WO2020044773A1 - ゲート絶縁膜の形成方法および熱処理方法 - Google Patents

ゲート絶縁膜の形成方法および熱処理方法 Download PDF

Info

Publication number
WO2020044773A1
WO2020044773A1 PCT/JP2019/026043 JP2019026043W WO2020044773A1 WO 2020044773 A1 WO2020044773 A1 WO 2020044773A1 JP 2019026043 W JP2019026043 W JP 2019026043W WO 2020044773 A1 WO2020044773 A1 WO 2020044773A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
insulating film
gate insulating
chamber
gan substrate
Prior art date
Application number
PCT/JP2019/026043
Other languages
English (en)
French (fr)
Inventor
英昭 谷村
隆泰 山田
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to US17/270,481 priority Critical patent/US20210327709A1/en
Priority to KR1020237030033A priority patent/KR102676481B1/ko
Priority to KR1020217005630A priority patent/KR102577600B1/ko
Publication of WO2020044773A1 publication Critical patent/WO2020044773A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28264Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to a method for forming a gate insulating film such as a silicon dioxide film on a gallium nitride (GaN) substrate, and a heat treatment method.
  • a gate insulating film such as a silicon dioxide film on a gallium nitride (GaN) substrate
  • Patent Document 1 discloses a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) using gallium nitride.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • a gate insulating film of silicon dioxide (SiO 2 ) is formed on a semiconductor layer of gallium nitride, and a gate electrode of aluminum (Al) is formed on the gate insulating film. are doing.
  • gallium nitride when gallium nitride is heated to a high temperature, nitrogen is desorbed, and gallium having a bond is diffused into the gate insulating film. As a result, deterioration such as an increase in leak current and a decrease in dielectric breakdown electric field occurs in the gate insulating film.
  • the present invention has been made in view of the above problems, and has as its object to provide a technique capable of reducing interface traps without diffusing gallium into a gate insulating film.
  • a method for forming a gate insulating film comprising: forming a silicon dioxide or gallium oxide gate insulating film on a gallium nitride substrate; And an annealing step of heating the gate insulating film for a heat treatment time of not less than 10 nanoseconds and not more than 100 milliseconds.
  • the maximum temperature of the gate insulating film in the annealing step is 800 ° C. or more and 1400 ° C. or less.
  • the maximum temperature of the gate insulating film in the light irradiation step is 800 ° C. or more and 1400 ° C. or less.
  • the substrate before the light irradiation step, is preheated to 600 ° C. or more and 800 ° C. or less by light irradiation from a continuous lighting lamp.
  • the method further includes a preheating step.
  • a gallium nitride substrate on which a silicon dioxide or gallium oxide gate insulating film is formed is loaded into the chamber, and the substrate and the gate insulating film are formed by 10 nanometers.
  • the gallium nitride substrate and the gate insulating film are subjected to a heat treatment time of not less than 10 nanoseconds and not more than 100 milliseconds. Since the heating is performed, the heating time is extremely short, so that desorption of nitrogen from gallium nitride can be prevented, and interface traps can be reduced without diffusing gallium into the gate insulating film.
  • the surface of the gallium nitride substrate is irradiated with flash light from a flash lamp for an irradiation time of less than 1 second to heat the surface and the gate insulating film.
  • the heating time is extremely short, so that desorption of nitrogen from gallium nitride can be prevented, and interface traps can be reduced without diffusing gallium into the gate insulating film.
  • FIG. 4 is a flowchart illustrating a procedure of a method for forming a gate insulating film according to the present invention.
  • FIG. 3 is a diagram illustrating a state where a gate insulating film is formed on a GaN substrate.
  • FIG. 4 is a diagram illustrating a state where a GaN substrate is mounted on a mounting plate.
  • FIG. 1 is a longitudinal sectional view showing a configuration of a heat treatment apparatus 1 used when performing a heat treatment method according to the present invention.
  • the heat treatment apparatus 1 in FIG. 1 is a flash lamp annealing apparatus that heats a gallium nitride substrate (GaN substrate) W by irradiating the substrate with a flash light. Note that, in FIG. 1 and each of the following drawings, the dimensions and the numbers of the respective parts are exaggerated or simplified as necessary for easy understanding.
  • the heat treatment apparatus 1 includes a chamber 6 containing the GaN substrate W, a flash heating unit 5 containing a plurality of flash lamps FL, and a halogen heating unit 4 containing a plurality of halogen lamps HL.
  • a flash heating unit 5 is provided above the chamber 6, and a halogen heating unit 4 is provided below the chamber 6.
  • the heat treatment apparatus 1 includes a holding unit 7 for holding the GaN substrate W in a horizontal position inside the chamber 6, a transfer mechanism 10 for transferring the GaN substrate W between the holding unit 7 and the outside of the apparatus, Is provided.
  • the heat treatment apparatus 1 includes a control unit 3 that controls each operation mechanism provided in the halogen heating unit 4, the flash heating unit 5, and the chamber 6 to execute the heat treatment of the GaN substrate W.
  • the chamber 6 is configured by mounting a quartz chamber window above and below a cylindrical chamber side 61.
  • the chamber side portion 61 has a substantially cylindrical shape with an open top and bottom.
  • the upper opening is provided with an upper chamber window 63 mounted and closed, and the lower opening is provided with a lower chamber window 64 mounted and closed.
  • the upper chamber window 63 constituting the ceiling of the chamber 6 is a disk-shaped member formed of quartz, and functions as a quartz window for transmitting flash light emitted from the flash heating unit 5 into the chamber 6.
  • the lower chamber window 64 constituting the floor of the chamber 6 is also a disc-shaped member formed of quartz, and functions as a quartz window for transmitting light from the halogen heating unit 4 into the chamber 6.
  • Reflection ring 68 is attached to the upper part of the inner wall surface of chamber side part 61, and reflection ring 69 is attached to the lower part.
  • the reflection rings 68 and 69 are both formed in an annular shape.
  • the upper reflecting ring 68 is mounted by being fitted from above the chamber side 61.
  • the lower reflective ring 69 is mounted by being fitted from below the chamber side 61 and fastened with screws (not shown). That is, the reflection rings 68 and 69 are both detachably attached to the chamber side 61.
  • the space inside the chamber 6, that is, the space surrounded by the upper chamber window 63, the lower chamber window 64, the chamber side 61 and the reflection rings 68 and 69 is defined as the heat treatment space 65.
  • a concave portion 62 is formed on the inner wall surface of the chamber 6. That is, a concave portion 62 is formed which is surrounded by a central portion of the inner wall surface of the chamber side portion 61 where the reflection rings 68 and 69 are not mounted, a lower end surface of the reflection ring 68, and an upper end surface of the reflection ring 69. .
  • the concave portion 62 is formed in an annular shape along the horizontal direction on the inner wall surface of the chamber 6 and surrounds the holding portion 7 that holds the GaN substrate W.
  • the chamber side 61 and the reflection rings 68 and 69 are formed of a metal material (for example, stainless steel) having excellent strength and heat resistance.
  • a transfer opening (furnace opening) 66 for carrying the GaN substrate W in and out of the chamber 6 is formed in the chamber side 61.
  • the transport opening 66 can be opened and closed by a gate valve 185.
  • the transport opening 66 is connected to the outer peripheral surface of the concave portion 62 in communication. Therefore, when the gate valve 185 opens the transfer opening 66, the GaN substrate W is loaded into the heat treatment space 65 through the concave portion 62 from the transfer opening 66 and unloaded from the heat treatment space 65. It can be performed.
  • the gate valve 185 closes the transfer opening 66, the heat treatment space 65 in the chamber 6 becomes a closed space.
  • a through hole 61a is formed in the chamber side 61.
  • the radiation thermometer 20 is attached to a portion of the outer wall surface of the chamber side 61 where the through hole 61a is provided.
  • the through-hole 61 a is a cylindrical hole for guiding infrared light emitted from the lower surface of the mounting plate 91 held by a susceptor 74 described later to the radiation thermometer 20.
  • the through hole 61a is provided to be inclined with respect to the horizontal direction so that the axis in the through direction intersects with the main surface of the susceptor 74.
  • a transparent window 21 made of a barium fluoride material that transmits infrared light in a wavelength range that can be measured by the radiation thermometer 20 is mounted.
  • a gas supply hole 81 for supplying a processing gas to the heat treatment space 65 is formed in an upper portion of an inner wall of the chamber 6.
  • the gas supply hole 81 is formed above the concave portion 62 and may be provided on the reflection ring 68.
  • the gas supply hole 81 is connected to a gas supply pipe 83 through a buffer space 82 formed in an annular shape inside the side wall of the chamber 6.
  • the gas supply pipe 83 is connected to a processing gas supply source 85.
  • a valve 84 is inserted in the middle of the path of the gas supply pipe 83. When the valve 84 is opened, the processing gas is supplied from the processing gas supply source 85 to the buffer space 82.
  • the processing gas flowing into the buffer space 82 flows so as to expand in the buffer space 82 having a smaller fluid resistance than the gas supply holes 81, and is supplied from the gas supply holes 81 into the heat treatment space 65.
