WO2020030216A1 - Erkennen einer modifikation eines partikelfilters für einen abgasstrang eines kraftfahrzeugs - Google Patents

Erkennen einer modifikation eines partikelfilters für einen abgasstrang eines kraftfahrzeugs Download PDF

Info

Publication number
WO2020030216A1
WO2020030216A1 PCT/DE2019/100676 DE2019100676W WO2020030216A1 WO 2020030216 A1 WO2020030216 A1 WO 2020030216A1 DE 2019100676 W DE2019100676 W DE 2019100676W WO 2020030216 A1 WO2020030216 A1 WO 2020030216A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
exhaust gas
particle filter
opf
filter
Prior art date
Application number
PCT/DE2019/100676
Other languages
English (en)
French (fr)
Inventor
Daniela Calinski
Christopher Oberroithmair
Marius Becker
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to US17/260,474 priority Critical patent/US11428142B2/en
Priority to KR1020217001325A priority patent/KR102489168B1/ko
Priority to JP2021506954A priority patent/JP7189323B2/ja
Priority to CN201980046947.7A priority patent/CN112424454B/zh
Publication of WO2020030216A1 publication Critical patent/WO2020030216A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/24Determining the presence or absence of an exhaust treating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1406Exhaust gas pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a diagnostic system, an evaluation unit and a method for recognizing a modification of a particle filter for an exhaust system of a motor vehicle.
  • Evaluation of exhaust gas pressure or exhaust gas temperature is carried out.
  • An exhaust gas pressure or temperature is measured or modeled upstream of the particle filter.
  • an exhaust gas pressure or an exhaust gas temperature is measured or modeled after the particle filter.
  • a modification of the particle filter is determined by evaluating the pressure or temperature difference.
  • a sensor must be arranged in front of the particle filter, which may not be possible, for example due to a lack of installation space.
  • a disadvantage of the known methods that work with modeled values is that the models do not reflect reality exactly enough to be able to determine all relevant modifications of the particle filter. It is an object of the invention to provide a diagnostic system, an evaluation unit and a method for recognizing a modification of a particle filter
  • Claim can form a separate and independent of the combination of all the features of the independent claim invention, which is the subject of an independent claim, one
  • a first aspect of the invention relates to a diagnostic system for recognizing a modification of a particle filter, for example an Otto or diesel particle filter, for an exhaust system of a motor vehicle.
  • the modification of the particle filter can in particular be a complete or partial removal of the particle filter or of the filter substrate contained in the particle filter.
  • the particle filter comprises at least a first and a second
  • filter unit which are arranged parallel to each other in the exhaust line.
  • the particle filter is therefore a
  • actual or virtual particle filter system which comprises at least two independent particle filters.
  • the particle filter is in particular a particle filter which comprises two filter units which are independent of one another.
  • the filter units can in particular be arranged in parallel in a double-flow exhaust line.
  • the diagnostic system comprises an evaluation unit and at least one first and one second temperature sensor.
  • the first temperature sensor is arranged downstream of the exhaust gas behind the first filter unit and the second temperature sensor is arranged downstream of the exhaust gas behind the second filter unit.
  • the evaluation unit which is comprised, for example, by a control device, is set up, one for a first, from the first temperature sensor
  • the temperature variables can be an absolute temperature specification, for example.
  • the evaluation unit is set up to compare the temperature variables or comparison variables derived therefrom, and to determine a modification of the particle filter as a function of the comparison.
  • the comparison is in particular a determination of whether the compared values are essentially the same. In addition, for example, if it is found that the compared values are essentially unequal, a deviation between the compared values can be determined.
  • the invention is based on the knowledge that the
  • the downstream of the filter units is substantially the same if both filter units have not been modified. Since a filter unit absorbs heat, it may act as a heat sink with regard to the exhaust gas temperature or as a filter with regard to the change in the exhaust gas temperature. If a filter unit has been modified and, for example, removed, there is a difference both between the exhaust gas temperatures and between the changes in the exhaust gas temperatures. In an advantageous embodiment, the evaluation unit is set up, a temperature difference between the received
  • the evaluation unit is set up when the threshold value for the temperature difference is reached or exceeded by comparing the received values
  • the evaluation unit is set up to determine the modification of the filter unit, namely the removal of the filter unit which is located upstream of the exhaust gas upstream of the determined temperature sensor.
  • the invention is based on the finding that a filter unit acts as a heat sink and can thus cool the exhaust gas.
  • the first comparison variable is a temperature gradient of the first temperature variable and the second
  • the comparison variable is a temperature gradient of the second temperature variable.
  • the evaluation unit is set up to determine a gradient difference between the determined temperature gradients and to determine the modification of the particle filter when a threshold value for the gradient difference is reached or exceeded.
  • the evaluation unit is set up to determine, when the threshold value for the gradient difference is reached or exceeded, by comparing the determined temperature gradients that temperature sensor whose temperature gradient compared to the temperature gradients of the other Temperature sensors for the greatest change in exhaust gas temperature is characteristic.
  • the evaluation unit is set up to determine the modification of the filter unit, namely the removal of the filter unit which is located upstream of the exhaust gas upstream of the determined temperature sensor.
  • the invention is based on the finding that a filter unit can act as a low-pass filter with regard to a change in the exhaust gas temperature and thus can dampen changes in the exhaust gas temperature.
  • the evaluation unit is set up, one for the exhaust gas pressure upstream of the exhaust gas pressure
  • Diagnostic system included first pressure sensor, the one
  • the evaluation unit is set up to determine a deviation of the received or certain pressure values and, when reaching or falling below a threshold value for the deviation of the received or certain pressure values, to determine a modification of the particle filter, namely a complete removal of the particle filter.
  • the invention is based on the knowledge that the described comparison of temperature variables or comparison variables derived therefrom does in fact modify individual ones
