WO2020040067A1 - 表面実装部品用のランド - Google Patents
表面実装部品用のランド Download PDFInfo
- Publication number
- WO2020040067A1 WO2020040067A1 PCT/JP2019/032198 JP2019032198W WO2020040067A1 WO 2020040067 A1 WO2020040067 A1 WO 2020040067A1 JP 2019032198 W JP2019032198 W JP 2019032198W WO 2020040067 A1 WO2020040067 A1 WO 2020040067A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- land
- chip
- chip component
- component
- area
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/11—Printed elements for providing electric connections to or between printed circuits
- H05K1/111—Pads for surface mounting, e.g. lay-out
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/09372—Pads and lands
- H05K2201/09381—Shape of non-curved single flat metallic pad, land or exposed part thereof; Shape of electrode of leadless component
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/09654—Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
- H05K2201/09727—Varying width along a single conductor; Conductors or pads having different widths
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/04—Soldering or other types of metallurgic bonding
- H05K2203/048—Self-alignment during soldering; Terminals, pads or shape of solder adapted therefor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/341—Surface mounted components
- H05K3/3431—Leadless components
- H05K3/3442—Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a land for a surface mount component.
- a land having a shape in which a land corresponding to a small component of the two components and a land corresponding to a large component are combined in a convex shape has been proposed.
- a pair of lands having such a shape are arranged facing each other such that a portion corresponding to a small component is on the inside and a portion corresponding to a large component is on the outside (for example, Patent Documents 1 and 2).
- the present disclosure has an object to provide a land for a surface mounted component that can support mounting of components of a plurality of sizes and that can suppress a problem at the time of component mounting.
- a land for a surface mount component of the present disclosure includes a plurality of land regions each having a different width, and each land region included in the plurality of land regions has a width in an order according to the width.
- a notch shape is provided at the center in the width direction on the side facing the adjacent or overlapping side.
- FIG. 4 is a diagram for explaining a land forming method according to the embodiment. It is a figure for explaining the example of the size of each part of the land concerning an embodiment.
- FIG. 9 is a diagram illustrating an example of a land that can support chip components of a plurality of sizes according to an existing technology. It is a figure which shows typically the mode which mounted the chip component of the corresponding big size on the land by the existing technology.
- FIG. 6 is a diagram illustrating an experimental example in which chip components are actually mounted on the lands according to the embodiment.
- FIG. 6 is a diagram illustrating an experimental example in which chip components are actually mounted on the lands according to the embodiment.
- FIG. 6 is a diagram illustrating an experimental example in which chip components are actually mounted on the lands according to the embodiment.
- FIG. 4 is a diagram illustrating an example of forming a land using an insulating film, which is applicable to the embodiment.
- FIG. 4 is a diagram illustrating an example of forming a land using an insulating film, which is applicable to the embodiment.
- FIG. 4 is a diagram illustrating an example of forming a land using an insulating film, which is applicable to the embodiment. It is a figure showing the example which provides a through hole in the inhibition field concerning an embodiment. It is a figure which shows the structure of an example of the land which can mount the chip component of 3 sizes which concerns on the modification of embodiment.
- FIG. 1 is a diagram illustrating a configuration of an example of a land for a surface mount component according to the embodiment.
- FIG. 1 shows a state in which lands 10 and 10 ′ for surface mounting components according to the embodiment are arranged on a substrate.
- the land 10 according to the embodiment includes land areas 11a and 11b, and the inhibition area 12 is formed in the land area 11a by a cutout shape.
- Each of the land regions 11a and 11b is formed of a conductor film made of a solderable metal wiring conductor having a surface treatment such as copper, silver, gold, or aluminum.
- the inhibition area 12 is an area where soldering is inhibited.
- the inhibition region 12 is formed by cutting out a part of the land region 11a.
- the land area 11a has a size corresponding to the electrode width of the surface mount component 20 of the first size indicated by a dotted line in FIG.
- the size of the land area 11a indicates the size including the inhibition area 12.
- the land area 11b has a size corresponding to the electrode width of the surface mount component 21 having a second size, which is also smaller than the first size and is also indicated by a dotted line in FIG.
- the land regions 11a and 11b are directed toward the midpoint 30 of the lands 10 and 10 'when the lands 10 and the lands 10' to be paired with the lands 10 are arranged on the substrate according to their sizes. Thus, the combination is performed such that the smaller the land area is, the closer to the middle point 30 is.
- the land areas 11 a and 11 b are arranged in the land 10 in the order of the land area 11 b and the land area 11 a from the closest to the midpoint 30, and are combined as one land 10.
- the electrode width of the electrodes of the surface mount components 20 and 21 indicates the length in the lateral direction in the drawing.
- the length of the electrode in the longitudinal direction is called an electrode length.
- the land regions 11a and 11b are designed to have a predetermined margin with respect to the electrode width and the electrode length of the electrodes of the corresponding surface mount components 20 and 21, respectively.
- the surface mount components 20 and 21 are so-called chip components provided with soldering electrodes at both ends in the longitudinal direction in the drawing, and specifically include, for example, chip-type multilayer ceramic capacitors, chip-type multilayer inductors, chip ferrite beads, and chips. Mold resistance.
- the surface-mounted component 20 and the surface-mounted component 21 are described as a chip component 20 and a chip component 21, respectively.
- the “land 10” forms a pair with the land 10, has the same configuration as the land 10, and is arranged on the substrate so as to face the land 10.
- the inhibition area 12 ′ corresponds to the inhibition area 12 of the land 10.
- the electrodes at both ends of the chip component 20 are positioned at predetermined positions of the land regions 11a and 11a'.
- the land regions 11a and 11b have lines 31 whose electrode width directions are parallel and whose centers in the electrode width directions are perpendicular to the electrode width direction (hereinafter, referred to as center lines 31). It is formed to ride on top.
- FIG. 2A is a diagram schematically showing a state in which small chip components 21 are mounted on lands 10 and 10 ′. It can be seen that the electrode portions 201 and 201 'at both ends in the longitudinal direction of the chip component 21 are on the land regions 11b and 11b', respectively.
- the behavior in the width direction of the chip component 21 (electrode portion 201) during solder melting on the sides A and A ′ is suppressed, and the electrode portions 201 are A force returns to the center of the region 11b.
- the behavior of the chip component 21 (the electrode portion 201) in the longitudinal direction at the time of solder melting is suppressed, and the force for returning the electrode portion 201 to the center of the land region 11 b is reduced. work. These behaviors are called self-alignment.
- FIG. 2B is a diagram schematically illustrating a state where a large chip component 20 is mounted on the lands 10 and 10 ′. It can be seen that the electrode portions 200 and 200 'at both ends in the longitudinal direction of the chip component 20 are on the land regions 11a and 11a', respectively.
- the sides C and C ′ suppress the widthwise behavior of the chip component 20 (electrode portion 200) at the time of solder melting.
- a force returns to the center of the area 11a.
- the behavior of the chip component 20 (electrode portion 200) in the longitudinal direction at the time of solder melting is suppressed, and a force acts to return the electrode portion 200 to the center of the land region 11a.
- the land 10 according to the embodiment can suppress the unstable force at the time of the solder wetting behavior in the electrode width direction and the longitudinal direction of the component for both of the chip components 20 and 21 of different sizes, High quality soldering becomes possible.
- FIG. 3 is a view for explaining a method of forming the land 10 according to the embodiment.
- each step S100 to step S104 is for convenience of explanation of the method of forming the land 10, and does not show the actual procedure of forming the land 10.
- Step S100 shows an example of the land area 11b for the small chip component 21.
- the land area 11b has a size having a predetermined margin with respect to the electrode portion 201 of the chip component 21.
