、保護剤の構成を規定する。本発明の銀インクの保護剤は、アミン化合物を必須的に含む。そして、保護剤に含まれるアミン化合物の質量平均分子量が115以下であることを要する。アミン化合物の質量平均分子量を制限するのは、質量平均分子量が115を超えるアミン化合物を保護剤とする銀インクは、焼成によって金属膜を一応は形成するものの、目的とする低抵抗値を達成することが困難である。即ち、高分子量のアミン化合物は、低温焼結性の障害となる。
 本発明の保護剤中のアミン化合物を質量平均分子量で規定したのは、銀インクにおいては、複数種のアミン化合物を保護剤として使用することが許容されることを考慮したからである。一般的な傾向として、高分子量のアミン化合物は、銀粒子の凝集抑制に有用であり、銀インクの分散性を高める効果がある。一方、低分子量のアミン化合物は、適度に銀粒子の凝集抑制を果たしつつ、焼成時に速やかに揮発・蒸発し金属膜への残留が少ない。そのため、銀インクにおける銀粒子の含有量や要求特性に応じて複数のアミン化合物が適用されることが多い。本発明では、そのような複数種のアミン化合物を適用することを考慮して、質量平均分子量で保護剤を規定した。尚、質量平均分子量は、保護剤として銀インクに含まれる1以上のアミン化合物について、それらの分子量を質量分率で案分して算出される分子量である。
 ここで保護剤となるアミン化合物について、具体的に説明する。アミン化合物中のアミノ基の数としては、アミノ基が1つである(モノ)アミンや、アミノ基を2つ有するジアミンを適用できる。また、アミノ基に結合する炭化水素基の数は、1つ又は2つが好ましく、すなわち、1級アミン(RNH)、又は2級アミン(RNH)が好ましい。そして、保護剤としてジアミンを適用する場合、少なくとも1以上のアミノ基が1級アミン又は2級アミンのものが好ましい。アミノ基に結合する炭化水素基は、直鎖構造又は分枝構造を有する鎖式炭化水素の他、環状構造の炭化水素基であっても良い。また、一部に酸素を含んでいても良い。
 そして、本発明においては、質量平均分子量115以下という条件のもと、上記したアミン化合物であるモノアミン、ジアミンを単独又は複数組み合わせて使用する。本発明の保護剤のアミン化合物として好適な具体例としては、炭素数が4~6のアミン化合物である。より具体的には、炭素数4のブチルアミン(分子量73.14)、1,4-ジアミノブタン(分子量88.15)、3-メトキシプロピルアミン(分子量89.14)、炭素数5のペンチルアミン(分子量87.17)、2,2-ジメチルプロピルアミン(分子量87.17)、3-エトキシプロピルアミン(分子量103.17)、N,N-ジメチル-1,3-プロパンジアミン(分子量102.18)、炭素数6のヘキシルアミン(分子量101.19)等が挙げられる。本発明の場合、これらのアミン化合物を主体として、質量平均分子量115以下の保護剤を適用するのが好ましい。
 また、上記のような分子量が比較的低いアミン化合物の他、分子量が比較的高いアミン化合物も使用することができる。このようなアミン化合物としては、炭素数7のヘプチルアミン、ベンジルアミン、N,N-ジエチル-1,3-ジアミノプロパン、炭素数8のオクチルアミン、2-エチルヘキシルアミン、炭素数9のノニルアミン、炭素数10のデシルアミン、ジアミノデカン、炭素数11のウンデシルアミン、炭素数12のドデシルアミン、ジアミノドデカン等が挙げられる。これらの比較的高分子量のアミン化合物も、分子量115以下のものであれば単独で使用可能である。また、質量平均分子量115以下とすることを条件に、分子量が低いアミン化合物(分子量115以下のアミン化合物)と、分子量の高いアミン化合物(分子量116以上のアミン化合物)とを組み合わせて使用することが許容される。
 そして、本発明の銀インクは、保護剤に含まれる上記したアミン化合物の合計量が、銀粒子100重量部に対して1重量部以上14重量部以下であることも要求する。上記のような質量平均分子量を制限したアミン化合物であっても、銀粒子100重量部に対して14重量部を超える量であると、銀粒子表面からの脱離が進行し難く、焼結の妨げとなり、低温焼成できないからである。また、銀粒子100重量部に対して1重量部未満のアミン化合物は、保護剤として機能し難く、銀インクの銀粒子の凝集・沈殿が生じる可能性がある。
 上述した質量平均分子量や重量部を算出するための、アミン化合物の含有量の測定方法としては、ガスクロマトグラフィー(GC)、GC-MS、TG-MS等が適用できる。複数種のアミン化合物を使用する場合も、これらの分析手段を適宜に組み合わせることで含有量を測定できる。
 尚、本発明ではアミン化合物以外の保護剤も使用可能である。具体的には、炭素数4以上26以下の脂肪酸が挙げられる。具体的には、ブタン酸(炭素数4)、ペンタン酸(炭素数5)、ヘキサン酸(炭素数6)、ヘプタン酸(炭素数7)、オクタン酸(炭素数8)、ノナン酸(炭素数9)、デカン酸(別名:カプリン酸、炭素数10)、ウンデカン酸(別名:ウンデシル酸、炭素数11)、ドデカンサン酸(別名:ラウリン酸、炭素数12)、トリデカン酸(別名:トリデシル酸、炭素数13)、テトラデカン酸(別名:ミリスチン酸、炭素数14)、ペンタデカン酸(別名:ペンタデシル酸、炭素数15)、ヘキサデカン酸(別名:パルミチン酸、炭素数16)、ヘプタデカン酸(別名:マルガリン酸、炭素数17)、オクタデカン酸(別名:ステアリン酸、炭素数18)、ノナデカン酸(別名:ノナデシル酸、炭素数19)、エイコサン酸(別名:アラキジン酸、炭素数20)、ベヘン酸(別名:ドコサン酸、炭素数22)、トリコサン酸(炭素数23)、リグノセリン酸(別名:テトラコサン酸、炭素数24)、ペンタコサン酸(炭素数25)、セロチン酸(別名:ヘキサコサン酸、炭素数26)等の飽和脂肪酸が挙げられる。また、不飽和脂肪酸として、パルミトレイン酸(炭素数16)、オレイン酸(炭素数18)、リノール酸(炭素数18)、リノレン酸(炭素数18)、アラキドン酸(炭素数20)、エルカ酸(炭素数22)、ネルボン酸(別名:cis-15-テトラコセン酸、炭素数24)等が挙げられる。
 保護剤の種類や含有量等に関するより具体的な構成は、銀粒子の含有量と分散媒の構成によって適正化される。この点に関しては、後述する銀インクの具体的組成の説明において説明する。