  • Filter units can be determined, but not a similar modification of all filter units, for example a total removal of the particle filter.
  • a similar modification of all filter units can, however, be determined by evaluating the exhaust gas differential pressure upstream and downstream of the particle filter. A pressure sensor can do this
  • Temperature sensor for determining a differential temperature via the particle filter would be necessary. Thus, even with a difficult one
  • Particle filter may still be arranged if necessary, a pressure sensor.
  • a second aspect of the invention describes an evaluation unit for recognizing a modification of a particle filter in an exhaust system of a motor vehicle.
  • the evaluation unit is set up, of at least two
  • Temperature sensors each of which is arranged in the exhaust line downstream of the exhaust gas downstream of a filter unit of the particle filter, each a temperature variable characteristic of an exhaust gas temperature
  • the filter units parallel to each other in
  • a third aspect of the invention describes a diagnostic method for recognizing a modification of a particle filter for an exhaust system of a motor vehicle, the particle filter comprising at least a first and a second filter unit, which are arranged parallel to one another in the exhaust system.
  • One step of the method is the acceptance of a first temperature variable which is characteristic of a first exhaust gas temperature downstream of the first filter unit.
  • a further step of the method is the acceptance of a second temperature variable which is characteristic of a second exhaust gas temperature downstream of the second filter unit.
  • Another step in the process is comparing the
  • Temperature variables or comparison variables derived therefrom with each other is to determine a modification of the particle filter depending on the comparison.
  • Diagnostic procedures correspond to those described above or in the Advantageous exemplary embodiments of the diagnostic system according to the invention described in patent claims.
  • Fig. 3 shows a sequence of the method according to the invention.
  • FIG. 1 shows a conventional system for recognizing a modification of a particle filter.
  • the particulate filter OPF is arranged in the exhaust line downstream of an exhaust gas engine behind an internal combustion engine VM.
  • the conventional system comprises an evaluation unit AE and a first temperature sensor T1 and a second temperature sensor T2, the first temperature sensor T1 being arranged upstream of the exhaust gas upstream of the particle filter OPF and the second temperature sensor T2
  • the evaluation unit AE is set up, from the first temperature sensor T1 a first characteristic of a first exhaust gas temperature
  • Accepting temperature sensor T2 a second temperature quantity characteristic of a second exhaust gas temperature, comparing the temperature quantities or comparative quantities derived therefrom, and determine a modification of the particle filter OPF depending on the comparison.
  • a modification of the particle filter OPF is determined when the temperature variables are essentially the same.
  • FIG. 2 shows a diagnostic system according to the invention for recognizing a modification of a particle filter OPF for an exhaust tract
  • the particle filter OPF is downstream behind one
  • Internal combustion engine VM arranged in the exhaust system.
  • the particle filter OPF comprises at least a first filter unit OPF1 and a second filter unit OPF2, which are arranged parallel to one another in the exhaust line.
  • the diagnostic system comprises an evaluation unit AE and at least one first temperature sensor T2 and a second one
  • This evaluation unit AE is set up by the first
  • Temperature sensor T2 to receive a first temperature variable characteristic of a first exhaust gas temperature and from the second
  • the evaluation unit is set up to compare the temperature variables or comparison variables derived therefrom, and to determine a modification of the particle filter OPF as a function of the comparison.
  • Fig. 3 shows an embodiment of the invention
  • Particle filter OPF for an exhaust system of a motor vehicle, the particle filter OPF comprising at least a first filter unit OPF1 and a second filter unit OPF2, which are arranged parallel to one another in the exhaust system.
  • One step of the method is to accept 100 from one downstream of the first one for a first exhaust gas temperature
  • a further step of the method is the acceptance 1 10 of a second temperature variable which is characteristic for a second exhaust gas temperature downstream of the second filter unit OPF2.
  • Another step in the method is comparing 120 the
  • Temperature variables or comparison variables derived therefrom with each other. In particular, as a comparison of the temperature variables
  • Temperature variables can be determined.
  • the first comparison variable can be a
  • Comparison variable be a temperature gradient of the second temperature variable. A comparison can then be made, for example, as a comparison of the comparison variables
  • a further step of the method is the determination 130 of a modification of the particle filter OPF depending on the comparison.
  • the modification of the particle filter OPF can be determined when a threshold value for the temperature difference is reached or exceeded.
  • the modification of the particle filter OPF can be determined, in particular when a threshold value for the gradient difference is reached or exceeded.
  • a modification of the particulate filter OPF can in particular be a
  • Partial expansion 135 of the first filter unit OPF1 or partial expansion of the second filter unit OPF2 can be determined.
  • Temperature sensor T2 are determined, the temperature size in the
  • a gradient difference has been determined as a comparison, the determined can be compared
  • Exhaust gas temperature is characteristic.
  • the modification of the filter unit OPF1, which is located upstream of the exhaust gas upstream of the determined temperature sensor T2, can then be determined. If no modification of the particle filter OPF has hitherto been ascertained, a further step of the method is to accept 140 a first pressure variable characteristic of the exhaust gas pressure upstream of the particle filter OPF from one encompassed by the diagnostic system
  • Pressure sensor P which is located upstream of the exhaust filter in front of the particulate filter OPF.
  • a further step of the method is then the determination 150 of an exhaust gas downstream for the exhaust gas pressure after the particle filter OPF
  • a further step of the method is the determination 160 of a deviation between the received print size and the print size determined by means of the model.
  • Another step of the method is the determination 170 of a modification of the particle filter OPF when a threshold value for the deviation of the received or determined deviation is reached or fallen below
  • a modification of the particle filter OPF can in particular be a
  • Total removal 175 of the particle filter OPF are determined, that is, removal of the first filter unit OPF1 and removal of the second filter unit OPF2. Otherwise, it can also be determined (180) that the particle filter OPF has not been modified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)

