WO2020044841A1 - 金属チタンの製造方法 - Google Patents

金属チタンの製造方法 Download PDF

Info

Publication number
WO2020044841A1
WO2020044841A1 PCT/JP2019/028327 JP2019028327W WO2020044841A1 WO 2020044841 A1 WO2020044841 A1 WO 2020044841A1 JP 2019028327 W JP2019028327 W JP 2019028327W WO 2020044841 A1 WO2020044841 A1 WO 2020044841A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
cathode
metal
molten salt
salt bath
Prior art date
Application number
PCT/JP2019/028327
Other languages
English (en)
French (fr)
Inventor
松秀 堀川
鈴木 大輔
晴香 山本
藤井 秀樹
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to US17/267,572 priority Critical patent/US11649554B2/en
Priority to JP2020540138A priority patent/JP7370988B2/ja
Publication of WO2020044841A1 publication Critical patent/WO2020044841A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • C25C7/08Separating of deposited metals from the cathode

Definitions

  • the present invention relates to a method for producing metallic titanium by performing electrolysis in a molten salt bath by applying a voltage between an anode and a cathode.
  • the present invention proposes a technique for improving the removability of metal titanium electrodeposited on the cathode from the cathode.
  • Metal titanium is generally manufactured by the Kroll method suitable for mass production.
  • Kroll method first, titanium oxide contained in titanium ore is reacted with chlorine to generate titanium tetrachloride. Then, the titanium tetrachloride is reduced with metallic magnesium to obtain sponge-like metallic titanium, so-called sponge titanium.
  • Patent Document 1 states, "In a method for producing titanium metal by a molten salt electrolysis method, at least a titanium electrodeposited surface of a cathode electrode is made of metal molybdenum or metal silicon, and a molten salt bath is made of an alkali metal chloride or chloride.
  • a method for producing a titanium metal foil which is a molten salt bath in which titanium ions are dissolved in a mixed salt of iodide. Then, by this, "a smooth titanium foil can be obtained directly, so that steps such as hot forging and hot rolling are not required, and the number of steps can be reduced and the yield can be improved. 1000 ppm or less) and a titanium foil with a low iron concentration (2000 ppm or less) can be obtained at low cost. "
  • Patent Document 1 discusses depositing metallic titanium having a smooth surface on the cathode, but peeling metallic titanium from the cathode was an issue to be studied.
  • Patent Literature 1 "the immersion portion of the cathode electrode is 10 mm wide ⁇ 10 mm deep" (paragraph 0031), and relatively small-sized metal titanium is deposited. Therefore, in order to apply this technique to mass production requiring deposition of titanium metal having a somewhat large dimension, it can be said that there is a need for further improvement in terms of the removability of the titanium metal from the cathode.
  • electrolysis is performed with the temperature of the molten salt bath set to 700 ° C. or higher. However, it has been found that in a high-temperature molten salt bath, exfoliation of metal titanium from the cathode may be deteriorated. Was.
  • An object of the present invention is to provide a method for producing titanium metal, which is capable of satisfactorily exfoliating titanium metal deposited on a cathode by molten salt electrolysis.
  • the inventors have set the molten salt bath to a relatively low temperature, and set the average current density of the cathode within a predetermined range for 30 minutes after the start of the titanium deposition step, so that the metal titanium deposited on the cathode afterwards. was found to be easy to peel off.
  • the method for producing metal titanium of the present invention is a method for producing metal titanium by performing electrolysis using an anode and a cathode in a molten salt bath, and using an anode containing metal titanium as the anode.
  • a titanium deposition step of depositing metal titanium on a cathode, in the titanium deposition step the temperature of the molten salt bath is set to 250 ° C. or more and 600 ° C. or less, and until 30 minutes have elapsed from the start of the titanium deposition step. the average current density of the cathode between those that maintained within the range of 0.01A / cm 2 ⁇ 0.09A / cm 2.
  • the surface area of the cathode immersion part immersed in the molten salt bath be 3000 mm 2 or more.
  • the surface of the cathode on which metal titanium is deposited in the titanium deposition step has a curved shape.
  • the cathode has a cylindrical shape.
  • the molten salt bath contains at least two members selected from the group consisting of MgCl 2 , NaCl, KCl, CaCl 2 , LiCl, an alkali metal iodide, and an alkali metal bromide.
  • the cathode may contain 70% by mass or more of any of Ti, Mo, and Fe.
  • the method for producing metallic titanium according to the present invention may further include an anode dissolving step of dissolving the anode by electrolysis in the molten salt bath prior to the titanium depositing step.
  • the method for producing titanium metal according to the present invention may further include a titanium stripping step of stripping the metal titanium deposited on the cathode from the cathode after the titanium deposition step.
  • the method for producing titanium metal according to the present invention is particularly suitable for producing a sheet-shaped titanium metal having a thickness of 20 ⁇ m to 1000 ⁇ m.
  • the temperature of the molten salt bath is set to not less than 250 ° C. and not more than 600 ° C. in the titanium precipitation step, and during the period of 30 minutes from the start of the titanium precipitation step.
  • the method for producing metal titanium according to one embodiment of the present invention is to produce metal titanium by molten salt electrolysis in which electrolysis is performed using an anode and a cathode in a molten salt bath.
  • This production method includes a titanium deposition step of depositing titanium metal on a cathode by electrolysis using a molten salt bath.
  • the molten salt in the electrolytic cell is usually in a molten state to form a molten salt bath, and an anode and a cathode connected to a power source are immersed in the molten salt bath, and a voltage is applied between the anode and the cathode.
  • Perform electrolysis in particular, in the titanium deposition step, the temperature of the molten salt bath is set to a relatively low temperature of not less than 250 ° C. and not more than 600 ° C., and the average current density of the cathode during 30 minutes from the start of the titanium deposition step is set to 0. It is important to keep it within the range of 0.01 A / cm 2 to 0.09 A / cm 2 . Thereby, in the subsequent titanium peeling step, the metallic titanium can be easily peeled off from the cathode.
  • the molten salt constituting the molten salt bath in the electrolytic cell is generally a mixture of a plurality of halides.
  • Representative halides include chlorides such as MgCl 2 , NaCl, KCl, CaCl 2 , and LiCl, bromides of alkali metals such as KBr, iodides of alkali metals such as LiI, CsI, and KI. .
  • chlorides such as MgCl 2 , NaCl, KCl, CaCl 2 , and LiCl
  • bromides of alkali metals such as KBr
  • iodides of alkali metals such as LiI, CsI, and KI.
  • the content of the alkali metal iodide in the molten salt may be 50 mol% or more, and may be 85 mol% or more.
  • the temperature of the molten salt at the time of electrolysis can be sufficiently reduced to 250 ° C. to 400 ° C.
  • the molten salt bath may include at least two selected from the group consisting of MgCl 2 , NaCl, KCl, CaCl 2 , LiCl, an alkali metal iodide, and an alkali metal bromide.
  • the molten salt bath may have a composition containing at least two selected from the group consisting of MgCl 2 , NaCl, KCl, CaCl 2 and LiCl.