(IV)水分含有量
 銀インク中の水分含有量を規定することは、本発明の顕著な特徴の一つである。というのも、従来、金属インクにおいて、水(水分)は忌避されるべき成分である。一般的に、金属インクの分散媒は、有機溶媒が適用されることが多い。本発明でもアルコール、アルカン等の有機溶媒が使用されている。金属インクの分散媒として有機溶媒が使用されるのは、インク中の金属粒子の分散状態を維持するためである。即ち、金属インクの保護剤にアミン化合物(アルキルアミン)等を適用すると、金属粒子表面が疎水性の側鎖で覆われることになる。金属粒子の含有量を高くしつつ分散状態の良好な金属インクにするためには、金属粒子表面の極性に応じた分散媒とする必要がある。そのため、金属インクの分散媒として有機溶媒が使用されることが多い。そして、水のように極性の高い溶媒を単独で又は混合して分散媒とすると、金属粒子の分散を阻害すると考えられている。よって、通常は、分散媒にとって水は不可避であるが不純物として忌避されてきた。
 本発明者等は、上記のように忌避されてきた水分の存在は、銀インクの低温焼成においては、微量添加によって有効なものであることを見出した。僅かな水分によって低温焼成が可能となる理由については明確ではない。本発明者等は、水分子が保護剤であるアミン化合物の脱離を誘発し、銀粒子の焼結の進行を促進させたためと考察している。そして、この水分子の作用は、上記した分散媒及び保護剤の構成によって顕著になったと考えている。更に、水分の含有量は微量であれば、銀インク中の銀粒子の分散状態に問題が生じることがないことも確認した。
 本発明者等の検討から、銀インク中の水分含有量は、銀インク全体に対する質量基準で500ppm以上50000ppm以下とする。500ppm未満では、低温焼成抑制効果が低く、金属膜の抵抗値が高くなる傾向がある。一方、50000ppmを超えると、銀粒子表面への吸着水が過剰になり、この吸着水を起点とする銀粒子の凝集が起こるため、均一な分散状態を維持できなくなる。水分含有量は、好ましくは700ppm以上50000ppm以下であり、より好ましくは1000ppm以上50000ppm以下である。この水分量の規定に関しては、銀粒子の物性、分散媒の構成、及び保護剤の種類・含有量に依らず常に要求される必須要件である。
 尚、銀インク中の水分は、分散媒中に水として溶解又は分散した状態の他、銀粒子等の固体成分に吸着した水分子等を含む。銀インク中の水分含有量の測定方法としては、カールフィッシャー滴定法等による定量分析が好ましい。また、この銀インク中の水分は、上記含有量となるように銀インクに意図的に添加される水に由来する他、銀粒子の製造過程や後述する洗浄工程で混入する水にも由来する。
(V)銀インクの具体的な構成
 本発明に係る銀インクは、ここまで説明した銀粒子、分散媒、保護剤によって構成される。ここで、本発明における好適な銀インクの具体的な構成について、より詳細に説明する。本発明の銀インクは、当該銀インクの用途(粘度)や銀粒子の含有量を考慮しつつ設定できる分散媒の構成によって分類することができる。
 上記のとおり、分散媒の構成に関しては、上述した蒸気圧特性を有するアルコールとアルコール含有溶媒が挙げられる。ここで、本発明に係る銀インクは、(A)銀粒子含有量が比較的低く、アルコール含有溶媒(アルコールとアルカンとの混合溶媒)を主溶媒とする銀インク(以下、この銀インクを第1の銀インクと称するときがある)と、(B)銀粒子含有量が比較的高く、アルコール(分子量150以上250以下のアルコール)を主溶媒とする銀インク(以下、この銀インクを第2の銀インクと称するときがある)、の2種類の銀インクに対応することができる。以下、これらの2種類の具体的な銀インクについて、好適な構成を説明する。
(A)第1の銀インク
(A-1)第1の銀インクの銀粒子含有量
 第1の銀インクの銀粒子含有量は比較的低く、銀インク全体に対して質量基準で60%未満とするのが好ましい。より好ましくは、55%以下とする。第1の銀インクは、この銀粒子含有量と後述の分散媒の性状から、粘度が比較的低い銀インクとなる。
(A-2)第1の銀インクの分散媒の構成
 第1の銀インクの分散媒について、その80%以上を占める主溶媒は、アルコールとアルカンとの混合溶媒を適用するのが好ましい。上述した蒸気圧特性を示すことができ、低温焼成に寄与することができるからである。ここで、アルコール及びアルカンは、いずれも少なくとも1種が混合される。アルコールとしては、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール等の少なくともいずれかを混合するのが好ましい。より好ましくは、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、シクロヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、3,3-ジメチル-1-ブタノール、3,3-ジメチル―2-ブタノール、2-エチル-1-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、tert-アミルアルコール、2,2ジメチル-1-プロパノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、3-メチル-2-ブタノール、1-ブタノール、2-ブタノール、tart-ブチルアルコール、2-メチル-1-プロパノール、1-プロパノール等である。上記したアルコールについて、例えば、1-ブタノールは20℃における蒸気圧は4.5mmHgであり基準値となる40mmHg以下である。また、70℃における蒸気圧は0.9mmHgを十分に超える蒸気圧を有する。
 一方、アルカンは、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、テトラデカン等の少なくともいずれかを混合するのが好ましい。より好ましくは、ヘプタン、オクタン、デカン、ドデカンである。上記したアルカンに関し、例えば、ヘプタンの20℃における蒸気圧は34mmHgであり基準値となる40mmHg以下である。また、ヘプタンの70℃における蒸気圧は0.9mmHgを十分に超える蒸気圧を有する。
