WO2020044942A1 - 積層体ならびにその製造方法および用途 - Google Patents

積層体ならびにその製造方法および用途 Download PDF

Info

Publication number
WO2020044942A1
WO2020044942A1 PCT/JP2019/030389 JP2019030389W WO2020044942A1 WO 2020044942 A1 WO2020044942 A1 WO 2020044942A1 JP 2019030389 W JP2019030389 W JP 2019030389W WO 2020044942 A1 WO2020044942 A1 WO 2020044942A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
sulfonic acid
mass
coating layer
layer
Prior art date
Application number
PCT/JP2019/030389
Other languages
English (en)
French (fr)
Inventor
紳好 中川
宏和 石飛
涼太 目黒
大塚 喜弘
Original Assignee
国立大学法人群馬大学
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人群馬大学, 株式会社ダイセル filed Critical 国立大学法人群馬大学
Publication of WO2020044942A1 publication Critical patent/WO2020044942A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking

Definitions

  • the present invention relates to a laminate that can be used as a proton conducting electrolyte membrane of a solid fuel cell, a method for producing the same, and a use thereof.
  • the fuel cell includes a battery cell having an air electrode serving as a positive electrode, a fuel electrode (catalyst electrode) serving as a negative electrode, and an electrolyte interposed between the two electrodes.
  • the hydrogen gas supplied to the fuel electrode is split into hydrogen ions and electrons, hydrogen ions (protons) move through the electrolyte, and electrons move to the air electrode through an external circuit and react with oxygen.
  • water is generated, and at this time, electrons moving to an external circuit are extracted as energy.
  • Various electrolytes have been studied to improve the output and stability of fuel cells.
  • Patent Document 1 describes graphene oxide (GO) that has been sulfonated using sulfuric acid as a sulfonating reagent to introduce a sulfo group.
  • GO graphene oxide
  • the interfacial adhesion between a metal such as a platinum catalyst layer included in the electrode or a metal-containing catalyst layer and the electrolyte is reduced, and the fuel cell output is also reduced. I do.
  • Non-Patent Document 1 A poly (ethylene oxide) / graphene oxide electrolyte membrane for low temperature polymer fuel cells” (Non-Patent Document 1), a mixture of graphene oxide and polyethylene oxide is used to improve high proton conductivity and mechanical properties. Used as an electrolyte. However, if the operation of the fuel cell is continued with this electrolyte, the polyethylene oxide is dissolved by the water generated from the fuel cell reaction, and the mechanical strength of the electrolyte decreases.
  • an object of the present invention is to provide a laminate capable of driving a solid fuel cell at room temperature and improving output stability when used as a proton-conducting electrolyte membrane of a solid fuel cell, and a method for producing the laminate and its use. is there.
  • Another object of the present invention is to provide a laminate which can be used for a proton conducting electrolyte membrane of a solid fuel cell, can be easily and inexpensively produced, and a method for producing the laminate and its use.
  • the present inventors have conducted intensive studies to achieve the above object, and found that at least one surface of a base material layer containing a modified graphene oxide modified with a sulfonic acid having a vinyl group has a fluorine-based polymer having a sulfonic acid group. It was found that, when a laminate having a coating layer containing is used as a proton conducting electrolyte membrane of a solid fuel cell, the battery can be driven at room temperature, and the proton conductivity and output stability can be improved, thus completing the present invention. did.
  • the laminate of the present invention is a base material layer containing modified graphene oxide modified with sulfonic acids having a vinyl group, and a fluorine-based material having a sulfonic acid group laminated on at least one surface of the base material layer.
  • a first coating layer and a second coating layer may be respectively laminated on both surfaces of the base material layer.
  • An elemental analysis of the modified graphene oxide may have a sulfur content of 0.5 to 10 atom%.
  • the sulfonic acids having a vinyl group may be vinyl sulfonic acid or a metal salt thereof.
  • the laminate may be a proton conductive electrolyte membrane of a solid fuel cell.
  • the present invention provides a method for forming a substrate layer for forming a liquid substrate layer precursor containing a modified graphene oxide obtained by reacting graphene oxide with a sulfonic acid having a vinyl group in the presence of a polymerization initiator and a solvent.
  • the method for producing a laminate also includes a step and a coating layer forming step of coating a liquid coating layer precursor containing a fluorinated polymer having a sulfonic acid group on at least one surface of the obtained base material layer. It is.
  • the reaction temperature between the graphene oxide and the sulfonic acids having a vinyl group in the base layer forming step may be 100 ° C. or lower.
  • the sulfonic acids having a vinyl group may be an alkali metal salt of vinyl sulfonic acid.
  • the solvent may include water.
  • the present invention also includes a solid fuel cell in which the proton conducting electrolyte membrane and the electrode are integrated.
  • a coating layer containing a fluorinated polymer having a sulfonic acid group is laminated on at least one surface of a substrate layer containing modified graphene oxide modified with a sulfonic acid having a vinyl group, and the acidity is Since this laminate is used as a proton conducting electrolyte membrane of a solid fuel cell because of its high proton conductivity, the solid fuel cell can be driven at room temperature, handling can be improved, and the base layer and the coating layer can be improved. Since the interlayer adhesion between the solid fuel cell and the interface is good, the maximum output density of the solid fuel cell can be increased and a stable output density can be secured. Furthermore, since it can be manufactured under mild conditions using a conventional method, a laminate that can be used as a proton conductive electrolyte membrane of a solid fuel cell can be easily and easily manufactured.
  • FIG. 1 is a diagram schematically illustrating an example of a solid fuel cell.
  • FIG. 2 is a schematic perspective view showing a constituent material of the membrane electrode assembly constituting the solid fuel cell.
  • the laminate of the present invention includes a base material layer containing modified graphene oxide.
  • graphene oxide constituting modified graphene oxide means graphene modified with an oxygen-containing functional group such as a carbonyl group, a formyl group, a hydroxyl group, a carboxyl group, or an epoxy group.
  • Graphene oxide is a graphene oxide prepared by oxidizing natural or artificial graphite and exfoliating it into a single layer or a multilayer to form a sheet having a thickness of nanometer size.
  • the method of oxidizing graphite is not particularly limited, and a conventional method can be used.
  • Conventional production methods include, for example, the Hummers method, the Brodie method, the Staudenmaier method, and the like.
  • the Hummers method may be the method described in W. S Hummers, Jr. et al., J. Am. Chem. Soc., 1958, 80, 1339.
  • An oxidation method using an acid salt (such as potassium permanganate) and a nitrate (such as sodium nitrate) may be used.
  • the Brodie method is described in B. C. Brodie, Philos. Trans. R. Soc., London, 1859, 149, 249. and B. C. Brodie, Ann. Chim. Phys., 1860, 59, 46. It may be a method, for example, a method of oxidizing using fuming nitric acid and chloric acid (such as potassium chlorate) as an oxidizing agent.
  • the Staudenmeier method may be a method described in L. Staudenmaier, Ber. Dtsch. Chem. Ges., 1898, 31, 1481.
  • As an oxidizing agent sulfuric acid, nitric acid and chloric acid (potassium chlorate) are used. Etc.) to perform oxidation.
  • the Hammers method is preferable because the characteristics as a proton conducting electrolyte can be improved.
  • the obtained graphite oxide is added with an oxygen-containing functional group, it is modified to be hydrophilic and easily expandable between layers. Therefore, graphite oxide can be decomposed into single-layer or multilayer graphene oxide by exfoliating layers by a method of irradiating ultrasonic waves in an aqueous solvent such as water or a method of repeating centrifugation and re-dispersion.
  • the obtained graphene oxide has the above-mentioned oxygen-containing functional group as the oxygen-containing functional group.
  • the thickness of graphene oxide may be one atomic layer (for example, about 0.4 nm) or plural layers (for example, about 2 to 10, especially about 2 to 5).
  • the graphene oxide may have a single-layer structure having a thickness of one carbon atom, and may be a multilayer (for example, 2 to 10 layers, preferably 2 to 10 layers) in which a plurality of single-layer sulfur-containing (oxide) graphenes are stacked at a predetermined interval. (5 layers, more preferably 2 to 3 layers).
  • the average diameter of the graphene oxide in the plane direction may be selected from the range of about 0.1 to 1000 ⁇ m, for example, about 1 to 500 ⁇ m (eg, 5 to 300 ⁇ m), preferably about 5 to 100 ⁇ m (eg, 10 to 100 ⁇ m). And more preferably about 5 to 50 ⁇ m (particularly 10 to 30 ⁇ m).
  • an electron microscope, an optical microscope, or the like can be used for measuring the average diameter of graphene oxide in the plane direction.
  • the average diameter can be calculated by calculating the average value of the major axis diameter and the minor axis diameter for each graphene oxide, and averaging the average values of about 100 graphene oxides.
  • Examples of such graphene oxide include: “Rap GO : (TQ-11)”, “GO-TQ2”, “Exfoliated GO”, etc., manufactured by Nishina Materials Co., Ltd., and “Graphene Oxide Water Dispersion (0)” manufactured by Graphenea. 0.4% by weight) "and” Highly Concentrated Graphene Oxide (2.5% by weight) ".
  • Graphene oxide may be a reduced product.
  • the reduced product of graphene oxide may be graphene partially reduced by reduction treatment (partial graphene oxide).
  • the modified graphene oxide may be any modified graphene oxide obtained by reacting graphene oxide with a sulfonic acid having a vinyl group in the presence of a polymerization initiator and a solvent. And a bond (graft bond) via a covalent bond.
  • Examples of the sulfonic acids having a vinyl group include alkene sulfonic acids such as vinyl sulfonic acid and allyl sulfonic acid; vinyl arene sulfonic acids such as styrene sulfonic acid; and metal salts thereof.
  • Examples of the metal salt include an alkali metal salt such as a sodium salt and a potassium salt. These sulfonic acids having a vinyl group can be used alone or in combination of two or more. Of these, vinyl sulfonic acid or a metal salt thereof is preferable, and an alkali metal salt of vinyl sulfonic acid such as sodium vinyl sulfonate is particularly preferable.
  • the composition ratio of the sulfonic acid having a vinyl group and the graphene oxide is not particularly limited, but the sulfur content in the modified graphene oxide by elemental analysis can be selected from a range of about 0.5 to 10 atom%. For example, it is about 1 to 8 atom%, preferably about 1.5 to 5 atom%, and more preferably about 2 to 3 atom%. If the sulfur content is too high, affinity with water increases, and it may be difficult to maintain the shape of the film. On the other hand, if the sulfur content is too small, the proton conductivity may decrease, and the function as a fuel cell device may not be exhibited.
  • the metal content in the modified graphene oxide may be 10 Atom% or less, for example, 5 Atom% or less, preferably 3 Atom% or less, more preferably 1 Atom% or less, and may be below the detection limit.
