WO2020039109A1 - Lamela para decantador y modulo lamelar para decantador - Google Patents
Lamela para decantador y modulo lamelar para decantador Download PDFInfo
- Publication number
- WO2020039109A1 WO2020039109A1 PCT/ES2019/070420 ES2019070420W WO2020039109A1 WO 2020039109 A1 WO2020039109 A1 WO 2020039109A1 ES 2019070420 W ES2019070420 W ES 2019070420W WO 2020039109 A1 WO2020039109 A1 WO 2020039109A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lamella
- plate
- lamellar
- vicinity
- lamellae
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/0039—Settling tanks provided with contact surfaces, e.g. baffles, particles
- B01D21/0069—Making of contact surfaces, structural details, materials therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/0039—Settling tanks provided with contact surfaces, e.g. baffles, particles
- B01D21/0042—Baffles or guide plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/0039—Settling tanks provided with contact surfaces, e.g. baffles, particles
- B01D21/0045—Plurality of essentially parallel plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/0039—Settling tanks provided with contact surfaces, e.g. baffles, particles
- B01D21/0066—Settling tanks provided with contact surfaces, e.g. baffles, particles with a meandering flow pattern of liquid or solid particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/0039—Settling tanks provided with contact surfaces, e.g. baffles, particles
- B01D21/0069—Making of contact surfaces, structural details, materials therefor
- B01D21/0075—Contact surfaces having surface features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/02—Settling tanks with single outlets for the separated liquid
Definitions
- the present invention belongs to the technical field of devices and installations for the treatment of effluents contaminated by impurities in the form of suspended solids.
- Said devices are of the type comprising at least one lamella and / or one lamellar module and are usually used, for example and without limitation, for the treatment of wastewater or drinking water, by decantation of said suspended solids.
- the present invention has as its object a lamellar intended for use in a lamellar decanter, as well as a lamellar module intended for use in a lamellar decanter.
- a decanter is a device that is commonly used in effluent purification processes (i.e. liquids that flow in an industrial facility) for the removal of solid impurities in suspension present in said effluents and, in particular, in water purification residual and drinking water purification.
- effluent purification processes i.e. liquids that flow in an industrial facility
- the decanters comprise a tank, or reservoir, through which an effluent contaminated by impurities is circulated in the form of suspended solids and are capable of separating, at least partially, said suspended solids from the effluent.
- the effluent to be treated access at low speed, through inlets that are normally located at the bottom of the sides of the tank.
- the suspended solids have a specific gravity or density greater than the effluent, they will tend to move downwards, towards the lower area of the tank, or base, where they will accumulate.
- This phenomenon of accumulation in the lower part of the tank is known precisely as "decantation” and allows the subsequent evacuation of accumulated solids.
- the effluent - free of solids - will leave the decanter tank at the top through dumps or collection ducts.
- the upward or lateral velocity of the effluent must be such that the velocity of decanting of the solid in suspension, allows it to reach the base of the tank before the effluent leaves the tank. Otherwise, the solid will be evacuated with the effluent, without the decanter having fulfilled its function.
- Some decanters are provided with lamellae and / or lamellar modules, in order to increase their performance.
- the incorporation of said lamellae and / or lamellar modules in a decanter allows to increase the effluent flow to be treated, or to increase the efficiency in the decantation of solids.
- the lamellae are plates or profiles, usually elongated. That is, the lamellae usually have a longer, main direction, which is called the "longitudinal” direction and a shorter, secondary dimension, called the “transverse” direction, along which the upper edge of the plate run and the bottom edge of the plate.
- said lamellae arranged in parallel define a series of lamellar channels that are arranged inside the tank, at an intermediate height and covering the tank section, usually with an inclined orientation, which forms an angle between 45 ° and 65 ° with respect to the horizontal.
- the lamellae therefore, force the effluent to circulate through the lamellar channels in the direction given by their inclination, thus forming a set of small decanters that accelerate the decantation process.
- the lamellar decanter receives the effluent to be treated through entrances located in the lower area of the sides of the tank and is distributed homogeneously throughout its surface of the tank under the lamellae. Since the treated effluent is extracted from the top of the tank and above the lamellae, said effluent is forced to circulate through the inclined channels formed by the lamellae.
- the solids are subjected to two different forces, the one generated by the effluent in its upward trajectory and in the direction of the lamellar channel and to the force of gravity in a downward vertical direction.
- the composition of both forces generates a trajectory of the solids that approximates them to the lower part of the lamellar channel where larger flocs are grouped and formed. Due to this grouping, solids are able to more easily overcome friction with the ascending effluent, increasing their natural rate of decantation and generating a downward flow through the underside of the lamellar canal.
- the effectiveness of a lamellar decanter is usually evaluated based on the following aspects: the treatment capacity, that is, the amount of effluent that is capable of treating a lamellar decanter per unit of time; the efficiency in the elimination of solids present in said effluent; and maintenance requirements for said lamellar decanter to operate under parameters of adequate capacity and efficiency. These maintenance requirements depend heavily on the fouling process that occurs due to the progressive accumulation of adhered solids throughout the surface of the lamellar lamellae or modules, as well as the support structures of said lamellar lamellae or modules.
- the support systems of the lamellar modules, or racks are usually located on the outside of the lamellar module itself and inside the settling tank at an average height above the bottom of the tank, so that, during the process, structures of support and lamellar modules will be totally submerged.
- Some lamellar modules, especially those made of plastic materials with densities close to water, are usually also provided with a structure that prevents their flotation, either by the hydraulic thrust to which they are subjected, or by their low density.
- Said anti-flotation structure is usually arranged in the upper part of the lamellar modules.
- the tank capacity and efficiency will depend on its size, both in surface as in total volume and its geometry and design, which will allow an adequate distribution of the effluent throughout its surface, a correct extraction of the solids accumulated at its base or a balanced evacuation of the treated effluent through the ducts or dumps.
- the characteristics of the tank do not greatly affect, as long as the system of evacuation of solids or sludge is properly designed and sized.
- the capacity, efficiency and maintenance of the installation will depend, among others, on factors as numerous and different as: the geometry of the lamellar lamellae or modules; its size; distance between lamels; lamellar channel section; Inclination angle; hydraulic behavior; surface finishes of the materials that make up the lamellae; module assembly systems; racks and support systems inside or outside the tank; the effective surface losses generated by said frames and supporting structures that blind most of the lamellar channels, etc.
- lamellar modules Three types of lamellae are fundamentally known, which join together to form lamellar modules:
- lamellae already known, consist of flat geometry sheets mounted on support structures previously installed inside the tank. Its assembly is also frequent forming independent modules by means of external racks made with profiles or side plates to later be installed on the support structures inside the tank.
- These flat lamellae form lamellar channels of rectangular section whose length will be the width of the lamella and its width the distance between each of the installed lamellae.
- This type of lamellar channels have a good hydraulic behavior thanks to this geometry of continuous rectangular channel, without more intermediate partitions in all its width than those that make up the side frames, presenting relatively low hydraulic losses and in the environment of 2 - 3% .
- tubular lamellae Said lamellae are formed by the successive assembly of profiles, generally extruded in plastic material. With the successive assembly of these profiles with each other, closed lamellar channels (or ducts) are formed, which are parallel and joined together, until reaching the design dimensions of the lamellar module to be installed.
- the usual geometries of these channels are hexagonal or honeycomb, rectangular, gallon or square, all of them having in common the internal partition that forms the channels and the low section of passage of each of these channels.
- This type of tubular lamellar module has very high losses due to the hydraulic behavior of the effluent inside the lamellar ducts and specifically due to the high velocity gradient that occurs inside, as in any duct, and especially when it is a laminar regime.
- the speed zones 0 or very low they occupy an important part of the duct section. In practice, these zones can be considered inoperative, circulating most of the effluent through the central zone of the lamellar duct and therefore at a higher speed, so that most of the solids do not have time to reach the bottom face of the lamellar canal and They are evacuated with treated effluent.
- the hydraulic losses in these cases range between 12 and 18%.
- the joining systems between the profiles that make up the modules usually incorporate longitudinal guides, welding, stapling, etc., which generate areas where the sludge can easily adhere, again accelerating the fouling process.
- the type of support structures that require this type of modules for installation inside the tank must be very reinforced in anticipation of high loads of mud accumulated in the modules, resulting in high effective surface losses due to the size of the profiles that are required.
- the modules are supported on these profiles in their peripheral areas, leaving many of the ducts partially or totally blinded by their lower part. These losses of effective surface due to the blinding of the channels in the supports can vary between 7 and 12%.
- the oversizing necessary for these support structures also has a very high cost.
- the present invention aims to remedy or reduce the problems and disadvantages of the prior art, mentioned above.
- a first object of the present invention relates to a decanter lamella formed by a rectangular or square plate, the upper edge and the lower edge of said plate running parallel to a transverse direction, the remaining two lateral edges of said plate parallel to a longitudinal direction, said lamella being characterized by why:
- the plate is curved along its longitudinal direction, so that, in its working position, the area near the bottom edge of the plate is less inclined with respect to the horizontal than the area near the top edge of the plate, and because
- the plate is provided with a plurality of longitudinal folds, said longitudinal folds running from the upper edge of the plate, to the lower edge of the plate and said longitudinal folds being provided with a curvature in the longitudinal direction.
- the lamellae according to the present invention are intended to be placed in the manner described below, in their working position inside the tank of a decanter: the lower edge of the lamella plates is oriented towards the base of the tank, while the edge upper should point towards the top of said tank
- the plate forming said lamella is curved along its longitudinal direction, so that, once placed in its working position, its lower portion is less inclined with respect to to the horizontal that its upper portion, helps to avoid the processes of accumulation of solids in the upper area of said lamellae by helping these solids begin their descent, which translates into a slowing down of the fouling process, keeping clean and conditions of adequate efficiency for a longer time, extending the periods between maintenance and reducing the costs of such actions.
- each lamella When the lamellae are in their working position, the bottom portion of each lamella receives the thicker solids and with greater decanting capacity, as well as a flow of solids that comes from the accumulation of all the solids received along the entire lamellar length.
- the angle of inclination over the horizontal is smaller in the lower part thereof. This smaller angle of inclination reduces the vertical distance of settling to the lower surface of the lamellar channel, providing greater capacity for settling in this area.
- the lamellae according to the present invention have, as described above, a greater inclination with respect to the horizontal in their upper part. This specific configuration helps these solids with lower decanting capacity, present in the upper part of the lamella, to begin their descent reducing their progressive accumulation. It is estimated that, in view of the tests carried out by the applicant, in some advantageous embodiments of the lamellae according to the present invention, the reduction in performance due to the loss of available section and drag of solids is only between 1 and 5%. Also, once the lamellae according to the present invention have been placed in their working position inside a settling tank, their longitudinal folds are intended to concentrate the solids in the lower zones or valleys of said folds.
- the best behavior against fouling of the lamellae according to the present invention will reduce the distance between the faces of said lamellae by placing them in their working position in a lamellar module inside the tank of a decanter, thereby increasing the treatment capacity of effluent per unit of installed surface.
- the lamella in addition, must have characteristics of mechanical resistance that allow it to cope with the efforts that will occur under certain conditions, mainly when the tank is emptied and its entire structure supports the load of its own weight plus the weight of the Possible accumulated mud.
- the plate is curved along its longitudinal direction provides a moment of inertia in the transverse direction, which increases the longitudinal flexural strength of said lamellae.
- the lamella comprises at least one longitudinal fold delimited by two wings, which form an obtuse angle to each other, preferably an angle of between 150 and 160 °.
- This specific configuration of the folds, in a lamella according to the present invention facilitates the concentration of the suspended solids in the valleys of said folds (which are part of the lamellar channels) and accelerates the downward flow of said solids, within the tank of a decanter
- the lamella further comprises at least one longitudinal structural rib, curved along the longitudinal direction and delimited by two wings running from the upper edge of the plate, to the lower edge of the plate, forming a variable angle to each other, said angle being:
- the angle of 115 ° and 120 ° formed by the wings of the structural nerve in the central portion of the lamella gives good mechanical resistance both to transverse bending stresses and to compression stresses received in that area.
- the sharpest angle (between 80 ° and 90 °) formed by the wings of the structural nerve at the ends of the lamella maximizes resistance mechanics against bending stresses received in those areas, areas that - in preferred embodiments of the lamellae according to the invention - will act as anchor points.
- At least one longitudinal structural rib is preferably provided with anchor points to a support element, said anchor points being arranged in the vicinity of the upper edge of the plate and in the vicinity of the lower edge of the plate.
- the area near the upper edge, the area near the lower edge and the central region of said structural nerve have a thickness greater than the rest of the nerve, having In addition, said at least one structural nerve, a thickness greater than the rest of the lamella. In this way, those parts of the nerve that will withstand greater efforts are reinforced.
- the proximities of the upper edge, the proximities of the lower edge and the central region of said structural rib (or alternatively of said structural ribs) preferably have a greater thickness, between 3 and 3.5 mm, the thickness being the remaining parts between 2.5 and 3 mm.
- the lamellae according to the present invention are preferably plastic lamellae manufactured by plastic injection.