  • the processing gas for example, nitrogen (N 2 ), ammonia (NH 3 ), or a forming gas which is a mixed gas of hydrogen (H 2 ) and nitrogen (N 2 ) can be used.
  • a gas exhaust hole 86 for exhausting the gas in the heat treatment space 65 is formed in the lower portion of the inner wall of the chamber 6.
  • the gas exhaust hole 86 is formed at a position lower than the concave portion 62, and may be provided on the reflection ring 69.
  • the gas exhaust hole 86 is connected to a gas exhaust pipe 88 via a buffer space 87 formed in an annular shape inside the side wall of the chamber 6.
  • the gas exhaust pipe 88 is connected to the exhaust part 190.
  • a valve 89 is inserted in the middle of the path of the gas exhaust pipe 88. When the valve 89 is opened, the gas in the heat treatment space 65 is discharged from the gas exhaust hole 86 to the gas exhaust pipe 88 via the buffer space 87.
  • gas supply holes 81 and gas exhaust holes 86 may be provided along the circumferential direction of the chamber 6 or may be slit-shaped. Further, the processing gas supply source 85 and the exhaust unit 190 may be a mechanism provided in the heat treatment apparatus 1 or a utility of a factory where the heat treatment apparatus 1 is installed.
  • a gas exhaust pipe 191 for discharging gas in the heat treatment space 65 is also connected to the end of the transfer opening 66.
  • the gas exhaust pipe 191 is connected to the exhaust part 190 via a valve 192. By opening the valve 192, the gas in the chamber 6 is exhausted through the transfer opening 66.
  • FIG. 2 is a perspective view showing the overall appearance of the holding unit 7.
  • the holding unit 7 includes a base ring 71, a connecting unit 72, and a susceptor 74.
  • the base ring 71, the connecting portion 72, and the susceptor 74 are all formed of quartz. That is, the entire holding section 7 is formed of quartz.
  • the base ring 71 is an arc-shaped quartz member in which a part is omitted from the ring shape.
  • the missing portion is provided to prevent interference between a transfer arm 11 of the transfer mechanism 10 described below and the base ring 71.
  • the base ring 71 is supported on the wall surface of the chamber 6 by being placed on the bottom surface of the concave portion 62 (see FIG. 1).
  • a plurality of connecting portions 72 (four in this embodiment) are erected on the upper surface of the base ring 71 along the circumferential direction of the ring shape.
  • the connecting portion 72 is also a quartz member, and is fixed to the base ring 71 by welding.
  • FIG. 3 is a plan view of the susceptor 74.
  • FIG. 4 is a sectional view of the susceptor 74.
  • the susceptor 74 includes a holding plate 75, a guide ring 76, and a plurality of support pins 77.
  • the holding plate 75 is a substantially circular plate-shaped member formed of quartz. The diameter of the holding plate 75 is larger than the diameter of the GaN substrate W. That is, the holding plate 75 has a larger planar size than the GaN substrate W.
  • the guide ring 76 is provided on the periphery of the upper surface of the holding plate 75.
  • the guide ring 76 is an annular member having an inner diameter larger than the diameter of the mounting plate 91 (see FIG. 10) on which the GaN substrate W is mounted.
  • the inner diameter of the guide ring 76 is ⁇ 320 mm.
  • the inner circumference of the guide ring 76 has a tapered surface that widens upward from the holding plate 75.
  • the guide ring 76 is formed of the same quartz as the holding plate 75.
  • the guide ring 76 may be welded to the upper surface of the holding plate 75, or may be fixed to the holding plate 75 by a separately processed pin or the like. Alternatively, the holding plate 75 and the guide ring 76 may be processed as an integral member.
  • a region inside the guide ring 76 on the upper surface of the holding plate 75 is a flat holding surface 75a for holding the mounting plate 91 on which the GaN substrate W is mounted.
  • a plurality of support pins 77 are provided upright on the holding surface 75 a of the holding plate 75.
  • a total of twelve support pins 77 are erected every 30 ° along the circumference of the outer circumference of the holding surface 75a (the inner circumference of the guide ring 76).
  • the diameter of the circle on which the twelve support pins 77 are arranged is smaller than the diameter of the mounting plate 91.
  • Each support pin 77 is formed of quartz.
  • the plurality of support pins 77 may be provided on the upper surface of the holding plate 75 by welding, or may be processed integrally with the holding plate 75.
  • the four connecting portions 72 erected on the base ring 71 and the peripheral edge of the holding plate 75 of the susceptor 74 are fixed by welding. That is, the susceptor 74 and the base ring 71 are fixedly connected by the connecting portion 72.
  • the holder 7 is mounted on the chamber 6.
  • the holding plate 75 of the susceptor 74 is in a horizontal posture (a posture in which the normal line coincides with the vertical direction). That is, the holding surface 75a of the holding plate 75 is a horizontal plane.
  • the mounting plate 91 on which the GaN substrate W is mounted is mounted and held in a horizontal posture on the susceptor 74 of the holding unit 7 mounted on the chamber 6. At this time, the mounting plate 91 is supported by the twelve support pins 77 erected on the holding plate 75 and held by the susceptor 74. More precisely, the upper ends of the twelve support pins 77 contact the lower surface of the mounting plate 91 to support the mounting plate 91. Since the height of the twelve support pins 77 (the distance from the upper end of the support pins 77 to the holding surface 75a of the holding plate 75) is uniform, the mounting plate 91 is supported in a horizontal position by the twelve support pins 77. be able to.
  • the mounting plate 91 is supported by the plurality of support pins 77 at a predetermined distance from the holding surface 75a of the holding plate 75.
  • the thickness of the guide ring 76 is larger than the height of the support pin 77. Therefore, the horizontal displacement of the mounting plate 91 supported by the plurality of support pins 77 is prevented by the guide ring 76.
  • the holding plate 75 of the susceptor 74 has an opening 78 penetrating vertically.
  • the opening 78 is provided for the radiation thermometer 20 to receive radiation light (infrared light) radiated from the lower surface of the mounting plate 91. That is, the radiation thermometer 20 receives the light radiated from the lower surface of the mounting plate 91 through the opening 78 and the transparent window 21 mounted in the through hole 61 a of the chamber side portion 61 and receives the light from the mounting plate 91. Measure the temperature.
  • the holding plate 75 of the susceptor 74 is provided with four through holes 79 through which the lift pins 12 of the transfer mechanism 10, which will be described later, pass through for transferring the mounting plate 91.
  • FIG. 5 is a plan view of the transfer mechanism 10.
  • FIG. 6 is a side view of the transfer mechanism 10.
  • the transfer mechanism 10 includes two transfer arms 11.
  • the transfer arm 11 is formed in a circular arc shape along the generally annular concave portion 62.
  • Each transfer arm 11 is provided with two lift pins 12 standing upright.
  • the transfer arm 11 and the lift pins 12 are formed of quartz.
  • Each transfer arm 11 is rotatable by a horizontal movement mechanism 13.
  • the horizontal moving mechanism 13 includes a transfer operation position (a solid line position in FIG. 5) for transferring the pair of transfer arms 11 to the holding unit 7 and the mounting plate held by the holding unit 7.
  • the horizontal movement is performed between 91 and a retreat position (a position indicated by a two-dot chain line in FIG. 5) that does not overlap in a plan view.
  • each transfer arm 11 may be rotated by an individual motor, or a pair of transfer arms 11 may be rotated by a single motor using a link mechanism. It may be moved.
  • the pair of transfer arms 11 is moved up and down by the elevating mechanism 14 together with the horizontal moving mechanism 13.
  • the lifting mechanism 14 raises the pair of transfer arms 11 at the transfer operation position, a total of four lift pins 12 pass through the through holes 79 (see FIGS. 2 and 3) formed in the susceptor 74, and The upper end of 12 protrudes from the upper surface of susceptor 74.
  • the elevating mechanism 14 lowers the pair of transfer arms 11 at the transfer operation position, pulls out the lift pins 12 from the through holes 79, and moves the horizontal movement mechanism 13 to open the pair of transfer arms 11, The transfer arm 11 moves to the retreat position.
  • the retracted position of the pair of transfer arms 11 is immediately above the base ring 71 of the holding unit 7.
  • the retreat position of the transfer arm 11 is inside the concave portion 62.
  • An exhaust mechanism (not shown) is also provided near the portion where the driving unit (the horizontal moving mechanism 13 and the elevating mechanism 14) of the transfer mechanism 10 is provided, and an atmosphere around the driving unit of the transfer mechanism 10 is provided. Is discharged to the outside of the chamber 6.
  • the flash heating unit 5 provided above the chamber 6 includes a light source including a plurality of (30 in this embodiment) xenon flash lamps FL and a light source above the light source. And a reflector 52 provided so as to cover the reflector. Further, a lamp light emission window 53 is mounted on the bottom of the housing 51 of the flash heating unit 5.
  • the lamp light emission window 53 constituting the floor of the flash heating unit 5 is a plate-shaped quartz window made of quartz.
  • Each of the plurality of flash lamps FL is a rod-shaped lamp having a long cylindrical shape, and has a longitudinal direction along the main surface of the GaN substrate W held by the holding unit 7 (that is, along the horizontal direction). They are arranged in a plane so as to be parallel to each other. Therefore, the plane formed by the arrangement of the flash lamps FL is also a horizontal plane. The area where the plurality of flash lamps FL are arranged is larger than the plane size of the GaN substrate W.