Abstract

Ein Aspekt der Erfindung betrifft ein Diagnosesystem zum Erkennen einer Modifikation eines Partikelfilters in einem Abgasstrang eines Kraftfahrzeugs, wobei das Diagnosesystem eingerichtet ist, von zumindest zwei Temperatursensoren, die im Abgasstrang jeweils abgasstromabwärts hinter jeweils einer Filtereinheit des Partikelfilters angeordnet sind, jeweils eine für eine Abgastemperatur charakteristische Temperaturgröße entgegenzunehmen, wobei die Filtereinheiten zueinander parallel im Abgasstrang angebracht sind, eine Abweichung der entgegengenommenen Temperaturgrößen oder eine Abweichung in aus den Temperaturgrößen bestimmten Vergleichsgrößen festzustellen, und bei einer festgestellten Abweichung eine Modifikation des Partikelfilters festzustellen.

Description

Erkennen einer Modifikation eines Partikelfilters für einen Abgasstrang eines Kraftfahrzeugs
Die Erfindung betrifft ein Diagnosesystem, eine Auswerteeinheit und ein Verfahren zum Erkennen einer Modifikation eines Partikelfilters für einen Abgasstrang eines Kraftfahrzeugs.
Im Stand der Technik sind Verfahren bekannt, bei denen eine Modifikation eines Partikelfilters für einen Abgasstrang eines Kraftfahrzeugs durch
Auswertung von Abgasdruck oder Abgastemperatur erfolgt. Dabei wird ein Abgasdruck oder eine Abgastemperatur vor dem Partikelfilter gemessen oder modelliert. Zusätzlich wird ein Abgasdruck oder eine Abgastemperatur nach dem Partikelfilter gemessen oder modelliert. Durch Auswertung der Druck-, beziehungsweise Temperaturdifferenz wird dabei eine Modifikation des Partikelfilters festgestellt. Nachteilig an den bekannten Verfahren, die mit mittels Sensoren
gemessenen Werten arbeiten, ist, dass dabei vor dem Partikelfilter ein Sensor angeordnet sein muss, was gegebenenfalls nicht möglich ist, zum Beispiel aufgrund mangelnden Bauraums.
Nachteilig an den bekannten Verfahren, die mit modellierten Werten arbeiten, ist, dass die Modelle die Wirklichkeit nicht exakt genug wiederspiegeln, um alle relevanten Modifikationen des Partikelfilters feststellen zu können. Es ist Aufgabe der Erfindung, ein Diagnosesystem, eine Auswerteeinheit und ein Verfahren zum Erkennen einer Modifikation eines Partikelfilters
anzugeben, die die genannten Nachteile zumindest teilweise beheben.
Die Aufgabe wird durch die Merkmale der unabhängigen Patentansprüche gelöst. Vorteilhafte Ausführungsformen sind in den abhängigen Ansprüchen beschrieben. Es wird darauf hingewiesen, dass zusätzliche Merkmale eines von einem unabhängigen Patentanspruch abhängigen Patentanspruchs ohne die Merkmale des unabhängigen Patentanspruchs oder nur in
Kombination mit einer Teilmenge der Merkmale des unabhängigen
Patentanspruchs eine eigene und von der Kombination sämtlicher Merkmale des unabhängigen Patentanspruchs unabhängige Erfindung bilden können, die zum Gegenstand eines unabhängigen Anspruchs, einer
Teilungsanmeldung oder einer Nachanmeldung gemacht werden kann. Dies gilt in gleicher Weise für in der Beschreibung beschriebene technische Lehren, die eine von den Merkmalen der unabhängigen Patentansprüche unabhängige Erfindung bilden können.
Ein erster Aspekt der Erfindung betrifft ein Diagnosesystem zum Erkennen einer Modifikation eines Partikelfilters, beispielsweise eines Otto- oder Diesel-Partikelfilters, für einen Abgasstrang eines Kraftfahrzeugs. Bei der Modifikation des Partikelfilters kann es sich insbesondere um einen Komplett- oder Teilausbau des Partikelfilters oder des in dem Partikelfilter enthaltenen Filtersubstrats handeln. Der Partikelfilter umfasst dabei zumindest eine erste und eine zweite
Filtereinheit umfasst, die zueinander parallel im Abgasstrang angeordnet sind.
Insbesondere handelt es sich somit bei dem Partikelfilter um ein
tatsächliches oder virtuelles Partikelfiltersystem, das zumindest zwei eigenständige Partikelfilter umfasst.
Alternativ dazu handelt es sich bei dem Partikelfilter insbesondere um einen Partikelfilter, der zwei voneinander unabhängige Filtereinheiten umfasst.
Die Filtereinheiten können insbesondere in einem zweiflutigen Abgasstrang parallel angeordnet sein.
Das Diagnosesystem umfasst eine Auswerteeinheit und zumindest einen ersten und einen zweiten Temperatursensor. Der erste Temperatursensor ist abgasstromabwärts hinter der ersten Filtereinheit angeordnet und der zweite Temperatursensor ist abgasstromabwärts hinter der zweiten Filtereinheit angeordnet. Die Auswerteeinheit, die beispielsweise von einem Steuergerät umfasst ist, ist eingerichtet, von dem ersten Temperatursensor eine für eine erste
Abgastemperatur charakteristische erste Temperaturgröße
entgegenzunehmen und von dem zweiten Temperatursensor eine für eine zweite Abgastemperatur charakteristische zweite Temperaturgröße entgegenzunehmen. Bei den Temperaturgrößen kann es sich beispielsweise um eine absolute Temperaturangabe handeln.
Außerdem ist die Auswerteeinheit eingerichtet, die Temperaturgrößen oder davon jeweils abgeleitete Vergleichsgrößen miteinander zu vergleichen, und in Abhängigkeit von dem Vergleich eine Modifikation des Partikelfilters festzustellen.