- step S101 shows an example of the land area 11a for the large chip component 20.
- the land area 11a has a predetermined margin with respect to the electrode portion 200 of the chip component 20.
- Step S102 shows an example of a state in which the land areas 11a and 11b are combined.
- the coordinates 32c indicate coordinates where the center coordinates 32b of the chip component 21 and the center coordinates 32a of the chip component 22 are matched.
- the coordinates 32c correspond to the midpoint 30 between the land 10 in which the land areas 11a and 11b are combined and the land 10 'paired with the land 10.
- the land areas 11a and 11b are maintained in a relationship between the distance from the center coordinates 32b to the land area 11b and the distance from the center coordinates 32a to the land area 11a.
- the center in the electrode width direction is aligned with the center line 31 and combined.
- the land regions 11a and 11b are combined such that adjacent or partial regions overlap.
- Steps S103 and S104 show an example in which a cutout shape is provided for the configuration in which the land regions 11a and 11b are combined, and the inhibition region 12 is formed by the cutout shape.
- the inhibition region 12 is provided with a width smaller than the width of the land region 11b in the electrode width direction. Further, in the longitudinal direction of the chip component 20 (chip component 21), the obstruction region 12 moves from the end (the left end of the land region 11a in FIG. 3) facing the coordinates 32c of the land region 11a to the coordinates 32c of the land region 11b. The length is provided up to the opposite end (the left end of the land area 11b in FIG. 3).
- step S104 an example of the shape of the land 10 in which the inhibition area 12 is formed in the configuration in which the land area 11a and the land area 11b are combined is shown.
- FIG. 4 is a diagram for explaining an example of the size of each part of the land 10 according to the embodiment.
- the width a in the electrode width direction of the inhibition region 12 formed by the cutout shape with respect to the land region 11a is shorter than the electrode width b of the chip component 21 corresponding to the land region 11b.
- the width a is set to be about 1/3 to 4/5 of the electrode width b.
- the distance d 'between the two is set to a known distance that is preferable for providing the chip component 20 with self-alignment during soldering.
- the distance e between the midpoint 30 and the longitudinal end of the chip component 20 when the land 10 and the land 10 ′ paired with the land 10 are arranged on the substrate so that the chip components 20 and 21 can be mounted.
- a distance f between the midpoint 30 and the longitudinal end of the chip component 21 is a distance corresponding to the longitudinal length of each of the chip components 20 and 21. Therefore, once the chip components 20 and 21 are determined, the shape of the land 10 and the size of each part can be determined substantially uniquely.
- chip components 20 and 21 of two sizes can be mounted on the same land 10 (and land 10 '). Examples (1) to (5) of combinations of sizes of such chip components 20 and 21 are shown below.
- a four-digit number such as “0402” or “0603” is an abbreviation of a standard size of a chip component defined by JIS (Japanese Industrial Standards).
- Chip component 21 0402 (0.4 x 0.2 mm) Chip part 20: 0603 (0.6 ⁇ 0.3mm) -Combination example (2) Chip part 21: 0603 (0.6 ⁇ 0.3mm) Chip component 20: 1005 (1.0 x 0.5 mm) or 1106 (1.1 x 0.6 mm) ⁇ Combination example (3) Chip part 21: 1005 (1.0 ⁇ 0.5 mm) or 1106 (1.1 ⁇ 0.6 mm) Chip component 20: 1608 (1.6 x 0.8 mm) -Combination example (4) Chip part 21: 1608 (1.6 ⁇ 0.8 mm) or 1709 (1.7 ⁇ 0.9 mm) Chip component 20: 2012 (2.0 x 1.25 mm) -Combination example (5) Chip component 21: 2012 (2.0 x 1.25 mm) Chip component 20: 3216 (3.2 x 1.6 mm)
- the combination of the sizes of the chip components 20 and 21 is not limited to the above-described combination examples (1) to (5), and a combination of other sizes is also possible.
- FIG. 5 is a diagram showing an example of a land according to an existing technology (for example, Patent Literatures 1 and 2) capable of supporting chip components of a plurality of sizes.
- a land 100 includes a land area 111a corresponding to a large-sized chip component 20, a land area 111b corresponding to a small-sized chip part 21, and a land area corresponding to a chip part 22 having an intermediate size between them. 111c.
- the land 100 has a shape without the inhibition area 12 in the land 10 according to the embodiment.
- FIG. 6 is a view schematically showing a state in which a corresponding large-sized chip component 20 is mounted, that is, soldered, on lands 100 and 100 'according to the existing technology.
- a large component for example, the chip component 20
- the shapes of the solders 301 and 301' become stable fillet shapes. This indicates that stable soldering was performed.
- FIGS. 7A to 7C are views schematically showing a state in which a corresponding small-sized chip component 21 is soldered to the lands 100 and 100 'according to the existing technology.
- a small component for example, a chip component 21 is soldered to the lands 100 and 100 ′
- the soldered portions on the tip side of the electrode portions 201 and 201 ′ of the chip component 21 Is longer than a known distance that is preferable in soldering. Therefore, when the heated solders 301 and 301 'are melted, the forces F1 and F2 for pulling the solder toward both ends in the longitudinal direction of the chip component 21 are increased.
- the difference between the forces F1 and F2 causes the behavior of the mounted component to be unstable. Further, in addition to the difference between the forces F1 and F2, there is a variation in the volume of solder supplied at both ends of the chip component during soldering, a variation in the amount of deviation from a mounting target position when mounting the chip component, and a land at both ends of the chip component. The difference between the 100 and 100 'solder melting timings and the like also cause the component behavior to be unstable.
- the land shapes such as the lands 100 and 100 'shown in FIG. 5 may deteriorate the soldering quality when mounting the small-sized chip components 21 and the intermediate-sized chip components 22.
- FIG. 5 shows an example in which the same land 100 can support three types of chip components 20, 21, and 22 having different sizes. However, this is a case in which two types of chip components having different sizes can be supported. A similar problem occurs. For example, chip-type multilayer ceramic capacitors and chip-type resistors have a large number of use points per board, and therefore the lands 100 and 100 'corresponding to chip parts of a plurality of sizes according to the existing technology have a shape of the board on which each part is mounted. It can be a factor of quality deterioration.
- FIG. 8 is a diagram schematically showing a state in which chip components 21 are mounted on general lands 101 and 101 ′ formed so as to fit the size of a single chip component 21.
- the distance between, for example, the end of the electrode part 201 of the chip component 21 and the end of the land 101 is short, and the forces F1 ′ and F2 ′ for pulling the solder at the time of melting the solder are determined by the height of the chip component 21 and Work in the direction of.
- the directions of the forces F1 ′ and F2 ′ are different from the directions of the forces F1 and F2 in the case of having the long soldering dimensions shown in FIG. 7A, the bonding failure as shown in FIGS. 7B and 7C occurs. Hard to do.
- the land 10 according to the embodiment is formed by combining land areas 11a and 11b corresponding to the electrode widths of the chip components 20 and 21 of different sizes, respectively.
- the hindrance region 12 for hindering soldering is provided for the land region 11a, and the soldering dimension in the land region 11b is kept short. Therefore, the state of the chip component 21 mounted on the land area 11b can be made equivalent to the state of the chip component 21 mounted on the general lands 101 and 101 ′ shown in FIG. Stable soldering to the chip component 21 is possible.
- chip components of general size (components having a rectangular parallelepiped shape and having two opposed electrodes, such as a multilayer ceramic capacitor, a multilayer inductor, a chip ferrite bead, a chip resistor, and a chip conductor) are different.
- a plurality of chip components 20 and 21 having a size can be mounted with high quality by one land 10 according to the embodiment.