  • the xenon flash lamp FL has a cylindrical glass tube (discharge tube) in which xenon gas is sealed inside and an anode and a cathode connected to a condenser are disposed at both ends thereof, and an outer peripheral surface of the glass tube. And an attached trigger electrode. Since xenon gas is electrically an insulator, electricity does not flow in a glass tube in a normal state even if charges are stored in a capacitor. However, when a high voltage is applied to the trigger electrode to break the insulation, the electricity stored in the capacitor flows instantaneously into the glass tube, and light is emitted by the excitation of xenon atoms or molecules at that time.
  • the electrostatic energy previously stored in the condenser is converted into an extremely short light pulse of 0.1 to 100 milliseconds. It has a feature that it can emit extremely strong light compared to a light source. That is, the flash lamp FL is a pulsed lamp that emits light instantaneously in a very short time of less than one second. The light emission time of the flash lamp FL can be adjusted by the coil constant of a lamp power supply that supplies power to the flash lamp FL.
  • the reflector 52 is provided above the plurality of flash lamps FL so as to cover the entirety thereof.
  • the basic function of the reflector 52 is to reflect flash light emitted from the plurality of flash lamps FL to the heat treatment space 65 side.
  • the reflector 52 is made of an aluminum alloy plate, and its surface (the surface facing the flash lamp FL) is roughened by blasting.
  • the halogen heating unit 4 provided below the chamber 6 has a plurality of (in this embodiment, 40) halogen lamps HL inside the housing 41.
  • the halogen heating unit 4 heats the GaN substrate W by irradiating the heat treatment space 65 with light from below the chamber 6 through the lower chamber window 64 by a plurality of halogen lamps HL.
  • FIG. 7 is a plan view showing an arrangement of a plurality of halogen lamps HL.
  • the forty halogen lamps HL are arranged in two upper and lower stages. Twenty halogen lamps HL are arranged in an upper stage near the holding unit 7 and 20 halogen lamps HL are arranged in a lower stage farther from the holding unit 7 than the upper stage.
  • Each halogen lamp HL is a rod-shaped lamp having a long cylindrical shape.
  • the 20 halogen lamps HL in both the upper and lower rows are arranged so that their respective longitudinal directions are parallel to each other along the main surface of the GaN substrate W held by the holding section 7 (that is, along the horizontal direction). I have. Therefore, the plane formed by the arrangement of the halogen lamps HL in both the upper and lower stages is a horizontal plane.
  • the arrangement density of the halogen lamps HL is higher in a region facing the peripheral portion than in a region facing the center of the mounting plate 91 held by the holding portion 7 in both the upper stage and the lower stage. ing. That is, in both upper and lower stages, the arrangement pitch of the halogen lamps HL is shorter at the periphery than at the center of the lamp array. For this reason, it is possible to irradiate a larger amount of light to the peripheral portion of the mounting plate 91 where the temperature is likely to decrease during heating by light irradiation from the halogen heater 4.
  • a lamp group composed of the upper halogen lamps HL and a lamp group composed of the lower halogen lamps HL are arranged so as to intersect in a grid pattern. That is, a total of 40 halogen lamps HL are arranged such that the longitudinal direction of the 20 halogen lamps HL arranged in the upper stage and the longitudinal direction of the 20 halogen lamps HL arranged in the lower stage are orthogonal to each other. I have.
  • the halogen lamp HL is a filament type light source which emits light by incandescent the filament by energizing the filament provided inside the glass tube.
  • a gas in which a trace amount of a halogen element (iodine, bromine, or the like) is introduced into an inert gas such as nitrogen or argon is sealed inside the glass tube.
  • a halogen element iodine, bromine, or the like
  • the halogen lamp HL has a characteristic that it has a longer life and can continuously emit strong light as compared with a normal incandescent lamp. That is, the halogen lamp HL is a continuous lighting lamp that emits light continuously for at least one second. Further, since the halogen lamp HL is a rod-shaped lamp, it has a long life.
  • a reflector 43 is provided below the two-stage halogen lamp HL in the housing 41 of the halogen heating unit 4 (FIG. 1).
  • the reflector 43 reflects the light emitted from the plurality of halogen lamps HL to the heat treatment space 65 side.
  • the control unit 3 controls the various operation mechanisms described above provided in the heat treatment apparatus 1.
  • the configuration of the control unit 3 as hardware is the same as that of a general computer. That is, the control unit 3 includes a CPU that is a circuit for performing various arithmetic processing, a ROM that is a read-only memory that stores a basic program, a RAM that is a readable and writable memory that stores various information, and control software and data. It has a magnetic disk for storing.
  • the processing in the heat treatment apparatus 1 proceeds when the CPU of the control unit 3 executes a predetermined processing program.
  • the heat treatment apparatus 1 prevents an excessive rise in temperature of the halogen heating unit 4, the flash heating unit 5, and the chamber 6 due to heat energy generated from the halogen lamp HL and the flash lamp FL during the heat treatment of the GaN substrate W. Therefore, it has various cooling structures.
  • a water cooling tube (not shown) is provided on the wall of the chamber 6.
  • the halogen heating unit 4 and the flash heating unit 5 have an air cooling structure that forms a gas flow inside and discharges heat. Air is also supplied to the gap between the upper chamber window 63 and the lamp light emission window 53 to cool the flash heating unit 5 and the upper chamber window 63.
  • FIG. 8 is a flowchart showing a procedure of a method for forming a gate insulating film according to the present invention.
  • the GaN substrate W to be processed is a disk-shaped gallium nitride wafer with a diameter of about 50 mm (2 inches), which is significantly smaller than a typical silicon semiconductor wafer (300 mm in diameter).
  • a gate insulating film is formed on a GaN substrate W to be processed (Step S1).
  • a gate insulating film of silicon dioxide (SiO 2 ) is formed on the GaN substrate W by CVD.
  • the formation of the gate insulating film is performed using a CVD apparatus different from the heat treatment apparatus 1.
  • FIG. 9 is a view showing a state where the gate insulating film 95 is formed on the GaN substrate W.
  • the gate insulating film 95 is formed on the GaN substrate W by CVD, a large number of traps are present at the interface between the gate insulating film 95 and GaN, and the Dit (Density of interface trap) is high.
  • hydrogen is inevitably mixed into the gate insulating film 95 during film formation, and the dielectric constant of the gate insulating film 95 is low. Therefore, the characteristics of the gate insulating film 95 are low and a high-performance MOSFET cannot be manufactured. Therefore, in the heat treatment apparatus 1, a post-deposition heat treatment (PDA: Post Deposition Anneal) of the GaN substrate W on which the gate insulating film 95 is formed is performed.
  • PDA Post Deposition Anneal
  • FIG. 10 is a diagram illustrating a state where the GaN substrate W is mounted on the mounting plate 91.
  • the mounting plate 91 is a disk-shaped member having a diameter of 300 mm.
  • the mounting plate 91 is formed of, for example, silicon carbide (SiC). Silicon carbide is a light-absorbing material having a high absorptivity for light emitted from the halogen lamp HL and flash light emitted from the flash lamp FL.
  • a circular recess having a diameter of about 70 mm is formed at the center of the upper surface of the mounting plate 91, and the GaN substrate W is mounted so as to fit into the concave. By disposing the GaN substrate W in the recess, it is possible to prevent the GaN substrate W from being displaced. Then, the GaN substrate W mounted on the mounting plate 91 is subjected to heat treatment by the heat treatment apparatus 1. Since the size of the mounting plate 91 is substantially the same as that of a typical silicon semiconductor wafer, the heat treatment of the GaN substrate W can be performed by the heat treatment apparatus 1 that handles a silicon semiconductor wafer. Hereinafter, the heat treatment of the GaN substrate W in the heat treatment apparatus 1 will be described. The processing procedure of the heat treatment apparatus 1 described below proceeds by the control unit 3 controlling each operation mechanism of the heat treatment apparatus 1.
  • the air supply valve 84 Prior to the loading of the GaN substrate W, the air supply valve 84 is opened, and the exhaust valve 89 is opened, so that air supply and exhaust into the chamber 6 are started.
  • the air supply valve 84 nitrogen gas is supplied from the gas supply hole 81 to the heat treatment space 65.
  • the exhaust valve 89 When the exhaust valve 89 is opened, the gas in the chamber 6 is exhausted from the gas exhaust hole 86. Thereby, the nitrogen gas supplied from the upper part of the heat treatment space 65 in the chamber 6 flows downward, and is exhausted from the lower part of the heat treatment space 65.
  • the GaN substrate W mounted on the mounting plate 91 is carried into the chamber 6 of the heat treatment apparatus 1 (Step S2). Specifically, the transfer valve 66 is opened by opening the gate valve 185, and the mounting plate 91 on which the GaN substrate W is mounted via the transfer opening 66 is transferred by the transfer robot outside the apparatus to the heat treatment space in the chamber 6. 65. At this time, there is a possibility that the atmosphere outside the apparatus may be involved when the GaN substrate W is carried in. However, since the nitrogen gas is continuously supplied to the chamber 6, the nitrogen gas flows out from the transfer opening 66, and Entrapment of an external atmosphere can be minimized.
  • the mounting plate 91 carried in by the transfer robot advances to the position immediately above the holding unit 7 and stops.
