WO2020039934A1 - 設定支援装置 - Google Patents

設定支援装置 Download PDF

Info

Publication number
WO2020039934A1
WO2020039934A1 PCT/JP2019/031187 JP2019031187W WO2020039934A1 WO 2020039934 A1 WO2020039934 A1 WO 2020039934A1 JP 2019031187 W JP2019031187 W JP 2019031187W WO 2020039934 A1 WO2020039934 A1 WO 2020039934A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
parameter
index value
motor control
recommended
Prior art date
Application number
PCT/JP2019/031187
Other languages
English (en)
French (fr)
Inventor
守 恵木
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to EP19851654.4A priority Critical patent/EP3843261B1/en
Priority to CN201980047666.3A priority patent/CN112470396A/zh
Publication of WO2020039934A1 publication Critical patent/WO2020039934A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42267Stability analysis

Definitions

  • the present invention relates to a setting support device for supporting setting of a parameter value in a motor control device.
  • Patent Literature 1 discloses a technique of searching for a gain that satisfies control performance by trial and error while gradually increasing the gain. According to this technique, even a user with little expertise in gain adjustment can adjust the gain so as to satisfy the control performance. However, since only the control performance is evaluated, the technique described in Patent Document 1 has a problem that stability cannot be ensured, and the number of times of trial and error increases, so that adjustment takes time. Patent Literature 1 discloses a technique capable of performing gain adjustment while taking trade-offs between various evaluation indices. According to this technique, the gain can be adjusted in consideration of stability. However, in the technology described in Patent Literature 1, it is left to the user to determine which parameter value to use. Therefore, when the user has insufficient knowledge on gain adjustment, gain adjustment cannot be performed satisfactorily even by using this technique.
  • the present invention has been made in view of the above problems, and even if a user has insufficient knowledge on gain adjustment, a parameter value that can provide sufficient stability and control performance to the motor control device is provided to the motor control device. It is an object of the present invention to provide a setting support device capable of setting.
  • a setting support device is a setting support device that supports setting of a parameter value to a motor control device that controls a motor, and is set in the motor control device.
  • An index value calculation unit that calculates a first evaluation index value indicating stability or control performance of motor control by the motor control device for each of a plurality of situations where a combination of the value of the first parameter and the value of the second parameter is different;
  • a recommended value calculating unit that calculates a recommended value of the first parameter and a recommended value of the second parameter based on the first evaluation index value for each situation calculated by the index value calculating unit; Combining the recommended value of one parameter and the recommended value of the second parameter with a combination of the value of the first parameter and the value of the second parameter and the first evaluation And a recommended value display unit to be displayed on the display along with information indicating the relationship between the target value.
  • the setting support apparatus determines the recommended value of the first parameter and the recommended value of the second parameter, and sets the determined two recommended values to the first evaluation index value obtained when the two recommended values are set.
  • the information is presented to the user together with the information that can be understood (information indicating the relationship between the combination of the first parameter value and the second parameter value and the first evaluation index value). Even if the user does not have sufficient knowledge about the parameters, parameter values that can provide sufficient stability and control performance to the motor control device can be set in the motor control device.
  • the recommended value calculation unit may calculate the first and second parameter values in a situation where the first evaluation index value closest to the desired value is obtained as the recommended value of each parameter.
  • a recommended value and a recommended value are selected from the plurality of parameter values.
  • a set of parameter values to be used may be selected, or a set of parameter values to be recommended values (for example, randomly) by another algorithm may be selected.
  • the setting support device may include: “The index value calculation unit is configured to perform, for each of the plurality of situations, the first evaluation index value and the first evaluation index value of the motor control performed by the motor control device. Calculating a second evaluation index value having a relationship, the recommended value calculation unit is based on the first evaluation index value and the second evaluation index value for each situation calculated by the index value calculation unit, Calculating the recommended value of the first parameter and the recommended value of the second parameter "may be adopted.
  • the information indicating the relationship between the combination of the first parameter value and the second parameter value displayed on the display by the recommended value display unit and the first evaluation index value may be a three-dimensional graph.
  • the recommended value display unit sets the value of the first parameter and the value of the second parameter to one or the other of a vertical axis and a horizontal axis, and displays the first evaluation index value in color or luminance.
  • a contour diagram in which a predetermined mark is indicated at a position indicated by the recommended value of the first parameter and the recommended value of the second parameter may be displayed on the display.
  • the recommended value display unit may have a function of displaying an isoline of the second evaluation index value on the contour diagram.
  • the function may be one that displays the contour line of the second evaluation index value in a color and a luminance according to the value of the second evaluation index value.
  • the recommended value calculation unit calculates a value having a positive or negative correlation between the value of the first parameter and the value of the second parameter for each situation, and the second evaluation index value for each situation. May be calculated as
  • the index value calculation unit calculates a value indicating the stability of the motor control by the motor control device as the first evaluation index value, and calculates a value indicating the control performance of the motor control by the motor control device in the second evaluation value. It may be calculated as an index value.
  • the recommended value calculation unit satisfies the required specification for stability and the required specification for control performance based on the first evaluation index value and the second evaluation index value of each situation, and determines a situation where the control performance that can be realized is the lowest.
  • the value of the first parameter and the value of the second parameter for the specified situation may be calculated as the recommended value of the first parameter and the recommended value of the second parameter.
  • the index value calculation unit calculates, for each of the plurality of situations, the stability of motor control by the motor control device, based on an evaluation result based on an evaluation criterion different from the first evaluation index value.
  • a third evaluation index value is also calculated, and the recommended value calculation unit also uses the third evaluation index value for each situation calculated by the index value calculation unit to calculate a recommended value of the first parameter and the Calculating recommended values of two parameters ”may be adopted.
  • the index value calculation unit may determine the center of the notch filter of the servo system including the motor control device as the first evaluation index value or the third evaluation index value.
  • a gain at a frequency or a frequency corresponding to a cutoff frequency of the torque filter may be calculated.
  • the setting support device specifies a value of one or more parameters that specify the frequency characteristics of the notch filter or the torque filter, respectively. Based on the parameter setting information, the value specified by the parameter setting information for each of the plurality of parameter setting information is set as the value of the one or more parameters of the notch filter or the torque filter.
  • the first evaluation index value is calculated for each of the plurality of situations, and based on the calculated first evaluation index value calculated for each situation, each situation satisfies a required specification for stability.
  • a filter parameter recommended value output unit that outputs a value of the one or more parameters specified by the parameter setting information having a widest range of situations as a recommended value of the one or more parameters of the notch filter or the torque filter; May be added.
  • the setting support apparatus may further include a user interface unit for changing the plurality of pieces of parameter setting information to be processed by the filter parameter recommended value output unit according to an instruction from a user.
  • the setting support device may provide a recommended value of one or more parameters that define the frequency characteristics of the notch filter to the gain control characteristic of the motor control device.
  • a recommended value determining unit that determines from the result may be added.
  • the index value calculation unit obtains a frequency transfer function of a predetermined portion including the motor from the measurement result of the gain characteristics of the motor control by the motor control device, and uses the obtained frequency transfer function for each of the plurality of situations.
  • the first evaluation index value may be calculated. Further, the index value calculation unit may calculate the second evaluation index value for each of the plurality of situations using the frequency transfer function.
  • the index value calculation unit may calculate the second evaluation index value for each of the plurality of situations from the frequency transfer function without performing an integration operation. Further, the index value calculation unit has a function of determining the value of at least one parameter other than the first parameter and the second parameter in each situation from the value of the first parameter or the second parameter. Is also good.
  • a setting support device is a setting support device that supports setting of parameter values to a plurality of motor controllers used for controlling two or more axes of motors synchronously.
  • the motor control device A first evaluation index value calculating means for calculating a first evaluation index value indicating the stability of the motor control; and a worst value of the first evaluation index value calculated by the first evaluation index value calculating means for each of the situations.
  • this setting support device (hereinafter, also referred to as a second setting support device), even a user who does not have enough knowledge about gain adjustment is used to control two or more axis motors synchronously.
  • Parameter values that can provide sufficient stability and control performance to each motor control device can be set for a plurality of motor control devices.
  • the recommended value calculating means may calculate the first and second parameter values in the situation where the worst value closest to the desired value is obtained as the recommended value of each parameter.
  • a recommended value and a recommended value are selected from the plurality of parameter values.
  • a set of parameter values to be used may be selected, or a set of parameter values to be recommended values (for example, randomly) by another algorithm may be selected.
  • the second setting support apparatus informs the user that "the recommended value calculation means determines whether or not each situation satisfies the required specification for stability based on the result of specifying the worst value for each situation. Then, for each of the situations determined to satisfy the required specifications, a second evaluation index value having a trade-off relationship with the first evaluation index value for motor control by the motor control device is calculated. Calculating the recommended value of the first parameter and the recommended value of the second parameter based on the calculated second evaluation index value for each situation. "
  • a setting support device that can set a parameter value capable of giving sufficient stability and control performance to a motor control device even if the user has insufficient knowledge on gain adjustment. Can be.
  • FIG. 1 is an explanatory diagram of a usage example of a setting support device 10 according to an embodiment of the present invention.
  • FIG. 2 is a block diagram for explaining parameters of the motor control device.
  • FIG. 3 is a functional block diagram of the setting support device 10.
  • FIG. 4 is an explanatory diagram of a closed loop gain peak amount and a resonance peak margin.
  • FIG. 5 is an explanatory diagram of the stability map.
  • FIG. 6 is an explanatory diagram of the stability map.
  • FIG. 7 is a flowchart of the stability index value calculation process.
  • FIG. 8 is an explanatory diagram of the position closed-loop characteristic Gp_closed, the position open-loop characteristic Gp_open, the velocity closed-loop characteristic Gv_closed, and the velocity open-loop characteristic Gv_open.
  • FIG. 9 is a flowchart of the second notch filter parameter calculation process.
  • FIG. 10 is an explanatory diagram of the optimization level setting item.
  • FIG. 11 is an explanatory diagram of the effect of the second notch filter parameter calculation processing.
  • FIG. 12 is an explanatory diagram of the effect of the second notch filter parameter calculation processing.
  • FIG. 13 is a flowchart of the third notch filter parameter calculation process.
  • FIG. 14 is a diagram for explaining the content of the third notch filter parameter calculation processing.
  • FIG. 15 is an explanatory diagram of an example of a system for operating a plurality of axes in cooperation.
  • FIG. 16 is an explanatory diagram of a phenomenon that can occur in the system as shown in FIG.
  • FIG. 17 is a diagram for explaining the contents of the multi-axis parameter value setting support processing.
  • FIG. 1 shows a usage example of a setting support apparatus 10 according to an embodiment of the present invention.
  • the setting support device 10 according to the present embodiment is a device that is used by being connected to one or more (one in FIG. 1) motor control devices 30 in order to support setting of parameter values in the motor control device 30. It is.
  • the motor control device 30 controls the motor 41 connected to the load device 42 in accordance with a command (position command, torque command or speed command) input from a host device (not shown) such as a PLC (Programmable Logic Controller). It is.
  • a portion including the motor 41 and the load device 42 is referred to as a control target 40, and a portion including the motor control device 30 and the control target 40 is referred to as a servo system.
  • the motor control device 30 When a position command is input from a host device, the motor control device 30 operates as a position controller 31, a speed controller 32, a current controller 34, a position detector 35, and the like as shown in FIG.
  • the position detector 35 integrates the speed of the controlled object 40 (hereinafter, detected speed) detected by an encoder (not shown) attached to the motor 41 or the load device 42, thereby obtaining the position of the controlled object 40 (hereinafter, referred to as the detected speed). This is a unit that outputs the detected position.
  • the position controller 31 is a unit having a position proportional gain Kpp as a parameter. As shown, a position deviation, which is a deviation between the position command and the detected position, is input to the position controller 31. Then, the position controller 31 calculates and outputs a speed command which is a value obtained by multiplying the position deviation by the position proportional gain Kpp.