- chip components having the same characteristics and different sizes can be mounted on the same land 10, and different components can be used without changing the board design. Further, since the area of the land region 11b corresponding to the chip component 21 smaller than the inhibition region 12 is limited, the amount of solder printed in the reflow method can be the same regardless of the size of the chip component. is there.
- the land 10 according to the embodiment has regions for providing self-alignment on the tip side and the side surface of the electrode portions 200 and 201 of the chip components 20 and 21 of the corresponding sizes.
- the inhibition region 12 can provide an appropriate region for self-alignment. For this reason, it is possible to suppress the occurrence of a bonding failure when the chip components 20 and 21 are displaced during mounting.
- chip components having the same capacitance but different sizes (standard sizes “0603” and “0704”, standard sizes “1005” and “1106”, and standard sizes “ 1608 "and” 1709 ").
- components mounted on the same land may be changed to different types of components, such as a change from a capacitor to a resistor or a change from a resistor to an inductor. Even in such a case, the use of the land 10 according to the embodiment makes it possible to change the mounting more reliably, and to reduce design constraints.
- FIG. 9 is a diagram illustrating an experimental example in which chip components 21 are actually mounted on the lands 10 and 10 ′ according to the embodiment.
- FIG. 10 is a view showing an experimental example in which actual chip components 20 are mounted on the lands 10 and 10 '. 9 and 10 show a common length L from the end of the land 10 to the end of the land 10 '.
- the land 10 (and 10 ′) is set so as to correspond to the two types of standard sizes “0603” and “1005” according to the combination example (2) described above. Regions 11a and 11b are formed.
- soldering was performed by actually heating the chip components 20 and 21 in a state where a mounting displacement corresponding to the electrode width (0.25 mm for the chip component 20 and 0.15 mm for the chip component 21) occurred. Even in this case, it has been confirmed that bonding failure due to standing of the components as shown in FIG. 7C can be suppressed.
- the lands 10 and 10 'shown in FIGS. 1 to 4 are formed by, for example, removing portions other than the lands 10 and 10' of the conductor film on the substrate surface by etching or the like. This is not limited to this example, and the lands 10 and 10 ′ can be formed by providing an insulating film that hinders soldering on the conductor film on the substrate surface.
- FIGS. 11A to 11C are diagrams showing an example in which the land 10 is formed using an insulating film, which is applicable to the embodiment. Generally, a solder resist is used as the insulating film. It should be noted that the land 10 'that is paired with the land 10 has the same configuration as the land 10, and is omitted in FIGS. 11A to 11C.
- FIG. 11A is a diagram showing an example in which the shape of the land 10 is formed by the insulating film 13 on the rectangular conductor film 40. That is, in the configuration of FIG. 11A, the exposed portion 14 for performing soldering on the land 10 is formed by not covering the region of the land 10 with the insulating film 13. In the example of FIG. 11A, the inhibition region 12s is also formed by covering the conductor film 40 with the insulating film 13. That is, in the example of FIG. 11A, when viewed from the exposed portion 14 side, the notch region 12 s is formed by forming the cutout shape of the conductor film 40 with the insulating film 13.
- FIG. 11B is a diagram showing an example in which the shape of the land 10 is formed by the insulating film 13 on the conductive film 41 in which the obstruction region 12 is cut away from the rectangular conductive film. Also in the example of FIG. 11B, similarly to FIG. 11A described above, the exposed portion 14 is formed by not covering the area of the land 10 with the insulating film 13.
- FIG. 11C is an example in which a conductor film is formed in advance to have the shape of the land 10.
- the conductor film 42 is formed in a state where a margin corresponding to the land area 11a is provided with respect to the shape of the land 10, and the insulating film 13 is coated on the margin, and the land 10 is formed. Is formed.
- the inhibition region 12 is formed with the conductor film 42 cut out.
- the land 10 shown in FIG. 11C has a small area of the insulating film 13 and the obstruction region 12 is also formed by cutting out the conductor film, so that the insulating film 13 as in the example of FIG. It is unlikely to occur, and it is easy to mount a small chip component 21 such as a standard size “0603”.
- the land 10 according to the above-described embodiment the chip components 20 and 21 of two sizes can be mounted on one land 10, but this is not limited to this example. That is, the land according to the embodiment may be capable of mounting chip components of three or more sizes in one land.
- FIG. 13 is a diagram showing a configuration of an example of a land according to a modification of the embodiment, on which a chip component having a size of 3 can be mounted.
- a land 10a according to a modification of the embodiment includes a land region 11a corresponding to a chip component 20 having a large size (electrode width), a land region 11b corresponding to a chip component 21 having a small size, and an intermediate portion therebetween. And a land area 11c corresponding to the chip component 22 having the size of.
- an inhibition region 12a is formed by a cutout shape for the land region 11b
- an inhibition region 12b is formed by a cutout shape for the land region 11c.
- the land regions 11a, 11b, and 11c have predetermined lands 10a and lands 10a 'to be paired with the lands 10a according to their sizes.
- the lands 10a and 10a ' are combined such that a smaller land area is arranged closer to the middle point 30 toward the middle point 30.
- the land areas 11b, 11b, and 11c are arranged in the order of the land area 11b, the land area 11c, and the land area 11a from the one closest to the midpoint 30, and are combined as one land 10a. Is done.
- the land 10a 'paired with the land 10a also has land regions 11a', 11b 'and 11c' corresponding to the land regions 11a, 11b and 11c, respectively, as well as the land 10a, and also corresponds to the inhibition regions 12a and 12b, respectively. Inhibiting regions 12a 'and 12b'.
- the distance between the end on the land area 11c side of the inhibition area 12b and the longitudinal end of the chip part 22 when the chip part 22 is mounted on the land area 11c is determined when soldering. It is a known distance which is preferable for giving the chip component 22 self-alignment.
- the distance between the end in the electrode width direction of the chip component 22 corresponding to the land region 11c and the side of the land region 11c corresponding to the end also has a self-alignment property with respect to the chip component 22 during soldering. It is a known distance that is preferable to have.
- the lands 10a and 10a ' according to the modified example of the embodiment have such a configuration, the chip components 20, 21 and 22 of different sizes are soldered under the same condition by the pair of lands 10a and 10a'. It can be attached. Further, since the hindrance regions 12b and 12b 'are provided for the land regions 11c and 11c' for mounting the chip component 22, when the chip component 22 is mounted, as shown in FIG. It is possible to suppress the occurrence of poor bonding such as the unconnected solder shown in FIG.
- the present technology can also have the following configurations.
- (1) Comprising a plurality of land areas, each having a different width, Land regions included in the plurality of land regions are combined into one land by aligning the centers in the width direction in an order according to the width, A side of the larger land area of the two land areas adjacent to or partially overlapping with each other in the plurality of land areas coupled to the one land, the side facing the adjacent or overlapping side; A land for a surface mount component, wherein a notch shape is provided at a center portion in the width direction.
- (2) The notch shape is The land for a surface mount component according to (1), wherein the length in the width direction is shorter than the length in the width direction of a component corresponding to the land area having the smaller width among the two land areas.
- the notch shape is The land for a surface mount component according to the above (1) or (2), which is provided by cutting out the conductor film in the larger land area.
- the notch shape is The land for a surface mount component according to the above (1) or (2), which is provided by forming an insulating film on the larger land area.
