WO2020030129A1 - 移相器及液晶天线 - Google Patents

移相器及液晶天线 Download PDF

Info

Publication number
WO2020030129A1
WO2020030129A1 PCT/CN2019/100031 CN2019100031W WO2020030129A1 WO 2020030129 A1 WO2020030129 A1 WO 2020030129A1 CN 2019100031 W CN2019100031 W CN 2019100031W WO 2020030129 A1 WO2020030129 A1 WO 2020030129A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
phase shifter
liquid crystal
electrodes
shifter according
Prior art date
Application number
PCT/CN2019/100031
Other languages
English (en)
French (fr)
Inventor
武杰
丁天伦
王瑛
曹雪
李亮
贾皓程
唐粹伟
蔡佩芝
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/635,253 priority Critical patent/US11158916B2/en
Publication of WO2020030129A1 publication Critical patent/WO2020030129A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present disclosure belongs to the field of communication technology, and particularly relates to a phase shifter, a liquid crystal antenna, a communication device, and a method of operating a liquid crystal phase shifter.
  • a phase shifter is a device that regulates the phase of electromagnetic waves and is widely used in various communication systems, such as satellite communications, phased array radar, remote sensing and telemetry.
  • Embodiments of the present disclosure provide a phase shifter and a liquid crystal antenna.
  • a first aspect of the present disclosure provides a phase shifter including:
  • the first substrate includes a first substrate and a first electrode located on a side of the first substrate near the liquid crystal layer;
  • the second substrate includes a second substrate, and a second electrode located on a side of the second substrate near the liquid crystal layer;
  • the phase shifter further includes an auxiliary capacitor connected to the first electrode.
  • the first electrode includes: a microstrip line
  • the second electrode includes: a plurality of sub-electrodes arranged periodically; and an orthographic projection of the microstrip line on the first substrate and each of the plurality of sub-electrodes on the first substrate.
  • the orthographic projections at least partially overlap.
  • the microstrip line includes a plurality of transmission units sequentially arranged along the length direction and periodically arranged, and a slit is defined between any two adjacent transmission units;
  • a plurality of auxiliary electrodes corresponding to a plurality of slits between the plurality of transmission units are provided on a side of the second substrate near the liquid crystal layer;
  • An orthographic projection of each of the auxiliary electrodes on the first substrate covers a slit corresponding to the auxiliary electrode, and a partial area of the transmission unit adjacent to the slit defining the slit;
  • Each of the auxiliary electrodes and the partial region of the transmission unit covered by an orthographic projection on the first substrate constitute the auxiliary capacitor.
  • the plurality of auxiliary electrodes and the plurality of sub-electrodes are disposed in the same layer and made of the same material.
  • the first pole piece and the second pole piece of the plurality of auxiliary capacitors respectively corresponding to the plurality of auxiliary electrodes are connected to the microstrip line.
  • the first pole piece and the second pole piece of the plurality of auxiliary capacitors are all connected on the same side of the microstrip line.
  • any two adjacent sub-electrodes are provided with an auxiliary capacitor in a region defined by an orthographic projection on the first substrate.
  • the first pole piece and the second pole piece of the plurality of auxiliary capacitors are integrally formed with the microstrip line.
  • a length direction of each of the plurality of sub-electrodes and a length direction of the microstrip line are perpendicular to each other.
  • the first electrode includes a microstrip line
  • the microstrip line includes a main structure including: a first side and a second side oppositely disposed along a length direction thereof; and in the main body A plurality of branch structures arranged periodically are connected to each of the first side and the second side of the structure.
  • the second electrode includes a pair of sub-electrodes; an orthographic projection of each of the pair of sub-electrodes on the first substrate and all connected on corresponding sides of the main structure
  • Each of the plurality of branch structures overlaps an orthographic projection on the first substrate.
  • the main structure includes: a plurality of transmission units sequentially arranged along the length direction of the main structure and periodically arranged; any two adjacent transmission units define a slit;
  • the branch structure is connected to each of the plurality of transmission units;
  • a plurality of auxiliary electrodes corresponding to a plurality of slits between the plurality of transmission units are provided on a side of the second substrate near the liquid crystal layer;
  • each of the auxiliary electrodes on the first substrate covers a slit corresponding thereto, and a partial region of the transmission unit adjacent to two of the slits defining the slit;
  • Each of the auxiliary electrodes and the partial region of the transmission unit covered by an orthographic projection on the first substrate constitute the auxiliary capacitor.
  • the plurality of auxiliary electrodes are disposed on the same layer as the pair of sub-electrodes and are made of the same material.
  • a length direction of each of the plurality of branch structures on each of the first side and the second side of the main structure is perpendicular to a direction of the microstrip line. Longitudinal direction.
  • the plurality of branch structures on the first side of the main structure and the plurality of branch structures on the second side of the main structure are symmetrical about the main structure.
  • a ground electrode is disposed on a side of the first substrate facing away from the liquid crystal layer.
  • the first substrate is made of at least one of glass, ceramic, and high-purity quartz glass.
  • the liquid crystal layer includes positive liquid crystal molecules, and an included angle between a long axis direction of each positive liquid crystal molecule and a plane on which the first substrate is located is greater than 0 degrees and less than or equal to 45 degrees. .
  • the liquid crystal layer includes negative liquid crystal molecules, and an included angle between a long axis direction of each of the negative liquid crystal molecules and a plane on which the first substrate is located is greater than 45 degrees and less than 90 degrees.
  • the phase shifter is configured to phase-shift a signal in any one of a frequency band of 2 GHz to 5 GHz and a frequency band of 12 GHz to 18 GHz.
  • a second aspect of the present disclosure provides a liquid crystal antenna including the phase shifter according to any one of the above embodiments of the present disclosure.
  • phase shifter 1 is a top view of a phase shifter according to an embodiment of the present disclosure
  • FIG. 2 is a side view of the phase shifter shown in Figure 1;
  • FIGS. 1 and 2 are an equivalent circuit model of the phase shifter shown in FIGS. 1 and 2;
  • FIG. 4 is a transmission characteristic curve when the variable capacitor in the phase shifter shown in FIG. 1 and FIG. 2 takes a minimum value
  • FIG. 5 is a transmission characteristic curve when the maximum value of the variable capacitor in the phase shifter shown in FIG. 1 and FIG. 2 is taken;
  • FIG. 6 is a top view of a phase shifter according to an embodiment of the present disclosure.
  • Figure 7 is a side view of the phase shifter shown in Figure 6;
  • FIG. 11A and 11B are top views of a phase shifter according to some embodiments of the present disclosure.
  • FIG. 12 is a cross-sectional view of the phase shifter shown in FIG. 11A along the line A-A 'in FIG. 11A;
  • FIG. 13 is a cross-sectional view of the phase shifter shown in FIG. 11A along the line B-B 'in FIG. 11A;
  • phase shifter 15 is a top view of a phase shifter according to an embodiment of the present disclosure.
  • FIG. 16 is a side view of the phase shifter shown in FIG. 15;
  • FIG. 17 is an equivalent circuit model of the phase shifter shown in FIGS. 15 and 16.
  • the microstrip line included in the conventional phase shifter has a periodic transmission structure and low-pass transmission characteristics, and achieves phase-shifting by adjusting some of these parameters (for example, dielectric constant). effect.
  • the loss of the conventional phase shifter is relatively large, and the amount of phase shift in the unit loss is relatively low. Therefore, a conventional phase shifter generates a large loss when realizing a large phase shift amount, thereby reducing the overall performance of a system including the phase shifter. Therefore, it is desirable to increase the phase shift amount of the phase shifter within a unit loss.
  • An embodiment of the present disclosure provides a liquid crystal phase shifter including a first substrate and a second substrate opposite to each other, and a liquid crystal layer located between the first substrate and the second substrate; wherein the first substrate includes: a first substrate And a first electrode on a side of the first substrate near the liquid crystal layer; the second substrate includes a second substrate and a second electrode on the side of the second substrate near the liquid crystal layer.
  • the first electrode and the second electrode respectively form an electric field after being applied with different voltages to deflect liquid crystal molecules in the liquid crystal layer, thereby changing the dielectric constant of the liquid crystal layer, so as to change the microwave signal transmitted to the liquid crystal layer Phase.
  • an auxiliary capacitor is further connected to the first electrode to reduce the overall loss of the phase shifter, and at the same time, the amount of phase shift in the unit loss of the phase shifter can be increased.
  • phase shifter In order to make the structure of the above-mentioned liquid crystal phase shifter clearer, the phase shifter will be further described with reference to the following embodiments.
  • an embodiment of the present disclosure provides a liquid crystal phase shifter, which includes a first substrate and a second substrate opposite to each other, and a liquid crystal layer 30 located between the first substrate and the second substrate.
  • the first substrate includes a first substrate 10, a first electrode located on a side of the first substrate 10 near the liquid crystal layer 30, and a ground electrode 12 on a side of the first substrate 10 facing away from the liquid crystal layer 30.
  • the first electrode is a microstrip line 1;
  • the microstrip line 1 includes a plurality of transmission units 11 periodically arranged along its length direction, and one is defined between any two adjacent transmission units 11