  • the lift pins 12 protrude from the upper surface of the holding plate 75 of the susceptor 74 through the through holes 79.
  • the transfer robot exits the heat treatment space 65, and the transfer opening 66 is closed by the gate valve 185.
  • the mounting plate 91 is transferred from the transfer mechanism 10 to the susceptor 74 of the holding unit 7 and is held in a horizontal posture from below.
  • the mounting plate 91 is supported by a plurality of support pins 77 erected on the holding plate 75 and held by the susceptor 74.
  • the mounting plate 91 is held by the holder 7 with the surface of the GaN substrate W on which the gate insulating film 95 is formed facing upward.
  • a predetermined space is formed between the back surface of the mounting plate 91 supported by the plurality of support pins 77 (the surface opposite to the surface on which the GaN substrate W is mounted) and the holding surface 75a of the holding plate 75. Is done.
  • the pair of transfer arms 11 that have descended to below the susceptor 74 are retracted by the horizontal moving mechanism 13 to the retracted position, that is, to the inside of the recess 62.
  • the 40 halogen lamps HL of the halogen heating unit 4 are simultaneously turned on to perform preliminary heating (assist. Heating) is started (step S3).
  • the halogen light emitted from the halogen lamp HL passes through the lower chamber window 64 and the susceptor 74 formed of quartz, and irradiates the lower surface of the mounting plate 91 on which the GaN substrate W is mounted. Since the mounting plate 91 is made of SiC, the light emitted from the halogen lamp HL is favorably absorbed and the temperature is raised.
  • the GaN substrate W is preheated by the heat conduction from the mounting plate 91 whose temperature has been raised. Since the transfer arm 11 of the transfer mechanism 10 is retracted inside the concave portion 62, there is no obstacle to heating by the halogen lamp HL.
  • the temperature of the mounting plate 91 on which the GaN substrate W is mounted is measured by the radiation thermometer 20. That is, the infrared thermometer 20 receives infrared light radiated from the lower surface of the mounting plate 91 held by the susceptor 74 through the opening 78 through the transparent window 21 and receives the temperature of the mounting plate 91 during temperature rise. Is measured.
  • the measured temperature of the mounting plate 91 is transmitted to the control unit 3.
  • the control unit 3 controls the output of the halogen lamp HL while monitoring whether or not the temperature of the mounting plate 91 that is heated by the light irradiation from the halogen lamp HL has reached the target temperature T1.
  • control unit 3 performs feedback control of the output of the halogen lamp HL based on the value measured by the radiation thermometer 20 so that the temperature of the mounting plate 91 becomes the target temperature T1.
  • the target temperature T1 is not less than 600 ° C. and not more than 800 ° C.
  • the control unit 3 adjusts the output of the halogen lamp HL so that the temperature of the mounting plate 91 maintains the target temperature T1. More specifically, when the temperature of the mounting plate 91 measured by the radiation thermometer 20 reaches the target temperature T1, the control unit 3 adjusts the output of the halogen lamp HL so that the temperature of the mounting plate 91 substantially reaches the target temperature T1. Maintain at temperature T1. Since the mounting plate 91 is maintained at the target temperature T1 by irradiation with light from the halogen lamp HL, the GaN substrate W is uniformly preheated by heat conduction from the mounting plate 91.
  • step S4 the surface of the GaN substrate W is irradiated with flash light from the flash lamp FL of the flash heating unit 5 (step S4). At this time, a part of the flash light radiated from the flash lamp FL goes directly into the chamber 6, and the other part is once reflected by the reflector 52 and then goes into the chamber 6. The flash heating of the GaN substrate W is performed by the irradiation.
  • the surface temperature of the GaN substrate W can be increased in a short time. That is, the flash light emitted from the flash lamp FL is converted into a light pulse in which the electrostatic energy previously stored in the condenser is extremely short, and the irradiation time is extremely short, from about 0.1 ms to about 100 ms. It is a strong flash. Then, the surface of the GaN substrate W including the gate insulating film 95 is instantaneously heated to the processing temperature T2 by the irradiation of the flash light from the flash lamp FL, and then rapidly cooled.
  • flash light flash light
  • the processing temperature T2 which is the highest temperature of the gate insulating film 95 at the time of flash heating, is higher than the target temperature T1 and is 800 ° C. or more and 1200 ° C. or less.
  • heat treatment is performed after the formation of the gate insulating film 95, and traps existing at the interface between the gate insulating film 95 and GaN are reduced. I do.
  • the gate insulating film 95 is degraded in insulation properties (increase in leak current, decrease in breakdown electric field, etc.).
  • the target temperature T1 is lower than the processing temperature T2, so that nitrogen is not desorbed from GaN at the time of preheating and traps are reduced. None. That is, it can be said that there is a trade-off between the reduction of traps and the prevention of desorption of nitrogen from GaN.
  • the surface of the GaN substrate W including the gate insulating film 95 is irradiated with a flash light having an irradiation time of less than 1 second so that the heat treatment time is extremely short from the target temperature T1 to the processing temperature T2. Flash heating. Therefore, the time during which the GaN substrate W is at a high temperature is short, and the desorption of nitrogen from GaN can be suppressed to a minimum. As a result, Dit can be reduced by reducing traps existing at the interface between the gate insulating film 95 and GaN without diffusing gallium into the gate insulating film 95.
  • the halogen lamp HL is turned off after a lapse of a predetermined time.
  • the temperature of the mounting plate 91 during the temperature drop is measured by the radiation thermometer 20, and the measurement result is transmitted to the control unit 3.
  • the control unit 3 monitors whether the temperature of the mounting plate 91 has dropped to a predetermined temperature based on the measurement result of the radiation thermometer 20. Then, after the temperature of the mounting plate 91 decreases to a predetermined value or less, the pair of transfer arms 11 of the transfer mechanism 10 move horizontally again from the retreat position to the transfer operation position and rise, so that the lift pins 12 are moved.
  • Step S5 A gate electrode of a metal such as aluminum is formed on the gate insulating film 95 of the GaN substrate W on which the heat treatment by the heat treatment apparatus 1 has been completed.
  • the surface of the GaN substrate W including the gate insulating film 95 is flashed to the processing temperature T2 in a very short heat treatment time by irradiating a flash light having an irradiation time of 0.1 to 100 milliseconds. Heating. Accordingly, traps existing at the interface between the gate insulating film 95 and GaN can be reduced without preventing the desorption of nitrogen from the GaN substrate W and diffusing gallium into the gate insulating film 95. In other words, by irradiating flash light with an extremely short irradiation time, it is possible to achieve both reduction of traps and prevention of desorption of nitrogen from GaN.
  • the GaN substrate W is heated by flash lamp annealing that irradiates a flash light with an irradiation time of less than 1 second.
  • the GaN substrate W including the gate insulating film 95 is irradiated by laser annealing.
  • the surface of W may be heated to the processing temperature T2.
  • the heat treatment time by laser annealing is even shorter than that of flash lamp annealing, and can be as short as 10 nanoseconds.
  • the gate insulating film 95 of silicon dioxide is formed on the GaN substrate W.
  • the present invention is not limited to this, and the gate insulating film of gallium oxide (GaO x ) is A film may be formed on W.
  • the gallium oxide gate insulating film is formed on the GaN substrate W by a thermal oxidation method. Many traps also exist at the interface between GaN and the gallium oxide gate insulating film formed by the thermal oxidation method. Then, similarly to the above embodiment, by heating the surface of the GaN substrate W including the gallium oxide gate insulating film with an extremely short heat treatment time, traps can be reduced without diffusing gallium into the gate insulating film. it can.
  • the size of the GaN substrate W is not limited to about 50 mm in diameter, but may be, for example, about 100 mm (4 inches) in diameter.
  • the material of the mounting plate 91 is not limited to silicon carbide, but may be, for example, silicon (Si). However, if the GaN substrate W is heated to a high temperature of about 1400 ° C. during flash heating, there is a concern that the mounting plate 91 of silicon (melting point 1414 ° C.) will melt, so the mounting plate 91 is made of silicon carbide (melting point 2730 ° C.). It is preferable to form with.
  • the flash heating unit 5 is provided with 30 flash lamps FL.
  • the present invention is not limited to this, and the number of flash lamps FL can be any number.
  • the flash lamp FL is not limited to a xenon flash lamp, but may be a krypton flash lamp.
  • the number of halogen lamps HL provided in the halogen heating unit 4 is not limited to 40 but may be any number.
  • the preheating of the GaN substrate W is performed by using the filament type halogen lamp HL as a continuous lighting lamp that emits light continuously for 1 second or more.
  • the present invention is not limited to this.
  • the preliminary heating may be performed using a discharge type arc lamp (for example, a xenon arc lamp) as a continuous lighting lamp instead of the halogen lamp HL.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