 アルコールとアルカンとの混合比については、質量基準でアルコール:アルカン = 1:8~3:1とするのが好ましい。アミン化合物を保護剤とした場合、アルコールとアルカンとをこの比率で混合した溶媒が適している。前記の比率の範囲外による混合溶媒を適用するとき、粒子凝集や沈殿が生じる可能性があり、粒子の均一分散が困難となる。アルコールとアルカンとの混合比については、アルコール:アルカン = 1:7~3:2とするのがより好ましい。
 本発明に係る銀インクの分散媒は、上記したアルコールとアルカンとの混合溶媒を分散媒全体の重量に対し質量基準で80%以上含有する。この条件を満たす限り、第1の銀インクの分散媒は、上述の蒸気圧特性(20℃における蒸気圧40mmHg以下、且つ、70℃における蒸気圧0.09mmHg以上)を具備しない溶媒を含むことができる。第1の銀インクの分散媒中に含まれることが許容される溶媒としては、例えば、メタノール(20℃における蒸気圧95mmHg)、エタノール(20℃における蒸気圧44mmHg)、イソプロピルアルコール(20℃における蒸気圧45mmHg)、アセトン(20℃における蒸気圧182mmHg)、酢酸エチル(20℃における蒸気圧を94mmHg)、ヘキサン(20℃における蒸気圧155mmHg)等が挙げられる。
(A-3)第1の銀インクの保護剤(アミン化合物)
 第1の銀インクにおいて、保護剤は基本的には、質量平均分子量を115以下であれば、上記したアミン化合物の1種以上を適用できる。但し、より好ましくは、N,N-ジメチル-1,3-ジアミノプロパン、n-ペンチルアミン、3-メチルブチルアミン、2-メチルブチルアミン、n-ヘキシルアミン、3-メトキシプロピルアミン、3-エトキシプロピルアミン、等が適用される。また、上記した制限を具備していれば、比較的高分子量のアミン化合物も使用できる。例えば、n-オクチルアミン、2-エチルヘキシルアミン、n-デシルアミン、n-ウンデシルアミン、n-ドデシルアミン、n-テトラデシルアミン、ステアリルアミン、オレイルアミン、等を使用できる。
 第1の銀インクのアミン化合物の合計含有量は、当然に銀粒子100重量部に対して1重量部以上14重量部以下とする。但し、主溶媒及び後述する他の保護剤との関連から、第1の銀インクのアミン化合物の合計含有量は、銀粒子100重量部に対して3重量部以上14重量部以下とするのが好ましい。
(A-4)第1の銀インクにおけるアミン化合物以外の保護剤
 上記のとおり、本発明の銀インクは、アミン化合物以外の保護剤も使用可能である。特に、第1の銀インクにおいては、補助的な保護剤として脂肪酸を添加することが好ましい。脂肪酸は、アミン化合物と共に銀粒子の分散性に寄与し、また、銀インクを塗布する際の作業性向上の効果もある。脂肪酸は上記した炭素数4以上26以下の各種の脂肪酸が適用できる。特に好ましくは、オレイン酸、エルカ酸、リグノセリン酸、ネルボン酸が適用される。
 補助的な保護剤である脂肪酸の含有量は、銀粒子の質量基準(銀粒子1gに対するモル数)で0.01mmol/g以上0.06mmol/g以下とするのが好ましい。0.01mmol/g未満では、保護剤としての効果がない。0.06mmol/gを超えると、形成される金属膜の電気抵抗が高くなるおそれがある。
 保護剤としてアミン化合物と脂肪酸の双方を含む場合、銀粒子の質量基準でモル換算されたアミン化合物の合計含有量(銀粒子1gに対するアミン化合物の合計モル数)と、上記した脂肪酸の含有量との比率(アミン化合物の含有量(mmol/g)/脂肪酸の含有量(mmol/g))が、5.0以上であることが好ましい。この比率が5.0未満、即ち、脂肪酸の比率が高くなると、抵抗値の高い金属膜が形成されるおそれがある。この比率は、10.0以上がより好ましい。また、この比率の上限は、特に限定する必要はない。適度にアミンリッチな保護剤にすることで、好適な金属膜が形成できる。但し、脂肪酸に対して過剰のアミン化合物があると脂肪酸の効果が薄くなるので、前記比率は120.0以下とするのが好ましい。
(B)第2の銀インク
(B-1)第2の銀インクの銀粒子含有量
 第2の銀インクの銀粒子含有量は比較的高く、銀インク全体に対して質量基準で60%以上とするのが好ましい。この第2の銀インクは、銀粒子含有量と後述の分散媒の性状から、粘度が比較的高い銀インクとなる。この銀インクは、銀粒子含有量を高くし高粘度とすることで、膜厚の厚い金属膜の形成用途に好適である。
(B-2)第2の銀インクの分散媒の構成
 第2の銀インクの分散媒について、その80%以上を占める主溶媒は、分子量が150以上250以下のアルコール溶媒を適用するのが好ましい。銀粒子含有量が比較的大きい第2の銀インクにおいて、銀粒子を均一に分散させると共に塗布及び焼結の際に低温で好適な金属膜を形成する為である。このような分子量の範囲のアルコールを選定する理由として、厚膜を形成する為にインクの粘度を高くする事と、低温焼結性を確保する事の両立が可能だからである。この分子量の範囲のアルコールは、70℃での蒸気圧が0.09mmHg以上となり低温焼結インクの主溶媒として十分な揮発性を示すこと出来るようになる。
 第2の銀インクの主溶媒として好適なアルコールの具体例としては、ターピネオール(分子量216.32)、ジヒドロターピネオール(分子量156.27)、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート(分子量216.32、製品名:日香NG-120)等が挙げられる。より好ましくは、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレートである。例えば、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレートの20℃における蒸気圧は0.01mmHgであり、基準値である40mmHgを大きく下回る。また、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレートの70℃における蒸気圧は0.11mmHgの蒸気圧であるので基準値である0.09mmHg以上を満たしている。第2の銀インクの主溶媒は、これらのアルコールの少なくとも一つからなるものが好ましい。