  • the slit Q that is, the interval between the transmission units 11 is set, and the interval may be constant (that is, the interval between two adjacent transmission units 11 and the interval between the other two adjacent transmission units 11 Can be the same).
  • the second substrate includes a second substrate 20 and a second electrode located on a side of the second substrate 20 near the liquid crystal layer 30.
  • the second electrode includes a plurality of sub-electrodes 21 periodically arranged; the orthographic projection of each sub-electrode 21 on the first substrate 10 and the microstrip line 1 on the first substrate 10 (for example, the transmission unit 11 of the microstrip line 1) The orthographic projections on the first substrate 10 overlap at least partially.
  • the second electrode further includes a plurality of auxiliary electrodes 22 disposed on a side of the second substrate 20 near the liquid crystal layer 30, and a plurality of slits Q between the plurality of auxiliary electrodes 22 and the plurality of transmission units 11.
  • each auxiliary electrode 22 corresponds to one slit Q on the first substrate 10.
  • the orthographic projection of each auxiliary electrode 22 on the first substrate 10 covers the corresponding slit Q, and a partial area of two adjacent transmission units 11 defining the slit Q;
  • the partial regions of two adjacent transmission units 11 covered by the orthographic projection on the first substrate 10 form an auxiliary capacitor C2, as shown in FIGS. 1 and 2.
  • each transmission unit 11 may be disposed opposite to one sub-electrode 21.
  • the disclosure is not limited thereto, and for example, each transmission unit 11 may be disposed opposite to two or more sub-electrodes 21.
  • each transmission unit 11 is disposed opposite to one sub-electrode 21.
  • the microstrip line 1 and the ground electrode 12 constitute a microwave signal transmission structure, so that most of the microwave signals are transmitted in the first substrate 10, and only a small part of the microwave signals are in the liquid crystal layer 30. transmission.
  • the material of the first substrate 10 can be selected from glass, ceramics, etc. These materials will not absorb the microwave signal, so the loss of the microwave signal during transmission can be greatly reduced.
  • each auxiliary electrode 22 and the corresponding two adjacent transmission units 11 are perpendicular to the first
  • the direction of the substrate 10 or the second substrate 20 at least partially overlaps to form an auxiliary capacitor C2, so an electric field is also generated between the two.
  • the generated electric field deflects the liquid crystal molecules 31 in the liquid crystal layer 30, thereby changing the dielectric constant of the liquid crystal layer 30, and realizing the phase shift of the microwave signal in the liquid crystal layer 30. Thereafter, the microwave signal in the liquid crystal layer 30 and the microwave signal in the first substrate 10 are transmitted alternately, so that the phase shift of the overall microwave signal is achieved. In other words, most of the microwave signals transmitted in the first substrate 10 and a small portion of the microwave signals transmitted in the liquid crystal layer 30 may undergo the same phase shift.
  • each transmission unit 11 may be equivalent to an inductance L.
  • the transmission unit 11 and the corresponding sub-electrode 21 overlap with each other in a direction perpendicular to the first substrate 10 or the second substrate 20 to form a variable capacitor C1.
  • Each auxiliary electrode 22 and the corresponding two adjacent transmission units 11 overlap with each other in a direction perpendicular to the first substrate 10 or the second substrate 20 to form an auxiliary capacitor C2.
  • each transmission unit 11 and the ground electrode 12 form an overlapping capacitance C because they overlap in a direction perpendicular to the first substrate 10 or the second substrate 20, as shown in FIG. 3.
  • FIG. 3 is an equivalent circuit model of the phase shifter shown in FIGS. 1 and 2.
  • the phase shifter includes a first substrate and a second substrate opposite to each other, and a liquid crystal layer 30 located between the two.
  • the first substrate includes a first substrate 10 and a first substrate 10 near the liquid crystal layer 30.
  • the microstrip line 1 on the side is the ground electrode 12 on the side of the first substrate 10 facing away from the liquid crystal layer 30.
  • the second substrate includes a second substrate 20, which is periodically arranged on the side of the second substrate 20 near the liquid crystal layer 30.
  • a plurality of sub-electrodes 21 are examples of sub-electrodes 21.
  • the microstrip line 1 (for example, a portion located between the orthographic projections of two adjacent sub-electrodes 21 on the first substrate 10) may be equivalent to the inductance L, and the microstrip line 1 overlaps each of the sub-electrodes 21
  • the microstrip line 1 (for example, a portion located between two orthographic projections of two adjacent sub-electrodes 21 on the first substrate 10) and the ground electrode 12 overlap to form an overlapping capacitor C, as shown in FIG. 8 shown.
  • FIG. 8 is an equivalent circuit model of the phase shifter shown in FIGS. 6 and 7.
  • a length direction for example, a vertical direction in FIG. 1 of each of the plurality of sub-electrodes 21 and a length direction (for example, a horizontal direction in FIG. 1) of the microstrip line 1 are perpendicular to each other.
  • the equivalent circuit models (as shown in FIG. 8) of the phase shifters shown in FIGS. 6 and 7 constitute a low-pass filter; and the equivalents of the phase shifters shown in FIGS. 1 and 2
  • the circuit model (shown in Figure 3) is equivalent to connecting an auxiliary capacitor C2 in series with the microstrip line 1 of the phase shifter shown in Figures 6 and 7.
  • the effective circuit model constitutes a combination of a low-pass filter and a high-pass filter, which is equivalent to a band-pass filter.
  • FIG. 9 and FIG. 10 show the transmission characteristics of the phase shifter shown in FIG. 6 and FIG. 7 during operation, where FIG.
  • FIG. 9 is the smallest variable capacitor C1 in the phase shifter shown in FIG. 6 and FIG. 7.
  • FIG. 10 is a transmission characteristic curve when the variable capacitor C1 in the phase shifter shown in FIG. 6 and FIG. 7 is the maximum value.
  • Figures 4 and 5 show the transmission characteristics of the phase shifter shown in Figures 1 and 2 during operation, where Figure 4 is the variable capacitor C1 of the phase shifter shown in Figures 1 and 2 as the smallest FIG. 5 is a transmission characteristic curve when the variable capacitor C1 of the phase shifter shown in FIG. 1 and FIG. 2 is the maximum value.
  • both of FIG. 4 and FIG. 9 are at Phase shifter loss at 3.5GHz. It can be seen that the loss of the phase shifter shown in Figs. 1 and 2 at this operating frequency is still 0, and the operation loss of the phase shifter shown in Figs. 6 and 7 has begun to deviate from 0, that is, it has begun to produce loss. Similarly, comparing FIG. 5 and FIG. 10, the difference between FIG. 10 and FIG. 5 is similar to the difference between FIG. 9 and FIG. 4, and will not be described in detail here.
  • the phase shifters shown in FIGS. 6 and 7 have the least loss when the frequency of the signal is zero, in the range of 0 GHz to about 6.6 GHz in FIG. 4 and in the range of 0 GHz to about 5.5 GHz in FIG. 5.
  • the loss can increase (thus, high-pass filtering can remove high-frequency components with relatively large losses), and then the loss can be smaller in some higher frequency bands.
  • the transmission characteristic curves shown in FIGS. 9 and 10 are equivalent to moving the zero frequency of the transmission characteristic curves shown in FIGS. 4 and 5 to the operating frequency m1 in FIGS. 9 and 10, respectively. Therefore, the phase shifter shown in FIG. 1 and FIG.
  • the phase shifter according to the inventive concept can phase-shift signals in a frequency band of 1 GHz to 40 GHz.
  • the phase shifter according to the inventive concept has less loss when performing phase shifting.
  • the plurality of sub-electrodes 21 and the plurality of auxiliary electrodes 22 on the second substrate 20 may be disposed on the same layer, and the materials may be the same.
  • the two parts of the structure can be prepared in one patterning process, so that the production efficiency of the phase shifter can be effectively improved, and the cost can be saved.
  • the width of the slit Q between each pair of adjacent transmission units 11 in the microstrip line 1 shown in FIG. 1 and FIG. 2 may be the same, that is, the periodic arrangement of the plurality of transmission units 11 is in accordance with Arranged in the same way.
  • the periodic arrangement of the plurality of transmission units 11 is not limited to this, and each transmission unit 11 may also be arranged according to a preset arrangement rule.
  • each sub-electrode 21 in the second electrode shown in FIG. 1 and FIG. 2 are the same, that is, the periodic arrangement of the plurality of sub-electrodes 21 is arranged in the same manner.
  • the periodic arrangement of each sub-electrode 21 is not limited to this, and each sub-electrode 21 may also be arranged according to a preset arrangement rule.
  • each transmission unit 11 may be provided correspondingly to at least one sub-electrode 21 (in the figure, each transmission unit 11 is provided correspondingly to one sub-electrode 21 for example (Explained), and the length direction of each transmission unit 11 may be perpendicular to the length direction of the sub-electrode 21 to ensure that the transmission unit 11 and the sub-electrode 21 have a sufficiently large overlapping area so that After the voltage is applied, the generated electric field can deflect the liquid crystal molecules 31 and change the dielectric constant of the liquid crystal layer 30 so as to realize the phase shift of the microwave signal.
  • the first substrate 10 and the second substrate 20 may be a glass substrate with a thickness of 100-1000 microns, a sapphire substrate, or a thickness of 10- 500 micron polyethylene terephthalate substrate, triallyl tricyanate substrate, and polyimide transparent flexible substrate.
  • the first substrate 10 and the second substrate 20 may be high-purity quartz glass with extremely low dielectric loss. Compared with ordinary glass substrates, the use of high-purity quartz glass in the first substrate 10 and the second substrate 20 can effectively reduce the loss of microwaves, so that the phase shifter has low power consumption and high signal-to-noise ratio.
  • each of the transmission unit 11, the ground electrode 12, each sub-electrode 21, and each auxiliary electrode 22 in the microstrip line 1 may be Made of aluminum, silver, gold, chromium, molybdenum, nickel or iron.
