WO2023240463A1 - 可调射频单元、滤波器和电子设备 - Google Patents

可调射频单元、滤波器和电子设备 Download PDF

Info

Publication number
WO2023240463A1
WO2023240463A1 PCT/CN2022/098731 CN2022098731W WO2023240463A1 WO 2023240463 A1 WO2023240463 A1 WO 2023240463A1 CN 2022098731 W CN2022098731 W CN 2022098731W WO 2023240463 A1 WO2023240463 A1 WO 2023240463A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
layer
substrate
tunable
tunable dielectric
Prior art date
Application number
PCT/CN2022/098731
Other languages
English (en)
French (fr)
Inventor
杨芫茏
车春城
庞净
曲峰
张志锋
陈�胜
卫盟
苏雪嫣
赵云璋
葛良荣
李远付
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/098731 priority Critical patent/WO2023240463A1/zh
Priority to CN202280001746.7A priority patent/CN117597829A/zh
Publication of WO2023240463A1 publication Critical patent/WO2023240463A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters

Definitions

  • This application relates to the field of communication technology, and in particular to an adjustable radio frequency unit, filter and electronic equipment.
  • a Band Pass Filter is a component that allows waves in a specific frequency band to pass through while blocking waves in other frequency bands.
  • bandpass filters prepared using varactor diodes have the advantages of large frequency tuning range and simple design methods.
  • an adjustable radio frequency unit which includes:
  • a first conductive layer located between the first tunable dielectric layer and the second tunable dielectric layer;
  • a third conductive layer located on the side of the second tunable dielectric layer away from the first conductive layer;
  • orthographic projections of the first conductive layer, the second conductive layer, and the third conductive layer on the first tunable dielectric layer at least partially overlap.
  • orthographic projections of the first conductive layer, the second conductive layer, and the third conductive layer on the first tunable dielectric layer are located on the second tunable dielectric layer.
  • the dielectric layer is within the orthographic projection on the first tunable dielectric layer;
  • Orthographic projections of the first conductive layer, the second conductive layer, and the third conductive layer on the second tunable dielectric layer are all located on the first tunable dielectric layer on the second tunable dielectric layer. Within the orthographic projection on the medium layer.
  • the first tunable dielectric layer and the second tunable dielectric layer each include a first substrate, a second substrate, and a second substrate located on the first substrate and the second tunable dielectric layer.
  • the orthographic projection of the tunable dielectric portion in the first tunable dielectric layer on the first substrate is the same as the orthographic projection of the tunable dielectric portion in the second tunable dielectric layer on the first substrate.
  • the orthographic projections on the bottom overlap.
  • one of the first substrate and the second substrate and the fixed medium part have an integrated structure.
  • orthographic projections of the first conductive layer, the second conductive layer, and the third conductive layer on the first substrate are respectively located where the tunable dielectric portion is located.
  • the orthographic projections on the first substrate partially overlap; the orthographic projections of the first conductive layer, the second conductive layer, and the third conductive layer on the first substrate are respectively with the fixed medium.
  • the orthographic projections of the portions on the first substrate overlap.
  • orthographic projections of the first conductive layer, the second conductive layer, and the third conductive layer on the first substrate are respectively located where the tunable dielectric portion is located.
  • the area where the orthographic projections on the first substrate overlap is larger than the orthographic projections of the first conductive layer, the second conductive layer, and the third conductive layer on the first substrate, respectively.
  • the size of the tunable dielectric portion of the first tunable dielectric layer in a direction perpendicular to the plane of the first substrate is the same as that of the second tunable dielectric layer.
  • the tunable dielectric portion has the same size in a direction perpendicular to the plane of the first substrate;
  • the size of the fixed dielectric portion of the first tunable dielectric layer in a direction perpendicular to the plane of the first substrate is the same as the size of the fixed dielectric portion of the second tunable dielectric layer in a direction perpendicular to the plane of the first substrate.
  • the dimensions of the first substrate in the plane direction are the same.
  • the orthographic projection of the second conductive layer on the first substrate overlaps with the orthographic projection of the third conductive layer on the first substrate, and the third conductive layer overlaps with the orthographic projection of the third conductive layer on the first substrate.
  • the orthographic projection of the two conductive layers on the first substrate is located within the orthographic projection of the first conductive layer on the first substrate.
  • the absolute value of the difference between the conductivity of the material of the second conductive layer and the conductivity of the material of the third conductive layer is less than or equal to a preset value.
  • an orthographic projection of the tunable dielectric portion on the first substrate is located within an orthographic projection of the first conductive layer on the first substrate, and the tunable dielectric portion is within an orthographic projection of the first conductive layer on the first substrate.
  • the orthographic projection pattern of the tunable dielectric portion on the first substrate has the same shape as the orthographic projection pattern of the first conductive layer on the first substrate; the tunable dielectric portion is on the first substrate.
  • Orthographic graphics on the base include polygons, arcs, or a combination of polygons and arcs.
  • the first tunable dielectric layer and the second tunable dielectric layer further include a connection portion respectively, and the connection portion is located between the first substrate and the second substrate. between them, and is configured to fixedly connect the tunable medium part and the fixed medium part.
  • the dielectric constant of the material of the first substrate, the material of the second substrate and the material of the connecting part is respectively the same as the dielectric constant of the material of the fixed dielectric part.
  • the difference is less than or equal to the preset value.
  • both the second conductive layer and the third conductive layer include a plurality of conductive parts, and the plurality of conductive parts are arranged along the first direction and electrically connected together; the third conductive layer One direction is clockwise or counterclockwise.
  • the plurality of conductive portions in the second conductive layer are arranged symmetrically about the center with the geometric center of the second conductive layer as the symmetry point;
  • the geometric center is located at a connection position of a plurality of the conductive parts in the second conductive layer;
  • the third conductive layer has the same structure as the second conductive layer.
  • the conductive part includes a plurality of bending structures, and a plurality of the bending structures are connected in sequence;
  • the bending structure includes a first line segment, a second line segment, a third line segment and a fourth line segment connected in sequence, and there is a first clip between the extending direction of the first line segment and the extending direction of the second line segment.
  • angle; the first included angle, the second included angle and the third included angle are all greater than 0° and less than 180°.
  • the first included angle, the second included angle and the third included angle are all right angles.
  • the adjustable radio frequency unit further includes a first adhesive layer, a second adhesive layer, a third adhesive layer and a fourth adhesive layer; the first adhesive layer is located at between the first conductive layer and the first tunable dielectric layer, the second adhesive layer is located between the first conductive layer and the second tunable dielectric layer, the third adhesive layer Located between the second conductive layer and the first tunable dielectric layer, the fourth adhesive layer is located between the third conductive layer and the second tunable dielectric layer;
  • the dielectric constant of the material of the first adhesive layer, the second adhesive layer, the third adhesive layer and the fourth adhesive layer is respectively the same as the dielectric constant of the material of the fixed dielectric part.
  • the difference is less than or equal to the preset value.
  • the tunable radio frequency unit further includes a first protective layer and a second protective layer.
  • the first protective layer is located between the second conductive layer and the first tunable dielectric layer.
  • the second protective layer is located on the side of the third conductive layer away from the second tunable dielectric layer.
  • the material of the tunable medium portion includes at least one liquid crystal.
  • embodiments of the present application provide a filter that includes a plurality of adjustable radio frequency units as described above, and a plurality of the adjustable radio frequency units are arranged in an array.
  • the second conductive layers of each of the adjustable radio frequency units are disconnected from each other, and the third conductive layers of each of the adjustable radio frequency units are disconnected from each other; each of the adjustable radio frequency units is disconnected from each other.
  • the tunable medium portions located in each first tunable medium layer are connected and arranged, and the tunable medium portions located in each second tunable medium layer in each of the tunable radio frequency units are connected and arranged.
  • the filter further includes a driving unit, the driving unit is electrically connected to the adjustable radio frequency unit;
  • the driving unit is configured to drive each of the adjustable radio frequency units to work independently.
  • the driving unit includes a first driving subunit, a second driving subunit and a ground line;
  • the first driving subunit is located on a side of the second conductive layer away from the first tunable dielectric layer, and the first driving subunit is electrically connected to the second conductive layer; the second driving The subunit is located on a side of the third conductive layer away from the second tunable dielectric layer, and the second driving subunit is electrically connected to the third conductive layer.
  • the first conductive part of the tunable radio frequency unit The layer is electrically connected to the ground wire.
  • embodiments of the present application provide an electronic device, including the filter as described above.
  • Figure 1 is a schematic structural diagram of an adjustable radio frequency unit provided by an embodiment of the present application.
  • FIGS. 2 and 3 are equivalent circuit diagrams of two radio frequency units in related technologies provided by embodiments of the present application;
  • FIG. 4 is an equivalent circuit diagram of an adjustable radio frequency unit provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a first tunable dielectric layer or a second tunable dielectric layer according to an embodiment of the present application
  • Figures 6 and 7 are respectively two cross-sectional views along the A1A2 direction of Figure 5;
  • Figure 8 is a top structural view of an adjustable radio frequency unit provided by an embodiment of the present application.
  • Figures 9 and 10 are schematic structural diagrams of two second conductive layers or third conductive layers provided by embodiments of the present application.
  • Figure 11 is a schematic structural diagram of a first conductive layer according to an embodiment of the present application.
  • Figures (1), (2), (3), (4), Figures 13 and 14 in Figure 12 are schematic structural diagrams of six conductive parts provided by embodiments of the present application;
  • Figure 15 is a schematic structural diagram of a filter provided by an embodiment of the present application.
  • the adjustable radio frequency unit 100 includes:
  • the first conductive layer 3 is located between the first tunable dielectric layer 1 and the second tunable dielectric layer 2;
  • the second conductive layer 4 is located on the side of the first tunable dielectric layer 1 away from the first conductive layer 3;
  • the third conductive layer 5 is located on the side of the second tunable dielectric layer 2 away from the first conductive layer 3;
  • the orthographic projections of the first conductive layer 3, the second conductive layer 4, and the third conductive layer 5 on the first tunable dielectric layer 1 at least partially overlap.
  • the radio frequency unit is used to modulate the signal to the target frequency band range, transmit the signal within this frequency band range (the signal passes), and block the signal outside this frequency band range (the signal is reflected).
  • Adjustable radio frequency units refer to radio frequency units whose target frequency band range can be adjusted.
  • the dielectric constants of both the first tunable dielectric layer 1 and the second tunable dielectric layer 2 may change according to changes in the external environment. For example, when the electric field environment where the first tunable dielectric layer 1 is located and the electric field environment where the second tunable dielectric layer 2 is located changes, the dielectric properties of the first tunable dielectric layer 1 and the second tunable dielectric layer 2 will change. The constants can all change as the electric field changes.
  • the thickness of the first tunable dielectric layer 1 and the second tunable dielectric layer 2 can be set to be the same, so that they are formed by the first conductive layer 3 , the first tunable dielectric layer 1 and the second conductive layer 4
  • the capacitance is the same as the capacitance formed by the first conductive layer 3, the second tunable dielectric layer 2 and the third conductive layer 5, thereby making the target frequency range of the tunable radio frequency unit 100 easier to adjust and control, thereby improving the tunable radio frequency The control accuracy of the target frequency band range of the unit 100.
  • the dielectric constants of the first tunable dielectric layer 1 and the second tunable dielectric layer 2 are the same. Specifically, it can be determined based on the frequency range of the electromagnetic wave signal that the tunable radio frequency unit 100 is designed to pass.
  • the materials of the first tunable dielectric layer 1 and the second tunable dielectric layer 2 may include materials with variable dielectric constants under external environments, for example, materials with variable dielectric constants under an electric field.
  • material an electrically controlled dielectric material; wherein the electrically controlled dielectric material may include at least one of ferrite, ferroelectric or liquid crystal.
  • the materials of the first tunable dielectric layer 1 and the second tunable dielectric layer 2 are the same.
  • materials with the same dielectric constant can be selected for setting. , so that the dielectric constants of the first tunable dielectric layer 1 and the second tunable dielectric layer 2 are the same.
  • the first tunable dielectric layer 1 and the second tunable dielectric layer 2 may be made of the same material.
  • both the first tunable dielectric layer 1 and the second tunable dielectric layer 2 may include multiple parts, and the material of at least one part of the first tunable dielectric layer 1 is in the external environment.
  • the material has a variable dielectric constant, and the material of at least a part of the second tunable dielectric layer 2 is a material with a variable dielectric constant under the external environment.
  • the materials of the first conductive layer 3, the second conductive layer 4, and the third conductive layer 5 may include conductive materials, such as metal materials, metal oxide materials, inorganic non-metal materials; wherein, metal The material may include at least one of copper (Cu), gold (Au), aluminum (Al), and silver (Ag).
  • the metal oxide material may include indium tin oxide (ITO), zinc tin oxide (IZO), inorganic non-
  • the metallic material may include doped silicon material.
  • the materials of the first conductive layer 3 , the second conductive layer 4 , and the third conductive layer 5 are the same.
  • the details can be determined according to the actual design and manufacturing process of the radio frequency unit.
  • the thicknesses of the first conductive layer 3, the second conductive layer 4, and the third conductive layer 5 are not limited here, and can be specifically determined according to the actual design and manufacturing process of the radio frequency unit.
  • the first tunable dielectric layer 1 is located in the electric field formed by the first conductive layer 3 and the second conductive layer 4, and the second tunable dielectric layer 2 is located in the first conductive layer 3 and the third conductive layer. 5 in the electric field formed.
  • the same first electrical signal can be input to the second conductive layer 4 and the third conductive layer 5, and the second electrical signal can be input to the first conductive layer 3, And the voltage of the first electrical signal is greater than or equal to the voltage of the second electrical signal, so that the electric field intensity formed by the first conductive layer 3 and the second conductive layer 4 is equal to the electric field intensity formed by the first conductive layer 3 and the third conductive layer 5 same.