 第2の銀インクの分散媒は、上記したアルコールを主溶媒として銀インク全体の質量基準で80%以上含有する。この条件を満たす限り、第2の銀インクの分散媒は、上記分子量の範囲外のアルコールを含むことができる。また、上述の蒸気圧特性(20℃における蒸気圧を40mmHg以下、且つ、70℃における蒸気圧を0.09mmHg以上)を具備しない溶媒を含むこともできる。例えば、上記アルコールよりも低分子量のアルコール類としてメタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール等を含むことができる。更に、第1の銀インクの主溶媒で使用されるアルカンを含むこともできる。例えば、アルカンとして、ヘキサン、ヘプタン、オクタン、ノナン、デカンを含むことができる。分子量が150以上250以下のアルコール以外に分散媒を構成する溶媒としては、メタノール、エタノール、プロパノール、ブタノール、へキサノール、オクタン、デカンが好ましい。尚、第2の銀インクにおいては、分子量が150以上250以下のアルコールからなる主溶媒の含有量を、銀インクの質量基準で90%以上100%以下とすることがより好ましい。
(B-3)第2の銀インクの保護剤(アミン化合物)
 第2の銀インクにおいて、保護剤は、基本的には質量平均分子量が115以下でとなっていれば、上記したアミン化合物の1種以上を適用できる。より好ましくは、3-メトキシプロピルアミン(分子量89.14)、3-エトキシプロピルアミン(分子量103.17)、n-ヘキシルアミン(分子量101.19)、2,2-ジメチルプロピルアミン(分子量87.17)等の低分子量のアミン化合物が適用される。また、上記した質量平均分子量の制限(115以下)を具備していれば、分子量116以上の比較的高分子量のアミン化合物も使用できる。例えば、n-オクチルアミン、2-エチルヘキシルアミン、n-デシルアミン、n-ドデシルアミン、ステアリルアミン、オレイルアミン等を使用できる。
 ここでも、アミン化合物の合計含有量は、当然に銀粒子100重量部に対して1重量部以上14重量部以下である。但し、主溶媒の構成及び好適なアミン化合物の構成を考慮して、第2の銀インクのアミン化合物の合計含有量は、1重量部以上10重量部以下とするのがより好ましい。 
(B-3)第2の銀インクの添加剤
 第2の銀インクに関しては、銀粒子、保護剤、分散媒以外の添加剤が添加されることがある。具体的には、上記した粘度の高い主溶媒、保護剤を使用する金属インクについて、粘度調整及び塗布性(印刷性)を向上するための添加剤である。具体的には、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、オキシエチルセルロース、ベンジルセルロース、プロピルセルロース等のセルロース類が添加される。
 特に、数平均分子量が40000~90000の高分子量エチルセルロースが好ましい。また、高分子量エチルセルロースと数平均分子量が5000~30000の低分子量エチルセルロースを添加しても良い。
以上のセルロース類の添加量は、銀インク全体に対する質量基準で1.0%以上5.0%以下とするのが好ましい。
(VI)本発明に係る銀インクによる金属膜の電気的特性
 以上説明した本発明に係る銀インクは、70℃以下の低温焼成が可能な銀インクである。ここで、低温焼成可能とは、70℃で加熱して金属膜ができればよしとする安易な定義を採用しない。低温焼成可能とは、70℃以下の温度で3時間以内に加熱して金属膜が形成可能であり、当該金属膜の体積抵抗が20μΩcm以下とすることができることを意図する。尚、焼成温度の下限値は、特に設定する必要はないが、本発明に係る銀インクは、分散媒及び保護剤を適切にすることで、常温でも焼結可能である。
 より具体的な指標として、本発明の銀インクはバーコート法又はスクリーン印刷法により、PET基板上に形成したインク塗布膜を70℃で30分以上180分以下焼成したときに形成される導電体の体積抵抗が5μΩcm以上20μΩcm以下となるものが好ましい。
(VII)本発明に係る銀インクの製造方法
 次に、本発明に係る銀インクの製造方法について説明する。本発明に係る銀インクは、保護剤が結合した銀粒子を上記した分散媒に分散させることで製造することができる。ここで、銀粒子の製造方法としては、銀アミン錯体を前駆体とする銀アミン錯体法を採用するのが好ましい。この銀粒子製造法では、シュウ酸銀等の熱分解性の銀化合物を出発原料とし、これに保護剤となるアミン化合物を反応させて銀アミン錯体を形成する。そして、この銀アミン錯体を前駆体として加熱して銀粒子を得る方法である。かかる銀アミン錯体法は、微細で粒径の揃った銀粒子の製造が可能である。
 銀粒子の詳細な製造方法について説明すると、まず、出発原料となる銀化合物としては、シュウ酸銀、硝酸銀、酢酸銀、炭酸銀、酸化銀、亜硝酸銀、安息香酸銀、シアン酸銀、クエン酸銀、乳酸銀等が好ましい。これら銀化合物のうち、特に好ましいのは、シュウ酸銀(Ag)又は炭酸銀(AgCO)である。シュウ酸銀や炭酸銀は、還元剤がなくても比較的低温で分解して銀粒子を生成することができる。
 尚、シュウ酸銀は、乾燥状態において爆発性があることから、水又は有機溶媒(アルコール、アルカン、アルケン、アルキン、ケトン、エーテル、エステル、カルボン酸、脂肪酸、芳香族、アミン、アミド、ニトリル等)を混合し、湿潤状態にして取り扱い性が確保されたものを利用するのが好ましい。また、炭酸銀に関しては、シュウ酸銀と異なり爆発の可能性は低いが、予め湿潤状態にすることで、保護剤であるアミン化合物、脂肪酸と混合しやすくなるので、水又は有機溶媒を混合することが好ましい。シュウ酸銀、炭酸銀を湿潤状態にするとき、銀化合物100重量部に対して、5~200重量部の水又は有機溶媒を混合するのが好ましい。
 銀粒子の前駆体となる銀-アミン錯体は、上記の銀化合物とアミン化合物とを混合・反応させて生成する。このアミン化合物が銀インクにおける保護剤としても作用する。よって、ここで使用するアミン化合物は、上記した質量平均分子量115以下となるように調整されたアミン化合物が適用される。