  • each transmission unit 11 in the microstrip line 1 can also be made of a transparent conductive oxide.
  • the liquid crystal molecules 31 in the liquid crystal layer 30 may be positive liquid crystal molecules 31 or negative liquid crystal molecules 31.
  • the angle between the long axis direction of each liquid crystal molecule 31 and the plane on which the first substrate 10 or the second substrate 20 is located in the embodiment of the present disclosure More than 0 degrees and less than or equal to 45 degrees.
  • the angle between the long axis direction of each liquid crystal molecule 31 and the plane on which the first substrate 10 or the second substrate 20 is located in the embodiment of the present disclosure is greater than 45 degrees and less than 90 degree. In this way, it is ensured that after the liquid crystal molecules 31 are deflected, the dielectric constant of the liquid crystal layer 30 is changed to achieve the purpose of phase shifting.
  • an embodiment of the present disclosure provides a liquid crystal phase shifter, which includes a first substrate and a second substrate opposite to each other, and a liquid crystal layer 30 between the first substrate and the second substrate. .
  • the first substrate includes a first substrate 10, a first electrode located on a side of the first substrate 10 near the liquid crystal layer 30, and a ground electrode 12 on a side of the first substrate 10 facing away from the liquid crystal layer 30.
  • the first electrode is a microstrip line 1;
  • the microstrip line 1 includes a main structure including a first side and a second side oppositely disposed along its length direction;
  • the microstrip line 1 further includes a connection to the main structure A plurality of branch structures 13 on each of the first side and the second side of and are periodically arranged.
  • the plurality of branch structures 13 connected on the first side of the main body structure and the plurality of branch structures 13 on the second side may be set relative to the main body
  • the length direction of the structure is symmetrical, as shown in FIG. 11A.
  • the present disclosure is not limited to this.
  • the plurality of branch structures 13 connected on the first side of the main structure and the plurality of branch structures 13 on the second side may also be set to be asymmetric with respect to the length direction of the main structure, as shown in FIG. 11B As shown.
  • the main structure of the microstrip line 1 includes a plurality of transmission units 11 arranged periodically along its length direction, and a slit Q is defined between any two adjacent transmission units 11.
  • At least one branch structure 13 may be connected to each of the first side and the second side of each transmission unit 11; for convenience of description, the first side and For example, a branch structure 13 is connected to each of the second sides. It should be understood that, since the transmission units 11 are sequentially disposed along the length direction of the main body structure, the first side and the second side of each transmission unit 11 are also the first side and the second side of the main body structure.
  • the second substrate includes a second substrate 20 and a second electrode on the second substrate 20.
  • the second electrode includes a pair of sub-electrodes 21.
  • one of the pair of sub-electrodes 21 may be referred to as a first sub-electrode 21, and the other may be referred to as a second sub-electrode 21.
  • the orthographic projection of the first sub-electrode 21 on the first substrate 10 overlaps with the orthographic projection of each of the plurality of branch structures 13 connected to the first side of the main structure on the first substrate 10, and the second sub-electrode
  • the orthographic projection of 21 on the first substrate 10 overlaps with the orthographic projection of each of the plurality of branch structures 13 connected on the second side of the main structure on the first substrate 10.
  • each of the plurality of branch structures 13 on each of the first side and the second side of the main structure is perpendicular to the length direction of the microstrip line 1 .
  • the plurality of branch structures 13 on the first side of the main structure and the plurality of branch structures 13 on the second side of the main structure are symmetrical with respect to the main structure.
  • a plurality of auxiliary electrodes 22 are further provided on the second substrate 20; a position of each auxiliary electrode 22 corresponds to a position of a slit Q on the first substrate 10.
  • the orthographic projection of each auxiliary electrode 22 on the first substrate 10 covers the corresponding slit Q, and a partial area of two adjacent transmission units 11 defining the slit Q.
  • the auxiliary capacitor C2 and the partial regions of the two adjacent transmission units 11 covered by the orthographic projection on the first substrate 10 constitute the auxiliary capacitor C2 (as shown in FIG. 14), which is similar to that shown in the figure. Shown C2.
  • the phase shifter in this embodiment forms a microwave signal transmission structure through the main structure of the microstrip line 1 and the ground electrode 12, so that most of the microwave signals are transmitted in the first substrate 10, and only a small part of the microwave signals are in the liquid crystal layer. 30 transmissions.
  • the first substrate 10 can be made of glass, ceramic, or the like. These materials do not absorb microwave signals, and thus the loss of microwave signals during transmission can be greatly reduced.
  • the microwave signals in the liquid crystal layer 30 and the microwave signals in the first substrate 10 are transmitted alternately, so as to realize the phase shift of the overall microwave signal.
  • most of the microwave signals transmitted in the first substrate 10 and a small portion of the microwave signals transmitted in the liquid crystal layer 30 may undergo the same phase shift.
  • each transmission unit 11 of the main structure may be equivalent to one inductance L
  • each branch structure 13 may be equivalent to one branch inductance L1
  • each branch structure 13 and a sub-electrode 21 overlap constitutes a variable capacitor C1
  • the overlap of each auxiliary electrode 22 and the corresponding two adjacent transmission units 11 constitutes an auxiliary capacitor C2
  • each transmission unit 11 and the ground electrode The overlap of 12 constitutes the overlap capacitor C, as shown in FIG. 14.
  • FIG. 14 is an equivalent circuit model of the phase shifter shown in FIGS. 11A to 13.
  • the equivalent circuit models (as shown in FIG. 8) of the phase shifters shown in FIGS. 5 and 6 constitute a low-pass filter; and the equivalents of the phase shifters shown in FIGS. 11A to 13
  • the circuit model (shown in FIG. 14) is equivalent to connecting an auxiliary capacitor C2 in series with the microstrip line 1 of the phase shifter shown in FIGS. 5 and 6.
  • the effective circuit model constitutes a combination of a low-pass filter and a high-pass filter, which is equivalent to a band-pass filter.
  • the equivalent circuit model of the phase shifter shown in FIG. 14 is substantially the same as the equivalent circuit model shown in FIG.
  • each variable capacitor C1 in FIG. 14 has a branch inductor L1 connected in series.
  • the output characteristic curve of the circuit model shown in FIG. 14 is not significantly different from the output characteristic curves shown in FIGS. 4 and 5, and is basically the same. That is, the phase shifter shown in FIGS. 11A to 13 can also improve the adjustable range of the phase shifter and reduce the phase shifter's loss in the operating frequency range, thereby increasing the phase shift within the unit loss. the amount.
  • the pair of sub-electrodes 21 and the plurality of auxiliary electrodes 22 on the second substrate 20 may be disposed on the same layer, and the materials may be the same.
  • the two parts of the structure can be prepared in one patterning process, so that the production efficiency of the phase shifter can be effectively improved, and the cost can be saved.
  • the widths of the slits Q between each pair of adjacent two transmission units 11 in the microstrip line 1 of this embodiment are the same, that is, the periodic arrangement of the plurality of transmission units 11 is at the same pitch.
  • the periodic arrangement of the plurality of transmission units 11 is not limited to this, and each transmission unit 11 may also be arranged according to a preset arrangement rule.
  • the pitch between each pair of branch structures 13 forming each auxiliary capacitor C2 is the same (or constant), and in addition, the periodic arrangement of each pair of branch structures 13 of each auxiliary capacitor C2 is formed.
  • the cloths can be arranged in the same pitch, but the periodic arrangement of the branch structures 13 is not limited to this, and the branch structures 13 can also be arranged according to a preset arrangement rule.
  • the branch structure 13 connected to each transmission unit 11 in this embodiment is an integrally formed structure with the transmission unit 11, that is, the two can be prepared in one process, so the preparation process can be simplified and the cost can be saved.
  • the first substrate 10 and the second substrate 20 may be a glass substrate with a thickness of 100-1000 microns, a sapphire substrate, or a polyethylene terephthalate substrate with a thickness of 10-500 microns.
  • the first substrate 10 and the second substrate 20 may be high-purity quartz glass with extremely low dielectric loss. Compared with ordinary glass substrates, the use of high-purity quartz glass in the first substrate 10 and the second substrate 20 can effectively reduce the loss of microwaves, so that the phase shifter has low power consumption and high signal-to-noise ratio.
  • high-purity quartz glass refers to quartz glass in which the weight percentage of SiO 2 is greater than or equal to 99.9%.
  • each of the transmission unit 11, each branch structure 13, ground electrode 12, each sub-electrode 21, and each auxiliary electrode 22 in the microstrip line 1 may be aluminum, silver, gold, or chromium , Molybdenum, nickel or iron.
  • each transmission unit 11 in the microstrip line 1 can also be made of a transparent conductive oxide.
  • the liquid crystal molecules 31 in the liquid crystal layer 30 may be positive liquid crystal molecules 31 or negative liquid crystal molecules 31.
  • the angle between the long axis direction of each liquid crystal molecule 31 and the plane on which the first substrate 10 or the second substrate 20 is located in the embodiment of the present disclosure More than 0 degrees and less than or equal to 45 degrees.
