WO2024016144A1 - 空间滤波器及其制备方法、电子设备 - Google Patents

空间滤波器及其制备方法、电子设备 Download PDF

Info

Publication number
WO2024016144A1
WO2024016144A1 PCT/CN2022/106387 CN2022106387W WO2024016144A1 WO 2024016144 A1 WO2024016144 A1 WO 2024016144A1 CN 2022106387 W CN2022106387 W CN 2022106387W WO 2024016144 A1 WO2024016144 A1 WO 2024016144A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode
spatial filter
substrate
layer
Prior art date
Application number
PCT/CN2022/106387
Other languages
English (en)
French (fr)
Inventor
王�锋
王龙
曲峰
李必奇
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/106387 priority Critical patent/WO2024016144A1/zh
Priority to CN202280002236.1A priority patent/CN117769790A/zh
Publication of WO2024016144A1 publication Critical patent/WO2024016144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices

Definitions

  • the present disclosure belongs to the field of wireless communication technology, and specifically relates to a spatial filter, a driving method thereof, and electronic equipment.
  • a spatial filter filters electromagnetic waves incident in space, its filtering characteristics change with frequency.
  • a spatial filter can be thought of as a frequency selective surface, or FSS.
  • a frequency selective surface is a two-dimensional periodic structure that includes periodic apertures, patches, or a combination of apertures and patches.
  • Frequency selection surfaces are generally divided into band-pass and band-reject filter characteristics.
  • the band-pass type generally transmits all electromagnetic waves in a certain frequency band, and can reflect or absorb all electromagnetic waves outside the frequency band; while the band-rejection type generally absorbs or reflects electromagnetic waves in a certain frequency band, and other frequency bands are unexpected.
  • Electromagnetic waves can pass through normally.
  • the filtering characteristics of traditional FSS are mainly based on its resonance mechanism, and the operating wavelength depends on the period length between units or the resonant frequency of the unit itself.
  • Spatial filters or frequency selection surfaces have a lot of practical application value. For example, with the rapid development of mobile Internet networks, low-frequency communication resources are almost completely utilized, which makes electromagnetic interference between different communication systems increasingly intensified, especially frequency multiplication interference. , has seriously affected normal communication. Space filters can be applied to the housing of electronic devices to prevent electromagnetic interference. Another example is that the frequency selective surface can reduce the radar cross section (RCS) of the aircraft, or form a common-aperture multi-band nested antenna, or be used in base station radomes to assist antenna filtering.
  • RCS radar cross section
  • spatial filters are fixed-frequency structures. Once the manufacturing process is completed, the filter response characteristics or operating frequency band that can be achieved are fixed. This greatly limits the practical application range of spatial filters. Adjustable spatial filters generally have difficulties in controlling a single unit. The main reason is that when the number of units in the spatial filter array increases, there will be difficulties in controlling the line arrangement. Therefore, current spatial filters are based on overall tuning and do not use the control of individual units.
  • the present invention aims to solve at least one of the technical problems existing in the prior art and provide a spatial filter, a driving method thereof, and electronic equipment.
  • a spatial filter which includes at least one layer of filtering structure;
  • the filtering structure includes: a first substrate and a second substrate that are arranged oppositely, and are provided between the first substrate and the second substrate. the dielectric layer between the second substrates; wherein,
  • the first substrate includes a first dielectric substrate, and at least one first electrode is disposed on the side of the first dielectric substrate close to the dielectric layer;
  • the second substrate includes a second dielectric substrate, which is disposed on the second at least one second electrode on the side of the dielectric substrate close to the dielectric layer;
  • the first electrode and the second electrode are arranged crosswise and define at least one resonant unit, and the resonant unit is configured to filter electromagnetic waves.
  • the number of the first electrodes is multiple, and the number of the second electrodes is multiple;
  • the first electrodes extend along the first direction, and a plurality of the first electrodes are arranged side by side along the second direction.
  • the second electrode extends along the second direction, and a plurality of the second electrodes are arranged side by side along the first direction;
  • a plurality of the first electrodes and a plurality of the second electrodes are arranged crosswise and define a plurality of the resonant units arranged in an array.
  • the spacing between the adjacently arranged first electrodes is equal, and/or the spacing between the adjacently arranged second electrodes is equal.
  • each of the first electrodes is the same, and/or the size of each of the second electrodes is the same.
  • the spacing between the adjacent first electrodes is a first spacing
  • the spacing between the adjacent second electrodes is a second spacing; the first spacing and the second spacing are equal.
  • the width of the first electrode is equal to the width of the second electrode.
  • the resonant unit further includes a first opening formed on the first electrode, and/or a second opening formed on the second electrode; when the resonant unit includes a first opening formed on the first electrode, When the first opening on the electrode is formed, the orthographic projection of the first opening and the second electrode on the first dielectric substrate intersects; when the resonance unit includes all the resonant elements formed on the second electrode When the second opening is formed, the orthographic projection of the second opening and the first electrode on the first dielectric substrate intersects.
  • the number of the filter structures is multiple layers, and the multiple layers of the filter structures are arranged in a stack.
  • the first dielectric substrate of one of the adjacent filter structures and the second dielectric substrate of the other filter structure are shared.
  • first dielectric substrate of one of the adjacent filter structures and the second dielectric substrate of the other adjacently arranged filter structure are bonded together through a first adhesive layer.
  • the orthographic projections of the resonant units in each of the filter structures on the first dielectric substrate have no overlap.
  • the dielectric layer includes a liquid crystal layer.
  • a first alignment layer is provided on a side of the layer where the first electrode is located close to the liquid crystal layer; a second alignment layer is provided on a side of the layer where the second electrode is located close to the liquid crystal layer.
  • extension direction of the first electrode and the extension direction of the second electrode in the filter structure are orthogonal.
  • the thickness of the first electrode is 2 ⁇ m-5 ⁇ m, and/or the thickness of the second electrode is 2 ⁇ m-5 ⁇ m.
  • the thickness of the dielectric layer is 5 ⁇ m-200 ⁇ m.
  • an embodiment of the present disclosure provides a driving method for a spatial filter, which includes:
  • a voltage is applied to the first electrode and the second electrode to change the dielectric constant of the dielectric layer to change the resonant frequency of the resonant unit to filter electromagnetic waves.
  • applying a voltage to the first electrodes and the second electrodes includes: applying the same voltage to each of the first electrodes, Different voltages are applied to at least part of each of the second electrodes.
  • applying voltages to the first electrodes and the second electrodes includes: applying different voltages to at least part of each of the first electrodes. voltage, applying different voltages to at least part of each of the second electrodes.
  • an embodiment of the present disclosure provides an electronic device, which includes any of the above spatial filters.
  • Figure 1 is a top view of a spatial filter according to an embodiment of the present disclosure.
  • Figure 2 is a cross-sectional view of A-A' of the spatial filter of Figure 1.
  • FIG. 3 is another A-A' cross-sectional view of the spatial filter in FIG. 1 .
  • Figure 4 is the resonant frequency-electromagnetic wave enhancement curve of the spatial filter shown in Figure 2 when the first spacing/second spacing are 6.4mm, 8mm, and 9.6m respectively.
  • Figure 5 is the resonant frequency-transmittance curve of the spatial filter shown in Figure 2 when the first spacing/second spacing are 6.4mm, 8mm, and 9.6m respectively.
  • FIG. 6 is a schematic diagram of applying voltage to the first electrode and the second electrode of the spatial filter shown in FIG. 3 .
  • FIG. 7 is another schematic diagram of applying voltage to the first electrode and the second electrode of the spatial filter shown in FIG. 3 .
  • FIG. 8 is a resonant frequency-transmittance curve when a voltage is applied between the first electrode and the second electrode of the spatial filter shown in FIG. 3 and when a voltage is not applied.
  • Figure 9 is a top view of another spatial filter according to an embodiment of the present disclosure.
  • Figure 10 is a resonant frequency-transmittance curve of the spatial filter shown in Figure 9.
  • FIG. 11 is a top view of yet another spatial filter according to an embodiment of the present disclosure.
  • Figure 12 is a top view of yet another spatial filter according to an embodiment of the present disclosure.
  • Figure 13 is a top view of yet another spatial filter according to an embodiment of the present disclosure.
  • Figure 14 is a resonant frequency-transmittance curve of the spatial filter shown in Figure 13.
  • Figure 1 is a top view of a spatial filter according to an embodiment of the present disclosure