  • the speed controller 32 is a unit that performs PI control using a speed deviation, which is a deviation between a speed command and a detected speed, as an operation amount and a torque command as a control amount.
  • the speed controller 32 has a speed proportional gain Kvp and an integral gain Ki as parameters.
  • the speed controller 32 includes a torque filter (low-pass filter) and a notch filter that can be set ON / OFF (whether or not to function).
  • the current controller 34 is a unit that generates a drive current according to a torque command from the speed controller 32 and supplies the drive current to the motor.
  • FIG. 3 shows a functional block diagram of the setting support device 10.
  • the setting support device 10 is a device in which a setting support program is installed in a PC (personal computer).
  • the setting support program installed in the PC includes a main body portion (a portion including a CPU and its peripheral devices) 13 of the PC as an arithmetic processing unit 14, a UI unit 15, and a display control unit 16. Make it work.
  • the display control unit 16 is a functional block that displays an image having the content specified by the arithmetic processing unit 14 or the UI unit 15 on the screen of the display device 12.
  • the arithmetic processing unit 14 is a functional block capable of executing notch filter parameter calculation processing, recommended value calculation processing, display / setting processing, setting / display processing, and the like.
  • the notch filter parameter calculation process is a process of calculating the recommended values of the parameters of the notch filter in the speed controller 32 and setting them in the motor control device 30.
  • the notch filter parameter calculation processing includes first to third notch filter parameter calculation processing.
  • the recommended value calculation process is a process including a stability index value calculation process and a control performance index value / recommended value calculation process.
  • the stability index value calculation process indicates the stability of motor control by the motor control device in each of a plurality of situations where the combination of the first parameter value and the second parameter value set in the motor control device 30 is different.
  • This is a process for calculating a stability index value.
  • This stability index value calculation process is a process in which the user can specify which of the first and second parameters is to be used, and also includes a gain margin, a phase margin, a closed loop gain peak amount, and a resonance peak margin.
  • the processing is such that one or more values can be designated as the stability index value to be calculated.
  • the closed loop gain peak amount and the resonance peak margin are a peak value on the low frequency side in the gain characteristic and a gain margin at the resonance frequency, respectively, as schematically shown in FIG.
  • the value of each parameter other than the first and second parameters is set to a fixed value (a value specified by the user) or a value according to the first or second parameter value. Is a process that can be specified. Further, the stability index value calculation process is a process in which one of the first and second parameters can be specified as a fixed value (a value specified by the user).
  • the control performance index value / recommended value calculation process includes, at least, controlling the motor control by the motor control device 30 in each situation where the stability index value calculated in the stability index value calculation process satisfies the stability requirement specification. This is a process of calculating a control performance index value indicating performance, and calculating values of the first and second parameters satisfying the stability requirement specification and the control performance requirement specification as recommended values of each parameter based on the calculation result.
  • the control performance index value / recommended value calculation process includes the following trajectory tracking delay time, the steady-state deviation, the settling time, the substitute characteristic value of the trajectory following performance, the substitute characteristic value of the steady-state deviation, the substitute characteristic value of the settling time, The processing is such that one or more of the alternative characteristic values can be designated as the control performance index value to be calculated.
  • the stability requirement specification is information (for example, “closed loop gain”) that defines a condition for determining that the stability requirement is satisfied by one or more stability index values to be calculated. Peak amount is 1 dB or less ", and" closed loop gain peak amount is 1 dB or less and resonance peak margin (gain margin at resonance frequency) is 5 dB or more ".
  • the control performance requirement specification is information that defines a condition for determining that the control performance requirement is satisfied by the value of the control performance index value.
  • the control performance requirement specification is information to be set for each control performance index value (separate). In the control performance index value / recommended value calculation process, a recommended value is calculated for each control performance requirement specification. .
  • each recommended value calculated by the control performance index value / recommended value calculation process is displayed on the screen of the display device 12 as a processing result together with the stability index value of each situation, and a confirmation operation by the user is performed.
  • This is a process of setting each recommended value calculated when the above is set in the motor control device 30.
  • each recommended value is displayed together with the stability index value of each situation as a processing result on the display device. This is processing to be displayed on the screen 12.
  • FIG. 5 shows an example of an image (hereinafter, referred to as a stability map) displayed as a processing result on the screen of the display device 12 by the display / setting processing or the setting / display processing.
  • the stability map basically includes, for each combination of the value of the first parameter (the speed proportional gain Kvp in the figure) and the value of the second parameter (the integral gain Ki in the figure), On the contour diagram in which the stability index value is indicated by a color, a figure (*) indicating a recommended value is shown.
  • the circles in the stability map indicate the set values of the first and second parameters at the time of measuring the position closed-loop characteristic Gp_closed described later.
  • an image showing recommended values for each control performance requirement specification is displayed on the contour diagram as a stability map. Further, when the user designates the display of the contour line related to a certain control performance index value, as shown in FIG. 6, the contour line connecting the same point with the control performance evaluation value on the contour diagram. However, the control performance evaluation value is displayed in color.
  • the UI unit 15 (FIG. 3) allows the user to specify the content of the process to be executed by the arithmetic processing unit 14 by operating the input device 11 such as a mouse and a keyboard, and calculates the process of the content specified by the user. This is a functional block to be executed by the processing unit 14.
  • This UI unit 15 is configured so that the user can cause the arithmetic processing unit 14 to execute a series of processes as exemplified below.
  • notch filter parameter calculation processing any one of first to third notch filter parameter calculation processing
  • a first parameter and a second parameter are respectively set to Kvp and ki
  • a stability index value is set to a closed loop gain peak amount
  • a stability index value is set to an alternative characteristic value of a steady-state deviation.
  • Execute setting / display processing or display / setting processing).
  • a first parameter and a second parameter are respectively set to Kvp and ki, a stability index value is set to a closed loop gain peak amount, and a stability index value is set to an alternative characteristic value of a steady-state deviation.
  • the first parameter and the second parameter are respectively set to Kvp and kpp, the ki is set to Kvp ⁇ 4, the stability index value is set to a closed loop gain peak amount, and the stability index value is set to an alternative characteristic value of the steady-state deviation.
  • Perform the processing Execute setting / display processing (or display / setting processing).
  • the notch filter parameter calculation processing is usually executed first, but for convenience of explanation, the following description will be made on a recommended value calculation processing (stability index value calculation processing and control performance index). After the description of the value calculation process), the notch filter parameter calculation process will be described.
  • FIG. 7 shows a flowchart of the stability index value calculation process.
  • the position closed-loop characteristics Gp_closed the position open-loop characteristics Gp_open
  • the speed closed-loop characteristics Gv_closed the speed open-loop characteristics Gv_open are respectively shown in the dotted frames 51 to 54 in FIG. 8 of the servo system. This is the frequency transfer function of the part.
  • the arithmetic processing unit 14 firstly controls the motor control device 30 to measure the position closed-loop characteristic Gp_closed (array of complex numbers) (step S1). S101) is performed.
  • the process of this step is as follows: "A detection command is periodically collected while inputting a time-varying position command to include a large number of frequency components to the motor control device 30, and the input position command and the collected detection position are Fourier- "Process of calculating position closed-loop characteristic Gp_closed by converting and taking ratio", "Process of requesting motor control device 30 to measure position closed-loop characteristic Gp_closed, and acquiring measurement result from motor control device 30" It may be.
  • the arithmetic processing unit 14 determines the control target characteristic P (the control target 40) based on the measured position closed-loop characteristic Gp_closed and various parameter values set in each unit of the motor control device 30 at that time.
  • a frequency transfer function P) is calculated (step S102).
  • step S102 the arithmetic processing unit 14 first calculates the position controller 31 from the set values of various parameters (Kpp, Kvp, Ki, and filter parameters) at that time (the measurement time of Gv_closed).
  • Kpp, Kvp, Ki, and filter parameters various parameters
  • Cp and the characteristic Cv of the speed controller 32 are specified.
  • the arithmetic processing unit 14 calculates the control target characteristic P by sequentially performing the following calculations based on the specified characteristics Cp, Cv, and the like.
  • Ci in the following equation (2) is a characteristic (frequency transfer function) of the position detector 35.
  • Gp_open Gp_closed / (1-Gp_closed) (1)
  • Gv_closed Gp_open / (Cp ⁇ Ci) (2)
  • Gv_open Gv_closed / (1-Gv_closed) (3)
  • P Gv_open / Cv (4)
  • the arithmetic processing unit 14 obtains the position open loop characteristic Gp_open from the position closed loop characteristic Gp_closed (Equation (1)). Next, the arithmetic processing unit 14 obtains the velocity closed loop characteristic Gv_closed by dividing the characteristic Cp and the characteristic Ci from the position open loop characteristic Gp_open (Equation (2)). Further, the arithmetic processing unit 14 determines a speed open loop characteristic Gv_oepn from the speed closed loop characteristic Gv_closed (Equation (3)). Then, the arithmetic processing unit 14 calculates the control target characteristic P by dividing Cv from the speed open loop characteristic Gv_open (Equation (4)).
  • the arithmetic processing unit 14 After finishing the processing in step S102, the arithmetic processing unit 14 starts a processing loop of steps S103 to S106, and first stores that the processing target situation is the first evaluation target situation among a plurality of evaluation target situations.
  • a plurality of evaluation target situations are situations in which combinations of values of two parameters (Ki and Kvp, Kpp and Kvp, etc.) specified by the user as setting target parameters are different from each other.
  • the arithmetic processing unit 14 automatically determines the number of evaluation target situations and the specific contents of each evaluation target situation according to a combination of two setting target parameters. At this time, the arithmetic processing unit 14 obtains each parameter value other than the setting target parameter for each evaluation target situation from the fixed value (the value specified by the user) or the first or second parameter according to the user's specification. Value.
  • the arithmetic processing unit 14 specifies the characteristics of each unit (the characteristics Cp of the position controller 31 and the characteristics Cv of the speed controller 32) in the processing target situation (step S104). Then, the arithmetic processing unit 14 calculates Gp_closed in the processing target situation from the specified characteristics of each unit and the control target characteristics P (step S104).
  • the process of step 104 is a process of calculating Gp_closed by sequentially performing the following calculations (see FIG. 8).
  • Gv_open Cv ⁇ P
  • Gv_closed (Gv_open) / (1 + Gv_open)
  • Gp_open Cp / Ci / Gv_closed
  • Gp_closed Gp_open / (1 + Gp_open)
  • the arithmetic processing unit uses the Gp_closed to determine the number and type of stability index values specified by the user (for example, only the gain margin, the closed loop gain peak amount and the resonance peak margin). ) Is calculated and stored (step S105).
  • step S106 the arithmetic processing unit 14 determines whether an unprocessed evaluation target situation remains (step S106). When an unprocessed evaluation target situation remains (step S106; YES), the arithmetic processing unit 14 returns to step S103 and executes processing for the next evaluation target situation.
  • step S106 when the processing for all evaluation target situations is completed (step S106; NO), the arithmetic processing unit 14 ends the stability index value calculation processing.
  • Control performance index value / recommended value calculation is based on the processing result of the stability index value calculation process (FIG. 7), the stability requirement specification, and one or more control performance requirement specifications. This is a process of calculating, as the recommended value of the two setting target parameters, the two setting target parameter values having the worst control performance that satisfy the performance requirement specification and the control performance requirement specification. It should be noted that the value of the two setting target parameters having the worst control performance is calculated as the recommended value of the two setting target parameters, instead of the value of the two setting target parameters having the best control performance. In other words, even if the stability is deteriorated due to a temporal change of the control target 40 or the like, a state satisfying the required stability specification can be maintained.
  • the setting support apparatus 10 includes, as control performance index values used for determining control performance, a track following delay time, a steady deviation, a settling time, an alternative characteristic value of the track following performance, an alternative characteristic value of the steady deviation,
  • the apparatus is configured to be able to designate one or more of the alternative characteristic value of the settling time and the alternative characteristic value of the lamp response followability.