  • the angle between the long axis direction of each liquid crystal molecule 31 and the plane on which the first substrate 10 or the second substrate 20 is located in the embodiment of the present disclosure is greater than 45 degrees and less than 90 degree. In this way, it is ensured that after the liquid crystal molecules 31 are deflected, the dielectric constant of the liquid crystal layer 30 is changed to achieve the purpose of phase shifting.
  • an embodiment of the present disclosure provides a phase shifter, which includes a first substrate and a second substrate opposite to each other, and a liquid crystal layer 30 located between the first substrate and the second substrate. .
  • the first substrate includes a first substrate 10, a first electrode located on a side of the first substrate 10 near the liquid crystal layer 30, and a ground electrode 12 on a side of the first substrate 10 facing away from the liquid crystal layer 30.
  • the first electrode is a microstrip line 1.
  • a plurality of auxiliary capacitors C2 are further provided on the first substrate 10, wherein the first pole piece 111 and the second pole piece 112 of each of the auxiliary capacitors C2 are connected to the microstrip line 1.
  • first pole piece 111 and the second pole piece 112 of each auxiliary capacitor C2 are oppositely disposed, so it can be understood that the first pole piece 111 and the second pole of each auxiliary capacitor C2
  • the sheet 112 is connected on the same side of the microstrip line 1 as shown in FIG. 15.
  • the second substrate includes a second substrate 20 and a second electrode located on a side of the second substrate 20 near the liquid crystal layer 30.
  • the second electrode includes a plurality of sub-electrodes 21 arranged periodically; the orthographic projection of each sub-electrode 21 on the first substrate 10 and the orthographic projection of the microstrip line 1 on the first substrate 10 at least partially overlap .
  • Any two adjacent sub-electrodes 21 are provided with an auxiliary capacitor C2 in a region defined by an orthographic projection on the first substrate 10.
  • a length direction for example, a vertical direction in FIG. 15
  • a length direction for example, a horizontal direction in FIG. 15
  • the microstrip line 1 and the ground electrode 12 constitute a microwave signal transmission structure, so that most of the microwave signals are transmitted in the first substrate 10, and only a small part of the microwave signals are in the liquid crystal layer 30. transmission.
  • the first substrate 10 can be made of glass, ceramics, etc. These materials will not absorb microwave signals, and thus the loss of the microwave signals during transmission can be greatly reduced.
  • the generated electric field deflects the liquid crystal molecules 31 in the liquid crystal layer 30, thereby changing the dielectric constant of the liquid crystal layer 30, and realizing the phase shift of the microwave signal in the liquid crystal layer 30.
  • the microwave signals in the liquid crystal layer 30 and the microwave signals in the first substrate 10 are transmitted alternately, so as to realize the phase shift of the overall microwave signal. In other words, most of the microwave signals transmitted in the first substrate 10 and a small portion of the microwave signals transmitted in the liquid crystal layer 30 may undergo the same phase shift.
  • the portion of the microstrip line 1 between the orthographic projections of any two adjacent sub-electrodes 21 on the first substrate 10 may be equivalent to the inductance L, and the overlap between the microstrip line 1 and the sub-electrodes 21 constitutes a variable capacitor.
  • C1 a pair of first pole pieces 111 and second pole pieces 112 connected to the microstrip line 1 form an auxiliary capacitor C2, and the microstrip line 1 is located on the positive side of any two adjacent sub-electrodes 21 on the first substrate 10.
  • the portion between the projections and the ground electrode 12 overlap to form an overlapping capacitance C, as shown in FIG. 17.
  • FIG. 17 is an equivalent circuit model of the phase shifter shown in FIGS. 15 and 16.
  • the equivalent circuit models of the phase shifter shown in FIG. 5 and FIG. 6 constitute a low-pass filter; and the equivalents of the phase shifter shown in FIG. 15 and FIG. 16
  • the circuit model (shown in FIG. 17) is equivalent to connecting an auxiliary capacitor C2 in parallel to the microstrip line 1 of the phase shifter shown in FIG. 5 and FIG. 6, so that the equivalent circuit model of the phase shifter shown in FIG. 17 constitutes
  • the combination of a low-pass filter and a high-pass filter is equivalent to a band-pass filter.
  • the equivalent circuit model of the phase shifter shown in FIG. 14 is substantially the same as the equivalent circuit model shown in FIG. 3.
  • the difference is that an auxiliary capacitor C2 is connected in parallel to the microstrip line 1 in FIG. 14, and an auxiliary capacitor C2 is connected in series to the microstrip line 1 in FIG. 3.
  • the output characteristic curve of the circuit model shown in FIG. 14 is not much different from the output characteristic curves shown in FIGS. 4 and 5, and is basically the same. That is, the phase shifters shown in Figure 15 and Figure 16 can also improve the adjustable range of the phase shifter, and improve the phase shifter's loss in the operating frequency range, thereby increasing the amount of phase shift in unit loss .
  • the microstrip line 1 on the first substrate 10 and the first and second pole pieces 111 and 112 of the plurality of auxiliary capacitors C2 may be integrally formed.
  • the structure, that is, the two can be arranged on the same layer, and the materials can be the same. In this way, these two structures can be prepared in a single process, which can reduce process costs.
  • each pair of adjacent two sub-electrodes 21 in the second electrode of this embodiment is the same, that is, the periodic arrangement of the plurality of sub-electrodes 21 is arranged in the same manner, but the The periodic arrangement of the plurality of sub-electrodes 21 is not limited to this, and each sub-electrode 21 may also be arranged according to a preset arrangement rule.
  • each sub-electrode 21 and the length direction of the microstrip line 1 may be perpendicular to each other to ensure that the microstrip line 1 and the plurality of sub-electrodes 21 have a sufficiently large overlapping area so that After a first voltage is applied to the plurality of sub-electrodes 21 and a second voltage different from the first voltage is applied, an electric field generated can deflect the liquid crystal molecules 31 and change the dielectric constant of the liquid crystal layer 30 to achieve phase shift of the microwave signal. .
  • the first substrate 10 and the second substrate 20 may be a glass substrate having a thickness of 100-1000 microns, a sapphire substrate may also be used, and a polyethylene terephthalate substrate having a thickness of 10-500 microns may be used.
  • the first substrate 10 and the second substrate 20 may be high-purity quartz glass with extremely low dielectric loss. Compared with ordinary glass substrates, the use of high-purity quartz glass in the first substrate 10 and the second substrate 20 can effectively reduce the loss of microwaves, so that the phase shifter has low power consumption and high signal-to-noise ratio.
  • high-purity quartz glass refers to quartz glass in which the weight percentage of SiO 2 is greater than or equal to 99.9%.
  • each of the microstrip line 1, the ground electrode 12, each sub-electrode 21, and the first pole piece 111 and the second pole piece 112 of each auxiliary capacitor C2 may be aluminum, silver, gold, chromium, Made of metals such as molybdenum, nickel or iron.
  • the microstrip line 1 can also be made of transparent conductive oxide.
  • the liquid crystal molecules 31 in the liquid crystal layer 30 may be positive liquid crystal molecules 31 or negative liquid crystal molecules 31.
  • the angle between the long axis direction of each liquid crystal molecule 31 and the plane on which the first substrate 10 or the second substrate 20 is located in the embodiment of the present disclosure More than 0 degrees and less than or equal to 45 degrees.
  • the angle between the long axis direction of each liquid crystal molecule 31 and the plane on which the first substrate 10 or the second substrate 20 is located in the embodiment of the present disclosure is greater than 45 degrees and less than 90 degree. In this way, it is ensured that after the liquid crystal molecules 31 are deflected, the dielectric constant of the liquid crystal layer 30 is changed to achieve the purpose of phase shifting.
  • phase shifters provided in the above embodiments all realize the phase shift function by changing the dielectric constant of the liquid crystal layer, they can be called liquid crystal phase shifters.
  • An embodiment of the present disclosure provides a liquid crystal antenna including the liquid crystal phase shifter of any one of the above embodiments.
  • at least two patch units may be provided on a side of the second substrate 20 facing away from the liquid crystal layer 30, wherein a gap between each two patch units and a corresponding one between two adjacent sub-electrodes 21 The gap is set accordingly.
  • the microwave signals that have undergone phase adjustment by the phase shifter in any of the above embodiments can be radiated from the gap between the patch units.
  • the liquid crystal antenna may further include a feeding interface for feeding a microwave signal in the cable to a microwave transmission structure (for example, a microstrip line 1).
  • a microwave transmission structure for example, a microstrip line 1.
  • An embodiment of the present disclosure provides a communication device including the liquid crystal antenna in the above embodiment.
  • the communication device has reduced losses and improved efficiency.
  • An embodiment of the present disclosure provides a method for operating a liquid crystal phase shifter, wherein the liquid crystal phase shifter is a liquid crystal phase shifter according to any one of the above embodiments, and the method includes: Applying a first voltage to the electrode; and applying a second voltage different from the first voltage to the second electrode to generate an electric field between the first electrode and the second electrode such that the liquid crystal layer 30
  • the long axis of the liquid crystal molecules 31 is substantially parallel to the direction of the electric field (for positive liquid crystal molecules) or substantially perpendicular (for negative liquid crystal molecules).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种移相器及液晶天线。移相器包括:相对设置的第一基板和第二基板,以及位于第一基板和第二基板之间的液晶层(30);其中,第一基板包括:第一基底(10),以及位于第一基底(10)靠近液晶层(30)的一侧的第一电极;第二基板包括:第二基底(20),以及位于第二基底(20)上靠近液晶层(30)的一侧的第二电极;并且移相器还包括与第一电极连接的辅助电容(C2)。

