WO2020030135A1 - 液晶移相器及其操作方法、液晶天线和通信设备 - Google Patents

液晶移相器及其操作方法、液晶天线和通信设备 Download PDF

Info

Publication number
WO2020030135A1
WO2020030135A1 PCT/CN2019/100041 CN2019100041W WO2020030135A1 WO 2020030135 A1 WO2020030135 A1 WO 2020030135A1 CN 2019100041 W CN2019100041 W CN 2019100041W WO 2020030135 A1 WO2020030135 A1 WO 2020030135A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
substrate
phase shifter
electrode layer
crystal phase
Prior art date
Application number
PCT/CN2019/100041
Other languages
English (en)
French (fr)
Inventor
李亮
丁天伦
武杰
曹雪
王瑛
贾皓程
唐粹伟
蔡佩芝
车春城
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to KR1020207014433A priority Critical patent/KR102368374B1/ko
Priority to JP2020528391A priority patent/JP7424977B2/ja
Priority to EP19848404.0A priority patent/EP3835853B1/en
Priority to US16/642,570 priority patent/US11119364B2/en
Publication of WO2020030135A1 publication Critical patent/WO2020030135A1/zh
Priority to US17/401,693 priority patent/US11799179B2/en
Priority to US18/368,649 priority patent/US20240006762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present disclosure belongs to the field of communication technology, and particularly relates to a liquid crystal phase shifter, a liquid crystal antenna, a communication device, and a method of operating a liquid crystal phase shifter.
  • phase shifter is a device that can adjust the phase of microwaves. It is widely used in electronic communication systems and is a core component of phased array radar, synthetic aperture radar, radar electronic countermeasures, satellite communications, and transceivers. Therefore, high-performance phase shifters play a vital role in these systems.
  • Embodiments of the present disclosure provide a liquid crystal phase shifter, a liquid crystal antenna, a communication device, and a method of operating a liquid crystal phase shifter.
  • a first aspect of the present disclosure provides a liquid crystal phase shifter, including:
  • the first substrate includes: a first substrate; and a first electrode layer on a side surface of the first substrate near the liquid crystal layer;
  • the second substrate includes: a second substrate, and a second electrode layer on a side surface of the second substrate close to the liquid crystal layer;
  • the first electrode layer includes: a main structure having first and second sides opposite to each other with respect to a length direction of the main structure; and the first side and the main structure connected to the main structure.
  • a plurality of branch structures on at least one of the second sides.
  • the second electrode layer is located in a peripheral region of the second substrate, and an orthographic projection of the second electrode layer on the first substrate and at least one of the plurality of branch structures The orthographic projections on the first substrate partially overlap.
  • the plurality of branch structures are connected on each of the first side and the second side of the main structure.
  • the plurality of branch structures connected on the first side and the plurality of branch structures connected on the second side are symmetrical with respect to the main structure.
  • the second electrode layer includes: a first conductive structure and a second conductive structure
  • An orthographic projection of the first conductive structure on the first substrate and an orthographic projection of at least one of the plurality of branch structures connected to the first side of the main structure on the first substrate The projections partially overlap;
  • An orthographic projection of the second conductive structure on the first substrate and an orthographic projection of at least one of the plurality of branch structures connected to the second side of the main structure on the first substrate The projections partially overlap.
  • the first electrode layer is a microstrip line; a ground electrode is provided on a side of the first substrate facing away from the liquid crystal layer.
  • the first conductive structure and the second conductive structure are respectively connected to a conductive terminal of the ground electrode through a wire, and at least one of a resistivity and an inductance of the wire is smaller than a resistance of an ITO material Rate and inductance.
  • the first conductive structure and the second conductive structure are both plate electrodes.
  • the plurality of branch structures are connected only on one of the first side and the second side of the main structure; the second electrode layer is located only on the second substrate A side corresponding to the plurality of branch structures.
  • the second electrode layer is a plate electrode.
  • the first electrode layer is a microstrip line; a ground electrode is provided on a side of the first substrate facing away from the liquid crystal layer.
  • the second electrode layer is connected to a conductive terminal of the ground electrode through a wire, and at least one of the resistivity and the inductance of the wire is smaller than at least one of the resistivity and the inductance of the ITO material.
  • the plurality of branch structures located on the same side of the main structure have the same shape.
  • the spacing between any two adjacent branch structures in the plurality of branch structures on the same side is the same.
  • the main body structure is an integrally formed structure with the plurality of branch structures on either of the first side and the second side.
  • the first substrate is made of at least one of glass, ceramic, and high-purity quartz glass.
  • the liquid crystal layer includes positive liquid crystal molecules, and an included angle between a long axis direction of each positive liquid crystal molecule and a plane on which the first substrate is located is greater than 0 degrees and less than or equal to 45 degrees. .
  • the liquid crystal layer includes negative liquid crystal molecules, and an included angle between a long axis direction of each of the negative liquid crystal molecules and a plane on which the first substrate is located is greater than 45 degrees and less than 90 degrees.
  • the main structure of the first electrode layer includes an impedance matching region, the impedance matching region is triangular or trapezoidal in a plan view, and is configured such that The impedances match each other.
  • a thickness of a portion of the liquid crystal layer between the first electrode layer and the second electrode layer is in a range of 5 ⁇ m to 20 ⁇ m.
  • a second aspect of the present disclosure provides a liquid crystal antenna including the liquid crystal phase shifter according to any one of the above embodiments of the present disclosure.
  • a third aspect of the present disclosure provides a communication device including the liquid crystal antenna according to the above embodiment of the present disclosure.