- Insulating film 14 Exposed portion 15 Through hole 20, 21, 22, Chip component 40, 41, 42 Conductive film 200, 200 ', 201, 201' Electrode portion
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
表面実装部品用のランド(10)は、それぞれ異なる幅を有する複数のランド領域(11a、11b)を備える。複数のランド領域に含まれる各ランド領域が、幅に従った順序で幅方向の中心を揃えて組み合わされて1のランドに結合される。1のランドに結合された複数のランド領域において隣接または領域の一部が重複する2のランド領域のうち幅が大きい方のランド領域の、隣接または重複する側に対向する側の幅方向の中央部に切り欠き形状(12)が設けられる。
Description
本発明は、表面実装部品用のランドに関する。
プリント基板配線の設計において、当該プリント基板に表面実装するチップ部品のサイズなどの仕様が設計後に変更される場合がある。この場合、チップ部品を表面実装するためのランドのサイズ変更を含む配線の修正が必要になる。そこで、この設計後の修正に掛かるコストを削減するために、予め複数の部品サイズに対応可能としたランド形状が提案されている。
例えば、異なる2つの部品サイズに対応可能としたランドの場合、2つの部品のうち小さな部品に対応するランドと、大きな部品に対応するランドとを凸状に組み合わせた形状のランドが提案されている。当該形状の1対のランドを、小さな部品に対応する部分が内側、大きな部品に対応する部分が外側になるように対向させて配置する(例えば特許文献1、特許文献2)。
上述の形状のランドに対して部品を実装(はんだ付け)する場合、大きな部品を実装する際は、安定したフィレット形状を得ることができる。一方、小さな部品を実装する際は、電極の先端側のはんだ付け部が長くなるため、加熱したはんだの溶解時に働く、電極の外側に向けた力が大きくなり、はんだ未接合、部品立ちなどの不具合が発生するおそれがある。
本開示は、複数サイズの部品の実装に対応し、且つ、部品実装の際の不具合を抑制可能な表面実装部品用のランドを提供することを目的とする。
上記目的を達成するために、本開示の表面実装部品用のランドは、それぞれ異なる幅を有する複数のランド領域を備え、複数のランド領域に含まれる各ランド領域が、幅に従った順序で幅方向の中心を揃えて組み合わされて1のランドに結合され、1のランドに結合された複数のランド領域において隣接または領域の一部が重複する2のランド領域のうち幅が大きい方のランド領域の、隣接または重複する側に対向する側の幅方向の中央部に切り欠き形状が設けられる。
以下、本開示の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態において、同一の部位には同一の符号を付することにより、重複する説明を省略する。
[実施形態に係るランド形状]
図1は、実施形態に係る表面実装部品用のランドの一例の構成を示す図である。図1において、実施形態に係る表面実装部品用のランド10および10’が基板上に配置された様子が示されている。実施形態に係るランド10は、ランド領域11aおよび11bを含み、ランド領域11aに対して、切り欠き形状により阻害領域12が形成されている。ランド領域11aおよび11bは、それぞれ、銅、銀、金、アルミニウムなどの表面処理を与えたはんだ付け可能な金属配線用の導体による導体膜により形成される。これに対して、阻害領域12は、はんだ付けが阻害される領域である。図1の例では、阻害領域12は、ランド領域11aの一部を切り欠くことで形成されている。
図1は、実施形態に係る表面実装部品用のランドの一例の構成を示す図である。図1において、実施形態に係る表面実装部品用のランド10および10’が基板上に配置された様子が示されている。実施形態に係るランド10は、ランド領域11aおよび11bを含み、ランド領域11aに対して、切り欠き形状により阻害領域12が形成されている。ランド領域11aおよび11bは、それぞれ、銅、銀、金、アルミニウムなどの表面処理を与えたはんだ付け可能な金属配線用の導体による導体膜により形成される。これに対して、阻害領域12は、はんだ付けが阻害される領域である。図1の例では、阻害領域12は、ランド領域11aの一部を切り欠くことで形成されている。
ランド領域11aは、図1において点線で示される第1の大きさの表面実装部品20の電極幅に対応する大きさを有する。ここで、ランド領域11aの大きさは、阻害領域12を含んだ大きさを指すものとする。また、ランド領域11bは、同様に図1において点線で示される、第1の大きさよりも小さい、第2の大きさの表面実装部品21の電極幅に対応する大きさを有する。
ランド領域11aおよび11bは、その大きさに従い、ランド10と、当該ランド10と対になるランド10’とが基板上に所定に配置された場合の、ランド10および10’の中点30に向けて、中点30に近いほど小さいランド領域が配置されるように組み合わせられる。図1の例では、ランド10において、中点30に最も近い方からランド領域11b、ランド領域11aの順に、ランド領域11aおよび11bが配置され、1のランド10として結合される。
なお、図1および以降の同様な図において、表面実装部品20および21の電極の電極幅は、図における短手方向の長さを指すものとする。また、当該電極の長手方向の長さを、電極長さと呼ぶ。ランド領域11aおよび11bは、それぞれ、対応する表面実装部品20および21の電極の電極幅および電極長さに対して所定のマージンを持った大きさに設計される。
表面実装部品20および21は、図における長手方向の両端側にはんだ付け電極を備える所謂チップ部品であって、具体的には、例えばチップ型積層セラミックコンデンサ、チップ型積層インダクタ、チップフェライトビーズ、チップ型抵抗などである。以下、特に記載の無い限り、表面実装部品20および表面実装部品21を、それぞれチップ部品20およびチップ部品21と記述する。
ランド10’は、ランド10と対をなすもので、ランド10と同一の構成を有し、基板上において、ランド10と対向する方向を向けて配置される。ランド10’において、ランド領域11a’および11b’は、それぞれ。ランド10のランド領域11aおよび11bに対応する。同様に、阻害領域12’は、ランド10の阻害領域12に対応する。
図1に示されるように、1対のランド10および10’を、ランド領域11bとランド領域11b’とを向かい合わせて基板上に配置する。このとき、ランド10および10’の中点30に各チップ部品20および21における部品装着のためのセンター座標を合わせた場合に、チップ部品20の両端の電極がランド領域11aおよび11a’の所定位置にそれぞれ配置され、且つ、チップ部品21の両端の電極がランド領域11bおよび11b’の所定位置にそれぞれ配置されるように、ランド10および10’を基板上に配置する。
すなわち、ランド10は、ランド領域11aおよび11bが、それぞれの電極幅方向が並行で、且つ、それぞれの電極幅方向の中心が当該電極幅方向に垂直な線31(以降、中心線31と呼ぶ)上に乗るように形成される。
図2Aは、ランド10および10’に対して小さいチップ部品21を実装した状態を模式的に示す図である。チップ部品21の長手方向の両端の電極部分201および201’がそれぞれランド領域11bおよび11b’に乗っているのが分かる。
電極部分201および201’のはんだ付けの際に、例えばランド10において、辺AおよびA’ではハンダ溶融時のチップ部品21(電極部分201)の幅方向の挙動が抑えられ、電極部分201をランド領域11bの中央に戻す力が働く。また、例えばランド10において、阻害領域12に係る辺Bでは、ハンダ溶融時のチップ部品21(電極部分201)の長手方向の挙動が抑えられ、電極部分201をランド領域11bの中央に戻す力が働く。これらの挙動は、セルフアライメントと呼ばれる。
図2Bは、ランド10および10’に対して大きいチップ部品20を実装した状態を模式的に示す図である。チップ部品20の長手方向の両端の電極部分200および200’がそれぞれランド領域11aおよび11a’に乗っているのが分かる。
電極部分200および200’のはんだ付けの際に、例えばランド10において、辺CおよびC’ではハンダ溶融時のチップ部品20(電極部分200)の幅方向の挙動が抑えられ、電極部分200をランド領域11aの中央に戻す力が働く。また、例えばランド10において、辺Dでは、ハンダ溶融時のチップ部品20(電極部分200)の長手方向の挙動が抑えられ、電極部分200をランド領域11aの中央に戻す力が働く。
このように、実施形態に係るランド10は、異なるサイズのチップ部品20および21の何れに対しても、電極幅方向および部品の長手方向のはんだ濡れ挙動時の不安定な力を抑制でき、高品質なはんだ付けが可能となる。