  • the orthographic projections of the first conductive layer 3, the second conductive layer 4, and the third conductive layer 5 on the first tunable dielectric layer 1 at least partially overlap include but are not limited to the following situations:
  • the orthographic projections of the first conductive layer 3, the second conductive layer 4, and the third conductive layer 5 on the first tunable dielectric layer 1 partially overlap; it can be understood that at this time, the intersection of the orthographic projections of the three The area of the overlapping region is smaller than the area of its respective orthographic projection;
  • the orthographic projections of the first conductive layer 3, the second conductive layer 4, and the third conductive layer 5 on the first tunable dielectric layer 1 completely overlap; it can be understood that at this time, the first conductive layer 3 is on the first tunable dielectric layer 1.
  • the orthogonally projected outer contour of a tunable dielectric layer 1 overlaps with the orthogonal projected outer contour of the second conductive layer 4 on the first tunable dielectric layer 1
  • the second conductive layer 4 is on the first tunable dielectric layer 1
  • the outer contour of the orthographic projection on the third conductive layer 5 overlaps with the outer contour of the orthographic projection of the third conductive layer 5 on the first tunable dielectric layer 1 .
  • the size of the capacitance formed by the first conductive layer 3, the first tunable dielectric layer 1 and the second conductive layer 4 is related to the size of the effective area where the orthographic projections of the three overlap.
  • the size of the capacitance formed by the dielectric layer 2 and the third conductive layer 5 is related to the size of the effective area where the orthographic projections of the three overlap.
  • the “orthographic projection” on the first tunable medium layer 1 refers to the projection on the first tunable medium layer 1 in a direction perpendicular to the first tunable medium layer 1 , which will be discussed later. The relevant description is similar to the meaning here and will not be described again.
  • Figure 2 provides a schematic circuit diagram of a second-order bandpass filter composed of two parallel resonant circuits cascaded in related art.
  • the circuit schematic diagram is a ⁇ -type circuit that utilizes the ⁇ -type network in a low-frequency circuit.
  • the conversion relationship with the T-shaped network can transform the ⁇ -shaped circuit shown in Figure 2 into the T-shaped circuit shown in Figure 3.
  • the capacitor C1 in the parallel resonant circuit is split into a fixed-value capacitor C3 and an adjustable capacitor C4, and the capacitor C2 is split into The fixed value capacitor C6 and the adjustable capacitor C5 are used to obtain a schematic circuit structure diagram of a new second-order bandpass filter as shown in Figure 4.
  • the structures in the rectangular dotted box in Figure 4 can be replaced by transmission lines.
  • the first tunable dielectric layer 1 and the second tunable dielectric layer 2 are equivalent to transmission lines.
  • the signal can be transmitted from the second conductive layer 4 through the first tunable dielectric layer 1 to the first conductive layer;
  • the circuit structure schematic diagram shown in Figure 4 is equivalent to a capacitor structure, a transmission line, Series connection of inductor structure, transmission line and capacitor structure.
  • a fixed value capacitance C3 is generated in the plane where the second conductive layer 4 is located, and a fixed value capacitance C6 is generated in the plane where the third conductive layer 5 is located.
  • the first conductive layer 3 and the first tunable medium Layer 1 and the second conductive layer 4 jointly produce the inductor structure L3 and the adjustable capacitor C4, and the first conductive layer 3, the second tunable dielectric layer 2 and the third conductive layer 5 jointly produce the inductor structure L5 and the adjustable capacitor C5.
  • an inductance L4 is generated in the plane where the first conductive layer 3 is located.
  • the capacitance values of the fixed value capacitor C3 and the fixed value capacitor C6 can be set to be equal, and the capacitance values of the adjustable capacitor C4 and the adjustable capacitor C5 can be set to be equal.
  • the maximum capacitance values are equal, and the inductance values of the inductor structure L3 and the inductor structure L5 are equal.
  • the structure of the tunable radio frequency unit 100 provided by the embodiment of the present application is designed based on the circuit structure diagram shown in Figure 4. Since the first tunable medium layer in the tunable radio frequency unit 100 provided by the embodiment of the present application The dielectric constants of 1 and the second tunable dielectric layer 2 can be adjusted to provide variable capacitance, so that the target frequency band range of the tunable radio frequency unit 100 can be adjusted, thereby broadening the passband of the tunable radio frequency unit 100 The bandwidth is tunable, which expands the application field of the radio frequency unit and improves its working flexibility.
  • the orthographic projections of the first conductive layer 3 , the second conductive layer 4 , and the third conductive layer 5 on the first tunable dielectric layer 1 are all located in the second tunable dielectric layer 1 .
  • the dielectric layer 2 is within the orthographic projection on the first tunable dielectric layer 1;
  • the orthographic projections of the first conductive layer 3 , the second conductive layer 4 , and the third conductive layer 5 on the second tunable dielectric layer 2 are all located at the orthographic projection of the first tunable dielectric layer 1 on the second tunable dielectric layer 2 Within.
  • the orthographic projection of A is located within the orthographic projection of B, including two situations: first, the outer contour of the orthographic projection of A is located within the outer contour of the orthographic projection of B; second, the outer contour of the orthographic projection of A is located within the outer contour of the orthographic projection of B; The outer contour of the orthographic projection overlaps with the outer contour of the orthographic projection of B.
  • the orthographic projections of the above-mentioned first conductive layer 3, second conductive layer 4, and third conductive layer 5 on the first tunable dielectric layer 1 are all located on the second tunable dielectric layer 2 on the first tunable dielectric layer 1 Within the orthographic projection of Within the outer contour of the orthographic projection on the first tunable dielectric layer 1; or, within the outer contour of the orthographic projection of the first conductive layer 3, the second conductive layer 4, and the third conductive layer 5 on the first tunable dielectric layer 1 They all overlap with the outer contour of the orthographic projection of the second tunable medium layer 2 on the first tunable medium layer 1 .
  • the orthographic projections of the first conductive layer 3 , the second conductive layer 4 , and the third conductive layer 5 on the second tunable dielectric layer 2 are all located at the orthographic projection of the first tunable dielectric layer 1 on the second tunable dielectric layer 2
  • the meanings below are similar and will not be repeated.
  • the first tunable dielectric layer 1 and the second tunable dielectric layer 2 each include a first substrate 13 (not shown in Figure 5), a second The substrate 14 (not shown in Figure 5), and the tunable dielectric part 12 and the fixed dielectric part 11 located between the first substrate 13 and the second substrate 14; the tunable dielectric part 12 is located between two adjacent fixed between the medium parts 11;
  • the orthographic projection of the tunable dielectric portion 12 in the first tunable dielectric layer 1 on the first substrate 13 is the same as the orthographic projection of the tunable dielectric portion 12 in the second tunable dielectric layer 2 on the first substrate. Orthographic projections on 13 overlap.
  • both the first substrate 13 and the second substrate 14 are insulating materials.
  • the first substrate 13 and the second substrate 14 may be hard plastics, such as PC (Polycarbonate, polycarbonate), COP (Copolymers of Cycloolefin, cycloolefin polymer), PMMA (Polymethyl Methacrylate, polycarbonate). Methyl methacrylate) or PET (Polyethylene Terephthalate, polyethylene terephthalate); or, it can be low-loss optical glass.
  • the material of the fixed dielectric portion 11 is a material whose dielectric constant does not change with the external environment; or, when the external environment changes, the change in the dielectric constant is very small and almost negligible.
  • the type of material is not limited here, and can be determined based on the actual design requirements for the dielectric constant and the preparation process.
  • the material of the fixing medium portion 11 is the same as the materials of the first substrate 13 and the second substrate 14 .
  • materials with the same or similar dielectric constants may be selected to prepare the fixed dielectric part 11, the first substrate 13 and the second substrate respectively. 14.
  • the material of the tunable dielectric portion 12 includes a material with a variable dielectric constant, such as an electrically controlled dielectric material, wherein the electrically controlled dielectric material includes a liquid crystal.
  • the tunable dielectric part 12 and the first substrate 13 and the second substrate 14 located on both sides of the tunable dielectric part 12 can be regarded as a liquid crystal cell, and the liquid crystal in the liquid crystal cell is deflected under the action of an external electric field. , thus causing the dielectric constant of the liquid crystal cell to change, changing the capacitance values of the variable capacitor C4 and the variable capacitor C5, changing the output signal of the resonant circuit, and thus changing the target frequency range of the adjustable radio frequency unit.
  • the target frequency range of the adjustable radio frequency unit refers to the frequency range of the signal that can pass through the adjustable radio frequency unit.
  • the types of liquid crystals included in the tunable medium part 12 and the number of the types of liquid crystals included are not limited, and may be determined based on the actual situation.
  • the tunable medium part 12 may include a single type of liquid crystal; or, the tunable medium part 12 may include a mixed crystal formed of a plurality of liquid crystals.
  • one of the first substrate 13 and the second substrate 14 has an integrated structure with the fixed dielectric part 11 .
  • one of the first substrate 13 and the second substrate 14 is made of the same material as the fixed dielectric portion 11 , and the first substrate 13
  • One of the second substrate 14 and the fixed dielectric part 11 has an integrated structure.
  • the first substrate 13 and the fixed medium part 11 may be provided as an integrated structure.
  • the second substrate 14 and the fixed medium part 11 may be provided as an integrated structure.
  • the orthographic projections of the first conductive layer 3 , the second conductive layer 4 , and the third conductive layer 5 on the first substrate 13 are respectively in contact with the tunable medium.
  • the orthographic projections of the first conductive layer 3, the second conductive layer 4, and the third conductive layer 5 on the first substrate 13 partially overlap with the fixed dielectric portion 11.
  • the orthographic projections on the first substrate 13 partially overlap.
  • the orthographic projections of the first conductive layer 3 , the second conductive layer 4 , and the third conductive layer 5 on the first substrate 13 respectively overlap with the orthographic projections of the tunable dielectric portion 12 on the first substrate 13 .
  • the area size overlaps with the orthographic projection of the first conductive layer 3, the second conductive layer 4, and the third conductive layer 5 on the first substrate 13 respectively and the orthographic projection of the fixed dielectric portion 11 on the first substrate 13.
  • the size of the area is not limited.
  • the area of the area where the three conductive layers overlap with the orthographic projection of the tunable medium part 12 is greater than or equal to the area of the area where the three conductive layers overlap with the orthographic projection of the fixed dielectric part 11; or, alternatively, It may be set that the area of the area where the three conductive layers overlap with the orthographic projection of the tunable medium part 12 is smaller than the area of the area where the three conductive layers overlap with the orthographic projection of the fixed dielectric part 11 .
  • the orthographic projections of the first conductive layer 3 , the second conductive layer 4 , and the third conductive layer 5 on the first substrate 13 can be set to be different from each other respectively.
  • the overlapping area of the orthographic projection of the tuning medium portion 12 on the first substrate 13 is larger than the orthographic projection of the first conductive layer 3 , the second conductive layer 4 , and the third conductive layer 5 on the first substrate 13 respectively.
  • the area of the area where orthographic projections of the medium portion 11 overlap on the first substrate 13 is fixed.
  • the maximum capacitance value of the adjustable capacitor C4 and the adjustable capacitor C5 can be increased, thereby increasing the adjustment space of the target frequency range of the adjustable radio frequency unit, improving its frequency adjustment flexibility, and broadening its application fields or application scenarios.
  • the size of the tunable dielectric portion 12 of the first tunable dielectric layer 1 in a direction perpendicular to the plane of the first substrate 13 is the same as that of the tunable dielectric portion of the second tunable dielectric layer 2 . 12 has the same size in a direction perpendicular to the plane of the first substrate 13;
  • the size of the fixed dielectric portion 11 of the first tunable dielectric layer 1 in a direction perpendicular to the plane of the first substrate 13 is the same as that of the fixed dielectric portion 11 of the second tunable dielectric layer 2 in a direction perpendicular to the plane of the first substrate 13 .
  • the dimensions in the planar direction are the same.
  • the size of the tunable dielectric portion 12 in a direction perpendicular to the plane of the first substrate 13 is the height of the tunable dielectric portion 12 , and other related descriptions have similar meanings.
  • the height of the tunable dielectric portion 12 of the first tunable dielectric layer 1 is the same as the height of the fixed dielectric portion 11 of the first tunable dielectric layer 1 .
  • the details can be determined according to the actual situation.
  • the height of the tunable dielectric portion 12 of the second tunable dielectric layer 2 and the height of the fixed dielectric portion 11 of the second tunable dielectric layer 2 are the same, and may be determined based on the actual situation.
  • the height of the tunable dielectric portion 12 of the first tunable dielectric layer 1 can be set to be greater than or equal to the height of the fixed dielectric portion 11 of the first tunable dielectric layer 1
  • the height of the second tunable dielectric layer 2 can be set to be greater than or equal to the height of the fixed dielectric portion 11 of the first tunable dielectric layer 1
  • the height of the dielectric portion 12 is greater than or equal to the height of the fixed dielectric portion 11 of the second tunable dielectric layer 2 .
  • the height of the tunable dielectric portion 12 of the first tunable dielectric layer 1 can be set to be equal to the height of the fixed dielectric portion 11 of the first tunable dielectric layer 1
  • the tunable dielectric portion 12 of the second tunable dielectric layer 2 can be set equal to the height of the fixed dielectric portion 11 of the first tunable dielectric layer 1
  • the height of is equal to the height of the fixed dielectric portion 11 of the second tunable dielectric layer 2
  • the height of the tunable dielectric portion 12 of the first tunable dielectric layer 1 is equal to the height of the tunable dielectric portion 12 of the second tunable dielectric layer 2 .
  • the material of the first tunable dielectric layer 1 is the same as the material of the second tunable dielectric layer 2, and the material of the second conductive layer 4 and the third conductive layer 5 is the same, and the first conductive layer 3 and the first tunable dielectric layer 5 are made of the same material.
  • the area of the overlapping orthographic projections of the tunable dielectric layer 1 and the second conductive layer 4 is the overlapping area of the orthographic projections of the first conductive layer 3 , the second tunable dielectric layer 2 and the third conductive layer 5
  • the capacitance values of the capacitor C3 and the capacitor C6 are the same, and the maximum capacitances of the capacitor C4 and the capacitor C5 are the same, which is beneficial to controlling and regulating the target frequency band of the adjustable radio frequency unit 100. range, improve its control accuracy, improve its work flexibility, reduce the difficulty of the preparation process and reduce the cost.
  • the orthographic projection of the second conductive layer 4 on the first substrate 13 overlaps with the orthographic projection of the third conductive layer 5 on the first substrate 13 , and the second conductive layer 4 is on the first substrate 13 .
  • the orthographic projection on a substrate 13 is located within the orthographic projection of the first conductive layer 3 on the first substrate 13 .