- Polypropylene, acrylonitrile butadiene styrene (ABS), polystyrene, and recycled plastics are non-limiting examples of preferred plastic materials for manufacturing the lamellae according to the present invention.
- extrusion is not a process capable of forming a lamella with the technical characteristics contemplated by the above-described embodiments of the present invention, because the cross-section of said lamellae according to the invention varies continuously throughout its length and this process of manufacturing does not allow the piece to be made with different thicknesses. This would therefore prevent giving the longitudinal ribs a greater thickness than the rest of the lamella.
- the extrusion would not allow the longitudinal curvature of the lamella plate, characteristic of the lamellae according to the present invention.
- Thermoforming is not a procedure capable of forming a lamella with the technical characteristics contemplated by the above-described embodiments of the present invention, because it does not allow the piece to be provided with different thicknesses depending on its needs. This would therefore prevent giving the longitudinal ribs a greater thickness than the rest of the lamella.
- the nerves would be of less thickness, as they suffer a greater stretch during the process than the area between the nerves and lateral areas, to be able to adapt to the greater height of the nerve wings.
- plastics used to make the lamellae of the embodiments of the present invention indicated above may optionally be provided with protective additives against ultraviolet rays and / or reinforcement materials, such as fiberglass, which provide the lamella with greater rigidity
- the lamella comprises at least a first longitudinal structural rib located 1/3 of the total width of the lamella transversely and at least a second longitudinal structural rib located 2/3 of the width total in transverse direction, the first structural nerve and the second structural nerve being provided with anchor points to a support element, said anchor points being arranged in the vicinity of the upper edge of the plate and in the vicinity of the lower edge of the license plate.
- the lamella is preferably divided transversely into three different zones:
- first lateral zone and the second lateral zone are cantilevered when the lamella is arranged in its working position, inside a decanter tank.
- the first lateral zone and the second lateral zone are, therefore, cantilevered, that is, they extend beyond the anchor points that support them (ie, the anchor points of the first structural nerve, in the case of the first lateral zone and the anchorage points of the second structural nerve in the case of the second lateral zone).
- These cantilevered areas could potentially represent a weak point of the lamella against efforts that generate longitudinal flexion, for example, the lamella's own weight and the weight of solids (or sludge) that can adhere to it.
- the lamella according to the present invention is provided with a longitudinal curvature that gives it an additional moment of inertia in the transverse direction, which it would not have without said curvature and which remarkably increases its resistance to longitudinal flexion. .
- said cantilevered areas will generate a longitudinal bending effort on the structural nerve due to its own weight and the weight of the sludge that can accumulate on its surface. Therefore, these cantilevered areas preferably have a thickness less than the rest of the lamella to reduce as much as possible the effort caused by their own weight.
- the plate is curved along its longitudinal direction describing a first constant radius of curvature.
- the first constant radius of curvature is preferably 7 to 12 meters and more preferably 9 to 10 meters.
- the tangent to the lower edge of the lamellae forms an angle of the order of 55 ° with the horizontal and the tangent to its upper edge, an angle of the order of 65 ° with the horizontal.
- the decanting capacity in the lower part of the lamella is maximized and, simultaneously, the accumulation of solids in the upper part thereof is minimized.
- the lamella comprises at least one structural nerve, said structural nerve being curved along its longitudinal direction along a second radius of constant curvature, the lamellar plate being also curved along its longitudinal direction according to a first radius of constant curvature, and the second radius of constant curvature being smaller than the first radius of constant curvature.
- the first constant radius of curvature (of the plate) is 9 to 10 meters and the second radius of constant curvature (of the structural nerve or, alternatively, of the structural nerves) is 7 to 8.5 meters.
- This specific configuration increases the resistance to longitudinal flexion of the nerve or structural nerves, compared to the previously described stresses generated by the cantilevered lateral areas
- the lamella plate is polished, which contributes to slowing the fouling process.
- a second aspect of the invention relates to a lamellar module for decanter comprising two or more lamellae, according to the first aspect of the invention, arranged in parallel, without direct contact with each other and attached to a support element.
- the lamellar modules according to the present invention therefore, the intermediate partitions which, in the state of the art of tubular lamella technologies, were necessary to form closed lamellar channels (ducts), of tubular form, are eliminated.
- the lamellar modules of the present invention have a better hydraulic behavior than those of said tubular lamellar technologies, since the presence of intermediate partitions generates a plurality of areas where the effluent velocity is zero or very low, which results in the consequent hydraulic losses.
- the lamellar module is characterized by:
- each of the lamps is provided with at least one longitudinal structural rib, provided with anchor points in the form of through holes, said through holes being located in the vicinity of the upper edge of the plates of the lamps and in the vicinity of the edge bottom of the plates of the lamellae, and because the support element comprises at least two groups of threaded rods, being the first group of threaded rods arranged so that it passes through the through holes provided in the vicinity of the upper edge of the lamella plates and the second group of threaded rods being arranged so that it passes through the through holes provided in the vicinity of the lower edge of the plates of the lamellae.
- the lamellae have no more points of contact with each other than the threaded rods, this makes the lamellar channels, have a surface completely free of partitions, corners, staples, welds, guides or joints, which will reduce the number of points where solids can be easily grasped.
- This better behavior against fouling will allow, in the lamellar modules according to the invention, to reduce the distance between the faces of the lamellae, thereby increasing the treatment capacity per installed surface unit.
- the hydraulics along all the lamellar channels of this lamellar module according to the present invention will be optimal, the effluent velocity inside the lamellar module will therefore be the minimum possible for a given treatment flow rate. , minimizing the hydraulic losses due to the velocity gradient, that is, those generated by the upper and lower surfaces of two adjacent lamellae that delimit the corresponding settling distance.
- the additional performance losses due to the hydraulic behavior in the already known flat lamps range between 2 and 3%, due to the partitions that make up the external racks of each module.
- the additional performance losses due to the hydraulic behavior in the tubular lamellae existing in the state of the art range between 12 and 18% due to the partitions that make up each of the ducts.
- the support element - in addition to the two groups of threaded rods described above - also comprises:
- the lamellae have no more points of contact with each other than the spacers and threaded rods that run through the holes provided in said spacers.
- the support element is disposed inside the lamellar module since the spacers are located between two adjacent lamellae and the threaded rods pass through the different lamellae and spacers being inserted into the holes and through holes provided arranged in these two components.
- the spacers act as fixing and positioning elements of the lamellar module lamellae, keeping them in their working position and held together, acting together with the threaded rods and their corresponding threaded means of tightening.
- the lamellar module according to this embodiment of the invention will therefore have its own independent and internal support element, which will make it self-supporting and ready for installation inside the tank.
- the spacers are preferably provided with internal frustoconical bushes, each of the frustoconical bushes being designed to receive at least one threaded rod and to be spliced, passing through the lamella, with at least one other bushing provided in an adjacent spacer or in an end piece.
- Terminal pieces will complete the frame assembly and present a vertical plane perpendicular to the threaded rod that will facilitate the correct support for the clamping means that will fix the assembly.
- These terminals will have different geometries to adapt to the concave part of the lamellar nerve or to the convex part thereof. Likewise, they will provide the female or male area of the truncated cone to adapt to each end of the frame.
- the spacers arranged in the vicinity of the lower edge of the plates are preferably provided with coupling means to a support base.
- Said support base is intended to be placed inside the tank of a decanter and, in addition to serving as a base to support the lamellar module according to the present invention, it also serves as an anti-flotation device, so it will not be necessary to add Additional structures intended for the same purpose.
- the support base comprises at least one inverted T-shaped profile and the coupling means comprise, in turn, pins allowing the spacers to fit, arranged in the vicinity of the lower edge of the plates, on said profile or profiles.
- the pins of the coupling means are preferably provided with perforations that coincide with respective holes made in the inverted T-shaped profile (or profiles). In this way, it is possible to insert through elements, which also form part of said coupling means, into the holes made in the profile through the perforations provided in the pins.
- the through elements can be, for example, screws or rivets.
- the laminar modules according to this preferred embodiment of the invention are arranged, in their working position inside the tank of a decanter, elevated on the basis of the profile or inverted T-shaped profiles that serve as support without generating - therefore- blinded areas due to the support bases.
- the inverted T-shaped profiles can be metallic or of other materials, for example and without limitation polyester reinforced with fiberglass.
- the support base is provided with at least one crossbar on which at least one inverted T-shaped profile is arranged. Since said crossbar (or crossbars) are located immediately below the inverted T-shaped profile (or profiles), the lamellar module will also be raised above them, without thereby generating blinded areas.
- Said crossbars are preferably structural profiles or structural beams that provide additional resistance to the support base.
- Fig. 1A.- Shows a perspective view of a possible embodiment of a lamella, according to the present invention
- Fig. 1 B. - It is a cross-sectional view of the lamella shown in Fig. 1A;
- Fig. 2C.- It is a perspective view showing additional details of the lamellar module of Fig. 2A;
- Fig. 2E It is a side view, partially exploded, of the lamellar module of Fig. 2A;
- Fig. 3A.- It is a perspective view of a spacer, arranged in the vicinity of the upper edge, of the lamellar module shown in Figs. 2A to 2D;
- Fig. 3B.- It is a perspective view of a spacer, arranged in the vicinity of the lower edge, of the lamellar module shown in Figs. 2A to 2D;
- Fig. 3C.- It is a perspective view of a female terminal piece, provided in the lamellar module shown in Figs. 2A to 2E; and the
- Fig. 3D.- It is a perspective view of a male terminal piece, provided in the lamellar module shown in Figs. 2A to 2E;
- Fig. 1A shows, by way of example and without limitation, an embodiment of a lamella 1 according to the present invention.
- Said lamella 1 is formed by a plate 5 which, in this particular embodiment of the invention has a rectangular shape, is made of polypropylene with fiberglass reinforcement and was manufactured according to a plastic injection procedure.
- Said plate 5 is provided with an upper edge 10a and a lower edge 10b, parallel to a transverse direction T and two lateral edges 15a and 15b, parallel to a longitudinal direction L.
- the total width of the lamella 1 is approximately one meter in transverse direction and 1, 2 meters in longitudinal direction.
- Plate 5 is also provided with:
- first longitudinal structural rib 30a located 1/3 of the total width of the lamella 1 in a transverse direction and a second longitudinal structural rib 30b located 2/3 of the total width in a transverse direction, and
- Lamella 1 is divided transversely into three different zones:
- first lateral zone located between the first structural rib 30a and the nearest lateral edge 15a and
- the first lateral zone and the second lateral zone of the lamella 1 are cantilevered, when said lamella 1 is arranged in a working position inside a decanter.
- the structural ribs 30a and 30b have a thickness of between 3 and 3.5 mm in the vicinity of the upper edge 10a, in the vicinity of the lower edge 10b and in its central area 10c, its thickness being slightly reduced (between 2.5 and 3mm) in the remaining areas through which they pass.
- the average thickness of those parts of the lamella 1 that are not part of the structural nerves is only 2 mm.
- the lamella has a greater thickness at those points that will be subjected to greater stress when the lamella is in its working position (as in structural ribs 30a and 30b, especially in the vicinity of anchor points 35) and a smaller thickness in the remaining parts, so that the stresses caused by the lamella's own weight are reduced and production costs are reduced.
- Fig. LA it is also illustrated schematically as in this embodiment of the invention, the plate 5 is curved along the longitudinal direction L according to a first constant radius R1, and as the structural ribs 30a, 30b also they are curved along the longitudinal direction L, according to a second constant radius R2.
- R1 is 10 meters and R2 of 8m.
- Fig. 1 B illustrates, in turn, how the longitudinal folds 20 of the lamella 1 are formed by two wings 27 and 27 ' defining an obtuse angle to each other, as the first structural rib 30a is formed by two wings 37a and 37a ' that define a variable angle b to each other and how the second structural rib 30b is formed by two wings 37b and 37b ' that define an angle b to each other.
- the angle a has a fixed value of 155 ° along the entire longitudinal direction of the lamella 1.
- the angle b - characteristic of the structural ribs 30a and 30b - has a value 90 ° in the vicinity of the edges 10a and 10b, which increases progressively until reaching 17 ° in the central region 10c.
- Figs. 2A to 2E show different views of a lamellar module 100 according to the present invention.
- Said lamellar module 100 comprises several lamellae 1 -like those illustrated in Figs. 1A and 1 B- arranged in parallel and without direct contact with each other, with an inclined orientation with respect to the horizontal direction H.
- the lamellae 1 are also attached to a support element which, in this embodiment of the present invention , comprises a first group of threaded rods 60a, arranged so that they cross the plates 5 of the lamellae 1 through the through holes provided in the vicinity of the upper edge 10a and a second group of threaded rods 60b, arranged so that they cross plates 5 of the lamellae 1 through the through holes provided in the vicinity of the lower edge 10b.
- Each rod of the first group of threaded rods 60a is connected at one of its ends to threaded tightening means 80a which are, in this particular embodiment of the invention, a nut.
- each rod of the second group of threaded rods 60b is connected at one of its ends to threaded means 80b (also in the form of a nut).
- threaded means 80b also in the form of a nut.