  • Figure 2 is a cross-sectional view of A-A' of the spatial filter in Figure 1
  • Figure 3 is another spatial filter in Figure 1 A-A' cross-sectional view.
  • a spatial filter which includes at least one layer of filtering structure.
  • Each filter structure includes a first substrate, a second substrate arranged oppositely, and a dielectric layer 30 arranged between the first substrate and the second substrate.
  • the first substrate includes a first dielectric substrate 10 and at least one first electrode 11; the first electrode 11 is located on a side of the first dielectric substrate 10 close to the tunable dielectric layer 30.
  • the second substrate includes a first dielectric substrate 20 and at least one second electrode 21; the second electrode 21 is located on a side of the first dielectric substrate 20 close to the tunable dielectric layer 30.
  • the first electrode 11 on the first dielectric substrate 10 and the second electrode 21 on the second dielectric substrate 20 are intersected and define at least one resonant unit 100, that is, between the first electrode 11 and the second electrode 21, The positions where the orthographic projections of the second electrode 21 on the first dielectric substrate 10 overlap form a resonant cavity composed of the first electrode 11 - the tunable dielectric layer 30 - the second electrode 21 .
  • the resonance unit 100 is configured to filter electromagnetic waves.
  • the filtering structure may include multiple first electrodes 11 and second electrodes 21 .
  • the number of first electrodes 11 and second electrodes 21 is multiple. describe.
  • the number of first electrodes 11 and the number of second electrodes 21 in each filter structure may be the same or different, which is not limited in the embodiment of the present disclosure.
  • the first electrode 11 extends along the first direction X
  • the second electrode 21 extends along the second direction Y
  • the first direction X and the second direction Y are different
  • the plurality of first electrodes 11 extend along the second direction Y
  • the plurality of second electrodes 21 are arranged side by side and at intervals along the direction Y
  • the plurality of second electrodes 21 are arranged side by side and at intervals along the first direction X.
  • it is intersecting with each second electrode 21.
  • the plurality of first electrodes 11 and the plurality of second electrodes 21 are intersecting to define a plurality of resonant units arranged in an array. 100.
  • the first direction X and the second direction Y are orthogonal, that is, the extension direction of the first electrode 11 and the extension direction of the second electrode 21 are orthogonal.
  • the extension direction of the first electrode 11 and the extension direction of the second electrode 21 have a certain angle, they do not necessarily have to be perpendicular to each other.
  • the spacing between the first electrodes 11 may be equal, and the spacing between the second electrodes 21 may be equal.
  • the spacing between the first electrodes 11 refers to the distance between the center lines of the first electrodes 11 extending along the first direction X.
  • the spacing between the second electrodes 21 refers to the distance between the center lines of the second electrodes 21 extending along the second direction Y.
  • the spacing between adjacent first electrodes 11 is the first spacing Py
  • the spacing between adjacent second electrodes 21 is the second spacing Px
  • the first spacing Py and the second spacing Px may be equal or different. In the embodiment of the present disclosure, it is taken as an example that the first spacing Py and the second spacing Px are equal.
  • each first electrode 11 has the same size
  • each second electrode 21 has the same size. It should be noted that the so-called same size in the embodiment of the present disclosure means that the length, width and thickness are the same. The reason for this arrangement is that this structure is easy to prepare and implement.
  • the dielectric layer 30 may be a dielectric layer 30 with an unadjustable dielectric constant, or may be a dielectric layer 30 with an adjustable dielectric constant.
  • the dielectric layer 30 when the dielectric layer 30 is selected with an unadjustable dielectric constant, the dielectric layer 30 can be glass-based, etc. In this case, the dielectric layer 30 has a certain supporting force. First, the dielectric layer 30 has a certain supporting force.
  • the electrode 11 and the second electrode 21 are respectively disposed on two opposite sides of the dielectric layer 30. If the thickness of the dielectric layer 30 is d, the distance between the first electrode 11 and the second electrode 21 is d.
  • the first dielectric substrate 10 for supporting the first electrode 11 may be a flexible substrate
  • the third dielectric substrate 20 for supporting the second electrode 21 may be a glass base.
  • the filter formed by applying this filtering structure can only filter electromagnetic waves in a specific frequency band.
  • a band-pass filter or a band-rejection filter can be implemented by setting the spacing between adjacent first electrodes 11 and the spacing between adjacent second electrodes 21 .
  • a band-stop filter can be formed.
  • a bandpass filter can be formed.
  • the adjustable dielectric layer 30 when the dielectric layer 30 adopts the adjustable dielectric layer 30 , the adjustable dielectric layer 30 may be a liquid crystal layer. Further, when the adjustable dielectric layer 30 adopts a liquid crystal layer, the first alignment layer 12 is provided on the side of the layer where the first electrode 11 is located close to the liquid crystal layer, and the first alignment layer 12 is provided on the side of the layer where the second electrode 21 is located close to the liquid crystal layer. second alignment layer 22. The first alignment layer 12 and the second alignment layer 22 are used to provide an initial pretilt angle for the liquid crystal molecules of the liquid crystal layer, thereby ensuring that the dielectric constant of the liquid crystal layer can reach the maximum change when a voltage is applied to the first electrode 11 and the second electrode 21 .
  • the thicknesses of the first electrode 11 and the second electrode 21 may be equal or unequal. In the embodiment of the present disclosure, it is taken as an example that the thickness of the first electrode 11 and the second electrode 21 are equal, in which the thickness of the first electrode 11 and the second electrode 21 is h, and h is about 2 ⁇ m-5 ⁇ m.
  • the thickness of the liquid crystal layer is d, and d is between 5 ⁇ m and 200 ⁇ m. about. If the liquid crystal layer does not have the support capability, the distance between the first electrode 11 and the second electrode 21 is d-h. Continuing to refer to FIG.
  • the dielectric constant of the liquid crystal layer at the overlapping position of the first electrode 11 and the second electrode 21 can be adjusted. Therefore, the dielectric constant of the liquid crystal layer at the overlapping position of the first electrode 11 and the second electrode 21 is
  • the filtering frequency of the resonance unit 100 defined by the intersection of 11 and the second electrode 21 is tunable. That is, the tuning frequency of the resonant unit 100 can be changed by simply changing the magnitude of the voltage applied to the first electrode 11 and the second electrode 21. This structure is simple and easy to implement.
  • the resonant frequency can be adjusted for each resonant unit 100 by adjusting the voltage applied to the corresponding first electrode 11 and the second electrode 21 , that is to say , each resonance unit 100 in the filter structure of the embodiment of the present disclosure can be controlled individually.
  • the spatial filter only includes a layer of filtering structure, and the first electrode 11 and the second electrode 21 in the filtering structure are arranged orthogonally.
  • the widths of the first electrodes 11 and the second electrodes 21 are equal, and the spacing between the adjacent first electrodes 11, that is, the first spacing Py, is the same as the spacing between the adjacent second electrodes 21, that is, The second distance Px is equal in size.
  • the distance between the first electrode 11 and the second electrode 21 is much smaller than the width of the first electrode 11 and the width of the second electrode 21 .
  • the dielectric constant of dielectric layer 30 is not variable.
  • the central wavelength ⁇ of the filtering frequency band of the spatial filter is approximately 2n*Ly, n is the refractive index of the liquid crystal layer, and Ly is the first The width of the electrode 11; if the planned direction of the incident spatial wave is perpendicular to the second electrode 21, the central wavelength ⁇ of the filtering frequency band of the spatial filter is approximately 2n*Lx, n is the refractive index of the dielectric layer 30, and Lx is the second The width of electrode 21.
  • the vacuum wavelength is approximately 11.1 mm.
  • FIG. 4 is the resonant frequency-electromagnetic wave enhancement curve of the spatial filter shown in Figure 2 when the first spacing Py/second spacing Px are 6.4mm, 8mm, and 9.6m respectively;
  • Figure 5 is the spatial filter shown in Figure 2 Resonant frequency-transmittance curves when the first spacing Py/second spacing Px are 6.4mm, 8mm, and 9.6m respectively.
  • S11 represents the electromagnetic wave transmittance curve when the first spacing Py/second spacing Px is 6.4mm
  • S12 represents the electromagnetic wave transmittance curve when the first spacing Py/second spacing Px is 8mm
  • S13 represents The electromagnetic wave transmittance curve when the first spacing Py/the second spacing Px is 9.6mm; it can be seen from Figures 4 and 5 that a gap is formed between the overlapping area of the first electrode 11 and the second electrode 21 between 26-27GHz. Strong resonance.
  • Fano resonance is also formed on the transmittance curve. It can be seen that when the first spacing Py/second spacing Px is large, a transmission valley is formed at 26GHz due to absorption caused by resonance, which can be used as a band-stop filter. When the first pitch Py/the second pitch Px is small, a transmission peak is formed near 26GHz, which can be used to form a bandpass filter.