  • the temperature of the molten salt bath can be 400 ° C. or more and 600 ° C. or less, or 400 ° C. or more and 550 ° C. or less.
  • the content of at least two selected from the group consisting of MgCl 2 , NaCl, KCl, CaCl 2 and LiCl in the molten salt bath may be 80 mol% or more in total.
  • the type and content of the specific salt can be appropriately determined in consideration of the operating temperature and the like.
  • the content on a molar basis described above is measured by ICP emission analysis.
  • Such a molten salt bath can have a low melting point (eutectic point) of, for example, 130 ° C. to 480 ° C. by containing the above-mentioned chloride and the like. Thereby, the temperature of the molten salt bath at the time of electrolysis described later can be lowered.
  • a low melting point eutectic point
  • the molten salt bath contains a titanium raw material such as a titanium halide in advance
  • a titanium raw material such as a titanium halide
  • metallic titanium is deposited on the cathode.
  • the titanium raw material may be a titanium halide, more specifically, TiCl 2 or TII 2 , and / or a low content containing impurities such as titanium scrap and titanium sponge.
  • Metallic titanium having a purity can be used.
  • metal titanium containing impurities may contain, for example, relatively large amounts of Fe and O as impurities.
  • TiCl 4 is brought into contact with titanium scrap or sponge titanium to generate lower-grade titanium chloride.
  • the titanium raw material is dissolved in the molten salt bath and then the metal titanium is deposited on the cathode, even if the titanium raw material contains a relatively large amount of Fe or O, it can be reduced during the deposition.
  • TiCl 2 or the like is previously mixed into the molten salt bath, the content of TiCl 2 in the molten salt bath is preferably maintained in the range of 3 mol% to 12 mol%, particularly preferably in the range of 5 mol% to 12 mol%. By setting the content within such a range, the titanium deposition step can be started without waiting for sufficient dissolution of the anode, so that titanium metal can be favorably deposited.
  • the electrolytic cell of the electrolysis apparatus used for the molten salt electrolysis may be a common one used in ordinary molten salt electrolysis, such as a container capable of storing a molten salt bath.
  • the anode contains metallic titanium.
  • the anode for example, titanium sponge, a titanium rod, and / or a titanium plate can be used.
  • titanium sponge is placed in a basket made of Ni, and by energizing the basket made of Ni, since Ni has a lower ionization tendency than Ti, Ni does not elute, Only Ti can be eluted as the anode.
  • the cathode various materials having a surface on which titanium metal is electrodeposited in a titanium deposition step described later can be used.
  • the cathode preferably contains 70% by mass or more of any of Ti, Mo and Fe.
  • the cathode may include at least one selected from the group consisting of metallic molybdenum, metallic titanium, stainless steel, and carbon steel. Since these materials are not easily eluted into Ti at 600 ° C. or lower, they do not adhere to the metal titanium deposited on the cathode, so that the metal titanium can be easily peeled off and the contamination of the metal titanium with impurities is suppressed. Is done.
  • Such an effect can be obtained as long as at least the surface of the cathode is made of metal molybdenum, metal titanium, stainless steel, and / or carbon steel by coating or the like.
  • a carbon electrode such as graphite or glassy carbon can be used as the cathode.
  • the cathode can be replaced before the subsequent titanium deposition step.
  • a metal other than Ti may be deposited on the cathode. Therefore, if the titanium depositing step is performed using the cathode in this state, the purity of the resulting titanium metal decreases. Further, there is a possibility that the precipitated Ti may be alloyed and the removability may be reduced. Therefore, it is preferable to replace the cathode after supplying the titanium raw material to the molten salt bath in the anode dissolving step.
  • the shape of the cathode it is preferable that at least a part of the surface on which the metal titanium is electrodeposited has a curved shape. If the anode surface and the cathode surface are both curved surfaces, in particular, cylindrical shapes, the distance between the electrodes can be easily made constant, so that metal titanium can be more uniformly deposited over a wide area. From this viewpoint, it is preferable that the anode surface and the cathode surface have similar curved surface shapes. On the other hand, when the anode surface and the cathode surface are both flat, the current may flow to the back side of the plate, or the current may be concentrated at the corners, and the thickness of the deposited metal titanium may vary.
  • the cathode has a cylindrical shape means that the portion where the metallic titanium is deposited has a cylindrical shape. Therefore, even when a cylindrical cathode is used, it corresponds to the cylindrical cathode.
  • the metal titanium is immersed in a molten salt bath to electrodeposit the metal titanium, and then withdrawn from the molten salt bath to deposit the metal titanium on the surface.
  • anode melting step As described above, when a titanium raw material such as titanium chloride is not mixed in the molten salt bath in advance, an anode dissolving step of dissolving the anode by electrolysis in the molten salt bath can be performed before the titanium precipitation step. When the titanium raw material is separately mixed in advance in the molten salt bath, the anode dissolving step can be omitted, but the anode dissolving step may be further performed.
  • anode dissolving step in substantially the same manner as general molten salt electrolysis, while maintaining the molten salt bath at a predetermined temperature, an appropriate size of the anode and the cathode immersed in the molten salt bath are provided. Apply current.
  • the anode containing the metallic titanium melts into the molten salt bath, and the raw material of the metallic titanium deposited on the cathode is supplied to the molten salt bath. That is, here, the anode functions to supply the titanium raw material to the molten salt bath, like a so-called consumable electrode.
  • Temperature of the molten salt bath in anodic dissolution process may be a 250 ° C. ⁇ 600 ° C.
  • an average current density of the cathode may also be a 0.01A / cm 2 ⁇ 2.00A / cm 2.
  • the average current is an average value of the current flowing at a predetermined time for obtaining the average current density. In the anode melting step, it is the average value of the current flowing in all steps. In the titanium deposition step described later, the average value of the current passed during the time from the start of the step until 30 minutes have elapsed is used.
  • titanium deposition process After the above-described anode dissolving step, the cathode can be replaced as necessary, and a titanium deposition step can be performed. When the anode dissolving step is omitted, the titanium depositing step can be performed immediately after the inside of the electrolytic bath is turned into a molten salt bath.
  • titanium in the molten salt bath is deposited as metal titanium on the cathode by applying a voltage between the anode and the cathode.
  • a metal other than titanium metal may be electrodeposited on the cathode, so by replacing the cathode after the anode dissolving step and before the titanium depositing step, a higher purity metal can be obtained. Titanium can be manufactured.