窒化ガリウム(GaN)の基板に二酸化ケイ素または酸化ガリウムのゲート絶縁膜を成膜する。そのGaN基板をハロゲンランプからの光照射によって予備加熱し、さらにフラッシュランプからのフラッシュ光照射によってゲート絶縁膜を含む基板表面を高温に極短時間加熱する。ゲート絶縁膜を含む基板表面を極めて短い熱処理時間にて加熱することにより、窒化ガリウムから窒素が脱離するのを防止してゲート絶縁膜にガリウムを拡散させることなく、ゲート絶縁膜と窒化ガリウムとの界面に存在していたトラップを低減させることができる。

Description

ゲート絶縁膜の形成方法および熱処理方法
 本発明は、窒化ガリウム(GaN)の基板上に二酸化ケイ素等のゲート絶縁膜を形成するゲート絶縁膜の形成方法および熱処理方法に関する。
 窒化ガリウム系化合物は、青色の光を発光する発光素子として注目されるとともに、絶縁破壊電界が高くエネルギーギャップが大きいため、電力変換に用いられるパワーデバイスの基幹材料としても期待されている。例えば、特許文献1には、窒化ガリウムを用いたMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)が開示されている。特許文献1に開示の半導体デバイスにおいては、窒化ガリウムの半導体層の上に二酸化ケイ素(SiO)のゲート絶縁膜を形成し、さらにそのゲート絶縁膜の上にアルミニウム(Al)のゲート電極を形成している。
特開2015-023074号公報
 窒化ガリウムの半導体層上に二酸化ケイ素等のゲート絶縁膜を成膜すると窒化ガリウムとゲート絶縁膜との界面に多数のトラップが生じることが知られている。このようなトラップが存在しているとキャリアの移動に支障が生じてデバイス特性が低下するため、成膜後熱処理(PDA:Post Deposition Anneal)を行うことによってトラップを低減させることが試みられている。
 しかしながら、窒化ガリウムを高温に加熱すると、窒素の脱離が生じて結合手の外れたガリウムがゲート絶縁膜中に拡散することとなる。その結果、ゲート絶縁膜にリーク電流の増大や絶縁破壊電界の低下等の劣化が生じる。
 本発明は、上記課題に鑑みてなされたものであり、ゲート絶縁膜にガリウムを拡散させることなく界面トラップを低減させることができる技術を提供することを目的とする。
 上記課題を解決するため、この発明の第1の態様は、ゲート絶縁膜の形成方法において、窒化ガリウムの基板上に二酸化ケイ素または酸化ガリウムのゲート絶縁膜を成膜する成膜工程と、前記基板および前記ゲート絶縁膜を10ナノ秒以上100ミリ秒以下の熱処理時間にて加熱するアニール工程と、を備える。
 また、第2の態様は、第1の態様に係るゲート絶縁膜の形成方法において、前記アニール工程での前記ゲート絶縁膜の最高到達温度は800℃以上1400℃以下である。
 また、第3の態様は、熱処理方法において、二酸化ケイ素または酸化ガリウムのゲート絶縁膜が成膜された窒化ガリウムの基板をチャンバー内に搬入する搬入工程と、前記基板の表面にフラッシュランプから1秒未満の照射時間にてフラッシュ光を照射して前記表面および前記ゲート絶縁膜を加熱する光照射工程と、を備える。
 また、第4の態様は、第3の態様に係る熱処理方法において、前記光照射工程での前記ゲート絶縁膜の最高到達温度は800℃以上1400℃以下である。
 また、第5の態様は、第3または第4の態様に係る熱処理方法において、前記光照射工程の前に、連続点灯ランプからの光照射によって前記基板を600℃以上800℃以下に予備加熱する予備加熱工程をさらに備える。
 また、第6の態様は、熱処理方法において、二酸化ケイ素または酸化ガリウムのゲート絶縁膜が成膜された窒化ガリウムの基板をチャンバー内に搬入する搬入工程と、前記基板および前記ゲート絶縁膜を10ナノ秒以上100ミリ秒以下の熱処理時間にて加熱するアニール工程と、を備える。
 第1および第2の態様に係るゲート絶縁膜の形成方法並びに第6の態様に係る熱処理方法によれば、窒化ガリウムの基板およびゲート絶縁膜を10ナノ秒以上100ミリ秒以下の熱処理時間にて加熱するため、加熱時間は極めて短く、窒化ガリウムからの窒素の脱離を防止してゲート絶縁膜にガリウムを拡散させることなく界面トラップを低減させることができる。
 第3から第5の態様に係る熱処理方法によれば、窒化ガリウムの基板の表面にフラッシュランプから1秒未満の照射時間にてフラッシュ光を照射して当該表面およびゲート絶縁膜を加熱するため、加熱時間は極めて短く、窒化ガリウムからの窒素の脱離を防止してゲート絶縁膜にガリウムを拡散させることなく界面トラップを低減させることができる。
本発明に係る熱処理方法を実施する際に使用する熱処理装置の構成を示す縦断面図である。 保持部の全体外観を示す斜視図である。 サセプタの平面図である。 サセプタの断面図である。 移載機構の平面図である。 移載機構の側面図である。 複数のハロゲンランプの配置を示す平面図である。 本発明に係るゲート絶縁膜の形成方法の手順を示すフローチャートである。 GaN基板にゲート絶縁膜が成膜された状態を示す図である。 GaN基板を載置板に載置した状態を示す図である。
 以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
 まず、本発明に係る熱処理方法を実施するための熱処理装置について説明する。図1は、本発明に係る熱処理方法を実施する際に使用する熱処理装置1の構成を示す縦断面図である。図1の熱処理装置1は、窒化ガリウムの基板(GaN基板)Wにフラッシュ光照射を行うことによってそのGaN基板Wを加熱するフラッシュランプアニール装置である。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。
 熱処理装置1は、GaN基板Wを収容するチャンバー6と、複数のフラッシュランプFLを内蔵するフラッシュ加熱部5と、複数のハロゲンランプHLを内蔵するハロゲン加熱部4と、を備える。チャンバー6の上側にフラッシュ加熱部5が設けられるとともに、下側にハロゲン加熱部4が設けられている。また、熱処理装置1は、チャンバー6の内部に、GaN基板Wを水平姿勢に保持する保持部7と、保持部7と装置外部との間でGaN基板Wの受け渡しを行う移載機構10と、を備える。さらに、熱処理装置1は、ハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6に設けられた各動作機構を制御してGaN基板Wの熱処理を実行させる制御部3を備える。
 チャンバー6は、筒状のチャンバー側部61の上下に石英製のチャンバー窓を装着して構成されている。チャンバー側部61は上下が開口された概略筒形状を有しており、上側開口には上側チャンバー窓63が装着されて閉塞され、下側開口には下側チャンバー窓64が装着されて閉塞されている。チャンバー6の天井部を構成する上側チャンバー窓63は、石英により形成された円板形状部材であり、フラッシュ加熱部5から出射されたフラッシュ光をチャンバー6内に透過する石英窓として機能する。また、チャンバー6の床部を構成する下側チャンバー窓64も、石英により形成された円板形状部材であり、ハロゲン加熱部4からの光をチャンバー6内に透過する石英窓として機能する。
 また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61の上側から嵌め込むことによって装着される。一方、下側の反射リング69は、チャンバー側部61の下側から嵌め込んで図示省略のビスで留めることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。チャンバー6の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。
 チャンバー側部61に反射リング68,69が装着されることによって、チャンバー6の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうち反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、チャンバー6の内壁面に水平方向に沿って円環状に形成され、GaN基板Wを保持する保持部7を囲繞する。チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)にて形成されている。
 また、チャンバー側部61には、チャンバー6に対してGaN基板Wの搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ185によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ185が搬送開口部66を開放しているときには、搬送開口部66から凹部62を通過して熱処理空間65へのGaN基板Wの搬入および熱処理空間65からのGaN基板Wの搬出を行うことができる。また、ゲートバルブ185が搬送開口部66を閉鎖するとチャンバー6内の熱処理空間65が密閉空間とされる。
 さらに、チャンバー側部61には、貫通孔61aが穿設されている。チャンバー側部61の外壁面の貫通孔61aが設けられている部位には放射温度計20が取り付けられている。貫通孔61aは、後述するサセプタ74に保持された載置板91の下面から放射された赤外光を放射温度計20に導くための円筒状の孔である。貫通孔61aは、その貫通方向の軸がサセプタ74の主面と交わるように、水平方向に対して傾斜して設けられている。貫通孔61aの熱処理空間65に臨む側の端部には、放射温度計20が測定可能な波長領域の赤外光を透過させるフッ化バリウム材料からなる透明窓21が装着されている。
 また、チャンバー6の内壁上部には熱処理空間65に処理ガスを供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81はチャンバー6の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83は処理ガス供給源85に接続されている。また、ガス供給管83の経路途中にはバルブ84が介挿されている。バルブ84が開放されると、処理ガス供給源85から緩衝空間82に処理ガスが送給される。緩衝空間82に流入した処理ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。処理ガスとしては、例えば窒素(N)、アンモニア(NH)、または、水素(H)と窒素(N)との混合ガスであるフォーミングガス等を用いることができる。
 一方、チャンバー6の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86はチャンバー6の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気部190に接続されている。また、ガス排気管88の経路途中にはバルブ89が介挿されている。バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、チャンバー6の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。また、処理ガス供給源85および排気部190は、熱処理装置1に設けられた機構であっても良いし、熱処理装置1が設置される工場のユーティリティであっても良い。
 また、搬送開口部66の先端にも熱処理空間65内の気体を排出するガス排気管191が接続されている。ガス排気管191はバルブ192を介して排気部190に接続されている。バルブ192を開放することによって、搬送開口部66を介してチャンバー6内の気体が排気される。
 図2は、保持部7の全体外観を示す斜視図である。保持部7は、基台リング71、連結部72およびサセプタ74を備えて構成される。基台リング71、連結部72およびサセプタ74はいずれも石英にて形成されている。すなわち、保持部7の全体が石英にて形成されている。
 基台リング71は円環形状から一部が欠落した円弧形状の石英部材である。この欠落部分は、後述する移載機構10の移載アーム11と基台リング71との干渉を防ぐために設けられている。基台リング71は凹部62の底面に載置されることによって、チャンバー6の壁面に支持されることとなる(図1参照)。基台リング71の上面に、その円環形状の周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。
 サセプタ74は基台リング71に設けられた4個の連結部72によって支持される。図3は、サセプタ74の平面図である。また、図4は、サセプタ74の断面図である。サセプタ74は、保持プレート75、ガイドリング76および複数の支持ピン77を備える。保持プレート75は、石英にて形成された略円形の平板状部材である。保持プレート75の直径はGaN基板Wの直径よりも大きい。すなわち、保持プレート75は、GaN基板Wよりも大きな平面サイズを有する。