  • FIG. 6 is a schematic diagram of applying voltage to the first electrode 11 and the second electrode 21 of the spatial filter shown in Figure 3.
  • each first electrode 11 and the second electrode 21 can be Different voltages are applied to the electrodes 21, voltages V1 to V7 are respectively applied from the first to the last electrodes, and the same voltage V0 is applied to each first electrode 11, the liquid crystal molecules in the resonant unit 100 on each column will Deflections of the same amplitude are produced, which results in the same filter curve, while the filter curves on different columns will gradually shift in frequency.
  • Figure 7 is another schematic diagram of applying voltage to the first electrode 11 and the second electrode 21 of the spatial filter shown in Figure 3.
  • the liquid crystal molecules can change from the initial in-plane horizontal orientation to the vertical orientation, loading the first, second, fifth and sixth second electrodes 21
  • the same voltage is 2*V2
  • the third and fourth second electrodes 21 are loaded with the same voltage V2
  • the first and second first electrodes 11 are loaded with the same voltage 2 *V2
  • FIG 8 is the resonant frequency-transmittance curve when voltage is applied between the first electrode 11 and the second electrode 21 of the spatial filter shown in Figure 3 and when no voltage is applied.
  • S31 represents the The resonant frequency-transmittance curve with voltage applied between one electrode 11 and the second electrode 21
  • S32 represents the resonant frequency-transmittance curve with no voltage applied between the first electrode 11 and the second electrode 21.
  • FIG. 9 is a top view of another spatial filter according to an embodiment of the present disclosure.
  • the spatial filter according to an embodiment of the present disclosure implements a band-pass filtering function, it is required to arrange an adjacent third The first spacing Py between one electrode 11 and the second spacing Px between adjacent second electrodes 21 is small.
  • the electromagnetic wave can form a transmission peak in a specific frequency band, the transmittance is relatively low.
  • the filtering loss is relatively large. Therefore, for each resonance unit 100 , it also includes a first opening 101 formed on the first electrode 11 and a second opening 201 formed on the second electrode 21 .
  • Resonance unit 100 First electrode 11 First opening 101 First opening 101 Second electrode 21 First dielectric substrate 10
  • Resonance unit 100 Second electrode 21 Second opening 201
  • the second opening 201 and the first electrode 11 are on the first dielectric substrate 10
  • the orthographic projections on wherein, when the resonant unit 100 includes the first opening 101 and the second opening 201 at the same time, the resonant unit 100 can achieve dual polarization filtering characteristics.
  • the size of the first opening 101 and the size of the second opening 201 may be the same or different.
  • the size of the first opening 101 and the second opening 201 are the same as an example, that is, the first opening
  • the length of 101 is equal to the length of the second opening 201, both are Sx.
  • the length of the first opening 101 is equal to the width of the second opening 201, both are Sy.
  • the first pitch Py/the second pitch Px must be at least greater than half the wavelength in the dielectric layer 30 .
  • the first pitch Py/second pitch Px can be reduced to 1/10--- 1/6 vacuum wavelength level or 1/5 to 1/3 medium wavelength level.
  • the value of Sx should be smaller than Px and Py, and the value of Sy should be smaller than Lx and Ly.
  • FIG. 11 is a top view of yet another spatial filter according to an embodiment of the present disclosure
  • FIG. 12 is a top view of yet another spatial filter according to an embodiment of the present disclosure; as shown in FIGS. 11 and 12 , for each In the resonance unit 100 , the first opening 101 may be formed only on the first electrode 11 , or the second opening 201 may be formed only on the second electrode 21 .
  • FIG. 13 is a top view of another spatial filter according to an embodiment of the present disclosure.
  • the spatial filter can also include Multi-layer structure, any of the above filter structures can be used for each layer structure.
  • the spatial filtering structure includes a multi-layer filtering structure, in-band flatness and band-edge roll-off can be improved.
  • the spatial filter includes a two-layer filtering structure.
  • the two-layer filtering structures have the same structure, that is, the first electrode 11, the second electrode 21, the dielectric layer 30 and other parameters are the same.
  • the orthographic projections of the first electrodes 11 in different filtering structures on any first dielectric substrate 10 do not need to completely overlap and can be arranged staggered. That is, the first electrodes 11 in different filtering structures are placed on any first dielectric substrate 10 in a staggered manner. There is a certain distance between orthographic projections on the substrate 10 .
  • the orthographic projections of the second electrodes 21 in different filtering structures on any first dielectric substrate 10 do not need to completely overlap and can be arranged staggered. That is, the second electrodes 21 in different filtering structures are on any first dielectric substrate 10 .
  • Figure 14 is the resonant frequency-transmittance curve of the spatial filter shown in Figure 13; as shown in Figure 14, S51 represents the liquid crystal molecule director of the liquid crystal layer perpendicular to the The transmittance curve when there is a dielectric substrate 10 , S52 represents the transmittance curve when the director of the liquid crystal molecules of the liquid crystal layer is parallel to the first dielectric substrate 10 .
  • Figure 8 proves that by applying a voltage to cause the director of the liquid crystal molecules in the overlapping area of the first electrode 11 and the second electrode 21 to deflect by 90 degrees, the frequency of the transmission peak can be effectively tuned.
  • the spatial filter includes a multi-layer filter structure
  • the first dielectric substrate 10 of one of the adjacent filter structures is shared with the second dielectric substrate 20 of the other, which can effectively reduce the size of the spatial filter.
  • the thickness of the filter increases the integration of the spatial filter. It should be noted that when the first dielectric substrate 10 of one of the adjacent filter structures is shared with the second dielectric substrate 20 of the other, the thickness of the shared dielectric substrate should be selected according to the filtering frequency band of the filter. Of course, the first dielectric substrate 10 of one of the adjacent filter structures and the second dielectric substrate 20 of the other one are bonded together through the first adhesive layer.
  • the materials of the first dielectric substrate 10 and the second dielectric substrate 20 include, but are not limited to, glass.
  • the materials of the first electrode 11 and the second electrode 21 include but are not limited to copper.
  • the spatial filter of embodiments of the present disclosure has a filtering frequency tuning range greater than 1.5 Ghz.
  • the bandwidth can be designed flexibly, and a 3dB transmission bandwidth of 300MHz-00MHz can be formed in the n257 to n258 frequency band.
  • the in-band flatness in-band transmittance change
  • relatively steep belt edges can be achieved.
  • the size of the resonant unit in the spatial filter of the embodiment of the present disclosure can be adjusted by designing the size and spacing of the first electrode 11 and the second electrode 21 .
  • the resonant unit 100 in the embodiment of the present disclosure can achieve deep sub-wavelength levels (1/10---1/5 free space wavelength), and therefore can have better angular insensitivity, at an incident angle of ⁇ 45 degrees. Within the range, the filter frequency deviation is less than 150MHz.
  • a high voltage is applied between the first electrode 11 and the second electrode 21 in a specific area, and a low voltage is applied between the first electrode 11 and the second electrode 21 in other areas.
  • voltage, in the near field and far field of 30GHz it can be seen that only the unit structure in the high voltage area allows incident electromagnetic waves to pass through, while the transmittance in other areas is close to zero. This proves the effectiveness of this passive matrix-driven structure for spatial filtering.
  • embodiments of the present disclosure also provide a spatial filter driving method.
  • the spatial filter driving method may include: providing the first electrode 11 and the second A voltage is applied to the electrode 21 to change the dielectric constant of the dielectric layer 30 to change the resonant frequency of the resonant unit 100 to filter electromagnetic waves.
  • applying a voltage to each of the first electrodes 11 and 21 includes: Applying the same voltage to the electrodes 11 and applying different voltages to at least part of each second electrode 21 will produce the same amplitude of deflection for the liquid crystal molecules in the resonant unit 100 on each column, thereby producing the same filter curve. , and the filter curves on different columns will gradually shift in frequency.
  • applying a voltage to each of the first electrodes 11 and 21 includes: Different voltages are applied to at least parts of the electrodes 11 , and different voltages are applied to at least parts of each of the second electrodes 21 .
  • an embodiment of the present disclosure provides an electronic device, which includes the above-mentioned spatial filter.
  • the spatial filter can be applied to the housing of electronic devices to prevent electromagnetic interference.
  • the spatial filter can also reduce the radar cross section (RCS) of the aircraft, or form a common-aperture multi-band nested antenna, or be applied to base station radomes for auxiliary antenna filtering.
  • RCS radar cross section