  • the temperature of the molten salt bath is set to 250 ° C. or more and 600 ° C. or less, and the average current density of the cathode during the period of 30 minutes from the start of the titanium deposition step is set to 0.01 A / cm 2 to 0 A. It is maintained within the range of 0.09 A / cm 2 .
  • the average current density of the cathode When the average current density of the cathode is 0.01 A / cm 2 or more, a good titanium deposition amount is obtained. When the average current density of the cathode is 0.09 A / cm 2 or less, the removability of the titanium metal can be improved. By maintaining the average current density in the above range from the start of the titanium precipitation step to the lapse of 30 minutes (hereinafter, also referred to as “precipitation start period”), good peelability can be exhibited.
  • the start of the titanium deposition step means the time when the deposition of titanium metal on the cathode has started.
  • the temperature of the molten salt bath is more preferably 250 ° C. or more and 550 ° C. or less. More preferably, the average current density for 30 minutes after the start of the titanium deposition step is maintained in the range of 0.04 A / cm 2 to 0.09 A / cm 2 .
  • the average current density of the cathode can be a 0.01A / cm 2 ⁇ 5.00A / cm 2.
  • the upper limit of the average current density of the cathode may be 2.00 A / cm 2 or less.
  • a steady current when metallic titanium is deposited on the cathode by electrolysis, a steady current can be used, but a pulse current for ON / OFF control can be used.
  • the pulse current of the ON / OFF control means that the supply of the current for depositing the metal titanium and the stop of the current supply are alternately repeated. Switching to three or more current values may be repeated.
  • the pulse current for the ON / OFF control By using the pulse current for the ON / OFF control, the non-uniformity of the concentration of Ti is eliminated or reduced by the concentration diffusion when the current supply is stopped. As a result, it is considered that higher purity metallic titanium can be obtained.
  • a gradient current can be used.
  • the term “gradient current” means that the amount of current is increased, decreased, or alternately increased or decreased over time. The degree of increase or decrease can be changed on the way. When such a pulse current or gradient current is employed, the average current density of the cathode can be obtained in the same manner as the above-described calculation method
  • the surface area (that is, the contact area between the molten salt bath and the surface of the cathode) of the cathode, which is a portion immersed in the molten salt bath, which is a portion to be immersed in the molten salt bath may be 3000 mm 2 or more, and further 4000 mm 2 or more. It is suitable, more preferably 6000 mm 2 or more, especially 8000 mm 2 or more. This makes it possible to obtain large-sized sheet-shaped metal titanium having a large surface area on the front and back surfaces.
  • titanium peeling process After the titanium deposition step, a titanium stripping step of stripping the metal titanium deposited on the cathode from the cathode is performed.
  • various methods for peeling the titanium metal can be employed. For example, a mode (mechanical peeling) in which a part of the metallic titanium is gripped and the metallic titanium is physically peeled from the cathode can be adopted.
  • the temperature of the molten salt bath is set to 250 ° C. or more and 600 ° C. or less, and the average current density of the cathode is set to 0.
  • the temperature of the molten salt bath is set to 250 ° C. or more and 600 ° C. or less, and the average current density of the cathode is set to 0.
  • the metal titanium thus produced is preferably in the form of a sheet, more preferably in the form of a foil, and may have a thickness of, for example, about 20 ⁇ m to 1000 ⁇ m.
  • the lower limit of the thickness can be 60 ⁇ m or more.
  • a section in the thickness direction is observed at 100 times along one side of the sheet with an optical microscope, the thickness is obtained at 10 points, and the average value is defined as the thickness of the metal titanium.
  • the metal titanium produced tends to be thicker as the electrolysis time is longer. Further, in this embodiment, even if the front and back surfaces are sheet-like metal titanium having a large dimension of, for example, about 100 mm 2 to 10000 mm 2, the sheet titanium can be effectively peeled off from the cathode and effectively manufactured. .
  • the content of oxygen and iron that can be contained in the produced metal titanium is reduced by the amount of titanium such as the anode. It can be less than what can be included in the raw materials.
  • the oxygen content can be reduced to 300 ppm by mass or less.
  • the iron content of the metal titanium can be reduced to 300 mass ppm or less.
  • the temperature of the molten salt bath was lowered to 520 ° C., and this temperature was maintained during the energization thereafter.
  • a mixture of titanium sponge and TiCl 4 was mixed in a molten salt bath, thereby supplying 6 mol% of Ti to the molten salt bath. All of these operations were performed in an Ar atmosphere.
  • the anode a metal titanium plate formed into a cylindrical shape having an inner diameter of 89 mm and a height of 100 mm was used.
  • the cathode a cylindrical one made of metal molybdenum, metal titanium, or carbon steel was used.
  • the surface of the cathode has a curved surface, more specifically, the cathode has a cylindrical shape.
  • the cylindrical anode is arranged so that its central axis is substantially parallel to the depth direction of the molten salt bath, and At the center of the inside, a cylindrical cathode was arranged.
  • a pulse current which alternately energized and stopped at predetermined intervals, was applied to the anode and the cathode, thereby performing electrolysis, dissolving the anode, and depositing titanium metal on the cathode in the form of a foil.
  • Table 1 shows various conditions of Examples 1 to 7 and Comparative Examples 1 to 3.
  • the average current density of the cathode was 0.01 A / D throughout the energization period including 30 minutes from the start of energization.
  • a pulse current was applied so as to be maintained between cm 2 and 0.09 A / cm 2 . That is, the average current densities from the start of the titanium deposition step to 30 minutes and after 30 minutes are the same.
  • Comparative Examples 1 and 2 the average current density of the cathode was set to be higher than 0.09 A / cm 2 throughout the energization period including the period from the start of energization to the lapse of 30 minutes.
  • Example 1 (Analysis of titanium metal) For Example 1, the analysis of oxygen in the metallic titanium was performed by an infrared absorption method using an inert gas dissolution. In Example 1, iron in the titanium metal was analyzed by fluorescent X-ray analysis on the dissolved titanium metal. As a result, the oxygen concentration of the metal titanium obtained in Example 1 was 175 mass ppm, and the iron concentration was 6 mass ppm. Since the oxygen concentration of the titanium metal anode used as the raw material was 700 ppm and the iron concentration was 600 ppm, it was confirmed that the metal titanium obtained in Example 1 had high purity.
  • Example 8 After a lapse of 30 minutes from the energization (after the start of the titanium precipitation step), the cathode was placed on the cathode under the same conditions as in Example 1 except that the average current density was set to 0.11 A / cm 2 exceeding 0.09 A / cm 2. Was deposited with titanium metal. As a result, similarly to Example 1, the foil-shaped metal titanium did not show any external appearance even in a large area, and showed high peelability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