 尚、アミン化合物と共に脂肪酸を保護剤とする銀インクでは、アミン化合物を添加してその後に脂肪酸を添加するか、アミン化合物と脂肪酸とを同時に添加することが好ましい。
 銀化合物とアミン化合物との反応により銀-アミン錯体が生成し、銀粒子製造のための反応系が形成される。その後、この反応系を加熱することで銀粒子は生成する。このときの加熱温度は、生成した銀-アミン錯体の分解温度以上とするのが好ましい。銀-アミン錯体の分解温度は、銀化合物に配位するアミンの種類によって相違するが、本発明で適用されるアミン化合物の銀錯体の場合、具体的な分解温度は、90~130℃となる。
 この加熱工程を経て、保護剤が結合した銀粒子が析出する。この銀粒子は、反応液を固液分離して回収することができる。銀粒子を回収した後、洗浄を行うことで銀インクの原料となる銀粒子とする。この洗浄工程は、銀粒子に吸着する保護剤の量を調整する作用もある。
 本発明の水分量が制御された銀インクにおいては、この洗浄工程の内容が比較的重要となる。上記した銀粒子の製造工程では、洗浄液として使用される溶媒や反応雰囲気等により銀粒子に水分が吸着する場合がある。従来の銀インクでは、水分を忌避していたため、洗浄工程は銀粒子から水を除去する機会でもあった。
 銀粒子の洗浄工程で使用される溶媒は、メタノール、エタノール、プロパノール、ブタノール等のアルコール、オクタンが使用される。従来の銀インクの洗浄のためには、これらの溶媒に関しても水分量が低いものが好ましいと考えられていた。かかる溶媒を使用することで、銀粒子の水分を吸収させるためである。
 一方、本発明の銀インクでは、従来とは逆に水分量を僅かながら添加するようになっている。よって、この制限された水分量の範囲内であれば、洗浄工程で銀粒子から水分を除去する必要はなく、むしろ添加しても良い。
 例えば、本発明の銀インク製造の際の洗浄工程においては、大気開放された微量の水分を含む溶媒で洗浄を行うことで、銀インク中にある程度の水分を含有させることができる。この溶媒中の水分によって、本発明で規定された水分量に達する場合もある。
 但し、洗浄工程で意図的に水分を添加することは必須ではない。その後の工程でも水分を添加し調整する機会があるからである。従って、管理保管された水分量の低い溶媒を使用して洗浄工程を実施しても良いし、脱水した溶媒で洗浄しても良い。
 また、洗浄工程の条件は、従来の銀粒子の洗浄工程と同様とする。具体的には、溶媒量は、銀重量の1~10倍量が好ましい。そして、洗浄回数は1回から5回とするのが好ましい。尚、洗浄操作は、銀粒子と溶媒とを混合し攪拌した後、濾過や遠心分離等で固液分離するのが好ましく、この操作を洗浄回数1回として複数回行うのが好ましい。
 そして、上記のようにして洗浄された銀粒子を分散媒に分散させることで、本発明係る銀インクを製造することができる。この段階で水分を適宜に添加して水分量を調整することができる。
 本発明に係る銀インクによれば、70℃以下の低温での焼成によっても抵抗値の低い実用的な金属膜を形成することができる。
第1実施形態で製造した銀インクの焼成後の体積抵抗を示す図。
第1実施形態:以下、本発明の好適な実施形態について説明する。本実施形態では、保護剤となるアミン化合物としてヘキシルアミン(分子量101.2)を主体とした銀粒子を、アルコール(ヘキサノール)とアルカン(デカン)との混合溶媒(主溶媒)に分散させた銀インク(第1の銀インクに相当する)を製造した。このとき、銀インク中の水分含有量を調整して複数種の銀インク中を製造し、その低温焼結性を評価した。
[銀インクの製造]
 本実施形態では、熱分解法により銀粒子を製造し、これを溶媒に分散させ金属インクを製造した。銀粒子の製造では、まず、出発原料であるシュウ酸銀25g(銀:17.75g)にメタノール10gを添加し湿らせた。そして、このシュウ酸銀に、保護剤となるアミン化合物を添加した。具体的には、前記シュウ酸銀に、最初にN,N-ジメチル-1,3-ジアミノプロパン(16.82g(164.61mmol))を加えて暫く混練した後、主たる保護剤となるヘキシルアミン(19.02g(187.86mmol))と、ドデシルアミン(2.90g(15.63mmol))を加え、更に補助的保護剤である脂肪酸としてエルカ酸(0.70g(2.08mmol))を加えて混練した。その後110℃で加熱攪拌した。この加熱攪拌中、クリーム色の銀錯体が徐々に褐色になりさらに黒色に変化した。この加熱・攪拌操作は、反応系からの気泡発生が出なくなるまで行った。
 反応終了後、反応系を放冷し室温にした後、溶媒(洗浄液)としてメタノール(40ml)を加えて十分に攪拌し、遠心分離(2000rpm、60秒)を行った。上澄を除去して固液分離し、再びメタノール(40ml)を添加し撹拌後、遠心分離して上澄を除去した。最後に、もう一度メタノールを添加し同様の洗浄操作を行った。このように、溶媒による洗浄操作を3回数繰り返すことで過剰の保護剤を除去して銀粒子を精製した。
 そして、製造した銀微粒子に、分散媒(主溶媒)であるデカンとヘキサノールとの混合溶媒(デカン:ヘキサノール=4:3(質量比)、静置法による蒸気圧:15.0mmHg(at20℃)、25.0mmHg(at70℃))を添加して銀インクとした。以上の工程で製造した金属インクは、銀濃度が50質量%である。
 以上の工程を経て製造した銀インクについて、組成分析を実施して保護剤であるアミン化合物の含有量を測定した。組成分析はGC-MSにて行った。GC-MS分析装置は、GC部分にアジレント・テクノロジー株式会社社製 7890Bを、MS部分に四重極形質量分析計である日本電子株式会社製 JMS-Q1500GCを用いた。イオン化法としては光イオン化を用いた。また、GC試料導入部分にはフロンティア・ラボ株式会社製パイロラーザーを設置し使用した。分析に際しては、金属インクを体積で12.5倍に希釈した後、5μLを分析に供した。その他の測定条件は下記のとおりとした。
〈GC条件〉
カラム:UA-530M-0.25F(フロンティア・ラボ社製)
カラム流量:1.0ml/min.He
スプリット比:30
オーブン温度設定:40℃,6min.→昇温(10℃/min.)→360℃,2min.