  • the arithmetic processing unit 14 calculates the trajectory tracking delay time, the steady state deviation, and the settling time in each evaluation target situation by Gv_close in each evaluation target situation obtained in the stability index value calculation processing. Is calculated by performing a convolution operation based on Then, the arithmetic processing unit 14 calculates a control performance index value (orbit tracking delay time or the like) calculated for each evaluation target situation, and a stability index value for each evaluation target situation calculated in the stability index value calculation process.
  • the two setting target parameter values having the worst control performance that satisfy the stability requirement specification and the control performance requirement specification are calculated as recommended values of the two setting target parameters.
  • the arithmetic processing unit 14 calculates other control performance index values without performing a convolution operation.
  • the arithmetic processing unit 14 calculates the following L value as an alternative characteristic value of the track following performance.
  • L SQR (first parameter value 2 + ⁇ ⁇ second parameter value 2 )
  • is a value (> 0) determined in advance according to the combination of the first parameter and the second parameter.
  • the arithmetic processing unit 14 sets the first array value of Gv_closed in each evaluation target situation obtained at the time of the stability index value calculation process (most An array value on the low frequency side) Gv_closed [1] and a k-th array value Gv_closed [k] are calculated.
  • Gv_closed [k] is a frequency component of Gv_closed corresponding to the reciprocal of the time specified by the user as the evaluation time of the alternative characteristic value of the settling time.
  • the arithmetic processing unit 14 calculates a value obtained by further multiplying Gv_closed in each evaluation target situation by 1 / (j ⁇ ) (where ⁇ is a designated frequency) for the alternative characteristic value of the ramp response following property.
  • the arithmetic processing unit 14 determines the stability based on the control performance index value (alternative characteristic value) calculated for each evaluation target situation and the stability index value for each evaluation target situation calculated in the stability index value calculation process.
  • the two setting target parameter values that satisfy the required specifications and the control performance required specifications and have the worst control performance are calculated as recommended values of the two setting target parameters.
  • each of the above-mentioned alternative characteristic values is obtained by a simple calculation, it can be calculated in a shorter time than a trajectory tracking delay time or the like that requires a convolution operation. Therefore, if the alternative characteristic value is designated to be used for determining the control performance, it is possible to obtain the recommended value of each parameter to be set in a very short time.
  • the notch filter parameter calculation processing includes first to third notch filter parameter calculation processing.
  • the contents of the first to third notch filter parameter calculation processing will be sequentially described.
  • the first notch filter parameter calculation process The arithmetic processing unit 14 instructed to execute the first notch filter parameter calculation process calculates a recommended value of each parameter of the notch filter in the speed controller 32 in the following procedure. Set in the motor control device 30.
  • the arithmetic processing unit 14 that has started the first notch filter parameter calculation processing first turns off the notch filter.
  • the arithmetic processing unit 14 controls the motor control device 30 to measure the position closed-loop characteristic Gp_closed.
  • the position closed loop characteristic Gp_closed is a frequency transfer function (complex array) of the servo system.
  • the measurement process of Gp_closed is described as follows. “A position command that changes over time so as to include a large number of frequency components is input to the motor control device 30 while periodically collecting detected positions, and the input position command and the collected detected positions are collected.
  • the arithmetic processing unit 14 determines and determines the recommended values of the parameters (the center frequency ⁇ n, the notch depth d, and the notch width ⁇ ) of the notch filter so that the resonance peak during the measured Gp_closed is suppressed. After setting each recommended value in the motor control device 30, the first notch filter parameter calculation processing ends.
  • Fig. 9 shows a flowchart of the second notch filter parameter calculation process.
  • the arithmetic processing unit 14 that has started the second notch filter parameter calculation processing first measures the position closed-loop characteristic Gp_closed by controlling the motor control device 30 (step S201). This measurement process is the same as the process of step S101 of the stability index value calculation process (FIG. 7).
  • the arithmetic processing unit 14 also performs a process of identifying a resonance peak frequency that is a recommended value of the center frequency of the notch filter from the position closed loop characteristic Gp_closed.
  • the arithmetic processing unit 14 performs the same processing as step S102 of the stability index value calculation processing in step S202.
  • the arithmetic processing unit 14 determines that the combination of the depth d and the Q value of the notch filter evaluated in the processing loop of steps S204 to S207 to be executed this time is the first evaluation target value pair among the plurality of evaluation target value pairs.
  • the fact that there is is stored (step S203).
  • the plurality of evaluation target value pairs are information in which the total number and the content of each evaluation target value pair are determined by the optimization level of the notch filter specified by the user.
  • the UI unit 15 causes the display control unit 16 to display the optimization level setting item (so-called slider control) shown in FIG.
  • the UI unit 15 sets one of [0, $ 5, $ 10, $ 15, $ 20] and [0.8, $ 1.0, $ 1.2, $ 1.4, 1.6], the arithmetic processing unit 14 is notified that a total of 25 pairs of the depth d and the Q value, each of which is one of the values, are “a plurality of evaluation target value pairs”.
  • the arithmetic processing unit 14 that has completed the processing of step S203 (FIG. 9) starts a processing loop of steps S204 to S207.
  • the processing target status set in step S204 is a setting status of a parameter excluding each parameter of the notch filter, and the stability index value in each processing target status is an evaluation target value pair. It is the same as the processing loop of steps S103 to S107 of the stability index value calculation processing (FIG. 7) except that it is separately stored (step S206).
  • the arithmetic processing unit 14 exits the processing loop of steps S204 to S207 when there are no unprocessed evaluation target situations (step S207; NO). Then, when there is an unprocessed evaluation target value pair remaining (step S208; YES), the arithmetic processing unit 14 returns to step S203 and executes processing for the next evaluation target value pair.
  • step S208 If there are no unprocessed evaluation target value pairs (step S208; NO), the arithmetic processing unit 14 evaluates the evaluation target value having the widest range in which stability can be ensured based on the processing result of each evaluation target value pair.
  • a pair is specified (step S209). As this process, for example, when a contour diagram is displayed, a process of specifying an evaluation target value pair in which the region where the stability index value satisfies the predetermined condition is the largest is performed.
  • the arithmetic processing unit 14 sets the specified evaluation target value pair together with the center frequency specified in step S201 in the motor control device 30 (step S209), and then ends the second notch filter parameter calculation processing. .
  • FIG. 11A is a stability map of the servo system when the notch filter is OFF (the depth of the notch filter is “0”)
  • FIG. 11B is a second notch filter parameter calculation. It is a stability map of a servo system after processing completion.
  • the control band can be increased.
  • FIG. 13 shows a flowchart of the third notch filter parameter calculation process.
  • This third notch filter parameter calculation process is a modification of the second notch filter parameter calculation process so that the recommended value of each parameter of the notch filter can be calculated more quickly.
  • the arithmetic processing unit 14 that has started the third notch filter parameter calculation processing first performs steps S201 and S202 of the third notch filter parameter calculation processing (FIG. 9) in steps S301 and S302, respectively. Performs the same processing as.
  • the arithmetic processing unit 14 determines that the combination of the depth d and the Q value of the notch filter evaluated in the processing loop of steps S304 to S307 to be executed this time is the first evaluation target value pair among the plurality of evaluation target value pairs. The presence is stored (step S303). In step S303, the arithmetic processing unit 14 also stores that the Kvp value evaluated in the processing loop of steps S304 to S307 to be executed this time is the initial value of Kvp (for example, 1 [Hz]).
  • step S304 the arithmetic processing unit 14 determines whether the calculated stability index value satisfies the stability requirement specification (step S305).
  • Step S305 If the calculated stability index value satisfies the stability requirement specification (Step S305; YES), the arithmetic processing unit 14 stores the current Kvp value as the maximum Kvp value for the current evaluation target value pair ( Step S306). This process is a process of rewriting the existing maximum Kvp value. Then, the arithmetic processing unit 14 performs a process of increasing the Kvp value by a predetermined amount (step S307), and then restarts the processes after step S304.
  • step S305 When the calculated stability index value does not satisfy the stability requirement specification (step S305; NO), the arithmetic processing unit 14 determines whether or not an unprocessed evaluation target value pair remains. (Step S308). If an unprocessed evaluation target value pair remains (step S308; YES), the arithmetic processing unit 14 returns to step S303 and starts processing for the next evaluation target value pair.
  • the arithmetic processing unit 14 determines the evaluation target value pair having the largest maximum Kvp value based on the maximum Kvp value for each evaluation target value pair. It is specified (step S309). For example, if the maximum Kvp value obtained for each evaluation target value pair is as shown in FIG. 14, the arithmetic processing unit 14 determines that the evaluation target value pair (107) has the maximum Kvp value of “107”. The notch depth “10” and the Q value “1.6”) are specified. Then, the arithmetic processing unit 14 sets the specified evaluation target value pair together with the center frequency specified in step S301 in the motor control device 30 (step S309), and then ends the third notch filter parameter calculation processing. .
  • the setting support device 10 (arithmetic processing unit 14) is configured to be capable of performing a multi-axis parameter value setting support process in addition to the various processes described above.
  • the multi-axis parameter value setting support process is a two-motor for controlling the X1-axis and the X2-axis of a system for operating a plurality of axes (X1-axis and X2-axis) in a coordinated manner, such as a gantry having the configuration shown in FIG. This is a process for supporting parameter value setting to the control device 30.
  • the motor control devices 30 and X2 for X1 axis control are used.
  • a stability index value calculation process in which the setting target parameters are the position proportional gain Kpp and the speed proportional gain Kvp is performed.
  • the processing result of the stability index value calculation process for the X1-axis control motor control device 30 (stability index value for each of a plurality of situations) and the stability of the X2-axis control motor control device 30
  • the worst value specifying process for specifying the worst value of the stability index value in each situation is performed based on the processing result of the index value calculating process. That is, a process corresponding to the process of generating the combined stability map shown in FIG. 17 from the X1-axis stability map and the X2-axis stability map shown in FIG. 17 is performed.
  • the motor control device 30 for controlling the X1-axis or the X2-axis is controlled.
  • Performance index value / recommended value calculation processing is performed.
  • the calculated two recommended values are set in the motor control device 30 for X1-axis control and the motor control device 30 for X2-axis control, and
  • the parameter value setting support processing ends.
  • the setting support apparatus 10 can determine and output recommended values of two parameters in consideration of both stability and control performance. Therefore, according to the present setting support apparatus 10, even if the user has insufficient knowledge on gain adjustment, parameter values that can provide sufficient stability and control performance to the motor control apparatus 30 are set in the motor control apparatus 30. It is possible to do.
  • the above-described setting support device 10 can be variously modified.
  • the first to third notch filter parameter calculation processing may be modified to a processing of presenting each calculated recommended value to the user, obtaining confirmation, and setting each recommended value in the motor control device 30.
  • the second and third notch filter parameter calculation processes may be modified to processes for calculating recommended values of parameters of filters (position filters, torque filters) other than the notch filters.
  • the setting support device 10 may be modified to a device that displays a three-dimensional graph as a stability map.
  • first parameter value 2 + ⁇ ⁇ second parameter value 2 a value different from SQR (first parameter value 2 + ⁇ ⁇ second parameter value 2 ), for example, “first parameter value 2 + k 1 ⁇ second value” A parameter value 2 ′′ or
  • (k 1 and k 2 are predetermined values) may be used.
  • the setting support device 10 may be modified to a device that calculates (specifies) the recommended values of the first and second parameters from the first evaluation index value for each situation.
  • the first and second parameter values of the situation where the first evaluation index value closest to the desired value is obtained are set as the recommended values of each parameter.
  • a recommended value and a recommended value are selected from the plurality of parameter values based on the first parameter value and / or the second parameter value.
  • a set of parameter values may be selected.
  • the first parameter value is the largest or the smallest, or the value obtained from the first parameter value and the second parameter value (the above-described L value or the like) is the largest.
  • a search for a smaller one may be made, and the search result may be used as the recommended values of the first and second parameters.
  • one set of parameter values to be recommended values may be selected from the plurality of sets of parameter values by another algorithm (for example, randomly).
  • the multi-axis parameter value setting support process may be modified to a process of calculating (identifying) the recommended values of the first and second parameters from the worst value for each situation.
  • the setting support device may be modified to a device that calculates an evaluation index value indicating control performance as the first evaluation index value and calculates an evaluation index value indicating stability as the second evaluation index value.
  • such a modification of the setting support apparatus generally requires a longer time until a recommended value is obtained. Therefore, it is preferable to adopt the configuration of the above-described embodiment.
  • the recommended value of the first parameter and the recommended value of the second parameter indicate a relationship between a combination of the value of the first parameter and the value of the second parameter and the worst value of the first evaluation index value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)
  • Feedback Control In General (AREA)