溶融塩浴で、陽極及び陰極を用いて電気分解を行い、金属チタンを製造する方法であって、前記陽極として、金属チタンを含有する陽極を使用し、金属チタンを陰極上に析出させるチタン析出工程を含み、前記チタン析出工程で、溶融塩浴の温度を250℃以上かつ600℃以下とするとともに、当該チタン析出工程の開始時から30分経過するまでの間の前記陰極の平均電流密度を0.01A/cm2~0.09A/cm2の範囲内に維持する。

Description

金属チタンの製造方法
 この発明は、溶融塩浴で、陽極及び陰極間への電圧の印加により電気分解を行って、金属チタンを製造する方法に関するものである。特にこの発明は、陰極上に電着する金属チタンの、陰極からの剥離性を向上させる技術を提案するものである。
 金属チタンは、大量生産に適したクロール法により製造することが一般的である。このクロール法では、はじめに、チタン鉱石に含まれる酸化チタンを塩素と反応させ、四塩化チタンを生成する。そして、この四塩化チタンを金属マグネシウムで還元し、スポンジ状の金属チタン、いわゆるスポンジチタンを得る。
 ここで、比較的薄い厚みの箔状等のシート状の金属チタンを製造するには、上記のスポンジチタンを溶解するとともに鋳造してチタンインゴットやチタンスラブとした後、さらに鍛造や圧延その他の所要の加工を施すことが必要になる。それ故に、このような溶解及び加工を要するプロセスでは、箔状その他のシート状等の所定の形状の金属チタンを効率的かつ低コストで製造できるとは言い難い。
 かかる状況の下、上述した溶解及び加工に代えて、溶融塩浴を用いて金属チタンを析出させる溶融塩電解を採用することが、製造プロセスでの消費エネルギーの削減及びコストの低減の観点から注目されている。
 これに関連する技術としては、たとえば特許文献1に記載されたもの等がある。特許文献1には、「溶融塩電解法で金属チタンを製造する方法において、カソード電極の少なくともチタン電析面が金属モリブデンあるいは金属シリコンであり、溶融塩浴がアルカリ金属の塩化物又は塩化物とヨウ化物の混合塩にチタンイオンが溶解した溶融塩浴である、ことを特徴とする金属チタン箔の製造方法」が記載されている。そして、これにより、「直接平滑なチタン箔が得られるため、熱間鍛造や熱間圧延などの工程が不要となり、工程削減や歩留向上が可能であり、工業用純チタンレベルの低酸素(1000ppm以下)、低鉄濃度(2000ppm以下)のチタン箔を低コストで得られる。」とされている。
特開2017-137551号公報
 ところで、溶融塩浴で、陽極及び陰極間への電圧の印加に基いて電気分解を行う溶融塩電解では、陰極上に金属チタンを析出させた後、該金属チタンを陰極から剥離させることを要する。特に、このような溶融塩電解による金属チタンの製造を工業的に利用しようとすれば、シート状の金属チタンの表裏面の面積の増大等に伴って、陰極からの剥離性の問題が顕在化する。
 この点に関し、特許文献1は、陰極上に、表面が平滑な金属チタンを析出させることについては検討されているものの、陰極から金属チタンを剥離させることは検討課題であった。特許文献1では、「カソード電極の浸漬部は10mm幅×10mm深さ」としており(段落0031)、比較的小さな寸法の金属チタンを析出させている。したがって、この技術を、ある程度大きな寸法の金属チタンの析出を要する量産に適用するには、陰極からの金属チタンの剥離性の観点で更なる改善の必要性があるといえる。
 また特許文献1では、溶融塩浴の温度を700℃以上として電気分解を行っているが、高温の溶融塩浴では、陰極からの金属チタンの剥離性の悪化を招く場合があることが解かった。
 この発明の目的は、溶融塩電解により陰極上に析出する金属チタンを良好に剥離することのできる金属チタンの製造方法を提供することにある。
 発明者は鋭意検討の結果、溶融塩浴を比較的低温とし、かつ、チタン析出工程開始後30分間の陰極の平均電流密度を所定の範囲とすることにより、その後に陰極上に析出する金属チタンの剥離が容易になることを見出した。
 この発明の金属チタンの製造方法は、溶融塩浴で、陽極及び陰極を用いて電気分解を行い、金属チタンを製造する方法であって、前記陽極として、金属チタンを含有する陽極を使用し、金属チタンを陰極上に析出させるチタン析出工程を含み、前記チタン析出工程で、溶融塩浴の温度を250℃以上かつ600℃以下とするとともに、当該チタン析出工程の開始時から30分経過するまでの間の前記陰極の平均電流密度を0.01A/cm2~0.09A/cm2の範囲内に維持するというものである。
 ここで、チタン析出工程では、前記溶融塩浴に浸漬させる陰極浸漬部分の表面積を3000mm2以上とすることが好ましい。
 またここで、チタン析出工程で金属チタンを析出させる前記陰極の表面は、曲面形状を有することが好ましい。
 この場合、前記陰極は円筒形状を有することがより一層好ましい。
 そしてまた、前記溶融塩浴が、MgCl2、NaCl、KCl、CaCl2、LiCl、アルカリ金属のヨウ化物、およびアルカリ金属の臭化物からなる群から選択される少なくとも二種を含むことが好ましい。
 なお、前記陰極は、Ti、MoまたはFeの何れかを70質量%以上含むものとすることができる。
 この発明の金属チタンの製造方法は、チタン析出工程に先立ち、前記溶融塩浴で電気分解により前記陽極を溶解させる陽極溶解工程をさらに含むことができる。
 この発明の金属チタンの製造方法は、チタン析出工程の後、前記陰極上に析出した金属チタンを、該陰極から剥離させるチタン剥離工程をさらに含むことができる。
 この発明の金属チタンの製造方法は、20μm~1000μmの厚さを有するシート状の金属チタンを製造することに特に適している。
 この発明の金属チタンの製造方法によれば、チタン析出工程で、溶融塩浴の温度を250℃以上かつ600℃以下とするとともに、当該チタン析出工程の開始時から30分経過するまでの間の前記陰極の平均電流密度を0.01A/cm2~0.09A/cm2の範囲内に維持することにより、溶融塩電解により陰極上に析出する金属チタンを良好に剥離することができる。
 以下に、この発明の実施の形態について詳細に説明する。
 この発明の一の実施形態に係る金属チタンの製造方法は、溶融塩浴で、陽極及び陰極を用いて電気分解を行う溶融塩電解により、金属チタンを製造するものである。この製造方法は、溶融塩浴を用いた電気分解で、陰極上に金属チタンを析出させるチタン析出工程を含む。