  • the metal content of the modified graphene oxide obtained by modifying graphene oxide with the metal salt is within the above range. Good.
  • the sulfur content and the metal content in the modified graphene oxide can be measured by a conventional elemental analysis, for example, an elemental analysis using an energy dispersive X-ray spectrometer (EDS).
  • EDS energy dispersive X-ray spectrometer
  • the base material layer only needs to contain modified graphene oxide, but preferably contains modified graphene oxide as a main component from the viewpoint of improving proton conductivity.
  • the ratio of the modified graphene oxide may be 50% by mass or more in the base material layer, for example, 70% by mass or more, preferably 75% by mass or more, more preferably 80% by mass or more (especially 90% by mass or more). , 100% by mass (only modified graphene oxide).
  • the base material layer may further contain other components in addition to the modified graphene oxide.
  • Another component may be a proton conductor commonly used as an electrolyte component in fuel cells and the like.
  • metal oxides eg, iron oxide, titanium oxide, etc.
  • oxo acids or salts thereof eg, phosphoric acid, diphosphoric acid, thiophosphoric acid, nitric acid, sulfuric acid, or these Rare earth metal salts of oxo acids, etc.
  • aromatic compounds for example, low molecular aromatic compounds such as biphenyl, terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenylether, dibenzofuran; polyimides, polystyrene, etc.
  • the modified graphene oxide When another component is combined with the modified graphene oxide, the modified graphene oxide is easily stacked, and a continuous proton conduction path is easily formed, which is preferable in some cases.
  • These other components can be used alone or in combination of two or more.
  • the proportion of other components may be 50% by mass or less in the base material layer, for example, 0.5 to 30% by mass, preferably 1 to 25% by mass, more preferably about 2 to 20% by mass, In the case of a metal oxide, it is about 0.5 to 25% by mass (particularly 1 to 20% by mass) in the base material layer.
  • the modified graphene oxide may have a dense structure in which thin films (flakes) are laminated.
  • the average thickness of the substrate layer may be 10 ⁇ m or more, for example, about 10 to 100 ⁇ m, preferably about 20 to 80 ⁇ m, more preferably about 30 to 70 ⁇ m (particularly about 40 to 60 ⁇ m). If the thickness of the base material layer is too thin, the proton conductivity may decrease.
  • Coating layer In the present invention, by laminating a coating layer containing a fluorinated polymer having a sulfonic acid group on at least one surface of the base material layer, interlayer adhesion with an electrode or the like can be improved.
  • the coating layer may be laminated on at least one surface of the base material layer.However, when used as a proton conducting electrolyte membrane of a solid fuel cell, interlayer adhesion between a positive electrode and a negative electrode of a fuel cell can be improved, From the viewpoint that the output stability of the battery can be improved, it is preferable to be laminated on both surfaces of the base material layer.
  • the fluorine-based polymer constituting the fluorine-based polymer having a sulfonic acid group may be a fluorohydrocarbon resin in which at least a part of hydrogen atoms is substituted by fluorine atoms.
  • the fluorine-based polymer include fluorine resins such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP); (2-pentafluoroethoxyhexafluoropropoxy) copolymer of trifluoroethylene and tetrafluoroethylene, polystyrene-graft-polytetrafluoroethylene copolymer, polystyrene-graft-polytetrafluoroethylene copolymer, and the like. .
  • PTFE polytetrafluoro
  • fluoropolymers having a sulfonic acid group include, for example, "Registered trademark: Nafion” manufactured by DuPont, "Registered trademark: Flemion” manufactured by Asahi Glass Co., Ltd., and “Trademark: Aciplex” manufactured by Asahi Kasei Corporation. And “Registered trademark: Gore @ Select” manufactured by Gore.
  • the fluorinated polymer having a sulfonic acid group may be a copolymer of [2- (2-sulfotetrafluoroethoxy) hexafluoropropoxy] trifluoroethylene and tetrafluoroethylene (such as a block copolymer).
  • the proportion of the fluorinated polymer having a sulfonic acid group may be 50% by mass or more in the coating layer, for example, 70% by mass or more, preferably 75% by mass or more, more preferably 80% by mass or more (particularly 90% by mass or more). Above), and may be 100% by mass (only the fluorine-based polymer having a sulfonic acid group). If the proportion of the fluorinated polymer having a sulfonic acid group is too small, the interlayer adhesion to an electrode or the like may be reduced.
  • the coating layer may further contain other components in addition to the fluorinated polymer having a sulfonic acid group.
  • Other components include the other components exemplified in the section of the base material layer.
  • the proportion of the other components may be 50% by mass or less in the base material layer, for example, 0.5 to 30% by mass, preferably 1 to 25% by mass, more preferably about 2 to 20% by mass, In the case of a metal oxide, it is about 0.5 to 25% by mass (particularly 1 to 20% by mass) in the base material layer.
  • the average thickness of the total coating layer thickness (the total thickness of both layers when the coating layers are laminated on both surfaces of the base material layer) is, for example, 0.1 to 10 ⁇ m, preferably 0.3 to 5 ⁇ m, and more preferably 0 to 5 ⁇ m. It is about 0.5 to 3 ⁇ m (particularly 0.8 to 2 ⁇ m). If the thickness of the coating layer is too thin, the interlayer adhesion to electrodes and the like may decrease, and if it is too thick, the proton conductivity may decrease.
  • the laminate of the present invention is a substrate for forming a liquid substrate layer precursor containing a modified graphene oxide obtained by reacting graphene oxide and a sulfonic acid having a vinyl group in the presence of a polymerization initiator and a solvent. It is manufactured through a layer forming step and a coating layer forming step of coating at least one surface of the obtained base material layer with a liquid coating layer precursor containing a fluorinated polymer having a sulfonic acid group.
  • the polymerization initiator for preparing the modified graphene oxide is not particularly limited, and a conventional radical polymerization initiator for generating a radical can be used.
  • a conventional radical polymerization initiator for generating a radical can be used.
  • 2,2′-azobisbutyi Azo compounds such as lonitrile (AIBN), 2,2'-azobis (2-methylpropionamidine) dihydrochloride, and 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride
  • Benzoyl peroxide (BPO) potassium peroxodisulfate
  • lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate 2-hydroxy-4 '-(2-hydroxyethoxy) -2-methylpropiophenone, etc.
  • polymerization initiators can be used alone or in combination of two or more.
  • water-soluble initiators which generate radicals for example, azo compounds such as 2,2'-azobis (2-methylpropionamidine) dihydrochloride and peroxides such as potassium peroxodisulfate are preferred.
  • the ratio of the polymerization initiator is, for example, 1 to 100 parts by mass, preferably 10 to 80 parts by mass, and more preferably about 30 to 60 parts by mass with respect to 100 parts by mass of the sulfonic acid having a vinyl group.
  • an aqueous solvent (a polar solvent) can be preferably used because the graphene oxide and the sulfonic acid having a vinyl group are easily dissolved or dispersed.
  • the aqueous solvent include water, lower alcohols (eg, C 1-4 alkanols such as methanol, ethanol, isopropanol, and propanol), ketones (eg, acetone), ethers (eg, diethyl ether, dioxane, tetrahydrofuran), and cellosolves.
  • aqueous solvents can be used alone or in combination of two or more.
  • water and C 1-4 alkanols such as ethanol are preferable, and water is particularly preferable.
  • the proportion of water in the solvent may be 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and may be 100% by mass (water only).
  • the ratio of the solvent is, for example, about 10 to 1000 parts by weight, preferably about 30 to 500 parts by weight, more preferably about 50 to 300 parts by weight (particularly about 80 to 200 parts by weight) based on 1 part by weight of graphene oxide.
  • the reaction temperature of the graphene oxide with the sulfonic acid having a vinyl group is preferably less than 150 ° C., and the reaction temperature of the graphene oxide with the vinyl group can be improved by 100% or less (for example, 50 to 100 ° C., particularly (About 60 to 80 ° C.) is particularly preferred. If the reaction temperature is too high, the denaturation efficiency may decrease. For example, when the temperature exceeds 100 ° C., and particularly when the temperature exceeds 150 ° C., the solubility in the solvent is changed due to partial reduction of graphene oxide, and aggregation and precipitation occur. This may affect the modification and introduction of sulfonic acids having a vinyl group.
  • the obtained modified graphene oxide is prepared into a liquid base material layer precursor by adding other components and a solvent as needed.
  • the method for mixing graphene oxide and other components is not particularly limited, and a method for compounding graphene oxide and other components, a method for simultaneously dissolving or dispersing graphene oxide and other components in a solution, a method for dispersing graphene oxide, A method of adding another component and performing a re-dispersion treatment as needed, a method of mixing a graphene oxide dispersion with another component dispersion, and the like can be used.
  • the solvents exemplified as the solvent for preparing the modified graphene oxide can be used.
  • a solvent containing water is preferable, and a combination of water and a lower alcohol (particularly, a C 1-4 alkanol such as methanol) is particularly preferable.
  • the proportion of the solvent is, for example, 10 to 2,000 parts by mass, preferably 100 to 1,000 parts by mass, more preferably 200 to 800 parts by mass (particularly 300 to 800 parts by mass) based on 1 part by mass of the modified graphene oxide. 500 parts by mass).
  • a conventional film forming method for example, a filter film forming method, a spin coating method, a drop casting method, an electrophoresis method, a bar coating method, or the like can be used.
  • the liquid base material layer precursor formed into a film by the film forming method can be dried to form a base material layer.
  • the drying may be natural drying, or may be performed by heating at a temperature of 40 ° C. or higher (for example, about 50 to 90 ° C., particularly about 60 to 80 ° C.).
  • the heating time may be 1 minute or more (for example, about 5 to 20 minutes).
  • the fluorinated polymer having a sulfonic acid group is prepared into a liquid coating layer precursor by adding other components and a solvent as needed.
  • a method for mixing the fluorine-based polymer having a sulfonic acid group with other components the same method as the method for mixing graphene oxide with other components can be used.
  • Examples of the solvent for the liquid coating layer precursor include lower alcohols (eg, C 1-4 alkanols such as methanol, ethanol, isopropanol, and propanol), ketones (eg, acetone), and ethers (eg, diethyl ether, dioxane, and tetrahydrofuran). And the like. These solvents can be used alone or in combination of two or more. Of these, C 1-3 alkanols such as ethanol and isopropanol, and di C 1-3 alkyl ethers such as diethyl ether are preferred.
  • C 1-4 alkanols such as methanol, ethanol, isopropanol, and propanol