Abstract

設定支援装置は、モータ制御装置に設定されている第1パラメータの値と第2パラメータの値の組み合わせが異なる複数の状況のそれぞれについて、モータ制御装置によるモータ制御の安定性又は制御性能を示す第1評価指標値を算出する指標値算出部と、算出された各状況についての第1評価指標値に基づき、第1パラメータの推奨値と第2パラメータの推奨値とを算出する推奨値算出部と、第1パラメータの推奨値及び第2パラメータの推奨値を、前記第1パラメータの値と前記第2パラメータの値の組み合わせと前記第1評価指標値との関係を示す情報と共にディスプレイに表示する推奨値表示部と、を備える。これにより、ゲイン調整に関する知識が不十分なユーザであっても、モータ制御装置のパラメータ値を良好に設定できる。

Description

設定支援装置
 本発明は、モータ制御装置へのパラメータ値設定を支援するための設定支援装置に関する。
 モータ制御装置へのパラメータ値設定を支援するための様々な技術が知られている。例えば、特許文献1には、ゲインを徐々に上げながら試行錯誤的に制御性能を満足するゲインを探索する技術が記載されている。この技術によれば、ゲイン調整の専門知識が少ないユーザも、制御性能を満足するようにゲインを調整することができる。ただし、制御性能しか評価していないため、特許文献1記載の技術には、安定性を担保出来ない、試行錯誤回数が多くなるため調整に時間がかかる、といった問題がある。また、特許文献1には、各種評価指標のトレードオフをとりながらゲイン調整が行える技術が記載されている。この技術によれば、安定性を考慮してゲインを調整することができる。ただし、特許文献1記載の技術では、各種パラメータ値をどの値とするかについての判断がユーザに委ねられている。そのため、ユーザのゲイン調整に関する知識が十分ではない場合には、当該技術を用いてもゲイン調整を良好に行うことができなかった。
特開2011-244668号公報 特開2017-167607号公報
 本発明は、上記問題に鑑みてなされたものであり、ゲイン調整に関する知識が不十分なユーザであっても、モータ制御装置に十分な安定性及び制御性能を付与できるパラメータ値をモータ制御装置に設定できる設定支援装置を提供することを目的とする。
 上記目的を達成するために、本発明の一観点による設定支援装置は、モータを制御するモータ制御装置へのパラメータ値設定を支援する設定支援装置であって、前記モータ制御装置に設定されている第1パラメータの値と第2パラメータの値の組み合わせが異なる複数の状況のそれぞれについて、前記モータ制御装置によるモータ制御の安定性又は制御性能を示す第1評価指標値を算出する指標値算出部と、前記指標値算出部により算出された各状況についての前記第1評価指標値に基づき、前記第1パラメータの推奨値と前記第2パラメータの推奨値とを算出する推奨値算出部と、前記第1パラメータの前記推奨値及び前記第2パラメータの前記推奨値を、前記第1パラメータの値と前記第2パラメータの値の組み合わせと前記第1評価指標値との関係を示す情報と共にディスプレイに表示する推奨値表示部と、を備える。
 すなわち、設定支援装置は、第1パラメータの推奨値と第2パラメータの推奨値とを決定して、決定した2推奨値を、当該2推奨値を設定した場合に得られる第1評価指標値が分かる情報(前記第1パラメータの値と前記第2パラメータの値の組み合わせと前記第1評価指標値との関係を示す情報)と共にユーザに提示する、従って、本設定支援装置によれば、ゲイン調整に関する知識が不十分なユーザであっても、モータ制御装置に十分な安定性及び制御性能を付与できるパラメータ値をモータ制御装置に設定することができる。
 なお、推奨値算出部による各状況についての第1評価指標値からの2推奨値の算出手順としては、様々なものを採用することが出来る。例えば、推奨値算出部は、所望値に最も近い第1評価指標値が得られた状況の第1及び第2パラメータ値を、各パラメータの推奨値として算出しても良い。また、そのような第1及び第2パラメータ値が複数組存在している場合には、第1パラメータ値及び/又は第2パラメータ値に基づき、それら複数組のパラメータ値の中から、推奨値とする1組のパラメータ値を選択しても良いし、他のアルゴリズムで(例えば、ランダムに)推奨値とする1組のパラメータ値を選択しても良い。
 また、設定支援装置に、『前記指標値算出部は、前記複数の状況のそれぞれについて、前記第1評価指標値と、前記モータ制御装置によるモータ制御の、前記第1評価指標値とトレードオフの関係にある第2評価指標値とを算出し、前記推奨値算出部は、前記指標値算出部により算出された各状況についての前記第1評価指標値及び前記第2評価指標値に基づき、前記第1パラメータの推奨値と前記第2パラメータの推奨値とを算出する』構成を採用しておいても良い。
 推奨値表示部がディスプレイに表示する前記第1パラメータの値と前記第2パラメータの値の組み合わせと前記第1評価指標値との関係を示す情報は、3次元グラフであっても良い。
 また、推奨値表示部は、前記第1パラメータの値、前記第2パラメータの値を、それぞれ、縦軸及び横軸の中の一方、他方とし、前記第1評価指標値を色又は輝度で表したコンター図であって、前記第1パラメータの前記推奨値及び前記第2パラメータの前記推奨値が示す位置に所定のマークが示されたコンター図を前記ディスプレイに表示してもよい。推奨値表示部は、前記コンター図上に前記第2評価指標値の等値線を表示する機能を有してもよい。また、当該機能は、前記第2評価指標値の等値線を、前記第2評価指標値の値に応じた色、輝度で表示するものであってもよい。
 推奨値算出部は、各状況についての前記第1パラメータの値、前記第2パラメータの値のそれぞれとのと間に正又は負の相関がある値を、各状況についての前記第2評価指標値として算出してもよい。また、指標値算出部は、前記モータ制御装置によるモータ制御の安定性を示す値を前記第1評価指標値として算出し、前記モータ制御装置によるモータ制御の制御性能を示す値を前記第2評価指標値として算出してもよい。
 推奨値算出部は、各状況の前記第1評価指標値及び前記第2評価指標値に基づき、安定性についての要求仕様及び制御性能についての要求仕様を満たし、実現できる制御性能が最も低い状況を特定し、特定した状況についての前記第1パラメータの値及び前記第2パラメータの値を、前記第1パラメータの前記推奨値及び前記第2パラメータの前記推奨値として算出してもよい。
 設定支援装置に、『前記指標値算出部は、前記複数の状況のそれぞれについて、前記モータ制御装置によるモータ制御の安定性についての、前記第1評価指標値とは異なる評価基準での評価結果である第3評価指標値も算出し、前記推奨値算出部は、前記指標値算出部により算出された各状況についての前記第3評価指標値も用いて、前記第1パラメータの推奨値と前記第2パラメータの推奨値とを算出する』構成を採用してもよい。
 モータ制御装置にノッチフィルタ又はトルクフィルタが含まれる場合、指標値算出部は、前記第1評価指標値又は前記第3評価指標値として、前記モータ制御装置を含むサーボシステムの、前記ノッチフィルタの中心周波数又は前記トルクフィルタの遮断周波数に応じた周波数におけるゲインを算出してもよい。
 また、モータ制御装置に、ノッチフィルタ又はトルクフィルタが含まれる場合には、設定支援装置に、それぞれ、前記ノッチフィルタ又は前記トルクフィルタの周波数特性を規定する1つ以上のパラメータの値を指定する複数のパラメータ設定情報に基づき、前記複数のパラメータ設定情報のそれぞれについて、そのパラメータ設定情報にて指定する値が前記ノッチフィルタ又は前記トルクフィルタの前記1つ以上のパラメータの値として設定されている場合における前記第1評価指標値を、前記複数の状況のそれぞれについて算出すると共に、算出した各状況について算出された前記第1評価指標値に基づき、各状況が、安定性についての要求仕様を満たすものであるか否かを判定し、安定性についての要求仕様を満たすと判定された前記状況の範囲が最も広い前記パラメータ設定情報が指定している前記1つ以上のパラメータの値を、前記ノッチフィルタ又はトルクフィルタの前記1つ以上のパラメータの推奨値として出力するフィルタパラメータ推奨値出力部を、付加してもよい。
 設定支援装置に、ユーザからの指示に従い、前記フィルタパラメータ推奨値出力部が処理対象とする前記複数のパラメータ設定情報を変更するユーザインターフェース部を、付加してもよい。
 モータ制御装置に、ノッチフィルタが含まれる場合には、設定支援装置に、前記ノッチフィルタの周波数特性を規定する1つ以上のパラメータの推奨値を、前記モータ制御装置によるモータ制御のゲイン特性の測定結果から決定する推奨値決定部を、付加してもよい。
 指標値算出部は、前記モータ制御装置によるモータ制御のゲイン特性の測定結果から、前記モータを含む所定部分の周波数伝達関数を求め、求めた周波数伝達関数を用いて、前記複数の状況のそれぞれについての前記第1評価指標値を算出してもよい。さらに、指標値算出部は、前記周波数伝達関数を用いて、前記複数の状況のそれぞれについての前記第2評価指標値を算出してもよい。
 指標値算出部は、積分演算を行うことなく、前記周波数伝達関数から、前記複数の状況のそれぞれについての前記第2評価指標値を算出してもよい。また、指標値算出部は、各状況における、前記第1パラメータ、前記第2パラメータ以外の少なくとも1つのパラメータの値を、前記第1パラメータ又は前記第2パラメータの値から決定する機能を有してもよい。
 本発明の一観点による設定支援装置は、2軸以上のモータを同期的に制御するために使用される複数のモータ制御装置へのパラメータ値設定を支援する設定支援装置であって、パラメータ値の設定の支援対象となっているモータ制御装置毎に、そのモータ制御装置に設定されている第1パラメータの値と第2パラメータの値の組み合わせが異なる複数の状況のそれぞれについて、そのモータ制御装置によるモータ制御の安定性を示す第1評価指標値を算出する第1評価指標値算出手段と、前記状況別に、前記第1評価指標値算出手段により算出された前記第1評価指標値の最悪値を特定する特定手段と、前記特定手段により前記状況別に特定された前記最悪値に基づき、前記第1パラメータの推奨値と前記第2パラメータの推奨値とを算出する推奨値算出手段と、前記第1パラメータの前記推奨値及び前記第2パラメータの前記推奨値を、前記第1パラメータの値と前記第2パラメータの値の組み合わせと前記第1評価指標値の前記最悪値との関係を示す情報と共にディスプレイに表示する推奨値表示手段と、を備える。
 この設定支援装置(以下、第2設定支援装置とも表記する)によれば、ゲイン調整に関する知識が不十分なユーザであっても、2軸以上のモータを同期的に制御するために使用される複数のモータ制御装置に、各モータ制御装置に十分な安定性及び制御性能を付与できるパラメータ値を設定することができる。
 第2設定支援装置の推奨値算出手段による各状況についての最悪値からの2推奨値の算出手順としては、様々なものを採用することが出来る。例えば、推奨値算出手段は、所望値に最も近い最悪値が得られた状況の第1及び第2パラメータ値を、各パラメータの推奨値として算出しても良い。また、そのような第1及び第2パラメータ値が複数組存在している場合には、第1パラメータ値及び/又は第2パラメータ値に基づき、それら複数組のパラメータ値の中から、推奨値とする1組のパラメータ値を選択しても良いし、他のアルゴリズムで(例えば、ランダムに)推奨値とする1組のパラメータ値を選択しても良い。
 また、第2設定支援装置に、『前記推奨値算出手段は、前記状況別の最悪値の特定結果に基づき、前記各状況が、安定性についての要求仕様を満たすものであるか否かを判定し、前記要求仕様を満たすものであると判定された前記状況毎に、前記モータ制御装置によるモータ制御についての、前記第1評価指標値とトレードオフの関係にある第2評価指標値を算出し、算出された各状況についての前記第2評価指標値に基づき、前記第1パラメータの推奨値と前記第2パラメータの推奨値とを算出する』構成を採用しておいても良い。
 本発明によれば、ゲイン調整に関する知識が不十分なユーザであっても、モータ制御装置に十分な安定性及び制御性能を付与できるパラメータ値をモータ制御装置に設定できる設定支援装置を提供することができる。
図1は、本発明の一実施形態に係る設定支援装置10の使用形態例の説明図である。 図2は、モータ制御装置のパラメータを説明するためのブロック図である。 図3は、設定支援装置10の機能ブロック図である。 図4は、閉ループゲインピーク量、共振ピーク余裕の説明図である。 図5は、安定性マップの説明図である。 図6は、安定性マップの説明図である。 図7は、安定性指標値算出処理の流れ図である。 図8は、位置閉ループ特性Gp_closed、位置開ループ特性Gp_open、速度閉ループ特性Gv_closed及び速度開ループ特性Gv_openの説明図である。 図9は、第2ノッチフィルタパラメータ算出処理の流れ図である。 図10は、最適化レベル設定用アイテムの説明図である。 図11は、第2ノッチフィルタパラメータ算出処理の効果の説明図である。 図12は、第2ノッチフィルタパラメータ算出処理の効果の説明図である。 図13は、第3ノッチフィルタパラメータ算出処理の流れ図である。 図14は、第3ノッチフィルタパラメータ算出処理の内容を説明するための図である。 図15は、複数軸を協調させて動作させるシステム例の説明図である。 図16は、図15に示したようなシステムで生じ得る現象の説明図である。 図17は、多軸用パラメータ値設定支援処理の内容を説明するための図である。
 以下、図面に基づいて、本発明の実施の形態を説明する。
 図1に、本発明の一実施形態に係る設定支援装置10の使用形態例を示す。
 本実施形態に係る設定支援装置10は、モータ制御装置30へのパラメータ値設定を支援するために、1台以上(図1では、1台)のモータ制御装置30と接続されて使用される装置である。
 モータ制御装置30は、負荷装置42と接続されたモータ41を、PLC(Programmable Logic Controller)等の上位装置(図示略)から入力される指令(位置指令、トルク指令又は速度指令)に従って制御する装置である。以下、モータ41と負荷装置42とからなる部分のことを、制御対象40と表記し、モータ制御装置30と制御対象40とからなる部分のことをサーボシステムと表記する。
 モータ制御装置30は、上位装置から位置指令が入力される場合、図2に示したように、位置制御器31、速度制御器32、電流制御器34、位置検出器35等として動作する。
 位置検出器35は、モータ41又は負荷装置42に取り付けられたエンコーダ(図示略)により検出される制御対象40の速度(以下、検出速度)を積分することで、制御対象40の位置(以下、検出位置)を出力するユニットである。
 位置制御器31は、パラメータとして位置比例ゲインKppを有するユニットである。図示してあるように、この位置制御器31には、位置指令と検出位置との偏差である位置偏差が入力される。そして、位置制御器31は、当該位置偏差に位置比例ゲインKppの乗じた値である速度指令を算出して出力する。
  速度制御器32は、速度指令と検出速度との偏差である速度偏差を操作量とし、トルク指令を制御量としたPI制御を行うユニットである。この速度制御器32は、パラメータとして、速度比例ゲインKvpと積分ゲインKiとを有している。
 また、速度制御器32は、ON/OFF(機能させるか否か)を設定可能なトルクフィルタ(ローパスフィルタ)及びノッチフィルタを含んでいる。速度制御器32内のトルクフィルタは、パラメータとしてカットオフ周波数を有しており、速度制御器32内のノッチフィルタは、パラメータとして、中心周波数、ノッチ深さ及びQ値(=中心周波数/ノッチ幅)を有している。
 電流制御器34は、速度制御器32からのトルク指令に応じた駆動電流を生成してモータに供給するユニットである。
 以上のことを前提に、以下、設定支援装置10の構成及び動作を具体的に説明する。
 図3に、設定支援装置10の機能ブロック図を示す。
  本実施形態に係る設定支援装置10は、PC(パーソナルコンピュータ)に設定支援プログラムをインストールした装置である。図3に示してあるように、PCにインストールされた設定支援プログラムは、PCの本体部分(CPUとその周辺デバイスからなる部分)13を、演算処理部14、UI部15及び表示制御部16として動作させる。