 チタン析出工程は通常、電解槽内の溶融塩を溶融状態として溶融塩浴とし、この溶融塩浴に、電源に接続した陽極及び陰極を浸漬させ、それらの陽極及び陰極間に電圧を印加して電気分解を行う。特にチタン析出工程では、溶融塩浴の温度を、250℃以上かつ600℃以下と比較的低温にするとともに、チタン析出工程の開始時から30分経過するまでの間の陰極の平均電流密度を0.01A/cm2~0.09A/cm2の範囲内に維持することが重要になる。それにより、その後のチタン剥離工程で、陰極から金属チタンを容易に引き剥がすことができる。
(溶融塩浴)
 電解槽内の溶融塩浴を構成する溶融塩は一般に、ハロゲン化物を複数種類混ぜ合わせたものとする。代表的なハロゲン化物としては、MgCl2やNaCl、KCl、CaCl2、LiCl等の塩化物、KBr等のアルカリ金属の臭化物、LiIやCsI、KI等のアルカリ金属のヨウ化物等を挙げることができる。これらのうちの二種以上を含むことにより、ある程度低温としても溶融塩浴の溶融状態を良好に維持できるので、チタン析出工程での溶融塩浴の先述した低い温度範囲を実現しやすくなる。
 なお、溶融塩中のアルカリ金属のヨウ化物の含有量は、50mol%以上としてよく、さらに85mоl%以上とすることとしてよい。このようにアルカリ金属のヨウ化物を主体とした組成では、例えば電気分解時の溶融塩の温度を250℃~400℃と十分低下させることができる。
 溶融塩浴は、MgCl2、NaCl、KCl、CaCl2、LiCl、アルカリ金属のヨウ化物、およびアルカリ金属の臭化物からなる群から選択される少なくとも二種を含むものとしてよい。
 なかでも、溶融塩浴は、MgCl2、NaCl、KCl、CaCl2及びLiClからなる群から選択される少なくとも二種を含む組成としてもよい。この場合、溶融塩浴の温度は400℃以上600℃以下、また400℃以上550℃以下とすることができる。この場合、溶融塩浴における、MgCl2、NaCl、KCl、CaCl2及びLiClからなる群から選択される少なくとも二種の含有量は、合計で80mol%以上としてよい。
 但し、上記のような塩化物等のハロゲン化物は、操業温度等を考慮して、その具体的な塩の種類や含有量を適宜決定することができる。なお、上述したモル基準の含有量は、ICP発光分析により測定する。
 かかる溶融塩浴は、上述したような塩化物等を含むことにより、融点(共晶点)を、たとえば130℃~480℃と低いものとすることができる。これにより、後述の電気分解に際する溶融塩浴の温度を低くすることができる。
 なお、溶融塩浴がハロゲン化チタン等といったチタン原料を事前に含むものとして、電気分解の開始前に予め、溶融塩浴にチタン原料を存在させることも可能である。チタン析出工程では、金属チタンが陰極に析出する。なお、溶融塩浴にチタン原料を予め混合する場合、チタン原料としては、ハロゲン化チタン、より詳細には、TiCl2やTiI2、及び/又は、チタンスクラップやスポンジチタンのような不純物を含む低純度の金属チタン等を挙げることができる。このうち、不純物を含む金属チタンは、たとえば、不純物としてFeやOを比較的多く含む場合がある。チタンスクラップやスポンジチタンをチタン原料として使用する場合は、これらとTiCl4を接触させてより低級の塩化チタンを生成させればよい。この実施形態では、チタン原料は溶融塩浴に溶解してから陰極に金属チタンを析出するので、チタン原料はFeやOを比較的多く含んでいても、析出時にはこれらを低減可能である。
 溶融塩浴にTiCl2等を予め混合する場合、溶融塩浴中のTiCl2の含有量は、3mоl%~12mоl%の範囲内、特に5mоl%~12mоl%の範囲内に維持することが好ましい。このような範囲内とすることにより、陽極の十分な溶解を待たずにチタン析出工程を開始可能であり、良好に金属チタンを析出させることができる。
 但し、後述の陽極溶解工程が行われる場合は、金属チタンを含有する陽極の溶解に起因して、陰極に析出させる金属チタンの原料になるチタン原料が、溶融塩浴に供給されると推測される。これにより、その後のチタン析出工程で、金属チタンを陰極に析出させることができる。この場合、溶融塩浴にTiCl2等を予め混合することは必ずしも必要ではない。
(電解装置)
 溶融塩電解で用いる電解装置の電解槽は、通常の溶融塩電解で用いられ、溶融塩浴を貯留できる容器状等の一般的なものを用いることができる。
 ここで、電解槽内の溶融塩浴に浸漬させる陽極及び陰極のうち、陽極は、金属チタンを含有するものとする。陽極としては、たとえば、スポンジチタン、チタン棒及び/又はチタン板等を用いることができる。スポンジチタンを陽極として使用する場合は、スポンジチタンをNi製の籠内に設置し、Ni製の籠に通電することで、NiはTiよりもイオン化傾向が低いため、Niは溶出せずに、Tiのみを陽極として溶出させることができる。
 またここで、陰極としては、後述のチタン析出工程で表面に金属チタンが電着する様々な材質のものを用いることができる。そのなかでも、陰極は、Ti、MoまたはFeの何れかを70質量%以上含むことが好ましい。たとえば、陰極は、金属モリブデン、金属チタン、ステンレス鋼および炭素鋼からなる群から選択される少なくとも一種を含むものとしてよい。これらの材質は600℃以下であればTiに溶出しにくいことから、陰極に析出した金属チタンと密着せず、当該金属チタンが容易に剥離可能になるとともに、金属チタンへの不純物の混入が抑制される。陰極は、コーティング等により、少なくともその表面が、金属モリブデン、金属チタン、ステンレス鋼および/または炭素鋼からなるものであれば、このような効果を得ることができる。但し、陰極としては、これら以外にも、黒鉛やグラッシーカーボン等の炭素電極等も採用可能である。
 なお、後述の陽極溶解工程を行う場合、その後のチタン析出工程に先立って、陰極を交換することができる。陽極溶解工程では陰極にTi以外の金属が析出しうるので、この状態の陰極を使用してチタン析出工程を行うと、それにより得られる金属チタンの純度が低下する。また、析出するTiが合金化し剥離性が低下するおそれもある。よって、陽極溶解工程にて溶融塩浴にチタン原料を供給した後、陰極を交換することが好ましい。
 そしてまた、陰極の形状としては、金属チタンが電着するその表面の少なくとも一部が、曲面形状であることが好適である。陽極表面および陰極表面をともに曲面形状、特に円筒形状とすると電極間距離を一定としやすいため、広い面積においてより均一に金属チタンを析出させることができる。この観点から、陽極表面および陰極表面は、互いに相似な曲面形状を有することが好ましい。一方、陽極表面および陰極表面をともに平板形状とした場合は板の裏側への電流の回り込みや、角に電流が集中し、析出する金属チタンの厚さばらつきが起きるおそれがある。