Description

移相器及液晶天线
相关申请的交叉引用
本申请要求于2018年8月10日提交的中国专利申请No.201810914320.6的优先权,该专利申请的全部内容通过引用方式合并于此。
技术领域
本公开属于通信技术领域,具体涉及一种移相器、一种液晶天线、一种通信设备和一种操作液晶移相器的方法。
背景技术
移相器是一种调控电磁波相位的器件,广泛应用于各种通信系统中,如卫星通信,相控阵雷达,遥感遥测等。
发明内容
本公开的实施例提供了一种移相器及一种液晶天线。
本公开的第一方面提供了一种移相器,包括:
相对设置的第一基板和第二基板,以及位于所述第一基板和所述第二基板之间的液晶层;其中,
所述第一基板包括:第一基底,以及位于所述第一基底靠近所述液晶层的一侧的第一电极;
所述第二基板包括:第二基底,以及位于所述第二基底上靠近所述液晶层的一侧的第二电极;以及
所述移相器还包括与所述第一电极连接的辅助电容。
在一个实施例中,所述第一电极包括:微带线;
所述第二电极包括:周期性排布的多个子电极;以及所述微带线在所述第一基底上的正投影与所述多个子电极中的每一个在所述 第一基底上的正投影至少部分重叠。
在一个实施例中,所述微带线包括:沿其长度方向依次设置且周期性排布的多个传输单元,任意两相邻的所述传输单元之间限定出一个狭缝;
在所述第二基底靠近所述液晶层的一侧设置有与所述多个传输单元之间的多个狭缝一一对应的多个辅助电极;
每个所述辅助电极在所述第一基底上的正投影覆盖与其对应的狭缝,以及与限定出该狭缝的两相邻的所述传输单元的部分区域;以及
每个所述辅助电极与其在所述第一基底上的正投影覆盖的所述传输单元的所述部分区域构成所述辅助电容。
在一个实施例中,所述多个辅助电极与所述多个子电极同层设置,且材料相同。
在一个实施例中,与所述多个辅助电极分别相对应的多个辅助电容的第一极片和第二极片均与所述微带线连接。
在一个实施例中,所述多个辅助电容的第一极片和第二极片均连接在所述微带线的同一侧。
在一个实施例中,任意两相邻的所述子电极在所述第一基底上的正投影所限定的区域中设置有一个所述辅助电容。
在一个实施例中,所述多个辅助电容的第一极片和第二极片与所述微带线为一体成型结构。
在一个实施例中,所述多个子电极中的每一个的长度方向与所述微带线的长度方向互相垂直。
在一个实施例中,所述第一电极包括微带线,所述微带线包括主体结构,所述主体结构包括:沿其长度方向相对设置的第一侧和第二侧;在所述主体结构的所述第一侧和所述第二侧中的每一侧上连接有周期性排布的多个分支结构。
在一个实施例中,所述第二电极包括一对子电极;所述一对子电极中的每一个在所述第一基底上的正投影与连接在所述主体结构的对应侧上的所述多个分支结构中的每一个在所述第一基底上的正 投影部分重叠。
在一个实施例中,所述主体结构包括:沿所述主体结构长度方向依次设置且周期性排布的多个传输单元;任意两相邻的所述传输单元之间限定出一个狭缝;所述多个传输单元中的每一个上均连接有所述分支结构;
在所述第二基底靠近所述液晶层的一侧设置有与所述多个传输单元之间的多个狭缝一一对应的多个辅助电极;
每个所述辅助电极在所述第一基底上的正投影覆盖与之对应的狭缝,以及与限定出该狭缝的两相邻的所述传输单元的部分区域;以及
每个所述辅助电极与其在所述第一基底上的正投影覆盖的所述传输单元的所述部分区域构成所述辅助电容。
在一个实施例中,所述多个辅助电极与所述一对子电极同层设置,且材料相同。
在一个实施例中,所述主体结构的所述第一侧和所述第二侧中的每一侧上的所述多个分支结构中的每一个的长度方向垂直于所述微带线的长度方向。
在一个实施例中,所述主体结构的所述第一侧上的所述多个分支结构与所述主体结构的所述第二侧上的所述多个分支结构关于所述主体结构对称。
在一个实施例中,在所述第一基底背离所述液晶层的一侧设置有地电极。
在一个实施例中,所述第一基底采用玻璃、陶瓷和高纯度石英玻璃中的至少一种制成。
在一个实施例中,所述液晶层包括正性液晶分子,并且每一个所述正性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于0度小于等于45度。
在一个实施例中,所述液晶层包括负性液晶分子,并且每一个所述负性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于45度小于90度。
在一个实施例中,所述移相器被配置为对频率在2GHz至5GHz的频段和12GHz至18GHz的频段中的任一个频段内的信号进行移相。
本公开的第二方面提供了一种液晶天线,包括根据本公开的上述实施例中的任一个所述的移相器。
附图说明
图1为根据本公开的实施例的移相器的俯视图;
图2为图1所示的移相器的侧视图;
图3为图1和图2所示的移相器的等效电路模型;
图4为图1和图2所示的移相器中的可变电容取最小值时的传输特性曲线;
图5为图1和图2所示的移相器中的可变电容取最大值时的传输特性曲线;
图6为根据本公开的实施例的移相器的俯视图;
图7为图6所示的移相器的侧视图;
图8为图6和图7所示的移相器的等效电路模型;
图9为图6和图7所示的移相器中的可变电容取最小值时的传输特性曲线;
图10为图6和图7所示的移相器中的可变电容取最大值时的传输特性曲线;
图11A和图11B为根据本公开的一些实施例的移相器的俯视图;
图12为图11A所示的移相器沿着图11A中的线A-A’的截面图;
图13为图11A所示的移相器沿着图11A中的线B-B’的截面图;
图14为图11A至图13所示的移相器的等效电路模型;
图15为根据本公开的实施例的移相器的俯视图;
图16为图15所示的移相器的侧视图;以及
图17为图15和图16所示的移相器的等效电路模型。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和示例性实施方式对本公开作进一步详细描述。
除非另有定义,否则本公开(包括实施例和权利要求)中使用的技术术语或者科学用语应当为本公开所属技术领域内具有一般技能的人士所能理解的通常意义。本实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同物,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的连接。“上”、“下”、“左”、“右”等仅用于表示附图中的相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
本发明构思的发明人发现,常规的移相器所包括的微带线具有周期性传输结构和低通的传输特性,并且通过调节其中某些参数(例如,介电常数)来达到移相的效果。常规的移相器的损耗偏大,单位损耗内的相移量偏低。因此,常规的移相器在实现大相移量时产生的损耗大,从而降低包括该移相器的系统的整体性能。所以,期望提高单位损耗内移相器的相移量。
本公开的实施例提供一种液晶移相器,包括相对设置的第一基板和第二基板,以及位于第一基板和第二基板之间的液晶层;其中,第一基板包括:第一基底,以及位于该第一基底靠近液晶层的一侧的第一电极;第二基板包括:第二基底,以及位于该第二基底靠近液晶层一侧的第二电极。这样,第一电极和第二电极在分别被施加不同的电压后形成电场,以使液晶层中的液晶分子偏转,从而改变液晶层的介电常数,以便改变传输至液晶层中的微波信号的相位。特别的是, 在本实施例中第一电极上还连接有辅助电容,以降低移相器的整体损耗,同时还可以提高移相器单位损耗内的相移量。
为了使上述的液晶移相器的结构更清楚,结合以下实施例对该移相器进行进一步说明。
如图1和图2所示,本公开的实施例提供一种液晶移相器,包括相对设置的第一基板和第二基板,以及位于第一基板和第二基板之间的液晶层30。
第一基板包括:第一基底10,位于该第一基底10靠近液晶层30的一侧的第一电极,以及位于第一基底10背离液晶层30一侧的地电极12。例如,第一电极为微带线1;该微带线1包括沿其长度方向依次设置的周期性排布的多个传输单元11,且在任意两相邻的传输单元11之间限定出一个狭缝Q,也即传输单元11之间是间隔设置的,且该间隔可以是恒定的(即,两相邻的传输单元11之间的间隔和其它两相邻的传输单元11之间的间隔可以是相同的)。
第二基板包括:第二基底20,以及位于该第二基底20靠近液晶层30一侧的第二电极。第二电极包括周期性排布的多个子电极21;每个子电极21在第一基底10上的正投影与第一基底10上的微带线1(例如,微带线1的传输单元11)在第一基底10上的正投影至少部分重叠。第二电极还包括设置在第二基底20靠近所述液晶层30的一侧的多个辅助电极22,所述多个辅助电极22与所述多个传输单元11之间的多个狭缝Q可以一一对应,即,每个辅助电极22对应第一基底10上的一个狭缝Q。每一个辅助电极22在所述第一基底10上的正投影覆盖与之对应的狭缝Q,以及限定出该狭缝Q的两相邻的传输单元11的部分区域;该辅助电极22与其在第一基底10上的正投影覆盖的两相邻传输单元11的所述部分区域形成辅助电容C2,如图1和图2中所示。
在此需要说明的是,如图1所示,为了达到较优的效果每个传输单元11可以与一个子电极21相对设置。但是不公开不限于此,例如,每个传输单元11可以与两个或更多个子电极21相对设置。为了便于描述,在本实施例中以每个传输单元11与一个子电极21相对设 置为例进行说明。
在本实施例的移相器中,微带线1和地电极12组成了微波信号的传输结构,以使大部分微波信号在第一基底10中传输,仅小部分微波信号在液晶层30中传输。为了降低微波信号在传输过程中的损耗,第一基底10的材料可以选取玻璃、陶瓷等,这些材料不会吸收微波信号,因此可以大大降低微波信号在传输过程中的损耗。在向本实施例移相器中的所述多个传输单元11施加第一电压,并且向所述多个子电极21和所述多个辅助电极22施加不同于第一电压的第二电压时,在所述多个传输单元11所在的层和所述多个子电极21所在层之间将会产生电场,同时,每一个辅助电极22和对应的相邻两个传输单元11由于在垂直于第一基底10或第二基底20的方向上至少部分交叠而形成辅助电容C2,因此二者之间也会产生电场。所产生的电场使得液晶层30中的液晶分子31偏转,从而改变液晶层30的介电常数,实现液晶层30中微波信号的移相。之后液晶层30中的微波信号与第一基底10中的微波信号交互传输,以使实现整体微波信号的移相。换言之,在第一基底10中传输的大部分微波信号和在液晶层30中传输的小部分微波信号可以发生相同的相移。