  • a fourth aspect of the present disclosure provides a method for operating a liquid crystal phase shifter, wherein the liquid crystal phase shifter is a liquid crystal phase shifter according to any one of the above embodiments of the present disclosure, and the Methods include:
  • FIG. 1 is a top view of a liquid crystal phase shifter according to an embodiment of the present disclosure
  • FIG. 2 is a plan view of a liquid crystal phase shifter according to an embodiment of the present disclosure
  • FIG. 3 is a side view of a liquid crystal phase shifter according to an embodiment of the present disclosure.
  • FIGS. 4A to 4C are top views of a liquid crystal phase shifter according to some embodiments of the present disclosure.
  • FIG. 5 is a side view of a liquid crystal phase shifter according to an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a liquid crystal phase shifter, as shown in FIG. 1.
  • the liquid crystal phase shifter includes a first substrate and a second substrate opposite to each other, and a liquid crystal layer (not shown in FIG. 1) disposed between the first substrate and the second substrate.
  • a microstrip line 1 is provided on a side of the first substrate near the liquid crystal layer, and a plurality of metal patches 2 are periodically arranged on a side of the second substrate near the liquid crystal layer.
  • the plurality of metal patches are respectively connected to a ground electrode through a plurality of ITO (indium tin oxide) leads 3 (the ground electrode is shown in a rectangular frame in the upper right corner in FIG. 1 and can be located on a side of the first substrate facing away from the liquid crystal layer). on).
  • ITO indium tin oxide
  • an electric field can be formed between the microstrip line 1 and a second voltage different from the first voltage to the plurality of metal patches 2
  • an electric field can be formed between the microstrip line 1 and a second voltage different from the first voltage to the plurality of metal patches 2
  • the size of the capacitor formed due to at least partial overlap in the direction of. In this way, a phase shift of the microwave signal is achieved (ie, the phase of the microwave signal is changed).
  • each metal patch 2 is connected to the ground electrode through a corresponding ITO lead 3, the inductance of each ITO lead 3 and The resistance is relatively large.
  • the inductance and resistance of each ITO lead 3 are changed by a certain amount, the amount of change in the capacitance formed by the plurality of metal patches 2 and the microstrip line 1 caused by the change amount is small, resulting in microwave The signal does not feel a sufficiently large change in the capacitance formed by the metal patch 2 and the microstrip line 1, and thus the desired phase shift of the microwave signal cannot be caused.
  • some embodiments of the present disclosure provide a liquid crystal phase shifter that can effectively phase-shift a microwave signal.
  • An embodiment of the present disclosure provides a liquid crystal phase shifter, including: a first substrate and a second substrate opposite to each other, and a liquid crystal layer between the first substrate and the second substrate; wherein the first substrate includes: a first A substrate, and a first electrode layer on a side of the first substrate close to the liquid crystal layer; the first electrode layer includes a main structure having a first side and a second side opposite to each other with respect to a length direction of the main structure; Side; and a plurality of branch structures connected to at least one of the first side and the second side of the main structure; the second substrate includes a second substrate, and a second substrate on a side of the second substrate close to the liquid crystal layer An electrode layer; the second electrode layer is located in a peripheral region of the second substrate, and an orthographic projection of the second electrode layer on the first substrate and at least one of the plurality of branch structures (for example, may Are each) the orthographic projections on the first substrate overlap.
  • the first substrate includes: a first A substrate, and a first electrode layer
  • the first electrode layer can be used not only for transmitting microwave signals, but also for receiving a first voltage applied thereto, and the second electrode layer can be used for receiving a different voltage applied to it.
  • the second voltage of the first voltage causes an electric field to be formed between the branch structure of the first electrode layer and the second electrode layer, so that the liquid crystal molecules of the liquid crystal layer are deflected, and the dielectric constant of the liquid crystal layer is changed, thereby realizing the shift of the microwave signal. phase.
  • the second electrode layer is disposed in the peripheral region of the second substrate. Therefore, the length of the ITO wire for applying the second voltage to the second electrode layer can be shortened, thereby reducing the inductance and Resistance, so it can effectively phase shift the microwave signal.
  • an embodiment of the present disclosure provides a liquid crystal phase shifter, which includes a first substrate and a second substrate opposite to each other, and A liquid crystal layer 60 between the first substrate and the second substrate; wherein the first substrate includes: a first substrate 40 and a first electrode layer 10 on a side of the first substrate 40 near the liquid crystal layer 60; a first electrode
  • the layer 10 includes a main structure 11 having a first side (for example, an upper side in FIG. 2) and a first side opposite to each other with respect to a length direction (for example, a horizontal direction in FIG. 2) of the main structure 11. Two sides (for example, the lower side in FIG.
  • the first electrode layer 10 further includes a plurality of branch structures 12 connected to the first side of the main structure 11 and arranged periodically.
  • the second substrate includes a second substrate 50 and a second electrode layer 20 on a side of the second substrate 50 near the liquid crystal layer 60.
  • the second electrode layer 20 on the second substrate is located in a peripheral region of the second substrate 50 and at a position corresponding to the plurality of branch structures 12 on the first substrate 40.
  • the second electrode layer 20 is located in a peripheral region of the second substrate 50 and the outer end portion of the second electrode layer 20 (for example, the right end portion in FIG. 3) and the corresponding end portion of the second substrate 50 (for example, FIG. 3) Right end in the middle).
  • the orthographic projections on the part overlap.
  • a plurality of branch structures 12 may be connected to the second side of the main body structure 11.
  • the multiple branch structures 12 are connected to the first side of the main body structure 11 as an example for description.