 さらに、たとえば、いわゆるロール形状電極として陰極全体を円柱状とすること等により、陰極の表層側を円筒形状とすることは、金属チタンを連続的に製造できるようになるので、生産性の観点から有利である。陰極が円筒形状であるとは、金属チタンが析出する部位が円筒形状であることを意味する。よって、円柱状の陰極を使用した場合でも前記円筒形状の陰極に該当する。この場合、たとえば、円筒形状の陰極をその中心軸周りに回転させながら、溶融塩浴に浸漬させて金属チタンを電着させ、その後に溶融塩浴から引き揚げて、当該表面に電着した金属チタンを剥離させるという操作を連続的に行うことにより、連続的に長尺の金属チタンを製造することができる。
(陽極溶解工程)
 先述したように、予め溶融塩浴に塩化チタン等のチタン原料を混合させない場合、チタン析出工程の前に、溶融塩浴で電気分解により陽極を溶解させる陽極溶解工程を行うことができる。なお、溶融塩浴にチタン原料を予め別途混合した場合は、陽極溶解工程を省略することもできるが、さらに陽極溶解工程を行ってもよい。
 陽極溶解工程では、一般的な溶融塩電解と実質的に同様にして、溶融塩浴を所定の温度に維持した状態で、溶融塩浴に浸漬させた陽極及び陰極間に、適切な大きさの電流を流す。
 これにより、金属チタンを含有する陽極は溶融塩浴に溶け出し、溶融塩浴に陰極に析出する金属チタンの原料が供給される。つまり、ここでは、陽極は、いわゆる消耗電極のように、チタン原料を溶融塩浴へ供給するべく機能する。
 陽極溶解工程での溶融塩浴の温度は、250℃~600℃とすることができ、また陰極の平均電流密度は、0.01A/cm2~2.00A/cm2とすることができる。これにより、陽極の溶解が良好に行われる。
 ここで、陰極の平均電流密度は、式:平均電流密度(A/cm2)=平均電流(A)÷電解面積(cm2)により算出することができる。ここで、電解面積については、たとえば円筒形状の陰極の場合、式:電解面積(cm2)=陰極浸漬表面積=陰極直径(cm)×3.14×陰極高さ(cm)で算出する。また、平均電流は、平均電流密度を求める所定の時間に流す電流の平均値である。陽極溶解工程では、全工程で流した電流の平均値である。後述するチタン析出工程では工程開始時から30分経過するまでの間に流した電流の平均値を使用する。
(チタン析出工程)
 上記の陽極溶解工程の後、必要に応じて陰極を交換し、チタン析出工程を行うことができる。なお、陽極溶解工程を省略した場合は、電解槽内を溶融塩浴とした後に直ちに、チタン析出工程を行うことができる。
 チタン析出工程では、陽極及び陰極間への電圧の印加により、陰極上に、溶融塩浴中のチタンが金属チタンとして析出する。上記の陽極溶解工程で陰極上には金属チタンではない金属が電着されていることがあるので、陽極溶解工程後かつチタン析出工程前に陰極を交換しておくことで、より高純度の金属チタンを製造することができる。
 チタン析出工程では、溶融塩浴の温度を250℃以上かつ600℃以下とするとともに、チタン析出工程開始時から30分経過するまでの間の陰極の平均電流密度を0.01A/cm2~0.09A/cm2の範囲内に維持する。
 溶融塩浴の温度を250℃以上とすることにより、溶融塩浴の良好な溶融状態を維持することができる。溶融塩浴の温度を600℃以下とすることにより、析出する金属チタンと陰極との間に、それらの金属からなる合金が形成されにくくなるので、陰極からの金属チタンの剥離性を向上させることができる。また高温とすることに起因するコストの増大も抑制することができる。
 陰極の平均電流密度を0.01A/cm2以上とすれば、良好なチタン析出量となる。また、陰極の平均電流密度を0.09A/cm2以下とすることにより、金属チタンの剥離性を良好とすることができる。チタン析出工程を開始した時から30分経過するまでの間(以下、「析出開始期間」ともいう。)の平均電流密度を上記範囲に維持することで、良好な剥離性を発揮可能である。ここで、チタン析出工程の開始時とは、陰極上への金属チタンの析出が始まったときを意味する。
 このような観点から、溶融塩浴の温度は250℃以上かつ550℃以下とすることがより一層好ましい。またチタン析出工程開始後30分間の平均電流密度は0.04A/cm2~0.09A/cm2の範囲内に維持することがより一層好ましい。
 析出開始期間が経過した後は、陰極の平均電流密度を、0.01A/cm2~5.00A/cm2とすることができる。析出開始期間が経過した後は、陰極の平均電流密度の上限側は2.00A/cm2以下としてよい。
 チタン析出工程では、電気分解で金属チタンを陰極上に析出させるに際しては、定常電流とすることもできるが、ON/OFF制御のパルス電流とすることができる。このON/OFF制御のパルス電流とは、金属チタンを析出させるための電流の供給と、電流供給の停止とを交互に繰り返すことを意味する。三段階以上の電流値に切り替えることを繰り返してもよい。ON/OFF制御のパルス電流とすることにより、電流供給停止時に濃度拡散によりTiの濃度の不均一が解消もしくは緩和される。その結果として、より高純度の金属チタンを得ることができると考えられる。
 あるいは、傾斜電流とすることも可能である。傾斜電流とは、時間の経過に伴い、電流量を増加させ、もしくは減少させ、又は、増減を交互に行うことを意味する。増加もしくは減少の程度を途中で変化させることもできる。
 このようなパルス電流もしくは傾斜電流を採用する場合、陰極の平均電流密度は、上述した算出方法と同様にして求めることができる。
 なおここでは、陰極の、溶融塩浴に浸漬させる部分である陰極浸漬部分の表面積(すなわち、溶融塩浴と陰極の表面との接触面積)を、3000mm2以上、さらに4000mm2以上とすることが好適であり、より好ましくは6000mm2以上、特に8000mm2以上とする。これにより、表裏の表面積が大きな大型のシート状等の金属チタンを得ることができる。
(チタン剥離工程)
 チタン析出工程の後は、陰極上に析出した金属チタンを、該陰極から剥離させるチタン剥離工程を行う。
 ここでは、金属チタンを剥離させる種々の手法を採用することができる。たとえば、金属チタンの一部を把持し、物理的に陰極から金属チタンを剥離する形態(機械的な剥離)等を採用できる。