- an end piece 70c is interposed between each nut 80a and 80b and the last lamella 1 (that is, that lamella that is closest to the end of the rod 60a or 60b on which the corresponding nut 80a or 80b is threaded)
- Said terminal pieces 70c define a vertical plane, perpendicular to the rod 60a or 60b that facilitates the correct support of the nuts 80a and 80b.
- the support element also comprises, in this embodiment of the present invention, a plurality of spacers 70a, arranged in the vicinity of the upper edge 10a, between each pair of lamellae 1 and a plurality of spacers 70b, arranged in the vicinity of the lower edge. 10b of the plates 5, between each pair of licks 1.
- the spacers 70b arranged in the vicinity of the lower edge 10b of the plates 5, are provided with coupling means 73 to inverted T-shaped profiles 95 of the support base.
- Said coupling means 73 are, in this particular embodiment of the invention, pins made in one piece together with the spacer 70b.
- the inverted T-shaped profiles 95 of the support base are, in turn, connected to cross members 90, which are also part of the support base.
- Fig. 3A shows a spacer 70a which, in a lamellar module as shown in Figures 2A to 2E, is arranged in the vicinity of the upper edge 10a.
- the spacer 70a is made of polypropylene and was manufactured by plastic injection procedure. Also, the spacer 70a is provided with a frustoconical bushing 77a, which is intended to receive - in its through hole 75a - a threaded rod 60a and to be spliced with at least one other bushing of an adjacent spacer 70a, or in a terminal piece 70c, which will be described in more detail in relation to Fig. 3C.
- Fig. 3B shows a spacer 70b intended to be placed in the vicinity of the lower edge 10b of the plates 5.
- the spacers 70b are made of polypropylene and were manufactured by plastic injection process.
- the spacer 70b is provided with a frustoconical bushing 77b, which is intended to receive - in its through hole 75b - a threaded rod 60b and to be spliced with at least one other bushing of an adjacent spacer 70b or in a female end piece 70c or in a male terminal 70d piza.
- the spacers 70b are also provided with pins 73 that allow coupling of the lamellar module 100 to the inverted T-shaped profiles 95 of the support base.
- Fig. 3C shows a female terminal part 70c made of polypropylene and manufactured by plastic injection process.
- Said terminal piece 70c is provided with a cavity 75c, intended to house the frustoconical bushing 77a, 77b, of the corresponding spacer 70a, 70b adjacent.
- Fig. 3D shows a male end piece 70d made of polypropylene and manufactured by plastic injection procedure.
- Said male end piece 70d is provided with a conical bushing 77d provided with a through hole 75d.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biological Treatment Of Waste Water (AREA)
- Centrifugal Separators (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Sludge (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Surgical Instruments (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Lamela (1) para decantador formada por una placa (5) rectangular o cuadrada, discurriendo el borde superior (10a) y el borde inferior (10b) de dicha placa paralelos a una dirección transversal (T), discurriendo los dos bordes restantes (15a, 15b) paralelos a una dirección longitudinal (L), estando la placa provista de pliegues longitudinales (20) curvados en la dirección longitudinal (L) y que discurren desde su borde superior (10a) hasta su borde inferior (10b); estando la placa (5) curvada longitudinalmente, de forma que la zona próxima al borde inferior (10b) de la placa está menos inclinada con respecto a la horizontal (H) que la zona próxima al borde superior (10a).
Description
Objeto de la invención
La presente invención pertenece al campo técnico de los dispositivos e instalaciones para el tratamiento de efluentes contaminados por impurezas en forma de sólidos en suspensión. Dichos dispositivos son del tipo que comprende al menos una lamela y/o un módulo lamelar y se usan habitualmente, por ejemplo y sin carácter limitativo, para el tratamiento de aguas residuales o aguas potables, por decantación de dichos sólidos en suspensión.
Más en particular, la presente invención, tiene por objeto una lamela destinada a utilizarse en un decantador lamelar, así como un módulo lamelar destinado a utilizarse en un decantador lamelar.
Problema técnico a resolver y antecedentes de la invención
Un decantador es un dispositivo que se emplea habitualmente en los procesos de depuración de efluentes (es decir, líquidos que fluyen en una instalación industrial) para la eliminación de impurezas sólidas en suspensión presentes en dichos efluentes y, en particular, en la depuración de agua residual y potabilización de agua de consumo.
Los decantadores comprenden un tanque, o depósito, por el que se hace circular un efluente contaminado por impurezas en forma de sólidos en suspensión y son capaces de separar, -al menos parcialmente- dichos sólidos en suspensión del efluente.
En un decantador el efluente a tratar accede a baja velocidad, a través de entradas que están normalmente situadas en la parte inferior de los laterales del tanque. Como los sólidos en suspensión tienen un peso específico o una densidad mayores que el efluente, éstos tenderán a desplazarse hacia abajo, hacia la zona inferior del tanque, o base, donde se irán acumulando. Este fenómeno de acumulación en la parte inferior del tanque se conoce precisamente como “decantación” y permite la posterior evacuación de los sólidos acumulados. El efluente -libre de sólidos- abandonará el tanque del decantador por su parte superior a través de vertederos o conductos de recogida.
La velocidad en sentido ascendente o lateral del efluente debe ser tal que, la velocidad de
decantación del sólido en suspensión, le permita alcanzar la base del tanque antes de que el efluente abandone el tanque. De lo contrario, el sólido será evacuado con el efluente, sin que el decantador haya cumplido su función.
Algunos decantadores están provistos de lámelas y/o módulos lamelares, con objeto de aumentar sus prestaciones. La incorporación de dichas lámelas y/o módulos lamelares en un decantador permite aumentar el caudal de efluente a tratar, o aumentar la eficiencia en la decantación de los sólidos.
Las lámelas son unas placas o perfiles, habitualmente de forma alargada. Es decir, las lámelas suelen tener una dirección principal, más larga, a la que se denomina dirección“longitudinal” y una dimensión secundaria, más corta, denominada dirección“transversal”, a lo largo de la cual discurren el borde superior de la placa y el borde inferior de la placa. Además, dichas lámelas dispuestas en paralelo, definen una serie de canales lamelares que se disponen en el interior del tanque, a una altura intermedia y cubriendo la sección del tanque, habitualmente con una orientación inclinada, que forma un ángulo de entre 45° y 65° con respecto a la horizontal.
Las lámelas obligan, por lo tanto, al efluente a circular a través de los canales lamelares en la dirección dada por su inclinación, formando así un conjunto de pequeños decantadores que aceleran el proceso de decantación. El decantador lamelar recibe el efluente a tratar a través de entradas localizadas en la zona inferior de los laterales del tanque y se distribuye de forma homogénea por toda su superficie del tanque bajo las lámelas. Dado que la extracción del efluente tratado se realiza desde la parte superior del tanque y por encima de las lámelas, dicho efluente se ve obligado a circular a través de los canales inclinados conformados por las lámelas. Dada la inclinación de estos canales, los sólidos se ven sometidos a dos fuerzas distintas, la generada por el efluente en su trayectoria ascendente y en la dirección del canal lamelar y a la fuerza de la gravedad en sentido vertical descendente. La composición de ambas fuerzas genera una trayectoria de los sólidos que los aproxima a la parte inferior del canal lamelar donde se agrupan y conforman flóculos de mayor tamaño. Debido a este agrupamiento, los sólidos son capaces de vencer con más facilidad la fricción con el efluente ascendente, aumentando su velocidad natural de decantación y generando un flujo descendente por la cara inferior del canal lamelar. Es decir, en el interior de cada canal lamelar se conforman dos flujos continuos a contracorriente: uno el efluente en sentido ascendente y otro formado por los sólidos que se van agrupando en la cara inferior y sentido descendente. Cuando los sólidos abandonan por la parte inferior el canal lamelar, ya han generado una mayor fuerza de cohesión entre ellos y tienden a
mantenerse agrupados en su trayectoria descendente, hacia la base del tanque donde serán evacuados. Finalmente, el agua o efluente, libre de sólidos, abandona los canales lamelares por su parte superior y continuará su trayectoria ascendente hasta ser evacuado mediante los conductos de recogida o vertederos situados en la parte superior del tanque y que conducen el efluente fuera del tanque para continuar con las siguientes fases del proceso de depuración.
La eficacia de un decantador lamelar se evalúa, habitualmente, en base a los siguientes aspectos: la capacidad de tratamiento, es decir, la cantidad de efluente que es capaz de tratar un decantador lamelar por unidad de tiempo; la eficiencia en la eliminación de los sólidos presentes en dicho efluente; y los requerimientos de mantenimiento para que dicho decantador lamelar opere bajo parámetros de capacidad y eficiencia adecuados. Estos requerimientos de mantenimiento dependen en gran medida proceso de ensuciamiento que se produce debido a la acumulación progresiva de sólidos adheridos en toda la superficie de las lámelas o módulos lamelares, así como en las estructuras de soporte de dichas lámelas o módulos lamelares.
Tal y como se describirá en detalle a continuación, en el sector de los dispositivos de decantación existe la necesidad de maximizar la capacidad de tratamiento por unidad de superficie, maximizar la reducción de sólidos en suspensión en el efluente tratado y, simultáneamente, minimizar los requerimientos de mantenimiento, ya que estos suponen la parada del decantador y generan costes asociados a las correspondientes tareas de limpieza.
Estos tres aspectos fundamentales dependen por un lado del propio tanque del decantador, y, por otro lado, y fundamentalmente, de la tipología de las lámelas o módulos lamelares instalados y su sistema de soporte.
Los sistemas de soporte de los módulos lamelares, o bastidores, suelen estar ubicados en la parte exterior del propio módulo lamelar y en el interior del tanque de decantación a una altura media sobre el fondo del tanque, de forma que, durante el proceso, estructuras de soporte y módulos lamelares quedarán totalmente sumergidos. Algunos módulos lamelares, sobre todo aquellos fabricados en materiales plásticos con densidades próximas al agua están habitualmente provistos, además, de una estructura que evite su flotación, ya sea por el empuje hidráulico a que se ven sometidos, como por su baja densidad. Dicha estructura anti-flotación suele estar dispuesta en la parte superior de los módulos lamelares.
En lo relativo al tanque, la capacidad y eficiencia dependerán de su tamaño, tanto en superficie
como en volumen total y de su geometría y diseño, que permitirá una adecuada distribución del efluente en toda su superficie, una correcta extracción de los sólidos acumulados en su base o una equilibrada evacuación del efluente tratado mediante los conductos o vertederos de salida. De cara al mantenimiento, las características del tanque no afectan en gran medida, siempre y cuando el sistema de evacuación de sólidos o fangos decantados esté correctamente diseñado y dimensionado.
En lo relativo a las lámelas o módulos lamelares instalados, la capacidad, eficiencia y mantenimiento de la instalación dependerá, entre otros, de factores tan numerosos y diferentes como: la geometría de las lámelas o módulos lamelares; su tamaño; distancia entre lámelas; sección de los canales lamelares; ángulo de inclinación; comportamiento hidráulico; acabados superficiales de los materiales que componen las lámelas; sistemas de ensamblaje de los módulos; bastidores y sistemas de soporte en el interior o en el exterior del tanque; las pérdidas de superficie efectiva generadas por dichos bastidores y estructuras de soporte que ciegan gran parte de los canales lamelares, etc.
Se conocen fundamentalmente tres tipologías de lámelas, que se unen entre sí para formar módulos lamelares:
I) Lámelas planas. Estas lámelas, ya conocidas, consisten en chapas de geometría plana montadas en estructuras de soporte previamente instaladas en el interior del tanque. También es frecuente su montaje conformando módulos independientes mediante bastidores externos realizados con perfilería o chapas laterales para posteriormente instalarse sobre las estructuras de apoyo en el interior del tanque. Estas lámelas planas conforman canales lamelares de sección rectangular cuya longitud será la anchura de la lamela y su anchura la distancia entre cada una de las lámelas o chapas instaladas. Este tipo de canales lamelares presentan un buen comportamiento hidráulico gracias a esa geometría de canal rectangular continuo, sin más tabiques intermedios en toda su anchura que los que conforman los bastidores laterales, presentando unas pérdidas hidráulicas relativamente bajas y en el entorno del 2 - 3 %. Sin embargo, presentan deficiencias operativas debidas fundamentalmente a la escasa capacidad de concentrar los sólidos (a los que también se hará referencia como “fangos”). Dada su superficie plana, los sólidos que alcanzan la cara inferior del canal lamelar, se van depositando por toda su superficie de forma más o menos homogénea y especialmente en la zona superior de los módulos, generando una capa creciente. Cuando por acumulación, estos sólidos se desprenden y logran iniciar el descenso, lo hacen de forma brusca alterando el flujo del efluente
ascendente, parte de los sólidos se disgregan y son arrastrados por él efluente ya sin posibilidad de alcanzar de nuevo las caras inferiores del canal lamelar y abandonando con el efluente los módulos lamelares hacia los canales de recogida, lo que representa una pérdida de rendimiento muy importante. La fracción de solidos que consigue abandonar las lámelas por su parte inferior, lo hará a lo largo de toda la arista inferior de la lamela conformando una“cortina” sin apenas fuerzas de cohesión entre las partículas, formará un fango poco concentrado y escasa densidad, que, de nuevo, se disgregarán con facilidad al enfrentar el flujo ascendente en dirección a los módulos lamelares. Parte de estos sólidos serán arrastrados nuevamente por el efluente ascendente hacia los módulos lamelares. Todo esto reduce notablemente la eficiencia del proceso de decantación.