  • the first electrode layer 10 may be a microstrip line (that is, the microstrip line includes a main structure 11 and a branch structure 12, and the two are an integrally formed structure), and the side of the first substrate 40 facing away from the microstrip line may also be A ground electrode 30 is provided, and the orthographic projections of the first electrode layer 10 and the ground electrode 30 on the first substrate 40 at least partially overlap. For example, each end portion of the ground electrode 30 and a corresponding end portion of the first substrate 40 may be flush.
  • the ground electrode 30 and the microstrip line ie, the first electrode layer 10) constitute a microwave transmission structure, so that most of the microwave signals fed to the microstrip line by the feeding interface are the first between the ground electrode 30 and the microstrip line.
  • the first substrate 40 may be made of glass or ceramic lamp materials. These materials do not absorb microwave signals, so the loss of microwave signals is small. A small part of the microwave signal is transmitted in the liquid crystal layer 60.
  • the liquid crystal molecules 61 are deflected, and the dielectric constant of the liquid crystal layer 60 is changed, thereby realizing the microwave in the liquid crystal layer 60. Phase shift of the signal. Thereafter, the microwave signal in the first substrate 40 and the microwave signal in the liquid crystal layer 60 are transmitted alternately, thereby realizing the overall phase shift of the microwave signal. In other words, most of the microwave signals transmitted in the first substrate 40 and a small portion of the microwave signals transmitted in the liquid crystal layer 60 may undergo the same phase shift.
  • the second electrode layer 20 may be connected to conductive terminals (for example, both ends of the ground electrode 30) of the ground electrode 30 through a wire 70, as shown in FIG. 3.
  • the signals loaded on the ground electrode 30 and the second electrode layer 20 are the same, and this connection facilitates the control of the phase shifter and the wiring is simple.
  • at least one of the resistivity and the inductance of the wire 70 may be smaller than at least the respective one of the resistivity and the inductance of the ITO material.
  • the material of the conductive wire 70 may be metal (that is, the conductive wire 70 may be a metal connecting wire), and the metal may be copper, but it is not limited to copper, for example, silver or the like.
  • a conductive terminal may also be provided on the edge of the second substrate (for example, the right edge of the second substrate 50 and the second electrode layer 20 shown in FIG. 3), and the ground electrode 30 and the second electrode layer 20 are separately controlled.
  • the length of the lead 70 is significantly smaller than the length of each ITO lead shown in FIG. 1, and the resistivity and inductance of the metal (for example, copper) are both smaller than the resistivity and inductance of the ITO. Therefore, a certain amount of change in the resistivity and the inductance of the wire 70 may cause a large amount of change in the capacitance formed by the second electrode layer 20 and the first electrode layer 10, thereby easily achieving a desired phase shift amount of the microwave signal.
  • each branch structure 12 in the first electrode layer 10 has the same size, and the distance between any two adjacent branch structures is the same.
  • the distance between any two adjacent branch structures 12 can also be distributed according to a certain law.
  • the width of the overlapping portion of each branch structure 12 and the second electrode layer 20 may be different from the width of the rest of the branch structure 12, so that the size of their overlapping area can be adjusted, thereby adjusting the size of the formed capacitor. As shown in Figure 4C, this can be set according to the requirements of the actual product.
  • the main structure 11 and the branch structure 12 of the microstrip line may be provided as an integrally molded structure, that is, they may be provided on the same layer and made of the same material. In this way, the two can be prepared in one patterning process, which can improve production efficiency.
  • the first substrate 40 and the second substrate 50 may use a glass substrate with a thickness of 100-1000 microns, a sapphire substrate, or a polyethylene terephthalate substrate with a thickness of 10-500 microns, Triallyl cyanate substrate and polyimide transparent flexible substrate.
  • the first substrate 40 and the second substrate 50 may be high-purity quartz glass with extremely low dielectric loss. Compared with ordinary glass substrates, the use of high-purity quartz glass in the first substrate 40 and the second substrate 50 can effectively reduce the loss of microwaves, so that the phase shifter has low power consumption and high signal-to-noise ratio.
  • high-purity quartz glass refers to quartz glass in which the weight percentage of SiO 2 is greater than or equal to 99.9%.
  • the material of each of the microstrip line, the ground electrode 30, and the second electrode layer 20 may be a metal such as aluminum, silver, gold, chromium, molybdenum, nickel, or iron.
  • the liquid crystal molecules 61 in the liquid crystal layer 60 may be positive liquid crystal molecules 61 or negative liquid crystal molecules 61. It should be noted that when the liquid crystal molecules 61 are positive liquid crystal molecules 61, the angle between the long axis direction of each liquid crystal molecule 61 and the plane on which the first substrate 40 (or the second substrate 50) is located More than 0 degrees and less than or equal to 45 degrees. When the liquid crystal molecules 61 are negative liquid crystal molecules 61, an included angle between a long axis direction of each liquid crystal molecule 61 and a plane on which the first substrate 40 (or the second substrate 50) is located is greater than 45 degrees and less than 90 degree. In this way, it is ensured that after the liquid crystal molecules 61 are deflected, the dielectric constant of the liquid crystal layer 60 is changed to achieve the purpose of phase shifting.
  • the microstrip line in the phase shifter of this embodiment can be used not only for transmission of microwave signals, but also for receiving a first voltage applied to it, and the second electrode layer 20 can be used to receive a voltage different from that applied to it.
  • the second voltage of the first voltage causes an electric field to be formed between the plurality of branch structures 12 of the microstrip line and the second electrode layer 20 to deflect liquid crystal molecules 61 of the liquid crystal layer 60 and change the dielectric of the liquid crystal layer 60. Constant to achieve phase shift of the microwave signal.
  • the second electrode layer 20 is disposed in the peripheral region of the second substrate 50. Therefore, the length of the lead 70 for applying a second voltage to the second electrode layer 20 can be shortened, so that the lead can be further reduced. 70's inductance and resistance, so you can more effectively phase shift the microwave signal.