  • the overlap of the orthographic projection of the second conductive layer 4 on the first substrate 13 with the orthographic projection of the third conductive layer 5 on the first substrate 13 can be understood as meaning that the second conductive layer 4 is on the first substrate 13 .
  • the orthographic projection outline on one substrate 13 overlaps with the orthographic projection outline of the third conductive layer 5 on the first substrate 13 .
  • the orthographic projection of the second conductive layer 4 on the first substrate 13 is within the orthographic projection of the first conductive layer 3 on the first substrate 13, including two situations:
  • the outer contour of the orthographic projection of the second conductive layer 4 on the first substrate 13 is located within the outer contour of the orthographic projection of the first conductive layer 3 on the first substrate 13;
  • the outer contour of the orthographic projection of the second conductive layer 4 on the first substrate 13 overlaps with the outer contour of the orthographic projection of the first conductive layer 3 on the first substrate 13 .
  • the difference in electrical conductivity of the material of the second conductive layer 4 and the electrical conductivity of the material of the third conductive layer 5 is less than or equal to the preset value.
  • This preset value can be adjusted according to the adjustment accuracy requirements of the adjustable radio frequency unit.
  • the specific value of the above preset value is not limited here.
  • the above preset value may be less than or equal to 5% or 8% of the conductivity of the material of the second conductive layer 4 .
  • the above preset value may be less than or equal to 5% or 8% of the conductivity of the material of the third conductive layer 5 .
  • the material of the second conductive layer 4 and the material of the third conductive layer 5 can be set to have the same conductivity, or even the material of the second conductive layer 4 and the material of the third conductive layer 5 can be set to be the same, so that
  • the parallel resonant circuit as shown in Figure 4 can form a symmetrical circuit, which makes it easier to control the adjustable radio frequency unit to adjust its target frequency range, improve its frequency adjustment accuracy, and improve its work flexibility.
  • the orthographic projection of the tunable dielectric portion 12 on the first substrate 13 is located within the orthographic projection of the first conductive layer 3 on the first substrate 13 , and the orthographic projection pattern of the tunable dielectric portion 12 on the first substrate 13 has the same shape as the orthographic projection pattern of the first conductive layer 3 on the first substrate 13 .
  • the orthographic projection pattern of the tunable medium portion 12 on the first substrate 13 includes a polygon, an arc, or a combination of polygons and arcs.
  • polygons may include rectangles, rhombuses, and parallelograms
  • arc shapes may include sectors, semicircles, and semiellipses.
  • the orthographic projection pattern of the tunable dielectric part 12 on the first substrate 13 and the orthographic projection pattern of the first conductive layer 3 on the first substrate 13 are both polygons, for example, ten as shown in FIG. 11 Diagonal.
  • the first tunable dielectric layer 1 and the second tunable dielectric layer 2 further include a connection portion 15 respectively.
  • the connection portion 15 is located between the first substrate 13 and the first substrate 13 . between the second substrate 14 and configured to fixedly connect the tunable dielectric part 12 and the fixed dielectric part 11 .
  • connection part 15 may include optical glue (Optically Clear Adhesive, OCA) or sealant (Seal).
  • the difference between the dielectric constant of the material of the first substrate 13 , the material of the second substrate 14 and the material of the connecting part 15 respectively and the dielectric constant of the material of the fixed dielectric part 11 The value is less than or equal to the preset value.
  • the preset value is greater than or equal to 0 and less than or equal to 0.3.
  • the second conductive layer 4 and the third conductive layer 5 each include a plurality of conductive parts 41 , and the plurality of conductive parts 41 are arranged along the first direction and electrically connected. Connected together; the first direction is clockwise OA or counterclockwise AO.
  • the plurality of conductive parts 41 include two or more conductive parts 41.
  • the second conductive layer 4 and the third conductive layer 5 each include four conductive parts 41 as an example for description. .
  • the plurality of conductive portions 41 in the second conductive layer 4 are arranged symmetrically in the center with the geometric center Center of the second conductive layer as the symmetry point;
  • the geometric center Center of the two conductive layers 4 is located at the connection position of the plurality of conductive parts 41 in the second conductive layer 4;
  • the structure of the third conductive layer 5 is the same as that of the second conductive layer 4.
  • the conductive part 41 includes a plurality of bending structures Z, and the plurality of bending structures Z are connected in sequence;
  • the number of bent structures Z included in the same conductive part 41 is not limited here.
  • the same conductive part 41 may include 3 bending structures Z, or one conductive part 41 may include 3.1 bending structures Z, or one conductive part 41 may include 3.5 bending structures Z.
  • the number of bent structures Z included in the same conductive part 41 can be determined according to the design length of the conductive part 41. In FIG. 9 or 10, the area marked in the dotted circle is approximately 0.1 bent structures Z.
  • the bending structure Z includes the first line segment a1, the The second line segment a2, the third line segment a3 and the fourth line segment a4 have a first included angle between the extension direction of the first line segment a1 and the extension direction of the second line segment a2, and the extension direction of the second line segment a2 and the third line segment a3
  • the minimum distances D1 between the first line segment a1 to the fourth line segment a4 of the same bending structure Z in the conductive part 41 are all equal.
  • the minimum distance D2 between the third line segment a3 of the previous bending structure Z and the third line segment a3 of the next bending structure Z is equal.
  • D1 is equal to D2.
  • the first included angle, the second included angle and the third included angle are all right angles. At this time, the first line segment a1 and the third line segment a3 are parallel, and the second line segment a2 and the fourth line segment a4 are parallel.
  • first line segment a1 of each bending structure Z and the third line segment a3 of each bending structure Z in the same conductive part 41 are equal, and the a1 of each bending structure Z in the same conductive part 41
  • the second line segment a2 is equal to the fourth line segment a4 of each bending structure Z.
  • the length L of the second line segment a2 and the fourth line segment a4 is related to the inductance value of the inductance structure L3 or the inductance structure L5 as shown in FIG. 4 , generally , the greater the length, the greater the inductance value; the minimum distance D1 between the first line segment a1 to the fourth line segment a4 of the same bending structure Z and the third line segment a3 of the previous bending structure Z to the next bending structure
  • the minimum distance D2 between the third line segment a3 of Z is related to the capacitance value of the capacitor C3 or C6. Generally, the larger D1 and D2 are, the greater the capacitance value is.
  • the adjustable radio frequency unit 100 further includes a first adhesive layer, a second adhesive layer, a third adhesive layer and a fourth adhesive layer; the first adhesive layer is located on the first conductive layer 3 and the first tunable dielectric layer 1, the second adhesive layer is located between the first conductive layer 1 and the second tunable dielectric layer 2, and the third adhesive layer is located between the second conductive layer 4 and the first tunable dielectric layer 3. Between the dielectric layers 1, the fourth adhesive layer is located between the third conductive layer 5 and the second tunable dielectric layer 1;
  • the difference between the dielectric constant of the material of the first adhesive layer, the second adhesive layer, the third adhesive layer and the fourth adhesive layer and the dielectric constant of the material of the fixed dielectric part 11 is less than or equal to the predetermined value. Set value.
  • the preset value is greater than or equal to 0 and less than or equal to 0.3.
  • the materials of the first adhesive layer, the second adhesive layer, the third adhesive layer and the fourth adhesive layer may all be adhesives.
  • the first adhesive layer, the second adhesive layer, the third adhesive layer and the fourth adhesive layer have the same material dielectric constant and the same material.
  • the dielectric constant of the material of the first adhesive layer, the second adhesive layer, the third adhesive layer and the fourth adhesive layer respectively to the dielectric constant of the material of the fixed dielectric part 11 The difference between the constants is less than or equal to the preset value, which can reduce the capacitance-related changes in the materials of the first adhesive layer, the second adhesive layer, the third adhesive layer and the fourth adhesive layer in the adjustable radio frequency unit 100.
  • the influence of the capacitance value of the structure makes it easier to control the adjustable radio frequency unit to adjust its target frequency range, improve control accuracy, and improve its working flexibility.
  • the tunable radio frequency unit 100 further includes a first protective layer and a second protective layer.
  • the first protective layer is located on the side of the second conductive layer 4 away from the first tunable dielectric layer 1 .
  • the protective layer is located on the side of the third conductive layer 5 away from the second tunable dielectric layer 2 .
  • the materials of the first protective layer and the second protective layer are both insulating materials with certain mechanical strength.
  • the insulating material may be one of PI, PET or PMMA.
  • the material of the tunable medium portion 12 includes at least one liquid crystal.
  • the material of the tunable medium part 12 may include one type of liquid crystal, or the material of the tunable medium part 12 may include a mixture of multiple liquid crystals.
  • Embodiments of the present application provide a method for preparing an adjustable radio frequency unit, which method includes:
  • the vapor deposition method can be used to deposit the second conductive layer 4 on the first protective layer, and the vapor deposition method can be used to deposit the third conductive layer 5 on the second protective layer; specifically, to form the second conductive layer 4 Taking layer 4 as an example, a second conductive film is first deposited on the first protective layer and then patterned to obtain the second conductive layer 4 .
  • the first tunable dielectric layer 1 includes a first substrate 13 (not shown in FIG. 5 ), a second substrate 14 (not shown in FIG. 5 ), and a substrate located between the first substrate 13 and the second substrate 14 .
  • the tunable medium part 12, the fixed medium part 11 and the connecting part 15 are arranged between them.
  • the fixed dielectric part 11 is formed on the first substrate, and a sealant is applied.
  • the sealant is used to form the connection part 15.
  • Liquid crystal liquid crystal
  • the structures of the first tunable dielectric layer 1 and the second tunable dielectric layer 2 are similar to those of liquid crystal display panels in the related art, and their specific preparation methods can be referred to the related art, which will not be described again here.
  • first substrate 13 and the fixed dielectric portion 11 have an integrated structure, patterning (grooving) can be performed on the base material to simultaneously obtain the first substrate 13 and the fixed dielectric portion. 11.
  • first conductive layer 3 wherein the first conductive layer 3 may be a patch conductive layer, such as patch metal.
  • adhesive can be used to fix the first conductive layer 3 with the first tunable dielectric layer 1 and the second tunable dielectric layer 2 respectively.
  • the target frequency band range of the adjustable radio frequency unit 100 prepared by the preparation method provided by the embodiment of the present application is easier to adjust and control, has high control accuracy, a large passable frequency band range, and high working flexibility.
  • An embodiment of the present application provides a filter, as shown in FIG. 15 , including a plurality of adjustable radio frequency units 100 as described above, and a plurality of the adjustable radio frequency units 100 are arranged in an array.
  • the second conductive layers 4 of each adjustable radio frequency unit 100 are disconnected, and the third conductive layer 5 of each adjustable radio frequency unit 100 is disconnected.
  • the tunable medium portion 12 located in each first tunable medium layer in each adjustable radio frequency unit 100 is connected and arranged (for example, the first first tunable medium in Figure 5
  • the surface of the parallelogram dotted line frame in the tunable dielectric part 12 of the dielectric layer is connected to the surface of the parallelogram dotted line frame in the tunable dielectric part 12 of the second first tunable dielectric layer), and each tunable radio frequency unit is located in each third
  • the tunable medium portions 12 of the two tunable medium layers are connected and arranged.
  • the filter provided by the embodiment of the present application can have adjustable passband characteristics, have very good transmission characteristics for electromagnetic wave energy in the passband frequency range, and have strong reflection characteristics for electromagnetic wave energy outside the passband frequency range.
  • the filter can be changed to the appropriate resonant frequency, bandwidth, or resonance characteristics. It has the advantages of wide operating frequency range, low loss, and low cost. This has wide application value in many electromagnetic engineering environments, such as radar, antennas and other wireless communication fields.
  • the filter can be used as a radome for a dual-band antenna to avoid interference when the antenna operates in different frequency bands.
  • the filter is an adjustable band-pass filter.
  • the filter further includes a driving unit, which is electrically connected to the adjustable radio frequency unit; the driving unit is configured to drive each adjustable radio frequency unit to work independently.
  • the driving unit includes a first driving subunit, a second driving subunit and a ground line;
  • the first driving subunit is located on the side of the second conductive layer 4 away from the first tunable dielectric layer 1 , and the first driving subunit is electrically connected to the second conductive layer 4 ; the second driving subunit is located on the side away from the third conductive layer 5 On one side of the second tunable dielectric layer 2, the second driving subunit is electrically connected to the third conductive layer 5, and the first conductive layer 3 of the tunable radio frequency unit is electrically connected to the ground wire.
  • the first driving subunit is used to drive the first tunable dielectric layer 1 and change the dielectric constant of the first tunable dielectric layer 1
  • the second driving subunit is used to drive the second tunable dielectric layer 1 .
  • dielectric layer 2 and changes the dielectric constant of the second tunable dielectric layer 2 .
  • first driving subunit and the second driving subunit are not limited here.
  • both the first driving subunit and the second driving subunit may refer to the design of pixel driving circuits in liquid crystal display technology.
  • pixel driving circuits in related technologies which will not be described again here.
  • the first driver can The sub-unit and the second driving sub-unit respectively input different first electrical signals, or the same first electrical signal can be input to the first driving sub-unit and the second driving sub-unit respectively.
  • the specific frequency can be adjusted according to actual needs. The scope is determined. In practical applications, in order to facilitate control, the same first electrical signal can also be input to the first driving subunit and the second driving subunit respectively.
  • An embodiment of the present application provides an electronic device, including the filter described above.
  • the electronic device may be an electronically controlled scanning antenna, a radar system, an accelerator, a communication base station, a power divider, or any other device that includes an adjustable bandpass filter.
  • the electronic device may also include other structures and components. The details may be determined according to actual conditions and are not limited here.
  • the electronic device provided by the embodiment of the present application includes an adjustable bandpass filter, which has very good transmission characteristics for electromagnetic wave energy in the passband frequency range, and has relatively good transmission characteristics for electromagnetic wave energy outside the passband frequency range. Strong reflection characteristics, in response to changing electromagnetic environments, the filter can be changed to the appropriate resonant frequency, bandwidth, or resonance characteristics. It has the advantages of wide operating frequency range, low loss, and low cost. It has many advantages in electromagnetic engineering environments. Wide application value. .