  • ketones eg, acetone
  • ethers eg, diethyl ether, dioxane, and tetrahydrofuran.
  • C 1-3 alkanols such as ethanol and isopropanol
  • the proportion of the solvent is, for example, 1 to 500 parts by mass, preferably 3 to 100 parts by mass, and more preferably 5 to 50 parts by mass with respect to 1 part by mass of the fluorinated polymer having a sulfonic acid group. (Particularly 10 to 30 parts by mass).
  • a conventional film forming method for example, a spin coating method, a drop casting method, a bar coating method, or the like can be used.
  • the liquid coating layer precursor formed into a film by the film forming method can be dried to form a coating layer. Drying may be natural drying, or may be performed by heating at a temperature of 40 ° C. or higher (eg, about 40 to 80 ° C., particularly about 50 to 70 ° C.). The heating time may be 1 minute or more (for example, about 5 to 20 minutes).
  • the laminate of the present invention can be used as a proton conducting electrolyte membrane of a solid fuel cell.
  • the solid fuel cell of the present invention only needs to include a laminate as a proton conductive electrolyte membrane, and the proton conductive electrolyte membrane is integrated with the electrode to improve interlayer adhesion with the electrode.
  • the solid fuel cell of the present invention may further include a catalyst, a separator, a current extraction line, and the like, if necessary.
  • FIG. 1 An example of a solid fuel cell is schematically shown in FIG. 1 and will be specifically described.
  • the solid fuel cell includes an electrolyte membrane 1 located at the center of the cell, and a fuel electrode (negative electrode) 2 and an air electrode (positive electrode) 3 which are stacked adjacent to both sides of the electrolyte membrane 1. And a negative electrode-side separator 4 and a positive electrode-side separator 5 laminated outside each of the fuel electrode 2 and the air electrode 3. In both separators, a flow path for feeding the fuel gas or the oxidant may be formed.
  • FIG. 1 shows an example of the reaction of the fuel cell. At the fuel electrode, hydrogen gas is supplied and decomposed into hydrogen ions and electrons (protons). At the air electrode, oxygen gas is supplied and the reaction product is produced. As water is generated.
  • the fuel electrode and the air electrode may be formed of catalyst layers 12b and 13b on the side in contact with the electrolyte membrane 11, and diffusion layers 12a and 13a laminated outside the catalyst layers.
  • the electrolyte membrane 11, a catalyst layer 12b on the fuel electrode side arranged on one surface of the electrolyte membrane 11, and a catalyst layer 13b on the air electrode arranged on the other surface of the electrolyte membrane 11 are formed by a membrane.
  • An electrode assembly Membrane Electrode Assembly
  • MEA Membrane Electrode Assembly
  • the interlayer adhesion between the catalyst layers on both the fuel electrode side and the air electrode side can be improved, and the output of the fuel cell can be improved. Characteristics can be stabilized.
  • the catalyst layer is formed on both sides of the electrolyte membrane, but may be formed on at least one side of the electrolyte membrane, and may be formed only on one side.
  • the fuel electrode and the air electrode may be formed of a single catalyst layer.
  • the diffusion layer may be formed of a porous carbon material or the like.
  • a conventional catalyst used as a catalyst layer of a fuel electrode of a solid fuel cell can be used.
  • the catalyst may be a metal catalyst alone, a mixture of a metal catalyst and a carbon material, or a mixture of a metal catalyst and a ceramic powder material composed of an oxide ion conductor.
  • the metal catalyst examples include, for example, platinum, palladium, ruthenium, iridium, rhodium, and other noble metals such as nickel, iron, lead, copper, chromium, cobalt, manganese, vanadium, molybdenum, gallium, and metals such as aluminum.
  • noble metals such as nickel, iron, lead, copper, chromium, cobalt, manganese, vanadium, molybdenum, gallium, and metals such as aluminum.
  • a noble metal such as platinum, ruthenium, or palladium
  • nickel, iron, or cobalt is preferable.
  • Such a metal catalyst may be used as a carbon material by mixing with carbon black, graphite, or graphitized carbon black.
  • the oxide ion conductor is preferably a material having a fluorite structure or a perovskite structure.
  • the material having the fluorite structure include a ceria-based oxide doped with samarium or gadolinium, and a zirconia-based oxide containing scandium or yttrium.
  • the material having the perovskite structure for example, a lanthanum-garde-based oxide doped with strontium or magnesium may be used. Of these, it is preferable to form the catalyst layer of the fuel electrode with a mixture of an oxide ion conductor and nickel.
  • the mixed form may be a physical mixed form, or a form in which the metal catalyst is modified with a powder ceramic material. Is also good.
  • one type of ceramic material may be used alone, or two or more types may be used in combination.
  • a conventional catalyst used as a catalyst layer of an air electrode of a solid fuel cell can be used as a material of the catalyst layer constituting the air electrode.
  • the catalyst may be a metal catalyst alone or a metal oxide exemplified for the fuel electrode. Of these, metal oxides are preferred.
  • a metal oxide made of cobalt, iron, nickel, chromium, manganese, or the like having a perovskite structure or the like can be used.
  • examples of such a metal oxide include (Sm, Sr) CoO 3 , (La, Sr) MnO 3 , (La, Sr) CoO 3 , (La, Sr) (Fe, Co) O 3 , (La) , Sr) (Fe, Co, Ni) O 3 and the like, and preferably (La, Sr) MnO 3 .
  • These metal oxides can be used alone or in combination of two or more.
  • the air electrode and the fuel electrode for example, screen printing method, doctor blade method, spray coating method, spin coating method, dip coating method, electrophoretic electrodeposition method, roll coating method, gravure roll coating method, dispenser coating method, CVD, It can be manufactured by using a general printing method such as an EVD, a sputtering method, and a transfer method.
  • a general printing method such as an EVD, a sputtering method, and a transfer method.
  • a modified graphene oxide B was obtained in the same manner as in Production Example 1, except that the aqueous graphene oxide solution A was changed to the aqueous graphene oxide solution B. Elemental analysis of the resulting modified graphene oxide B by an energy dispersive X-ray spectrometer (EDS) revealed that the sulfur component content was 2.3 Atom% and no sodium component was detected.
  • EDS energy dispersive X-ray spectrometer
  • a modified graphene oxide aqueous solution B solid content concentration: 0.5% by mass was prepared with ion-exchanged water.
  • Reference Example 1 30 parts by mass of a mixed solvent of methanol / water (mass ratio 1/1) was added to 15 parts by mass of aqueous graphene oxide solution A, and a graphene oxide film was formed by a filtration film forming method, and the obtained graphene oxide film (5 cm ⁇ 5 cm) was coated on one side with 300 ⁇ L of a 5% by mass Nafion dispersion (manufactured by Electrochem), dried at 60 ° C. for 15 minutes, and the other side was similarly coated to obtain a proton conducting electrolyte membrane (calculated on one side). Each having a thickness of 0.5 ⁇ m).
  • Example 1 30 parts by mass of a methanol / water (weight ratio 1/1) mixed solvent was added to 30 parts by mass of the modified graphene oxide aqueous solution A, and a modified graphene oxide film was formed by a filtration film forming method. ⁇ 5 cm) was obtained on both surfaces of a proton conducting electrolyte membrane coated with a Nafion dispersion liquid in the same manner as in Reference Example 1.
  • Reference example 2 1 part by mass of sodium vinyl sulfonate was added to 100 parts by mass of the aqueous solution of graphene oxide A, and the mixture was stirred. After that, sulfuric acid was added to adjust the pH to 0.5, and the mixture was centrifuged to remove the supernatant. Further, ion-exchanged water was added to prepare an aqueous solution composed of graphene oxide and vinyl sulfonic acid (solid concentration 0.5% by mass). The obtained aqueous solution was dried and subjected to elemental analysis using an energy dispersive X-ray spectrometer (EDS). As a result, the sulfur component content was 0.3 Atom%, and no sodium component was detected.
  • EDS energy dispersive X-ray spectrometer
  • Reference Example 3 5 parts by mass of potassium peroxodisulfate (initiator) was added to 100 parts by mass of a 25% by mass aqueous solution of sodium vinyl sulfonate (manufactured by Tokyo Chemical Industry Co., Ltd.), and the mixture was reacted at 70 ° C. for 8 hours in a nitrogen stream to obtain polyvinyl sulfonic acid.
  • An aqueous sodium solution was prepared. 100 parts by mass of the aqueous solution of graphene oxide A was added to 4 parts by mass of the obtained aqueous solution of sodium polyvinyl sulfonate, followed by stirring. Thereafter, the pH was adjusted to 0.5 by adding sulfuric acid, and the supernatant was removed by centrifugation.
  • aqueous solution comprising graphene oxide and polyvinyl sulfonic acid (solid concentration: 0.5% by mass).
  • the obtained aqueous solution was dried and subjected to elemental analysis by an energy dispersive X-ray spectrometer (EDS). As a result, the sulfur component content was 0.2 Atom%, and no sodium component was detected.
  • Example 2 30 parts by mass of a mixed solvent of methanol / water (mass ratio 1/1) was added to 30 parts by mass of the modified graphene oxide aqueous solution B, and a modified graphene oxide film was formed by a filtration film forming method. ⁇ 5 cm) was obtained on both surfaces of a proton conducting electrolyte membrane coated with a Nafion dispersion liquid in the same manner as in Reference Example 1.
  • Reference example 4 30 parts by mass of a mixed solvent of methanol / water (mass ratio 1/1) was added to 15 parts by mass of aqueous graphene oxide solution B, and a graphene oxide film was formed by a filtration film forming method, and the obtained graphene oxide film (5 cm ⁇ 5 cm) In both cases, a proton conducting electrolyte membrane was obtained by coating both surfaces with a Nafion dispersion liquid in the same manner as in Reference Example 1.
  • Comparative Example 2 0.15 parts by mass of p-toluenesulfonic acid was mixed with 100 parts by mass of the aqueous solution of graphene oxide A. Further, 30 parts by mass of a mixed solvent of methanol / water (mass ratio 1/1) was added, and a proton conducting electrolyte membrane was obtained by a filtration film forming method.
  • Reference Example 5 0.15 parts by mass of p-toluenesulfonic acid was mixed with 100 parts by mass of the aqueous solution of graphene oxide A. Further, 30 parts by mass of a mixed solvent of methanol / water (mass ratio 1/1) was added, and a graphene oxide-based film was formed by a filtration film forming method. In the same manner as in Reference Example 1, both sides of the obtained graphene oxide-based membrane (5 cm ⁇ 5 cm) were coated with a Nafion dispersion liquid to obtain a proton conducting electrolyte membrane.
  • Example 1 in which vinyl sulfonic acid was reacted with graphene oxide and modified, unlike a simple composition that did not react as in Comparative Examples 2 and 3, a high output density as a solid fuel cell could be secured.
  • the laminate of the present invention can be used as a proton conductive electrolyte membrane used for various electric / electronic devices (for example, a storage element such as a battery and a capacitor). (Electrolyte).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Laminated Bodies (AREA)
  • Conductive Materials (AREA)