  • this embodiment provides another liquid crystal phase shifter, which includes a first substrate and a second substrate opposite to each other, and A liquid crystal layer 60 between a first substrate and a second substrate; wherein the first substrate includes: a first substrate 40; and a first electrode layer 10 on a side of the first substrate 40 near the liquid crystal layer 60; a first electrode layer 10 includes a main body structure 11 having a first side (for example, an upper side in FIG. 4A) and a second side opposite to each other with respect to a length direction (for example, a horizontal direction in FIG. 4A) of the main body structure 11. Side (for example, the lower side in FIG.
  • the first electrode layer 10 further includes a plurality of branch structures 12 connected to each of the first side and the second side of the main body structure 11, and is connected to the first The plurality of branch structures 12 on one side and the plurality of branch structures 12 connected on the second side may be symmetrical (as shown in FIG. 4A) or asymmetric (as shown in FIG. 4B) with respect to the main structure 11.
  • the second electrode layer 20 includes a first conductive structure 21 and a second conductive structure 22 (for example, a left end portion of the first conductive structure 21 and a left side of the second substrate 50) located in a peripheral region of the second substrate 50.
  • the ends may be flush, and the right end of the second conductive structure 22 and the right end of the second substrate 50 may be flush, as shown in FIG. 5); wherein the first conductive structure 21 is on the first substrate 40 Orthographic projection on the first substrate 40 with at least one (e.g., each of the plurality of branch structures 12) connected to a first side (e.g., upper side in FIG. 4A) of the main structure 11 on the first substrate 40
  • the orthographic projections on the part overlap; the orthographic projection of the second conductive structure 22 on the first substrate 40 and the plurality of branch structures 12 connected on the second side (for example, the lower side in FIG. 4A) of the main structure 11.
  • At least one of (for example, each of them) the orthographic projection portion on the first substrate 40 overlaps.
  • the first electrode layer 10 may be a microstrip line (that is, the microstrip line includes the main structure 11 and the plurality of branch structures 12 on each of the first side and the second side of the main structure 11, and The main structure 11 and all the branch structures 12 are integrally formed.)
  • a ground electrode 30 may be further provided on the side of the first substrate 40 facing away from the microstrip line, and the microstrip line (that is, the first electrode layer 10) and the ground The orthographic projection of the electrode 30 on the first substrate 40 at least partially overlaps. For example, each end portion of the ground electrode 30 may be flush with a corresponding end portion of the first substrate 40.
  • the ground electrode 30 and the microstrip line constitute a microwave transmission structure, so that most of the microwave signals fed to the microstrip line by the feeding interface are transmitted in the first substrate 40 between the ground electrode 30 and the microstrip line.
  • the first substrate 40 may be made of a material such as glass or ceramic. In this way, the first substrate 40 does not substantially absorb microwave signals, so the loss of the microwave signals is small. A small part of the microwave signal is transmitted in the liquid crystal layer 60.
  • the liquid crystal layer 60 When the microstrip line is applied with a first voltage and the first conductive structure 21 and the second conductive structure 22 are applied with a second voltage different from the first voltage, the liquid crystal layer 60 The liquid crystal molecules 61 are deflected, and the dielectric constant of the liquid crystal layer 60 is changed, thereby realizing the phase shift of the microwave signal in the liquid crystal layer 60. Thereafter, the microwave signals of the first substrate 40 are transmitted alternately with the microwave signals in the liquid crystal layer 60, thereby realizing the overall phase shift of the microwave signals. As described above, the left end of the first conductive structure 21 and the left end of the second substrate 50 may be flush, and the right end of the second conductive structure 22 and the right end of the second substrate 50 may be flush.
  • each end of the ground electrode 30 may be flush with the corresponding end of the first substrate 40, so the lead wire 70 may be located only outside the phase shifter without extending to the inside of the phase shifter, As shown in FIGS. 3 and 5, the length, resistance, and inductance of each wire 70 are effectively reduced. Therefore, it is easy to achieve a desired amount of phase shift.
  • the first conductive structure 21 and the second conductive structure 22 may be connected to the conductive terminals of the ground electrode 30 (for example, both ends of the ground electrode 30) through the wires 70, respectively.
  • the signals loaded on the ground electrode 30, the first conductive structure 21, and the second conductive structure 22 are the same, which facilitates the control of the phase shifter.
  • the material of the conductive wire 70 may be metal, for example, copper, but it is not limited to copper, and may be silver or the like.
  • conductive edges may also be provided on the edges of the second substrate (for example, the left edge of the second substrate 50 and the first conductive structure 21 and the right edge of the second substrate 50 and the second conductive structure 22 shown in FIG. 5). The terminals are individually controlled by the ground electrode 30, the first conductive structure 21, and the second conductive structure 22, respectively.
  • each branch structure 12 in the first electrode layer 10 has the same size, and any two adjacent ones of the plurality of branch structures on the first side and the second side of the main structure 11 are arbitrarily adjacent. The spacing between them is the same. Of course, the spacing between any two adjacent branch structures 12 on each side can also be distributed according to a certain law.
  • the width of a portion where each branch structure 12 overlaps with the first conductive structure 21 or the second conductive structure 22 of the second electrode layer 20 may be different from the width of the rest of the branch structure 12, as shown in FIG. 4C.
  • the capacitance formed between each branch structure 12 and the second electrode layer 20 is adjusted, which can be set according to the requirements of the actual product.
  • the main structure 11 and all the branch structures 12 of the first electrode layer 10 may be provided as an integrally-molded structure, that is, they are provided on the same layer and made of the same material. In this way, the two can be prepared in one patterning process, which can improve production efficiency.