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本公开提供一种空间滤波器及其驱动方法、电子设备,属于无线通信技术领域。本公开的空间滤波器,其包括至少一层滤波结构;所述滤波结构包括:相对设置的第一基板、第二基板,以及设置在所述第一基板和所述第二基板之间的介质层;其中,所述第一基板包括第一介质基板,设置在所述第一介质基板靠近所述介质层一侧的至少一条第一电极;所述第二基板包括第二介质基板,设置在所述第二介质基板靠近所述介质层一侧的至少一条第二电极;所述第一电极和所述第二电极交叉设置,并限定出至少一个谐振单元,所述谐振单元,被配置为对电磁波进行滤波。

Description

空间滤波器及其制备方法、电子设备 技术领域
本公开属于无线通信技术领域,具体涉及一种空间滤波器及其驱动方法、电子设备。
背景技术
空间滤波器对空间入射的电磁波进行滤波时,它的滤波特性随频率的变化而变化。可以把空间滤波器看成是一种频率选择表面,也就是FSS。频率选择表面是一种二维周期结构,它包括周期性的孔径、贴片、或者孔径与贴片的组合。频率选择表面一般分为带通型和带阻型的滤波特性。带通型一般是对某一特定频段的电磁波可以全部透过,而对该频段以外的电磁波可以全部反射或吸收;而带阻型一般是对某一频段的电磁波吸收或反射,其它频段意外的电磁波可以正常透过。传统FSS的滤波特性主要基于其谐振机理,工作波长依赖于单元与单元之间的周期长度或单元自身的谐振频率。
空间滤波器或频率选择表面有非常多的实际应用价值,比如随着移动互联网络的飞速发展,低频通讯资源几乎完全被利用,就使得不同通讯系统间的电磁干扰日趋加剧,尤其是倍频干扰,已严重影响了正常的通讯,空间滤波器可以应用于电子器件的外壳用于防止电磁干扰。再比如频率选择表面可以降低飞行器的雷达散射截面(RCS),或形成共口径多波段嵌套天线,或应用于基站天线罩辅助天线滤波。
通常空间滤波器都是固定频率的结构,一旦制造工艺完成,所能实现的滤波响应特性或工作频段就固定下来。这就大大限制了空间滤波器的实际应用范围。而可调的空间滤波器一般存在着对单个单元的操控困难,主要是空间滤波器阵列中单元个数增加时会有控制线排布的困难。因此目前的空间滤波器都是基于整体调谐,不采用对单个单元操控的方式。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种空间滤波器及其驱动方法、电子设备。
第一方面,本公开实施例提供一种空间滤波器,其包括至少一层滤波结构;所述滤波结构包括:相对设置的第一基板、第二基板,以及设置在所述第一基板和所述第二基板之间的介质层;其中,
所述第一基板包括第一介质基板,设置在所述第一介质基板靠近所述介质层一侧的至少一条第一电极;所述第二基板包括第二介质基板,设置在所述第二介质基板靠近所述介质层一侧的至少一条第二电极;
所述第一电极和所述第二电极交叉设置,并限定出至少一个谐振单元,所述谐振单元,被配置为对电磁波进行滤波。
其中,所述第一电极的数量为多个,所述第二电极的数量为多个;所述第一电极沿第一方向延伸,且多个所述第一电极沿所述第二方向并排设置;所述第二电极沿所述第二方向延伸,且多个所述第二电极沿所述第一方向并排设置;
多个所述第一电极和多个所述第二电极交叉设置,并限定出呈阵列排布的多个所述谐振单元。
其中,相邻设置的所述第一电极之间的间距相等,和/或,相邻设置的所述第二电极之间的间距相等。
其中,各所述第一电极的尺寸相同,和/或,各所述第二电极的尺寸相同。
其中,相邻设置的所述第一电极之间的间距为第一间距,相邻设置的所述第二电极之间的间距为第二间距;所述第一间距和所述第二间距相等。
其中,所述第一电极的宽度与所述第二电极的宽度相等。
其中,所述谐振单元还包括形成在所述第一电极上的第一开口,和/或,形成在所述第二电极上的第二开口;当所述谐振单元包括形成在所述第一 电极上的所述第一开口时,所述第一开口和所述第二电极在所述第一介质基板上的正投影相交;当所述谐振单元包括形成在所述第二电极上的所述第二开口时,所述第二开口和所述第一电极在所述第一介质基板上的正投影相交。
其中,所述滤波结构的数量为多层,多层所述滤波结构叠层设置。
其中,相邻设置的所述滤波结构中一者的所述第一介质基板和另一者的所述第二介质基板共用。
其中,相邻设置的所述滤波结构中一者的所述第一介质基板和另一者的所述第二介质基板通过第一粘合层粘结在一起。
其中,各所述滤波结构中的所述谐振单元在一所述第一介质基板上的正投影无重叠。
其中,所述介质层包括液晶层。
其中,在所述第一电极所在层靠近所述液晶层的一侧设置有第一配向层;在所述第二电极所在层靠近所述液晶层的一侧设置有第二配向层。
其中,所述滤波结构中的所述第一电极的延伸方向和所述第二电极的延伸方向正交。
其中,所述第一电极的厚度为2μm-5μm,和/或,所述第二电极的厚度为2μm-5μm。
其中,所述介质层的厚度为5μm-200μm。
第二方面,本公开实施例提供一种空间滤波器的驱动方法,其包括:
给第一电极和第二电极中施加电压,改变介质层的介电常数,以改变谐振单元的谐振频率,以对电磁波进行滤波。
其中,当所述第一电极和所述第二电极的数量均为多个时,所述给第一电极和第二电极中施加电压包括:给各所述第一电极施加相同的电压,给各所述第二电极中的至少部分施加不同的电压。
其中,当所述第一电极和所述第二电极的数量均为多个时,所述给第一电极和第二电极中施加电压包括:给各所述第一电极中的至少部分施加不同的电压,给各所述第二电极中的至少部分施加不同的电压。
第三方面,本公开实施例提供一种电子设备,其包括上述任一空间滤波器。
附图说明
图1本公开实施例的一种空间滤波器的俯视图。
图2为图1的空间滤波器的一种A-A'的截面图。
图3为图1的空间滤波器的另一种A-A'的截面图。
图4为图2所示的空间滤波器在第一间距/第二间距分别在6.4mm、8mm、9.6m时的谐振频率-电磁波增强曲线。
图5为图2所示的空间滤波器在第一间距/第二间距分别在6.4mm、8mm、9.6m时的谐振频率-透过率曲线。
图6为给图3所示的空间滤波器的第一电极和第二电极加载电压的一种示意图。
图7为给图3所示的空间滤波器的第一电极和第二电极加载电压的另一种示意图。
图8为给图3所示的空间滤波器的第一电极和第二电极之间加载电压和未加载电压时的谐振频率-透过率曲线。
图9为本公开实施例的另一种空间滤波器的俯视图。
图10为图9所示的空间滤波器的谐振频率-透过率曲线。
图11为本公开实施例的再一种空间滤波器的俯视图。
图12为本公开实施例的再一种空间滤波器的俯视图。
图13为本公开实施例的再一种空间滤波器的俯视图。
图14为图13所示的空间滤波器的谐振频率-透过率曲线。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
第一方面,图1本公开实施例的一种空间滤波器的俯视图;图2为图1的空间滤波器的一种A-A'的截面图;图3为图1的空间滤波器的另一种A-A'的截面图。结合图1-3所示,本公开实施例提供一种空间滤波器,其包括至少一层滤波结构。每个滤波结构包括相对设置的第一基板、第二基板,以及设置在第一基板和第二基板之间的介质层30。其中,第一基板包括第一介质基板10和至少一个第一电极11;第一电极11位于第一介质基板10靠近可调电介质层30的一侧。第二基板包括第为介质基板20和至少一个第二电极21;第二电极21位于第为介质基板20靠近可调电介质层30的一侧。在本公开实施例中,第一介质基板10上的第一电极11与第为介质基板20上的第二电极21交叉设置,并限定出至少一个谐振单元100,也即在第一电极11和第二电极21在第一介质基板10上的正投影重合的位置,形成由第一电极11-可调电介质层30-第二电极21构成的谐振腔。该谐振单元100被配置为对电磁波进行滤波。