例如,每个传输单元11可以等效为一个电感L,该传输单元11与相应的子电极21由于在垂直于第一基底10或第二基底20的方向上交叠而构成可变电容C1。每一个辅助电极22和对应的相邻两个传输单元11由于在垂直于第一基底10或第二基底20的方向上交叠而构成辅助电容C2。此外,每个传输单元11与地电极12由于在垂直于第一基底10或第二基底20的方向上交叠而构成交叠电容C,如图3所示。图3为图1和图2所示的移相器的等效电路模型。
图6和图7示出了根据本公开的另一个实施例的移相器。该移相器包括相对设置的第一基板和第二基板以及位于这二者之间的液晶层30;其中,第一基板包括第一基底10,以及位于第一基底10靠近液晶层30的一侧的微带线1,位于第一基底10背离液晶层30一侧的地电极12;第二基板包括:第二基底20,位于第二基底20靠近液晶层30一侧的周期性排布的多个子电极21。如上所述,微带 线1(例如,位于相邻两个子电极21在第一基底10上的正投影之间的部分)可以等效为电感L,微带线1与每个子电极21交叠而构成可变电容C1,微带线1(例如,位于相邻两个子电极21在第一基底10上的正投影之间的部分)与地电极12交叠而构成交叠电容C,如图8所示。图8为图6和图7所示的移相器的等效电路模型。例如,所述多个子电极21中的每一个的长度方向(例如,图1中的竖直方向)与所述微带线1的长度方向(例如,图1中的水平方向)互相垂直。
可以看出的是,图6和图7所示的移相器的等效电路模型(如图8所示)构成低通滤波器;而图1和图2所示的移相器的等效电路模型(如图3所示)相当于在图6和图7所示的移相器的微带线1上串联一个辅助电容C2,此时图1和图2所示的移相器的等效电路模型则构成低通滤波器与高通滤波器的结合,也即相当于一个带通滤波器。图9和图10示出了图6和图7所示的移相器在工作时的传输特性曲线,其中,图9为图6和图7所示的移相器中可变电容C1为最小值时的传输特性曲线,图10为图6和图7所示的移相器中可变电容C1为最大值时的传输特性曲线。图4和图5示出了图1和图2所示的移相器在工作时的传输特性曲线,其中,图4为图1和图2所示的移相器的可变电容C1为最小值时的传输特性曲线,图5为图1和图2所示的移相器的可变电容C1为最大值时的传输特性曲线。对比图4和图9所示的m1点(也即移相器的工作频率)处的移相器的损耗(即,图中纵轴所示的分贝dB),图4和图9均是在工作频率在3.5GHz时移相器的损耗。可以看出是,图1和图2所示的移相器在该工作频率的损耗依旧为0,而图6和图7所示的移相器中工作损耗已经开始偏离0,即,开始产生损耗。同理,对比图5和图10,图10与图5的区别与图9与图4的区别相似,在此不进行详细说明。换言之,图6和图7所示的移相器在信号的频率为零时损耗最小,在图4中在0GHz至大约6.6GHz的范围内并且在图5中在0GHz至大约5.5GHz的范围内,随着频率的增加损耗可以增加(因此,高通滤波可以去除损耗比较大的高频成分),然后在某些更高频率的频 段内损耗可以较小。图9和图10所示的传输特性曲线相当于将图4和图5所示的传输特性曲线的零频率分别搬移至图9和图10中的工作频率m1处。因此,图1和图2所示的移相器可以改善移相器的可调范围,并在工作频段范围内降低了移相器的损耗,从而增加了单位损耗内的相移量。例如,通过调节第一电极和第二电极的结构和形状,根据本发明构思的移相器可以对1GHz至40GHz的频段内的信号进行移相。例如,当信号的频率在2GHz至5GHz(更具体地为3GHz至5GHz)的频段和12GHz至18GHz的频段内时,根据本发明构思的移相器在进行移相时具有较小的损耗。
例如,在图1和图2所示的移相器中,第二基底20上的多个子电极21与多个辅助电极22可以同层设置,且材料可以相同。此时,这两部分结构可以在一次构图工艺中制备,从而可以有效的提高移相器的生产效率,且能够节约成本。
例如,图1和图2所示的微带线1中的各对相邻传输单元11之间的狭缝Q的宽度可以相同,也即所述多个传输单元11的周期性排布是按照间距相同的方式排布的。但所述多个传输单元11的周期性排布不局限于此,还可以按照预设的排布规律将各个传输单元11进行排布。
例如,图1和图2所示的第二电极中的各个子电极21之间的间距相同,也即所述多个子电极21的周期性排布是按照间距相同的方式排布的。但各个子电极21的周期性排布也不局限于此,还可以按照预设的排布规律将各个子电极21进行排布。
例如,在图1和图2所示的移相器中,每个传输单元11可以与至少一个子电极21对应设置(图中是以每个传输单元11与一个子电极21对应设置为例进行说明的),且每个传输单元11的长度方向可以与子电极21的长度方向垂直,以保证传输单元11与子电极21存在足够大的交叠面积,以使在传输单元11和子电极21在被施加电压后,产生的电场能够使得液晶分子31偏转,改变液晶层30的介电常数,以实现微波信号的移相。
例如,在图1和图2所示的移相器中,第一基底10和第二基底 20可以采用厚度为100-1000微米的玻璃基底,也可采用蓝宝石基底,还可以使用厚度为10-500微米的聚对苯二甲酸乙二酯基底、三聚氰酸三烯丙酯基底和聚酰亚胺透明柔性基底。例如,第一基底10和第二基底20可以采用介电损耗极低的高纯度石英玻璃。相比于普通玻璃基底第一基底10和第二基底20采用高纯度石英玻璃可以有效减小对微波的损耗,使移相器具有低的功耗和高的信噪比。
例如,在图1和图2所示的移相器中,微带线1中的每个传输单元11、地电极12、每个子电极21和每个辅助电极22中的每一个的材料均可以采用铝、银、金、铬、钼、镍或铁等金属制成。而且微带线1中的每个传输单元11还可以采用透明导电氧化物制成。
例如,在图1和图2所示的移相器中,液晶层30中的液晶分子31可以为正性液晶分子31或负性液晶分子31。需要说明的是,当液晶分子31为正性液晶分子31时,本公开的实施例中每一个液晶分子31的长轴方向与第一基底10或第二基底20所在的平面之间的夹角大于0度小于等于45度。当液晶分子31为负性液晶分子31时,本公开的实施例中每一个液晶分子31的长轴方向与第一基底10或第二基底20所在的平面之间的夹角大于45度小于90度。这样,保证了液晶分子31发生偏转后,改变液晶层30的介电常数,以达到移相的目的。
如图11A至图13所示,本公开的实施例提供了一种液晶移相器,包括相对设置的第一基板和第二基板,以及位于第一基板和第二基板之间的液晶层30。
第一基板包括:第一基底10,位于该第一基底10靠近液晶层30的一侧的第一电极,以及位于第一基底10背离液晶层30一侧的地电极12。例如,第一电极为微带线1;该微带线1包括主体结构,该主体结构包括沿其长度方向相对设置的第一侧和第二侧;该微带线1还包括连接在主体结构的第一侧和第二侧中的每一侧上且周期性排布的多个分支结构13。为了方便控制本实施例中的移相器,可以将连接在主体结构的第一侧上的所述多个分支结构13和第二侧上的所述多个分支结构13,设置为相对于主体结构的长度方向对称,如 图11A所示。但是,本公开不限于此。例如,也可以将连接在主体结构的第一侧上的所述多个分支结构13和第二侧上的所述多个分支结构13设置为相对于主体结构的长度方向不对称,如图11B所示。微带线1的主体结构包括沿其长度方向依次设置的周期性排布的多个传输单元11,且在任意两相邻的传输单元11之间限定出一个狭缝Q。在本实施例中在每个传输单元11的第一侧和第二侧中的每一侧上可以均连接有至少一个分支结构13;为了描述方便,以下以每个传输单元的第一侧和第二侧中的每一侧均连接有一个分支结构13为例进行说明。应当理解的是,由于各个传输单元11是沿主体结构的长度方向依次设置的,因此每个传输单元11的第一侧和第二侧也就是主体结构的第一侧和第二侧。
第二基板包括:第二基底20,以及位于第二基底20上的第二电极。第二电极包括一对子电极21,为了描述方便该对子电极21中的一者可以称为第一子电极21,另一者可以称为第二子电极21。第一子电极21在第一基底10上的正投影与连接在主体结构第一侧的所述多个分支结构13中的每一个在第一基底10上的正投影部分重叠,第二子电极21在第一基底10上的正投影与连接在主体结构第二侧的所述多个分支结构13中的每一个在第一基底10上的正投影部分重叠。例如,所述主体结构的所述第一侧和所述第二侧中的每一侧上的所述多个分支结构13中的每一个的长度方向垂直于所述微带线1的长度方向。例如,所述主体结构的所述第一侧上的所述多个分支结构13与所述主体结构的所述第二侧上的所述多个分支结构13关于所述主体结构对称。在所述第二基底20上还设置有多个辅助电极22;每一个辅助电极22的位置与第一基底10上的一个狭缝Q的位置对应。且每个辅助电极22在第一基底10上的正投影覆盖与其对应的狭缝Q,以及限定出该狭缝Q的两相邻的传输单元11的部分区域。该辅助电容C2与其在第一基底10上的正投影所覆盖的所述两相邻的传输单元11的所述部分区域构成所述辅助电容C2(如图14所示),类似于图中所示的C2。
本实施例中的移相器通过微带线1的主体结构和地电极12组成 了微波信号的传输结构,以使大部分微波信号在第一基底10中传输,仅小部分微波信号在液晶层30中传输。如上所述,第一基底10的材料可以选取玻璃、陶瓷等,这些材料不会吸收微波信号,因此可以大大降低微波信号在传输过程中的损耗。向本实施例中的微带线1施加第一电压和并且向第二电极中的所述一对子电极21和所述多个辅助电极22施加不同于第一电压的第二电压时,每一侧上的所述多个分支结构13与其相对设置的子电极21之间将会形成电场,所述多个辅助电极22和所述多个传输单元11之间也会形成电场,使得液晶层30中的液晶分子31偏转,从而改变液晶层30的介电常数,实现液晶层30中微波信号的移相。之后液晶层30中的微波信号与第一基底10中的微波信号交互传输,以便实现整体微波信号的移相。换言之,在第一基底10中传输的大部分微波信号和在液晶层30中传输的小部分微波信号可以发生相同的相移。
例如,主体结构的每个传输单元11可以等效为一个电感L,每个分支结构13可以等效为一个分支电感L1,每一个分支结构13与子电极21(例如,在垂直于第一基底10或第二基底20的方向上)的交叠构成可变电容C1,每一个辅助电极22和相应的两个相邻传输单元11的交叠构成辅助电容C2,每个传输单元11与地电极12的交叠构成交叠电容C,如图14所示。图14为图11A至图13所示的移相器的等效电路模型。