注入口温度:250℃
〈MS条件〉
Q-pole温度:70℃
イオン源温度:200℃
モード:Scan(m/z=10~350)
光イオン化エネルギー:10.18eV以上
 更に、この銀インク中の水分含有量をカールフィッシャー滴定法で測定した。銀インクを150℃で焼成し、水分を乾燥・気化させカールフィッシャー水分計(MKC-610 京都電子工業株式会社製)により定量した。これらの分析による銀インクの組成は下記表1のとおりであった。
Figure JPOXMLDOC01-appb-T000001
 上記のとおり、この銀インクは、保護剤としてアミン化合物(ヘキシルアミン、N,N-ジメチル-1,3-ジアミノプロパン、ドデシルアミン)と脂肪酸(エルカ酸)を含む。アミン化合物全体の質量平均分子量は110.98と算出された。また、銀粒子100重量部にして4.84重量部のアミン化合物を含む。そして、銀インク全体に対する水分含有量は、質量基準で200ppmであった。以下の評価試験において、このベースとなる銀インクをNo.B1と称する。
 本実施形態では、上記で製造した銀インクに水分を添加し、銀インク全体に対する質量基準の水分含有量が、500ppm、1000ppm、5000ppm、10000ppm、50000ppmとなる銀インクを製造した。水分含有量の調整は、銀インクを少量採取して秤量し、計測されたインクの質量から目標値に不足する水を添加し、攪拌することで実施した。
 以上の工程を経て製造した銀インク(水分含有量:500ppm(No.A1)、1000ppm(No.A2)、5000ppm(No.A3)、10000ppm(No.A4)、50000ppm(No.A5))について、低温焼結の可否を検討した。低温焼結性の評価試験は、PET基板に全自動フィルムアプリケーター(TQC製)を用いて塗布して行った。インクを75μLフィルム上に垂らし、ギャップを50μmに設定したアプリケーターにより、10mm/secの速度で掃引し印刷し、寸法100×150mmの銀インク膜を作製した。これを空気中70℃で焼成して金属膜を形成した。この銀インクの塗布・焼成条件のもと、5分間、10分間、30分間、60分間、120分間、180分間焼成して製造した金属膜の電気抵抗の値を測定した。体積抵抗(μΩm)は抵抗率計(ロレスタ-GP MCP-T610 三菱ケミカルアナリティック社製)を用いて測定した。また、得られたフィルムの断面をSEM観察し膜厚を計測した。得られた電気抵抗値と膜厚から体積抵抗値を算出した。
 上記評価試験の結果を図1に示す。いずれの銀インクにおいても、焼成時間の増大に伴い体積抵抗値が低下する傾向がある。焼成時間の経過と共に銀粒子の焼結が進行し、金属膜の緻密化と導電性向上が生じているからである。但し、低温焼結の指標として「体積抵抗値20μΩcm以下」の条件を加味したとき、銀インク中の水分含有量が低い(200ppm、水分添加なし)の銀インク(No.B1)では、基準をクリアできないことが確認された。そして、銀インク中の水分含有量を調整し500ppm以上とした銀インク(No.A1~No.A5)による金属膜は、体積抵抗値20μΩcm以下となっている。即ち、これらの水分含有量を調整した銀インクは、低温焼結性に優れることが確認された。
第2実施形態:本実施形態では、分散媒の構成、保護剤(アミン化合物)の種類、銀粒子含有量等を変更した複数種の銀インクを製造した。
 具体的には、本願発明の第2の銀インクに相当する、主溶媒として2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート(日香NG-120、静置法による蒸気圧:0.01mmHg(at20℃)、0.18mmHg(at70℃))を適用し、銀含有量を70質量%とする銀インクを製造した(No.A6)。この銀インクは、メトキシプロピルアミンを保護剤として製造された銀粒子を適用していた。銀粒子の製造方法は、基本的に第1実施形態の方法と同様である。この銀インクの組成分析(GC-MS、カールフィッシャー滴定法)の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 この銀インクは、保護剤としてアミン化合物であるメトキシプロピルアミンのみを含み、アミン化合物全体の平均分子量は89.14である。また、銀粒子100重量部にして1.43重量部のアミン化合物を含む。尚、この銀インクも製造後の水分含有量は、質量基準で400ppmと下限値(500ppm)に満たないので、評価試験前に水分を添加して700ppmに調整した。
 上記の銀インクの他、保護剤となるアミン化合物を第1実施形態同様にヘキシルアミンとしつつ、主溶媒としてブタノールとオクタンとの混合溶媒(ブタノール:オクタン=3:7(重量比)、静置法による蒸気圧:8.0mmHg(at20℃)、121.0mmHg(at70℃))する銀インクを製造した(No.A7)。更に、比較例としてオクチルアミン(分子量129.24)を使用しアミン化合物の質量平均分子量が115を超えるものを適用した銀インク(No.B4)と、水分含有量等の各構成において本発明の設定範囲外となる銀インク(No.B5)を複数製造した。
 そして、各種銀インクについて、低温焼結性の評価試験を行った。本実施形態では、No.A6以外の銀インクについては、第1実施形態と同様の塗布方法及び焼成条件で金属膜を製造し、測定された体積抵抗値の中で最も低い値を記録した。
 また、No.A6の銀インクは、粘度が高く(100000mPa・S)アプリケーターによる均一な塗布が困難であったので、スクリーン印刷機(ニューロング精密工業株式会社製LS-150)による塗布を行った。塗布条件として、クリアランス1.5mm、印刷速度100mm/secとして、40×40mmの銀インク膜を作製した。これを同様に空気中70℃で焼成しての金属膜を形成した。体積抵抗の測定方法は、第1実施形態と同様の方法で行った。
 本実施形態における検討結果を表3に示す。尚、表3には、第1実施形態の銀インク(No.A1~No.A5、No.B1)の結果も併せて示している。
Figure JPOXMLDOC01-appb-T000003
 本実施形態における検討結果から、保護剤であるアミン化合物について、その含有量と質量平均分子量の双方を規定することの必要性が確認できる。即ち、アミン化合物の含有量に関してみると、銀粒子100重量部に対するアミン含有量が14を超える銀インク(No.B2、B3)は、焼成後の金属膜の体積抵抗値が20μΩcmを超えることとなり、低温焼結性を有するとはいえない。また、保護剤でアミン化合物の質量平均分子量に関しても、その値が115を超える場合(No.B4)、体積抵抗値が20μΩcmを超えることになり、これも適切な銀インクとはならないことが分かる。