在一些示例中,滤波结构包括第一电极11和第二电极21的数量可以 均为多个,在本公开实施例中均以第一电极11和第二电极21的数量为多个为例进行描述的。对于每个滤波结构中的第一电极11的数量和第二电极21的数量可以相同,也可以不同,对此在本公开实施例中不进行限定。对于一个滤波结构,其中的第一电极11沿第一方向X延伸,第二电极21沿第二方向Y延伸,第一方向X和第二方向Y不同;且多个第一电极11沿第二方向Y并排间隔设置,多个第二电极21沿第一方向X并排间隔设置。对于任一第一电极11,其与各第二电极21均交叉设置,此时,多个第一电极11与多个第二电极21交叉设置限定出多个呈阵列排布的多个谐振单元100。
需要说明的是,图1中,以第一方向X和第二方向Y正交为例,也即第一电极11的延伸方向和第二电极21的延伸方向正交,但应当理解的是,在本公开实施例中只要第一电极11的延伸方向和第二电极21的延伸方向具有一定的夹角即可,也并非二者一定垂直正交。
进一步的,对于一层滤波结构,其中的各第一电极11之间的间距可以均相等,各第二电极21之间的间距可以均相等。其中,第一电极11之间的间距是指第一电极11沿第一方向X延伸的中线之间的距离。第二电极21之间的间距是指第二电极21沿第二方向Y延伸的中线之间距离。
具体的,对于一层滤波结构,其中相邻设置的第一电极11之间的间距为第一间距Py,相邻设置的第二电极21之间的间距为第二间距Px,第一间距Py和第二间距Px可以相等,也可以不等,在本公开实施例中,以第一间距Py与第二间距Px相等为例。
在一些示例中,各第一电极11的尺寸相同,各第二电极21的尺寸相同。需要说明的是,本公开实施例中所谓的尺寸相同是指长度、宽度和厚度均相同。之所以如此设置是因为,该种结构容易制备,易于实现。
在一些示例中,对于一个滤波结构而言,其中的介质层30可以为介电常数不可调的介质层30,也可以为介电常数可调的介质层30。
例如:如图2所示,当介质层30选用介电常数不可调的介质层30时, 介质层30可以为玻璃基等,在该种情况下,介质层30具有一定的支撑力,第一电极11和第二电极21分别设置在介质层30的两相对侧,若介质层30的厚度为d时,第一电极11和第二电极21之间的间距则为d。继续参照图2,用于支撑第一电极11的第一介质基板10可以为柔性基材,用于支撑第二电极21的第为介质基板20可以为玻璃基。
继续参照图2,由于介质层30的介电常数不可调,故应用该滤波结构所形成的滤波器只能对特定频段的电磁波进行滤波。其中,可以通过设置相邻设置第一电极11之间的间距,以及相邻设置的第二电极21之间的间距,实现带通型滤波器或者带阻型滤波器。具体的,当第一电极11之间的间距,以及相邻设置的第二电极21之间的间距相对较大时,可以形成带阻滤波器,当第一电极11之间的间距,以及相邻设置的第二电极21之间的间距相对较小时,可以形成带通滤波器。
例如:如图3所示,当介质层30采用可调电介质层30时,可调电介质层30具体可以为液晶层。进一步的,当可调电介质层30采用液晶层时,在第一电极11所在层靠近液晶层的一侧设置有第一配向层12,在第二电极21所在层靠近液晶层的一侧设置有第二配向层22。第一配向层12和第二配向层22用以为液晶层的液晶分子提供初始预倾角,从而保证在给第一电极11和第二电极21施加电压时,液晶层的介电常数可以达到最大变化。
在本公开实施例中,第一电极11和第二电极21的厚度可以相等,也可以不等。在本公开实施例中以第一电极11和第二电极21的厚度相等为例,其中第一电极11和第二电极21厚度均为h,h在2μm-5μm左右。液晶层的厚度为d,d在5μm-200μm。左右。若可液晶层不具备支撑能力,此时第一电极11和第二电极21之间的间距为d-h。继续参照图3,给第一电极11和第二电极21施加不同的电压,可以对第一电极11和第二电极21交叠位置处的液晶层的介电常数进行调整,因此由第一电极11和第二电极21交叉所限定出的谐振单元100的滤波频率可调谐。也即,仅需要改变施加在第一电极11和第二电极21上的电压的大小,即可改变谐振单元100 的调谐频率,该结构简单、且易于实现。另外,在本公实施例中,对于每一个谐振单元100均可以通过调整与施加在与之对应的第一电极11和第二电极21上的电压大小即可实现谐振频率的调节,也就是说,本公开实施例的滤波结构中的每个谐振单元100可以实现单独控制。
以下结合具体示例对本公开实施例的空间滤波器进行说明。
第一种示例:空间滤波器仅包括一层滤波结构,该滤波结构中的第一电极11和第二电极21正交设置。第一电极11和第二电极21的宽度相等,且相邻设置的第一电极11之间的间距,也即第一间距Py,与相邻设置的第二电极21之间的间距,也即第二间距Px,二者大小相等。其中,第一电极11和第二电极21之间距离远小于第一电极11宽度和第二电极21的宽度。介质层30的介电常数不可变。
在该种情况下,若入射空间波计划方向垂直于第一电极11时,则该空间滤波器的滤波频段的中心波长λ大约为2n*Ly,n为液晶层的折射率,Ly为第一电极11的宽度;若入射空间波计划方向垂直于第二电极21时,则该空间滤波器的滤波频段的中心波长λ大约为2n*Lx,n为介质层30的折射率,Lx为第二电极21的宽度。对于27GHz频段的空间毫米波,真空波长大约为11.1毫米,设介质层30的厚度d为40μm,介电常数为3,则Lx或Ly大约为3.2mm。图4为图2所示的空间滤波器在第一间距Py/第二间距Px分别在6.4mm、8mm、9.6m时的谐振频率-电磁波增强曲线;图5为图2所示的空间滤波器在第一间距Py/第二间距Px分别在6.4mm、8mm、9.6m时的谐振频率-透过率曲线。如图4所示S11代表第一间距Py/第二间距Px为6.4mm时的电磁波透过率曲线;S12代表第一间距Py/第二间距Px为8mm时的电磁波透过率曲线;S13代表第一间距Py/第二间距Px为9.6mm时的电磁波透过率曲线;由图4和5可以看到,在26-27GHz之间第一电极11和第二电极21重合区域之间形成了强谐振。相应的,在透过率曲线上也形成了法诺Fano谐振。可以看见,当第一间距Py/第二间距Px较大时,由于谐振造成的吸收,在26GHz形成了透射谷,可以用做带阻滤波器。当第 一间距Py/第二间距Px较小时,在26GHz附近形成了透射峰,可以用来形成带通滤波器。
第二种示例,该种示例与第一种示例大致相同,区别在于,介质层30采用液晶层。图6为给图3所示的空间滤波器的第一电极11和第二电极21加载电压的一种示意图第一电极11第二电极21;如图6所示,可以在每一条第第二电极21上施加不同的电压,由第一条至最后一条分别加载电压V1~V7,而在每一条第一电极11上施加相同的电压V0,对每一列上的谐振单元100中的液晶分子会产生相同幅度的偏转,从而会产生相同的滤波曲线,而不同列上的滤波曲线会逐渐频偏。图7为给图3所示的空间滤波器的第一电极11和第二电极21加载电压的另一种示意图第一电极11第二电极21;如图7所示,设当第一电极11和第二电极21上的电压差达到V2时,液晶分子能从最初的面内水平取向变成垂直取向,给第一条、第二条、第五条和第六条第二电极21上加载相同的电压均为2*V2,给第三条和第四条第二电极21上加载相同的电压均为V2;给第一条和第二条第一电极11上加载相同的电压均为2*V2,给第三条、第四条、第五条和第六条第一电极11上加载相同的电压均为3*V2。此时一些区域的谐振单元100中由于第一电极11和第二电极21无电压差,故液晶分子无偏转,而在其余区域的谐振单元100中的液晶分子完全偏转,这样在某些区域的滤波曲线与另一些区域的滤波曲线的中心频率点完全不同,可以单独控制某些区域的滤波性能。图8为给图3所示的空间滤波器的第一电极11和第二电极21之间加载电压和未加载电压时的谐振频率-透过率曲线,如图8所示,S31代表在第一电极11和第二电极21之间加载电压的谐振频率-透过率曲线,S32代表在第一电极11和第二电极21之间未加载电压的谐振频率-透过率曲线。