可以看出的是,图5和图6所示的移相器的等效电路模型(如图8所示)构成低通滤波器;而图11A至图13所示的移相器的等效电路模型(如图14所示)相当于在图5和图6所示的移相器的微带线1上串联一个辅助电容C2,此时图11A至图13所示的移相器的等效电路模型则构成低通滤波器与高通滤波器的结合,也即相当于一个带通滤波器。图14所示的移相器的等效电路模型与图3所示的等效电路模型大致相同,区别仅在于图14中每个可变电容C1串联一个分支电感L1。此外,图14所示的电路模型的输出特性曲线与图4和图5所示的输出特性曲线区别不大,基本是一致的。也就是说,采用图11A至图13所示的移相器同样可以改善移相器的可调范围,并在工 作频段范围内降低了移相器的损耗,从而增加了单位损耗内的相移量。
例如,在图11A至图13所示的移相器中,第二基底20上的所述一对子电极21与所述多个辅助电极22可以同层设置,且材料可以相同。此时,这两部分结构可以在一次构图工艺中制备,从而可以有效的提高移相器的生产效率,且能够节约成本。
例如,本实施例的微带线1中的各对相邻两个传输单元11之间的狭缝Q的宽度相同,也即所述多个传输单元11的周期性排布是按照间距相同的方式排布的,但所述多个传输单元11的周期性排布不局限于此,还可以按照预设的排布规律将各个传输单元11进行排布。
例如,本实施例的微带线1中形成每一个辅助电容C2的每一对分支结构13之间的间距相同(或恒定),此外形成各个辅助电容C2的各对分支结构13的周期性排布是可以按照间距相同的方式排布,但各分支结构13的周期性排布也不局限于此,还可以按照预设的排布规律将各个分支结构13进行排布。而且本实施例中的每个传输单元11上连接的分支结构13,与该传输单元11为一体成型结构,也即二者可以在一次工艺中制备,因此可以简化制备工艺,节约成本。
例如,第一基底10和第二基底20可以采用厚度为100-1000微米的玻璃基底,也可采用蓝宝石基底,还可以使用厚度为10-500微米的聚对苯二甲酸乙二酯基底、三聚氰酸三烯丙酯基底和聚酰亚胺透明柔性基底。例如,第一基底10和第二基底20可以采用介电损耗极低的高纯度石英玻璃。相比于普通玻璃基底,第一基底10和第二基底20采用高纯度石英玻璃可以有效减小对微波的损耗,使移相器具有低的功耗和高的信噪比。例如,高纯度石英玻璃指的是其中SiO 2的重量百分比大于或等于99.9%的石英玻璃。
例如,微带线1中的每个传输单元11、每个分支结构13、地电极12、每个子电极21和每个辅助电极22中的每一个的材料均可以采用铝、银、金、铬、钼、镍或铁等金属制成。而且微带线1中的每个传输单元11还可以采用透明导电氧化物制成。
例如,液晶层30中的液晶分子31可以为正性液晶分子31或负 性液晶分子31。需要说明的是,当液晶分子31为正性液晶分子31时,本公开的实施例中每一个液晶分子31的长轴方向与第一基底10或第二基底20所在的平面之间的夹角大于0度小于等于45度。当液晶分子31为负性液晶分子31时,本公开的实施例中每一个液晶分子31的长轴方向与第一基底10或第二基底20所在的平面之间的夹角大于45度小于90度。这样,保证了液晶分子31发生偏转后,改变液晶层30的介电常数,以达到移相的目的。
如图15和图16所示,本公开的实施例中提供了一种移相器,包括相对设置的第一基板和第二基板,以及位于第一基板和第二基板之间的液晶层30。
第一基板包括:第一基底10,位于该第一基底10靠近液晶层30的一侧的第一电极,以及位于第一基底10背离液晶层30一侧的地电极12。例如,第一电极为微带线1。在第一基底10上还设置有多个辅助电容C2,其中,每个辅助电容C2的第一极片111和第二极片112均与微带线1连接。在此需要说明的是,每个辅助电容C2的第一极片111和第二极片112是相对设置的,因此可以理解的是,每个辅助电容C2的第一极片111和第二极片112是连接在微带线1的同一侧的,如图15所示。
第二基板包括:第二基底20,以及位于该第二基底20靠近液晶层30一侧的第二电极。第二电极包括周期性排布的多个子电极21;每个子电极21在第一基底10上的正投影与第一基底10上的微带线1在第一基底10上的正投影至少部分重叠。任意两相邻的子电极21在第一基底10上的正投影所限定的区域中设置有一个辅助电容C2。例如,所述多个子电极21中的每一个的长度方向(例如,图15中的竖直方向)与所述微带线1的长度方向(例如,图15中的水平方向)互相垂直。这样,移相器的设计和制造更容易。
在本实施例的移相器中,微带线1和地电极12组成了微波信号的传输结构,以使大部分微波信号在第一基底10中传输,仅小部分微波信号在液晶层30中传输。如上所述,第一基底10的材料可以选取玻璃、陶瓷等,这些材料不会吸收微波信号,因此可以大大降低微 波信号在传输过程中的损耗。在向本实施例移相器中的微带线1施加第一电压和向子电极21施加不同于第一电压的第二电压时,在微带线1和子电极21所在层之间将会产生电场,所产生的电场使得液晶层30中的液晶分子31偏转,从而改变液晶层30的介电常数,实现液晶层30中微波信号的移相。之后液晶层30中的微波信号与第一基底10中的微波信号交互传输,以便实现整体微波信号的移相。换言之,在第一基底10中传输的大部分微波信号和在液晶层30中传输的小部分微波信号可以发生相同的相移。
例如,微带线1的位于任意相邻两个子电极21在第一基底10上的正投影之间的部分可以等效为电感L,微带线1与子电极21的交叠构成可变电容C1,连接在微带线1上的一对第一极片111和第二极片112构成一个辅助电容C2,微带线1的位于任意相邻两个子电极21在第一基底10上的正投影之间的部分与地电极12交叠构成交叠电容C,如图17所示。图17为图15和图16所示的移相器的等效电路模型。
可以看出的是,图5和图6所示的移相器的等效电路模型(如图8所示)构成低通滤波器;而图15和图16所示的移相器的等效电路模型(如图17所示)相当于在图5和图6所示的移相器的微带线1上并联一个辅助电容C2,使得图17所示的移相器的等效电路模型构成低通滤波器与高通滤波器的结合,也即相当于一个带通滤波器。图14所示的移相器的等效电路模型与图3所示的等效电路模型大致相同。区别在于在图14中是微带线1上并联一个辅助电容C2,而在图3中是在微带线1上串联一个辅助电容C2。但是图14所示电路模型的输出特性曲线与图4和图5所示的输出特性曲线的区别不大,基本是一致的。也就是说,图15和图16所示的移相器同样可以改善移相器的可调范围,并在工作频段范围内改善了移相器的损耗,从而增加了单位损耗内的相移量。
例如,在图15和图16所示的移相器中,第一基底10上的微带线1和所述多个辅助电容C2的第一极片111和第二极片112可以为一体成型结构,也即二者可以同层设置,且材料可以相同。这样一来, 可以采用一次工艺制备这两种结构,可以降低工艺成本。
例如,本实施例的第二电极中的各对相邻两个子电极21之间的间距相同,也即所述多个子电极21的周期性排布是按照间距相同的方式排布的,但所述多个子电极21的周期性排布不局限于此,还可以按照预设的排布规律将各个子电极21进行排布。
例如,每个子电极21长度方向和微带线1的长度方向可以互相垂直,以保证微带线1与所述多个子电极21存在足够大的交叠面积,以使在微带线1被施加第一电压并且所述多个子电极21在被施加不同于第一电压的第二电压后,产生的电场能够使得液晶分子31偏转,改变液晶层30的介电常数,以实现微波信号的移相。
例如,第一基底10和第二基底20可以采用厚度为100-1000微米的玻璃基底,也可采用蓝宝石基底,还可以使用厚度为10-500微米的聚对苯二甲酸乙二酯基底、三聚氰酸三烯丙酯基底和聚酰亚胺透明柔性基底。例如,第一基底10和第二基底20可以采用介电损耗极低的高纯度石英玻璃。相比于普通玻璃基底,第一基底10和第二基底20采用高纯度石英玻璃可以有效减小对微波的损耗,使移相器具有低的功耗和高的信噪比。例如,高纯度石英玻璃指的是其中SiO 2的重量百分比大于或等于99.9%的石英玻璃。
例如,微带线1、地电极12、每个子电极21、每个辅助电容C2的第一极片111和第二极片112中的每一个的材料均可以采用铝、银、金、铬、钼、镍或铁等金属制成。而且微带线1还可以采用透明导电氧化物制成。
例如,液晶层30中的液晶分子31可以为正性液晶分子31或负性液晶分子31。需要说明的是,当液晶分子31为正性液晶分子31时,本公开的实施例中每一个液晶分子31的长轴方向与第一基底10或第二基底20所在的平面之间的夹角大于0度小于等于45度。当液晶分子31为负性液晶分子31时,本公开的实施例中每一个液晶分子31的长轴方向与第一基底10或第二基底20所在的平面之间的夹角大于45度小于90度。这样,保证了液晶分子31发生偏转后,改变液晶层30的介电常数,以达到移相的目的。
由于上述各个实施例所提供的移相器都是通过改变液晶层的介电常数来实现移相功能,因此可以被称为液晶移相器。
本公开的实施例提供一种液晶天线,该液晶天线包括上述实施例中的任意一个的液晶移相器。例如,在第二基底20的背离液晶层30的一侧还可以设置有至少两个贴片单元,其中,每两个贴片单元之间的间隙与相应的相邻两个子电极21之间的间隙对应设置。这样一来,可以使得经过上述实施例中的任意一个的移相器进行相位调整后的微波信号从贴片单元之间的间隙辐射出去。
此外,在液晶天线中还可以包括馈电接口,用于将电缆中的微波信号馈入至微波传输结构(例如:微带线1)上。该液晶天线具有降低的损耗和提高的效率。
本公开的实施例提供了一种通信设备,包括上述实施例中的液晶天线。该通信设备具有降低的损耗和提高的效率。
本公开的实施例提供了一种操作液晶移相器的方法,其中,所述液晶移相器为根据上述实施例中的任意一个的液晶移相器,所述方法包括:向所述第一电极施加第一电压;以及向所述第二电极施加不同于所述第一电压的第二电压以在所述第一电极和所述第二电极之间产生电场,使得所述液晶层30的液晶分子31的长轴与所述电场的方向实质上平行(对于正性液晶分子而言)或实质上垂直(对于负性液晶分子而言)。
在没有明显冲突的情况下,本公开的上述各个实施例可以互相结合。
应当理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也属于本公开的保护范围。