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本申请提供了一种可调射频单元、滤波器和电子设备,该可调射频单元包括第一可调谐介质层和第二可调谐介质层;第一导电层,位于第一可调谐介质层和第二可调谐介质层之间;第二导电层,位于第一可调谐介质层远离第一导电层的一侧;第三导电层,位于第二可调谐介质层远离第一导电层的一侧;其中,第一导电层、第二导电层、第三导电层在第一可调谐介质层上的正投影至少部分交叠。该可调射频单元具有通带可调的特性,其调整精度高,可控性好,工作频率范围宽、损耗小、成本低。

Description

可调射频单元、滤波器和电子设备 技术领域
本申请涉及通讯技术领域,尤其涉及一种可调射频单元、滤波器和电子设备。
背景技术
带通滤波器(Band Pass Filter,BPF)是一个允许特定频段的波通过,同时屏蔽其他频段的波的元器件。相关技术中,采用变容二极管制备的带通滤波器具有频率调谐范围大、设计方法简单的优点,但是,受到封装引线的电感的影响,其只能在低频段工作,例如X波段以下工作。
目前,亟需提供一种新的频率可调的带通滤波器。
发明内容
本申请的实施例采用如下技术方案:
第一方面,本申请的实施例提供了一种可调射频单元,其中,包括:
第一可调谐介质层和第二可调谐介质层;
第一导电层,位于所述第一可调谐介质层和所述第二可调谐介质层之间;
第二导电层,位于所述第一可调谐介质层远离所述第一导电层的一侧;
第三导电层,位于所述第二可调谐介质层远离所述第一导电层的一侧;
其中,所述第一导电层、所述第二导电层、所述第三导电层在所述第一可调谐介质层上的正投影至少部分交叠。
在本申请的一些实施例中,所述第一导电层、所述第二导电层、所述第三导电层在所述第一可调谐介质层上的正投影均位于所述第二可调谐介质层在所述第一可调谐介质层上的正投影以内;
所述第一导电层、所述第二导电层、所述第三导电层在所述第二可调谐介质层上的正投影均位于所述第一可调谐介质层在所述第二可调谐介质层上的正投影以内。
在本申请的一些实施例中,所述第一可调谐介质层和所述第二可调谐介质层均包括第一衬底、第二衬底、以及位于所述第一衬底和所述第二衬底之 间的可调谐介质部和固定介质部;所述可调谐介质部位于相邻的两个所述固定介质部之间;
所述第一可调谐介质层中的所述可调谐介质部在所述第一衬底上的正投影与所述第二可调谐介质层中的所述可调谐介质部在所述第一衬底上的正投影重叠。
在本申请的一些实施例中,所述第一衬底和所述第二衬底之中的一个与所述固定介质部为一体化结构。
在本申请的一些实施例中,所述第一导电层、所述第二导电层、所述第三导电层在所述第一衬底上的正投影分别与所述可调谐介质部在所述第一衬底上的正投影部分交叠;所述第一导电层、所述第二导电层、所述第三导电层在所述第一衬底上的正投影分别与所述固定介质部在所述第一衬底上的正投影部分交叠。
在本申请的一些实施例中,所述第一导电层、所述第二导电层、所述第三导电层在所述第一衬底上的正投影分别与所述可调谐介质部在所述第一衬底上的正投影交叠的区域的面积大于所述第一导电层、所述第二导电层、所述第三导电层在所述第一衬底上的正投影分别与所述固定介质部在所述第一衬底上的正投影交叠的区域的面积。
在本申请的一些实施例中,所述第一可调谐介质层的所述可调谐介质部在沿垂直于所述第一衬底所在平面方向上的尺寸与所述第二可调谐介质层的所述可调谐介质部在沿垂直于所述第一衬底所在平面方向上的尺寸相同;
所述第一可调谐介质层的所述固定介质部在沿垂直于所述第一衬底所在平面方向上的尺寸与所述第二可调谐介质层的所述固定介质部在沿垂直于所述第一衬底所在平面方向上的尺寸相同。
在本申请的一些实施例中,所述第二导电层在所述第一衬底上的正投影与所述第三导电层在所述第一衬底上的正投影重叠,且所述第二导电层在所述第一衬底上的正投影位于所述第一导电层在所述第一衬底上的正投影以内。
在本申请的一些实施例中,所述第二导电层的材料的电导率与所述第三导电层的材料的电导率差值的绝对值小于或等于预设值。
在本申请的一些实施例中,所述可调谐介质部在所述第一衬底上的正投影位于所述第一导电层在所述第一衬底上的正投影以内,且所述可调谐介质部在所述第一衬底上的正投影图形与所述第一导电层在所述第一衬底上的正投影图形的形状相同;所述可调谐介质部在所述第一衬底上的正投影图形包括多边形、弧形或多边形与弧形的组合。
在本申请的一些实施例中,所述第一可调谐介质层和所述第二可调谐介质层还分别包括连接部,所述连接部位于所述第一衬底与所述第二衬底之间,且被配置为固定连接所述可调谐介质部和所述固定介质部。
在本申请的一些实施例中,所述第一衬底的材料、所述第二衬底的材料和所述连接部的材料的介电常数分别与所述固定介质部的材料的介电常数之间的差值小于或等于预设值。
在本申请的一些实施例中,所述第二导电层和所述第三导电层均包括多个导电部,多个所述导电部沿第一方向排布并电连接在一起;所述第一方向为顺时针方向或逆时针方向。
在本申请的一些实施例中,所述第二导电层中的多个所述导电部以所述第二导电层的几何中心为对称点,呈中心对称排布;所述第二导电层的几何中心位于所述第二导电层中的多个所述导电部的连接位置处;
所述第三导电层的结构与所述第二导电层的结构相同。
在本申请的一些实施例中,所述导电部包括多个弯折结构,多个所述弯折结构依次连接;
所述弯折结构包括依次连接的第一线段、第二线段、第三线段和第四线段,所述第一线段的延伸方向和所述第二线段的延伸方向之间具有第一夹角,所述第二线段的延伸方向和所述第三线段的延伸方向之间具有第二夹角,所述第三线段的延伸方向和所述第四线段的延伸方向之间具有第三夹角;所述第一夹角、所述第二夹角和所述第三夹角均大于0°,且小于180°。
在本申请的一些实施例中,所述第一夹角、所述第二夹角和所述第三夹角均为直角。
在本申请的一些实施例中,所述可调射频单元还包括第一粘结层、第二粘结层、第三粘结层和第四粘结层;所述第一粘结层位于所述第一导电层与 所述第一可调谐介质层之间,所述第二粘结层位于所述第一导电层与所述第二可调谐介质层之间,所述第三粘结层位于所述第二导电层与所述第一可调谐介质层之间,所述第四粘结层位于所述第三导电层与所述第二可调谐介质层之间;
所述第一粘结层、所述第二粘结层、所述第三粘结层和所述第四粘结层的材料的介电常数分别与所述固定介质部的材料的介电常数之间的差值小于或等于预设值。
在本申请的一些实施例中,所述可调射频单元还包括第一保护层和第二保护层,所述第一保护层位于所述第二导电层远离所述第一可调谐介质层的一侧,所述第二保护层位于所述第三导电层远离所述第二可调谐介质层的一侧。
在本申请的一些实施例中,所述可调谐介质部的材料包括至少一种液晶。
第二方面,本申请的实施例提供了一种滤波器,包括多个如前文所述的可调射频单元,多个所述可调射频单元阵列排布。
在本申请的一些实施例中,各所述可调射频单元的第二导电层之间断开设置,各所述可调射频单元的第三导电层之间断开设置;各所述可调射频单元中位于各第一可调谐介质层的可调谐介质部连通设置,各所述可调射频单元中位于各第二可调谐介质层的可调谐介质部连通设置。
在本申请的一些实施例中,所述滤波器还包括驱动单元,所述驱动单元与所述可调射频单元电连接;
所述驱动单元被配置为能够驱动各所述可调射频单元独立工作。
在本申请的一些实施例中,所述驱动单元包括第一驱动子单元、第二驱动子单元和接地线;
所述第一驱动子单元位于所述第二导电层远离所述第一可调谐介质层的一侧,且所述第一驱动子单元与所述第二导电层电连接;所述第二驱动子单元位于所述第三导电层远离所述第二可调谐介质层的一侧,且所述第二驱动子单元与所述第三导电层电连接,所述可调射频单元的第一导电层与所述接地线电连接。
第三方面,本申请的实施例提供了一种电子设备,包括如前文所述的滤波器。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请的实施例提供的一种可调射频单元的结构示意图;
图2和图3为本申请的实施例提供的相关技术中的两种射频单元的等效电路图;
图4为本申请的实施例提供的一种可调射频单元的等效电路图;
图5为本申请的实施例提供的一种第一可调谐介质层或第二可调谐介质层的结构示意图;
图6和图7分别为图5沿A1A2方向的两种截面图;
图8为本申请的实施例提供的一种可调射频单元的俯视结构图;
图9和图10为本申请的实施例提供的两种第二导电层或第三导电层的结构示意图;
图11为本申请的实施例提供的一种第一导电层的结构示意图;
图12中(1)图、(2)图、(3)图、(4)图、图13和图14为本申请的实施例提供的六种导电部的结构示意图;
图15为本申请的实施例提供的一种滤波器的结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本申请的示意性图解,并非一定是按比例绘制。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例”、“特定示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本申请的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
传统的空间滤波器多采用谐振结构进行设计,然而,这种空间滤波器只有一个谐振点,其工作频率的带宽较窄,为了增大频带宽度,相关技术中通过将多个谐振结构单元级联在一起的方式进行改善,然而,在多个谐振结构单元进行级联时,要求相邻两个谐振结构单元之间的间隙的尺寸为中心波长的四分之一作用,这大大增加了滤波器的空间尺寸,例如,增大了滤波器的剖面高度,限制了空间滤波器的应用范围。
基于此,本申请的实施例提供了一种可调射频单元100,参考图1所示,该可调射频单元100包括:
第一可调谐介质层1和第二可调谐介质层2;
第一导电层3,位于第一可调谐介质层1和第二可调谐介质层2之间;
第二导电层4,位于第一可调谐介质层1远离第一导电层3的一侧;
第三导电层5,位于第二可调谐介质层2远离第一导电层3的一侧;
其中,第一导电层3、第二导电层4、第三导电层5在第一可调谐介质 层1上的正投影至少部分交叠。
在实际应用中,射频单元用于将信号调制到目标频段范围,并将这个频段范围内的信号发射出去(信号通过),且阻挡这个频段范围之外的信号(信号被反射)。可调射频单元指的是目标频段范围可以进行调整的射频单元。
在示例性的实施例中,根据所处外界环境的变化,第一可调谐介质层1和第二可调谐介质层2的介电常数均可以发生改变。例如,在第一可调谐介质层1所处的电场环境和第二可调谐介质层2所处的电场环境发生变化时,第一可调谐介质层1和第二可调谐介质层2的介电常数均可以随着电场的变化而改变。
这里对于第一可调谐介质层1和第二可调谐介质层2的厚度是否相同不进行限定。在一些实施例中,可以设置第一可调谐介质层1和第二可调谐介质层2的厚度相同,从而使得由第一导电层3、第一可调谐介质层1和第二导电层4形成的电容与第一导电层3、第二可调谐介质层2和第三导电层5形成的电容相同,从而使得可调射频单元100的目标频段范围更容易调整和控制,进而提高了可调射频单元100的目标频段范围的调控精度。
这里对于第一可调谐介质层1和第二可调谐介质层2的介电常数是否相同不进行限定,具体可以根据对可调射频单元100设计的能够通过的电磁波信号的频率的范围确定。
在示例性的实施例中,第一可调谐介质层1和第二可调谐介质层2的材料可以包括在外界环境下介电常数可变的材料,例如,在电场下介电常数可变的材料,电控介质材料;其中,电控介质材料可以包括铁氧体、铁电体或液晶中的至少一种。