在一些示例中,图9为本公开实施例的另一种空间滤波器的俯视图;如图9所示,当本公开实施例的空间滤波器实现带通滤波功能时,则要求相邻设置第一电极11之间的第一间距Py,以及相邻设置的第二电极21之 间的第二间距Px较小,此时虽然电磁波可以在特定频段形成透射峰,但是透过率相对较低,滤波损耗相对较大,因此,对于每一谐振单元100,其还包括形成在第一电极11上的第一开口101,形成在第二电极21上的第二开口201。谐振单元100第一电极11第一开口101第一开口101第二电极21第一介质基板10谐振单元100第二电极21第二开口201第二开口201和第一电极11在第一介质基板10上的正投影相交。其中,当谐振单元100同时包括第一开口101和第二开口201时,该谐振单元100可以实现双极化滤波特性。
进一步的,第一开口101的尺寸和第二开口201的尺寸可以相同,也可以不同,在本公开实施例中以第一开口101和第二开口201的尺寸相同为例,也即第一开口101的长度和第二开口201的长度相等,均为Sx,第一开口101的长度和第二开口201的宽度相等,均为Sy。
具体的,当第一电极11中未设置第一开口101,第二电极21中未设置第二开口201时,第一间距Py/第二间距Px至少要大于介质层30中的半波长。当第一电极11中设置第一开口101,第二电极21中设置第二开口201时,根据Sx和Sy的大小,可以把第一间距Py/第二间距Px缩小为1/10---1/6真空波长量级或1/5----1/3介质波长量级。这里Sx的取值要小于Px和Py,Sy的取值要小于Lx和Ly。例如:对于ε‖=3.0169(tanδ=0.0035),ε⊥=2.3616(tanδ=0.0128)的液晶层,当液晶层垂直第一介质基板10取向,液晶层厚度20微米,Px=Py=1.6mm,Lx=Ly=0.68mm,Sx=1.5mm,Sy=0.28mm时,透射率曲线如图10所示。可以看到,相比于图1中的第一电极11中未设置第一开口101,第二电极21中未设置第二开口201的结构,第一电极11中设置第一开口101,第二电极21中设置第二开口201的结构形成了较好的透射峰,且最高透过率增加到80%,且带边滚降比较快。
在一些示例中,图11为本公开实施例的再一种空间滤波器的俯视图;图12为本公开实施例的再一种空间滤波器的俯视图;如图11和12所示,对于每个谐振单元100,也可以仅在第一电极11上形成第一开口101,或 者仅在第二电极21上形成第二开口201。
以上仅以空间滤波器中包括一层滤波结构为例,图13为本公开实施例的再一种空间滤波器的俯视图;如图13所示,在一些示例中,该空间滤波器也可以包括多层结构,对于每一层结构可以采用上述任一滤波结构。当空间滤波结构包括多层滤波结构时,可以提高带内平坦度和带边滚降。
进一步的,在本公开实施例中,以空间滤波器包括两层滤波结构为例。其中,两层滤波结构的结构相同,也即第一电极11、第二电极21,以及介质层30等参数均相同。
在一些示例中,不同滤波结构中的第一电极11在任一第一介质基板10上的正投影不要求完全重合,可以交错设置,也即不同滤波结构中的第一电极11在任一第一介质基板10上的正投影之间存在一定间距。同理,不同滤波结构中的第二电极21在任一第一介质基板10上的正投影不要求完全重合,可以交错设置,也即不同滤波结构中的第二电极21在任一第一介质基板10上的正投影之间存在一定间距。在该种情况下,不同滤波结构中的谐振单元100可以交错设置。
以空间滤波器包括两层滤波结构为例,图14为图13所示的空间滤波器的谐振频率-透过率曲线;如图14所示,S51代表液晶层的液晶分子指向矢垂直于第一介质基板10时的透过率曲线,S52代表液晶层的液晶分子指向矢平行于第一介质基板10时的透过率曲线。图8证明,通过加电压使得第一电极11和第二电极21交叠区域的液晶分子指向矢发生90度偏转,可以有效的调谐透过峰的频率。
进一步的,当空间滤波器包括多层滤波结构时,相邻设置的滤波结构中一者的第一介质基板10与另一者的第为介质基板20共用,这样可以有效的减小空间滤波器的厚度,也即提高空间滤波器的集成度。需要说明的是,当相邻设置的滤波结构中一者的第一介质基板10与另一者的第为介质基板20共用时,共用的介质基板的厚度应当根据滤波器的滤波频段进行选择。当然,相邻设置的滤波结构中一者的第一介质基板10和另一者的第为 介质基板20通过第一粘合层粘结在一起。
在一些示例中,第一介质基板10和第二介质基板20的材料均包括但不限于玻璃。第一电极11和第二电极21的材料均包括但不限于铜。
在一些示例中,本公开实施例的空间滤波器的滤波频率调谐范围大于1.5Ghz。带宽可以灵活设计,可以在n257到n258频段形成300MHz-00MHz的3dB透射带宽。在300MHz频宽内,可以做到带内平坦度(带内透过率变化)小于1dB。同时可以实现相对陡峭的带边。
在一些示例中,本公开实施例的空间滤波器中的谐振单元的尺寸可以通过设计第一电极11和第二电极21的尺寸,以及间距进行调整。本公开实施例中的谐振单元100可以做到深亚波长量级(1/10---1/5个自由空间波长),因而可以有较好的角度不敏感性,在±45度入射角范围内,滤波频偏小于150MHz。
对于本公开实施例的提供任一空间滤波器,在特定区域的第一电极11和第二电极21之间施加高电压,而在其它区域的第一电极11和第二电极21之间施加低电压,则在30GHz的近场和远场可以看到只有施加高电压区的单元结构允许入射电磁波透过,而其它区域透过率接近于零。这就证明了这种被动式矩阵驱动的结构进行空间滤波的有效性。
第二方面,本公开实施例还提供一种空间滤波器的驱动方法,滤波结构中介质层30采用可调电介质层30时,该空间滤波器驱动方法可以包括:给第一电极11和第二电极21中施加电压,改变介质层30的介电常数,以改变谐振单元100的谐振频率,以对电磁波进行滤波。
在一些示例中,当所述第一电极11和所述第二电极21的数量均为多个时,所述给第一电极11和第二电极21中施加电压包括:给各所述第一电极11施加相同的电压,给各所述第二电极21中的至少部分施加不同的电压,对每一列上的谐振单元100中的液晶分子会产生相同幅度的偏转,从而会产生相同的滤波曲线,而不同列上的滤波曲线会逐渐频偏。
在一些示例中,当所述第一电极11和所述第二电极21的数量均为多个时,所述给第一电极11和第二电极21中施加电压包括:给各所述第一电极11中的至少部分施加不同的电压,给各所述第二电极21中的至少部分施加不同的电压。
具体的,参照图7,假设第一电极11和第二电极21上的电压差达到V2时,液晶分子能从最初的面内水平取向变成垂直取向,给第一条、第二条、第五条和第六条第二电极21上加载相同的电压均为2*V2,给第三条和第四条第二电极21上加载相同的电压均为V2;给第一条和第二条第一电极11上加载相同的电压均为2*V2,给第三条、第四条、第五条和第六条第一电极11上加载相同的电压均为3*V2。此时一些区域的谐振单元100中由于第一电极11和第二电极21无电压差,故液晶分子无偏转,而在其余区域的谐振单元100中的液晶分子完全偏转,这样在某些区域的滤波曲线与另一些区域的滤波曲线的中心频率点完全不同,可以单独控制某些区域的滤波性能。
第三方面,本公开实施例提供一种电子设备,其包括上述的空间滤波器。
该空间滤波器可以应用于电子器件的外壳用于防止电磁干扰。该空间滤波器还可以降低飞行器的雷达散射截面(RCS),或形成共口径多波段嵌套天线,或应用于基站天线罩辅助天线滤波。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (20)