  • the first substrate 40 and the second substrate 50 may use a glass substrate with a thickness of 100-1000 microns, a sapphire substrate, or a polyethylene terephthalate substrate with a thickness of 10-500 microns, Triallyl cyanate substrate and polyimide transparent flexible substrate.
  • the first substrate 40 and the second substrate 50 may be high-purity quartz glass with extremely low dielectric loss. Compared with ordinary glass substrates, the use of high-purity quartz glass in the first substrate 40 and the second substrate 50 can effectively reduce the loss of microwaves, so that the phase shifter has low power consumption and high signal-to-noise ratio.
  • high-purity quartz glass refers to quartz glass in which the weight percentage of SiO 2 is greater than or equal to 99.9%.
  • the material of each of the microstrip line, the ground electrode 30, the first conductive structure 21, and the second conductive structure 22 may be a metal such as aluminum, silver, gold, chromium, molybdenum, nickel, or iron.
  • the liquid crystal molecules 61 in the liquid crystal layer 60 may be positive liquid crystal molecules 61 or negative liquid crystal molecules 61. It should be noted that when the liquid crystal molecules 61 are positive liquid crystal molecules 61, the angle between the long axis direction of each liquid crystal molecule 61 and the plane on which the first substrate 40 (or the second substrate 50) is located More than 0 degrees and less than or equal to 45 degrees. When the liquid crystal molecules 61 are negative liquid crystal molecules 61, an included angle between a long axis direction of each liquid crystal molecule 61 and a plane on which the first substrate 40 (or the second substrate 50) is located is greater than 45 degrees and less than 90 degree. In this way, it is ensured that after the liquid crystal molecules 61 are deflected, the dielectric constant of the liquid crystal layer 60 is changed to achieve the purpose of phase shifting.
  • the microstrip line in the phase shifter of this embodiment can be used not only for transmitting microwave signals, but also for receiving a first voltage applied thereto, and the first conductive structure 21 and the second conductive structure 22 can be used for receiving A second voltage different from the first voltage is applied thereto such that the plurality of branch structures 12 and the first conductive structure 21 are connected between the first side of the main structure 11 of the microstrip line, and are connected between An electric field is formed between the plurality of branch structures 12 on the second side of the main structure 11 of the microstrip line and the second conductive structure 22 to deflect liquid crystal molecules 61 at corresponding positions of the liquid crystal layer 60 and change the liquid crystal layer 60
  • the permittivity allows phase shifting of microwave signals.
  • the second electrode layer 20 is disposed in the peripheral region of the second substrate 50. Therefore, the length of the lead wire 70 for applying a second voltage to the second electrode layer 20 can be shortened, so that the length can be reduced more effectively. The inductance and resistance of the small wire 70 can therefore more effectively phase shift the microwave signal.
  • the main structure 11 of the first electrode layer 10 may further include an impedance matching region (as shown by a leftward arrow in FIG. 2 or FIG. 4A).
  • the impedance matching region may be triangular (including any type of triangle) or trapezoid in a plan view, or may be other shapes, and is configured such that each part of the first electrode layer 10 (for example, the left side of the arrow The impedance between the side portion and the right portion) is matched (for example, the same) with each other in order to reduce the energy loss of the microwave signal, thereby efficiently transmitting the microwave signal.
  • the shape of the impedance matching area in a plan view may be the same as the frequency of the input microwave signal, the shape and size of the main structure 11 and the branch structure 12 of the first electrode 10, and the left side of the impedance matching area of FIGS. 2 and 4A.
  • the shape and size of the conductor are related and can be designed according to the actual application.
  • the thickness of the liquid crystal cell (for example, the portion of the liquid crystal layer 60 between the first electrode layer 10 and the second electrode layer 20 in the vertical direction)
  • the size, as shown in FIG. 5 may be between about 5 microns and about 20 microns, such as between about 5 microns and about 10 microns, such as about 5 microns.
  • the thickness of the liquid crystal cell is small, so that the liquid crystal molecules 61 of the liquid crystal layer 60 can rotate rapidly in response to an electric field. In this way, the response speed of the liquid crystal cell is fast.
  • the second electrode layer 20 in FIG. 2 and the first and second conductive structures 21 and 22 in FIG. 4A are shown as non-rectangular, this is merely exemplary.
  • the second electrode layer 20 in FIG. 2 and each of the first conductive structure 21 and the second conductive structure 22 in FIG. 4A may be rectangular or irregular in shape, as long as it is adjusted to intersect with each branch structure 12 The size of the overlap area is sufficient to form a capacitor of a desired size.
  • This embodiment provides a liquid crystal antenna including a liquid crystal phase shifter according to any one of the embodiments corresponding to FIG. 2 to FIG. 5. As described above, the phase shift effect of the liquid crystal phase shifter is better. Therefore, the liquid crystal antenna has higher efficiency or lower power consumption.
  • the liquid crystal antenna may further include a feeding interface for feeding a microwave signal in the cable to a microwave signal transmission structure (for example, the microstrip line).
  • An embodiment of the present disclosure provides a communication device including the liquid crystal antenna according to the above embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a method for operating a liquid crystal phase shifter, wherein the liquid crystal phase shifter is the liquid crystal phase shifter according to any one of the embodiments corresponding to FIG. 2 to FIG.