这里对于第一可调谐介质层1和第二可调谐介质层2的材料是否相同不进行限定,示例性的,为了便于控制将信号调制到目标频段范围,可以选择介电常数相同的材料进行设置,使得第一可调谐介质层1和第二可调谐介质层2的介电常数相同。当然,在实际应用中,为了降低成本和工艺制备难度,可以设置第一可调谐介质层1和第二可调谐介质层2的材料相同。
在示例性的实施例中,第一可调谐介质层1和第二可调谐介质层2均可以包括多个部分,且第一可调谐介质层1中的至少一个部分的材料为在外界 环境下介电常数可变的材料,且第二可调谐介质层2中的至少一个部分的材料为在外界环境下介电常数可变的材料。
在示例性的实施例中,第一导电层3、第二导电层4、第三导电层5的材料可以包括导电材料,例如,金属材料、金属氧化物材料、无机非金属材料;其中,金属材料可以包括铜(Cu)、金(Au)、铝(Al)、银(Ag)中的至少一种,金属氧化物材料可以包括氧化铟锡(ITO)、氧化锌锡(IZO),无机非金属材料可以包括掺杂的硅材料。
这里对于第一导电层3、第二导电层4、第三导电层5的材料是否相同不进行限定,具体可以根据实际的射频单元的设计和制备工艺确定。
这里对于第一导电层3、第二导电层4、第三导电层5的厚度不进行限定,具体可以根据实际的射频单元的设计和制备工艺确定。
在示例性的实施例中,第一可调谐介质层1位于第一导电层3和第二导电层4形成的电场中,第二可调谐介质层2位于第一导电层3和第三导电层5形成的电场中。
这里对于第一导电层3和第二导电层4形成的电场与第一导电层3和第三导电层5形成的电场的电场强度是否相同不进行限定。在一些实施例中,为了便于控制将信号调制到目标频段范围,可以向第二导电层4和第三导电层5输入相同的第一电信号,向第一导电层3输入第二电信号,且第一电信号的电压大于或等于第二电信号的电压,使得第一导电层3和第二导电层4形成的电场与第一导电层3和第三导电层5形成的电场的电场强度相同。
在示例性的实施例中,第一导电层3、第二导电层4、第三导电层5在第一可调谐介质层1上的正投影至少部分交叠包括但不限于以下情况:
第一种,第一导电层3、第二导电层4、第三导电层5在第一可调谐介质层1上的正投影部分交叠;可以理解,此时,三者的正投影的交叠区的面积小于其各自正投影的面积;
第二种,第一导电层3、第二导电层4、第三导电层5在第一可调谐介质层1上的正投影完全交叠;可以理解,此时,第一导电层3在第一可调谐介质层1上的正投影的外轮廓与第二导电层4在第一可调谐介质层1上的正投影的外轮廓重叠,且第二导电层4在第一可调谐介质层1上的正投影的外 轮廓与第三导电层5在第一可调谐介质层1上的正投影的外轮廓重叠。
其中,第一导电层3、第一可调谐介质层1和第二导电层4形成的电容的大小与三者正投影交叠的有效区域的大小相关,第一导电层3、第二可调谐介质层2和第三导电层5形成的电容的大小与三者正投影交叠的有效区域的大小相关。
需要说明的是,在第一可调谐介质层1上的“正投影”指的是沿垂直于第一可调谐介质层1的方向在第一可调谐介质层1上的投影,后文中涉及的相关的描述与此处的含义类似,不再赘述。
图2提供了一种相关技术中的由两个并联谐振电路级联构成的二阶带通滤波器的电路示意图,其中,该电路示意图为一种π型电路,利用低频电路中的π型网络与T型网络之间的转换关系,可以将图2中所示的π型电路转变为如图3中所示的T型电路。
在本申请的实施例中,通过对如图3中所示的T型电路进行演变,将并联谐振电路中的电容C1拆分成定值电容C3和可调电容C4,将电容C2拆分成定值电容C6和可调电容C5,从而得到如图4中所示的一种新的二阶带通滤波器的电路结构示意图。
图4中矩形虚线方框中的结构可以用传输线代替,在本申请的实施例提供的可调射频单元100中,第一可调谐介质层1和第二可调谐介质层2相当于传输线,举例来说,在预设条件下,信号可以从第二导电层4经过第一可调谐介质层1传输到第一导电层;图4中所示的电路结构示意图相当于是一种电容结构、传输线、电感结构、传输线和电容结构的串联。结合图4和图1所示,第二导电层4所在平面内产生了定值电容C3,第三导电层5所在平面内产生了定值电容C6,第一导电层3、第一可调谐介质层1和第二导电层4共同产生了电感结构L3和可调电容C4,第一导电层3、第二可调谐介质层2和第三导电层5共同产生了电感结构L5和可调电容C5,第一导电层3所在平面内产生了电感L4。
需要说明的是,这里对于定值电容C3和定值电容C6的电容值是否相等不进行限定,这里对于可调电容C4和可调电容C5的最大电容值是否相等不进行限定,这里对于电感结构L3和电感结构L5的电感值是否相等不进 行限定。
示例性的,为了便于控制和调控可调射频单元100的目标频段范围,提高其调控精度,可以设置定值电容C3和定值电容C6的电容值相等,可调电容C4和可调电容C5的最大电容值相等,电感结构L3和电感结构L5的电感值相等。
本申请的实施例提供的可调射频单元100的结构是根据如图4所示的电路结构图设计得到的,由于本申请的实施例提供的可调射频单元100中的第一可调谐介质层1和第二可调谐介质层2的介电常数可以进行调整,提供了可变的电容,从而使得可调射频单元100的目标频段范围可以进行调整,从而拓宽了可调射频单元100的通带的带宽,实现频带宽度可调谐,拓展了射频单元的应用领域,提高其工作灵活性。
在本申请的一些实施例中,参考图1所示,第一导电层3、第二导电层4、第三导电层5在第一可调谐介质层1上的正投影均位于第二可调谐介质层2在第一可调谐介质层1上的正投影以内;
第一导电层3、第二导电层4、第三导电层5在第二可调谐介质层2上的正投影均位于第一可调谐介质层1在第二可调谐介质层2上的正投影以内。
在示例性的实施例中,A的正投影位于B的正投影以内包括两种情况:第一种,A的正投影的外轮廓位于B的正投影的外轮廓以内;第二种,A的正投影的外轮廓与B的正投影的外轮廓重叠。本申请的实施例中涉及的相关描述的含义与此处类似,后文不再赘述。
那么,上述第一导电层3、第二导电层4、第三导电层5在第一可调谐介质层1上的正投影均位于第二可调谐介质层2在第一可调谐介质层1上的正投影以内可以理解为:第一导电层3、第二导电层4、第三导电层5在第一可调谐介质层1上的正投影的外轮廓均位于第二可调谐介质层2在第一可调谐介质层1上的正投影的外轮廓以内;或者,第一导电层3、第二导电层4、第三导电层5在第一可调谐介质层1上的正投影的外轮廓均与第二可调谐介质层2在第一可调谐介质层1上的正投影的外轮廓重叠。
第一导电层3、第二导电层4、第三导电层5在第二可调谐介质层2上的正投影均位于第一可调谐介质层1在第二可调谐介质层2上的正投影以内 的含义类似,不再赘述。
在本申请的一些实施例中,结合图5和图6所示,第一可调谐介质层1和第二可调谐介质层2均包括第一衬底13(图5未示出)、第二衬底14(图5未示出)、以及位于第一衬底13和第二衬底14之间的可调谐介质部12和固定介质部11;可调谐介质部12位于相邻的两个固定介质部11之间;
参考图1所示,第一可调谐介质层1中的可调谐介质部12在第一衬底13上的正投影与第二可调谐介质层2中的可调谐介质部12在第一衬底13上的正投影重叠。
在示例性的实施例中,第一衬底13和第二衬底14均为绝缘材料。示例性的,第一衬底13和第二衬底14可以分别为硬质塑料,例如PC(Polycarbonate,聚碳酸酯),COP(Copolymers of Cycloolefin,环烯烃聚合物),PMMA(Polymethyl Methacrylate,聚甲基丙烯酸甲酯)或PET(Polyethylene Terephthalate,聚对苯二甲酸乙二酯);或者,可以为低损耗光学玻璃。
这里对于第一衬底13和第二衬底14的材料是否相同不进行限定。
在示例性的实施例中,固定介质部11的材料为介电常数不随外界环境变化;或者,在外界环境变化的情况下,其介电常数变化非常小,几乎可以忽略不计的一类材料。这里对于其材料的种类不进行限定,具体可以根据实际对介电常数的设计需求和制备工艺共同确定。
这里对于固定介质部11的材料与第一衬底13和第二衬底14的材料是否相同不进行限定。
在示例性的实施例中,为了便于控制和调控可调射频单元100的目标频段范围,可以选择介电常数相同或相近的材料分别制备固定介质部11、第一衬底13和第二衬底14。
在示例性的实施例中,可调谐介质部12的材料包括介电常数可变的材料,例如,电控介质材料,其中,电控介质材料包括液晶。其中,可调谐介质部12以及位于可调谐介质部12两侧的第一衬底13和第二衬底14整体可以看作一个液晶盒,该液晶盒中的液晶在外界电场的作用下发生偏转,从而使得液晶盒的介电常数发生变化,改变了可变电容C4和可变电容C5的电 容值,改变了谐振电路的输出信号,进而改变了可调射频单元的目标频率范围,需要说明的是,可调射频单元的目标频率范围指的是能够通过可调射频单元的信号的频率范围。
这里对于可调谐介质部12中包括的液晶的种类以及包括的液晶种类的数量不进行限定,具体可以根据实际情况确定。
示例性的,可调谐介质部12可以包括单一类型的液晶;或者,可调谐介质部12可以包括多种液晶形成的混晶。
在本申请的一些实施例中,参考图7所示,第一衬底13和第二衬底14之中的一个与固定介质部11为一体化结构。
在实际应用中,为了降低制备工艺难度、缩短制备周期、降低成本,设置第一衬底13和第二衬底14之中的一个与固定介质部11的材料相同,且使得第一衬底13和第二衬底14之中的一个与固定介质部11为一体化结构。
示例性的,参考图7所示,可以设置第一衬底13与固定介质部11为一体化结构。
示例性的,可以设置第二衬底14与固定介质部11为一体化结构。
在本申请的一些实施例中,结合图1和图8所示,第一导电层3、第二导电层4、第三导电层5在第一衬底13上的正投影分别与可调谐介质部12在第一衬底13上的正投影部分交叠;第一导电层3、第二导电层4、第三导电层5在第一衬底13上的正投影分别与固定介质部11在第一衬底13上的正投影部分交叠。
这里对于第一导电层3、第二导电层4、第三导电层5在第一衬底13上的正投影分别与可调谐介质部12在第一衬底13上的正投影交叠的区域的面积大小与第一导电层3、第二导电层4、第三导电层5在第一衬底13上的正投影分别与固定介质部11在第一衬底13上的正投影交叠的区域的面积大小不进行限定。
示例性的,可以设置三个导电层与可调谐介质部12的正投影交叠的区域的面积大于或等于三个导电层与固定介质部11的正投影交叠的区域的面积;或者,也可以设置三个导电层与可调谐介质部12的正投影交叠的区域的面积小于三个导电层与固定介质部11的正投影交叠的区域的面积。
在本申请的一些实施例中,结合图1和图8所示,可以设置第一导电层3、第二导电层4、第三导电层5在第一衬底13上的正投影分别与可调谐介质部12在第一衬底13上的正投影交叠的区域的面积大于第一导电层3、第二导电层4、第三导电层5在第一衬底13上的正投影分别与固定介质部11在第一衬底13上的正投影交叠的区域的面积。
这样,能够增加可调电容C4和可调电容C5的最大电容值,从而增加可调射频单元的目标频率范围的调整空间,提高其频率调整的灵活性,扩宽其应用领域或应用场景。
在本申请的一些实施例中,第一可调谐介质层1的可调谐介质部12在沿垂直于第一衬底13所在平面方向上的尺寸与第二可调谐介质层2的可调谐介质部12在沿垂直于第一衬底13所在平面方向上的尺寸相同;
第一可调谐介质层1的固定介质部11在沿垂直于第一衬底13所在平面方向上的尺寸与第二可调谐介质层2的固定介质部11在沿垂直于第一衬底13所在平面方向上的尺寸相同。
其中,以图1为例,可调谐介质部12沿垂直于第一衬底13所在平面方向上的尺寸即为可调谐介质部12的高度,其它相关的描述的含义与此类似。