Claims (21)

  1. 一种移相器,包括:
    相对设置的第一基板和第二基板,以及位于所述第一基板和所述第二基板之间的液晶层;其中,
    所述第一基板包括:第一基底,以及位于所述第一基底靠近所述液晶层的一侧的第一电极;
    所述第二基板包括:第二基底,以及位于所述第二基底上靠近所述液晶层的一侧的第二电极;以及
    所述移相器还包括与所述第一电极连接的辅助电容。
  2. 根据权利要求1所述的移相器,其中,
    所述第一电极包括:微带线;
    所述第二电极包括:周期性排布的多个子电极;以及所述微带线在所述第一基底上的正投影与所述多个子电极中的每一个在所述第一基底上的正投影至少部分重叠。
  3. 根据权利要求2所述的移相器,其中,
    所述微带线包括:沿其长度方向依次设置且周期性排布的多个传输单元,任意两相邻的所述传输单元之间限定出一个狭缝;
    在所述第二基底靠近所述液晶层的一侧设置有与所述多个传输单元之间的多个狭缝一一对应的多个辅助电极;
    每个所述辅助电极在所述第一基底上的正投影覆盖与其对应的狭缝,以及与限定出该狭缝的两相邻的所述传输单元的部分区域;以及
    每个所述辅助电极与其在所述第一基底上的正投影覆盖的所述传输单元的所述部分区域构成所述辅助电容。
  4. 根据权利要求3所述的移相器,其中,所述多个辅助电极与所述多个子电极同层设置,且材料相同。
  5. 根据权利要求2所述的移相器,其中,与所述多个辅助电极分别相对应的多个辅助电容的第一极片和第二极片均与所述微带线连接。
  6. 根据权利要求5所述移相器,其中,所述多个辅助电容的第一极片和第二极片均连接在所述微带线的同一侧。
  7. 根据权利要求5或6所述移相器,其中,任意两相邻的所述子电极在所述第一基底上的正投影所限定的区域中设置有一个所述辅助电容。
  8. 根据权利要求5至7中任一项所述的移相器,其中,所述多个辅助电容的第一极片和第二极片与所述微带线为一体成型结构。
  9. 根据权利要求2至8中任一项所述的移相器,其中,所述多个子电极中的每一个的长度方向与所述微带线的长度方向互相垂直。
  10. 根据权利要求1所述的移相器,其中,所述第一电极包括微带线,所述微带线包括主体结构,所述主体结构包括:沿其长度方向相对设置的第一侧和第二侧;在所述主体结构的所述第一侧和所述第二侧中的每一侧上连接有周期性排布的多个分支结构。
  11. 根据权利要求10所述的移相器,其中,所述第二电极包括一对子电极;所述一对子电极中的每一个在所述第一基底上的正投影与连接在所述主体结构的对应侧上的所述多个分支结构中的每一个在所述第一基底上的正投影部分重叠。
  12. 根据权利要求11所述的移相器,其中,所述主体结构包括:沿所述主体结构长度方向依次设置且周期性排布的多个传输单元;任 意两相邻的所述传输单元之间限定出一个狭缝;所述多个传输单元中的每一个上均连接有所述分支结构;
    在所述第二基底靠近所述液晶层的一侧设置有与所述多个传输单元之间的多个狭缝一一对应的多个辅助电极;
    每个所述辅助电极在所述第一基底上的正投影覆盖与之对应的狭缝,以及与限定出该狭缝的两相邻的所述传输单元的部分区域;以及
    每个所述辅助电极与其在所述第一基底上的正投影覆盖的所述传输单元的所述部分区域构成所述辅助电容。
  13. 根据权利要求12所述的移相器,其中,所述多个辅助电极与所述一对子电极同层设置,且材料相同。
  14. 根据权利要求10至13中任一项所述的移相器,其中,所述主体结构的所述第一侧和所述第二侧中的每一侧上的所述多个分支结构中的每一个的长度方向垂直于所述微带线的长度方向。
  15. 根据权利要求10至14中任一项所述的移相器,其中,所述主体结构的所述第一侧上的所述多个分支结构与所述主体结构的所述第二侧上的所述多个分支结构关于所述主体结构对称。
  16. 根据权利要求1至15中任一项所述的移相器,其中,在所述第一基底背离所述液晶层的一侧设置有地电极。
  17. 根据权利要求1至16中任一项所述的移相器,其中,所述第一基底采用玻璃、陶瓷和高纯度石英玻璃中的至少一种制成。
  18. 根据权利要求1至17中任一项所述的移相器,其中,所述液晶层包括正性液晶分子,并且每一个所述正性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于0度小于等于45度。
  19. 根据权利要求1至17中任一项所述的移相器,其中,所述液晶层包括负性液晶分子,并且每一个所述负性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于45度小于90度。
  20. 根据权利要求1至19中任一项所述的移相器,其中,所述移相器被配置为对频率在2GHz至5GHz的频段和12GHz至18GHz的频段中的任一个频段内的信号进行移相。
  21. 一种液晶天线,包括根据权利要求1至20中任一项所述的移相器。
PCT/CN2019/100031 2018-08-10 2019-08-09 移相器及液晶天线 WO2020030129A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/635,253 US11158916B2 (en) 2018-08-10 2019-08-09 Phase shifter and liquid crystal antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810914320.6A CN110658646A (zh) 2018-08-10 2018-08-10 移相器及液晶天线
CN201810914320.6 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020030129A1 true WO2020030129A1 (zh) 2020-02-13

Family

ID=69028551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100031 WO2020030129A1 (zh) 2018-08-10 2019-08-09 移相器及液晶天线

Country Status (3)

Country Link
US (1) US11158916B2 (zh)
CN (1) CN110658646A (zh)
WO (1) WO2020030129A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970718A (zh) * 2018-09-28 2020-04-07 北京京东方传感技术有限公司 液晶天线单元和液晶相控阵天线
CN111193083B (zh) * 2020-02-26 2022-02-01 京东方科技集团股份有限公司 带通滤波器及其制备方法和驱动方法、电子装置
CN111864317B (zh) * 2020-06-23 2022-03-01 京东方科技集团股份有限公司 移相器及天线
CN114830433B (zh) * 2020-11-27 2024-03-15 京东方科技集团股份有限公司 移相器及天线
TWI754551B (zh) * 2021-02-24 2022-02-01 友達光電股份有限公司 主動相位陣列
US11990680B2 (en) * 2021-03-18 2024-05-21 Seoul National University R&Db Foundation Array antenna system capable of beam steering and impedance control using active radiation layer
CN113571909B (zh) * 2021-06-30 2024-02-09 上海中航光电子有限公司 天线单元、天线装置以及电子设备
CN113611991B (zh) * 2021-07-28 2022-12-23 北京华镁钛科技有限公司 一种液晶移相器、液晶天线和移相方法
TWI800998B (zh) * 2021-11-19 2023-05-01 友達光電股份有限公司 移相器、具有移相器的天線單元以及具有移相器的天線裝置
CN114006163B (zh) 2021-11-22 2024-08-13 上海天马微电子有限公司 液晶天线及其制作方法
US20240275008A1 (en) * 2022-02-21 2024-08-15 Beijing Boe Technology Development Co., Ltd. Phase shifter, antenna and electronic device
WO2024040616A1 (zh) * 2022-08-26 2024-02-29 京东方科技集团股份有限公司 一种可调移相器、其制作方法及电子设备
WO2024216640A1 (zh) * 2023-04-21 2024-10-24 京东方科技集团股份有限公司 一种移相器及天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082046A (ja) * 2005-09-16 2007-03-29 Technical Research & Development Institute Ministry Of Defence 浮遊電極付コプレナー線路
CN106154603A (zh) * 2016-07-29 2016-11-23 合肥工业大学 一种液晶移相单元及其构成的相控天线
CN106684551A (zh) * 2017-01-24 2017-05-17 京东方科技集团股份有限公司 一种移相单元、天线阵、显示面板和显示装置
CN107394318A (zh) * 2017-07-14 2017-11-24 合肥工业大学 一种用于反射式可调移相器的液晶移相单元
CN208818972U (zh) * 2018-08-10 2019-05-03 北京京东方传感技术有限公司 移相器及液晶天线

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103201A (ja) * 1997-09-29 1999-04-13 Mitsui Chem Inc 移相器、移相器アレイおよびフェーズドアレイアンテナ装置
JP2003008310A (ja) * 2001-06-27 2003-01-10 Sumitomo Electric Ind Ltd 高周波伝送線路の結合構造とそれを用いた可変移相器
JP2007110256A (ja) * 2005-10-11 2007-04-26 Matsushita Electric Ind Co Ltd フェーズドアレイアンテナ
EP2768072A1 (en) * 2013-02-15 2014-08-20 Technische Universität Darmstadt Phase shifting device
JP6224073B2 (ja) * 2013-03-04 2017-11-01 国立研究開発法人科学技術振興機構 非相反伝送線路装置
CN104409855A (zh) * 2014-12-11 2015-03-11 天津中兴智联科技有限公司 新型相控阵天线
WO2017002661A1 (ja) * 2015-06-29 2017-01-05 株式会社村田製作所 移相器、インピーダンス整合回路および通信端末装置
CN106025452A (zh) * 2016-06-08 2016-10-12 合肥工业大学 一种移相单元及其构成的太赫兹反射式液晶移相器
CN105977583B (zh) * 2016-06-28 2019-07-19 华为技术有限公司 一种移相器及馈电网络
KR102299604B1 (ko) * 2017-08-10 2021-09-07 엘에스일렉트릭(주) 에너지 저장 시스템
US10916940B2 (en) * 2019-07-03 2021-02-09 Neworld.Energy Llc Grid-tied electric meter adapter and systems for automated power resilience and on-demand grid balancing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082046A (ja) * 2005-09-16 2007-03-29 Technical Research & Development Institute Ministry Of Defence 浮遊電極付コプレナー線路
CN106154603A (zh) * 2016-07-29 2016-11-23 合肥工业大学 一种液晶移相单元及其构成的相控天线
CN106684551A (zh) * 2017-01-24 2017-05-17 京东方科技集团股份有限公司 一种移相单元、天线阵、显示面板和显示装置
CN107394318A (zh) * 2017-07-14 2017-11-24 合肥工业大学 一种用于反射式可调移相器的液晶移相单元
CN208818972U (zh) * 2018-08-10 2019-05-03 北京京东方传感技术有限公司 移相器及液晶天线

Also Published As

Publication number Publication date
US11158916B2 (en) 2021-10-26
US20210066772A1 (en) 2021-03-04
CN110658646A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2020030129A1 (zh) 移相器及液晶天线
CN208818972U (zh) 移相器及液晶天线
WO2020233697A1 (zh) 移相器和液晶天线
CN208655852U (zh) 一种移相器、天线、通信设备
WO2021189238A1 (zh) 移相器及天线
WO2021259142A1 (zh) 移相器及天线
WO2020030135A1 (zh) 液晶移相器及其操作方法、液晶天线和通信设备
EP4016733B1 (en) Feed structure, microwave radio-frequency device and antenna
WO2021037132A1 (zh) 馈电结构、微波射频器件及天线
US8704723B2 (en) Differential dipole antenna system with a coplanar radiating structure and transceiver device
CN111316497B (zh) 包括dgs的移相器和包括该移相器的电磁波通信模块
WO2020173176A1 (zh) 信号调节器、天线装置和制造方法
TWI748562B (zh) 包含液晶的平板天線
WO2020173243A1 (zh) 一种传输零点可控的基片集成波导滤波器
WO2020007044A1 (zh) 微波幅相控制器及微波幅度和/或相位的控制方法
WO2019223647A1 (zh) 一种移相器及其操作方法、天线和通信设备
WO2022233319A1 (zh) 超表面结构
KR100651724B1 (ko) 수평 구조의 가변 축전기 및 이를 구비한 초고주파 가변소자
WO2023240463A1 (zh) 可调射频单元、滤波器和电子设备
WO2024016144A1 (zh) 空间滤波器及其制备方法、电子设备
WO2024000289A1 (zh) 一种移相器单元及移相器
TWI737307B (zh) 超材料可調電容器結構
CN113381193B (zh) 一种液晶可重构频率选择表面
WO2023240396A1 (zh) 天线、天线阵列及电子设备
CN115336100B (zh) 巴伦组件、微波射频器件及天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846809

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.10.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19846809

Country of ref document: EP

Kind code of ref document: A1