Los módulos lamelares de lámelas planas presentan grandes pérdidas de superficie efectiva debido a las estructuras de soporte necesarias y la disposición de los canales de recogida, generalmente ubicados entre dos líneas de módulos, limitando así la superficie disponible de paso del efluente a través de las lámelas. Estas pérdidas pueden llegar a superar el 20% de la superficie disponible del tanque, pérdidas que se intentan compensar con una mayor longitud de lámelas y por lo tanto mayor altura de módulos. Así mismo y debido a su geometría plana, y a su gran longitud, deben realizarse en materiales muy resistentes para poder asegurar su estabilidad mecánica en el caso de acumular altas cargas de fango debidas al ensuciamiento, que en el momento del vaciado pondrán en compromiso su estructura plana con pesos muy elevados. Esto unido a la necesidad de evitar la corrosión, prácticamente obliga al uso de acero inoxidable, por lo que resultan instalaciones de un coste muy elevado, del orden de 5 a 7 veces el coste de una instalación realizada con materiales plásticos.
II) lámelas tubulares. Dichas lámelas están formadas mediante el ensamblaje sucesivo de perfiles, generalmente extruidos en material plástico. Con el sucesivo ensamblaje entre sí de estos perfiles se van conformando canales lamelares cerrados (o conductos), que son paralelos y están unidos entre sí, hasta alcanzar las dimensiones de diseño del módulo lamelar a instalar. Las geometrías habituales de estos canales son hexagonales o nido de abeja, rectangulares, galón o cuadrada, teniendo todas ellas en común el tabicado interno que conforma los canales y la baja sección de paso de cada uno de estos canales. Este tipo de módulo lamelar tubular presenta perdidas muy elevadas debidas al comportamiento hidráulico del efluente en el interior de los conductos lamelares y concretamente debido al elevado gradiente de velocidades que se produce en su interior, como en cualquier conducto, y especialmente cuando se trata de un régimen laminar. En todo el perímetro del canal lamelar las zonas de velocidad 0 o muy bajas
ocupan una parte importante de la sección del conducto. Estas zonas pueden considerarse en la práctica inoperativas, circulando la mayor parte del efluente por la zona central del conducto lamelar y por lo tanto a mayor velocidad, de forma que gran parte de los sólidos no tienen tiempo de alcanzar la cara inferior del canal lamelar y son evacuados con el efluente tratado. Las perdidas hidráulicas en estos casos oscilan entre el 12 y el 18%. Otro inconveniente, y también debido a este tabicado intermedio, es la gran cantidad de superficie de material en contacto con el efluente y por lo tanto con los sólidos presentes en el. Esto genera un modelo de ensuciamiento muy rápido, y de nuevo más acentuado en la parte superior de los módulos o canales lamelares, más rápido cuanto menor es la sección de estos canales cerrados o conductos lamelares, que requiere acciones de mantenimiento más frecuentes. Estos mantenimientos exigen la parada de la instalación, el vaciado del tanque y los trabajos de limpieza correspondientes por parte de operarios de la planta, elevando los costes de explotación.
Asimismo, en los módulos lamelares tubulares, los sistemas de unión entre los perfiles que conforman los módulos suelen incorporar guías longitudinales, soldaduras, grapados, etc., que generan zonas donde el fango puede adherirse con facilidad, de nuevo acelerando el proceso de ensuciamiento. El tipo de estructuras de soporte que requiere este tipo de módulos para su instalación en el interior del tanque han de ser muy reforzadas en previsión de altas cargas de fango acumulado en los módulos, lo que deriva en elevadas pérdidas de superficie efectiva debido a la dimensión de los perfiles que se requieren. Los módulos son apoyados sobre estos perfiles en sus zonas periféricas, quedando muchos de los conductos parcial o totalmente cegados por su parte inferior. Estas pérdidas de superficie efectiva debidas al cegado de los canales en los apoyos puede variar entre el 7 y el 12 %. El sobredimensionamiento necesario para estas estructuras de soporte incide además en un coste muy elevado de las mismas. Este tipo de módulos, al estar fabricados en materiales plásticos con densidades próximas al agua, requieren frecuentemente de estructuras anti-flotación, que ciegan parte de los conductos de los módulos, esta vez por su parte superior y además generan zonas donde los sólidos se depositan contribuyendo en el proceso de ensuciamiento. Por último, para la fabricación de este tipo de módulos, se requiere el ensamblaje de entre 80 y 140 perfiles por metro cubico de módulo dependiendo de la sección del canal conformado, debiendo graparse, soldarse o encolarse, lo que requiere mucho tiempo y mano de obra y por lo tanto unos costes de producción muy elevados.
III) Lámelas tubulares formadas por superposición y encolado o grapado de chapas
plásticas termoformadas. Estas chapas, al ir superponiéndose una a continuación de la otra, van conformando igualmente al caso anterior, canales lamelares de geometrías determinadas, hexagonales las más habituales. En este caso difieren de las anteriores en su forma de fabricación y ensamblaje, siendo la geometría final muy similar y presentando los mismos problemas de perdida de eficiencia y pésimo comportamiento frente al ensuciamiento. Además, y debido al bajo espesor de las chapas termoformadas utilizadas, la mayor parte de este tipo de módulos lamelares requiere un bastidor externo que le proporcione la estabilidad mecánica necesaria, lo genera pérdidas adicionales de superficie efectiva de decantación por el cegado que provoca dicho bastidor de parte de los conductos lamelares, así como por los espacios intersticiales que generan los bastidores una vez colocados en el tanque. Estos bastidores generan superficies adicionales donde el fango es susceptible de depositarse provocando ensuciamiento prematuro. Estos bastidores externos suelen tener que realizarse en acero inoxidable para evitar la corrosión, lo que de nuevo encarece los costes del módulo lamelar.
Actualmente, todas las lámelas o módulos lamelares conformados en materiales plásticos se realizan, únicamente, mediante procesos de extrusión o termoformado. Estos procesos no permiten en modo alguno dotar a las lámelas o perfiles que conforman los módulos de espesores diferentes en cada zona en función de los posibles requerimientos mecánicos o esfuerzos que han de soportar, lo que limita las configuraciones, geometrías y modos de ensamblaje a lo existente en el estado de la técnica. En el estado de la técnica actual, no se conoce una lamela, chapa o perfil destinado a conformar un módulo lamelar que pueda realizarse mediante la tecnología de inyección de plásticos.
Asimismo, todas las tipologías de lámelas descritas anteriormente y pertenecientes al estado de la técnica son rectas a lo largo de su dirección longitudinal, es decir, su inclinación es constante a lo largo de dicha dirección. Esto implica que el comportamiento operativo de las lámelas de la técnica anterior es idéntico a lo largo de toda la dirección longitudinal, a pesar de que -como se describirá en detalle más adelante en la presente memoria descriptiva- los sólidos y los flujos de sólidos inicialmente suspendidos en el efluente se comportan de forma diferente en función de la posición concreta -a lo largo de la dirección longitudinal- en la que se encuentren.
Es común a todas las tecnologías descritas del estado de la técnica el ensuciamiento prematuro en las zonas superiores de dichas lámelas rectas. Esto es debido a que los sólidos que alcanzan estas zonas superiores son los más livianos, con menor capacidad de decantación y por lo tanto más capaces de adherirse a la superficie de las lámelas, generando consistencia y acumulación
progresiva.
Descripción de la invención
La presente invención pretende subsanar o reducir los problemas y desventajas de la técnica anterior, mencionados anteriormente.
A tal fin, un primer objeto de la presente invención se refiere a una lamela para decantador formada por una placa rectangular o cuadrada, discurriendo el borde superior y el borde inferior de dicha placa paralelos a una dirección transversal, discurriendo los dos bordes laterales restantes de dicha placa paralelos a una dirección longitudinal, estando dicha lamela caracterizada por qué:
La placa está curvada a lo largo de su dirección longitudinal, de forma que, en su posición de trabajo, la zona próxima al borde inferior de la placa está menos inclinada con respecto a la horizontal que la zona próxima al borde superior de la placa, y por que
La placa está provista de una pluralidad de pliegues longitudinales, discurriendo dichos pliegues longitudinales desde el borde superior de la placa, hasta el borde inferior de la placa y estando dichos pliegues longitudinales provistos de una curvatura en la dirección longitudinal.
Las lámelas según la presente invención están destinadas a colocarse de la forma descrita a continuación, en su posición de trabajo dentro del tanque de un decantador: el borde inferior de las placas de las lámelas se orienta hacia la base del tanque, mientras que el borde superior debe apuntar hacia la parte superior de dicho tanque
El hecho de que en las lámelas según la presente invención, la placa que forma dicha lamela esté curvada la a lo largo de su dirección longitudinal, de modo que, una vez colocadas en su posición de trabajo, su porción inferior esté menos inclinada con respecto a la horizontal que su porción superior, contribuye a evitar los procesos de acumulación de sólidos en la zona superior de dichas lámelas al ayudar a que estos sólidos inicien su descenso, lo que se traduce en una ralentización del proceso de ensuciamiento, manteniéndose limpias y en condiciones de eficiencia adecuada durante más tiempo, alargando los periodos entre mantenimientos y reduciendo los costes de dichas acciones.
Cuando las lámelas están en su posición de trabajo, la porción inferior de cada lamela recibe los
sólidos más gruesos y con mayor capacidad de decantación, así como un flujo de sólidos que proviene de la acumulación de todos los sólidos recibidos a lo largo de toda la longitud lamelar.
En la porción inferior de las lámelas se produce un efecto de arrastre generado por estos sólidos más gruesos que facilita la evacuación de todos los sólidos en esta zona, evitando la acumulación permanente y el progresivo cegado del conducto lamelar. Por este motivo, en las lámelas según la presente invención, el ángulo de inclinación sobre la horizontal es menor en la parte inferior de las mismas. Este menor ángulo de inclinación reduce la distancia vertical de decantación hasta la superficie inferior del canal lamelar, aportando mayor capacidad de decantación en esta zona.
Por el contrario, en la porción superior de la lamela (es decir, en la zona próxima a su borde superior), se recibe una menor cantidad de sólidos, que son -además- los más livianos, dado que son los que han necesitado más tiempo para alcanzar la superficie inferior del canal lamelar. Estos sólidos tienen menor capacidad de decantación y mayor capacidad para quedarse adheridos a dicha superficie, con el tiempo pueden generar consistencia e irse progresivamente acumulando, ocupando cada vez mayor sección del canal lamelar. Esta pérdida de sección disponible para el paso del efluente hace que aumente su velocidad por estas zonas superiores del módulo lamelar hasta que finalmente termina arrastrando parte de estos sólidos por las salidas superiores de los canales lamelares para finalmente ser evacuados con el efluente tratado por los canales de recogida o vertederos
Este arrastre de sólidos y su evacuación con el efluente tratado representa uno de los factores que más reduce el rendimiento de las tecnologías del estado de la técnica. De hecho, en particular, se estima que suponen una reducción del rendimiento de entre el 3 y el 15%.
Para abordar esta desventaja de la técnica anterior, las lámelas según la presente invención poseen, según lo descrito anteriormente, una mayor inclinación con respecto a la horizontal en su parte superior. Esta configuración específica, ayuda a que estos sólidos con menor capacidad de decantación, presentes en la zona superior de la lamela, inicien su descenso reduciendo su acumulación progresiva. Se estima que, en vista de los ensayos realizados por el solicitante, en algunas realizaciones ventajosas de las lámelas según la presente invención, la reducción del rendimiento debida a la pérdida de sección disponible y arrastre de sólidos es, tan solo, de entre el 1 y el 5%.
Asimismo, una vez que las lámelas según la presente invención se han colocado en su posición de trabajo dentro de un tanque de decantación, sus pliegues longitudinales están destinados a concentrar los sólidos en las zonas inferiores o valles de dichos pliegues. Con esta mayor concentración, los sólidos tendrán mayor cohesión y mayor capacidad de generar un flujo descendente y de decantar, para abandonar las lámelas por su parte inferior y en dirección al fondo del tanque. Esta mayor cohesión y concentración ayudará a los sólidos, a enfrentarse a los flujos ascendentes y laterales que se producen en el interior del tanque de decantación sin disgregarse, lo que les permitirá alcanzar el fondo del tanque con mayor facilidad. De nuevo, esta mayor capacidad para evacuar los sólidos reduce las pérdidas de rendimiento por arrastre, en comparación con las lámelas del estado de la técnica.
El mejor comportamiento frente al ensuciamiento de las lámelas según la presente invención permitirá reducir la distancia entre las caras de dichas lámelas al colocarlas en su posición de trabajo en un módulo lamelar dentro del tanque de un decantador, aumentando, por tanto, la capacidad de tratamiento de efluente por unidad de superficie instalada.
Cuanto menor sea la distancia entre las caras de las lámelas, menos tiempo necesitará el sólido en suspensión para alcanzar el fondo del canal lamelar, esto permitirá, a su vez, aumentar la velocidad de circulación del efluente y el caudal total de efluente que accede al decantador.