Der Vergleich ist dabei insbesondere ein Feststellen, ob die verglichenen Werte im Wesentlichen gleich sind. Zusätzlich kann beispielsweise bei Feststellung, dass die verglichenen Werte im Wesentlichen ungleich sind, eine Abweichung zwischen den verglichenen Werten bestimmt werden.
Hierbei liegt der Erfindung die Erkenntnis zugrunde, dass die
Abgastemperatur und eine Veränderung der Abgastemperatur
abgasstromabwärts hinter den Filtereinheiten im Wesentlichen gleich ist, wenn beide Filtereinheiten nicht modifiziert wurden. Da eine Filtereinheit Wärme aufnimmt, wirkt sie gegebenenfalls als Wärme-Senke hinsichtlich der Abgastemperatur, beziehungsweise als Filter hinsichtlich der Veränderung der Abgastemperatur. Wenn also eine Filtereinheit modifiziert wurde und beispielsweise ausgebaut wurde, so ergibt sich eine Differenz sowohl zwischen den Abgastemperaturen, als auch zwischen den Veränderungen der Abgastemperaturen. In einer vorteilhaften Ausführungsform ist die Auswerteeinheit eingerichtet, eine Temperaturdifferenz zwischen den entgegengenommenen
Temperaturgrößen zu bestimmen, und bei Erreichen oder Überschreiten eines Schwellwerts für die Temperaturdifferenz die Modifikation des
Partikelfilters, nämlich einen Teilausbau einer Filtereinheit, festzustellen. In einer weiteren vorteilhaften Ausführungsform ist die Auswerteeinheit eingerichtet, bei Erreichen oder Überschreiten des Schwellwerts für die Temperaturdifferenz durch Vergleich der entgegengenommenen
Temperaturgrößen denjenigen Temperatursensor zu ermitteln, dessen Temperaturgröße im Vergleich zu den Temperaturgrößen der jeweils anderen Temperatursensoren für die höchste Abgastemperatur
charakteristisch ist.
Darüber hinaus ist die Auswerteeinheit eingerichtet, die Modifikation der Filtereinheit, nämlich den Ausbau der Filtereinheit, die sich im Abgasstrang abgasstromaufwärts vor dem ermittelten Temperatursensor befindet, festzustellen.
Hierbei liegt der Erfindung die Erkenntnis zugrunde, dass eine Filtereinheit als Wärmesenke wirkt und somit das Abgas abkühlen kann.
In einer weiteren vorteilhaften Ausführungsform ist die erste Vergleichsgröße ein Temperaturgradient der ersten Temperaturgröße und die zweite
Vergleichsgröße ist ein Temperaturgradient der zweiten Temperaturgröße.
Die Auswerteeinheit ist dabei eingerichtet, eine Gradientendifferenz zwischen den bestimmten Temperaturgradienten zu bestimmen, und bei Erreichen oder Überschreiten eines Schwellwerts für die Gradientendifferenz die Modifikation des Partikelfilters festzustellen.
In einer weiteren vorteilhaften Ausführungsform ist die Auswerteeinheit eingerichtet, bei Erreichen oder Überschreiten des Schwellwerts für die Gradientendifferenz durch Vergleich der bestimmten Temperaturgradienten denjenigen Temperatursensor zu ermitteln, dessen Temperaturgradient im Vergleich zu den Temperaturgradienten der jeweils anderen Temperatursensoren für die größte Veränderung der Abgastemperatur charakteristisch ist.
Darüber hinaus ist die Auswerteeinheit eingerichtet, die Modifikation der Filtereinheit, nämlich den Ausbau der Filtereinheit, die sich im Abgasstrang abgasstromaufwärts vor dem ermittelten Temperatursensor befindet, festzustellen.
Hierbei liegt der Erfindung die Erkenntnis zugrunde, dass eine Filtereinheit als Tiefpassfilter bezüglich einer Veränderung der Abgastemperatur wirken kann und somit Veränderungen der Abgastemperatur dämpfen kann.
In einer weiteren vorteilhaften Ausführungsform ist die Auswerteeinheit eingerichtet, einen für den Abgasdruck abgasstromaufwärts vor dem
Partikelfilter charakteristische erste Druckgröße von einem von dem
Diagnosesystem umfassten ersten Drucksensor, der sich
abgasstromaufwärts vor dem Partikelfilter befindet, entgegenzunehmen oder mittels eines Modells zu bestimmen, und einen für den Abgasdruck abgasstromabwärts nach dem Partikelfilter charakteristische zweite
Druckgröße von einem von dem Diagnosesystem umfassten zweiten
Drucksensor, der sich abgasstromabwärts nach dem Partikelfilter befindet, entgegenzunehmen oder mittels eines Modells zu bestimmen.
Darüber hinaus ist die Auswerteeinheit eingerichtet, eine Abweichung der entgegengenommenen oder bestimmten Druckgrößen festzustellen, und bei Erreichen oder Unterschreiten eines Schwellwerts für die Abweichung der entgegengenommenen oder bestimmten Druckgrößen eine Modifikation des Partikelfilters, nämlich einen vollständigen Ausbau des Partikelfilters, festzustellen. Hierbei liegt der Erfindung die Erkenntnis zugrunde, dass durch den beschriebenen Vergleich von Temperaturgrößen oder davon jeweils abgeleitete Vergleichsgrößen zwar eine Modifikation von einzelnen
Filtereinheiten festgestellt werden kann, nicht allerdings eine gleichartige Modifikation von allen Filtereinheiten, beispielsweise einen Totalausbau des Partikelfilters. Eine gleichartige Modifikation von allen Filtereinheiten kann allerdings über eine Auswertung des Abgas-Differenzdrucks vor und hinter dem Partikelfilter festgestellt werden. Ein Drucksensor kann dabei
abgasstromaufwärts vor dem Partikelfilter in größerer Entfernung von dem Partikelfilter angeordnet werden, als es für einen eventuellen