这里对于第一可调谐介质层1的可调谐介质部12的高度与第一可调谐介质层1的固定介质部11的高度是否相同不进行限定,具体可以根据实际情况确定。
这里对于第二可调谐介质层2的可调谐介质部12的高度与第二可调谐介质层2的固定介质部11的高度是否相同不进行限定,具体可以根据实际情况确定。
示例性的,可以设置第一可调谐介质层1的可调谐介质部12的高度大于或等于第一可调谐介质层1的固定介质部11的高度,设置第二可调谐介质层2的可调谐介质部12的高度大于或等于第二可调谐介质层2的固定介质部11的高度。
示例性的,可以设置第一可调谐介质层1的可调谐介质部12的高度等于第一可调谐介质层1的固定介质部11的高度,第二可调谐介质层2的可调谐介质部12的高度等于第二可调谐介质层2的固定介质部11的高度,且 第一可调谐介质层1的可调谐介质部12的高度等于第二可调谐介质层2的可调谐介质部12的高度。这样,在第一可调谐介质层1的材料与第二可调谐介质层2的材料相同,且第二导电层4与第三导电层5的材料相同,且第一导电层3、第一可调谐介质层1和第二导电层4三者的正投影交叠的区域的面积与第一导电层3、第二可调谐介质层2和第三导电层5三者的正投影交叠的区域的面积相同的情况下,结合图1和图4所示,电容C3和电容C6的电容值相同,电容C4和电容C5的最大电容相同,从而有利于控制和调控可调射频单元100的目标频段范围,提高其调控精度,提高其工作的灵活性,降低制备工艺难度、降低成本。
在本申请的一些实施例中,第二导电层4在第一衬底13上的正投影与第三导电层5在第一衬底13上的正投影重叠,且第二导电层4在第一衬底13上的正投影位于第一导电层3在第一衬底13上的正投影以内。
在示例性的实施例中,第二导电层4在第一衬底13上的正投影与第三导电层5在第一衬底13上的正投影重叠可以理解为第二导电层4在第一衬底13上的正投影的外轮廓与第三导电层5在第一衬底13上的正投影的外轮廓重叠。
在示例性的实施例中,第二导电层4在第一衬底13上的正投影位于第一导电层3在第一衬底13上的正投影以内包括两种情况:
第一种,第二导电层4在第一衬底13上的正投影的外轮廓位于第一导电层3在第一衬底13上的正投影的外轮廓以内;
第二种,第二导电层4在第一衬底13上的正投影的外轮廓与第一导电层3在第一衬底13上的正投影的外轮廓重叠。
在本申请的实施例中,通过设置第二导电层4在第一衬底13上的正投影的外轮廓与第三导电层5在第一衬底13上的正投影的外轮廓重叠,可以使得如图4中所示的并联的谐振电路中的电容C3和电容C6的电容值相同,从而更便于控制可调射频单元调整其目标频率范围,提高其工作的灵活性。
在本申请的一些实施例中,第二导电层4的材料的电导率与第三导电层5的材料的电导率差值小于或等于预设值。
该预设值可以根据对可调射频单元的调节精度要求进行调整,这里对于 上述预设值的具体数值不进行限定。示例性的,上述预设值可以小于或等于第二导电层4的材料的电导率的5%或8%。
示例性的,上述预设值可以小于或等于第三导电层5的材料的电导率的5%或8%。
在实际应用中,可以设置第二导电层4的材料的和第三导电层5的材料的导电率相同,甚至可以设置第二导电层4的材料的和第三导电层5的材料相同,以便于如图4所示的并联的谐振电路能够形成对称电路,从而更便于控制可调射频单元调整其目标频率范围,提高其频率调节精度,提高其工作的灵活性。
在本申请的一些实施例中,结合图5和图11所示,可调谐介质部12在第一衬底13上的正投影位于第一导电层3在第一衬底13上的正投影以内,且可调谐介质部12在第一衬底13上的正投影图形与第一导电层3在第一衬底13上的正投影图形的形状相同。
在本申请的一些实施例中,可调谐介质部12在第一衬底13上的正投影图形包括多边形、弧形或多边形与弧形的组合。
示例性的,多边形可以包括矩形、菱形、平行四边形,弧形可以包括扇形、半圆形、半椭圆形。
示例性的,可调谐介质部12在第一衬底13上的正投影图形和第一导电层3在第一衬底13上的正投影图形均为多边形,例如,图11中所示的十二边形。
在本申请的一些实施例中,参考图6或图7所示,第一可调谐介质层1和第二可调谐介质层2还分别包括连接部15,连接部15位于第一衬底13与第二衬底14之间,且被配置为固定连接可调谐介质部12和固定介质部11。
在示例性的实施例中,连接部15可以包括光学胶(Optically Clear Adhesive,OCA)或者框胶(Seal)。
在本申请的一些实施例中,第一衬底13的材料、第二衬底14的材料和连接部15的材料的介电常数分别与固定介质部11的材料的介电常数之间的差值小于或等于预设值。
在示例性的实施例中,预设值大于或等于0,且小于或等于0.3。
在本申请的一些实施例中,参考图9或图10所示,第二导电层4和第三导电层5均包括多个导电部41,多个导电部41沿第一方向排布并电连接在一起;第一方向为顺时针方向OA或逆时针方向AO。
其中,多个导电部41包括两个或两个以上的导电部41,在本申请的实施例中,以第二导电层4和第三导电层5均包括四个导电部41为例进行说明。
在本申请的一些实施例中,参考图9或图10所示,第二导电层4中的多个导电部41以第二导电层的几何中心Center为对称点,呈中心对称排布;第二导电层4的几何中心Center位于第二导电层4中的多个导电部41的连接位置处;第三导电层5的结构与第二导电层4的结构相同。
在本申请的一些实施例中,参考图9或图10所示,导电部41包括多个弯折结构Z,多个弯折结构Z依次连接;
这里对于同一个导电部41中包括的弯折结构Z的数量不进行限定。示例性的,同一个导电部41可以包括3个弯折结构Z,或者一个导电部41可以包括3.1个弯折结构Z,或者,一个导电部41可以包括3.5个弯折结构Z。
同一个导电部41中包括的弯折结构Z的数量可以根据导电部41的设计长度确定,在图9或图10中,虚线圆圈中标记的区域大约为0.1个弯折结构Z。
结合图8、图9、图12中(1)图、(2)图、(3)图、(4)图和图13所示,弯折结构Z包括依次连接的第一线段a1、第二线段a2、第三线段a3和第四线段a4,第一线段a1的延伸方向和第二线段a2的延伸方向之间具有第一夹角,第二线段a2的延伸方向和第三线段a3的延伸方向之间具有第二夹角,第三线段a3的延伸方向和第四线段a4的延伸方向之间具有第三夹角;第一夹角、第二夹角和第三夹角均大于0°,且小于180°。
在示例性的实施例中,参考图14所示,导电部41中同一弯折结构Z的第一线段a1到第四线段a4之间的最小距离D1均相等。
在示例性的实施例中,前一个弯折结构Z的第三线段a3到后一个弯折结构Z的第三线段a3之间的最小距离D2均相等。
在示例性的实施例中,D1等于D2。
在示例性的实施例中,第一夹角、第二夹角和第三夹角均为直角。此时,第一线段a1和第三线段a3平行,第二线段a2和第四线段a4平行。
在示例性的实施例中,同一导电部41中各弯折结构Z的第一线段a1与各弯折结构Z的第三线段a3均相等,且同一导电部41中各弯折结构Z的第二线段a2与各弯折结构Z的第四线段a4均相等。
在示例性的实施例中,参考图9或图10所示,第二线段a2和第四线段a4的长度L与如图4中所示的电感结构L3或电感结构L5的电感值相关,通常,长度越大,电感值增大;同一弯折结构Z的第一线段a1到第四线段a4之间的最小距离D1以及前一个弯折结构Z的第三线段a3到后一个弯折结构Z的第三线段a3之间的最小距离D2与电容C3或电容C6的电容值相关,通常,D1和D2越大,电容值增大。
在本申请的一些实施例中,可调射频单元100还包括第一粘结层、第二粘结层、第三粘结层和第四粘结层;第一粘结层位于第一导电层3与第一可调谐介质层1之间,第二粘结层位于第一导电层1与第二可调谐介质层2之间,第三粘结层位于第二导电层4与第一可调谐介质层1之间,第四粘结层位于第三导电层5与第二可调谐介质层1之间;
第一粘结层、第二粘结层、第三粘结层和第四粘结层的材料的介电常数分别与固定介质部11的材料的介电常数之间的差值小于或等于预设值。
在示例性的实施例中,预设值大于或等于0,且小于或等于0.3。
在示例性的实施例中,第一粘结层、第二粘结层、第三粘结层和第四粘结层的材料可以均为胶黏剂。
示例性的,第一粘结层、第二粘结层、第三粘结层和第四粘结层的材料介电常数相同,且材料也相同。
在本申请的实施例中,通过设置第一粘结层、第二粘结层、第三粘结层和第四粘结层的材料的介电常数分别与固定介质部11的材料的介电常数之间的差值小于或等于预设值,能够降低第一粘结层、第二粘结层、第三粘结层和第四粘结层的材料对可调射频单元100中涉及电容相关的结构的电容值的影响,从而更便于控制可调射频单元调整其目标频率范围,提高控制精度,提高其工作的灵活性。
在本申请的一些实施例中,可调射频单元100还包括第一保护层和第二保护层,第一保护层位于第二导电层4远离第一可调谐介质层1的一侧,第二保护层位于第三导电层5远离第二可调谐介质层2的一侧。
在示例性的实施例中,上述第一保护层和第二保护层的材料均为具有一定机械强度的绝缘材料。示例性的,该绝缘材料可以为PI、PET或PMMA中的一种。
在本申请的一些实施例中,可调谐介质部12的材料包括至少一种液晶。
示例性的,可调谐介质部12的材料可以包括一种液晶,或者,可调谐介质部12的材料可以包括多种液晶的混合。
本申请的实施例提供了一种可调射频单元的制备方法,该方法包括:
S901、分别在第一保护层上形成第二导电层4,在第二保护层上形成第三导电层;
在实际应用中,可以采用气相沉积法将第二导电层4沉积在第一保护层上,采用气相沉积法将第三导电层5沉积在第二保护层上;具体的,以形成第二导电层4为例,先在第一保护层沉积第二导电薄膜,再经过图案化处理,得到第二导电层4。
S902、分别形成第一可调谐介质层1和第二可调谐介质层2;
以如图7所示的第一可调谐介质层1的结构为例,说明第一可调谐介质层1具体制备过程。其中,第一可调谐介质层1包括第一衬底13(图5未示出)、第二衬底14(图5未示出)、以及位于第一衬底13和第二衬底14之间的可调谐介质部12、固定介质部11和连接部15。
在实际应用中,在第一衬底上形成固定介质部11,涂布框胶,框胶用于形成连接部15,在第一衬底上未设置固定介质部11的区域滴入液晶(液晶用于形成可调谐介质部12),其中,框胶位于第一衬底的边缘以及固定介质部11与液晶之间的区域;将第二衬底与第一衬底对盒并对框胶进行固化处理。需要说明的是,第一可调谐介质层1和第二可调谐介质层2的结构类似与相关技术中的液晶显示面板,其具体制备方法可以参考相关技术,这里不再赘述。
需要说明的是,当第一衬底13与固定介质部11为一体化结构的情况下,可以在基底材料上进行图案化处理(挖槽),以同时得到第一衬底13和固定介质部11。
S903、形成第一导电层3;其中,第一导电层3可以为贴片导电层,例如贴片金属。
S904、将第一导电层3分别与第一可调谐介质层1和第二可调谐介质层2固定在一起,使得第一导电层3位于第一可调谐介质层1和第二可调谐介质层2之间;
在实际应用中,可以采用胶黏剂将第一导电层3分别与第一可调谐介质层1和第二可调谐介质层2固定在一起。
S905、将第二导电层4未设置第一保护层的一面与第一可调谐介质层1远离第一导电层3的一面固定在一起;
S906、将第三导电层5未设置第二保护层的一面与第二可调谐介质层2远离第一导电层3的一面固定在一起。
本申请的实施例提供的制备方法制备的可调射频单元100的目标频段范围更容易调整和控制,调控精度高,可通过的频带范围大,工作灵活性高。
本申请的实施例提供了一种滤波器,参考图15所示,包括多个如前文所述的可调射频单元100,多个所述可调射频单元100阵列排布。