 表示制御部16は、表示装置12の画面上に、演算処理部14又はUI部15から指示された内容の画像を表示する機能ブロックである。
 演算処理部14は、ノッチフィルタパラメータ算出処理、推奨値算出処理、表示・設定処理、設定.表示処理等を実行可能な機能ブロックである。
 ノッチフィルタパラメータ算出処理は、速度制御器32内のノッチフィルタの各パラメータの推奨値を算出してモータ制御装置30に設定する処理である。このノッチフィルタパラメータ算出処理には、第1~第3ノッチフィルタパラメータ算出処理がある。
 推奨値算出処理は、安定性指標値算出処理と制御性能指標値・推奨値算出処理とで構成される処理である。
 安定性指標値算出処理は、モータ制御装置30に設定されている第1パラメータの値と第2パラメータの値の組み合わせが異なる複数の状況のそれぞれについて、モータ制御装置によるモータ制御の安定性を示す安定性指標値を算出する処理である。この安定性指標値算出処理は、第1、第2パラメータをいずれのパラメータとするかをユーザが指定可能な処理であると共に、ゲイン余裕、位相余裕、閉ループゲインピーク量、共振ピーク余裕の中の1つ以上の値を、算出する安定性指標値として指定できる処理となっている。なお、閉ループゲインピーク量、共振ピーク余裕とは、図4に模式的に示したように、それぞれ、ゲイン特性における低周波数側のピーク値、共振周波数におけるゲイン余裕のことである。
 また、安定性指標値算出処理は、第1、第2パラメータ以外の各パラメータの値を、固定値(ユーザが指定した値)とするか、第1又は第2パラメータ値に応じた値とするかを指定可能な処理となっている。さらに、安定性指標値算出処理は、第1、第2パラメータの一方の値を、固定値(ユーザが指定した値)とすることも指定可能な処理となっている。
 制御性能指標値・推奨値算出処理は、少なくとも、安定性指標値算出処理にて算出された安定性指標値が安定性要求仕様を満たしている各状況について、モータ制御装置30によるモータ制御の制御性能を示す制御性能指標値を算出し、算出結果に基づき、安定性要求仕様及び制御性能要求仕様を満たす第1及び第2パラメータの値を、各パラメータの推奨値として算出する処理である。この制御性能指標値・推奨値算出処理は、軌道追従遅れ時間、定常偏差、整定時間、軌道追従性能の代替特性値、定常偏差の代替特性値、整定時間の代替特性値、ランプ応答追従性の代替特性値の中の1つ以上の値を、算出する制御性能指標値として指定できる処理となっている。
 ここで、安定性要求仕様とは、安定性要求を満たしていると判定すべき条件を、算出対象とされている1つ以上の安定性指標値の値で規定する情報(例えば、“閉ループゲインピーク量が1dB以下”、“閉ループゲインピーク量が1dB以下且つ共振ピーク余裕(共振周波数におけるゲイン余裕)が5dB以上”)のことである。また、制御性能要求仕様とは、制御性能要求を満たしていると判定すべき条件を、制御性能指標値の値で規定する情報のことである。この制御性能要求仕様は、制御性能指標値毎(別)に、設定される情報となっており、制御性能指標値・推奨値算出処理では、制御性能要求仕様毎に、推奨値が算出される。
 表示・設定処理は、制御性能指標値・推奨値算出処理により算出された各推奨値を各状況の安定性指標値と共に処理結果として表示装置12の画面上に表示し、ユーザによる確認操作がなされたときに算出した各推奨値をモータ制御装置30に設定する処理である。設定・表示処理は、制御性能指標値・推奨値算出処理により算出された各推奨値をモータ制御装置30に設定してから、各推奨値を各状況の安定性指標値と共に処理結果として表示装置12の画面上に表示する処理である。
 図5に、表示・設定処理又は設定・表示処理により、表示装置12の画面上に処理結果として表示される画像(以下、安定性マップと表記する)の一例を示す。図示したように、安定性マップは、基本的には、第1パラメータ(図では、速度比例ゲインKvp)の値と第2パラメータ(図では、積分ゲインKi)の値の各組み合わせに対して、安定性指標値を色で示したコンター図上に、推奨値を示す図形(☆)が示されたものである。なお、安定性マップ内に示してある○は、後述する位置閉ループ特性Gp_closed計測時における第1及び第2パラメータの設定値を示す図形である。
 ただし、ユーザが、複数の制御性能要求仕様を指定している場合には、安定性マップとして、コンター図上に制御性能要求仕様別に推奨値が示された画像が表示される。さらに、ユーザが、或る制御性能指標値に関する等値線の表示を指定した場合には、図6に示したように、コンター図上に当該制御性能評価値が同じ点を結んだ等値線が、制御性能評価値を色で表示される。
 UI部15(図3)は、マウス、キーボード等の入力装置11を操作させることにより、ユーザに演算処理部14に実行させる処理の内容を指定させて、ユーザにより指定された内容の処理を演算処理部14に実行させる機能ブロックである。
 このUI部15は、ユーザが、演算処理部14に以下に例示するような一連の処理を実行させることが出来るように構成されている。
・処理例1
 ノッチフィルタパラメータ算出処理(第1~第3ノッチフィルタパラメータ算出処理のいずれか)を実行し、
 第1パラメータ、第2パラメータを、それぞれ、Kvp、kiとし、安定性指標値を閉ループゲインピーク量とし、安定性指標値を定常偏差の代替特性値とした推奨値算出処理を実行し、
 設定・表示処理(又は、表示・設定処理)を実行する。
・処理例2
 ノッチフィルタパラメータ算出処理を実行し、
 第1パラメータ、第2パラメータを、それぞれ、Kvp、kiとし、安定性指標値を閉ループゲインピーク量とし、安定性指標値を定常偏差の代替特性値とした推奨値算出処理を実行し、
 第1パラメータ、第2パラメータを、それぞれ、Kpp、kiとした推奨値算出処理であって、kiを、完了した推奨値算出処理で得られた推奨値に固定した推奨値算出処理を実行し、
 設定・表示処理(又は、表示・設定処理)を実行する。
・処理例3
 ノッチフィルタパラメータ算出処理を実行し、
 第1パラメータ、第2パラメータを、それぞれ、Kvp、kppとし、kiをKvp・4とし、安定性指標値を閉ループゲインピーク量とし、安定性指標値を定常偏差の代替特性値とした推奨値算出処理を実行し、
 設定・表示処理(又は、表示・設定処理)を実行する。
 以下、演算処理部14が実行可能な各種処理についてさらに具体的に説明する。なお、本設定支援装置10の使用時には、通常、ノッチフィルタパラメータ算出処理が最初に実行されるのであるが、説明の便宜上、以下では、推奨値算出処理(安定性指標値算出処理及び制御性能指標値算出処理)の説明を行った後に、ノッチフィルタパラメータ算出処理について説明することにする。
 《安定性指標値算出処理》
 図7に、安定性指標値算出処理の流れ図を示す。この流れ図及び以下の説明において、位置閉ループ特性Gp_closed、位置開ループ特性Gp_open 速度閉ループ特性Gv_closed、速度開ループ特性Gv_openとは、それぞれ、サーボシステムの、図8の点線枠51~54内に示してある部分の周波数伝達関数のことである。
 図7に示してあるように、安定性指標値算出処理時、演算処理部14は、まず、モータ制御装置30を制御することにより、位置閉ループ特性Gp_closed(複素数の配列)を計測する処理(ステップS101)を行う。このステップの処理は、『多数の周波数成分を含むように時間変化する位置指令をモータ制御装置30に入力しながら検出位置を周期的に収集し、入力した位置指令と収集した検出位置とをフーリエ変換して比をとることにより位置閉ループ特性Gp_closedを算出する処理』であっても、『モータ制御装置30に位置閉ループ特性Gp_closedの計測を依頼し、計測結果をモータ制御装置30から取得する処理』であっても良い。
  ステップS101の処理を終えた演算処理部14は、計測した位置閉ループ特性Gp_closedと、その時点においてモータ制御装置30の各部に設定されている各種パラメータ値とから、制御対象特性P(制御対象40の周波数伝達関数P)を算出する(ステップS102)。
 より具体的には、演算処理部14は、このステップS102にて、まず、その時点(Gv_closedの計測時点)における各種パラメータ(Kpp、Kvp、Ki、フィルタパラメータ)の設定値から、位置制御器31の特性(周波数伝達関数;以下同様)Cp及び速度制御器32の特性Cvを特定する。
 そして、演算処理部14は、特定した特性Cp、Cv等に基づき、以下の演算を順次行うことにより、制御対象特性Pを算出する。なお、以下の(2)式におけるCiは、位置検出器35の特性(周波数伝達関数)である。
    Gp_open=Gp_closed/(1-Gp_closed) ・・・(1)
    Gv_closed=Gp_open/(Cp・Ci)   ・・・(2)
    Gv_open=Gv_closed/(1-Gv_closed) ・・・(3)
    P=Gv_open/Cv                         ・・・(4)
 すなわち、演算処理部14は、まず、位置閉ループ特性Gp_closedから位置開ループ特性Gp_openを求める((1)式)。次いで、演算処理部14は、位置開ループ特性Gp_openから特性Cp及び特性Ciを除することで、速度閉ループ特性Gv_closedを求める((2)式)。さらに、演算処理部14は、速度閉ループ特性Gv_closedから速度開ループ特性Gv_oepnを求める((3)式)。そして、演算処理部14は、速度開ループ特性Gv_openからCvを除すことで制御対象特性Pを算出する((4)式)。
 ステップS102の処理を終えた演算処理部14は、ステップS103~S106の処理ループを開始し、まず、処理対象状況が、複数の評価対象状況の中の最初の評価対象状況であることを記憶する(ステップS103)。ここで、複数の評価対象状況とは、ユーザにより設定対象パラメータとして指定された2パラメータ(KiとKvp、KppとKvp等)の値の組み合わせが互いに異なる状況のことである。なお、評価対象状況の数、各評価対象状況の具体的な内容は、2設定対象パラメータの組み合わせに応じて演算処理部14が自動的に決定する。その際、演算処理部14は、各評価対象状況についての設定対象パラメータ以外の各パラメータ値を、ユーザの指定に従って、固定値(ユーザが指定した値)か、第1又は第2パラメータから求めた値とする。
 ステップS103の処理を終えた演算処理部14は、処理対象状況における各部の特性(位置制御器31の特性Cpと速度制御器32の特性Cv)を特定する(ステップS104)。そして、演算処理部14は、特定した各部の特性と制御対象特性Pとから、処理対象状況におけるGp_closedを算出する(ステップS104)。このステップ104の処理は、以下の演算を順々に行うことでGp_closedを算出する処理である(図8参照)。
    Gv_open=Cv・P                       
    Gv_closed=(Gv_open)/(1+Gv_open) 
    Gp_open=Cp・Ci・Gv_closed        
    Gp_closed=Gp_open/(1+Gp_open)
 処理対象状況におけるGp_closedの算出を終えた演算処理部は、当該Gp_closedを用いて、ユーザにより指定された数、種類の安定性指標値(例えば、ゲイン余裕のみや、閉ループゲインピーク量と共振ピーク余裕)を算出・記憶する(ステップS105)。
 ステップS105の処理を終えた演算処理部14は、未処理の評価対象状況が残っているか否かを判断する(ステップS106)。未処理の評価対象状況が残っていた場合(ステップS106;YES)、演算処理部14は、ステップS103に戻って、次の評価対象状況に対する処理を実行する。
 そして、演算処理部14は、全評価対象状況に対する処理が完了したときに(ステップS106;NO)に、この安定性指標値算出処理を終了する。
 《制御性能指標値・推奨値算出処理》
 制御性能指標値・推奨値算出処理は、安定性指標値算出処理(図7)の処理結果と安定性要求仕様と1つ以上の制御性能要求仕様とに基づき、制御性能要求仕様毎に、安定性要求仕様及び制御性能要求仕様を満たす、最も制御性能が悪い2設定対象パラメータ値を、2設定対象パラメータの推奨値として算出する処理である。なお、最も制御性能が良い2設定対象パラメータ値ではなく、最も制御性能が悪い2設定対象パラメータ値を、2設定対象パラメータの推奨値として算出しているのは、安定性を多めに確保しておけば、制御対象40の経時変化等により安定性が劣化しても安定性要求仕様を満たす状態を維持できることになるためである。
 既に説明したように、設定支援装置10は、制御性能の判定に用いる制御性能指標値として、軌道追従遅れ時間、定常偏差、整定時間、軌道追従性能の代替特性値、定常偏差の代替特性値、整定時間の代替特性値、ランプ応答追従性の代替特性値の中の1つ以上の値を指定可能な装置として構成されている。
 制御性能指標値・推奨値算出処理時、演算処理部14は、各評価対象状況における軌道追従遅れ時間、定常偏差、整定時間を、安定性指標値算出処理時に得られた各評価対象状況におけるGv_closeを基に畳み込み演算を行うことで算出する。そして、演算処理部14は、各評価対象状況について算出した制御性能指標値(軌道追従遅れ時間等)、安定性指標値算出処理で算出された各評価対象状況についての安定性指標値に基づき、安定性要求仕様及び制御性能要求仕様を満たす、最も制御性能が悪い2設定対象パラメータ値を、2設定対象パラメータの推奨値として算出する。
 また、推奨値算出処理時、演算処理部14は、他の各制御性能指標値を、畳み込み演算を行うことなく算出する。
 具体的には、演算処理部14は、軌道追従性能の代替特性値として、以下のL値を算出する。
 L=SQR(第1パラメータ値+α・第2パラメータ値
 なお、αは、第1パラメータと第2パラメータの組み合わせに応じて予め定められている値(>0)である。
 また、演算処理部14は、定常偏差の代替特性値、整定時間の代替特性値としては、それぞれ、安定性指標値算出処理時に得られた各評価対象状況におけるGv_closedの1番目の配列値(最も低周波数側の配列値)Gv_closed[1]、k番目の配列値Gv_closed[k]を算出する。なお、Gv_closed[k]とは、Gv_closedの、ユーザにより整定時間の代替特性値の評価時間として指定された時間の逆数に相当する周波数成分のことである。
 また、演算処理部14は、ランプ応答追従性の代替特性値を、各評価対象状況におけるGv_closedにさらに1/(jω)(ωは、指定された周波数)を乗じた値を算出する。
 そして、演算処理部14は、各評価対象状況について算出した制御性能指標値(代替特性値)、安定性指標値算出処理で算出された各評価対象状況についての安定性指標値に基づき、安定性要求仕様及び制御性能要求仕様を満たす、最も制御性能が悪い2設定対象パラメータ値を、2設定対象パラメータの推奨値として算出する。
 ここで、上記した各代替特性値について、幾つかの事項を補足しておくことにする。
 ボード線図のゲインピークが出ない安定領域においては、軌道追従性能と、各ゲイン値(Kpp値、Kvp値、Ki値)との間に略正の相関がある。そのため、上記したL値を、軌道追従性能の代替特性値として使用することが出来る。また、定常偏差とGv_closed[1]との間、整定時間とGv_closed[k]との間、ランプ応答追従性とGv_closed/(jω)との間にも、略正の相関がある。そのため、定常偏差、整定時間ランプ、応答追従性の各代替特性値を制御性能の指標値として使用することも出来る。
 そして、上記した各代替特性値は、簡単な演算で得られるものであるため、畳み込み演算が必要とされる軌道追従遅れ時間等よりも短時間で算出できる。従って、上記代替特性値を、制御性能の判定に用いるよう指定しておけば、各設定対象パラメータの推奨値を、極めて短時間のうちに得ることが可能となる。
 《ノッチフィルタパラメータ算出処理》
 既に説明したように、ノッチフィルタパラメータ算出処理には、第1~第3ノッチフィルタパラメータ算出処理がある。以下、第1~第3ノッチフィルタパラメータ算出処理の内容を順に説明する。
・第1ノッチフィルタパラメータ算出処理