 水分量に関しては、過剰の水分を添加する銀インクに関しては、水分添加後に沈殿が生じ、銀インクとしての評価ができなかった(No.B5)。また、保護剤であるアミン化合物が少なすぎたときも沈殿が生じた(No.B6)。保護剤は、銀粒子の凝集を抑制し分散性を確保するための添加剤であり、その量が過小であると銀インクとして機能しない。
 上記の比較例に対して、本実施形態で追加的に検討したNo.A6~A8の銀インクは、良好な低温焼結性を示すことが確認された。これらの銀インクは、アミン化合物及び水分含有量に関し、適切な範囲に設定されているといえる。
 以上説明したように、本発明に係る銀インクは、保護剤となるアミン化合物に関する構成を最適化すると共に、従来は含有されるべきではないと考えられていた水分を僅かに含有させている。これらにより本発明に係る銀インクは低温焼結性を有し、70℃以下の焼成温度でも抵抗値が低い好適な導電膜を形成することができる。本発明は、各種電子デバイスの回路基板や、タッチパネル等の透明基板等の電極・配線・金属膜の形成に有用である。

Claims (11)

  1.  銀粒子と、少なくとも1種のアミン化合物を含む保護剤とを分散媒に分散してなる銀インクにおいて、
     前記分散媒は、20℃における蒸気圧が40mmHg以下であり、且つ、70℃における蒸気圧が0.09mmHg以上である主溶媒を、分散媒全体に対して質量基準で80%以上含んでなり、
     前記保護剤に含まれるアミン化合物の質量平均分子量が115以下であり、
     前記保護剤に含まれるアミン化合物の合計量が、銀粒子100重量部に対して1重量部以上14重量部以下であり、
     更に、水分含有量が、銀インク全体に対して質量基準で500ppm以上50000ppm以下であることを特徴とする銀インク。
  2.  少なくとも1種のアルコールと少なくとも1種のアルカンとからなり、質量基準でアルコール:アルカン=1:8~3:1で混合した混合溶媒を主溶媒とする請求項1記載の銀インク。
  3.  保護剤に含まれるアミン化合物の合計量が、銀粒子100重量部に対して3重量部以上14重量部以下である請求項2記載の銀インク。
  4.  保護剤として炭素数4以上26以下の脂肪酸を含み、前記脂肪酸の含有量は、銀粒子の質量基準で0.01mmol/g以上0.06mmol/g以下である請求項2又は請求項3に記載の銀インク。
  5.  銀粒子の質量基準でモル換算されたアミン化合物の合計含有量と脂肪酸の含有量との比率(アミン化合物の含有量(mmol/g)/脂肪酸の含有量(mmol/g))が、5.0以上120.0以下である請求項4記載の銀インク。
  6.  少なくとも1種の分子量150以上250以下のアルコールからなる溶媒を主溶媒とする請求項1記載の銀インク。
  7.  保護剤に含まれるアミン化合物の合計量が、銀粒子100重量部に対して1重量部以上10重量部以下である請求項6記載の銀インク。
  8.  添加剤として、セルロース類を、銀インク全体に対する質量基準で1.0%以上5.0%以下含む請求項6又は請求項7記載の銀インク。
  9.  銀粒子の平均粒径は、10nm以上300nm以下である請求項1~請求項8のいずれかに記載の銀インク。
  10.  銀粒子の含有量は、銀インク全体の質量に対して20質量%以上85質量%以下である請求項1~請求項9のいずれかに記載の銀インク。
  11.  請求項1~請求項10のいずれかに記載の銀インクであって
     バーコート印刷又はスクリーン印刷により前記銀インクを塗布した後、70℃で30分以上180℃以下焼成したときに形成される導電体の体積抵抗が5μΩcm以上20μΩcm以下となることを特徴とする銀インク。
PCT/JP2019/032068 2018-08-30 2019-08-15 低温焼成用の銀インク WO2020045111A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217003672A KR102517709B1 (ko) 2018-08-30 2019-08-15 저온 소성용의 은 잉크
JP2020539344A JP7320515B2 (ja) 2018-08-30 2019-08-15 低温焼成用の銀インク
CN201980056009.5A CN112639035A (zh) 2018-08-30 2019-08-15 低温煅烧用银墨水
US17/272,070 US20210324218A1 (en) 2018-08-30 2019-08-15 Silver ink for low-temperature calcination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018162008 2018-08-30
JP2018-162008 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020045111A1 true WO2020045111A1 (ja) 2020-03-05

Family

ID=69644351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032068 WO2020045111A1 (ja) 2018-08-30 2019-08-15 低温焼成用の銀インク

Country Status (6)

Country Link
US (1) US20210324218A1 (ja)
JP (1) JP7320515B2 (ja)
KR (1) KR102517709B1 (ja)
CN (1) CN112639035A (ja)
TW (1) TWI723509B (ja)
WO (1) WO2020045111A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070778A1 (ja) * 2020-09-30 2022-04-07 株式会社大阪ソーダ 導電性接着剤

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169613A (ja) * 2004-12-20 2006-06-29 Ulvac Japan Ltd 金属薄膜の形成方法及び金属薄膜
WO2013115300A1 (ja) * 2012-02-03 2013-08-08 国立大学法人山形大学 金属微粒子を含む膜の導体化方法
WO2014024630A1 (ja) * 2012-08-07 2014-02-13 田中貴金属工業株式会社 銀微粒子インク、銀微粒子焼結体及び銀微粒子インクの製造方法
WO2015129562A1 (ja) * 2014-02-25 2015-09-03 田中貴金属工業株式会社 低温焼結性に優れる銀ペースト及び該銀ペーストの製造方法
WO2016052292A1 (ja) * 2014-09-29 2016-04-07 トッパン・フォームズ株式会社 金属銀、金属銀の製造方法及び積層体