Abstract

ビニル基を有するスルホン酸類で変性された変性酸化グラフェンを含む基材層の少なくとも一方の面に、スルホン酸基を有するフッ素系ポリマーを含む被覆層を積層する。前記基材層の両面に、それぞれ第1の被覆層および第2の被覆層を積層してもよい。前記変性酸化グラフェン中の元素分析での硫黄含有量は0.5~10Atom%であってもよい。前記ビニル基を有するスルホン酸類はビニルスルホン酸またはその金属塩であってもよい。得られた積層体を、固体燃料電池セルのプロトン伝導電解質膜として利用すると、室温での電池の駆動が可能であり、かつプロトン伝導性および出力安定性を向上できる。

Description

積層体ならびにその製造方法および用途
 本発明は、固体燃料電池セルのプロトン伝導電解質膜などに利用できる積層体ならびにその製造方法および用途に関する。
 燃料電池は、正極である空気極と、負極である燃料極(触媒極)と、両極の間に介在する電解質とを有する電池セルを備えている。この燃料電池では、燃料極に供給された水素ガスが水素イオンと電子とに分かれ、水素イオン(プロトン)が電解質中を移動し、電子が外部回路を通って空気極に移動して酸素と反応して水が生成され、このときに外部回路に移動する電子がエネルギーとして取り出される。燃料電池の出力および安定性向上のために様々な電解質が検討されている。例えば、高プロトン性を得るために、スルホン酸基を有するフッ素系ポリマーを電解質として用いる技術が知られているが、室温でのプロトン伝導性には問題があり、高出力を得ることが難しい。
 特開2011-98843号公報(特許文献1)には、スルホ基を導入するために、スルホン化試剤として硫酸を用いてスルホン化した酸化グラフェン(GO)が記載されている。しかし、このような材料をプロトン伝導電解質として燃料電池デバイスに使用した場合、電極に含まれる白金触媒層などの金属または金属含有触媒層と電解質との界面密着性が低下して燃料電池出力も低下する。
 また“A poly(ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells”(非特許文献1)では、高プロトン伝導性および機械的性質向上のために、酸化グラフェンとポリエチレンオキサイドとの混合物を電解質として用いる。しかし、この電解質で燃料電池の駆動を続けると、燃料電池反応から生じた水によりポリエチレンオキサイドが溶解し、電解質の機械的強度が低下する。
特開2011-98843号公報(特許請求の範囲)
 従って、本発明の目的は、固体燃料電池セルのプロトン伝導電解質膜として用いると、室温で固体燃料電池を駆動でき、かつ出力安定性を向上できる積層体ならびにその製造方法および用途を提供することにある。
 本発明の他の目的は、固体燃料電池セルのプロトン伝導電解質膜に利用でき、容易かつ安価に製造できる積層体ならびにその製造方法および用途を提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、ビニル基を有するスルホン酸類で変性された変性酸化グラフェンを含む基材層の少なくとも一方の面に、スルホン酸基を有するフッ素系ポリマーを含む被覆層が積層された積層体を固体燃料電池のプロトン伝導電解質膜として用いると、室温での電池の駆動が可能となり、プロトン伝導性および出力安定性も向上できることを見出し、本発明を完成した。
 すなわち、本発明の積層体は、ビニル基を有するスルホン酸類で変性された変性酸化グラフェンを含む基材層と、この基材層の少なくとも一方の面に積層され、かつスルホン酸基を有するフッ素系ポリマーを含む被覆層とを含む。前記基材層の両面に、それぞれ第1の被覆層および第2の被覆層が積層されていてもよい。前記変性酸化グラフェン中の元素分析での硫黄含有量は0.5~10Atom%であってもよい。前記ビニル基を有するスルホン酸類はビニルスルホン酸またはその金属塩であってもよい。前記基材層の平均厚みと、前記被覆層総厚みの平均厚みとの比は、前者/後者=10/1~100/1程度である。前記積層体は、固体燃料電池セルのプロトン伝導電解質膜であってもよい。
 本発明には、重合開始剤および溶媒の存在下で酸化グラフェンとビニル基を有するスルホン酸類とを反応させて得られた変性酸化グラフェンを含む液状基材層前駆体を製膜する基材層形成工程と、得られた基材層の少なくとも一方の面に、スルホン酸基を有するフッ素系ポリマーを含む液状被覆層前駆体をコーティングする被覆層形成工程とを含む、前記積層体の製造方法も含まれる。基材層形成工程における酸化グラフェンとビニル基を有するスルホン酸類との反応温度は100℃以下であってもよい。前記ビニル基を有するスルホン酸類は、ビニルスルホン酸アルカリ金属塩であってもよい。前記溶媒は水を含んでいてもよい。
 本発明には、前記プロトン伝導電解質膜と電極とが一体化した固体燃料電池セルも含まれる。
 本発明では、ビニル基を有するスルホン酸類で変性された変性酸化グラフェンを含む基材層の少なくとも一方の面に、スルホン酸基を有するフッ素系ポリマーを含む被覆層が積層されており、酸性度が高く、プロトン伝導性に優れるため、この積層体を固体燃料電池セルのプロトン伝導電解質膜として用いると、室温で固体燃料電池を駆動でき、取扱性を向上できるとともに、前記基材層と前記被覆層との層間密着性が高く、界面状態が良好であるため、固体燃料電池の最大出力密度を高め、安定な出力密度を確保できる。さらに、慣用の方法を用いて、温和な条件で製造できるため、固体燃料電池セルのプロトン伝導電解質膜に利用できる積層体を容易かつ安易に製造できる。
図1は、固体燃料電池セルの一例を模式的に示す図である。 図2は、固体燃料電池セルを構成する膜電極接合体の構成材料を示す概略斜視図である。
 [基材層]
 本発明の積層体は、変性酸化グラフェンを含む基材層を含む。本明細書および特許請求の範囲において、変性酸化グラフェンを構成する酸化グラフェンは、カルボニル基、ホルミル基、ヒドロキシル基、カルボキシル基、エポキシ基などの酸素含有官能基で修飾されたグラフェンを意味する。酸化グラフェンは、天然または人工グラファイトを酸化し、単層または多層に剥離させることにより、ナノメータサイズの厚みのシート形状に調製された酸化グラフェンである。
 グラファイトの酸化方法としては、特に限定されず、慣用の方法を利用できる。慣用の製造方法としては、例えば、ハマーズ(Hummers)法、ブローディー(Brodie)法、スタウデンマイヤー(Staudenmaier)法などが挙げられる。
 ハマーズ法は、W. S Hummers, Jr. et al., J. Am. Chem. Soc., 1958, 80, 1339.に記載の方法であってもよく、例えば、酸化剤として、硫酸、過マンガン酸塩(過マンガン酸カリウムなど)および硝酸塩(硝酸ナトリウムなど)を使用して酸化する方法であってもよい。
 ブローディー法は、B. C. Brodie, Philos. Trans. R. Soc., London, 1859, 149, 249.やB. C. Brodie, Ann. Chim. Phys., 1860, 59, 46に記載の方法であってもよく、例えば、酸化剤として、発煙硝酸および塩素酸(塩素酸カリウムなど)を使用して酸化する方法であってもよい。
 スタウデンマイヤー法は、L. Staudenmaier, Ber. Dtsch. Chem. Ges., 1898, 31, 1481.に記載の方法であってもよく、酸化剤として、硫酸、硝酸および塩素酸(塩素酸カリウムなど)を使用して酸化する方法であってもよい。
 これらのうち、プロトン伝導電解質としての特性を向上できる点から、ハマーズ法が好ましい。
 得られた酸化グラファイトは、酸素含有官能基が付加されているため、親水性であり、かつ層間が拡大し易い性質に改質されている。そのため、酸化グラファイトは、水などの水性溶媒中で超音波を照射する方法や、遠心分離と再分散とを繰り返す方法などにより、層間を剥離して、単層または多層酸化グラフェンに分解できる。得られた酸化グラフェンは、酸素含有官能基として、前述の酸素含有官能基を有している。
 酸化グラフェンの厚みは、原子1層の厚み(例えば、0.4nm程度)または複数層(例えば2~10層、特に2~5層程度)の厚みを有していてもよい。酸化グラフェンは、炭素原子1個の厚みを有する単層構造であってもよく、複数の単層硫黄含有(酸化)グラフェンが所定の間隔で重なり合った多層(例えば2~10層、好ましくは2~5層、さらに好ましくは2~3層)構造であってもよい。
 酸化グラフェンの面方向の平均径は、0.1~1000μm程度の範囲から選択してもよく、例えば1~500μm(例えば5~300μm)、好ましくは5~100μm(例えば10~100μm)程度であり、さらに好ましくは5~50μm(特に10~30μm)程度であってもよい。
 なお、本明細書および特許請求の範囲において、酸化グラフェンの面方向の平均径の測定には、電子顕微鏡、光学顕微鏡などが利用できる。なお、異形の酸化グラフェンにおいて、平均径は、各酸化グラフェンについて長軸径と短軸径との平均値を算出し、100個程度の酸化グラフェンの平均値について加算平均することにより算出できる。
 このような酸化グラフェンとしては、(株)仁科マテリアル製:品名「Rap GO (TQ-11)」、「GO-TQ2」、「Exfoliated GO」など、Graphenea社製:品名「Graphene Oxide Water Dispersion(0.4重量%濃度)」、「Highly Concentrated Graphene Oxide(2.5重量%濃度)」などの市販品で入手することができる。