 第1ノッチフィルタパラメータ算出処理の実行が指示された演算処理部14は、以下の手順で、速度制御器32内のノッチフィルタの各パラメータの推奨値を算出してモータ制御装置30に設定する。
 第1ノッチフィルタパラメータ算出処理を開始した演算処理部14は、まず、ノッチフィルタをオフとする。次いで、演算処理部14は、モータ制御装置30を制御することにより、位置閉ループ特性Gp_closedを計測する。ここで、位置閉ループ特性Gp_closedとは、サーボシステムの周波数伝達関数(複素数の配列)のことである。このGp_closedの計測処理は、『多数の周波数成分を含むように時間変化する位置指令をモータ制御装置30に入力しながら検出位置を周期的に収集し、入力した位置指令と収集した検出位置とをフーリエ変換して比をとることにより位置閉ループ特性Gp_closedを算出する処理』であっても、『モータ制御装置30に位置閉ループ特性Gp_closedの計測を依頼し、計測結果をモータ制御装置30から取得する処理』であっても良い。
 そして、演算処理部14は、 計測したGp_closed中の共振ピークが抑制されるように、ノッチフィルタの各パラメータ(中心周波数ωn、ノッチ深さd、ノッチ幅Δω)の推奨値を決定し、決定した各推奨値をモータ制御装置30に設定してから、第1ノッチフィルタパラメータ算出処理を終了する。
・第2ノッチフィルタパラメータ算出処理
 図9に、第2ノッチフィルタパラメータ算出処理の流れ図を示す。
 図示してあるように、第2ノッチフィルタパラメータ算出処理を開始した演算処理部14は、まず、モータ制御装置30を制御することにより、位置閉ループ特性Gp_closedを計測する(ステップS201)。この計測処理は、安定性指標値算出処理(図7)のステップS101の処理と同じものである。また、演算処理部14は、ステップS201にて、位置閉ループ特性Gp_closedから、ノッチフィルタの中心周波数の推奨値とする共振ピークの周波数を特定する処理も行う。
 次いで、演算処理部14は、安定性指標値算出処理のステップS102と同内容の処理をステップS202にて行う。
 その後、演算処理部14は、今回実行するステップS204~S207の処理ループで評価するノッチフィルタの深さd、Q値の組み合わせが、複数の評価対象値ペアの中の最初の評価対象値ペアであることを記憶する(ステップS203)。ここで、複数の評価対象値ペアとは、ユーザが指定したノッチフィルタの最適化レベルにより、総数や各評価対象値ペアの内容が定められる情報のことである。より具体的には、本実施形態に係るUI部15は、表示制御部16に、表示装置12の画面上に図10に示した最適化レベル設定用アイテム(いわゆるスライダーコントロール)を表示させる。そして、UI部15は、最適化レベルとして、例えば、最高レベルが指定された場合には、[0, 5, 10, 15, 20]中の1値と、[0.8, 1.0, 1.2, 1.4, 1.6]中の1値とからなる深さdとQ値の総計25個のペアが、“複数の評価対象値ペア”であることを演算処理部14に通知する。
 ステップS203(図9)の処理を終えた演算処理部14は、ステップS204~S207の処理ループを開始する。この処理ループは、ステップS204にて設定される処理対象状況が、ノッチフィルタの各パラメータを除いたパラメータについての設定状況であること、及び、各処理対象状況における安定性指標値が評価対象値ペア別に記憶される(ステップS206)ことを除けば、安定性指標値算出処理(図7)のステップS103~S107の処理ループと同じものである。
 演算処理部14は、未処理の評価対象状況がなくなったとき(ステップS207;NO)に、ステップS204~S207の処理ループを抜け出す。そして、演算処理部14は、未処理の評価対象値ペアが残っていた場合(ステップS208;YES)には、ステップS203に戻って、次の評価対象値ペアに対する処理を実行する。
 演算処理部14は、未処理の評価対象値ペアがなくなった場合(ステップS208;NO)には、各評価対象値ペアについての処理結果に基づき、安定性を確保できる範囲が最も広い評価対象値ペアを特定する(ステップS209)。この処理としては、例えば、コンター図表示した場合に、安定性指標値が所定条件を満たす領域が最も広くなる評価対象値ペアを特定する処理が行われる。
 そして、演算処理部14は、特定した評価対象値ペアを、ステップS201で特定した中心周波数と共に、モータ制御装置30に設定(ステップS209)してから、この第2ノッチフィルタパラメータ算出処理を終了する。
 上記第2ノッチフィルタパラメータ算出処理によれば、例えば、図11(A)、図11(B)に示したように、サーボシステムの安定領域を広げることが出来る。なお、図11(A)は、ノッチフィルタがOFF(ノッチフィルタの深さが“0”)である場合におけるサーボシステムの安定性マップであり、図11(B)は、第2ノッチフィルタパラメータ算出処理完了後のサーボシステムの安定性マップである。
 そして、第2ノッチフィルタパラメータ算出処理後には、上記内容の推奨値算出処理が行われるので、本実施形態に係る設定支援装置10によれば、図12(A)、図12(B)に示したように、制御帯域を上げることが出来る。
・第3ノッチフィルタパラメータ算出処理
 図13に、第3ノッチフィルタパラメータ算出処理の流れ図を示す。
 この第3ノッチフィルタパラメータ算出処理は、より高速にノッチフィルタの各パラメータの推奨値が算出できるように、第2ノッチフィルタパラメータ算出処理を変形した処理である。
 図示してあるように、第3ノッチフィルタパラメータ算出処理を開始した演算処理部14は、まず、ステップS301、S302にて、それぞれ、第3ノッチフィルタパラメータ算出処理(図9)のステップS201、S202と同じ処理を行う。
 次いで、演算処理部14は、今回実行するステップS304~S307の処理ループで評価するノッチフィルタの深さd、Q値の組み合わせが、複数の評価対象値ペアの中の最初の評価対象値ペアであることを記憶する(ステップS303)。また、このステップS303にて、演算処理部14は、今回実行するステップS304~S307の処理ループで評価するKvp値がKvpの初期値(例えば、1[Hz])であることも記憶する。
 ステップS303の処理を終えた演算処理部14は、ステップS304~S307の処理ループを開始し、まず、Ki=Kvp/4として、安定性指標値を算出する(ステップS304)。より具体的には、演算処理部14は、ノッチフィルタの中心周波数がステップS301で特定した周波数であり、ノッチフィルタの深さd、Q値の組み合わせが現評価対象ペアであり、Kvp値が、ステップS303又はS306で設定された値であり、Ki値が、Kvp値の1/4である状況にモータ制御装置30があると仮定して、制御対象特性Pを用いて、当該状況における位置閉ループ特性Gp_closedを求める。そして、演算処理部14は、求めたGp_closedから、安定性指標値を算出する。
 ステップS304の処理を終えた演算処理部14は、算出された安定指標値が安定性要求仕様を満たすものであるか否かを判断する(ステップS305)。
 算出された安定指標値が安定性要求仕様を満たすものであった場合(ステップS305;YES)、演算処理部14は、現Kvp値を、現評価対象値ペアについての最大Kvp値として記憶する(ステップS306)。なお、この処理は、既存の最大Kvp値を書き換える処理である。そして、演算処理部14は、Kvp値を所定量増加させる処理(ステップS307)を行ってから、ステップS304以降の処理を再び開始する。
 また、演算処理部14は、算出された安定指標値が安定性要求仕様を満たすものではなかった場合(ステップS305;NO)には、未処理の評価対象値ペアが残っているか否かを判断する(ステップS308)。そして、演算処理部14は、未処理の評価対象値ペアが残っていた場合(ステップS308;YES)には、ステップS303に戻って、次の評価対象値ペアに対する処理を開始する。
 演算処理部14は、未処理の評価対象値ペアがなくなった場合(ステップS308;NO)には、各評価対象値ペアについての最大Kvp値に基づき、最大Kvp値が最も大きな評価対象値ペアを特定する(ステップS309)。例えば、各評価対象値ペアについて得られた最大Kvp値が図14に示したようなものであった場合、演算処理部14は、最大Kvp値が“107”となっている評価対象値ペア(ノッチ深さ“10”、Q値“1.6”)を特定する。そして、演算処理部14は、特定した評価対象値ペアを、ステップS301で特定した中心周波数と共に、モータ制御装置30に設定(ステップS309)してから、この第3ノッチフィルタパラメータ算出処理を終了する。
 設定支援装置10(演算処理部14)は、上記した各種処理に加えて、多軸用パラメータ値設定支援処理も行うことが出来るように構成されている。
 多軸用パラメータ値設定支援処理は、図15に示した構成を有するガントリのような、複数軸(X1軸、X2軸)を協調させて動作させるシステムのX1軸、X2軸を制御する2モータ制御装置30へのパラメータ値設定を支援するための処理である。
 図15に示したようなシステムでは、各軸の周波数特性が同一でないとヨーイングなど好ましくない挙動が発生し得る。そのため、各軸のゲインとして同一の値を設定することが多いが、各軸の周波数特性は、メカ構造やガントリ位置、負荷位置などによって変化する。例えば、負荷がX2軸に偏った状態ではX1軸に関する速度閉ループ周波数特性とX2軸に関する速度閉ループ周波数特性とは、図16に示したように異なったものとなる。
 そのため、単に各軸のゲインとして同一の値を設定したのでは、両軸の制御の安定性が担保出来ない場合がある。
 両軸の制御の安定性を担保するために、多軸用パラメータ値設定支援処理では、まず、負荷がX2軸(又はX1軸)に偏った状態でX1軸制御用のモータ制御装置30、X2軸制御用のモータ制御装置30のそれぞれについて、例えば、設定対象パラメータを位置比例ゲインKpp及び速度比例ゲインKvpとした安定性指標値算出処理(図7)が行われる。
 次いで、X1軸制御用のモータ制御装置30についての安定性指標値算出処理の処理結果(複数の状況のそれぞれについての安定性指標値)と、X2軸制御用のモータ制御装置30についての安定性指標値算出処理の処理結果とから、各状況における安定性指標値の最悪値を特定する最悪値特定処理が行われる。すなわち、図17に示してあるX1軸安定性マップ及びX2軸安定性マップから同図に示してある合成安定性マップを生成する処理に相当する処理が行われる。
 その後、最悪値特定処理の処理結果を用いて(最悪値特定処理で得られた各最悪値を安定性指標値として取り扱って)、X1軸又はX2軸制御用のモータ制御装置30に対して制御性能指標値・推奨値算出処理が行われる。そして、ユーザによる確認後(又はユーザによる確認なしで)、算出された2推奨値がX1軸制御用のモータ制御装置30とX2軸制御用のモータ制御装置30とに設定されて、多軸用パラメータ値設定支援処理が終了する。
 以上、説明したように、本実施形態に係る設定支援装置10は、安定性及び制御性能の双方を考慮して2パラメータの推奨値を決定して出力することが出来る。従って、本設定支援装置10によれば、ゲイン調整に関する知識が不十分なユーザであっても、モータ制御装置30に十分な安定性及び制御性能を付与できるパラメータ値を、モータ制御装置30に設定することが可能となる。
 《変形例》
 上記した設定支援装置10は、各種の変形が可能なものである。例えば、第1~第3ノッチフィルタパラメータ算出処理を、算出された各推奨値をユーザに提示し、確認を得てから、各推奨値をモータ制御装置30に設定する処理に変形しても良い。第2,第3ノッチフィルタパラメータ算出処理を、ノッチフィルタ以外のフィルタ(位置フィルタ、トルクフィルタ)のパラメータの推奨値を算出する処理に変形しても良い。設定支援装置10を、安定性マップとして3次元グラフを表示する装置に変形しても良い。
 また、軌道追従性能(又は他の性能)の代替特性値として、SQR(第1パラメータ値+α・第2パラメータ値)とは異なる値、例えば、“第1パラメータ値+k・第2パラメータ値”や、|第1パラメータ値|+k・|第1パラメータ値|(k1、は、予め定められている値)を使用しても良い。
 設定支援装置10を、第1及び第2パラメータの推奨値を、各状況についての第1評価指標値から算出(特定)する装置に変形しても良い。各状況についての第1評価指標値からの2推奨値の算出手順としては、所望値に最も近い第1評価指標値が得られた状況の第1及び第2パラメータ値を、各パラメータの推奨値として算出するという手順を例示できる。なお、そのような第1及び第2パラメータ値が複数組存在している場合には、第1パラメータ値及び/又は第2パラメータ値に基づき、それら複数組のパラメータ値の中から、推奨値とする1組のパラメータ値を選択しても良い。より具体的には、複数組のパラメータ値の中から、第1パラメータ値が最も大きい又は小さいものや、第1パラメータ値と第2パラメータ値から求められる値(上記したL値等)が最も大きい又は小さいものを検索し、検索結果を第1及び第2パラメータの推奨値としても良い。また、他のアルゴリズムで(例えば、ランダムに)、上記複数組のパラメータ値の中から推奨値とする1組のパラメータ値を選択しても良い。
 同様に、多軸用パラメータ値設定支援処理を、第1及び第2パラメータの推奨値を各状況についての最悪値から算出(特定)する処理に変形しても良い。また、設定支援装置を、第1評価指標値として、制御性能を示す評価指標値を算出し、第2評価指標値として、安定性を示す評価指標値を算出する装置に変形することも出来る。ただし、そのように設定支援装置を変形すると、通常、推奨値が得られるまでにより長い時間が必要とされることになるので、上記実施形態の構成を採用しておくことが好ましい。
 《付記》
 モータ(41)を制御するモータ制御装置(30)へのパラメータ値設定を支援する設定支援装置(10)であって、
 前記モータ制御装置(30)に設定されている第1パラメータの値と第2パラメータの値の組み合わせが異なる複数の状況のそれぞれについて、前記モータ制御装置(30)によるモータ制御の安定性又は制御性能を示す第1評価指標値を算出する指標値算出部(14)と、
 前記指標値算出部(14)により算出された各状況についての前記第1評価指標値に基づき、前記第1パラメータの推奨値と前記第2パラメータの推奨値とを算出する推奨値算出部(14)と、
 前記第1パラメータの前記推奨値及び前記第2パラメータの前記推奨値を、前記第1パラメータの値と前記第2パラメータの値の組み合わせと前記第1評価指標値の前記最悪値との関係を示す情報と共にディスプレイに表示する推奨値表示部(14、16)と、
 を備えることを特徴とする設定支援装置(10)。
 2軸以上のモータ(41)を同期的に制御するために使用される複数のモータ制御装置(30)へのパラメータ値設定を支援する設定支援装置(10)であって、
 パラメータ値の設定の支援対象となっているモータ制御装置指標値毎に、そのモータ制御装置指標値に設定されている第1パラメータの値と第2パラメータの値の組み合わせが異なる複数の状況のそれぞれについて、そのモータ制御装置(30)によるモータ制御の安定性を示す第1評価指標値を算出する第1評価指標値算出手段(14)と、
 前記状況別に、前記第1評価指標値算出手段(14)により算出された前記第1評価指標値の最悪値を特定する特定手段(14)と、
 前記特定手段により前記状況別に特定された前記最悪値に基づき、前記第1パラメータの推奨値と前記第2パラメータの推奨値とを算出する推奨値算出手段(14)と、
 前記第1パラメータの前記推奨値及び前記第2パラメータの前記推奨値を、前記第1パラメータの値と前記第2パラメータの値の組み合わせと前記第1評価指標値の前記最悪値との関係を示す情報と共にディスプレイに表示する推奨値表示手段(14、16)と、
 を備えることを特徴とする設定支援装置(10)。
 10 設定支援装置
 11 入力装置
 12 表示装置
 13 本体部分
 14 演算処理部
 15 UI部
 16 表示制御部
 30 モータ制御装置
 31 位置制御器
 32 速度制御器
 34 電流制御器
 35 位置検出器
 40 制御対象
 41 モータ
 42 負荷装置