Temperatursensor zur Bestimmung einer Differenztemperatur über den Partikelfilter notwendig wäre. Somit kann auch bei einer schwierigen
Bauraumsituation direkt vor dem Partikelfilter, die eine Anordnung eines Temperatursensors unmöglich macht, in größerer Entfernung zum
Partikelfilter gegebenenfalls trotzdem ein Drucksensor angeordnet werden.
Ein zweiter Aspekt der Erfindung beschreibt eine Auswerteeinheit zum Erkennen einer Modifikation eines Partikelfilters in einem Abgasstrang eines Kraftfahrzeugs.
Die Auswerteeinheit ist eingerichtet, von zumindest zwei
Temperatursensoren, die im Abgasstrang jeweils abgasstromabwärts hinter jeweils einer Filtereinheit des Partikelfilters angeordnet sind, jeweils eine für eine Abgastemperatur charakteristische Temperaturgröße
entgegenzunehmen, wobei die Filtereinheiten zueinander parallel im
Abgasstrang angeordnet sind.
Außerdem ist die Auswerteeinheit eingerichtet, eine Abweichung der entgegengenommenen Temperaturgrößen oder eine Abweichung in aus den Temperaturgrößen bestimmten Vergleichsgrößen festzustellen, und bei einer festgestellten Abweichung eine Modifikation des Partikelfilters festzustellen. Ein dritter Aspekt der Erfindung beschreibt ein Diagnoseverfahren zum Erkennen einer Modifikation eines Partikelfilters für einen Abgasstrang eines Kraftfahrzeugs, wobei der Partikelfilter zumindest eine erste und eine zweite Filtereinheit umfasst, die zueinander parallel im Abgasstrang angebracht sind.
Ein Schritt des Verfahrens ist das Entgegennehmen von einer für eine erste Abgastemperatur abgasstromabwärts hinter der ersten Filtereinheit charakteristischen ersten Temperaturgröße.
Ein weiter Schritt des Verfahrens ist das Entgegennehmen von einer für eine zweite Abgastemperatur abgasstromabwärts hinter der zweiten Filtereinheit charakteristischen zweiten Temperaturgröße.
Ein weiterer Schritt des Verfahrens ist das Vergleichen der
Temperaturgrößen oder davon jeweils abgeleiteter Vergleichsgrößen miteinander. Ein weiterer Schritt des Verfahrens ist das Feststellen einer Modifikation des Partikelfilters in Abhängigkeit von dem Vergleich.
Die vorstehenden Ausführungen zum erfindungsgemäßen Diagnosesystem nach dem ersten Aspekt der Erfindung gelten in entsprechender Weise auch für die erfindungsgemäße Auswerteeinheit nach dem zweiten Aspekt der Erfindung und das erfindungsgemäße Diagnoseverfahren nach dem dritten Aspekt der Erfindung. An dieser Stelle und in den Patentansprüchen nicht explizit beschriebene vorteilhafte Ausführungsbeispiele der
erfindungsgemäßen Auswerteeinheit und des erfindungsgemäßen
Diagnoseverfahrens entsprechen den vorstehend beschriebenen oder in den Patentansprüchen beschriebenen vorteilhaften Ausführungsbeispielen des erfindungsgemäßen Diagnosesystems.
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels unter Zuhilfenahme der beigefügten Zeichnungen beschrieben. In diesen zeigen:
Fig. 1 ein konventionelles System zum Erkennen einer Modifikation eines Partikelfilters,
Fig. 2 ein erfindungsgemäßes System zum Erkennen einer Modifikation
eines Partikelfilters, und
Fig. 3 einen Ablauf des erfindungsgemäßen Verfahrens.
Fig. 1 zeigt ein konventionelles System zum Erkennen einer Modifikation eines Partikelfilters.
Dabei ist das der Partikelfilter OPF im Abgasstrang abgasstromabwärts hinter einem Verbrennungsmotor VM angeordnet.
Das konventionelle System umfasst eine Auswerteeinheit AE und einen ersten Temperatursensor T1 und einen zweiten Temperatursensor T2, wobei der erste Temperatursensor T1 abgasstromaufwärts vor dem Partikelfilter OPF angeordnet ist und der zweite Temperatursensor T2
abgasstromabwärts hinter dem Partikelfilter OPF angeordnet ist.
Die Auswerteeinheit AE ist eingerichtet, von dem ersten Temperatursensor T1 eine für eine erste Abgastemperatur charakteristische erste
Temperaturgröße entgegenzunehmen und von dem zweiten
Temperatursensor T2 eine für eine zweite Abgastemperatur charakteristische zweite Temperaturgröße entgegenzunehmen, die Temperaturgrößen oder davon jeweils abgeleitete Vergleichsgrößen miteinander zu vergleichen, und in Abhängigkeit von dem Vergleich eine Modifikation des Partikelfilters OPF festzustellen.
Insbesondere wird dabei eine Modifikation des Partikelfilters OPF festgestellt, wenn die Temperaturgrößen im Wesentlichen gleich sind.
Fig. 2 zeigt ein erfindungsgemäßes Diagnosesystem zum Erkennen einer Modifikation eines Partikelfilters OPF für einen Abgasstrang eines
Kraftfahrzeugs.
Dabei ist der Partikelfilter OPF abgasstromabwärts hinter einem
Verbrennungsmotor VM im Abgasstrang angeordnet.
Der Partikelfilter OPF umfasst zumindest eine erste Filtereinheit OPF1 und eine zweite Filtereinheit OPF2, die zueinander parallel im Abgasstrang angeordnet sind.
Außerdem umfasst das Diagnosesystem eine Auswerteeinheit AE und zumindest einen ersten Temperatursensor T2 und einen zweiten
Temperatursensor T2‘, wobei der erste Temperatursensor T2
abgasstromabwärts hinter der ersten Filtereinheit OPF1 angeordnet ist und der zweite Temperatursensor T2‘ abgasstromabwärts hinter der zweiten Filtereinheit OPF2 angeordnet ist. Diese Auswerteeinheit AE ist eingerichtet, von dem ersten