  1. 一种空间滤波器,其包括至少一层滤波结构;所述滤波结构包括:相对设置的第一基板、第二基板,以及设置在所述第一基板和所述第二基板之间的介质层;其中,
    所述第一基板包括第一介质基板,设置在所述第一介质基板靠近所述介质层一侧的至少一条第一电极;所述第二基板包括第二介质基板,设置在所述第二介质基板靠近所述介质层一侧的至少一条第二电极;
    所述第一电极和所述第二电极交叉设置,并限定出至少一个谐振单元,所述谐振单元,被配置为对电磁波进行滤波。
  2. 根据权利要求1所述的空间滤波器,其中,所述第一电极的数量为多个,所述第二电极的数量为多个;所述第一电极沿第一方向延伸,且多条所述第一电极沿所述第二方向并排设置;所述第二电极沿所述第二方向延伸,且多条所述第二电极沿所述第一方向并排设置;
    多条所述第一电极和多条所述第二电极交叉设置,并限定出呈阵列排布的多个所述谐振单元。
  3. 根据权利要求2所述的空间滤波器,其中,相邻设置的所述第一电极之间的间距相等,和/或,相邻设置的所述第二电极之间的间距相等。
  4. 根据权利要求2所述的空间滤波器,其中,各所述第一电极的尺寸相同,和/或,各所述第二电极的尺寸相同。
  5. 根据权利要求2所述的空间滤波器,其中,相邻设置的所述第一电极之间的间距为第一间距,相邻设置的所述第二电极之间的间距为第二间距;所述第一间距和所述第二间距相等。
  6. 根据权利要求1所述的空间滤波器,其中,所述第一电极的宽度与所述第二电极的宽度相等。
  7. 根据权利要求1所述的空间滤波器,其中,所述谐振单元还包括形成在所述第一电极上的第一开口,和/或,形成在所述第二电极上的第二开 口;当所述谐振单元包括形成在所述第一电极上的所述第一开口时,所述第一开口和所述第二电极在所述第一介质基板上的正投影相交;当所述谐振单元包括形成在所述第二电极上的所述第二开口时,所述第二开口和所述第一电极在所述第一介质基板上的正投影相交。
  8. 根据权利要求1-7中任一项所述的空间滤波器,其中,所述滤波结构的数量为多层,多层所述滤波结构叠层设置。
  9. 根据权利要求8所述的空间滤波器,其中,相邻设置的所述滤波结构中一者的所述第一介质基板和另一者的所述第二介质基板共用。
  10. 根据权利要求8所述的空间滤波器,其中,相邻设置的所述滤波结构中一者的所述第一介质基板和另一者的所述第二介质基板通过第一粘合层粘结在一起。
  11. 根据权利要求8所述的空间滤波器,其中,各所述滤波结构中的所述谐振单元在一所述第一介质基板上的正投影无重叠。
  12. 根据权利要求1-7中任一项所述的空间滤波器,其中,所述介质层包括液晶层。
  13. 根据权利要求12所述的空间滤波器,其中,在所述第一电极所在层靠近所述液晶层的一侧设置有第一配向层;在所述第二电极所在层靠近所述液晶层的一侧设置有第二配向层。
  14. 根据权利要求1-7中任一项所述的空间滤波器,其中,所述滤波结构中的所述第一电极的延伸方向和所述第二电极的延伸方向正交。
  15. 根据权利要求1-7中任一项所述的空间滤波器,其中,所述第一电极的厚度为2μm-5μm,和/或,所述第二电极的厚度为2μm-5μm。
  16. 根据权利要求1-7中任一项所述的空间滤波器,其中,所述介质层的厚度为5μm-200μm。
  17. 一种如权利要求1-16中任一项所述的空间滤波器的驱动方法,其包括:
    给第一电极和第二电极中施加电压,改变介质层的介电常数,以改变谐振单元的谐振频率,以对电磁波进行滤波。
  18. 根据权利要求17所述的驱动方法,其中,当所述第一电极和所述第二电极的数量均为多条时,所述给第一电极和第二电极中施加电压包括:给各所述第一电极施加相同的电压,给各所述第二电极中的至少部分施加不同的电压。
  19. 根据权利要求17所述的驱动方法,其中,当所述第一电极和所述第二电极的数量均为多条时,所述给第一电极和第二电极中施加电压包括:给各所述第一电极中的至少部分施加不同的电压,给各所述第二电极中的至少部分施加不同的电压。
  20. 一种电子设备,其包括权利要求1-17中任一项所述的空间滤波器。
PCT/CN2022/106387 2022-07-19 2022-07-19 空间滤波器及其制备方法、电子设备 WO2024016144A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/106387 WO2024016144A1 (zh) 2022-07-19 2022-07-19 空间滤波器及其制备方法、电子设备
CN202280002236.1A CN117769790A (zh) 2022-07-19 2022-07-19 空间滤波器及其制备方法、电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106387 WO2024016144A1 (zh) 2022-07-19 2022-07-19 空间滤波器及其制备方法、电子设备