 酸化グラフェンは還元物であってもよい。酸化グラフェンの還元物は、還元処理により部分的に還元されたグラフェン(部分酸化グラフェン)であってもよい。
 酸化グラフェンの酸素含有官能基量を調整する方法としては、酸化グラフェンを酸素またはヒドラジンなどの雰囲気下において、キセノンランプにより光照射することで光還元する方法やヒドラジン蒸気により還元する方法、熱還元する方法などが挙げられる。
 変性酸化グラフェンは、重合開始剤および溶媒の存在下で酸化グラフェンとビニル基を有するスルホン酸類とを反応させて得られた変性酸化グラフェンであればよく、酸化グラフェンとビニル基を有するスルホン酸類とは、共有結合を介して結合(グラフト結合)していてもよい。
 ビニル基を有するスルホン酸類としては、例えば、ビニルスルホン酸、アリルスルホン酸などのアルケンスルホン酸;スチレンスルホン酸などのビニルアレーンスルホン酸;またはこれらの金属塩などが挙げられる。金属塩としては、ナトリウム塩、カリウム塩などのアルカリ金属塩などが挙げられる。これらのビニル基を有するスルホン酸類は、単独でまたは二種以上組み合わせて使用できる。これらのうち、ビニルスルホン酸またはその金属塩が好ましく、ビニルスルホン酸ナトリウムなどのビニルスルホン酸アルカリ金属塩が特に好ましい。
 変性酸化グラフェンにおいて、ビニル基を有するスルホン酸類と酸化グラフェンとの組成比率は特に限定されないが、変性酸化グラフェン中の元素分析での硫黄含有量は0.5~10Atom%程度の範囲から選択でき、例えば1~8Atom%、好ましくは1.5~5Atom%、さらに好ましくは2~3Atom%程度である。硫黄含有量が多すぎると、水との親和性が高まり、膜としての形状保持が困難となる虞がある。一方、硫黄含有量が少なすぎると、プロトン伝導性が低下し燃料電池デバイスとしての機能が発現しなくなる虞がある。
 変性酸化グラフェン中の金属含有量は10Atom%以下であってもよく、例えば5Atom%以下、好ましくは3Atom%以下、さらに好ましくは1Atom%以下であり、検出限界以下であってもよい。特に、ビニル基を有するスルホン酸類として、金属塩を使用した場合であっても、金属塩を用いて酸化グラフェンを変性して得られた変性酸化グラフェンの金属含有量は、前記範囲であってもよい。
 なお、本明細書および特許請求の範囲において、変性酸化グラフェン中の硫黄含有量や金属含有量は、慣用の元素分析、例えば、エネルギー分散型X線分光器(EDS)による元素分析によって測定できる。
 本発明では、変性酸化グラフェン中のスルホ基と酸素含有官能基(エポキシ基など)とがプロトン伝導部位として機能することで、高プロトン伝導性を発現できる。そのため、基材層は、変性酸化グラフェンを含んでいればよいが、プロトン伝導性を向上できる点から、変性酸化グラフェンを主成分として含むのが好ましい。変性酸化グラフェンの割合は、基材層中50質量%以上であってもよく、例えば70質量%以上、好ましくは75質量%以上、さらに好ましくは80質量%以上(特に90質量%以上)であり、100質量%(変性酸化グラフェンのみ)であってもよい。
 基材層は、変性酸化グラフェンに加えて、他の成分をさらに含んでいてもよい。他の成分は、燃料電池などの電解質成分として慣用的に利用されるプロトン伝導体であってもよい。具体的に、他の成分としては、例えば、金属酸化物(例えば、酸化鉄、酸化チタンなど)、オキソ酸またはその塩[例えば、リン酸、二リン酸、チオリン酸、硝酸、硫酸、またはこれらのオキソ酸の希土類金属塩など]、芳香族化合物(例えば、ビフェニル、ターフェニル、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフランなどの低分子芳香族化合物;ポリイミド、ポリスチレンなどの高分子芳香族化合物など)などが挙げられる。変性酸化グラフェンに他の成分を組み合わせると、変性酸化グラフェンが積層し易くなり、連続的なプロトン伝導のパスを形成し易くなって好ましい場合がある。これら他の成分は、単独でまたは二種以上組み合わせて使用できる。他の成分の割合は、基材層中50質量%以下であってもよく、例えば0.5~30質量%、好ましくは1~25質量%、さらに好ましくは2~20質量%程度であり、金属酸化物の場合、基材層中0.5~25質量%(特に1~20質量%)程度である。他の成分を適切な割合で含むことにより、燃料電池の発電性能が向上し、成膜性も維持できる。
 基材層中において、変性酸化グラフェンは、薄膜(フレーク)が積層し、密な構造を形成していてもよい。
 基材層の平均厚みは10μm以上であってもよく、例えば10~100μm、好ましくは20~80μm、さらに好ましくは30~70μm(特に40~60μm)程度である。基材層の厚みが薄すぎると、プロトン伝導性が低下する虞がある。
 [被覆層]
 本発明では、前記基材層の少なくとも一方の面に、スルホン酸基を有するフッ素系ポリマーを含む被覆層を積層することにより、電極などとの層間密着性を向上できる。被覆層は、前記基材層の少なくとも一方の面に積層されていればよいが、固体燃料電池セルのプロトン伝導電解質膜として用いると、燃料電池の正極および負極との層間密着性を向上でき、電池の出力安定性を向上できる点から、前記基材層の両面に積層されているのが好ましい。
 スルホン酸基を有するフッ素系ポリマーを構成するフッ素系ポリマーは、少なくとも一部の水素原子がフッ素原子に置換されたフルオロ炭化水素樹脂であってもよい。フッ素系ポリマーとしては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素樹脂や、(2-ペンタフルオロエトキシヘキサフルオロプロポキシ)トリフルオロエチレンとテトラフルオロエチレンとの共重合体、ポリスチレン-グラフト-ポリテトラフルオロエチレン共重合体、ポリスチレン-グラフト-ポリテトラフルオロエチレン共重合体などが挙げられる。これらのフッ素系ポリマーは、単独でまたは二種以上組み合わせて使用できる。これらのうち、電気陰性度の高いフッ素原子の導入による化学的な安定性が高い点から、パーフルオロ脂肪族炭化水素樹脂が好ましい。
 スルホン酸基を有するフッ素系ポリマーの市販品としては、例えば、デュポン社製「登録商標:ナフィオン(Nafion)」、旭硝子(株)製「登録商標:Flemion」、旭化成(株)製「商標:Aciplex」、ゴア(Gore)社製「登録商標:Gore Select」などが挙げられる。スルホン酸基を有するフッ素系ポリマーは、[2-(2-スルホテトラフルオロエトキシ)ヘキサフルオロプロポキシ]トリフルオロエチレンとテトラフルオロエチレンとの共重合体(ブロック共重合体など)であってもよい。
 スルホン酸基を有するフッ素系ポリマーの割合は、被覆層中50質量%以上であってもよく、例えば70質量%以上、好ましくは75質量%以上、さらに好ましくは80質量%以上(特に90質量%以上)であり、100質量%(スルホン酸基を有するフッ素系ポリマーのみ)であってもよい。スルホン酸基を有するフッ素系ポリマーの割合が少なすぎると、電極などとの層間密着性が低下する虞がある。
 被覆層は、スルホン酸基を有するフッ素系ポリマーに加えて、他の成分をさらに含んでいてもよい。他の成分としては、基材層の項で例示された他の成分などが挙げられる。他の成分の割合は、基材層中50質量%以下であってもよく、例えば0.5~30質量%、好ましくは1~25質量%、さらに好ましくは2~20質量%程度であり、金属酸化物の場合、基材層中0.5~25質量%(特に1~20質量%)程度である。他の成分を適切な割合で含むことにより、燃料電池の発電性能が向上し、成膜性も維持できる。
 被覆層総厚み(基材層の両面に被覆層が積層されている場合、両層の合計厚み)の平均厚みは、例えば0.1~10μm、好ましくは0.3~5μm、さらに好ましくは0.5~3μm(特に0.8~2μm)程度である。被覆層の厚みが薄すぎると、電極などとの層間密着性が低下する虞があり、逆に厚すぎると、プロトン伝導性が低下する虞がある。
 基材層の平均厚みと、被覆層総厚みの平均厚みとの比は、前者/後者=5/1~200/1程度の範囲から選択でき、例えば10/1~100/1、好ましくは20/1~80/1、さらに好ましくは30/1~70/1(特に40/1~60/1)程度である。被覆層総厚みの比率が小さすぎると、電極などとの層間密着性が低下する虞があり、逆に厚すぎると、プロトン伝導性が低下する虞がある。
 [積層体の製造方法]
 本発明の積層体は、重合開始剤および溶媒の存在下で酸化グラフェンとビニル基を有するスルホン酸類とを反応させて得られた変性酸化グラフェンを含む液状基材層前駆体を製膜する基材層形成工程、得られた基材層の少なくとも一方の面に、スルホン酸基を有するフッ素系ポリマーを含む液状被覆層前駆体をコーティングする被覆層形成工程とを経て製造される。
 基材層形成工程において、変性酸化グラフェンを調製するための重合開始剤としては、特に限定されず、ラジカルを発生させる慣用のラジカル重合開始剤を利用でき、例えば、2,2’-アゾビスブチロニトリル(AIBN)、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩などのアゾ化合物;過酸化ベンゾイル(BPO)、ペルオキソ二硫酸カリウム、リチウムフェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸塩、2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノンなどの過酸化物などが挙げられる。これらの重合開始剤は、単独でまたは二種以上組み合わせて使用できる。これらのうち、水溶性でラジカルを発生する開始剤、例えば、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩などのアゾ化合物、ペルオキソ二硫酸カリウムなどの過酸化物が好ましい。重合開始剤の割合は、ビニル基を有するスルホン酸類100質量部に対して、例えば1~100質量部、好ましくは10~80質量部、さらに好ましくは30~60質量部程度である。