  • the method may include the steps of: applying a first voltage to the first electrode layer 10; and applying a second voltage different from the first voltage to the second electrode layer 20 to apply a voltage across the first electrode layer 10 and An electric field is generated between the second electrode layers 20 such that the long axis of the liquid crystal molecules 61 of the liquid crystal layer 60 is substantially parallel to the direction of the electric field (for positive liquid crystal molecules) or substantially perpendicular (for negative Liquid crystal molecules).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Liquid Crystal (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种液晶移相器,其包括相对设置的第一基板和第二基板,以及位于第一基板和第二基板之间的液晶层(60)。第一基板包括:第一基底(40),以及位于第一基底(40)靠近液晶层(60)的侧面上的第一电极层(10)。第二基板包括:第二基底(50),以及位于第二基底(50)靠近液晶层(60)的侧面上的第二电极层(20)。第一电极层(10)包括主体结构(11),主体结构(11)具有相对于主体结构(11)的长度方向彼此相对的第一侧和第二侧;以及连接至主体结构(11)的第一侧和第二侧中的至少一侧上的多个分支结构(12)。

Description

液晶移相器及其操作方法、液晶天线和通信设备
相关申请的交叉引用
本申请要求于2018年8月10日提交的中国专利申请No.201810911837.X的优先权,该专利申请的全部内容通过引用方式合并于此。
技术领域
本公开属于通信技术领域,具体涉及一种液晶移相器、一种液晶天线、一种通信设备和一种操作液晶移相器的方法。
背景技术
移相器是一种能够对微波的相位进行调整的装置,广泛应用于电子通信系统中,是相控阵雷达、合成孔径雷达、雷达电子对抗、卫星通信、收发机等系统中的核心组件。因此高性能的移相器在这些系统中起着至关重要的作用。
发明内容
本公开的实施例提供了一种液晶移相器、一种液晶天线、一种通信设备和一种操作液晶移相器的方法。
本公开的第一方面提供了一种液晶移相器,包括:
相对设置的第一基板和第二基板,以及位于所述第一基板和所述第二基板之间的液晶层;其中,
所述第一基板包括:第一基底,以及位于所述第一基底靠近所述液晶层的侧面上的第一电极层;
所述第二基板包括:第二基底,以及位于所述第二基底靠近所述液晶层的侧面上的第二电极层;
所述第一电极层包括:主体结构,所述主体结构具有相对于所 述主体结构的长度方向彼此相对的第一侧和第二侧;以及连接至所述主体结构的所述第一侧和所述第二侧中的至少一侧上的多个分支结构。
在一个实施例中,所述第二电极层位于所述第二基底的周边区,且所述第二电极层在所述第一基底上的正投影与所述多个分支结构中的至少一个在所述第一基底上的正投影部分重叠。
在一个实施例中,在所述主体结构的所述第一侧和所述第二侧中的每一侧上均连接有所述多个分支结构。
在一个实施例中,连接在所述第一侧上的所述多个分支结构与连接在所述第二侧上的所述多个分支结构关于所述主体结构对称。
在一个实施例中,所述第二电极层包括:第一导电结构和第二导电结构;
所述第一导电结构在所述第一基底上的正投影与连接在所述主体结构的所述第一侧上的所述多个分支结构中的至少一个在所述第一基底上的正投影部分重叠;以及
所述第二导电结构在所述第一基底上的正投影与连接在所述主体结构的所述第二侧上的所述多个分支结构中的至少一个在所述第一基底上的正投影部分重叠。
在一个实施例中,所述第一电极层为微带线;在所述第一基底背离所述液晶层的一侧设置有地电极。
在一个实施例中,所述第一导电结构和所述第二导电结构分别通过导线与所述地电极的导电端子连接,并且所述导线的电阻率和电感中的至少一个小于ITO材料的电阻率和电感中的至少相应一个。
在一个实施例中,所述第一导电结构和第二导电结构均为板状电极。
在一个实施例中,所述多个分支结构仅连接在所述主体结构的所述第一侧和所述第二侧中的一侧上;所述第二电极层仅位于所述第二基底与所述多个分支结构对应的一侧。
在一个实施例中,所述第二电极层为板状电极。
在一个实施例中,所述第一电极层为微带线;在所述第一基底 背离所述液晶层的一侧设置有地电极。
在一个实施例中,所述第二电极层通过导线与所述地电极的导电端子连接,并且所述导线的电阻率和电感中的至少一个小于ITO材料的电阻率和电感中的至少相应一个。
在一个实施例中,位于所述主体结构同一侧的所述多个分支结构的形状相同。
在一个实施例中,位于同一侧的所述多个分支结构中的任意相邻两个分支结构之间的间距相同。
在一个实施例中,所述主体结构与所述第一侧和所述第二侧中的任一侧上的所述多个分支结构为一体成型结构。
在一个实施例中,所述第一基底采用玻璃、陶瓷和高纯度石英玻璃中的至少一种制成。
在一个实施例中,所述液晶层包括正性液晶分子,并且每一个所述正性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于0度小于等于45度。