Publications (1)

Publication Number Publication Date
WO2024016144A1 true WO2024016144A1 (zh) 2024-01-25

Family

ID=89616830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106387 WO2024016144A1 (zh) 2022-07-19 2022-07-19 空间滤波器及其制备方法、电子设备

Country Status (2)

Country Link
CN (1) CN117769790A (zh)
WO (1) WO2024016144A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811116A (zh) * 2016-04-13 2016-07-27 西安电子科技大学 一种基于cos型频率选择表面的极化鉴别器及其设计方法
CN107037517A (zh) * 2017-06-19 2017-08-11 中国计量大学 一种双层金属光栅导模共振带通滤波器
JP2019024177A (ja) * 2017-07-25 2019-02-14 国立大学法人茨城大学 シート型メタマテリアル
CN110364821A (zh) * 2019-07-26 2019-10-22 重庆邮电大学 超宽带太赫兹非对称传输器件
CN111812908A (zh) * 2020-07-23 2020-10-23 电子科技大学 用于动态色彩调控的法布里-珀罗腔滤波器及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811116A (zh) * 2016-04-13 2016-07-27 西安电子科技大学 一种基于cos型频率选择表面的极化鉴别器及其设计方法
CN107037517A (zh) * 2017-06-19 2017-08-11 中国计量大学 一种双层金属光栅导模共振带通滤波器
JP2019024177A (ja) * 2017-07-25 2019-02-14 国立大学法人茨城大学 シート型メタマテリアル
CN110364821A (zh) * 2019-07-26 2019-10-22 重庆邮电大学 超宽带太赫兹非对称传输器件
CN111812908A (zh) * 2020-07-23 2020-10-23 电子科技大学 用于动态色彩调控的法布里-珀罗腔滤波器及方法

Also Published As

Publication number Publication date
CN117769790A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2020030129A1 (zh) 移相器及液晶天线
US8958050B2 (en) Tunable terahertz metamaterial filter
CN105609903B (zh) 选择性高和角度稳定的频率选择表面
US20210143537A1 (en) Integrated wave-absorbing and wave-transparent apparatus and radome
WO2020030135A1 (zh) 液晶移相器及其操作方法、液晶天线和通信设备
CN109524773B (zh) 一种同时具备隐身与通信功能的电磁结构
CN103151580B (zh) 加载分形结构的双频带亚毫米波频率选择表面
CN109273859A (zh) 耦合型宽带有源频率选择表面
CN106654567B (zh) 容性、感性表面耦合机制小型化高性能高频段通信天线罩
CN113644451B (zh) 一种有源超表面单元及包含其的可重构超表面极化控制器
KR20190054066A (ko) 가변 유전상수 기반 장치
WO2019153456A1 (zh) 太赫兹带通滤波器
CN111883933B (zh) 一种电调控多波段兼容型智能伪装结构
CN108183337B (zh) 一种大角度不敏感的等离子体超材料宽带吸波器
CN106099269B (zh) 一种介质腔频率选择表面结构
CN107171042B (zh) 一种频率选择表面结构
WO2024016144A1 (zh) 空间滤波器及其制备方法、电子设备
CN1937307B (zh) 基片集成波导多腔体级联高性能频率选择表面
CN109273860B (zh) 传输线型宽带有源频率选择表面
CN111786120A (zh) 一种矩形系数接近1的小型化频率选择表面结构
CN113745839A (zh) 宽带吸波超材料、天线罩及天线系统
WO2022233319A1 (zh) 超表面结构
CN110034408A (zh) 一种宽通带3d频率选择表面
CN108428978A (zh) 太赫兹带阻滤波器
CN108777360A (zh) 基于强耦合机制的角度极其稳定的高性能通信天线罩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951423

Country of ref document: EP

Kind code of ref document: A1