 変性酸化グラフェンを調製するための溶媒としては、酸化グラフェンおよびビニル基を有するスルホン酸類を溶解または分散させ易い点から、水性溶媒(極性溶媒)を好ましく利用できる。水性溶媒としては、例えば、水、低級アルコール(メタノール、エタノール、イソプロパノール、プロパノールなどのC1-4アルカノールなど)、ケトン類(アセトンなど)、エーテル類(ジエチルエーテル、ジオキサン、テトラヒドロフランなど)、セロソルブ類、セロソルブアセテート類、カルビトール類、カルビトールアセテート類、ニトリル類(アセトニトリルなど)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなど)などが挙げられる。これらの水性溶媒は、単独でまたは二種以上組み合わせて使用できる。これらのうち、水、エタノールなどのC1-4アルカノールが好ましく、水を含むのが特に好ましい。水の割合は、溶媒中50質量%以上であってもよく、好ましくは80質量%以上、さらに好ましくは90質量%以上であり、100質量%(水のみ)であってもよい。
 溶媒の割合は、酸化グラフェン1質量部に対して、例えば10~1000質量部、好ましくは30~500質量部、さらに好ましくは50~300質量部(特に80~200質量部)程度である。
 酸化グラフェンとビニル基を有するスルホン酸類との反応温度は、150℃未満が好ましく、ビニル基を有するスルホン酸類による酸化グラフェンの変性効率を向上できる点から、100℃以下(例えば50~100℃、特に60~80℃程度)が特に好ましい。反応温度が高すぎると、前記変性効率が低下する虞があり、例えば100℃を超え、特に150℃以上になると酸化グラフェンの一部還元などにより溶媒への溶解性に変化が起こり、凝集や析出などが発生して、ビニル基を有するスルホン酸類の変性導入に影響を及ぼす虞がある。
 得られた変性酸化グラフェンは、必要に応じて他の成分や溶媒を加えて、液状基材層前駆体に調製される。酸化グラフェンと他の成分との混合方法としては、特に限定されず、酸化グラフェンと他の成分をコンパウンドする方法、酸化グラフェンと他の成分を同時に溶液に溶解または分散させる方法、酸化グラフェン分散液に他の成分を添加し、必要に応じて再分散処理を行う方法、酸化グラフェン分散液と他の成分分散液を混合する方法など利用できる。
 溶媒としては、変性酸化グラフェンを調製するための溶媒として例示された溶媒を利用できる。前記溶媒のうち、水を含む溶媒が好ましく、水と低級アルコール(特にメタノールなどのC1-4アルカノール)との組み合わせが特に好ましい。水と低級アルコールとの質量比は、水/低級アルコール=100/0~10/90程度の範囲から選択でき、例えば、99/1~30/70、好ましくは90/10~50/50、さらに好ましくは80/20~70/30程度である。
 液状基材層前駆体において、溶媒の割合は、変性酸化グラフェン1質量部に対して、例えば10~2000質量部、好ましくは100~1000質量部、さらに好ましくは200~800質量部(特に300~500質量部)程度である。
 液状基材層前駆体の製膜方法としては、慣用の製膜方法、例えば、ろ過成膜法、スピンコート法、ドロップキャスト法、電解泳動法等、バーコート法などを利用できる。
 前記製膜方法によって膜状に形成された液状基材層前駆体は、乾燥することによって基材層を形成できる。乾燥は、自然乾燥であってもよく、40℃以上(例えば50~90℃、特に60~80℃程度)の温度で加熱して乾燥してもよい。加熱時間は1分以上(例えば5~20分程度)であってもよい。
 被覆層形成工程において、スルホン酸基を有するフッ素系ポリマーは、必要に応じて他の成分や溶媒を加えて、液状被覆層前駆体に調製される。スルホン酸基を有するフッ素系ポリマーと他の成分との混合方法は、酸化グラフェンと他の成分との混合方法と同様の方法を利用できる。
 液状被覆層前駆体の溶媒としては、例えば、低級アルコール(メタノール、エタノール、イソプロパノール、プロパノールなどのC1-4アルカノールなど)、ケトン類(アセトンなど)、エーテル類(ジエチルエーテル、ジオキサン、テトラヒドロフランなど)などが挙げられる。これらの溶媒は、単独でまたは二種以上組み合わせて使用できる。これらのうち、エタノール、イソプロパノールなどのC1-3アルカノール、ジエチルエーテルなどのジC1-3アルキルエーテルが好ましい。
 液状被覆層前駆体において、溶媒の割合は、スルホン酸基を有するフッ素系ポリマー1質量部に対して、例えば1~500質量部、好ましくは3~100質量部、さらに好ましくは5~50質量部(特に10~30質量部)程度である。
 液状被覆層前駆体の製膜方法としては、慣用の製膜方法、例えば、スピンコート法、ドロップキャスト法、バーコート法などを利用できる。
 前記製膜方法によって膜状に形成された液状被覆層前駆体は、乾燥することによって被覆層を形成できる。乾燥は、自然乾燥であってもよく、40℃以上(例えば40~80℃、特に50~70℃程度)の温度で加熱して乾燥してもよい。加熱時間は1分以上(例えば5~20分程度)であってもよい。
 [固体燃料電池セルのプロトン伝導電解質膜]
 本発明の積層体は、固体燃料電池セルのプロトン伝導電解質膜として利用できる。本発明の固体燃料電池セルは、プロトン伝導電解質膜として積層体を含んでいればよく、このプロトン伝導電解質膜は電極と一体化することにより、電極との層間密着性を向上させている。本発明の固体燃料電池セルは、必要に応じて、触媒、セパレーター、電流の取り出し線などをさらに備えていてもよい。
 固体燃料電池セルの一例を模式的に図1に示し、具体的に説明する。図1に示すように、固体燃料電池セルは、セル中心部に位置する電解質膜1と、この電解質膜1の両面に隣接して積層された燃料極(負極)2および空気極(正極)3と、さらに燃料極2および空気極3の各々の外側に積層された負極側セパレーター4および正極側セパレーター5とで形成されている。両セパレーターには、燃料ガスや酸化剤を送り込むための流路が形成されていてもよい。図1では、燃料電池の反応の一例を示しており、燃料極では、水素ガスが供給されて、水素イオンと電子(プロトン)に分解され、空気極では、酸素ガスが供給され、反応生成物として水が生成している。
 燃料極および空気極は、図2に示すように、それぞれ電解質膜11と接触する側の触媒層12bおよび13bと、その外側に積層された拡散層12aおよび13aとで形成されていてもよい。この例では、電解質膜11と、電解質膜11の一方の面に配置された燃料極側の触媒層12bと、電解質膜11の他方の面に配置された空気極側の触媒層13bとで膜電極接合体(Membrane Electrode Assembly;通称MEA)と呼ばれる接合体を構成している。本発明では、基材層の両面に被覆層が積層された積層体を電解質膜として用いると、燃料極側および空気極側の両方の触媒層との層間密着性を向上でき、燃料電池の出力特性を安定化できる。この例では、触媒層は、電解質膜の両面に形成されているが、電解質膜の少なくとも一方の面に形成されていればよく、片面のみに形成されていてもよい。また、燃料極および空気極は、触媒層単体で形成されていてもよい。拡散層は、多孔質炭素材料などで形成されていてもよい。
 燃料極を構成する触媒層の材質としては、固体燃料電池の燃料極の触媒層として利用される慣用の触媒を利用できる。触媒は、金属触媒単体、金属触媒とカーボン材料の混合物、金属触媒と酸化物イオン導電体からなるセラミックス粉末材料との混合物であってもよい。
 前記金属触媒としては、例えば、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの貴金属の他、ニッケル、鉄、鉛、銅、クロム、コバルト、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属、またはこれらの合金、酸化物、複酸化物、炭化物などが挙げられる。これらのうち、還元性雰囲気において安定で水素酸化活性を有する材料、例えば、白金、ルテニウム、パラジウムなどの貴金属;ニッケル、鉄、コバルトなどが好ましい。
 このような金属触媒はカーボン材料としてカーボンブラック、グラファイト、またはグラファイト化カーボンブラックと混合して使用してもよい。
 前記酸化物イオン導電体は、蛍石型構造またはペロブスカイト型構造を有する材料が好ましい。前記蛍石型構造を有する材料としては、例えば、サマリウムやガドリニウムなどをドープしたセリア系酸化物、スカンジウムやイットリウムを含むジルコニア系酸化物などが挙げられる。前記ペロブスカイト型構造を有する材料としては、例えば、ストロンチウムやマグネシウムをドープしたランタン・ガレード系酸化物などが挙げられる。これらのうち、酸化物イオン導電体とニッケルとの混合物で、燃料極の触媒層を形成するのが好ましい。
 なお、触媒層が金属触媒(特にニッケル)とセラミックス粉末材料との混合物である場合、混合形態は、物理的な混合形態であってもよく、金属触媒を粉末セラミックス材料で修飾した形態であってもよい。また、セラミックス材料は、1種類を単独で使用してもよく、2種類以上を混合して使用してもよい。
 空気極を構成する触媒層の材質としては、固体燃料電池の空気極の触媒層として利用される慣用の触媒を利用できる。触媒としては、燃料極で例示された金属触媒単体、金属酸化物であってもよい。これらのうち、金属酸化物が好ましい。