Temperatursensor T2 eine für eine erste Abgastemperatur charakteristische erste Temperaturgröße entgegenzunehmen und von dem zweiten
Temperatursensor T2‘ eine für eine zweite Abgastemperatur
charakteristische zweite Temperaturgröße entgegenzunehmen. Darüber hinaus ist die die Auswerteeinheit eingerichtet, die Temperaturgrößen oder davon jeweils abgeleitete Vergleichsgrößen miteinander zu vergleichen, und in Abhängigkeit von dem Vergleich eine Modifikation des Partikelfilters OPF festzustellen.
Fig. 3 zeigt ein Ausführungsbeispiel des erfindungsgemäßen
Diagnoseverfahren zum Erkennen einer Modifikation eines
Partikelfilters OPF für einen Abgasstrang eines Kraftfahrzeugs, wobei der Partikelfilter OPF zumindest eine erste Filtereinheit OPF1 und eine zweite Filtereinheit OPF2 umfasst, die zueinander parallel im Abgasstrang angebracht sind.
Ein Schritt des Verfahrens ist das Entgegennehmen 100 von einer für eine erste Abgastemperatur abgasstromabwärts hinter der ersten
Filtereinheit OPF1 charakteristischen ersten Temperaturgröße.
Ein weiterer Schritt des Verfahrens ist das Entgegennehmen 1 10 von einer für eine zweite Abgastemperatur abgasstromabwärts hinter der zweiten Filtereinheit OPF2 charakteristischen zweiten Temperaturgröße.
Ein weiterer Schritt des Verfahrens ist das Vergleichen 120 der
Temperaturgrößen oder davon jeweils abgeleiteter Vergleichsgrößen miteinander. Insbesondere kann als Vergleich der Temperaturgrößen eine
Temperaturdifferenz zwischen den entgegengenommenen
Temperaturgrößen bestimmt werden.
Alternativ kann insbesondere die erste Vergleichsgröße ein
Temperaturgradient der ersten Temperaturgröße sein und die zweite
Vergleichsgröße ein Temperaturgradient der zweiten Temperaturgröße sein. Als Vergleich der Vergleichsgrößen kann dann beispielsweise eine
Gradientendifferenz zwischen den bestimmten Temperaturgradienten bestimmt werden. Ein weiterer Schritt des Verfahrens ist das Feststellen 130 einer Modifikation des Partikelfilters OPF in Abhängigkeit von dem Vergleich.
Insbesondere wenn als Vergleich eine Temperaturdifferenz zwischen den entgegengenommenen Temperaturgrößen bestimmt wurde, kann bei Erreichen oder Überschreiten eines Schwellwerts für die Temperaturdifferenz die Modifikation des Partikelfilters OPF festgestellt werden.
Wenn alternativ als Vergleich eine Gradientendifferenz zwischen
Temperaturgradienten bestimmt wurde, kann insbesondere bei Erreichen oder Überschreiten eines Schwellwerts für die Gradientendifferenz die Modifikation des Partikelfilters OPF festzustellen.
Als Modifikation des Partikelfilters OPF kann insbesondere ein
Teilausbau 135 der ersten Filtereinheit OPF1 oder ein Teilausbau der zweiten Filtereinheit OPF2 festgestellt werden.
Insbesondere wenn als Vergleich eine Temperaturdifferenz zwischen den entgegengenommenen Temperaturgrößen bestimmt wurde, kann durch Vergleich der entgegengenommenen Temperaturgrößen derjenigen
Temperatursensor T2 ermittelt werden, dessen Temperaturgröße im
Vergleich zu der Temperaturgröße des anderen Temperatursensors T2‘ für die höchste Abgastemperatur charakteristisch ist. Anschließend kann die Modifikation der Filtereinheit OPF1 festgestellt werden, die sich im
Abgasstrang abgasstromaufwärts vor dem ermittelten Temperatursensor T2 befindet. Insbesondere wenn alternativ als Vergleich eine Gradientendifferenz bestimmt wurde, kann durch Vergleich der bestimmten
Temperaturgradienten derjenige Temperatursensor T2 ermittelt werden, dessen Temperaturgradient im Vergleich zu dem Temperaturgradienten des jeweils anderen Temperatursensors T2‘ für die größte Veränderung der
Abgastemperatur charakteristisch ist. Anschließend kann die Modifikation der Filtereinheit OPF1 , die sich im Abgasstrang abgasstromaufwärts vor dem ermittelten Temperatursensor T2 befindet, festgestellt werden. Wurde bisher keine Modifikation des Partikelfilters OPF festgestellt, so ist ein weiterer Schritt des Verfahrens das Entgegennehmen 140 einer für den Abgasdruck abgasstromaufwärts vor dem Partikelfilter OPF charakteristische erste Druckgröße von einem von dem Diagnosesystem umfassten
Drucksensor P, der sich abgasstromaufwärts vor dem Partikelfilter OPF befindet.
Ein weiterer Schritt des Verfahrens ist dann das Bestimmen 150 einer für den Abgasdruck abgasstromabwärts nach dem Partikelfilter OPF
charakteristischen zweiten Druckgröße mittels eines Modells.
Ein weiterer Schritt des Verfahrens ist das Feststellen 160 einer Abweichung der entgegengenommenen Druckgröße und der mittels des Modells bestimmten Druckgröße. Ein weiterer Schritt des Verfahrens ist das Feststellen 170 einer Modifikation des Partikelfilters OPF bei Erreichen oder Unterschreiten eines Schwellwerts für die Abweichung der entgegengenommenen oder bestimmten
Druckgrößen eine Modifikation des Partikelfilters OPF. Als Modifikation des Partikelfilters OPF kann insbesondere ein
Totalausbau 175 der Partikelfilters OPF festgestellt werden, also ein Ausbau der ersten Filtereinheit OPF1 und ein Ausbau der zweiten Filtereinheit OPF2. Andernfalls kann auch Festgestellt werden (180), dass der Partikelfilter OPF nicht modifiziert wurde.