La lamela, además, debe tener unas características de resistencia mecánica que le permitan hacer frente a los esfuerzos que se producirán en determinadas condiciones, fundamentalmente cuando se realice el vaciado del tanque y toda su estructura soporte la carga de su propio peso mas el peso del posible fango acumulado.
El hecho de que, en las lámelas según la presente invención, la placa esté curvada la a lo largo de su dirección longitudinal aporta un momento de inercia en sentido transversal, que aumenta la resistencia a la flexión longitudinal de dichas lámelas.
En una realización preferida de la invención, la lamela comprende al menos un pliegue longitudinal delimitado por dos alas, que forman un ángulo obtuso entre sí, preferiblemente un ángulo de entre 150 y 160°. Esta configuración específica de los pliegues, en una lamela según la presente invención facilita la concentración de los sólidos en suspensión en los valles de dichos pliegues (que forman parte de los canales lamelares) y acelera el flujo descendente de dichos sólidos, dentro del tanque de un decantador.
En otra realización preferida de la invención, la lamela comprende, además, al menos un nervio estructural longitudinal, curvado a lo largo de la dirección longitudinal y delimitado por dos alas que discurren desde el borde superior de la placa, hasta el borde inferior de la placa, formando un ángulo variable entre sí, siendo dicho ángulo:
- de entre 80 y 90° en las proximidades del borde superior,
- de entre 80 y 90° en las proximidades del borde inferior, y
- aumentando progresivamente hasta alcanzar entre 115° y 120 0 en la región central de la lamela.
Dichos nervios estructurales, descritos en el párrafo anterior, dotan a la lamela según esta realización particular de la presente invención, de una resistencia mecánica adicional frente a distintos esfuerzos, a los que puede verse sometida una vez que se instale en su posición de trabajo dentro del tanque de un decantador.
Así, el ángulo de 115° y 120° que forman las alas del nervio estructural en la porción central de la lamela, otorga una buena resistencia mecánica tanto frente a esfuerzos de flexión transversal, como a esfuerzos de compresión, recibidos en esa zona. Por otro lado, el ángulo más agudo (de entre 80° y 90°) que forman las alas del nervio estructural en los extremos de la lamela (es decir, en las proximidades de su borde superior y su borde inferior), maximiza la resistencia mecánica frente a esfuerzos de flexión recibidos en esas zonas, zonas que -en realizaciones preferidas de las lámelas según la invención- actuarán como puntos de anclaje.
En las lámelas según la presente invención, al menos un nervio estructural longitudinal está preferiblemente provisto de puntos de anclaje a un elemento de soporte, estando dichos puntos de anclaje dispuestos en las proximidades del borde superior de la placa y en las proximidades del borde inferior de la placa.
Preferiblemente, en esta realización particular de la invención, la zona próxima al borde superior, la zona próxima al borde inferior y la región central de dicho nervio estructural (o alternativamente de dichos nervios estructurales) tienen un espesor mayor que el resto del nervio, teniendo, además, dicho al menos un nervio estructural, un espesor mayor que el resto de la lamela.
De este modo, se refuerzan aquellas partes del nervio que van a soportar mayores esfuerzos.
Así, las proximidades del borde superior, las proximidades del borde inferior y la región central de dicho nervio estructural (o alternativamente de dichos nervios estructurales) tienen, preferiblemente, un espesor mayor, de entre 3 y 3,5 mm, siendo el espesor en las partes restantes de entre 2,5 y 3 mm.
Las lámelas según la presente invención son preferiblemente lámelas plásticas fabricadas por inyección de plástico. El polipropileno, acrilonitrilo butadieno estireno (ABS), poliestireno, y los plásticos reciclados son ejemplos, no limitativos, de materiales plásticos preferidos para fabricar las lámelas según la presente invención.
En este sentido, es importante señalar que ninguno de los procedimientos actualmente utilizados en el estado de la técnica para fabricar lámelas plásticas, a saber, la extrusión de plástico y el termoformado de plástico, permite dotar a una lamela de dos o más zonas de espesores diferentes, tal y como se contempla en las realizaciones arriba indicadas de la presente invención. Este hecho supone un obstáculo evidente para, partiendo de las enseñanzas de técnica anterior, llegar a desarrollar una lamela con las características técnicas contempladas por las realizaciones, arriba descritas, de la presente invención.
Más en particular, la extrusión no es un procedimiento capaz de conformar una lamela con las características técnicas contempladas por las realizaciones arriba descritas de la presente invención, porque la sección transversal de dichas lámelas según la invención varía continuamente en toda su longitud y este procedimiento de fabricación no permite realizar la pieza con espesores diferentes. Esto impediría, por tanto, dotar a los nervios longitudinales de un mayor espesor que el resto de la lamela. La extrusión tampoco permitiría realizar la curvatura longitudinal de la chapa de la lamela, característica de las lámelas según la presente invención.
El termoformado no es un procedimiento capaz de conformar una lamela con las características técnicas contempladas por las realizaciones arriba descritas de la presente invención, porque no permite dotar a la pieza de espesores diferentes en función de sus necesidades. Esto impediría, por tanto, dotar a los nervios longitudinales de un mayor espesor que el resto de la lamela. De hecho, en caso de intentar construir por termoformado una lamela con las características técnicas contempladas por las realizaciones arriba descritas de la presente invención, los nervios resultarían de menor espesor, al sufrir un mayor estiramiento durante el proceso que la zona
comprendida entre los nervios y zonas laterales, para poder adaptarse a la mayor altura de las alas del nervio. Esto impediría lograr que los pliegues estructurales tuviesen una mayor resistencia que el resto de la lamela y que el peso fuese menor en las zonas laterales de la misma. De hecho, el resultado que se obtendría utilizando un procedimiento de termoformado sería totalmente opuesto a lo deseado: una menor resistencia de los nervios estructurales y un mayor peso en las zonas situadas a ambos lados de dichos nervios.
Los plásticos empleados para fabricar las lámelas de las realizaciones de la presente invención arriba indicadas, pueden estar opcionalmente provistos de aditivos de protección contra los rayos ultravioletas y/o de materiales de refuerzo, tales como la fibra de vidrio, que dotan a la lamela de una mayor rigidez.
En otra realización preferida adicional de la invención, la lamela comprende al menos un primer nervio estructural longitudinal situado a 1/3 de la anchura total de la lamela en sentido transversal y al menos un segundo nervio estructural longitudinal situado a 2/3 de la anchura total en sentido transversal, estando el primer nervio estructural y el segundo nervio estructural provistos de puntos de anclaje a un elemento de soporte, estando dichos puntos de anclaje dispuestos en las proximidades del borde superior de la placa y en las proximidades del borde inferior de la placa.
En esta realización particular de la invención, descrita en el párrafo anterior, la lamela está preferiblemente dividida transversalmente en tres zonas diferentes:
- una zona central, comprendida entre el primer nervio estructural y el segundo nervio estructural y que está sujeta por dichos nervios estructurales;
- una primera zona lateral, situada entre el primer nervio estructural y el borde lateral más cercano y
- una segunda zona lateral, situada entre el segundo nervio estructural y el borde lateral más cercano;
estando caracterizada además porque la primera zona lateral y la segunda zona lateral quedan en voladizo cuando la lamela se dispone en su posición de trabajo, dentro de un tanque de decantador.
La primera zona lateral y la segunda zona lateral quedan -por tanto- en voladizo, es decir, se prolongan más allá de los puntos de anclaje que las soportan (i. e., los puntos de anclaje del primer nervio estructural, en el caso de la primera zona lateral y los puntos de anclaje del segundo nervio estructural en el caso de la segunda zona lateral). Dichas zonas en voladizo
podrían representar, en potencia, un punto débil de la lamela frente a esfuerzos que generen flexión longitudinal, por ejemplo, el propio peso de la lamela y el peso de sólidos (o fango) que puedan adherirse a la misma. No obstante y según lo visto anteriormente, la lamela de acuerdo con la presente invención está provista de una curvatura longitudinal que le aporta un momento de inercia adicional en sentido transversal, que no tendría sin dicha curvatura y que aumenta notablemente su resistencia a la flexión longitudinal.
Asimismo, dichas zonas en voladizo generarán un esfuerzo de flexión longitudinal sobre el nervio estructural debido a su propio peso y al peso del fango que pueda acumularse sobre su superficie. Por lo tanto, estas zonas en voladizo tienen preferiblemente un espesor menor que el resto de la lamela para reducir todo lo posible el esfuerzo provocado por su propio peso.
Este dimensionamiento y diseño contemplado por la realización mencionada en los párrafos anteriores, permitirá que la geometría de las lámelas permanezca inalterada ante esfuerzos debidos a su propio peso y cargas adicionales ligeras. Esto le permitirá, por ejemplo, permanecer sin sumergir un tiempo indeterminado sin adquirir deformación alguna. En cambio, ante una importante acumulación de fango en su superficie y en caso de iniciarse el vaciado del tanque, la lamela sufrirá el esfuerzo debido al peso del fango y se deformará en estas zonas laterales en voladizo, que aumentarán su inclinación respecto a la vertical facilitando la descarga de dichos sólidos acumulados. Una vez liberada de la carga retornará, gracias a la flexibilidad del plástico, de forma inmediata a su forma original sin presentar nunca deformación permanente.
En otra realización de la presente invención, la placa, esta curvada a lo largo de su dirección longitudinal describiendo un primer radio de curvatura constante. En dicha realización el primer radio de curvatura constante es, preferiblemente de 7 a 12 metros y más preferiblemente de 9 a 10 metros.
En este último caso más preferido (radio de la placa de 9 a 10 metros), cuando las lámelas se colocan en su posición de trabajo, la tangente al borde inferior de las lámelas forma un ángulo del orden de 55° con la horizontal y la tangente a su borde superior, un ángulo del orden de 65° con la horizontal. Cuando el borde inferior y el borde superior de las lámelas describen estos ángulos concretos con la horizontal, se maximiza la capacidad de decantación en la parte inferior de la lamela y, simultáneamente, se minimiza la acumulación de sólidos en la parte superior de la misma.
En otra realización adicional de la presente invención, la lamela comprende al menos un nervio estructural, estando dicho nervio estructural curvado a lo largo de su dirección longitudinal según un segundo radio de curvatura constante, estando además la placa de la lamela curvada a lo largo de su dirección longitudinal según un primer radio de curvatura constante, y siendo el segundo radio de curvatura constante menor que el primer radio de curvatura constante.
Preferiblemente, el primer radio de curvatura constante (de la placa) es de 9 a 10 metros y el segundo radio de curvatura constante (del nervio estructural o, alternativamente, de los nervios estructurales) es de 7 a 8,5 metros. Esta configuración específica aumenta la resistencia a la flexión longitudinal del nervio o nervios estructurales, frente a los esfuerzos anteriormente descritos que generan las zonas laterales en voladizo
En otra realización adicional de la presente invención, la placa de la lamela está pulida, lo que contribuye a ralentizar el proceso de ensuciamiento.
Un segundo aspecto de la invención se refiere a un módulo lamelar para decantador que comprende dos o más lámelas, según el primer aspecto de la invención, dispuestas de forma paralela, sin contacto directo entre sí y unidas a un elemento de soporte.
En los módulos lamelares según la presente invención se eliminan -por tanto- los tabiques intermedios que, en las tecnologías de lámelas tubulares del estado de la técnica, eran necesarios para formar canales lamelares cerrados (conductos), de forma tubular. Como consecuencia de ello, los módulos lamelares de la presente invención poseen un mejor comportamiento hidráulico que los de las citadas tecnologías de lámelas tubulares, puesto que la presencia de tabiques intermedios genera una pluralidad de zonas donde la velocidad del efluente es nula o muy baja, lo que da lugar a las consiguientes pérdidas hidráulicas.
En una realización preferida de la invención, el módulo lamelar está caracterizado por qué:
- cada una de las lámelas está provista de al menos un nervio estructural longitudinal, dotado de puntos de anclaje en forma de agujeros pasantes, estando dichos agujeros pasantes situados en las proximidades del borde superior de las placas de las lámelas y en las proximidades del borde inferior de las placas de las lámelas, y porque el elemento de soporte comprende al menos dos grupos de varillas roscadas, estando
dispuesto el primer grupo de varillas roscadas de forma que atraviesa los agujeros pasantes provistos en las proximidades del borde superior de las placas de las lámelas y estando dispuesto el segundo grupo de varillas roscadas de forma que atraviesa los agujeros pasantes provistos en las proximidades del borde inferior de las placas de las lámelas.
En esta realización preferida del módulo lamelar según la invención descrita en el párrafo anterior, las lámelas no tienen más puntos de contacto entre sí que las varillas roscadas, esto hace que los canales lamelares, presenten una superficie totalmente libre de tabiques, esquinas, grapas, soldaduras, guías o uniones, lo que reducirá el número de puntos en los que los sólidos puedan agarrarse con facilidad. Este mejor comportamiento frente al ensuciamiento permitirá, en los módulos lamelares según la invención, reducir la distancia entre las caras de las lámelas, aumentando por lo tanto la capacidad de tratamiento por unidad de superficie instalada.