図3は、実施形態に係るランド10の形成方法を説明するための図である。なお、図3において、各ステップS100~ステップS104は、ランド10の形成方法の説明のための便宜上のものであり、ランド10の実際の形成手順を示すものではない。
ステップS100は、小さいチップ部品21のためのランド領域11bの例を示している。ランド領域11bは、チップ部品21の電極部分201に対して所定のマージンを持った大きさとする。同様に、ステップS101は、大きいチップ部品20のためのランド領域11aの例を示している。ランド領域11aは、チップ部品20の電極部分200に対して所定のマージンを持った大きさとする。
ステップS102は、ランド領域11aおよび11bを組み合わせた状態の例を示している。座標32cは、チップ部品21のセンター座標32bと、チップ部品22のセンター座標32aとを一致させた座標を示している。この座標32cは、ランド領域11aおよび11bを組み合わせたランド10と、当該ランド10と対になるランド10’との中点30に対応する。
ステップS102に示すように、ランド領域11aおよび11bを、センター座標32bからランド領域11bまでの距離と、センター座標32aからランド領域11aまでの距離との関係を保ち、且つ、ランド領域11aおよび11bの電極幅方向の中心を中心線31に揃えて、組み合わせる。ランド領域11aおよび11bは、隣接、または、一部の領域を重複させて、組み合わせられる。
ステップS103およびステップS104は、ランド領域11aおよび11bを組み合わせた構成に対して切り欠き形状を設け、当該切り欠き形状により阻害領域12を形成する様子の例を示している。ステップS103に示す例では、阻害領域12は、電極幅方向ではランド領域11bの幅より狭い幅で設けられる。また、阻害領域12は、チップ部品20(チップ部品21)の長手方向では、ランド領域11aの座標32cに対向する端(図3上においてランド領域11aの左端)から、ランド領域11bの座標32cに対向する端(図3上においてランド領域11bの左端)までの長さで設けられる。ステップS104において、このようにして、ランド領域11aとランド領域11bとが組み合わされた構成に対して阻害領域12が形成されたランド10の形状の例を示している。
図4は、実施形態に係るランド10の各部のサイズの例を説明するための図である。ランド領域11aに対する切り欠き形状により形成される阻害領域12の電極幅方向の幅aは、ランド領域11bに対応するチップ部品21の電極幅bより短くする。幅aを電極幅bよりも短くすることで、チップ部品21実装時のはんだ溶融時に余ったはんだの逃げ道を設けることができる。具体的な例としては、幅aは、電極幅bの1/3乃至4/5程度とする。
チップ部品21の電極幅方向の端とランド領域11bの対応する辺Aとの間の距離c、および、チップ部品21の長手方向の端とランド領域11bの対応する辺Bとの間の距離c’は、はんだ付け時にチップ部品21に対してセルフアライメント性を持たせるために好ましいとされる既知の距離(0.1mmなど)とする。ランド領域11aに対応するチップ部品20の電極幅方向の端とランド領域11aの対応する辺Cとの間の距離d、および、チップ部品20の長手方向の端とランド領域11aの対応する辺Dとの間の距離d’も同様に、はんだ付け時にチップ部品20に対してセルフアライメント性を持たせるために好ましいとされる既知の距離とする。
ランド10と、当該ランド10と対になるランド10’とを、チップ部品20および21を実装可能に基板に配置した際の中点30からチップ部品20の長手方向の端との間の距離eと、当該中点30からチップ部品21の長手方向の端との間の距離fと、は、それぞれ、チップ部品20および21それぞれの長手方向の長さに応じた距離である。したがって、チップ部品20および21が決まれば、ランド10の形状および各部サイズを略一意に決めることができる。
上述では、2種類のサイズのチップ部品20および21を、同一のランド10(およびランド10’)により実装可能としている。このようなチップ部品20および21のサイズの組み合わせの例(1)~(5)を、以下に示す。なお、各サイズにおいて、「0402」、「0603」などの4桁の数字は、JIS(Japanese Industrial Standards)により定められた、チップ部品の標準サイズの略称である。
・組み合わせ例(1)
チップ部品21:0402(0.4×0.2mm)
チップ部品20:0603(0.6×0.3mm)
・組み合わせ例(2)
チップ部品21:0603(0.6×0.3mm)
チップ部品20:1005(1.0×0.5mm)または1106(1.1×0.6mm)
・組み合わせ例(3)
チップ部品21:1005(1.0×0.5mm)または1106(1.1×0.6mm)
チップ部品20:1608(1.6×0.8mm)
・組み合わせ例(4)
チップ部品21:1608(1.6×0.8mm)または1709(1.7×0.9mm)
チップ部品20:2012(2.0×1.25mm)
・組み合わせ例(5)
チップ部品21:2012(2.0×1.25mm)
チップ部品20:3216(3.2×1.6mm)
チップ部品21:0402(0.4×0.2mm)
チップ部品20:0603(0.6×0.3mm)
・組み合わせ例(2)
チップ部品21:0603(0.6×0.3mm)
チップ部品20:1005(1.0×0.5mm)または1106(1.1×0.6mm)
・組み合わせ例(3)
チップ部品21:1005(1.0×0.5mm)または1106(1.1×0.6mm)
チップ部品20:1608(1.6×0.8mm)
・組み合わせ例(4)
チップ部品21:1608(1.6×0.8mm)または1709(1.7×0.9mm)
チップ部品20:2012(2.0×1.25mm)
・組み合わせ例(5)
チップ部品21:2012(2.0×1.25mm)
チップ部品20:3216(3.2×1.6mm)
なお、チップ部品20および21のサイズの組み合わせは、上述の組み合わせ例(1)~(5)に限定されず、さらに他のサイズの組み合わせも可能である。
[既存技術との対比]
次に、実施形態に係るランド10を、既存の技術と対比させて、その効果について説明する。図5は、既存技術(例えば特許文献1、2)による、複数サイズのチップ部品に対応可能としたランドの例を示す図である。図5において、ランド100は、大きなサイズのチップ部品20に対応するランド領域111aと、小さなサイズのチップ部品21に対応するランド領域111bと、それらの中間のサイズのチップ部品22に対応するランド領域111cと、を組み合わせた構成を有する。ランド100と対となるランド100’も同様である。ランド100は、実施形態に係るランド10における阻害領域12を持たない形状とされている。
次に、実施形態に係るランド10を、既存の技術と対比させて、その効果について説明する。図5は、既存技術(例えば特許文献1、2)による、複数サイズのチップ部品に対応可能としたランドの例を示す図である。図5において、ランド100は、大きなサイズのチップ部品20に対応するランド領域111aと、小さなサイズのチップ部品21に対応するランド領域111bと、それらの中間のサイズのチップ部品22に対応するランド領域111cと、を組み合わせた構成を有する。ランド100と対となるランド100’も同様である。ランド100は、実施形態に係るランド10における阻害領域12を持たない形状とされている。
この図5に示すランド100の形状に対してチップ部品を実装する例について、図6、および、図7A~図7Cを用いて説明する。図6は、既存技術によるランド100および100’に、対応する大きなサイズのチップ部品20を実装すなわちはんだ付けした様子を模式的に示す図である。図6に示すように、ランド100および100’に対する大きめの部品、例えばチップ部品20をはんだ付けした場合には、はんだ301および301’の形状が安定したフィレット形状となる。これは、安定したはんだ付けが行われたことを示している。
図7A~図7Cは、既存技術によるランド100および100’に、対応する小さなサイズのチップ部品21をはんだ付けした様子を模式的に示す図である。図7Aに示すように、ランド100および100’に対する小さめの部品、例えばチップ部品21をはんだ付けした場合には、チップ部品21の電極部分201および201’の先端側のはんだ付け部が、チップ部品のはんだ付けにおいて好ましいとされる既知の距離に対して長くなる。そのため、加熱されたはんだ301および301’の溶融時に、チップ部品21の長手方向両端側に向けてはんだを引っ張る力F1およびF2が大きくなる。
ここで、力F1およびF2の差は、実装される部品の挙動が不安定となる要因となる。また、力F1およびF2の差に加えて、はんだ付けを行う際のはんだ供給量のチップ部品両端での体積バラツキ、チップ部品装着時の装着狙い位置からのズレ量のバラツキ、チップ部品両端のランド100および100’のはんだ溶融タイミングの差なども、部品挙動が不安定となる要因となる。