 保持プレート75の上面周縁部にガイドリング76が設置されている。ガイドリング76は、GaN基板Wを載置する載置板91(図10参照)の直径よりも大きな内径を有する円環形状の部材である。例えば、載置板91の直径がφ300mmの場合、ガイドリング76の内径はφ320mmである。ガイドリング76の内周は、保持プレート75から上方に向けて広くなるようなテーパ面とされている。ガイドリング76は、保持プレート75と同様の石英にて形成される。ガイドリング76は、保持プレート75の上面に溶着するようにしても良いし、別途加工したピンなどによって保持プレート75に固定するようにしても良い。或いは、保持プレート75とガイドリング76とを一体の部材として加工するようにしても良い。
 保持プレート75の上面のうちガイドリング76よりも内側の領域がGaN基板Wを載置した載置板91を保持する平面状の保持面75aとされる。保持プレート75の保持面75aには、複数の支持ピン77が立設されている。本実施形態においては、保持面75aの外周円(ガイドリング76の内周円)と同心円の周上に沿って30°毎に計12個の支持ピン77が立設されている。12個の支持ピン77を配置した円の径(対向する支持ピン77間の距離)は載置板91の径よりも小さく、載置板91の径がφ300mmであればφ270mm~φ280mm(本実施形態ではφ270mm)である。それぞれの支持ピン77は石英にて形成されている。複数の支持ピン77は、保持プレート75の上面に溶接によって設けるようにしても良いし、保持プレート75と一体に加工するようにしても良い。
 図2に戻り、基台リング71に立設された4個の連結部72とサセプタ74の保持プレート75の周縁部とが溶接によって固着される。すなわち、サセプタ74と基台リング71とは連結部72によって固定的に連結されている。このような保持部7の基台リング71がチャンバー6の壁面に支持されることによって、保持部7がチャンバー6に装着される。保持部7がチャンバー6に装着された状態においては、サセプタ74の保持プレート75は水平姿勢(法線が鉛直方向と一致する姿勢)となる。すなわち、保持プレート75の保持面75aは水平面となる。
 GaN基板Wを載置した載置板91は、チャンバー6に装着された保持部7のサセプタ74の上に水平姿勢にて載置されて保持される。このとき、載置板91は保持プレート75上に立設された12個の支持ピン77によって支持されてサセプタ74に保持される。より厳密には、12個の支持ピン77の上端部が載置板91の下面に接触して当該載置板91を支持する。12個の支持ピン77の高さ(支持ピン77の上端から保持プレート75の保持面75aまでの距離)は均一であるため、12個の支持ピン77によって載置板91を水平姿勢に支持することができる。
 また、載置板91は複数の支持ピン77によって保持プレート75の保持面75aから所定の間隔を隔てて支持されることとなる。支持ピン77の高さよりもガイドリング76の厚さの方が大きい。従って、複数の支持ピン77によって支持された載置板91の水平方向の位置ずれはガイドリング76によって防止される。
 また、図2および図3に示すように、サセプタ74の保持プレート75には、上下に貫通して開口部78が形成されている。開口部78は、放射温度計20が載置板91の下面から放射される放射光(赤外光)を受光するために設けられている。すなわち、放射温度計20が開口部78およびチャンバー側部61の貫通孔61aに装着された透明窓21を介して載置板91の下面から放射された光を受光して当該載置板91の温度を測定する。さらに、サセプタ74の保持プレート75には、後述する移載機構10のリフトピン12が載置板91の受け渡しのために貫通する4個の貫通孔79が穿設されている。
 図5は、移載機構10の平面図である。また、図6は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。移載アーム11およびリフトピン12は石英にて形成されている。各移載アーム11は水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を保持部7に対して載置板91の移載を行う移載動作位置(図5の実線位置)と保持部7に保持された載置板91と平面視で重ならない退避位置(図5の二点鎖線位置)との間で水平移動させる。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。
 また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプタ74に穿設された貫通孔79(図2,3参照)を通過し、リフトピン12の上端がサセプタ74の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気がチャンバー6の外部に排出されるように構成されている。
 図1に戻り、チャンバー6の上方に設けられたフラッシュ加熱部5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、フラッシュ加熱部5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュ加熱部5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュ加熱部5がチャンバー6の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と相対向することとなる。フラッシュランプFLはチャンバー6の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。
 複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持されるGaN基板Wの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。複数のフラッシュランプFLが配列される領域はGaN基板Wの平面サイズよりも大きい。
 キセノンフラッシュランプFLは、その内部にキセノンガスが封入されその両端部にコンデンサーに接続された陽極および陰極が配設された円筒形状のガラス管(放電管)と、該ガラス管の外周面上に付設されたトリガー電極とを備える。キセノンガスは電気的には絶縁体であることから、コンデンサーに電荷が蓄積されていたとしても通常の状態ではガラス管内に電気は流れない。しかしながら、トリガー電極に高電圧を印加して絶縁を破壊した場合には、コンデンサーに蓄えられた電気がガラス管内に瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。このようなキセノンフラッシュランプFLにおいては、予めコンデンサーに蓄えられていた静電エネルギーが0.1ミリ秒ないし100ミリ秒という極めて短い光パルスに変換されることから、ハロゲンランプHLの如き連続点灯の光源に比べて極めて強い光を照射し得るという特徴を有する。すなわち、フラッシュランプFLは、1秒未満の極めて短い時間で瞬間的に発光するパルス発光ランプである。なお、フラッシュランプFLの発光時間は、フラッシュランプFLに電力供給を行うランプ電源のコイル定数によって調整することができる。
 また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。
 チャンバー6の下方に設けられたハロゲン加熱部4は、筐体41の内側に複数本(本実施形態では40本)のハロゲンランプHLを内蔵している。ハロゲン加熱部4は、複数のハロゲンランプHLによってチャンバー6の下方から下側チャンバー窓64を介して熱処理空間65への光照射を行ってGaN基板Wを加熱する。
 図7は、複数のハロゲンランプHLの配置を示す平面図である。40本のハロゲンランプHLは上下2段に分けて配置されている。保持部7に近い上段に20本のハロゲンランプHLが配設されるとともに、上段よりも保持部7から遠い下段にも20本のハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持されるGaN基板Wの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。
 また、図7に示すように、上段、下段ともに保持部7に保持される載置板91の中央部に対向する領域よりも周縁部に対向する領域におけるハロゲンランプHLの配設密度が高くなっている。すなわち、上下段ともに、ランプ配列の中央部よりも周縁部の方がハロゲンランプHLの配設ピッチが短い。このため、ハロゲン加熱部4からの光照射による加熱時に温度低下が生じやすい載置板91の周縁部により多い光量の照射を行うことができる。
 また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段に配置された20本のハロゲンランプHLの長手方向と下段に配置された20本のハロゲンランプHLの長手方向とが互いに直交するように計40本のハロゲンランプHLが配設されている。
 ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。すなわち、ハロゲンランプHLは少なくとも1秒以上連続して発光する連続点灯ランプである。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の載置板91への放射効率が優れたものとなる。
 また、ハロゲン加熱部4の筐体41内にも、2段のハロゲンランプHLの下側にリフレクタ43が設けられている(図1)。リフレクタ43は、複数のハロゲンランプHLから出射された光を熱処理空間65の側に反射する。
 制御部3は、熱処理装置1に設けられた上記の種々の動作機構を制御する。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスクを備えている。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置1における処理が進行する。
 上記の構成以外にも熱処理装置1は、GaN基板Wの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、チャンバー6の壁体には水冷管(図示省略)が設けられている。また、ハロゲン加熱部4およびフラッシュ加熱部5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュ加熱部5および上側チャンバー窓63を冷却する。
 次に、本発明に係るゲート絶縁膜の形成方法について説明する。図8は、本発明に係るゲート絶縁膜の形成方法の手順を示すフローチャートである。処理対象となるGaN基板Wは、直径約50mm(2インチ)の円板形状の窒化ガリウムウェハーであり、典型的なシリコンの半導体ウェハー(直径300mm)に比較すると顕著に小さい。まず、処理対象となるGaN基板Wにゲート絶縁膜が成膜される(ステップS1)。本実施形態においては、CVDによって二酸化ケイ素(SiO)のゲート絶縁膜がGaN基板W上に成膜される。ゲート絶縁膜の成膜は、熱処理装置1とは別のCVD装置を用いて行われる。
 図9は、GaN基板Wにゲート絶縁膜95が成膜された状態を示す図である。CVDによってゲート絶縁膜95がGaN基板W上に成膜された時点では、ゲート絶縁膜95とGaNとの界面に多数のトラップが存在しており、Dit(Density of interface trap)が高い。また、ゲート絶縁膜95中には成膜時に不可避的に水素が混入しており、ゲート絶縁膜95の誘電率も低い。従って、このままではゲート絶縁膜95の特性が低く、高性能なMOSFETを製造することができない。このため、熱処理装置1において、ゲート絶縁膜95が成膜されたGaN基板Wの成膜後熱処理(PDA:Post Deposition Anneal)を行う。
 直径約50mmの小径のGaN基板Wは、そのままでは熱処理装置1で取り扱うことが困難である。このため、本実施形態においては、小径のGaN基板Wを載置板91に載置した状態で熱処理装置1にて処理するようにしている。図10は、GaN基板Wを載置板91に載置した状態を示す図である。載置板91は、直径300mmの円板形状の部材である。載置板91は、例えば炭化ケイ素(SiC)にて形成される。炭化ケイ素は、ハロゲンランプHLから照射される光およびフラッシュランプFLから照射されるフラッシュ光に対して高い吸収率を有する吸光材料である。
 載置板91の上面中央部には直径約70mmの円形の凹部が形設されており、その凹部にGaN基板Wがはまり込むように載置される。凹部内にGaN基板Wを載置することによって、GaN基板Wの位置ずれを防止することができる。そして、載置板91に載置された状態のGaN基板Wに対して熱処理装置1により熱処理が行われる。載置板91のサイズは典型的なシリコンの半導体ウェハーと同程度であるため、シリコンの半導体ウェハーを扱う熱処理装置1にてGaN基板Wの熱処理を行うことができる。以下、熱処理装置1におけるGaN基板Wの熱処理について説明する。以下に説明する熱処理装置1の処理手順は、制御部3が熱処理装置1の各動作機構を制御することにより進行する。