Por lo tanto, la hidráulica a lo largo de todos los canales lamelares de este módulo lamelar según la presente invención será óptima, la velocidad del efluente en el interior del módulo lamelar será, por lo tanto, la mínima posible para un caudal de tratamiento determinado, reduciendo al mínimo las perdidas hidráulicas debidas al gradiente de velocidad, es decir, a las generadas por las superficies superior e inferior de dos lámelas contiguas que delimitan la distancia de decantación correspondiente.
En el estado de la técnica, las pérdidas de rendimiento adicionales debidas al comportamiento hidráulico en las lámelas planas ya conocidas oscilan entre valores del 2 y el 3%, debidos a los tabiques que conforman los bastidores externos de cada módulo. Y las pérdidas de rendimiento adicionales debidas al comportamiento hidráulico en las lámelas tubulares existentes en el estado de la técnica oscilan entre valores del 12 y el 18% debidos a los tabiques que conforman cada uno de los conductos.
En una realización preferida del módulo lamelar según la presente invención, el elemento de soporte -además de los dos grupos de varillas roscadas descritos anteriormente - también comprende:
- espaciadores dispuestos en las proximidades del borde superior y en las proximidades del borde inferior de las placas de cada par de lámelas adyacentes, estando cada uno de dichos espaciadores provisto de un orificio pasante para permitir el paso, a través de dicho espaciador, de al menos una de las varillas roscadas; y
- medios roscados de apriete, dispuestos en al menos uno de los extremos de cada varilla roscada.
En esta realización preferida del módulo lamelar según la invención descrita en el párrafo anterior, las lámelas no tienen más puntos de contacto entre sí que los espaciadores y las varillas roscadas que discurren a través de los orificios provistos en dichos espaciadores.
Asimismo, en esta realización preferida de la invención, el elemento de soporte está dispuesto en el interior del módulo lamelar dado que los espaciadores están situados entre dos lámelas contiguas y las varillas roscadas atraviesan las distintas lámelas y espaciadores insertándose en los agujeros y orificios pasantes provistos dispuestos en estos dos componentes. Los espaciadores actúan como elementos de fijación y posicionamiento de las lámelas del módulo lamelar, manteniéndolas en su posición de trabajo y sujetas entre sí, al actuar conjuntamente con las varillas roscadas y sus correspondientes medios roscados de apriete. El módulo lamelar según esta realización de la invención dispondrá, por tanto de su propio elemento de soporte independiente e interno, que lo hará autoportante y listo para su instalación en el interior del tanque.
Esta configuración supone una diferencia importante con respecto a los módulos lamelares de la técnica anterior, en los cuales los elementos de soporte, están dispuestos fuera del propio módulo lamelar, cegando parte de los canales lamelares. De hecho, las pérdidas de rendimiento habituales debidas a las estructuras de soporte externas propias de las tecnologías del estado de la técnica oscilan entre valores del 7% y el 20%. En esta realización preferida del módulo lamelar según la presente invención, el espacio ocupado por los elementos de soporte internos únicamente supone unas pérdidas aproximadas del 0,5%, que corresponden al espacio ocupado por los espaciadores y el resto de componentes que forman parte de los elementos de soporte.
Los espaciadores están preferiblemente provistos de casquillos interiores troncocónicos, estando cada uno de los casquillos troncocónicos destinado a recibir al menos una varilla roscada y a empalmarse, atravesando la lamela, con al menos otro casquillo provisto en un espaciador adyacente o en una pieza terminal
Los espaciadores presentan en su zona de apoyo y fijación con cada una de las lámelas una inclinación que determinará la inclinación final de cada una de las lámelas una vez que se haya ensamblado el módulo lamelar. Debido a esta inclinación y ante la presión de apriete generada
por los medios roscados, dichos apoyos inclinados tienden a generar un deslizamiento vertical de los separadores entre sí y con la lamela lo que provocaría que dichos elementos presionasen interiormente la varilla roscada y bloqueándose. Esto impediría que la presión generada en los extremos por los medios roscados de apriete se transmitiese correctamente a los separadores y lámelas ubicadas en la zona central del módulo lamelar.
Esta configuración mediante casquillos troncocónicos atravesando la lamela e insertándose sucesivamente en el casquillo del separador contiguo soluciona este problema, manteniendo la posición de los separadores entre sí y, a su vez, con la propia lamela, liberando la varilla roscada en toda su longitud.
Unas piezas terminales finalizarán el conjunto del bastidor y presentarán un plano vertical y perpendicular a la varilla roscada que facilitará el apoyo correcto a los medios de apriete que fijarán el conjunto. Estos terminales presentaran geometrías diferentes para adaptarse a la parte cóncava del nervio de la lamela o a la parte convexa del mismo. Así mismo, aportarán la zona hembra o macho del casquillo troncocónico para adaptarse a cada extremo del bastidor.
Los espaciadores dispuestos en las proximidades del borde inferior de las placas están preferiblemente provistos de medios de de acoplamiento a una base de apoyo.
Dicha base de apoyo está destinada a colocarse en el interior del tanque de un decantador y, además de servir de base para apoyar el módulo lamelar según la presente invención, también hace las veces de dispositivo anti-flotación, por lo que no será necesario añadir estructuras adicionales destinadas a este mismo fin.
En una realización preferida de la presente invención, la base de apoyo comprende al menos un perfil en forma de T invertida y los medios de acoplamiento comprenden, a su vez, patillas que permiten encajar los espaciadores, dispuestos en las proximidades del borde inferior de las placas, sobre dicho perfil o perfiles. Asimismo, las patillas de los medios de acoplamiento están preferiblemente provistas de unas perforaciones que coinciden con unos respectivos agujeros practicados en el perfil (o perfiles) en forma de T invertida. De este modo, es posible insertar elementos pasantes, que también forman parte de dichos medios de acoplamiento, en los agujeros practicados en el perfil a través de las perforaciones provistas en las patillas .Los elementos pasantes pueden ser, por ejemplo, tornillos o remaches.
Los módulos laminares según esta realización preferida de la invención quedan dispuestos, en su posición de trabajo dentro del tanque de un decantador, de forma elevada sobre la base del perfil o perfiles en forma de T invertida que le sirven de apoyo sin que se generen -por tanto- zonas cegadas debidas a las bases de apoyo.
Los perfiles en forma de T invertida pueden ser metálicos o de otros materiales, por ejemplo y sin carácter limitativo poliéster reforzado con fibra de vidrio.
Asimismo, en otra realización preferida de la invención, la base de apoyo está provista de al menos un travesaño sobre el que está dispuesto al menos un perfil en forma de T invertida. Dado que dicho travesaño (o travesaños) están localizados inmediatamente debajo del perfil (o perfiles) en forma de T invertida, el módulo lamelar quedará, igualmente, elevado sobre éstos, sin que se generen -por tanto- zonas cegadas.
Dichos travesaños son, preferiblemente, perfiles estructurales o vigas estructurales que aportan una resistencia adicional a la base de apoyo.
El efluente en dirección ascendente, una vez superadas estas estructuras de la base de apoyo, continua su ascensión a través del módulo lamelar distribuyéndose de forma homogénea por toda la superficie libre en el interior de los canales lamelares, minimizando las pérdidas de superficie efectiva debidas a dichos travesaños.
Esto provoca que las pérdidas de superficie efectiva debidas a la base de apoyo sean prácticamente nulas.
Descripción de las figuras
Para complementar la presente descripción y con objeto de ayudar a una mejor comprensión de las características técnicas de la invención, de acuerdo con ejemplos preferentes de realizaciones prácticas de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Fig. 1A.- Muestra una vista en perspectiva de una posible realización de una lamela, según la presente invención;
Fig. 1 B.- Es una vista en corte transversal de la lamela mostrada en la Fig. 1A;
Fig. 2A.- Es una vista lateral de una posible realización de un módulo lamelar, según la presente invención;
Fig. 2B.- Es una vista frontal del módulo lamelar mostrado en la Fig. 2A;
Fig. 2C.- Es una vista en perspectiva que muestra detalles adicionales del módulo lamelar de la Fig. 2A;
Fig. 2D.- Es una vista inferior del módulo lamelar de la Fig. 2A;
Fig. 2E Es una vista lateral, parcialmente en despiece ordenado, del módulo lamelar de la Fig. 2A;
Fig. 3A.- Es una vista en perspectiva de un espaciador, dispuesto en las proximidades del borde superior, del módulo lamelar mostrado en las Figs. 2A a 2D;
Fig. 3B.- Es una vista en perspectiva de un espaciador, dispuesto en las proximidades del borde inferior, del módulo lamelar mostrado en las Figs. 2A a 2D;
Fig. 3C.- Es una vista en perspectiva de una pieza terminal hembra, provista en el módulo lamelar mostrado en las Figs. 2A a 2E; y la
Fig. 3D.- Es una vista en perspectiva de una pieza terminal macho, provista en el módulo lamelar mostrado en las Figs. 2A a 2E;
Descripción de una forma de realización de la invención
Seguidamente se proporciona, con ayuda de las figuras 1A a 3C adjuntas, una descripción en detalle de un ejemplo de realización preferente de la presente invención.
A lo largo de la presente descripción, así como en las figuras adjuntas, los elementos con funciones iguales o similares se designarán con las mismas referencias numéricas.
La Fig. 1A muestra, a modo de ejemplo y sin carácter limitativo, una realización de una lamela 1 según la presente invención.
Dicha lamela 1 está formada por una placa 5 que, en esta realización particular de la invención tiene forma rectangular, está hecha de polipropileno con refuerzo de fibra de vidrio y fue fabricada según un procedimiento de inyección de plástico. Dicha placa 5 está provista de un borde superior 10a y un borde inferior 10b, paralelos a una dirección transversal T y dos bordes laterales 15a y 15b, paralelos a una dirección longitudinal L. La anchura total de la lamela 1 es
aproximadamente de un metro en sentido transversal y de 1 ,2 metros en sentido longitudinal. La placa 5 está provista, además, de:
- pliegues longitudinales 20, que discurren desde el borde superior 10a, hasta el borde inferior 10b y definen una pluralidad de canales lamelares 25 destinados, cuando la lamela está en su posición de trabajo, a concentrar los sólidos en las zonas inferiores o valles de dichos pliegues;
- un primer nervio estructural longitudinal 30a situado a 1/3 de la anchura total de la lamela 1 en sentido transversal y un segundo nervio estructural longitudinal 30b situado a 2/3 de la anchura total en sentido transversal, y
- puntos de anclaje 35, en forma de agujeros pasantes formados sobre los nervios estructurales 30a y 30b y dispuestos en las proximidades del borde superior 10a y en las proximidades del borde inferior 10b.
La lamela 1 está dividida transversal mente en tres zonas diferentes:
- una zona central, comprendida entre el primer nervio estructural 30a y el segundo nervio estructural 30b y que está sujeta por dichos nervios estructurales 30a, 30b;
- una primera zona lateral, situada entre el primer nervio estructural 30a y el borde lateral más cercano 15a y
- una segunda zona lateral, situada entre el segundo nervio estructural 30b y el borde lateral 15b.
De este modo, tal y como se muestra en detalle en las Figs. 2A a 2E, la primera zona lateral y la segunda zona lateral de la lamela 1 quedan en voladizo, cuando dicha lamela 1 se dispone en una posición de trabajo en el interior de un decantador.
En esta realización particular de la invención los nervios estructurales 30a y 30b tienen un espesor de entre 3 y 3,5 mm en las proximidades del borde superior 10a, en las proximidades del borde inferior 10b y en su zona central 10c, reduciéndose ligeramente su espesor (entre 2,5 y 3mm) en las restantes zonas por las que transcurren. Asimismo, el espesor medio de aquellas partes de la lamela 1 que no forman parte de los nervios estructurales es de tan solo 2 mm.
Es decir, la lamela tiene un espesor mayor en aquellos puntos que se verán sometidos a mayores esfuerzos cuando la lamela esté en su posición de trabajo (como en los nervios estructurales 30a y 30b, especialmente en las proximidades de los puntos de anclaje 35) y un espesor menor en las partes restantes, de modo que se reducen los esfuerzos provocados por el propio peso de la lamela y se reducen los costes de producción.
En la Fig. lA se ilustra -además- de forma esquemática como en esta realización de la invención, la placa 5 está curvada a lo largo de la dirección longitudinal L según un primer radio constante R1 , y como los nervios estructurales 30a, 30b también están curvados a lo largo de la dirección longitudinal L, según un segundo radio constante R2. En este caso concreto R1 es 10 metros y R2 de 8m.
La Fig. 1 B ilustra, a su vez, como los pliegues longitudinales 20 de la lamela 1 están formados por dos alas 27 y 27'que definen un ángulo obtuso a entre sí, como el primer nervio estructural 30a está formado por dos alas 37a y 37a' que definen un ángulo variable b entre sí y como el segundo nervio estructural 30b está formado por dos alas 37b y 37b' que definen un ángulo b entre sí. En esta realización específica de la invención el ángulo a tiene un valor fijo de 155°a lo largo de toda la dirección longitudinal de la lamela 1. Por el contrario, el ángulo b -característico de los nervios estructurales 30a y 30b- tiene un valor de 90° en las proximidades de los bordes 10a y 10b, que aumenta progresivamente hasta alcanzar 1 17° en la región central 10c.