JP2016048601A (ja) * 2014-08-27 2016-04-07 田中貴金属工業株式会社 金属パターンの形成方法及び導電体
WO2017033911A1 (ja) * 2015-08-25 2017-03-02 田中貴金属工業株式会社 低温焼結性に優れる金属ペースト及び該金属ペーストの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2812976C2 (de) 1978-03-23 1980-03-06 Erich Ing.(Grad.) 3003 Ronnenberg Luther Verfahren zur Feststellung des Versatzes zwischen Leiterbahnen und Kontaktlöchern bei einer Leiterplatte sowie eine Leiterplatte zur Verwendung in diesem Verfahren
US8192538B2 (en) * 2009-10-22 2012-06-05 Seiko Epson Corporation Reduced-moisture-content-solvent ink composition and method for producing the same
JP5975441B2 (ja) 2012-08-21 2016-08-23 国立大学法人山形大学 被覆銀微粒子の製造方法及び当該製造方法で製造した被覆銀微粒子
US9725614B2 (en) * 2013-04-19 2017-08-08 Xerox Corporation Conductive ink compositions and methods for preparation of stabilized metal-containing nanoparticles
JP6189740B2 (ja) 2013-05-24 2017-08-30 田中貴金属工業株式会社 銀粒子の製造方法
MY176474A (en) 2013-05-24 2020-08-11 Tanaka Precious Metal Ind Method for manufacturing silver particles
CN111545770A (zh) * 2013-10-24 2020-08-18 株式会社大赛璐 含有银纳米粒子的分散液的制造方法及含有银纳米粒子的分散液
JP6068406B2 (ja) 2014-09-03 2017-01-25 田中貴金属工業株式会社 ナノサイズ銀微粒子インク及び銀微粒子焼結体
CN108430670B (zh) * 2015-12-25 2020-04-24 株式会社则武 银粉末和银糊以及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169613A (ja) * 2004-12-20 2006-06-29 Ulvac Japan Ltd 金属薄膜の形成方法及び金属薄膜
WO2013115300A1 (ja) * 2012-02-03 2013-08-08 国立大学法人山形大学 金属微粒子を含む膜の導体化方法
WO2014024630A1 (ja) * 2012-08-07 2014-02-13 田中貴金属工業株式会社 銀微粒子インク、銀微粒子焼結体及び銀微粒子インクの製造方法
WO2015129562A1 (ja) * 2014-02-25 2015-09-03 田中貴金属工業株式会社 低温焼結性に優れる銀ペースト及び該銀ペーストの製造方法
JP2016048601A (ja) * 2014-08-27 2016-04-07 田中貴金属工業株式会社 金属パターンの形成方法及び導電体
WO2016052292A1 (ja) * 2014-09-29 2016-04-07 トッパン・フォームズ株式会社 金属銀、金属銀の製造方法及び積層体
WO2017033911A1 (ja) * 2015-08-25 2017-03-02 田中貴金属工業株式会社 低温焼結性に優れる金属ペースト及び該金属ペーストの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070778A1 (ja) * 2020-09-30 2022-04-07 株式会社大阪ソーダ 導電性接着剤

Also Published As

Publication number Publication date
KR102517709B1 (ko) 2023-04-05
TWI723509B (zh) 2021-04-01
US20210324218A1 (en) 2021-10-21
TW202014483A (zh) 2020-04-16
JP7320515B2 (ja) 2023-08-03
KR20210029239A (ko) 2021-03-15
JPWO2020045111A1 (ja) 2021-08-10
CN112639035A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
US11597851B2 (en) Ink for screen printing
JP5139659B2 (ja) 銀粒子複合粉末およびその製造法
JP6664373B2 (ja) 銀粒子塗料組成物
JP5007020B2 (ja) 金属薄膜の形成方法及び金属薄膜
JP2008198595A (ja) 金属微粒子インクペースト及び有機酸処理金属微粒子
JP2008176951A (ja) 銀系微粒子インクペースト
TW201406487A (zh) 銀奈米粒子之製造方法及銀奈米粒子以及銀塗料組成物
WO2012147945A1 (ja) 平板状の銀微粒子とその製造方法およびそれを用いたペーストとペーストを用いた印刷回路
WO2020045111A1 (ja) 低温焼成用の銀インク
KR20210013108A (ko) 도전성 잉크
JP6530019B2 (ja) 金属インク
JP2017128782A (ja) ニッケル微粒子含有組成物及び接合材
JP6970378B2 (ja) ニッケル粉末分散剤およびニッケル粉末スラリー
EP4012726A1 (en) Adhesive conductive paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217003672

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020539344

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856370

Country of ref document: EP

Kind code of ref document: A1