在本申请的一些实施例中,参考图15标记椭圆虚线的区域所示,各可调射频单元100的第二导电层4之间断开设置,各可调射频单元100的第三导电层5之间断开设置;参考图15标记矩形虚线的区域所示,各可调射频单元100中位于各第一可调谐介质层的可调谐介质部12连通设置(例如图5中第一个第一可调谐介质层的可调谐介质部12中平行四边形虚线框的面与第二个第一可调谐介质层的可调谐介质部12中平行四边形虚线框的面相连),各可调射频单元中位于各第二可调谐介质层的可调谐介质部12连通设置。
本申请的实施例提供的滤波器可以具有通带可调的特性,对于通带频率范围的电磁波能量具有非常好的透射特性,对于通带频率范围之外的电磁波能量具有较强反射特性,针对变化的电磁环境,滤波器能够随之改变为合适 的谐振频率,带宽,或是谐振特性,具有工作频率范围宽、损耗小、成本低的优点。这在很多电磁工程环境中具有广泛的应用价值,例如可以应用在雷达、天线和其它无线通讯领域。
示例性的,该滤波器可以用于作双频段天线的天线罩,可以避免天线工作在不同频段的干扰。
其中,该滤波器为一种可调带通滤波器。
在本申请的一些实施例中,滤波器还包括驱动单元,驱动单元与可调射频单元电连接;驱动单元被配置为能够驱动各可调射频单元独立工作。
在本申请的一些实施例中,驱动单元包括第一驱动子单元、第二驱动子单元和接地线;
第一驱动子单元位于第二导电层4远离第一可调谐介质层1的一侧,且第一驱动子单元与第二导电层4电连接;第二驱动子单元位于第三导电层5远离第二可调谐介质层2的一侧,且第二驱动子单元与第三导电层5电连接,可调射频单元的第一导电层3与接地线电连接。
在示例性的实施例中,第一驱动子单元用于驱动第一可调谐介质层1,并改变第一可调谐介质层1的介电常数,第二驱动子单元用于驱动第二可调谐介质层2并改变第二可调谐介质层2的介电常数。
这里对于第一驱动子单元和第二驱动子单元的具体结构不进行限定。
在实际应用中,第一驱动子单元和第二驱动子单元可以均参考液晶显示技术中的像素驱动电路设计,具体可以参考相关技术中的像素驱动电路,这里不再赘述。
在示例性的实施例中,在本申请的实施例提供的滤波器中的可调射频单元的等效电路(如图4中所示的电路)为对称电路的情况下,可以向第一驱动子单元和第二驱动子单元分别输入不同的第一电信号,或者,也可以向第一驱动子单元和第二驱动子单元分别输入相同的第一电信号,具体可以根据实际需要调节的频率的范围确定。在实际应用中,为了便于控制,也可以向第一驱动子单元和第二驱动子单元分别输入相同的第一电信号。
本申请的实施例提供了一种电子设备,包括前文所述的滤波器。
示例性的,电子设备可以是电控扫描天线、雷达系统、加速器、通信基站、功率分配器等任何包含可调带通滤波器的装置。该电子设备除包括滤波器之外,还可以包括其它的结构和部件,具体可以根据实际情况确定,这里不进行限制。
本申请的实施例提供的电子设备,包括一种可调带通滤波器,该滤波器对于通带频率范围的电磁波能量具有非常好的透射特性,对于通带频率范围之外的电磁波能量具有较强反射特性,针对变化的电磁环境,滤波器能够随之改变为合适的谐振频率,带宽,或是谐振特性,具有工作频率范围宽、损耗小、成本低的优点,在很多电磁工程环境中具有广泛的应用价值。。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种可调射频单元,其中,包括:
    第一可调谐介质层和第二可调谐介质层;
    第一导电层,位于所述第一可调谐介质层和所述第二可调谐介质层之间;
    第二导电层,位于所述第一可调谐介质层远离所述第一导电层的一侧;
    第三导电层,位于所述第二可调谐介质层远离所述第一导电层的一侧;
    其中,所述第一导电层、所述第二导电层、所述第三导电层在所述第一可调谐介质层上的正投影至少部分交叠。
  2. 根据权利要求1所述的可调射频单元,其中,所述第一导电层、所述第二导电层、所述第三导电层在所述第一可调谐介质层上的正投影均位于所述第二可调谐介质层在所述第一可调谐介质层上的正投影以内;
    所述第一导电层、所述第二导电层、所述第三导电层在所述第二可调谐介质层上的正投影均位于所述第一可调谐介质层在所述第二可调谐介质层上的正投影以内。
  3. 根据权利要求2所述的可调射频单元,其中,所述第一可调谐介质层和所述第二可调谐介质层均包括第一衬底、第二衬底、以及位于所述第一衬底和所述第二衬底之间的可调谐介质部和固定介质部;所述可调谐介质部位于相邻的两个所述固定介质部之间;
    所述第一可调谐介质层中的所述可调谐介质部在所述第一衬底上的正投影与所述第二可调谐介质层中的所述可调谐介质部在所述第一衬底上的正投影重叠。
  4. 根据权利要求3所述的可调射频单元,其中,所述第一衬底和所述第二衬底之中的一个与所述固定介质部为一体化结构。
  5. 根据权利要求3所述的可调射频单元,其中,所述第一导电层、所述第二导电层、所述第三导电层在所述第一衬底上的正投影分别与所述可调谐介质部在所述第一衬底上的正投影部分交叠;所述第一导电层、所述第二导电层、所述第三导电层在所述第一衬底上的正投影分别与所述固定介质部在所述第一衬底上的正投影部分交叠。
  6. 根据权利要求5所述的可调射频单元,其中,所述第一导电层、所 述第二导电层、所述第三导电层在所述第一衬底上的正投影分别与所述可调谐介质部在所述第一衬底上的正投影交叠的区域的面积大于所述第一导电层、所述第二导电层、所述第三导电层在所述第一衬底上的正投影分别与所述固定介质部在所述第一衬底上的正投影交叠的区域的面积。
  7. 根据权利要求5所述的可调射频单元,其中,所述第一可调谐介质层的所述可调谐介质部在沿垂直于所述第一衬底所在平面方向上的尺寸与所述第二可调谐介质层的所述可调谐介质部在沿垂直于所述第一衬底所在平面方向上的尺寸相同;
    所述第一可调谐介质层的所述固定介质部在沿垂直于所述第一衬底所在平面方向上的尺寸与所述第二可调谐介质层的所述固定介质部在沿垂直于所述第一衬底所在平面方向上的尺寸相同。
  8. 根据权利要求7所述的可调射频单元,其中,所述第二导电层在所述第一衬底上的正投影与所述第三导电层在所述第一衬底上的正投影重叠,且所述第二导电层在所述第一衬底上的正投影位于所述第一导电层在所述第一衬底上的正投影以内。
  9. 根据权利要求8所述的可调射频单元,其中,所述第二导电层的材料的电导率与所述第三导电层的材料的电导率的差值小于或等于预设值。
  10. 根据权利要求8所述的可调射频单元,其中,所述可调谐介质部在所述第一衬底上的正投影位于所述第一导电层在所述第一衬底上的正投影以内,且所述可调谐介质部在所述第一衬底上的正投影图形与所述第一导电层在所述第一衬底上的正投影图形的形状相同;所述可调谐介质部在所述第一衬底上的正投影图形包括多边形、弧形或多边形与弧形的组合。
  11. 根据权利要求3所述的可调射频单元,其中,所述第一可调谐介质层和所述第二可调谐介质层还分别包括连接部,所述连接部位于所述第一衬底与所述第二衬底之间,且被配置为固定连接所述可调谐介质部和所述固定介质部。
  12. 根据权利要求11所述的可调射频单元,其中,所述第一衬底的材料、所述第二衬底的材料和所述连接部的材料的介电常数分别与所述固定介质部的材料的介电常数之间的差值小于或等于预设值。
  13. 根据权利要求7所述的可调射频单元,其中,所述第二导电层和所述第三导电层均包括多个导电部,多个所述导电部沿第一方向排布并电连接在一起;所述第一方向为顺时针方向或逆时针方向。
  14. 根据权利要求13所述的可调射频单元,其中,所述第二导电层中的多个所述导电部以所述第二导电层的几何中心为对称点,呈中心对称排布;所述第二导电层的几何中心位于所述第二导电层中的多个所述导电部的连接位置处;
    所述第三导电层的结构与所述第二导电层的结构相同。
  15. 根据权利要求14所述的可调射频单元,其中,所述导电部包括多个弯折结构,多个所述弯折结构依次连接;
    所述弯折结构包括依次连接的第一线段、第二线段、第三线段和第四线段,所述第一线段的延伸方向和所述第二线段的延伸方向之间具有第一夹角,所述第二线段的延伸方向和所述第三线段的延伸方向之间具有第二夹角,所述第三线段的延伸方向和所述第四线段的延伸方向之间具有第三夹角;所述第一夹角、所述第二夹角和所述第三夹角均大于0°,且小于180°。
  16. 根据权利要求15所述的可调射频单元,其中,所述第一夹角、所述第二夹角和所述第三夹角均为直角。
  17. 根据权利要求3所述的可调射频单元,其中,所述可调射频单元还包括第一粘结层、第二粘结层、第三粘结层和第四粘结层;所述第一粘结层位于所述第一导电层与所述第一可调谐介质层之间,所述第二粘结层位于所述第一导电层与所述第二可调谐介质层之间,所述第三粘结层位于所述第二导电层与所述第一可调谐介质层之间,所述第四粘结层位于所述第三导电层与所述第二可调谐介质层之间;
    所述第一粘结层、所述第二粘结层、所述第三粘结层和所述第四粘结层的材料的介电常数分别与所述固定介质部的材料的介电常数之间的差值小于或等于预设值。
  18. 根据权利要求17所述的可调射频单元,其中,所述可调射频单元还包括第一保护层和第二保护层,所述第一保护层位于所述第二导电层远离所述第一可调谐介质层的一侧,所述第二保护层位于所述第三导电层远离所 述第二可调谐介质层的一侧。
  19. 根据权利要求3-18中任一项所述的可调射频单元,其中,所述可调谐介质部的材料包括至少一种液晶。
  20. 一种滤波器,其中,包括多个如权利要求1-19中任一项所述的可调射频单元,多个所述可调射频单元阵列排布。
  21. 根据权利要求20所述的滤波器,其中,各所述可调射频单元的第二导电层之间断开设置,各所述可调射频单元的第三导电层之间断开设置;各所述可调射频单元中位于各第一可调谐介质层的可调谐介质部连通设置,各所述可调射频单元中位于各第二可调谐介质层的可调谐介质部连通设置。
  22. 根据权利要求20所述的滤波器,其中,所述滤波器还包括驱动单元,所述驱动单元与所述可调射频单元电连接;
    所述驱动单元被配置为能够驱动各所述可调射频单元独立工作。
  23. 根据权利要求22所述的滤波器,其中,所述驱动单元包括第一驱动子单元、第二驱动子单元和接地线;
    所述第一驱动子单元位于所述第二导电层远离所述第一可调谐介质层的一侧,且所述第一驱动子单元与所述第二导电层电连接;所述第二驱动子单元位于所述第三导电层远离所述第二可调谐介质层的一侧,且所述第二驱动子单元与所述第三导电层电连接,所述可调射频单元的第一导电层与所述接地线电连接。
  24. 一种电子设备,其中,包括权利要求20-23中任一项所述的滤波器。
PCT/CN2022/098731 2022-06-14 2022-06-14 可调射频单元、滤波器和电子设备 WO2023240463A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/098731 WO2023240463A1 (zh) 2022-06-14 2022-06-14 可调射频单元、滤波器和电子设备
CN202280001746.7A CN117597829A (zh) 2022-06-14 2022-06-14 可调射频单元、滤波器和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098731 WO2023240463A1 (zh) 2022-06-14 2022-06-14 可调射频单元、滤波器和电子设备