Claims

Patentansprüche
1. Diagnosesystem zum Erkennen einer Modifikation eines
Partikelfilters (OPF) für einen Abgasstrang eines Kraftfahrzeugs, wobei
• der Partikelfilter (OPF) zumindest eine erste
Filtereinheit (OPF1 ) und eine zweite Filtereinheit (OPF2) umfasst, die zueinander parallel im Abgasstrang angeordnet sind,
• das Diagnosesystem eine Auswerteeinheit (AE) und zumindest einen ersten Temperatursensor (T2) und einen zweiten
Temperatursensor (T2‘) umfasst, wobei der erste Temperatursensor (T2) abgasstromabwärts hinter der ersten Filtereinheit (OPF1 ) angeordnet ist und der zweite Temperatursensor (T2‘) abgasstromabwärts hinter der zweiten Filtereinheit (OPF2) angeordnet ist, und
• die Auswerteeinheit (AE) eingerichtet ist,
• von dem ersten Temperatursensor (T2) eine für eine erste Abgastemperatur charakteristische erste
Temperaturgröße entgegenzunehmen und von dem zweiten Temperatursensor (T2‘) eine für eine zweite Abgastemperatur charakteristische zweite
Temperaturgröße entgegenzunehmen,
• die Temperaturgrößen oder davon jeweils abgeleitete Vergleichsgrößen miteinander zu vergleichen, und
• in Abhängigkeit von dem Vergleich eine Modifikation des Partikelfilters (OPF) festzustellen.
2. Diagnosesystem nach Anspruch 1 , wobei die Auswerteeinheit (AE) eingerichtet ist,
• eine Temperaturdifferenz zwischen den entgegengenommenen Temperaturgrößen zu bestimmen, und
· bei Erreichen oder Überschreiten eines Schwellwerts für die
Temperaturdifferenz die Modifikation des Partikelfilters (OPF) festzustellen.
3. Diagnosesystem nach Anspruch 2, wobei die Auswerteeinheit (AE) eingerichtet ist, bei Erreichen oder Überschreiten des Schwellwerts für die Temperaturdifferenz
• durch Vergleich der entgegengenommenen Temperaturgrößen denjenigen Temperatursensor (T2) zu ermitteln, dessen Temperaturgröße im Vergleich zu den Temperaturgrößen der jeweils anderen Temperatursensoren (T2‘) für die höchste Abgastemperatur charakteristisch ist, und
• die Modifikation der Filtereinheit (OPF1 ), die sich im
Abgasstrang abgasstromaufwärts vor dem ermittelten Temperatursensor (T2) befindet, festzustellen.
4. Diagnosesystem nach Anspruch 1 , wobei
• die erste Vergleichsgröße ein Temperaturgradient der ersten Temperaturgröße ist,
• die zweite Vergleichsgröße ein Temperaturgradient der zweiten Temperaturgröße ist, und
• die Auswerteeinheit (AE) eingerichtet ist,
• eine Gradientendifferenz zwischen den bestimmten
Temperaturgradienten zu bestimmen, und
• bei Erreichen oder Überschreiten eines Schwellwerts für die Gradientendifferenz die Modifikation des
Partikelfilters (OPF) festzustellen.
5. Diagnosesystem nach Anspruch 4, wobei die Auswerteeinheit (AE) eingerichtet ist, bei Erreichen oder Überschreiten des Schwellwerts für die Gradientendifferenz
• durch Vergleich der bestimmten Temperaturgradienten
denjenigen Temperatursensor (T2) zu ermitteln, dessen Temperaturgradient im Vergleich zu den Temperaturgradienten der jeweils anderen Temperatursensoren (T2‘) für die größte Veränderung der Abgastemperatur charakteristisch ist, und
• die Modifikation der Filtereinheit (OPF1 ), die sich im
Abgasstrang abgasstromaufwärts vor dem ermittelten Temperatursensor (T2) befindet, festzustellen.
6. Diagnosesystem nach einem der vorherigen Ansprüche, wobei die Auswerteeinheit (AE) eingerichtet ist,
• einen für den Abgasdruck abgasstromaufwärts vor dem
Partikelfilter (OPF) charakteristische erste Druckgröße von einem von dem Diagnosesystem umfassten ersten
Drucksensor (P), der sich abgasstromaufwärts vor dem Partikelfilter (OPF) befindet, entgegenzunehmen oder mittels eines Modells zu bestimmen,
• einen für den Abgasdruck abgasstromabwärts nach dem
Partikelfilter (OPF) charakteristische zweite Druckgröße von einem von dem Diagnosesystem umfassten zweiten Drucksensor, der sich abgasstromabwärts nach dem Partikelfilter (OPF) befindet, entgegenzunehmen oder mittels eines Modells zu bestimmen,
• eine Abweichung der entgegengenommenen oder bestimmten Druckgrößen festzustellen, und
• bei Erreichen oder Unterschreiten eines Schwellwerts für die Abweichung der entgegengenommenen oder bestimmten Druckgrößen eine Modifikation des Partikelfilters (OPF) festzustellen.
7. Auswerteeinheit (AE) zum Erkennen einer Modifikation eines
Partikelfilters (OPF) in einem Abgasstrang eines Kraftfahrzeugs, wobei die Auswerteeinheit eingerichtet ist,
• von zumindest zwei Temperatursensoren (T2, T2‘), die im
Abgasstrang jeweils abgasstromabwärts hinter jeweils einer Filtereinheit (OPF1 , OPF2) des Partikelfilters (OPF) angeordnet sind, jeweils eine für eine Abgastemperatur charakteristische Temperaturgröße entgegenzunehmen, wobei die
Filtereinheiten (OPF1 , OPF2) zueinander parallel im Abgasstrang angeordnet sind,
• eine Abweichung der entgegengenommenen
Temperaturgrößen oder eine Abweichung in aus den Temperaturgrößen bestimmten Vergleichsgrößen festzustellen, und
• bei einer festgestellten Abweichung eine Modifikation des
Partikelfilters (OPF) festzustellen.
8. Diagnoseverfahren zum Erkennen einer Modifikation eines
Partikelfilters (OPF) für einen Abgasstrang eines Kraftfahrzeugs, wobei der Partikelfilter (OPF) zumindest eine erste
Filtereinheit (OPF1 ) und eine zweite Filtereinheit (OPF2) umfasst, die zueinander parallel im Abgasstrang angebracht sind, und das
Diagnoseverfahren die folgenden Schritte umfasst:
• Entgegennehmen (100) von einer für eine erste
Abgastemperatur abgasstromabwärts hinter der ersten Filtereinheit (OPF1 ) charakteristischen ersten
Temperaturgröße, • Entgegennehmen (1 10) von einer für eine zweite
Abgastemperatur abgasstromabwärts hinter der zweiten Filtereinheit (OPF2) charakteristischen zweiten
Temperaturgröße,
· Vergleichen (120) der Temperaturgrößen oder davon jeweils abgeleiteter Vergleichsgrößen miteinander, und
• Feststellen (130) einer Modifikation des Partikelfilters (OPF) in Abhängigkeit von dem Vergleich.
PCT/DE2019/100676 2018-08-10 2019-07-24 Erkennen einer modifikation eines partikelfilters für einen abgasstrang eines kraftfahrzeugs WO2020030216A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/260,474 US11428142B2 (en) 2018-08-10 2019-07-24 Detecting a modification of a particle filter for an exhaust branch of a motor vehicle
KR1020217001325A KR102489168B1 (ko) 2018-08-10 2019-07-24 자동차의 배기가스 분기용 입자 필터의 변형의 검출
JP2021506954A JP7189323B2 (ja) 2018-08-10 2019-07-24 原動機付き車両の排ガス系のための粒子フィルタの変更の認識
CN201980046947.7A CN112424454B (zh) 2018-08-10 2019-07-24 用于机动车的排气管路的颗粒过滤器的异变的识别

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018213469.3A DE102018213469B4 (de) 2018-08-10 2018-08-10 Erkennen einer Modifikation eines Partikelfilters für einen Abgasstrang eines Kraftfahrzeugs
DE102018213469.3 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020030216A1 true WO2020030216A1 (de) 2020-02-13

Family

ID=67620234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2019/100676 WO2020030216A1 (de) 2018-08-10 2019-07-24 Erkennen einer modifikation eines partikelfilters für einen abgasstrang eines kraftfahrzeugs

Country Status (6)

Country Link
US (1) US11428142B2 (de)
JP (1) JP7189323B2 (de)
KR (1) KR102489168B1 (de)
CN (1) CN112424454B (de)
DE (1) DE102018213469B4 (de)
WO (1) WO2020030216A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114017170B (zh) * 2022-01-05 2022-03-29 潍柴动力股份有限公司 一种双dpf上游温度传感器可信性监控方法、装置和发动机
US20230212993A1 (en) * 2022-01-06 2023-07-06 Transportation Ip Holdings, Llc Sensor system and method
KR102548636B1 (ko) * 2022-03-22 2023-06-27 비테스코 테크놀로지스 게엠베하 Gpf 진단 장치 및 방법
US11891934B2 (en) * 2022-06-10 2024-02-06 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005043161A1 (de) * 2005-09-12 2007-03-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Temperaturregelung bei einem Abgasnachbehandlungssystem
FR3019212A1 (fr) * 2014-03-28 2015-10-02 Peugeot Citroen Automobiles Sa Moteur a combustion de vehicule automobile a detection d'absence de filtre a particules
US20160084137A1 (en) * 2014-09-24 2016-03-24 Cummins Emission Solutions, Inc. On-board diagnostic methods for partial filtration filters
FR3034808A1 (fr) * 2015-04-10 2016-10-14 Peugeot Citroen Automobiles Sa Procede pour determiner la presence ou non d’un element de depollution des gaz d’echappement dans une ligne d’echappement