Las Figs. 2A a 2E muestran diferentes vistas de un módulo lamelar 100 según la presente invención.
Dicho módulo lamelar 100 comprende varias lámelas 1 -iguales a las ilustradas en las Figs. 1A y 1 B- dispuestas de forma paralela y sin contacto directo entre sí, con una orientación inclinada con respecto a la dirección horizontal H. Las lámelas 1 están unidas, asimismo, a un elemento de soporte que, en esta realización de la presente invención, comprende un primer grupo de varillas roscadas 60a, dispuestas de forma que atraviesan las placas 5 de las lámelas 1a través de los agujeros pasantes provistos en las proximidades del borde superior 10a y un segundo grupo de varillas roscadas 60b, dispuestas de forma que atraviesan las placas 5 de las lámelas 1a través de los agujeros pasantes provistos en las proximidades del borde inferior 10b. Cada varilla del primer grupo de varillas roscadas 60a está unida por uno de sus extremos a unos medios roscados 80a de apriete los cuales son, en esta realización particular de la
invención, una tuerca. Asimismo, cada varilla del segundo grupo de varillas roscadas 60b está unida por uno de sus extremos a unos medios roscados 80b de apriete (también en forma de tuerca). Entre cada tuerca 80a y 80b y la última lamela 1 (es decir, aquella lamela que está más cercana al extremo de la varilla 60a ó 60b sobre el que se rosca la correspondiente tuerca 80a ó 80b) está interpuesta una pieza terminal 70c. Dichas piezas terminales 70c definen un plano vertical, perpendicular a la varilla 60a ó 60b que facilita el correcto apoyo de las tuercas 80a y 80b.
El elemento de soporte también comprende, en esta realización de la presente invención, una pluralidad de espaciadores 70a, dispuestos en las proximidades del borde superior 10a, entre cada par de lámelas 1 y una pluralidad de espaciadores 70b, dispuestos en las proximidades del borde inferior 10b de las placas 5, entre cada par de lámelas 1.
Tal y como puede apreciarse mejor en la Fig. 3B, los espaciadores 70b dispuestos en las proximidades del borde inferior 10b de las placas 5, están provistos de medios 73 de acoplamiento a unos perfiles 95 en forma de T invertida de la base de apoyo.
Dichos medios 73 de acoplamiento son, en esta realización particular de la invención, unas patillas hechas en una sola pieza junto con el espaciador 70b.
Los perfiles 95 en forma de T invertida de la base de apoyo están unidos, a su vez, a unos travesaños 90, que también forman parte de la base de apoyo.
La Fig. 3A muestra un espaciador 70a el cual, en un módulo lamelar como el mostrado en las figuras 2A a 2E, se dispone en las proximidades del borde superior 10a.
En esta realización de la invención, el espaciador 70a, está hecho de polipropileno y fue fabricado mediante procedimiento de inyección de plástico. Asimismo, el espaciador 70a está provisto de un casquillo troncocónico 77a, el cual está destinado a recibir-en su orificio pasante 75a- una varilla roscada 60a y a empalmarse con al menos otro casquillo de un espaciador adyacente 70a, o en una pieza terminal 70c, que será descrita más detalle con relación a la Fig. 3C.
La Fig. 3B muestra un espaciador 70b destinado a colocarse en las proximidades del borde inferior 10b de las placas 5.
En esta realización de la invención, los espaciadores 70b, están hechos de polipropileno y fueron fabricados mediante procedimiento de inyección de plástico. Asimismo, el espaciador 70b está provisto de un casquillo troncocónico 77b, el cual está destinado a recibir-en su orificio pasante 75b- una varilla roscada 60b y a empalmarse con al menos otro casquillo de un espaciador adyacente 70b o en una pieza terminal 70c hembra o en una piza terminal macho 70d. Según lo visto anteriormente, los espaciadores 70b, también están provistos de patillas 73 que permiten acoplar del módulo lamelar 100 a los perfiles 95 en forma de T invertida de la base de apoyo.
La Fig. 3C muestra una pieza terminal 70c hembra hecha de polipropileno y fabricada mediante procedimiento de inyección de plástico. Dicha pieza terminal 70c está provista de una cavidad 75c, destinada a alojar el casquillo troncocónico 77a, 77b, del correspondiente espaciador 70a, 70b adyacente.
La Fig. 3D muestra una pieza terminal 70d macho hecha de polipropileno y fabricada mediante procedimiento de inyección de plástico. Dicha pieza terminal 70d macho está provista de un casquillo troncocónico 77d dotada de un orificio pasante 75d.
Referencias numéricas de las figuras
(1) Lamela;
(5) Placa de lamela;
(10a) Borde superior de la placa;
(10b) Borde inferior de la placa;
(10c) Región central;
(15a, 15b) Bordes laterales de la placa;
(20) Pliegues longitudinales;
(25) Canales lamelares;
(27, 27') Alas de los pliegues longitudinales;
(a) Ángulo definido por las alas de los pliegues longitudinales;
(30a, 30b) Nervios estructurales longitudinales;
(35) Puntos de anclaje;
(37a, 37a'; 37b, 37b') Alas de los nervios estructurales;
(b) Ángulo definido por las alas de los nervios estructurales;
(60a) Primer grupo de varillas roscadas;
(60b) Segundo grupo de varillas roscadas;
(70a) Espaciadores dispuestos en las proximidades del borde superior; (70b) Espaciadores dispuestos en las proximidades del borde inferior; (70c) Pieza terminal hembra;
(70d) Pieza terminal macho;
(73) Medios de acoplamiento a la base de apoyo (patillas);
(75a, 75b) Orificios pasantes de los espaciadores;
(75c) Cavidad de la pieza terminal hembra;
(75d) Orificio pasante de la pieza terminal macho;
(77a, 77b) Casquillos interiores troncocónicos de los espaciadores;
(77d) Casquillo de la pieza terminal macho;
(80a, 80b) Medios roscados de apriete (tuercas);
(90) travesaños de la base de apoyo;
(95) Perfiles -en forma de T invertida- de la base de apoyo;
(100) Módulo lamelar;
(L) Dirección longitudinal;
(T) Dirección transversal;
(H) (L) Dirección horizontal;
(R1) Primer radio de curvatura (de la placa);
(R2) Segundo radio de curvatura (de los nervios estructurales).
Claims
1. Lamela (1) para decantador formada por una placa (5) rectangular o cuadrada, discurriendo el borde superior (10a) y el borde inferior (10b) de dicha placa (5) paralelos a una dirección transversal (T), discurriendo los dos bordes laterales (15a, 15b) restantes de dicha placa (5) paralelos a una dirección longitudinal (L), y estando dicha lamela (1) caracterizada por qué:
- La placa (5) está curvada a lo largo de su dirección longitudinal, de forma que, en su posición de trabajo, la zona próxima al borde inferior (10b) de la placa (5) está menos inclinada con respecto a la horizontal (H) que la zona próxima al borde superior (10a) de la placa (5), y por que
- La placa (5) está provista de una pluralidad de pliegues longitudinales (20), discurriendo dichos pliegues longitudinales (20) desde el borde superior de la placa (10a), hasta el borde inferior (10b) de la placa (5) y estando asimismo dichos pliegues (20) longitudinales provistos de una curvatura en la dirección longitudinal (L).
2. Lamela (1) según la reivindicación 1 , caracterizada por que comprende al menos un pliegue longitudinal (20) delimitado por dos alas (27, 27'), que forman un ángulo (a) obtuso entre sí, preferiblemente un ángulo de entre 150 y 160°.
3. Lamela (1) según cualquiera de las reivindicaciones anteriores, caracterizada por que además comprende al menos un nervio estructural longitudinal (30a, 30b) curvado a lo largo de la dirección longitudinal (L) y delimitado por dos alas (37a, 37a'; 37b, 37b') que discurre desde el borde superior (10a) de la placa, hasta el borde inferior (10b) de la placa, formando un ángulo (b) variable entre sí, siendo dicho ángulo:
- de entre 80 y 90° en las proximidades del borde superior (10a),
- de entre 80 y 90° en las proximidades del borde inferior (10b), y
- aumentando progresivamente hasta alcanzar entre 115° y 120 0 en la región central (10c) de la lamela (1).
4. Lamela (1) según la reivindicación 3, caracterizada por que dicho al menos un nervio estructural longitudinal (30a, 30b) está provisto de puntos de anclaje (35) a un elemento de soporte, estando dichos puntos de anclaje (35) dispuestos en las proximidades del borde
superior (10a) de la placa y en las proximidades del borde inferior (10b) de la placa.
5. Lamela (1) según la reivindicación 4, caracterizada por que la zona próxima al borde superior (10a), la zona próxima al borde inferior (10b) y la región central (10c) de dicho al menos un nervio estructural (30a, 30b), tienen un espesor mayor que el resto del nervio estructural (30a, 30b), teniendo, además, dicho nervio estructural (30a, 30b) un espesor mayor que el resto de la lamela (1).
6. Lamela (1) según cualquiera de las reivindicaciones 1 a 5, caracterizada por que dicha lamela (1) es una lamela plástica fabricada según un procedimiento de inyección de plástico.
7. Lamela (1) según cualquiera de las reivindicaciones 3 a 6, caracterizada por que comprende al menos un primer nervio estructural (30a) situado a 1/3 de la anchura total de la lamela en sentido transversal (T), y al menos un segundo nervio estructural (30b) situado a 2/3 de la anchura total en sentido transversal (T), estando el primer nervio estructural (30a) y el segundo nervio estructural (30b) provistos de puntos de anclaje (35) a un elemento de soporte, estando dichos puntos de anclaje (35) dispuestos en las proximidades del borde superior (10a) de la placa y en las proximidades del borde inferior (10b) de la placa.
8. Lamela (1) según la reivindicación 7, caracterizada por que está dividida transversal mente en tres zonas diferentes:
- una zona central, comprendida entre el primer nervio estructural (30a) y el segundo nervio estructural (30b);
- una primera zona lateral, situada entre el primer nervio estructural (30a) y el borde lateral más cercano (15a) y
- una segunda zona lateral, situada entre el segundo nervio estructural (30b) y el borde lateral más cercano (15b);
estando caracterizada además porque la primera zona lateral y la segunda zona lateral quedan en voladizo la cuando la lamela (1) se dispone en una posición de trabajo.
9. Lamela (1) según cualquiera de las reivindicaciones anteriores, caracterizada por que la placa (5) está curvada a lo largo de su dirección longitudinal (L), describiendo un primer radio (R1) de curvatura constante.
10. Lamela (1) según la reivindicación 9, caracterizada por que el primer radio (R1) de curvatura
constante de la placa es de 7 a 12 metros, más preferiblemente de 9 a 10 metros.
11. Lamela (1) según cualquiera de las reivindicaciones 3 a 8, caracterizada por que comprende al menos un nervio estructural longitudinal (30a, 30b), estando dicho nervio estructural (30a, 30b) curvado a lo largo de su dirección longitudinal (L) según un segundo radio (R2) de curvatura constante, estando además la placa (5) curvada a lo largo de su dirección longitudinal (L) según un primer radio (R1) de curvatura constante y siendo el segundo radio (R2) de curvatura menor que el primer radio (R1) de curvatura.
12. Lamela (1) según la reivindicación 11 , caracterizada por que el primer radio (R1) de curvatura constante es de 9 a 10 metros y el segundo radio (R2) de curvatura constante es de 7 a 8,5 metros.
13. Módulo lamelar (100) para decantador, caracterizado por que comprende dos o más lámelas (1) según cualquiera de las reivindicaciones 1 a 11 , dispuestas de forma paralela, sin contacto directo entre sí y unidas a un elemento de soporte.
14. Módulo lamelar (100) según la reivindicación 13, caracterizado por que:
- cada una de las lámelas (1) está provista de al menos un nervio estructural longitudinal (30a, 30b) dotado de puntos de anclaje (35) en forma de agujeros pasantes, estando dichos agujeros pasantes (35) situados en las proximidades del borde superior (10a) de las placas (5) de las lámelas (1) y en las proximidades del borde inferior (10b) de las placas (5) de las lámelas (1), y porque
- el elemento de soporte comprende al menos dos grupos de varillas roscadas (60a, 60b), estado dispuesto el primer grupo de varillas roscadas (60a) de forma que atraviesa los agujeros pasantes provistos en las proximidades del borde superior (10a) de las placas (5) de las lámelas (1) y estado dispuesto el segundo grupo de varillas roscadas (60b) de forma que atraviesa los agujeros pasantes provistos en las proximidades del borde inferior (10b) de las placas (5) de las lámelas (1).
15. Módulo lamelar (100) según la reivindicación 14, caracterizado por que el elemento de soporte comprende además:
- espaciadores (70a) dispuestos en las proximidades del borde superior (10a) y espaciadores (70b) dispuestos en las proximidades del borde inferior (10b) de las placas (5) de cada par de lámelas (1) adyacentes, estando cada uno de dichos espaciadores (70a, 70b) provisto de un orificio pasante (75a, 75b) para permitir el paso, a través de dicho espaciador (70a, 70b), de al menos una de las varillas roscadas (60a, 60b); y
- medios roscados (80a, 80b) de apriete, dispuestos en al menos uno de los extremos de cada varilla roscada (60a, 60b).