Claims (19)

  1.  モータを制御するモータ制御装置へのパラメータ値設定を支援する設定支援装置であって、
     前記モータ制御装置に設定されている第1パラメータの値と第2パラメータの値の組み合わせが異なる複数の状況のそれぞれについて、前記モータ制御装置によるモータ制御の安定性又は制御性能を示す第1評価指標値を算出する指標値算出部と、
     前記指標値算出部により算出された各状況についての前記第1評価指標値に基づき、前記第1パラメータの推奨値と前記第2パラメータの推奨値とを算出する推奨値算出部と、
     前記第1パラメータの前記推奨値及び前記第2パラメータの前記推奨値を、前記第1パラメータの値と前記第2パラメータの値の組み合わせと前記第1評価指標値との関係を示す情報と共にディスプレイに表示する推奨値表示部と、
     を備えることを特徴とする設定支援装置。
  2.  前記指標値算出部は、前記複数の状況のそれぞれについて、前記第1評価指標値と、前記モータ制御装置によるモータ制御の、前記第1評価指標値とトレードオフの関係にある第2評価指標値とを算出し、
     前記推奨値算出部は、前記指標値算出部により算出された各状況についての前記第1評価指標値及び前記第2評価指標値に基づき、前記第1パラメータの推奨値と前記第2パラメータの推奨値とを算出する、
     ことを特徴とする請求項1に記載の設定支援装置。
  3.  前記推奨値表示部は、前記第1パラメータの値、前記第2パラメータの値を、それぞれ、縦軸及び横軸の中の一方、他方とし、前記第1評価指標値を色又は輝度で表したコンター図であって、前記第1パラメータの前記推奨値及び前記第2パラメータの前記推奨値が示す位置に所定のマークが示されたコンター図を前記ディスプレイに表示する、
     ことを特徴とする請求項1又は2に記載の設定支援装置。
  4.  前記推奨値表示部は、前記コンター図上に前記第2評価指標値の等値線を表示する機能を有する、
     ことを特徴とする請求項3に記載の設定支援装置。
  5.  前記推奨値算出部は、各状況についての前記第1パラメータの値、前記第2パラメータの値のそれぞれとの間に正又は負の相関がある値を、各状況についての前記第2評価指標値として算出する、
     ことを特徴とする請求項2から4のいずれか一項に記載の設定支援装置。
  6.  前記指標値算出部は、前記モータ制御装置によるモータ制御の安定性を示す値を前記第1評価指標値として算出し、前記モータ制御装置によるモータ制御の制御性能を示す値を前記第2評価指標値として算出する、
     ことを特徴とする請求項2から4のいずれか一項に記載の設定支援装置。
  7.  前記推奨値算出部は、各状況の前記第1評価指標値及び前記第2評価指標値に基づき、安定性についての要求仕様及び制御性能についての要求仕様を満たし、実現できる性能が最も低い状況を特定し、特定した状況についての前記第1パラメータの値及び前記第2パラメータの値を、前記第1パラメータの前記推奨値及び前記第2パラメータの前記推奨値として算出する、
     ことを特徴とする請求項6に記載の設定支援装置。
  8.  前記指標値算出部は、前記複数の状況のそれぞれについて、前記モータ制御装置によるモータ制御の安定性についての、前記第1評価指標値とは異なる評価基準での評価結果である第3評価指標値も算出し、
     前記推奨値算出部は、前記指標値算出部により算出された各状況についての第3評価指標値も用いて、前記第1パラメータの推奨値と前記第2パラメータの推奨値とを算出する、
     ことを特徴とする請求項1に記載の設定支援装置。
  9.  前記モータ制御装置は、ノッチフィルタ又はトルクフィルタを含み、
     前記指標値算出部は、前記第1評価指標値又は前記第3評価指標値として、前記モータ制御装置を含むサーボシステムの、前記ノッチフィルタの中心周波数又は前記トルクフィルタの遮断周波数に応じた周波数におけるゲインを算出する、
     ことを特徴とする請求項8に記載の設定支援装置。
  10.  前記モータ制御装置は、ノッチフィルタ又はトルクフィルタを含み、
     それぞれ、前記ノッチフィルタ又は前記トルクフィルタの周波数特性を規定する1つ以上のパラメータの値を指定する複数のパラメータ設定情報に基づき、前記複数のパラメータ設定情報のそれぞれについて、そのパラメータ設定情報にて指定する値が前記ノッチフィルタ又は前記トルクフィルタの前記1つ以上のパラメータの値として設定されている場合における前記第1評価指標値を、前記複数の状況のそれぞれについて算出すると共に、算出した各状況について算出された前記第1評価指標値に基づき、各状況が、安定性についての要求仕様を満たすものであるか否かを判定し、安定性についての要求仕様を満たすと判定された前記状況の範囲が最も広い前記パラメータ設定情報が指定している前記1つ以上のパラメータの値を、前記ノッチフィルタ又はトルクフィルタの前記1つ以上のパラメータの推奨値として出力するフィルタパラメータ推奨値出力部を、さらに備える、
     ことを特徴とする請求項1から9のいずれか一項に記載の設定支援装置。
  11.  ユーザからの指示に従い、前記フィルタパラメータ推奨値出力部が処理対象とする前記複数のパラメータ設定情報を変更するユーザインターフェース部を、さらに備える、
     ことを特徴とする請求項10に記載の設定支援装置。
  12.  前記モータ制御装置は、ノッチフィルタを含み、
     前記ノッチフィルタの周波数特性を規定する1つ以上のパラメータの推奨値を、前記モータ制御装置によるモータ制御のゲイン特性の測定結果から決定する推奨値決定部を、さらに備える、
     ことを特徴とする請求項1から11のいずれか一項に記載の設定支援装置。
  13.  前記指標値算出部は、前記モータ制御装置によるモータ制御のゲイン特性の測定結果から、前記モータを含む所定部分の周波数伝達関数を求め、求めた周波数伝達関数を用いて、前記複数の状況のそれぞれについての前記第1評価指標値を算出する、
     ことを特徴とする請求項1から12のいずれか一項に記載の設定支援装置。
  14.  前記指標値算出部は、前記モータ制御装置によるモータ制御のゲイン特性の測定結果から、前記モータを含む所定部分の周波数伝達関数を求め、求めた周波数伝達関数を用いて、前記複数の状況のそれぞれについての前記第1評価指標値と前記第2評価指標値とを算出する、
     ことを特徴とする請求項2に記載の設定支援装置。
  15.  前記指標値算出部は、積分演算を行うことなく、前記周波数伝達関数から、前記複数の状況のそれぞれについての前記第2評価指標値を算出する、
     ことを特徴とする請求項14に記載の設定支援装置。
  16.  前記指標値算出部は、各状況における、前記第1パラメータ、前記第2パラメータ以外の少なくとも1つのパラメータの値を、前記第1パラメータ又は前記第2パラメータの値から決定する機能を有する、
     ことを特徴とする請求項1から15のいずれか一項に記載の設定支援装置。
  17.  前記推奨値算出部により算出された前記第1パラメータの前記推奨値と前記第2パラメータの前記推奨値とを自動的に前記モータ制御装置に設定する第1動作モードと、前記推奨値算出部により算出された前記第1パラメータの前記推奨値と前記第2パラメータの前記推奨値とを、ユーザにより設定指示が入力されたときに前記モータ制御装置に設定する第2動作モードとを有する設定処理部であって、ユーザにより指定された動作モードで動作する設定処理部を、さらに備える、
     ことを特徴とする請求項1から16のいずれか一項に記載の設定支援装置。
  18.  2軸以上のモータを同期的に制御するために使用される複数のモータ制御装置へのパラメータ値設定を支援する設定支援装置であって、
     パラメータ値の設定の支援対象となっているモータ制御装置毎に、そのモータ制御装置に設定されている第1パラメータの値と第2パラメータの値の組み合わせが異なる複数の状況のそれぞれについて、そのモータ制御装置によるモータ制御の安定性を示す第1評価指標値を算出する第1評価指標値算出手段と、
     前記状況別に、前記第1評価指標値算出手段により算出された前記第1評価指標値の最悪値を特定する特定手段と、
     前記特定手段により前記状況別に特定された前記最悪値に基づき、前記第1パラメータの推奨値と前記第2パラメータの推奨値とを算出する推奨値算出手段と、
     前記第1パラメータの前記推奨値及び前記第2パラメータの前記推奨値を、前記第1パラメータの値と前記第2パラメータの値の組み合わせと前記第1評価指標値の前記最悪値との関係を示す情報と共にディスプレイに表示する推奨値表示手段と、
     を備えることを特徴とする設定支援装置。
  19.  前記推奨値算出手段は、前記状況別の最悪値の特定結果に基づき、前記各状況が、安定性についての要求仕様を満たすものであるか否かを判定し、前記要求仕様を満たすものであると判定された前記状況毎に、前記モータ制御装置によるモータ制御についての、前記第1評価指標値とトレードオフの関係にある第2評価指標値を算出し、算出された各状況についての前記第2評価指標値に基づき、前記第1パラメータの推奨値と前記第2パラメータの推奨値とを算出する、
     ことを特徴とする請求項18に記載の設定支援装置。
PCT/JP2019/031187 2018-08-21 2019-08-07 設定支援装置 WO2020039934A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19851654.4A EP3843261B1 (en) 2018-08-21 2019-08-07 Setting assistance device
CN201980047666.3A CN112470396A (zh) 2018-08-21 2019-08-07 设定支持装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018155014A JP7119760B2 (ja) 2018-08-21 2018-08-21 設定支援装置
JP2018-155014 2018-08-21