 GaN基板Wの搬入に先立って、給気バルブ84が開放されるとともに、排気バルブ89が開放されてチャンバー6内に対する給排気が開始される。給気バルブ84が開放されると、ガス供給孔81から熱処理空間65に窒素ガスが供給される。また、排気バルブ89が開放されると、ガス排気孔86からチャンバー6内の気体が排気される。これにより、チャンバー6内の熱処理空間65の上部から供給された窒素ガスが下方へと流れ、熱処理空間65の下部から排気される。
 続いて、載置板91に載置された状態のGaN基板Wが熱処理装置1のチャンバー6内に搬入される(ステップS2)。具体的には、ゲートバルブ185が開いて搬送開口部66が開放され、装置外部の搬送ロボットにより搬送開口部66を介してGaN基板Wを載置した載置板91がチャンバー6内の熱処理空間65に搬入される。このときには、GaN基板Wの搬入にともなって装置外部の雰囲気を巻き込むおそれがあるが、チャンバー6には窒素ガスが供給され続けているため、搬送開口部66から窒素ガスが流出して、そのような外部雰囲気の巻き込みを最小限に抑制することができる。
 搬送ロボットによって搬入された載置板91は保持部7の直上位置まで進出して停止する。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプタ74の保持プレート75の上面から突き出てGaN基板Wを載置した載置板91を受け取る。このとき、リフトピン12は支持ピン77の上端よりも上方にまで上昇する。
 GaN基板Wを載置した載置板91がリフトピン12に載置された後、搬送ロボットが熱処理空間65から退出し、ゲートバルブ185によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、載置板91は移載機構10から保持部7のサセプタ74に受け渡されて水平姿勢にて下方より保持される。載置板91は、保持プレート75上に立設された複数の支持ピン77によって支持されてサセプタ74に保持される。また、ゲート絶縁膜95が成膜されたGaN基板Wの表面を上面に向けて載置板91は保持部7に保持される。複数の支持ピン77によって支持された載置板91の裏面(GaN基板Wが載置されるのとは反対側の面)と保持プレート75の保持面75aとの間には所定の間隔が形成される。サセプタ74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。
 載置板91が石英にて形成された保持部7のサセプタ74によって水平姿勢にて下方より保持された後、ハロゲン加熱部4の40本のハロゲンランプHLが一斉に点灯して予備加熱(アシスト加熱)が開始される(ステップS3)。ハロゲンランプHLから出射されたハロゲン光は、石英にて形成された下側チャンバー窓64およびサセプタ74を透過してGaN基板Wを載置した載置板91の下面に照射される。載置板91は、SiCにて形成されているため、ハロゲンランプHLから出射された光を良好に吸収して昇温する。そして、昇温した載置板91からの熱伝導によってGaN基板Wが予備加熱されることとなる。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。
 ハロゲンランプHLによる予備加熱を行うときには、GaN基板Wを載置する載置板91の温度が放射温度計20によって測定されている。すなわち、サセプタ74に保持された載置板91の下面から開口部78を介して放射された赤外光を透明窓21を通して放射温度計20が受光して昇温中の載置板91の温度を測定する。測定された載置板91の温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光照射によって昇温する載置板91の温度が目標温度T1に到達したか否かを監視しつつ、ハロゲンランプHLの出力を制御する。すなわち、制御部3は、放射温度計20による測定値に基づいて、載置板91の温度が目標温度T1となるようにハロゲンランプHLの出力をフィードバック制御する。目標温度T1は、600℃以上800℃以下である。
 載置板91の温度が目標温度T1に到達した後、制御部3は載置板91の温度がその目標温度T1を維持するようにハロゲンランプHLの出力を調整する。具体的には、放射温度計20によって測定される載置板91の温度が目標温度T1に到達した時点で制御部3がハロゲンランプHLの出力を調整し、載置板91の温度をほぼ目標温度T1に維持する。ハロゲンランプHLからの光照射によって載置板91が目標温度T1に維持されることにより、載置板91からの熱伝導によってGaN基板Wが均一に予備加熱される。
 載置板91の温度が目標温度T1に到達してから所定時間が経過した時点でフラッシュ加熱部5のフラッシュランプFLからGaN基板Wの表面にフラッシュ光照射を行う(ステップS4)。このとき、フラッシュランプFLから放射されるフラッシュ光の一部は直接にチャンバー6内へと向かい、他の一部は一旦リフレクタ52により反射されてからチャンバー6内へと向かい、これらのフラッシュ光の照射によりGaN基板Wのフラッシュ加熱が行われる。
 フラッシュ加熱は、フラッシュランプFLからのフラッシュ光(閃光)照射により行われるため、GaN基板Wの表面温度を短時間で上昇することができる。すなわち、フラッシュランプFLから照射されるフラッシュ光は、予めコンデンサーに蓄えられていた静電エネルギーが極めて短い光パルスに変換された、照射時間が0.1ミリ秒以上100ミリ秒以下程度の極めて短く強い閃光である。そして、フラッシュランプFLからのフラッシュ光照射により、ゲート絶縁膜95を含むGaN基板Wの表面は瞬間的に処理温度T2にまで昇温した後、急速に降温する。フラッシュ加熱時におけるゲート絶縁膜95の最高到達温度である処理温度T2は、上記の目標温度T1よりも高く、800℃以上1200℃以下である。GaN基板Wの表面が瞬間的に処理温度T2にまで加熱されることにより、ゲート絶縁膜95の成膜後熱処理が行われ、ゲート絶縁膜95とGaNとの界面に存在していたトラップが減少する。
 ここで、成膜後熱処理を行うための典型的な手法であるRTA(Rapid Thermal Anneal)を用いてゲート絶縁膜95が成膜されたGaN基板Wを処理温度T2にまで加熱したとしてもゲート絶縁膜95とGaNとの界面に存在していたトラップを減少させることはできる。しかし、RTAを用いてGaN基板Wを処理温度T2にまで加熱すると、GaNから窒素が脱離して結合手の外れたガリウムがゲート絶縁膜95中に拡散するという現象が生じる。その結果、ゲート絶縁膜95に絶縁特性の劣化(リーク電流の増大、絶縁破壊電界の低下等)が生じることとなる。なお、上述したハロゲンランプHLによる予備加熱も一種のRTAではあるものの、目標温度T1は処理温度T2よりも低温であるため、予備加熱時にGaNから窒素が脱離することはなく、トラップが減少することも無い。すなわち、トラップの減少とGaNからの窒素の脱離防止とはトレードオフの関係にあると言える。
 本実施形態においては、照射時間が1秒未満のフラッシュ光をGaN基板Wに照射することによってゲート絶縁膜95を含むGaN基板Wの表面を目標温度T1から処理温度T2にまで極めて短い熱処理時間にてフラッシュ加熱している。このため、GaN基板Wが高温となっている時間は短く、GaNからの窒素の脱離を最小限に抑制することができる。その結果、ゲート絶縁膜95にガリウムを拡散させることなく、ゲート絶縁膜95とGaNとの界面に存在していたトラップを減少させてDitを低減させることができる。また、GaN基板Wをフラッシュ加熱することにより、成膜時にゲート絶縁膜95に混入した水素を低減させてゲート絶縁膜95の誘電率を高めることもできる。これにより、窒化ガリウムを用いた高性能なMOSFETを製造することができる。
 フラッシュ加熱処理が終了した後、所定時間経過後にハロゲンランプHLが消灯する。これにより、GaN基板Wおよび載置板91が急速に降温する。降温中の載置板91の温度は放射温度計20によって測定され、その測定結果は制御部3に伝達される。制御部3は、放射温度計20の測定結果より載置板91の温度が所定温度まで降温したか否かを監視する。そして、載置板91の温度が所定以下にまで降温した後、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプタ74の上面から突き出て熱処理後のGaN基板Wを載置した載置板91をサセプタ74から受け取る。続いて、ゲートバルブ185により閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された載置板91が装置外部の搬送ロボットにより搬出され、熱処理装置1におけるGaN基板Wの加熱処理が完了する(ステップS5)。熱処理装置1による加熱処理が終了したGaN基板Wのゲート絶縁膜95上には例えばアルミニウム等の金属のゲート電極が形成される。
 本実施形態においては、照射時間が0.1ミリ秒以上100ミリ秒以下のフラッシュ光を照射することによってゲート絶縁膜95を含むGaN基板Wの表面を極めて短い熱処理時間にて処理温度T2にフラッシュ加熱している。これにより、GaN基板Wからの窒素の脱離を防止してゲート絶縁膜95にガリウムを拡散させることなく、ゲート絶縁膜95とGaNとの界面に存在していたトラップを減少させることができる。すなわち、照射時間の極めて短いフラッシュ光を照射することによって、トラップの減少とGaNからの窒素の脱離防止とを両立させることができるのである。
 以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、照射時間が1秒未満のフラッシュ光を照射するフラッシュランプアニールによってGaN基板Wを加熱していたが、これに代えて、レーザーアニールによってゲート絶縁膜95を含むGaN基板Wの表面を処理温度T2に加熱するようにしても良い。レーザーアニールによる熱処理時間は、フラッシュランプアニールよりもさらに短く、最短10ナノ秒とすることが可能である。レーザーアニールによる熱処理時間も極めて短いため、フラッシュランプアニールと同様に、ゲート絶縁膜95にガリウムを拡散させることなく、ゲート絶縁膜95とGaNとの界面に存在していたトラップを減少させることができる。要するに、10ナノ秒以上100ミリ秒以下の極めて短い熱処理時間にてゲート絶縁膜95を含むGaN基板Wの表面を加熱すれば、上記実施形態と同様に、トラップの減少とGaNからの窒素の脱離防止とを両立させることができる。
 また、上記実施形態においては、二酸化ケイ素のゲート絶縁膜95をGaN基板W上に成膜していたが、これに限定されるものではなく、酸化ガリウム(GaO)のゲート絶縁膜をGaN基板W上に成膜するようにしても良い。酸化ガリウムのゲート絶縁膜は、熱酸化法によってGaN基板W上に成膜される。熱酸化法によって成膜された酸化ガリウムのゲート絶縁膜とGaNとの界面にも多数のトラップが存在している。そして、上記実施形態と同様に、極めて短い熱処理時間にて酸化ガリウムのゲート絶縁膜を含むGaN基板Wの表面を加熱することにより、ゲート絶縁膜にガリウムを拡散させることなくトラップを減少させることができる。
 また、GaN基板Wのサイズは、直径約50mmに限定されるものではなく、例えば直径約100mm(4インチ)であっても良い。
 また、載置板91の材質は炭化ケイ素に限定されるものではなく、例えばシリコン(Si)であっても良い。もっとも、フラッシュ加熱時にGaN基板Wが1400℃程度の高温に加熱されるとシリコン(融点1414℃)の載置板91では溶融する懸念があるため、載置板91は炭化ケイ素(融点2730℃)にて形成するのが好ましい。
 また、上記実施形態においては、フラッシュ加熱部5に30本のフラッシュランプFLを備えるようにしていたが、これに限定されるものではなく、フラッシュランプFLの本数は任意の数とすることができる。また、フラッシュランプFLはキセノンフラッシュランプに限定されるものではなく、クリプトンフラッシュランプであっても良い。また、ハロゲン加熱部4に備えるハロゲンランプHLの本数も40本に限定されるものではなく、任意の数とすることができる。
 また、上記実施形態においては、1秒以上連続して発光する連続点灯ランプとしてフィラメント方式のハロゲンランプHLを用いてGaN基板Wの予備加熱を行っていたが、これに限定されるものではなく、ハロゲンランプHLに代えて放電型のアークランプ(例えば、キセノンアークランプ)を連続点灯ランプとして用いて予備加熱を行うようにしても良い。
 1 熱処理装置
 3 制御部
 4 ハロゲン加熱部
 5 フラッシュ加熱部
 6 チャンバー
 7 保持部
 10 移載機構
 65 熱処理空間
 74 サセプタ
 75 保持プレート
 77 支持ピン
 91 載置板
 95 ゲート絶縁膜
 FL フラッシュランプ
 HL ハロゲンランプ
 W GaN基板