16. Módulo lamelar (100) según la reivindicación 14, caracterizado por que los espaciadores (70a, 70b) están provistos de casquillos interiores troncocónicos (77a, 77b), estando cada uno de dichos casquillos troncocónicos destinado a recibir al menos una varilla roscada (60a, 60b) y a empalmarse, atravesando una lamela (1), con al menos otro casquillo (77a, 77b) provisto en un espaciador adyacente (70a, 7b) o en una pieza terminal (70c, 70d).
17 Módulo lamelar según cualquiera de las reivindicaciones 15 o 16, caracterizado porque los espaciadores dispuestos en las proximidades del borde inferior de las placas están provistos de medios (73) de acoplamiento a una base de apoyo.
18. Módulo lamelar según la reivindicación 17, caracterizado porque la base de apoyo comprende al menos un perfil (95) en forma de T invertida.
19. Módulo lamelar según la reivindicación 18, caracterizado por que los medios (73) de acoplamiento son unas patillas (73) provistas de unas perforaciones que coinciden con unos respectivos agujeros, practicados en el perfil (95) en forma de T invertida, comprendiendo dichos medios de acoplamiento (73), además, elementos pasantes destinados a introducirse en los agujeros practicados en el perfil (95) a través de las perforaciones provistas en las patillas (73).
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/270,473 US11247146B2 (en) | 2018-08-24 | 2019-06-17 | Lamella for clarifier and lamellar module for clarifier |
PL19852412.6T PL3842111T3 (pl) | 2018-08-24 | 2019-06-17 | Lamela do klaryfikatora i moduł lamelowy do klaryfikatora |
HRP20231215TT HRP20231215T1 (hr) | 2018-08-24 | 2019-06-17 | Lamela za bistrilo i lamelni modul za bistrilo |
CN201980055694.XA CN112912154B (zh) | 2018-08-24 | 2019-06-17 | 用于澄清池的斜板和用于澄清池的斜板状模块 |
ES19852412T ES2955725T3 (es) | 2018-08-24 | 2019-06-17 | Lamela para decantador y modulo lamelar para decantador |
EP19852412.6A EP3842111B1 (en) | 2018-08-24 | 2019-06-17 | Lamella for clarifier and lamellar module for clarifier |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201830839A ES2744323B2 (es) | 2018-08-24 | 2018-08-24 | Lamela para decantador y modulo lamelar para decantador |
ESP201830839 | 2018-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020039109A1 true WO2020039109A1 (es) | 2020-02-27 |
Family
ID=69579372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2019/070420 WO2020039109A1 (es) | 2018-08-24 | 2019-06-17 | Lamela para decantador y modulo lamelar para decantador |
Country Status (7)
Country | Link |
---|---|
US (1) | US11247146B2 (es) |
EP (1) | EP3842111B1 (es) |
CN (1) | CN112912154B (es) |
ES (2) | ES2744323B2 (es) |
HR (1) | HRP20231215T1 (es) |
PL (1) | PL3842111T3 (es) |
WO (1) | WO2020039109A1 (es) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2937757B2 (es) * | 2021-09-30 | 2023-11-29 | Atca Asesoria Proyectos E Instalaciones S L | Lamela y modulo lamelar para decantador |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1477690A (en) * | 1973-08-30 | 1977-06-22 | Enso Gutzeit Oy | Laminar settler |
US5169004A (en) * | 1991-08-29 | 1992-12-08 | K-Pack Systems International | Method of and apparatus for treating building rubble |
GB2275210A (en) * | 1993-02-17 | 1994-08-24 | Oekologia Beteiligungs Handels | Regenerating of degreasing liquid |
GB2354461A (en) * | 1999-09-22 | 2001-03-28 | Mantis Oil Separation Ltd | Corrugated plate separator with non uniform plate |
CN205699626U (zh) * | 2016-06-21 | 2016-11-23 | 南京宇热材料科技有限公司 | 一种曲面导向格栅快速沉降槽 |
CN207270779U (zh) * | 2017-07-24 | 2018-04-27 | 王庆表 | 一种斜板沉淀池用防阻塞波形板 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE356435B (es) * | 1969-08-08 | 1973-05-28 | Hane G Weijman | |
GB1435496A (en) * | 1972-06-10 | 1976-05-12 | Begg Cousland Co Ltd | Device for separating particles from a fluid stream |
US3928209A (en) * | 1974-09-03 | 1975-12-23 | Enso Gutzeit Oy | Laminated settler |
GB1485007A (en) * | 1975-07-08 | 1977-09-08 | Paterson Candy Int | Liquid clarification equipment |
GB1570389A (en) * | 1976-11-22 | 1980-07-02 | Separation Systems Ltd | Devices for separating particles from a fluid stream |
US4278545A (en) * | 1979-09-12 | 1981-07-14 | The Bendix Corporation | Apparatus for separating solids and liquid components |
SU946591A1 (ru) * | 1980-09-09 | 1982-07-30 | Всесоюзный научно-исследовательский и проектно-конструкторский институт добычи угля гидравлическим способом | Тонкослойный отстойник |
SE446211B (sv) * | 1984-01-23 | 1986-08-18 | Johnson Axel Eng Ab | Lamellpaket for lamellseparator |
SU1277992A1 (ru) * | 1985-06-11 | 1986-12-23 | Всесоюзный Научно-Исследовательский И Проектно-Изыскательский Институт По Проблемам Добычи,Транспорта И Переработки Минерального Сырья В Промышленности Строительных Материалов | Тонкослойный сгуститель |
US4722800A (en) * | 1986-05-30 | 1988-02-02 | Highland Tank And Manufacturing Company | Oil-water separator |
DE3824295A1 (de) * | 1988-07-18 | 1990-01-25 | Preussag Ag Bauwesen | Klaervorrichtung |
US4897206A (en) * | 1988-11-30 | 1990-01-30 | Facet Quantek, Inc. | Bidirectionally corrugated plate separator for fluid mixtures |
US5028333A (en) * | 1990-02-23 | 1991-07-02 | Mercer International, Inc. | Phase separator module |
JP2747625B2 (ja) * | 1991-09-12 | 1998-05-06 | 鶴見曹達株式会社 | 塩水精製装置 |
JPH0842068A (ja) * | 1994-08-03 | 1996-02-13 | Hiroshi Takebe | 屈曲波形部材 |
US5547569A (en) * | 1995-01-25 | 1996-08-20 | Hinkle Contracting Corporation | Multiple stage water clarifier |
CA2355062A1 (en) * | 1998-12-17 | 2000-06-22 | Luis Castro Gomez | Process and equipment for the separation of gold particles |
CN2564221Y (zh) * | 2002-02-01 | 2003-08-06 | 杭听敏 | 一种同向流斜板沉淀器 |
CA2635663C (en) * | 2004-03-02 | 2011-07-05 | Robert M. Palmer | Method, system and apparatus for concentrating solids from drilling slurry |
CN2882749Y (zh) * | 2006-02-28 | 2007-03-28 | 成都金泉净化水处理有限公司 | 管板式单元蜂窝斜管 |
CN101229453A (zh) * | 2007-01-26 | 2008-07-30 | 王磊 | 折线形带导流段的斜板沉淀装置 |
CN201201914Y (zh) * | 2008-04-10 | 2009-03-04 | 杭听敏 | 上向流斜板高效沉淀器 |
KR100920462B1 (ko) * | 2009-07-13 | 2009-10-08 | 주식회사삼영이앤티 | 수처리용 경사판 침전설비 |
CN102794035A (zh) * | 2012-07-19 | 2012-11-28 | 南京福昌环保有限公司 | 防阻塞斜板沉淀池 |
CN103100241B (zh) * | 2012-12-03 | 2015-05-13 | 韦志锋 | 偏心式弧形活动斜板 |
CN203108282U (zh) * | 2012-12-25 | 2013-08-07 | 韦志锋 | 带斜板的倾动式污水沉淀池 |
US9327999B1 (en) * | 2013-03-14 | 2016-05-03 | M2 Water Treatment Inc. | Compact inclined plate sedimentation device and methods |
CN203694680U (zh) * | 2013-12-25 | 2014-07-09 | 南京国能环保工程有限公司 | 一种斜板沉淀设备 |
CN204352598U (zh) * | 2014-12-17 | 2015-05-27 | 鞍山北方振龙矿机有限公司 | 用于浓缩设备的波浪形斜板装置 |
CN206621842U (zh) * | 2017-03-27 | 2017-11-10 | 连云港瑞邦药业有限公司 | 一种葡萄碳酸钙沉淀池 |
CN107935145A (zh) * | 2017-12-21 | 2018-04-20 | 苏州爱源环境科技有限公司 | 一种斜板沉淀池 |
-
2018
- 2018-08-24 ES ES201830839A patent/ES2744323B2/es active Active
-
2019
- 2019-06-17 EP EP19852412.6A patent/EP3842111B1/en active Active
- 2019-06-17 HR HRP20231215TT patent/HRP20231215T1/hr unknown
- 2019-06-17 WO PCT/ES2019/070420 patent/WO2020039109A1/es unknown
- 2019-06-17 ES ES19852412T patent/ES2955725T3/es active Active
- 2019-06-17 CN CN201980055694.XA patent/CN112912154B/zh active Active
- 2019-06-17 US US17/270,473 patent/US11247146B2/en active Active
- 2019-06-17 PL PL19852412.6T patent/PL3842111T3/pl unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1477690A (en) * | 1973-08-30 | 1977-06-22 | Enso Gutzeit Oy | Laminar settler |
US5169004A (en) * | 1991-08-29 | 1992-12-08 | K-Pack Systems International | Method of and apparatus for treating building rubble |
GB2275210A (en) * | 1993-02-17 | 1994-08-24 | Oekologia Beteiligungs Handels | Regenerating of degreasing liquid |
GB2354461A (en) * | 1999-09-22 | 2001-03-28 | Mantis Oil Separation Ltd | Corrugated plate separator with non uniform plate |
CN205699626U (zh) * | 2016-06-21 | 2016-11-23 | 南京宇热材料科技有限公司 | 一种曲面导向格栅快速沉降槽 |
CN207270779U (zh) * | 2017-07-24 | 2018-04-27 | 王庆表 | 一种斜板沉淀池用防阻塞波形板 |
Also Published As
Publication number | Publication date |
---|---|
CN112912154A (zh) | 2021-06-04 |
EP3842111A4 (en) | 2021-10-27 |
US11247146B2 (en) | 2022-02-15 |
CN112912154B (zh) | 2022-08-16 |
PL3842111T3 (pl) | 2024-02-26 |
ES2744323B2 (es) | 2020-06-25 |
US20210322898A1 (en) | 2021-10-21 |
EP3842111A1 (en) | 2021-06-30 |
EP3842111C0 (en) | 2023-07-12 |
HRP20231215T1 (hr) | 2024-02-02 |
ES2744323A1 (es) | 2020-02-24 |
ES2955725T3 (es) | 2023-12-05 |
EP3842111B1 (en) | 2023-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2434844T3 (es) | Dispositivo separador | |
DE1914593C3 (de) | Absetztank mit von unten angeströmter Schrägplatten-Kläranordnung | |
US7850860B2 (en) | Plate settler with angular support members | |
ES2955725T3 (es) | Lamela para decantador y modulo lamelar para decantador | |
KR101097817B1 (ko) | 경사판 침전장치 | |
EP2295911A2 (de) | Schwimmender Abwasser-Wärmetauscher | |
US7717275B2 (en) | Integrated perforated flocculating baffle system | |
US7392910B2 (en) | Lamellar decanting module and block comprising plates that can be vertical | |
NL8202978A (nl) | Scheidingsinrichting, in het bijzonder voor het scheiden van olie en zand van afvalwater. | |
CN105944411A (zh) | 一种新型水平管沉淀池 | |
ES2932455T3 (es) | Unidad de separación por gravedad | |
DE3824295A1 (de) | Klaervorrichtung | |
KR102173185B1 (ko) | 경사판 침전장치 | |
CN206688300U (zh) | 人字形水平管模块 | |
AT398960B (de) | Steckfiltereinheit und anlage zum abscheiden von leichtflüssigkeiten | |
CN106215469A (zh) | 一种浸入式沉淀装置及沉淀系统 | |
ES2937757B2 (es) | Lamela y modulo lamelar para decantador | |
ES2912046A1 (es) | Dispositivo equilibrador de flujo y protector solar para decantadores lamelares | |
CN206081775U (zh) | 一种新型水平管沉淀池 | |
KR20100048029A (ko) | 경사판 침전지 | |
RU2782810C2 (ru) | Ламель для осветлителя и ламельный модуль для осветлителя | |
CN217988468U (zh) | 滤池用出水和反冲洗出水一体化装置 | |
TW201941811A (zh) | 水中及水面之沉降物、懸浮物除去裝置 | |
JP4268388B2 (ja) | 貯留槽の仕切構造 | |
JP2020182922A (ja) | 水中及び水面の沈降物・浮遊物除去装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19852412 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019852412 Country of ref document: EP Effective date: 20210324 |