Publications (1)

Publication Number Publication Date
WO2020039934A1 true WO2020039934A1 (ja) 2020-02-27

Family

ID=69593072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031187 WO2020039934A1 (ja) 2018-08-21 2019-08-07 設定支援装置

Country Status (4)

Country Link
EP (1) EP3843261B1 (ja)
JP (1) JP7119760B2 (ja)
CN (1) CN112470396A (ja)
WO (1) WO2020039934A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162478A (zh) * 2021-04-15 2021-07-23 深圳赛美控电子科技有限公司 电机启动参数的测试方法、系统、终端设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034781A (ja) * 2005-07-28 2007-02-08 Fuji Electric Fa Components & Systems Co Ltd 位置決め制御装置の制御パラメータ調整方法
JP2009116515A (ja) * 2007-11-05 2009-05-28 Fuji Electric Systems Co Ltd Pidパラメータ調節支援装置
JP2009124803A (ja) * 2007-11-12 2009-06-04 Mitsubishi Electric Corp サーボゲイン調整装置およびサーボゲイン調整方法
JP2009122779A (ja) * 2007-11-12 2009-06-04 Mitsubishi Electric Corp 制御システムおよび制御支援装置
JP2011244668A (ja) 2010-05-21 2011-12-01 Omron Corp プログラム、記録媒体、サーボモータの制御パラメータ調整方法、開発支援装置、サーボシステムの開発システム
JP2017167607A (ja) 2016-03-14 2017-09-21 オムロン株式会社 設定支援装置、設定支援方法、情報処理プログラム、および記録媒体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198246B1 (en) * 1999-08-19 2001-03-06 Siemens Energy & Automation, Inc. Method and apparatus for tuning control system parameters
EP1887442A1 (en) * 2006-08-10 2008-02-13 Robert Bosch Gmbh Method of automatically tuning motor controller and motor controller
JP5146467B2 (ja) * 2008-01-29 2013-02-20 パナソニック株式会社 モータ制御特性評価装置およびモータ制御特性の提示方法
CN105103437B (zh) 2013-03-29 2018-05-15 松下知识产权经营株式会社 电动机驱动装置的伺服调整方法
CN105284045B (zh) * 2013-04-10 2017-03-08 松下知识产权经营株式会社 电动机驱动装置
CA2870512C (en) * 2013-11-12 2018-02-27 Aero Systems Engineering, Inc. Systems and methods for improved accuracy
JP6177705B2 (ja) 2014-02-21 2017-08-09 三菱重工業株式会社 機械装置の制御装置及び摩擦補償用のゲイン決定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034781A (ja) * 2005-07-28 2007-02-08 Fuji Electric Fa Components & Systems Co Ltd 位置決め制御装置の制御パラメータ調整方法
JP2009116515A (ja) * 2007-11-05 2009-05-28 Fuji Electric Systems Co Ltd Pidパラメータ調節支援装置
JP2009124803A (ja) * 2007-11-12 2009-06-04 Mitsubishi Electric Corp サーボゲイン調整装置およびサーボゲイン調整方法
JP2009122779A (ja) * 2007-11-12 2009-06-04 Mitsubishi Electric Corp 制御システムおよび制御支援装置
JP2011244668A (ja) 2010-05-21 2011-12-01 Omron Corp プログラム、記録媒体、サーボモータの制御パラメータ調整方法、開発支援装置、サーボシステムの開発システム
JP2017167607A (ja) 2016-03-14 2017-09-21 オムロン株式会社 設定支援装置、設定支援方法、情報処理プログラム、および記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3843261A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162478A (zh) * 2021-04-15 2021-07-23 深圳赛美控电子科技有限公司 电机启动参数的测试方法、系统、终端设备及存储介质
CN113162478B (zh) * 2021-04-15 2022-03-29 深圳赛美控电子科技有限公司 电机启动参数的测试方法、系统、终端设备及存储介质

Also Published As

Publication number Publication date
JP2020030557A (ja) 2020-02-27
CN112470396A (zh) 2021-03-09
EP3843261B1 (en) 2024-09-25
JP7119760B2 (ja) 2022-08-17
EP3843261A4 (en) 2022-05-11
EP3843261A1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
JP6583070B2 (ja) 設定支援装置、設定支援方法、情報処理プログラム、および記録媒体
JP4698656B2 (ja) 制御システムおよび制御支援装置
US20160170400A1 (en) Servo control device having automatic filter adjustment function based on experimental modal analysis
CN103296940B (zh) 一种自适应pi控制方法与系统
US11914334B2 (en) Output device, control device and method of outputting evaluation function value
JP6946654B2 (ja) 制御装置、制御方法、および、制御プログラム
US10734933B2 (en) Motor control apparatus
WO2020039934A1 (ja) 設定支援装置
JP5245606B2 (ja) 予測シミュレータを用いた運転支援装置および運転支援方法
WO2020039935A1 (ja) 設定支援装置
JP2012089004A (ja) オートチューニング装置及びオートチューニング方法
WO2021181787A1 (ja) 制御装置
JP2007306753A (ja) ノッチフィルタのパラメータ調整方法、プログラムおよびモータ制御装置
JP2019133494A (ja) 設定支援装置及び設定支援プログラム
JP4546437B2 (ja) オートチューニング装置およびオートチューニング方法
US12099338B2 (en) Parameter setting assistance device, parameter setting assistance method
EP3843260B1 (en) Setting assistance apparatus
WO2018100670A1 (ja) オートチューニング装置
JP7014094B2 (ja) 設定支援装置
WO2019106782A1 (ja) Pid制御装置及びpid制御方法
JP7466816B1 (ja) モータ制御装置
CN112425064A (zh) 设定支持装置
JP2019187138A (ja) 状態変化検出装置及び状態変化検出方法
JP2018107993A (ja) 電気車制御装置
KR20110101813A (ko) uDEAS를 이용한 산업용 히터 시스템의 모델링 기법 및 자동 동조 PID 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019851654

Country of ref document: EP

Effective date: 20210322