 金属酸化物としては、例えば、ペロブスカイト型構造等を有するコバルト、鉄、ニッケル、クロムまたはマンガンなどからなる金属酸化物を用いることができる。そのような金属酸化物としては、例えば、(Sm,Sr)CoO,(La,Sr)MnO,(La,Sr)CoO,(La,Sr)(Fe,Co)O,(La,Sr)(Fe,Co,Ni)Oなどの酸化物が挙げられ、好ましくは、(La,Sr)MnOである。これらの金属酸化物は、単独でまたは二種以上組み合わせて使用できる。
 空気極および燃料極は、例えば、スクリーン印刷法、ドクターブレード法、スプレーコート法、スピンコ-ト法、ディップコート法、泳動電着法、ロールコート法、グラビアロールコート法、ディスペンサーコート法、CVD,EVD,スパッタリング法、転写法などの一般的な印刷法を用いて作製できる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例および比較例で得られた積層体(プロトン伝導性電解質膜)を調製するために使用した各材料の詳細および調製方法は、以下の通りである。
 [酸化グラフェン]
 (酸化グラフェン水溶液A)
 (株)仁科マテリアル製「Exfoliated GO」、1質量%水溶液を用いた。
 (酸化グラフェン水溶液B)
 酸化グラフェン水溶液Aを乾燥した粉末酸化グラフェン1gに硫酸26mLを加えて4℃に冷却して、硝酸ナトリウム(NaNO)1.1gを少しずつ加えた。さらに過マンガン酸カリウム(KMnO)3.3gを加えて、10分間撹拌し、液温度35℃で2時間撹拌した。次に、水冷した状態で水51mLを滴下しつつ、30分間撹拌した。さらに、水28mLを添加した後、過酸化水素(H)5.6mLを滴下した。最後に、90℃で30分間撹拌した後、100mLの水を加えて希釈して遠心分離に供した。上澄みが中性になるまで遠心分離を繰り返し行い、上澄みが中性になったところで完了とした。なお、得られた酸化グラフェンを水溶液として濃度調整し1質量%水溶液を調製した。
 [変性酸化グラフェンの調製]
 製造例1
 ビニルスルホン酸ナトリウム25質量%水溶液(東京化成工業(株)製)4質量部を酸化グラフェン水溶液A100質量部に添加し攪拌を行ない70℃に加温した状態でペルオキソ二硫酸カリウム(開始剤)0.5質量部を添加し窒素気流中で8時間反応した。その後、室温にした状態で硫酸を添加しpH0.5に調整した後、遠心分離して上澄みを除去した。さらに、イオン交換水で洗浄して変性酸化グラフェンAを得た。得られた変性酸化グラフェンAをエネルギー分散型X線分光器(EDS)により元素分析した結果、硫黄成分含有率は1.0Atom%、ナトリウム成分は検出されなかった。イオン交換水で変性酸化グラフェン水溶液A(固形分濃度0.5質量%)を調製した。
 製造例2
 酸化グラフェン水溶液Aを酸化グラフェン水溶液Bに変更する以外は製造例1と同様にして変性酸化グラフェンBを得た。得られた変性酸化グラフェンBをエネルギー分散型X線分光器(EDS)により元素分析した結果、硫黄成分含有率は2.3Atom%、ナトリウム成分は検出されなかった。イオン交換水で変性酸化グラフェン水溶液B(固形分濃度0.5質量%)を調製した。
 [プロトン伝導電解質膜の調製]
 比較例1
 酸化グラフェン水溶液A 15質量部にメタノール/水(質量比1/1)混合溶媒30質量部を添加し、ろ過成膜法でプロトン伝導電解質膜を得た。
 参考例1
 酸化グラフェン水溶液A 15質量部にメタノール/水(質量比1/1)混合溶媒30質量部を添加し、ろ過成膜法で酸化グラフェン膜を作製し、得られた酸化グラフェン膜(5cm×5cm)の片面に5質量%ナフィオン分散液(エレクトロケム社製)300μLをコーティングし、60℃で15分乾燥し、さらにもう片面も同様にコート処理したプロトン伝導電解質膜を得た(計算上、片面の各厚み0.5μmのナフィオン膜形成)。
 実施例1
 変性酸化グラフェン水溶液A 30質量部にメタノール/水(質量比1/1)混合溶媒30質量部を添加し、ろ過成膜法で変性酸化グラフェン膜を作製し、得られた変性酸化グラフェン膜(5cm×5cm)の両面に参考例1と同様の方法でナフィオン分散液を両面コート処理したプロトン伝導電解質膜を得た。
 参考例2
 酸化グラフェン水溶液A 100質量部にビニルスルホン酸ナトリウム1質量部を添加し、攪拌した後、硫酸を添加しpH0.5に調整し、遠心分離して上澄みを除去した。さらに、イオン交換水を添加し、酸化グラフェンとビニルスルホン酸とからなる水溶液を調製した(固形分濃度0.5質量%)。得られた水溶液を乾燥し、エネルギー分散型X線分光器(EDS)により元素分析した結果、硫黄成分含有率は0.3Atom%、ナトリウム成分は検出されなかった。前記水溶液30質量部にメタノール/水(質量比1/1)混合溶媒30質量部を添加し、ろ過成膜法で酸化グラフェン系膜を作製し、得られした酸化グラフェン系膜(5cm×5cm)の両面に参考例1と同様の方法でナフィオン分散液を両面コート処理したプロトン伝導電解質膜を得た。
 参考例3
 ビニルスルホン酸ナトリウム25質量%水溶液(東京化成工業(株)製)100質量部にペルオキソ二硫酸カリウム(開始剤)5質量部を添加し窒素気流中で70℃、8時間反応させ、ポリビニルスルホン酸ナトリウム水溶液を作製した。得られたポリビニルスルホン酸ナトリウム水溶液4質量部に酸化グラフェン水溶液A 100質量部を添加して攪拌した。その後、硫酸を添加しpH0.5に調整し、遠心分離して上澄みを除去した。さらに、イオン交換水を添加し、酸化グラフェンとポリビニルスルホン酸からなる水溶液を調製した(固形分濃度0.5質量%)。得られた水溶液を乾燥し、エネルギー分散型X線分光器(EDS)により元素分析した結果、硫黄成分含有率は0.2Atom%、ナトリウム成分は検出されなかった。前記水溶液30質量部にメタノール/水(質量比1/1)混合溶媒30質量部を添加し、ろ過成膜法で酸化グラフェン系膜を作製し、得られた酸化グラフェン系膜(5cm×5cm)の両面に参考例1と同様の方法でナフィオン分散液を両面コート処理したプロトン伝導電解質膜を得た。
 実施例2
 変性酸化グラフェン水溶液B 30質量部にメタノール/水(質量比1/1)混合溶媒30質量部を添加し、ろ過成膜法で変性酸化グラフェン膜を作製し、得られた変性酸化グラフェン膜(5cm×5cm)の両面に参考例1と同様の方法でナフィオン分散液を両面コート処理したプロトン伝導電解質膜を得た。
 参考例4
 酸化グラフェン水溶液B 15質量部にメタノール/水(質量比1/1)混合溶媒30質量部を添加し、ろ過成膜法で酸化グラフェン膜を作製し、得られた酸化グラフェン膜(5cm×5cm)の両面に参考例1と同様の方法でナフィオン分散液を両面コート処理したプロトン伝導電解質膜を得た。
 比較例2
 酸化グラフェン水溶液A 100質量部にp-トルエンスルホン酸0.15質量部を配合した。さらにメタノール/水(質量比1/1)混合溶媒30質量部を添加し、ろ過成膜法でプロトン伝導電解質膜を得た。
 参考例5
 酸化グラフェン水溶液A 100質量部にp-トルエンスルホン酸0.15質量部を配合した。さらにメタノール/水(質量比1/1)混合溶媒30質量部を添加し、ろ過成膜法で酸化グラフェン系膜を作製した。得られた酸化グラフェン系膜(5cm×5cm)の両面に参考例1と同様の方法でナフィオン分散液を両面コート処理したプロトン伝導電解質膜を得た。
 比較例3
 プロトン電解質膜としてナフィオンシート(エレクトロケム社製「ナフィオン212」、厚み50μm)を用いた。
 [燃料電池試験]
 得られたプロトン伝導電解質膜を用いて燃料電池の発電特性を評価した。発電特性評価では、(株)東陽テクニカ製シングルセルハードウェア FC-05-02で単セルを構築し、電流電圧(I-V)測定を行った。プロトン伝導性電解質膜の両面を電極膜材料(アノード用、カソード用)[(株)東陽テクニカ製「EC-E20-10-07」、触媒層:触媒粒子(Pt/C)(1.0mg/cm)、拡散層:カーボンペーパー]で触媒層と電解質膜とを接触させて挟み、MEAを作製した。室温下でアノードに加湿(RH100%)水素100mL/min、カソードに加湿(RH100%)酸素100mL/minを供給した。電池電圧およびオーム抵抗を常時測定した。プロトン伝導率は、膜厚/(セルオーム抵抗×電極面積)の式にて算出した。実施例2および参考例5については、5~10回のサイクル試験を実施した。得られた評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例1および2は参考例4よりも優れる固体燃料電池としての出力密度が確保された。
 また、比較例1と参考例1との比較、参考例2と参考例3との比較から、プロトン伝導電解質膜としての酸化グラフェン系膜の両面にナフィオンコートすると、固体燃料電池としての出力密度が高まった。
 ビニルスルホン酸を酸化グラフェンに反応させ変性した実施例1は、比較例2および3のように、反応していない単なる組成物とは異なり、固体燃料電池としての高い出力密度が確保できた。
 実施例2で得られた固体燃料電池を用いてI-V試験を繰り返し測定したが出力密度が安定していた。一方、参考例5に示すp-トルエンスルホン酸と酸化グラフェンの組成物では初期の出力密度は高くても繰り返し測定により出力密度が著しく低下した。
 本発明の積層体は、各種の電気・電子機器(例えば、電池やキャパシタなどの蓄電素子など)に利用されるプロトン伝導電解質膜として利用でき、特に、固体燃料電池セルのプロトン伝導電解質膜(固体電解質)として好適である。
 1,11…電解質膜
 2…燃料極
 3…空気極
 4…負極側セパレーター
 5…正極側セパレーター
 12a,13a…拡散層
 12b,13b…触媒層