はんだ付けにより部品挙動が不安定になると、図7Bに示すはんだ未接続や、図7Cに示す部品立ちといった接合不良が発生し易くなる。図7Bの例では、例えば力F2が力F1より大きいために、チップ部品21がランド100’の方向に引っ張られ、電極部分201がランド100に十分にはんだ付けされていない状態が発生している。また、図7Cの例では、例えば図7Bの例よりも力F2と力F1との差が大きく、チップ部品21がランド100’の方向に大きく引っ張られ、チップ部品21が基板300に対して立ち上がってしまっている。
このように、図5に示したランド100および100’のようなランド形状は、小さいサイズのチップ部品21や中間サイズのチップ部品22を実装する際に、はんだ付けの品質が悪化するおそれがある。図5では、同一のランド100でサイズが異なる3種類のチップ部品20、21および22に対応可能とした例を示しているが、サイズが異なる2種類のチップ部品に対応可能とした場合であっても同様の問題が発生する。例えばチップ型積層セラミックコンデンサやチップ型抵抗は、1基板当たりの使用点数が多いため、既存技術による複数サイズのチップ部品に対応するランド100および100’の形状は、各部品が実装された基板の品質悪化の要因となり得る。
また、図7Aの例では、図7Bおよび図7Cに示したような接合不良は発生していない。しかしながら、図7Aに示されるような、長いはんだ付け寸法は、製品使用時の温度の上昇および下降の繰り返しによるはんだ付け部への応力の影響によるはんだ接合部の破壊も発生し易くなるため、適正なランド形状とはいえない。
図8は、単一のチップ部品21のサイズに適合して形成された、一般的なランド101および101’にチップ部品21を実装した様子を模式的に示す図である。この場合、チップ部品21の例えば電極部分201の端と、ランド101の端との距離が短く、ハンダ溶融時のはんだを引っ張る力F1’およびF2’がチップ部品21の高さからランド101の端の方向へと働く。このように、力F1’およびF2’の方向が、図7Aに示す長いはんだ付け寸法を持つ場合の力F1およびF2の方向と異なるため、図7Bおよび図7Cに示したような接合不良が発生しにくい。
実施形態に係るランド10は、異なるサイズのチップ部品20および21の電極幅にそれぞれ対応するランド領域11aおよび11bを組み合わせて形成されている。このとき、ランド領域11aに対してはんだ付けを阻害する阻害領域12が設けられ、ランド領域11bにおけるはんだ付け寸法が短く抑えられている。そのため、ランド領域11bに実装されたチップ部品21の状態を、図8に示す、一般的なランド101および101’に対して実装されたチップ部品21の状態と同等とすることができ、小さいサイズのチップ部品21に対する安定したはんだ付けが可能となる。
したがって、一般的なサイズのチップ部品(チップ型積層セラミックコンデンサ、チップ型積層インダクタ、チップフェライトビーズ、チップ型抵抗、チップコンダクタなどの、直方体で2つの対向電極を持った形状の部品)において、異なるサイズの複数のチップ部品20および21を、実施形態に係る1つのランド10により高品質に実装可能となる。
またそのため、例えば、同一の特性を持ちサイズが異なるチップ部品を、同一のランド10により実装でき、基板設計を変更することなく異部品を使い分けることが可能となる。さらに、阻害領域12により小さいチップ部品21に対応するランド領域11bの面積が制限されるため、リフロー方式において印刷するはんだの量を、チップ部品のサイズに関わらず同一の量とすることが可能である。
さらにまた、実施形態に係るランド10は、対応可能な各サイズのチップ部品20および21の電極部分200および201の先端側および側面側に、セルフアライメント性を持たせるための領域を設けている。特に、サイズが小さいチップ部品21の電極部分201の先端側は、阻害領域12により、セルフアライメントために適切な領域を設けることができる。そのため、チップ部品20および21の装着時のズレが発生した場合の接合不良の発生を抑制することが可能である。
また、層型セラミックコンデンサのように、部品の高容量化に伴い、同容量でサイズが異なるチップ部品(標準サイズ「0603」と「0704」、標準サイズ「1005」と「1106」、標準サイズ「1608」と「1709」など)が存在する。このような特性が共通でサイズが異なるチップ部品に対しても、実施形態に係るランド10を用いることで、1つのランド10で特性が共通でサイズが異なる複数のチップ部品を使い分けることが可能となる。
さらに、コンデンサから抵抗への変更、抵抗からインダクタへの変更など、同一のランドに実装される部品を異なる種類の部品に変更することが有り得る。このような場合であっても、実施形態に係るランド10を用いることで、実装の変更をより確実に実施可能となり、設計上の制約を緩和することが可能となる。
図9は、実施形態に係るランド10および10’に、実際にチップ部品21を実装した実験例を示す図である。また、図10は、当該ランド10および10’に、実際のチップ部品20を実装した実験例を示す図である。なお、図9および図10は、ランド10の端からランド10’の端までの長さLを共通として示されている。また、図9および図10の例では、ランド10(および10’)は、上述した組み合わせ例(2)による、標準サイズ「0603」および「1005」の2種類のサイズに対応するように、ランド領域11aおよび11bが形成されている。
図9の実験例では、阻害領域12に対するはんだ付けが阻害されていることが分かる。また、図9に示すチップ部品21の実装において、チップ部品21の両端側におけるはんだ301および301’の形状が安定したフィレット形状となっていることが分かる。これは、安定したはんだ付けが行われたことを示している。
また、この実験においては、実際にチップ部品20および21の電極幅(チップ部品20においては0.25mm、チップ部品21においては0.15mm)相当の装着ズレを起こした状態で加熱してはんだ付けした場合でも、図7Cに示したような部品立ちによる接合不良を抑制できることが確認されている。
[実施形態に係るランドの形成方法の他の例]
次に、実施形態に係るランド10の形成方法の他の例について説明する。上述した図1~図4に示したランド10および10’は、例えば基板面の導体膜のランド10および10’以外の部分をエッチングなどにより除去して形成している。これはこの例に限定されず、ランド10および10’は、基板面の導体膜に対して、はんだ付けを阻害する絶縁皮膜を設けて形成することも可能である。
次に、実施形態に係るランド10の形成方法の他の例について説明する。上述した図1~図4に示したランド10および10’は、例えば基板面の導体膜のランド10および10’以外の部分をエッチングなどにより除去して形成している。これはこの例に限定されず、ランド10および10’は、基板面の導体膜に対して、はんだ付けを阻害する絶縁皮膜を設けて形成することも可能である。
図11A~図11Cは、実施形態に適用可能な、絶縁皮膜を用いてランド10を形成する例を示す図である。絶縁被膜としては、ソルダーレジストを用いるのが一般的である。なお、ランド10と対となるランド10’については、ランド10と同一の構成であるため、図11A~図11Cにおいて省略されている。
図11Aは、矩形の導体膜40に対して、絶縁皮膜13によりランド10の形状を形成した例を示す図である。すなわち、図11Aの構成では、ランド10の領域に絶縁皮膜13を被覆させないことで、ランド10においてはんだ付けを行うための露出部14を形成している。また、図11Aの例では、阻害領域12sも、導体膜40に対して絶縁皮膜13を被覆させることで形成している。すなわち、図11Aの例は、露出部14側から見た場合、導体膜40に対して絶縁皮膜13により切り欠き形状を形成することで、阻害領域12sが形成される。
図11Bは、矩形の導体膜に対して阻害領域12の部分を切り欠いた状態の導体膜41に対して、絶縁皮膜13によりランド10の形状を形成した例を示す図である。図11Bの例でも、上述した図11Aと同様に、ランド10の領域に絶縁皮膜13を被覆させないことで、露出部14を形成している。
図11Cは、予めランド10の形状になるように導体膜を形成した例である。図11Cの例では、ランド10の形状に対して、ランド領域11aに相当する部分にマージンを持たせた状態で導体膜42を形成し、当該マージン部分に絶縁皮膜13を被覆させて、ランド10の形状を形成している。阻害領域12は、図11Bの例と同様に、導体膜42を切り欠いた状態で形成されている。