在一个实施例中,所述液晶层包括负性液晶分子,并且每一个所述负性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于45度小于90度。
在一个实施例中,所述第一电极层的主体结构包括阻抗匹配区,所述阻抗匹配区在平面图中为三角形或梯形,并且被配置为使所述第一电极层的各个部分之间的阻抗互相匹配。
在一个实施例中,所述液晶层在所述第一电极层和所述第二电极层之间的部分的厚度在5微米至20微米的范围内。
本公开的第二方面提供了一种液晶天线,包括根据本公开的上述实施例中的任一实施例所述的液晶移相器。
本公开的第三方面提供了一种通信设备,包括根据本公开的上述实施例所述的液晶天线。
本公开的第四方面提供了一种操作液晶移相器的方法,其中,所述液晶移相器为根据本公开的上述实施例中的任一实施例所述的液晶移相器,所述方法包括:
向所述第一电极层施加第一电压;以及
向所述第二电极层施加不同于所述第一电压的第二电压以在所述第一电极层和所述第二电极层之间产生电场,使得所述液晶层的液晶分子的长轴与所述电场的方向实质上平行或实质上垂直。
附图说明
图1为根据本公开的实施例的液晶移相器的俯视图;
图2为根据本公开的实施例的液晶移相器的俯视图;
图3为根据本公开的实施例的液晶移相器的侧视图;
图4A至图4C为根据本公开的一些实施例的液晶移相器的俯视图;以及
图5为根据本公开的实施例的液晶移相器的侧视图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和示例性实施方式对本公开作进一步详细描述。
除非另有定义,否则本公开(包括实施例和权利要求)中使用的技术术语或者科学用语应当为本公开所属技术领域内具有一般技能的人士所能理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同物,而不排除其他元件或者物件的存在。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的连接。“上”、“下”、“左”、“右”等仅用于表示附图中的相对位置关系,当被描述对象的绝对位置改变后,则这些相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
本公开的实施例提供了一种液晶移相器,如图1所示。该液晶移相器包括相对设置的第一基板和第二基板,以及设置在第一基板和第二基板之间的液晶层(图1中未示出)。在第一基板靠近液晶层的侧面上设置有微带线1,在第二基板靠近液晶层的一侧设置有周期性排布的多个金属贴片2。所述多个金属贴片分别通过多个ITO(氧化铟锡)引线3连接至地电极(该地电极如图1中右上角的矩形框所示,并且可位于第一基板背离液晶层的侧面上)。对于该种液晶移相器,可以通过向微带线1施加第一电压并且向所述多个金属贴片2施加不同于所述第一电压的第二电压,以在二者之间形成电场,以使液晶层中的液晶分子偏转,从而改变液晶层的介电常数,进而改变所述多个金属贴片2和微带线1由于在垂直于所述第一基板或所述第二基板的方向上由于至少部分重叠而形成的电容的大小。这样,实现了对微波信号的移相(即,改变了微波信号的相位)。
但是,本发明构思的发明人发现,在图1所示的液晶移相器中,由于各个金属贴片2是通过相应的ITO引线3连接至地电极的,而每一条ITO引线3的电感和电阻都比较大。这样,在每一条ITO引线3的电感和电阻改变一定量的情况下,该改变量所引起的所述多个金属贴片2和微带线1所形成的电容的改变量较小,导致微波信号感受不到金属贴片2和微带线1所形成的电容的足够大的变化,进而无法使微波信号发生期望的相移。
因此,本公开的一些实施例提供了一种可以对微波信号进行有效移相的液晶移相器。
本公开的实施例提供一种液晶移相器,包括:相对设置的第一基板和第二基板,以及位于第一基板和第二基板之间的液晶层;其中,第一基板包括:第一基底,以及位于第一基底靠近液晶层的侧面上的第一电极层;第一电极层包括:主体结构,该主体结构具有相对于所述主体结构的长度方向彼此相对的第一侧和第二侧;以及连接至主体结构的第一侧和第二侧中的至少一侧上的多个分支结构;第二基板包括:第二基底,以及位于第二基底靠近液晶层的侧面上的第二电极层;该第二电极层位于所述第二基底的周边区,且所述第二电极层在所述 第一基底上的正投影与所述多个分支结构中的至少一个(例如,可以是每一个)在所述第一基底上的正投影部分重叠。
本实施例的移相器中第一电极层不仅可以用于微波信号的传输,而且还能够用于接收对其施加的第一电压,以及第二电极层可以用于接收向其施加的不同于第一电压的第二电压,使得在第一电极层的分支结构与第二电极层之间形成电场,以使液晶层的液晶分子偏转,改变液晶层的介电常数,从而实现微波信号的移相。而在本实施例中将第二电极层设置在第二基底的周边区,因此,可以缩短用于为第二电极层施加第二电压的ITO引线的长度,从而减小了ITO引线的电感和电阻,因此可以有效地对微波信号进行移相。
如图2和图3(例如,图3可以为图2的右侧视图)所示,本公开的实施例提供一种液晶移相器,包括:相对设置的第一基板和第二基板,以及位于第一基板和第二基板之间的液晶层60;其中,第一基板包括:第一基底40,以及位于第一基底40靠近液晶层60的侧面上的第一电极层10;第一电极层10包括:主体结构11,主体结构11具有相对于所述主体结构11的长度方向(例如,图2中的水平方向)彼此相对的第一侧(例如,图2中的上侧)和第二侧(例如,图2中的下侧);第一电极层10还包括连接至主体结构11第一侧上且周期性排布的多个分支结构12。第二基板包括第二基底50以及位于第二基底50靠近所述液晶层60的侧面上的第二电极层20。第二基板上的第二电极层20位于第二基底50的周边区,且位于与第一基底40上的所述多个分支结构12对应的位置。例如,第二电极层20位于第二基底50的周边区并且第二电极层20的外侧端部(例如,图3中的右侧端部)第二基底50的相应端部(例如,图3中的右侧端部)齐平。所述第二电极层20在所述第一基底40上的正投影与所述多个分支结构12中的至少一个(例如,可以是每一个)在第一基底40(或第二基底50)上的正投影部分重叠。可替换地,主体结构11的第二侧也可以连接有多个分支结构12。在本实施例中以所述多个分支结构12连接在主体结构11的第一侧为例进行说明。