 この実施形態では、先述したように、特にチタン析出工程で、溶融塩浴の温度を250℃以上かつ600℃以下とするとともに、チタン析出工程開始後30分間の前記陰極の平均電流密度を0.01A/cm2~0.09A/cm2の範囲内に維持することにより、表面及び裏面の面積の大きな比較的大型のシート状等の金属チタンであっても、陰極から容易に剥離させることができる。
 このようにして製造された金属チタンは、好ましくはシート状、より好ましくは箔状であり、たとえば20μm~1000μm程度の厚さを有するものとすることができる。該厚さの下限側は60μm以上とすることができる。金属チタンの厚さを算出するには、光学顕微鏡にてシートの1辺に沿って厚み方向断面を100倍で観察し、10点で厚みを求め、その平均値を金属チタンの厚みとする。なお、電解時間を長くするほど製造される金属チタンは厚くなる傾向にある。
 また、この実施形態では、表面及び裏面の面積が、たとえば100mm2~10000mm2程度の大きな寸法を有するシート状の金属チタンであっても、陰極から良好に剥離させて有効に製造することができる。
 またここでは、金属チタンを、上述したように電気分解により陰極の表面に析出させて製造することから、これにより製造された金属チタンに含まれ得る酸素及び鉄の含有量を、陽極等のチタン原料に含まれ得るものよりも少なくすることができる。たとえば、この実施形態に従って製造した金属チタンでは、酸素の含有量は300質量ppm以下まで低減することができる。また、当該金属チタンの鉄の含有量は300質量ppm以下に低減可能である。
 次に、この発明の金属チタンの製造方法を試験的に実施し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、それに限定されることを意図するものではない。
(通電前)
 内径が106mmで高さが350mmの円筒状のNiるつぼ内に、NaCl:725g(関東化学株式会社製の特級、事前に200℃の真空乾燥を1日実施)、KCl:616g(関東化学株式会社製の特級、事前に200℃の真空乾燥を1日実施)、MgCl2:1967g(クロール法の還元工程で副生された無水のMgCl2)を投入し、外熱ヒーターで700℃まで昇温し、溶解させて、これを溶融塩浴とした。
 その後、比較例3を除き溶融塩浴の温度を520℃に低下させ、以後通電中もこの温度を維持した。なお通電前に、スポンジチタンにTiCl4を添加したものを溶融塩浴に混合し、これにより溶融塩浴に6mol%のTiを供給した。これらの作業は全てAr雰囲気下で行った。
(通電後)
 陽極としては、金属チタン板を、内径89mm、高さ100mmの円筒形状に成形したものを用いた。また陰極としては、金属モリブデン、金属チタン、もしくは炭素鋼からなる円柱形状のものを用いた。この陰極の表面は、曲面形状、より具体的には陰極は円筒形状である。
 これらの陽極及び陰極の電解槽内での配置態様については、円筒形状の陽極を、その中心軸線が溶融塩浴の深さ方向とほぼ平行になるように配置するとともに、この円筒形状の陽極の内側の中心に、円柱形状の陰極を配置した。
 上記の陽極及び陰極に、所定の間隔で通電及び停止を繰り返すパルス電流を流し、それにより電気分解を行って、陽極を溶解させ、陰極上に金属チタンを箔状に析出させた。実施例1~7ならびに比較例1~3の各種条件を、表1に示す。
 ここで、実施例1~7及び比較例3では、表1に示すように、通電開始時から30分経過するまでの間を含む通電期間の全体を通して、陰極の平均電流密度が0.01A/cm2~0.09A/cm2に維持されるようにパルス電流を流した。すなわち、チタン析出工程の開始から30分までと30分以降の平均電流密度は同じである。一方、比較例1及び2では、通電開始時から30分経過するまでの間を含む通電期間の全体を通して、陰極の平均電流密度を0.09A/cm2より高くなるようにした。
(金属チタンの回収)
 電気分解の終了後、陰極を溶融塩浴から引き揚げて水洗し、その表面に付着していた溶融塩を除去した。いずれの実施例1~7ならびに比較例1~3においても、陰極浸漬部分の表面積と同等のサイズの金属チタンが陰極上に析出した。また、いずれの実施例1~7ならびに比較例1~3も、陰極に箔状の金属チタンが析出し、その箔状の金属チタンは外観で孔が観察されなかった。
 その後、乾燥させた金属チタンにカッターで切り込みを入れ、ピンセットおよび手で金属チタンの切り込み部を掴み、手の力による陰極からの剥ぎ取りを試みた。手で剥離できたものは高剥離性とし、剥離できなかったものは低剥離性として、表1に示す。低剥離性であった例における金属チタンの回収は、硝酸と硫酸の混合液で陰極を溶解することにより行った。
Figure JPOXMLDOC01-appb-T000001
 表1に示すところから、陰極の平均電流密度を0.01A/cm2~0.09A/cm2の範囲内に維持した実施例1~7では、手で剥離できる高剥離性となり、この一方で、陰極の平均電流密度をそれよりも大きくした比較例1及び2では、手で剥離できない低剥離性となったことが解かる。また、溶融塩の温度が高温であった比較例3においても手で剥離できない低剥離性となった。
(金属チタンの分析)
 実施例1について、金属チタン中の酸素の分析を、不活性ガス溶解による赤外線吸光法で行った。また、実施例1について、金属チタン中の鉄の分析を、溶解した当該金属チタンに対して蛍光X線分析で行った。
 その結果、実施例1で得られた金属チタンの酸素濃度は175質量ppm、鉄濃度は6質量ppmであった。原料とした金属チタン製の陽極の酸素濃度は700ppm、鉄濃度は600ppmであったことから、実施例1で得られた金属チタンは高純度になっていたことを確認した。
(実施例8)
 通電後(チタン析出工程開始後)30分を経過した後は平均電流密度を0.09A/cm2超の0.11A/cm2とした点以外は実施例1と同様の条件にて陰極上に金属チタンを析出させた。その結果、実施例1と同様に箔状の金属チタンは大面積でも外観で孔が観察されず、かつ高剥離性を示した。
(比較例4)
 通電後(チタン析出工程開始後)27分を経過した後は平均電流密度を0.09A/cm2超の0.11A/cm2とした点以外は実施例1と同様の条件にて陰極上に金属チタンを析出させた。その結果、得られた箔状の金属チタンは、外観に孔は観察されなかったが、手で剥離できない低剥離性を示した。