図11A~図11Cのうち、図11Aによるランド10は、阻害領域12が絶縁皮膜13により形成されているため、小さいチップ部品に適用させることが難しい。これは、小さいチップ部品をランド領域11bに実装した場合に、阻害領域12に被覆させた絶縁皮膜13が剥がれるおそれがあるためである。一方、図11Aによるランド10は、阻害領域12が絶縁皮膜13下においてランド10と一体的に形成されている。そのため、図12に示されるように、阻害領域12内にスルーホール15を設けることができる。これにより、配線の自由度が増し、基板を有効に利用することが可能となる。
また、図11Cに示されるランド10は、絶縁皮膜13の面積が小さく、また、阻害領域12も導体膜を切り欠いて形成されているため、図11Aの例のような絶縁皮膜13の剥がれが起こりにくく、例えば標準サイズ「0603」といった小さいチップ部品21の実装が容易である。
[実施形態の変形例]
次に、実施形態の変形例について説明する。上述した実施形態に係るランド10は、1つのランド10で2のサイズのチップ部品20および21を実装可能としていたが、これはこの例に限定されない。すなわち、実施形態に係るランドは、1つのランドで3以上のサイズのチップ部品を実装可能とすることもできる。
次に、実施形態の変形例について説明する。上述した実施形態に係るランド10は、1つのランド10で2のサイズのチップ部品20および21を実装可能としていたが、これはこの例に限定されない。すなわち、実施形態に係るランドは、1つのランドで3以上のサイズのチップ部品を実装可能とすることもできる。
図13は、実施形態の変形例に係る、3のサイズのチップ部品を実装可能としたランドの一例の構成を示す図である。図13において、実施形態の変形例に係るランド10aは、大きなサイズ(電極幅)のチップ部品20に対応するランド領域11aと、小さなサイズのチップ部品21に対応するランド領域11bと、それらの中間のサイズのチップ部品22に対応するランド領域11cと、を組み合わせた構成を有する。さらに、ランド10aは、ランド領域11bに対する切り欠き形状により阻害領域12aが形成され、ランド領域11cに対する切り欠き形状により阻害領域12bが形成される。
図13の例でも、上述した図1と同様に、ランド領域11a、11bおよび11cは、その大きさに従い、ランド10aと、当該ランド10aと対になるランド10a’とが基板上に所定に配置された場合の、ランド10aおよび10a’の中点30に向けて、中点30に近いほど小さいランド領域が配置されるように組み合わせられる。図13の例では、ランド10aにおいて、中点30に最も近い方からランド領域11b、ランド領域11c、ランド領域11aの順に、各ランド領域11a、11bおよび11cが配置され、1のランド10aとして結合される。
ランド10aと対になるランド10a’も、ランド10aと同様に、それぞれランド領域11a、11bおよび11cに対応するランド領域11a’、11b’および11c’を有すると共に、それぞれ阻害領域12aおよび12bに対応する阻害領域12a’および12b’を有する。
例えばランド10aにおいて、阻害領域12bのランド領域11c側の端と、ランド領域11cにチップ部品22が実装された場合の当該チップ部品22の長手方向の端と、の間の距離は、はんだ付け時にチップ部品22に対してセルフアライメント性を持たせるために好ましいとされる既知の距離とする。同様に、ランド領域11cに対応するチップ部品22の電極幅方向の端と、当該端に対応するランド領域11cの辺との間の距離も、はんだ付け時にチップ部品22に対してセルフアライメント性を持たせるために好ましいとされる既知の距離とする。
なお、ランド10aにおいて、チップ部品20の各端とランド領域11aの各端との間の距離、および、チップ部品21の各端とランド領域11bの各端との間の距離については、図4を用いて説明した距離と同様であるので、ここでの説明を省略する。
実施形態の変形例に係るランド10aおよび10a’は、このような構成を持つため、異なるサイズのチップ部品20、21および22を、1対のランド10aおよび10a’により、同様の条件下ではんだ付け可能となる。また、チップ部品22を実装するためのランド領域11cおよび11c’に対して阻害領域12bおよび12b’が設けられているため、上述した実施形態と同様に、チップ部品22の実装に際して、図7Bに示すはんだ未接続や、図7Cに示す部品立ちといった接合不良の発生を抑制することができる。
この実施形態の変形例に係るランド10a(および10a’)を用いることで、例えば標準サイズ「0402」、「0603」および「1005」など、小型で実装難易度の高いチップ部品を使い分けることが可能となる。
なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
なお、本技術は以下のような構成も取ることができる。
(1)
それぞれ異なる幅を有する複数のランド領域を備え、
前記複数のランド領域に含まれる各ランド領域が、前記幅に従った順序で前記幅方向の中心を揃えて組み合わされて1のランドに結合され、
前記1のランドに結合された前記複数のランド領域において隣接または領域の一部が重複する2のランド領域のうち前記幅が大きい方のランド領域の、該隣接または該重複する側に対向する側の前記幅方向の中央部に切り欠き形状が設けられる
表面実装部品用のランド。
(2)
前記切り欠き形状は、
前記幅方向の長さが、前記2のランド領域のうち前記幅が小さい方のランド領域に対応する部品の前記幅方向の長さより短い
前記(1)に記載の表面実装部品用のランド。
(3)
前記切り欠き形状は、
前記大きい方のランド領域の導体膜を切り欠くことで設けられる
前記(1)または(2)に記載の表面実装部品用のランド。
(4)
前記切り欠き形状は、
前記大きい方のランド領域に対して絶縁皮膜を形成することで設けられる
前記(1)または(2)に記載の表面実装部品用のランド。
(1)
それぞれ異なる幅を有する複数のランド領域を備え、
前記複数のランド領域に含まれる各ランド領域が、前記幅に従った順序で前記幅方向の中心を揃えて組み合わされて1のランドに結合され、
前記1のランドに結合された前記複数のランド領域において隣接または領域の一部が重複する2のランド領域のうち前記幅が大きい方のランド領域の、該隣接または該重複する側に対向する側の前記幅方向の中央部に切り欠き形状が設けられる
表面実装部品用のランド。
(2)
前記切り欠き形状は、
前記幅方向の長さが、前記2のランド領域のうち前記幅が小さい方のランド領域に対応する部品の前記幅方向の長さより短い
前記(1)に記載の表面実装部品用のランド。
(3)
前記切り欠き形状は、
前記大きい方のランド領域の導体膜を切り欠くことで設けられる
前記(1)または(2)に記載の表面実装部品用のランド。
(4)
前記切り欠き形状は、
前記大きい方のランド領域に対して絶縁皮膜を形成することで設けられる
前記(1)または(2)に記載の表面実装部品用のランド。
10,10’,10a,10a’,100,100’,101,101’ ランド
11a,11a’,11b,11b’,11c,11c’,111a,111b,111c ランド領域
12,12’,12a,12b,12s 阻害領域
13 絶縁皮膜
14 露出部
15 スルーホール
20,21,22 チップ部品
40,41,42 導体膜
200,200’,201,201’ 電極部分
11a,11a’,11b,11b’,11c,11c’,111a,111b,111c ランド領域
12,12’,12a,12b,12s 阻害領域
13 絶縁皮膜
14 露出部
15 スルーホール
20,21,22 チップ部品
40,41,42 導体膜
200,200’,201,201’ 電極部分
Claims (4)
- それぞれ異なる幅を有する複数のランド領域を備え、
前記複数のランド領域に含まれる各ランド領域が、前記幅に従った順序で前記幅方向の中心を揃えて組み合わされて1のランドに結合され、
前記1のランドに結合された前記複数のランド領域において隣接または領域の一部が重複する2のランド領域のうち前記幅が大きい方のランド領域の、該隣接または該重複する側に対向する側の前記幅方向の中央部に切り欠き形状が設けられる
表面実装部品用のランド。 - 前記切り欠き形状は、
前記幅方向の長さが、前記2のランド領域のうち前記幅が小さい方のランド領域に対応する部品の前記幅方向の長さより短い
請求項1に記載の表面実装部品用のランド。 - 前記切り欠き形状は、
前記大きい方のランド領域の導体膜を切り欠くことで設けられる
請求項1に記載の表面実装部品用のランド。 - 前記切り欠き形状は、
前記大きい方のランド領域に対して絶縁皮膜を形成することで設けられる
請求項1に記載の表面実装部品用のランド。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/250,632 US11399431B2 (en) | 2018-08-24 | 2019-08-16 | Land for surface mounted component |
CN201980053003.2A CN112567896B (zh) | 2018-08-24 | 2019-08-16 | 用于表面安装部件的连接盘 |