Claims (11)

  1.  ビニル基を有するスルホン酸類で変性された変性酸化グラフェンを含む基材層と、この基材層の少なくとも一方の面に積層され、かつスルホン酸基を有するフッ素系ポリマーを含む被覆層とを含む、積層体。
  2.  基材層の両面に、それぞれ第1の被覆層および第2の被覆層が積層されている請求項1記載の積層体。
  3.  変性酸化グラフェン中の元素分析での硫黄含有量が0.5~10Atom%である請求項1または2記載の積層体。
  4.  ビニル基を有するスルホン酸類がビニルスルホン酸またはその金属塩である請求項1~3のいずれかに記載の積層体。
  5.  基材層の平均厚みと、被覆層総厚みの平均厚みとの比が、前者/後者=10/1~100/1である請求項1~4のいずれかに記載の積層体。
  6.  固体燃料電池セルのプロトン伝導電解質膜である請求項1~5のいずれかに記載の積層体。
  7.  重合開始剤および溶媒の存在下で酸化グラフェンとビニル基を有するスルホン酸類とを反応させて得られた変性酸化グラフェンを含む液状基材層前駆体を製膜する基材層形成工程と、得られた基材層の少なくとも一方の面に、スルホン酸基を有するフッ素系ポリマーを含む液状被覆層前駆体をコーティングする被覆層形成工程とを含む、請求項1~6のいずれかに記載の積層体の製造方法。
  8.  基材層形成工程における酸化グラフェンとビニル基を有するスルホン酸類との反応温度が100℃以下である請求項7記載の製造方法。
  9.  ビニル基を有するスルホン酸類が、ビニルスルホン酸アルカリ金属塩である請求項7または8記載の製造方法。
  10.  溶媒が水を含む請求項7~9のいずれかに記載の製造方法。
  11.  請求項6記載のプロトン伝導電解質膜と電極とが一体化した固体燃料電池セル。
PCT/JP2019/030389 2018-08-31 2019-08-02 積層体ならびにその製造方法および用途 WO2020044942A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018163549A JP7120570B2 (ja) 2018-08-31 2018-08-31 積層体ならびにその製造方法および用途
JP2018-163549 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020044942A1 true WO2020044942A1 (ja) 2020-03-05

Family

ID=69644248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030389 WO2020044942A1 (ja) 2018-08-31 2019-08-02 積層体ならびにその製造方法および用途

Country Status (2)

Country Link
JP (1) JP7120570B2 (ja)
WO (1) WO2020044942A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2621073A (en) * 2021-05-20 2024-01-31 Nabors Energy Transition Solutions Llc Proton exchange membranes and methods of preparing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098843A (ja) * 2009-11-04 2011-05-19 Fuji Electric Holdings Co Ltd 固体酸及びその製造方法
JP2015140312A (ja) * 2014-01-28 2015-08-03 旭化成ファインケム株式会社 スルホン酸基含有化合物及びその製造方法
JP2015529936A (ja) * 2012-07-10 2015-10-08 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited イオン伝導性膜
JP2017022095A (ja) * 2015-07-13 2017-01-26 国立大学法人名古屋大学 導電膜及びその製造方法
WO2018110846A2 (ko) * 2016-12-14 2018-06-21 주식회사 엘지화학 기능화된 그래핀의 제조 방법
JP2018106957A (ja) * 2016-12-27 2018-07-05 旭硝子株式会社 固体高分子電解質膜の製造方法、膜電極接合体の製造方法および固体高分子形燃料電池の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6538415B2 (ja) 2015-04-28 2019-07-03 株式会社ダイセル 炭素材料の酸化方法並びに酸化グラフェン及び組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098843A (ja) * 2009-11-04 2011-05-19 Fuji Electric Holdings Co Ltd 固体酸及びその製造方法
JP2015529936A (ja) * 2012-07-10 2015-10-08 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited イオン伝導性膜
JP2015140312A (ja) * 2014-01-28 2015-08-03 旭化成ファインケム株式会社 スルホン酸基含有化合物及びその製造方法
JP2017022095A (ja) * 2015-07-13 2017-01-26 国立大学法人名古屋大学 導電膜及びその製造方法
WO2018110846A2 (ko) * 2016-12-14 2018-06-21 주식회사 엘지화학 기능화된 그래핀의 제조 방법
JP2018106957A (ja) * 2016-12-27 2018-07-05 旭硝子株式会社 固体高分子電解質膜の製造方法、膜電極接合体の製造方法および固体高分子形燃料電池の製造方法

Also Published As

Publication number Publication date
JP7120570B2 (ja) 2022-08-17
JP2020032697A (ja) 2020-03-05

Similar Documents

Publication Publication Date Title
US10923752B2 (en) Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same
JP5266749B2 (ja) 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池用膜電極接合体の製造方法
JP3915846B2 (ja) 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
JP5287969B2 (ja) 固体高分子電解質膜及び固体高分子形燃料電池用膜電極接合体
JP4997971B2 (ja) 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
WO2006034224A2 (en) Carbon-polymer electrochemical systems and their fabrication using layer-by layer technology
JP5247974B2 (ja) 固体高分子形水素・酸素燃料電池用電解質膜の製造方法
JP2019531582A (ja) 電極の製造方法、これによって製造された電極、前記電極を含む膜−電極アセンブリー、そして前記膜−電極アセンブリーを含む燃料電池
KR20160120078A (ko) 연료전지용 고분자 전해질 막 및 이를 포함하는 연료전지용 막-전극 어셈블리
JP2006099999A (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP2007165006A (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
JP5286651B2 (ja) 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
WO2020044942A1 (ja) 積層体ならびにその製造方法および用途
JPWO2006080159A1 (ja) プロトン伝導性電解質膜とその製造方法、及び該プロトン伝導性電解質膜を用いた固体高分子型燃料電池
US10985381B2 (en) Nanostructured electrode for polymer electrolyte membrane fuel cell, and manufacturing method therefor
CN107112546B (zh) 燃料电池用阴极催化剂层及其制造方法、包括该阴极催化剂层的燃料电池用膜电极组件
JP2007031718A5 (ja)
EP2036927B1 (en) Ionic polymer particle dispersion liquid and method for producing the same
JP2009021231A (ja) 触媒インク、触媒インクの製造方法、膜−電極接合体の製造方法及びこれにより得られる膜−電極接合体、並びに、燃料電池
JPWO2002058177A1 (ja) プロトン伝導体膜及びその製造方法並びにプロトン伝導体膜を備えた燃料電池及びその製造方法
JPH06203840A (ja) 固体高分子電解質型燃料電池
JP2006185832A (ja) 複合固体高分子電解質膜
JP2006324094A (ja) 固体高分子形燃料電池用膜の製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
JP6890467B2 (ja) 高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池
JP2014234445A (ja) 高分子電解質組成物、並びに、それを用いた、高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853546

Country of ref document: EP

Kind code of ref document: A1