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323127A (ja) * 1993-05-11 1994-11-22 Toyota Motor Corp ディーゼル機関の排気微粒子除去装置
GB9325492D0 (en) * 1993-12-14 1994-02-16 Engelhard Corp Improved particulate filter,and system and method for cleaning same
JP3303722B2 (ja) * 1997-04-04 2002-07-22 三菱自動車工業株式会社 内燃機関の排気微粒子除去装置
CA2309309A1 (en) * 1999-05-28 2000-11-28 Ford Global Technologies, Inc. Nox trap and particulate filter system for an internal combustion engine
JP2001329830A (ja) * 2000-03-15 2001-11-30 Ibiden Co Ltd 排気ガス浄化フィルタの再生装置及びフィルタ再生方法、排気ガス浄化フィルタの再生プログラム及びそのプログラムを格納する記録媒体
DE10211565A1 (de) * 2002-03-15 2003-10-09 Eberspaecher J Gmbh & Co Abgasanlage mit Partikelfilter für Dieselmotoren
EP1788210A3 (de) * 2004-01-13 2012-01-11 EMCON Technologies LLC Verfahren und Vorrichtung zum Leiten von Abgas durch einen brennstoffbefeuerten Brenner einer Abgasentgiftungsanordnung
JP4657074B2 (ja) * 2005-10-12 2011-03-23 トヨタ自動車株式会社 排気浄化装置の制御装置及び排気浄化装置の制御方法
JP4107320B2 (ja) * 2005-10-17 2008-06-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
KR20090131023A (ko) * 2008-06-17 2009-12-28 현대산업엔진(주) 디젤엔진의 매연 정화장치
US8615990B2 (en) * 2009-08-24 2013-12-31 Cummins Ip, Inc. Apparatus, system, and method for controlling multiple diesel particulate filters
GB2510171B (en) * 2013-01-28 2015-01-28 Cool Flame Technologies As Method and cleaning apparatus for removal of SOx and NOx from exhaust gas
DE102013221598A1 (de) 2013-10-24 2015-05-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Partikelfilters
SE539381C2 (sv) * 2014-05-08 2017-09-05 Scania Cv Ab Förfarande och system för övervakning av en storhet relaterad till en partikelmassa i åtminstone ett avgasrör
US9399943B1 (en) * 2015-05-04 2016-07-26 Ford Global Technologies, Llc System and method for detecting particulate filter leakage
US10280824B2 (en) * 2017-03-08 2019-05-07 GM Global Technology Operations LLC Variable tail pipe valve system
CN108049941A (zh) * 2018-01-08 2018-05-18 陈爱国 一种柴油机尾气处理装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005043161A1 (de) * 2005-09-12 2007-03-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Temperaturregelung bei einem Abgasnachbehandlungssystem
FR3019212A1 (fr) * 2014-03-28 2015-10-02 Peugeot Citroen Automobiles Sa Moteur a combustion de vehicule automobile a detection d'absence de filtre a particules
US20160084137A1 (en) * 2014-09-24 2016-03-24 Cummins Emission Solutions, Inc. On-board diagnostic methods for partial filtration filters
FR3034808A1 (fr) * 2015-04-10 2016-10-14 Peugeot Citroen Automobiles Sa Procede pour determiner la presence ou non d’un element de depollution des gaz d’echappement dans une ligne d’echappement

Also Published As

Publication number Publication date
KR20210019551A (ko) 2021-02-22
DE102018213469A1 (de) 2020-02-13
US11428142B2 (en) 2022-08-30
JP2021534342A (ja) 2021-12-09
CN112424454B (zh) 2022-07-26
KR102489168B1 (ko) 2023-01-18
JP7189323B2 (ja) 2022-12-13
US20210270178A1 (en) 2021-09-02
DE102018213469B4 (de) 2024-05-02
CN112424454A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2020030216A1 (de) Erkennen einer modifikation eines partikelfilters für einen abgasstrang eines kraftfahrzeugs
DE19951788C2 (de) System im Kraftfahrzeug zur Unterscheidung von Sensorfehlern bei extremen Temperaturbedingungen
EP3040531A1 (de) Verfahren zum betreiben einer abgasreinigungseinrichtung sowie entsprechende abgasreinigungseinrichtung
DE102008041804A1 (de) Verfahren und Vorrichtung zur Überwachung einer Abgasrückführungsanordnung
DE102017200290A1 (de) Verfahren und Computerprogrammprodukt zur Erkennung und Unterscheidung eines Durchflussfehlers und eines Dynamikfehlers einer Abgasrückführung
DE10340844B4 (de) Vorrichtung und Verfahren zur Fehlerbestimmung bei einem Luftströmungssensor
DE102007062794A1 (de) Verfahren und Vorrichtung zur Detektion einer Undichtigkeit in einem Abgasabschnitt eines Verbrennungsmotors
EP2531706A1 (de) Diagnoseverfahren eines russsensors
EP3640443A1 (de) Verfahren zur bestimmung der beladung eines russfilters
WO2002103312A1 (de) Verfahren und vorrichtung zur ermittlung einer temperaturgrösse in einer massenstromleitung
DE10108181A1 (de) Verfahren und Vorrichtung zur Korrektur eines Temperatursignals
DE102007050026A1 (de) Verfahren und Vorrichtung zum Überwachen von Steuer- und Regelkreisen in einem Motorsystem
DE102018114779B4 (de) Verfahren zur Bestimmung des Beladungszustands eines Partikelfilters eines Kraftfahrzeugs
DE102011081634B4 (de) Verfahren und Vorrichtung zur Diagnose eines Fehlers in einem Abgasrückführungssystem
EP1364111B2 (de) Verfahren zur on-board ermittlung einer temperaturgrösse
DE102018110747B3 (de) Verfahren zur Diagnose einer Kurbelgehäuseentlüftung
DE112015002488T5 (de) Steuereinrichtung für einen Verbrennungsmotor
DE102018220729A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Partikelbeladung eines Partikelfilters
DE102016106068A1 (de) Verfahren zur Bestimmung der Temperatur eines Kühlmediums im Vorlauf eines Wärmeübertragers
DE102011003740B4 (de) Verfahren und Vorrichtung zur Überwachung eines Differenzdrucksensors
DE10028878A1 (de) Verfahren zur Erkennung und Bewertung von Lecks im Saugrohr von Verbrennungsmotoren mit wenigstens einem Zylinder
DE4303711B4 (de) Dieselpartikelfiltersystem
DE102019204463A1 (de) Verfahren zur Prädiktion eines Alterungsprozesses einer Komponente eines Kraftfahrzeugs, Steuerung und Kraftfahrzeug
DE102018201946A1 (de) Verfahren und Vorrichtung zur Plausibilisierung der Messwerte eines Feuchtesensors
DE102022101290A1 (de) Verfahren zur Kraftstoffbestimmung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19752914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217001325

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021506954

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19752914

Country of ref document: EP

Kind code of ref document: A1