Publications (1)

Publication Number Publication Date
WO2023240463A1 true WO2023240463A1 (zh) 2023-12-21

Family

ID=89192994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098731 WO2023240463A1 (zh) 2022-06-14 2022-06-14 可调射频单元、滤波器和电子设备

Country Status (2)

Country Link
CN (1) CN117597829A (zh)
WO (1) WO2023240463A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070109078A1 (en) * 2005-11-14 2007-05-17 Northrop Grumman Corporation Tunable MMIC (monolithic microwave integrated circuit) waveguide resonators
US20170045759A1 (en) * 2015-08-10 2017-02-16 Samsung Electronics Co., Ltd. Meta-structure and tunable optical device including the same
CN108847517A (zh) * 2018-06-25 2018-11-20 南京邮电大学 一种可调频率的共面波导串联电容谐振器
US20200153076A1 (en) * 2017-07-26 2020-05-14 Nokia Technologies Oy Composite Substrate for Radio Frequency Signals and Method of Manufacturing a Composite Substrate
CN111193083A (zh) * 2020-02-26 2020-05-22 京东方科技集团股份有限公司 带通滤波器及其制备方法和驱动方法、电子装置
CN114050385A (zh) * 2021-10-30 2022-02-15 西南电子技术研究所(中国电子科技集团公司第十研究所) 连续电调带通滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070109078A1 (en) * 2005-11-14 2007-05-17 Northrop Grumman Corporation Tunable MMIC (monolithic microwave integrated circuit) waveguide resonators
US20170045759A1 (en) * 2015-08-10 2017-02-16 Samsung Electronics Co., Ltd. Meta-structure and tunable optical device including the same
US20200153076A1 (en) * 2017-07-26 2020-05-14 Nokia Technologies Oy Composite Substrate for Radio Frequency Signals and Method of Manufacturing a Composite Substrate
CN108847517A (zh) * 2018-06-25 2018-11-20 南京邮电大学 一种可调频率的共面波导串联电容谐振器
CN111193083A (zh) * 2020-02-26 2020-05-22 京东方科技集团股份有限公司 带通滤波器及其制备方法和驱动方法、电子装置
CN114050385A (zh) * 2021-10-30 2022-02-15 西南电子技术研究所(中国电子科技集团公司第十研究所) 连续电调带通滤波器

Also Published As

Publication number Publication date
CN117597829A (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
US11196134B2 (en) Phase shifter including a dielectric layer having liquid crystal molecules configured to be rotated so as to cause phase shift
US11158916B2 (en) Phase shifter and liquid crystal antenna
CN106532200B (zh) 一种基于石墨烯电极的反射式液晶移相单元
US11949142B2 (en) Feeding structure, microwave radio frequency device and antenna
US11637369B2 (en) Signal conditioner, antenna device and manufacturing method
US11837796B2 (en) Feeding structure, microwave radio frequency device and antenna
CN113728512B (zh) 移相器及天线
WO2020007044A1 (zh) 微波幅相控制器及微波幅度和/或相位的控制方法
CN109149117A (zh) 一种复合左右手漏波天线
US11843151B2 (en) Liquid crystal phase shifter having a first electrode with metal patches and a second electrode that is one-piece
US20210083378A1 (en) Control substrate, liquid crystal phase shifter and method of forming control substrate
US11217868B2 (en) Liquid crystal phase shifter and electronic device
WO2023240463A1 (zh) 可调射频单元、滤波器和电子设备
CN111193083B (zh) 带通滤波器及其制备方法和驱动方法、电子装置
WO2024095459A1 (ja) 電波レンズ
WO2024040445A1 (zh) 一种调相表面单元、调相表面结构及终端设备
US20240186668A1 (en) Feeding structure, microwave radio frequency device and antenna
TWI827926B (zh) 射頻液晶天線系統
CN112490676B (zh) 自带滤波功能的可调式平面天线
WO2024016144A1 (zh) 空间滤波器及其制备方法、电子设备
WO2024000289A1 (zh) 一种移相器单元及移相器
CN113574734B (zh) 移相器及其制作方法和驱动方法、电子设备
WO2024004595A1 (ja) 電波反射装置
Ramezanpour et al. A novel design of modified composite right/left-handed unit cell
CN111176036A (zh) 一种调谐器及其制备方法和控制方法、电子装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001746.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18023554

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946162

Country of ref document: EP

Kind code of ref document: A1