Claims (9)

  1.  溶融塩浴で、陽極及び陰極を用いて電気分解を行い、金属チタンを製造する方法であって、
     前記陽極として、金属チタンを含有する陽極を使用し、
     金属チタンを陰極上に析出させるチタン析出工程を含み、前記チタン析出工程で、溶融塩浴の温度を250℃以上かつ600℃以下とするとともに、当該チタン析出工程の開始時から30分経過するまでの間の前記陰極の平均電流密度を0.01A/cm2~0.09A/cm2の範囲内に維持する、金属チタンの製造方法。
  2.  チタン析出工程で、前記溶融塩浴に浸漬させる陰極浸漬部分の表面積を3000mm2以上とする、請求項1に記載の金属チタンの製造方法。
  3.  チタン析出工程で金属チタンを析出させる前記陰極の表面が、曲面形状を有する、請求項1又は2に記載の金属チタンの製造方法。
  4.  前記陰極が円筒形状を有する、請求項3に記載の金属チタンの製造方法。
  5.  前記溶融塩浴が、MgCl2、NaCl、KCl、CaCl2、LiCl、アルカリ金属のヨウ化物、およびアルカリ金属の臭化物からなる群から選択される少なくとも二種を含む、請求項1~4のいずれか一項に記載の金属チタンの製造方法。
  6.  前記陰極が、Ti、MoまたはFeの何れかを70質量%以上含む、請求項1~5のいずれか一項に記載の金属チタンの製造方法。
  7.  チタン析出工程に先立ち、前記溶融塩浴で電気分解により前記陽極を溶解させる陽極溶解工程をさらに含む、請求項1~6のいずれか一項に記載の金属チタンの製造方法。
  8.  チタン析出工程の後、前記陰極上に析出した金属チタンを、該陰極から剥離させるチタン剥離工程をさらに含む、請求項1~7のいずれか一項に記載の金属チタンの製造方法。
  9.  20μm~1000μmの厚さを有するシート状の金属チタンを製造する、請求項1~8のいずれか一項に記載の金属チタンの製造方法。
PCT/JP2019/028327 2018-08-31 2019-07-18 金属チタンの製造方法 WO2020044841A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/267,572 US11649554B2 (en) 2018-08-31 2019-07-18 Method for producing metal titanium
JP2020540138A JP7370988B2 (ja) 2018-08-31 2019-07-18 金属チタンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018162961 2018-08-31
JP2018-162961 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020044841A1 true WO2020044841A1 (ja) 2020-03-05

Family

ID=69643231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028327 WO2020044841A1 (ja) 2018-08-31 2019-07-18 金属チタンの製造方法

Country Status (3)

Country Link
US (1) US11649554B2 (ja)
JP (1) JP7370988B2 (ja)
WO (1) WO2020044841A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230403A1 (ja) * 2021-04-30 2022-11-03 東邦チタニウム株式会社 金属チタンの製造方法及び金属チタン電析物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS31701B1 (ja) * 1953-05-01 1956-02-06
JPS318007B1 (ja) * 1955-03-30 1956-09-15
JPS4828538B1 (ja) * 1969-04-14 1973-09-03
JPH03177594A (ja) * 1989-12-06 1991-08-01 Nippon Mining Co Ltd 高純度チタンの製造方法及び装置
JPH06173065A (ja) * 1992-12-09 1994-06-21 Japan Energy Corp Tiの精製方法
CN106757167A (zh) * 2016-12-26 2017-05-31 宝纳资源控股(集团)有限公司 一种熔盐脉冲电流电解制备钛的方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4521281A (en) * 1983-10-03 1985-06-04 Olin Corporation Process and apparatus for continuously producing multivalent metals
CN103451682B (zh) 2013-09-16 2017-06-06 北京科技大学 一种含钛可溶阳极熔盐电解提取金属钛的方法
JP6755520B2 (ja) 2016-02-05 2020-09-16 日本製鉄株式会社 溶融塩電解による金属チタン箔の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS31701B1 (ja) * 1953-05-01 1956-02-06
JPS318007B1 (ja) * 1955-03-30 1956-09-15
JPS4828538B1 (ja) * 1969-04-14 1973-09-03
JPH03177594A (ja) * 1989-12-06 1991-08-01 Nippon Mining Co Ltd 高純度チタンの製造方法及び装置
JPH06173065A (ja) * 1992-12-09 1994-06-21 Japan Energy Corp Tiの精製方法
CN106757167A (zh) * 2016-12-26 2017-05-31 宝纳资源控股(集团)有限公司 一种熔盐脉冲电流电解制备钛的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230403A1 (ja) * 2021-04-30 2022-11-03 東邦チタニウム株式会社 金属チタンの製造方法及び金属チタン電析物

Also Published As

Publication number Publication date
JP7370988B2 (ja) 2023-10-30
US11649554B2 (en) 2023-05-16
JPWO2020044841A1 (ja) 2021-08-26
US20210310140A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
TWI479051B (zh) 元素之初級生產
US6712952B1 (en) Removal of substances from metal and semi-metal compounds
Mohandas et al. FFC Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: an overview
JP4602986B2 (ja) 溶融塩電解による金属カルシウムの製造方法
JP5504515B2 (ja) 希土類金属の回収方法
JPH0633161A (ja) 均質で純粋なインゴットに加工することのできる耐熱金属合金及び該合金の製造方法
JP2020507011A (ja) チタン−アルミニウム基合金のためのチタン母合金
JP3718691B2 (ja) チタンの製造方法、純金属の製造方法、及び純金属の製造装置
JP6755520B2 (ja) 溶融塩電解による金属チタン箔の製造方法
JP7370988B2 (ja) 金属チタンの製造方法
JP2012136766A (ja) 電気分解による金属の製造方法
JP7097572B2 (ja) 金属チタンの製造方法
JP6875711B2 (ja) 溶融塩電解による金属チタン箔の製造方法
Kishimoto et al. Electrorefining of titanium from Bi–Ti alloys in molten chlorides for a new smelting process of titanium
JPH06173065A (ja) Tiの精製方法
JP7100781B1 (ja) チタン箔の製造方法
JP7301673B2 (ja) 金属チタンの製造方法
WO2022181646A1 (ja) チタン箔の製造方法
JP2012172194A (ja) 電解装置およびそれを用いた電解採取方法
JP2024033569A (ja) チタン箔の製造方法
JPWO2008102520A1 (ja) 溶融塩電解による金属の製造装置およびこれを用いた金属の製造方法
WO2023276440A1 (ja) チタン含有電析物の製造方法及び金属チタン電析物
WO2023007918A1 (ja) 電析物の製造方法
JPH06173064A (ja) Tiの精製方法
WO2022230403A1 (ja) 金属チタンの製造方法及び金属チタン電析物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540138

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855001

Country of ref document: EP

Kind code of ref document: A1