JP2020538364A JP7351302B2 (ja) | 2018-08-24 | 2019-08-16 | 表面実装部品用のランド |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-157693 | 2018-08-24 | ||
JP2018157693 | 2018-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020040067A1 true WO2020040067A1 (ja) | 2020-02-27 |
Family
ID=69592905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/032198 WO2020040067A1 (ja) | 2018-08-24 | 2019-08-16 | 表面実装部品用のランド |
Country Status (4)
Country | Link |
---|---|
US (1) | US11399431B2 (ja) |
JP (1) | JP7351302B2 (ja) |
CN (1) | CN112567896B (ja) |
WO (1) | WO2020040067A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5683788A (en) * | 1996-01-29 | 1997-11-04 | Dell Usa, L.P. | Apparatus for multi-component PCB mounting |
JP2003234567A (ja) * | 2002-02-12 | 2003-08-22 | Sanyo Electric Co Ltd | ソルダランド、プリント基板、ソルダランド形成方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63302595A (ja) * | 1987-06-02 | 1988-12-09 | Murata Mfg Co Ltd | チップ部品の取付構造 |
US6316736B1 (en) * | 1998-06-08 | 2001-11-13 | Visteon Global Technologies, Inc. | Anti-bridging solder ball collection zones |
JP2001308503A (ja) | 2000-04-26 | 2001-11-02 | Koichi Yamazaki | はんだ付け用電極構造 |
US6566611B2 (en) * | 2001-09-26 | 2003-05-20 | Intel Corporation | Anti-tombstoning structures and methods of manufacture |
JP2003243814A (ja) | 2002-02-21 | 2003-08-29 | Hitachi Ltd | チップ部品の実装用ランド |
JP2006294932A (ja) * | 2005-04-12 | 2006-10-26 | Toyota Industries Corp | 回路実装基板のランドおよび表面実装部品が搭載された回路実装基板 |
CN101296559A (zh) * | 2007-04-29 | 2008-10-29 | 佛山普立华科技有限公司 | 焊盘、具有该焊盘的电路板及电子装置 |
TWI413457B (zh) * | 2010-06-01 | 2013-10-21 | Wintek Corp | Pad structure |
EP3345213A4 (en) * | 2015-09-04 | 2019-04-24 | Octavo Systems LLC | IMPROVED SYSTEM USING A SYSTEM IN PACKAGING COMPONENTS |
-
2019
- 2019-08-16 CN CN201980053003.2A patent/CN112567896B/zh active Active
- 2019-08-16 JP JP2020538364A patent/JP7351302B2/ja active Active
- 2019-08-16 WO PCT/JP2019/032198 patent/WO2020040067A1/ja active Application Filing
- 2019-08-16 US US17/250,632 patent/US11399431B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5683788A (en) * | 1996-01-29 | 1997-11-04 | Dell Usa, L.P. | Apparatus for multi-component PCB mounting |
JP2003234567A (ja) * | 2002-02-12 | 2003-08-22 | Sanyo Electric Co Ltd | ソルダランド、プリント基板、ソルダランド形成方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210307166A1 (en) | 2021-09-30 |
CN112567896B (zh) | 2024-04-26 |
JPWO2020040067A1 (ja) | 2021-08-12 |
JP7351302B2 (ja) | 2023-09-27 |
CN112567896A (zh) | 2021-03-26 |
US11399431B2 (en) | 2022-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI383714B (zh) | 印刷電路板和其連接構造 | |
JP2007281134A (ja) | チップ型電子部品、その実装基板及びその実装方法 | |
US7660132B2 (en) | Covered multilayer module | |
KR100503223B1 (ko) | 부품 실장 방법 | |
JP2010212318A (ja) | プリント配線基板および部品実装構造体 | |
WO2020040067A1 (ja) | 表面実装部品用のランド | |
JP6930094B2 (ja) | 接合部品及び基板ユニット | |
JP2005251904A (ja) | 基板表面実装部品、基板回路、基板、ハンダ接続方法、及び基板回路の製造方法 | |
JP7335732B2 (ja) | プリント配線基板 | |
WO2016185559A1 (ja) | プリント配線板 | |
JP2005286099A (ja) | プリント基板 | |
JP2020047799A (ja) | プリント基板の構造 | |
US20230073043A1 (en) | Electronic component with metal terminal, connection structure, and method for manufacturing connection structure | |
JP2005340699A (ja) | 表面実装型電子部品、電子部品の実装構造及び実装方法 | |
JP2008130941A (ja) | 基板実装方法 | |
JP7522973B2 (ja) | チップ部品の実装構造 | |
JP2008103547A (ja) | 半田ペースト塗布方法及び電子回路基板 | |
JP2022034915A (ja) | 電子装置 | |
JP7270386B2 (ja) | チップ状金属抵抗器及びその製造方法 | |
JP4812390B2 (ja) | チップ抵抗器とその製造方法 | |
JP6599759B2 (ja) | チップ抵抗器 | |
WO2020003908A1 (ja) | 配線基板および電子部品実装基板 | |
JP2022034914A (ja) | 電子装置 | |
KR20230097766A (ko) | Pcb기판 | |
JP2021019153A (ja) | 配線基板、モジュール及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19851139 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020538364 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19851139 Country of ref document: EP Kind code of ref document: A1 |