Claims (6)

  1.  窒化ガリウムの基板上に二酸化ケイ素または酸化ガリウムのゲート絶縁膜を成膜する成膜工程と、
     前記基板および前記ゲート絶縁膜を10ナノ秒以上100ミリ秒以下の熱処理時間にて加熱するアニール工程と、
    を備えるゲート絶縁膜の形成方法。
  2.  請求項1記載のゲート絶縁膜の形成方法において、
     前記アニール工程での前記ゲート絶縁膜の最高到達温度は800℃以上1400℃以下であるゲート絶縁膜の形成方法。
  3.  二酸化ケイ素または酸化ガリウムのゲート絶縁膜が成膜された窒化ガリウムの基板をチャンバー内に搬入する搬入工程と、
     前記基板の表面にフラッシュランプから1秒未満の照射時間にてフラッシュ光を照射して前記表面および前記ゲート絶縁膜を加熱する光照射工程と、
    を備える熱処理方法。
  4.  請求項3記載の熱処理方法において、
     前記光照射工程での前記ゲート絶縁膜の最高到達温度は800℃以上1400℃以下である熱処理方法。
  5.  請求項3または請求項4に記載の熱処理方法において、
     前記光照射工程の前に、連続点灯ランプからの光照射によって前記基板を600℃以上800℃以下に予備加熱する予備加熱工程をさらに備える熱処理方法。
  6.  二酸化ケイ素または酸化ガリウムのゲート絶縁膜が成膜された窒化ガリウムの基板をチャンバー内に搬入する搬入工程と、
     前記基板および前記ゲート絶縁膜を10ナノ秒以上100ミリ秒以下の熱処理時間にて加熱するアニール工程と、
    を備える熱処理方法。
PCT/JP2019/026043 2018-08-30 2019-07-01 ゲート絶縁膜の形成方法および熱処理方法 WO2020044773A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/270,481 US20210327709A1 (en) 2018-08-30 2019-07-01 Method for forming gate insulator film and heat treatment method
KR1020237030033A KR102676481B1 (ko) 2018-08-30 2019-07-01 게이트 절연막의 형성 방법 및 열처리 방법
KR1020217005630A KR102577600B1 (ko) 2018-08-30 2019-07-01 게이트 절연막의 형성 방법 및 열처리 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-161726 2018-08-30
JP2018161726A JP7157596B2 (ja) 2018-08-30 2018-08-30 ゲート絶縁膜の形成方法および熱処理方法

Publications (1)

Publication Number Publication Date
WO2020044773A1 true WO2020044773A1 (ja) 2020-03-05

Family

ID=69642944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026043 WO2020044773A1 (ja) 2018-08-30 2019-07-01 ゲート絶縁膜の形成方法および熱処理方法

Country Status (5)

Country Link
US (1) US20210327709A1 (ja)
JP (2) JP7157596B2 (ja)
KR (1) KR102577600B1 (ja)
TW (1) TWI699449B (ja)
WO (1) WO2020044773A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019650A (ja) * 2003-06-25 2005-01-20 Toshiba Corp 処理装置、製造装置、処理方法及び電子装置の製造方法
JP2008306051A (ja) * 2007-06-08 2008-12-18 Rohm Co Ltd 半導体装置およびその製造方法
JP2018018847A (ja) * 2016-07-25 2018-02-01 株式会社Screenホールディングス 熱処理方法および熱処理装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183235A (ja) * 1993-12-24 1995-07-21 Semiconductor Energy Lab Co Ltd 多目的基板処理装置およびその動作方法および薄膜集積回路の作製方法
JP2001345313A (ja) 2000-05-31 2001-12-14 Ebara Corp 基板処理装置
KR20030095313A (ko) * 2002-06-07 2003-12-18 후지 샤신 필름 가부시기가이샤 레이저 어닐링장치 및 레이저 박막형성장치
US9498845B2 (en) * 2007-11-08 2016-11-22 Applied Materials, Inc. Pulse train annealing method and apparatus
JP4805299B2 (ja) 2008-03-28 2011-11-02 古河電気工業株式会社 電界効果トランジスタの製造方法
JP5522979B2 (ja) * 2009-06-16 2014-06-18 国立大学法人東北大学 成膜方法及び処理システム
JP6241100B2 (ja) 2013-07-17 2017-12-06 豊田合成株式会社 Mosfet
TW201517133A (zh) * 2013-10-07 2015-05-01 Applied Materials Inc 使用熱佈植與奈秒退火致使銦鋁鎵氮化物材料系統中摻雜劑的高活化
JP6235702B2 (ja) 2014-05-01 2017-11-22 ルネサスエレクトロニクス株式会社 半導体装置
JP2016054250A (ja) 2014-09-04 2016-04-14 豊田合成株式会社 半導体装置、製造方法、方法
JP6546512B2 (ja) 2015-11-04 2019-07-17 株式会社Screenホールディングス 熱処理装置
CN107591437B (zh) 2016-07-07 2020-03-10 中芯国际集成电路制造(上海)有限公司 半导体器件的形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019650A (ja) * 2003-06-25 2005-01-20 Toshiba Corp 処理装置、製造装置、処理方法及び電子装置の製造方法
JP2008306051A (ja) * 2007-06-08 2008-12-18 Rohm Co Ltd 半導体装置およびその製造方法
JP2018018847A (ja) * 2016-07-25 2018-02-01 株式会社Screenホールディングス 熱処理方法および熱処理装置

Also Published As

Publication number Publication date
KR102577600B1 (ko) 2023-09-12
JP7157596B2 (ja) 2022-10-20
JP2022180648A (ja) 2022-12-06
TWI699449B (zh) 2020-07-21
KR20210035268A (ko) 2021-03-31
US20210327709A1 (en) 2021-10-21
JP2020035914A (ja) 2020-03-05
KR20230131960A (ko) 2023-09-14
JP7338021B2 (ja) 2023-09-04
TW202009320A (zh) 2020-03-01

Similar Documents

Publication Publication Date Title
US9799517B2 (en) Apparatus and method for light-irradiation heat treatment
JP6774800B2 (ja) 半導体装置の製造方法
US10249519B2 (en) Light-irradiation heat treatment apparatus
JP6647892B2 (ja) 熱処理用サセプタおよび熱処理装置
US10354894B2 (en) Light-irradiation heat treatment apparatus
JP6720033B2 (ja) 熱処理装置
JP6770915B2 (ja) 熱処理装置
CN107818926B (zh) 热处理装置
CN112820666A (zh) 热处理装置
US10777427B2 (en) Light irradiation type heat treatment method
US20220076970A1 (en) Light irradiation type heat treatment apparatus
WO2020044773A1 (ja) ゲート絶縁膜の形成方法および熱処理方法
WO2020188979A1 (ja) 熱処理方法および熱処理装置
KR102676481B1 (ko) 게이트 절연막의 형성 방법 및 열처리 방법
KR20230003147A (ko) 열처리 장치
JP2018113382A (ja) 結晶構造制御方法および熱処理方法
WO2020044775A1 (ja) 熱処理方法
JP7228976B2 (ja) p型窒化ガリウム系半導体の製造方法および熱処理方法
JP2018101760A (ja) 熱処理方法
JP6791693B2 (ja) 熱処理装置
CN114743895A (zh) 热处理装置及热处理方法
JP2022166682A (ja) 熱処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217005630

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854999

Country of ref document: EP

Kind code of ref document: A1