例如,第一电极层10可以为微带线(也即微带线包括主体结构 11和分支结构12,且二者为一体成型结构),在第一基底40背离微带线的一侧还可以设置有地电极30,且第一电极层10和地电极30在第一基底40上的正投影至少部分重叠。例如,地电极30的每个端部和第一基底40的相应端部可以齐平。地电极30和微带线(即,第一电极层10)构成微波传输结构,以使馈电接口馈入至微带线的大部分微波信号在地电极30和微带线之间的第一基底40中传输。为了降低微波信号的损耗,第一基底40可以采用玻璃、陶瓷灯材料来制成。这些材料基本不会吸收微波信号,故微波信号的损耗很小。而小部分的微波信号在液晶层60中传输,当微带线和第二电极层20被施加电压后,液晶分子61偏转,液晶层60的介电常数发生变化,从而实现液晶层60中微波信号的移相。之后第一基底40中的微波信号和在液晶层60中的微波信号交互传输,从而实现微波信号整体的移相。换言之,在第一基底40中传输的大部分微波信号和在液晶层60中传输的小部分微波信号可以发生相同的相移。
例如,第二电极层20可以通过导线70与地电极30的导电端子(例如,地电极30的两端)连接,如图3所示。此时,地电极30和第二电极层20上所加载的信号一样,该种连接方便移相器的控制,同时布线简单。例如,导线70的电阻率和电感中的至少一个可以小于ITO材料的电阻率和电感中的至少相应一个。例如,导线70的材料可以为金属(即,导线70可以为金属连接线),并且金属可以为铜,但也不局限于铜,例如也可以为银等。当然,也可以在第二基板的边缘(例如,图3所示的第二基底50和第二电极层20的右侧边缘)设置导电端子,对地电极30和第二电极层20分别单独控制。导线70的长度明显小于图1所示的每一条ITO引线的长度,并且金属(例如,铜)的电阻率和电感都小于ITO的电阻率和电感。因此,导线70的电阻率和电感的一定变化量可以引起第二电极层20和第一电极层10所形成的电容的较大变化量,从而容易实现微波信号的期望的相移量。
例如,第一电极层10中的各个分支结构12的尺寸相同,且任意相邻两个分支接结构之间的间距相同。当然,任意相邻两个分支结 构12之间的间距也可以按照一定的规律分布。而且每一个分支结构12与第二电极层20交叠的部分的宽度可以与该分支结构12其余部分的宽度不同,这样可以调节它们的交叠面积的大小,从而调节所形成的电容的大小,如图4C所示,这可以根据实际的产品的要求来设定。
例如,在本实施例中可以将微带线的主体结构11和分支结构12设置为一体成型结构,也即二者可以同层设置,且材料相同。这样一来,这二者则可以在一次构图工艺中制备,从而可以提高生产效率。
例如,第一基底40和第二基底50可以采用厚度为100-1000微米的玻璃基板,也可采用蓝宝石衬底,还可以使用厚度为10-500微米的聚对苯二甲酸乙二酯基板、三聚氰酸三烯丙酯基板和聚酰亚胺透明柔性基板。例如,第一基底40和第二基底50可以采用介电损耗极低的高纯度石英玻璃。相比于普通玻璃基板,第一基底40和第二基底50采用高纯度石英玻璃可以有效减小对微波的损耗,使移相器具有低的功耗和高的信噪比。例如,高纯度石英玻璃指的是其中SiO 2的重量百分比大于或等于99.9%的石英玻璃。
例如,微带线、地电极30和第二电极层20中的每一个的材料可以采用铝、银、金、铬、钼、镍或铁等金属。
例如,液晶层60中的液晶分子61可以为正性液晶分子61或负性液晶分子61。需要说明的是,当液晶分子61为正性液晶分子61时,每一个液晶分子61的长轴方向与所述第一基底40(或所述第二基底50)所在的平面之间的夹角大于0度小于等于45度。当液晶分子61为负性液晶分子61时,每一个液晶分子61的长轴方向与所述第一基底40(或所述第二基底50)所在的平面之间的夹角大于45度小于90度。这样,保证了液晶分子61发生偏转后,改变液晶层60的介电常数,以达到移相的目的。
本实施例的移相器中微带线不仅可以用于微波信号的传输,而且还能够用于接收对其施加的第一电压,以及第二电极层20可以用于接收向其施加的不同于第一电压的第二电压,使得在微带线的所述多个分支结构12与第二电极层20之间形成电场,以使液晶层60的 液晶分子61偏转,改变液晶层60的介电常数,从而实现微波信号的移相。而在本实施例中将第二电极层20设置在第二基底50的周边区,因此,可以缩短用于为第二电极层20加载第二电压的导线70的长度,从而可以进一步减小导线70的电感和电阻,因此可以更加有效地对微波信号进行移相。
如图4A至图5(例如,图5可以为图4A的右侧视图)所示,本实施例提供另一种液晶移相器,包括:相对设置的第一基板和第二基板,以及位于第一基板和第二基板之间的液晶层60;其中,第一基板包括:第一基底40,以及位于第一基底40靠近液晶层60的侧面上的第一电极层10;第一电极层10包括:主体结构11,主体结构11具有相对于所述主体结构11的长度方向(例如,图4A中的水平方向)彼此相对的第一侧(例如,图4A中的上侧)和第二侧(例如,图4A中的下侧);第一电极层10还包括连接在主体结构11的第一侧和第二侧中的每一侧上的多个分支结构12,且连接在第一侧上的所述多个分支结构12与连接在第二侧上的所述多个分支结构12关于主体结构11可以对称(如图4A所示)也可以不对称(如图4B所示)。第二电极层20包括:位于所述第二基底50的周边区的第一导电结构21和第二导电结构22(例如,第一导电结构21的左侧端部和第二基底50的左侧端部可以齐平,并且第二导电结构22的右侧端部和第二基底50的右侧端部可以齐平,如图5所示);其中,第一导电结构21在第一基底40上的正投影与连接在主体结构11的第一侧(例如,图4A中的上侧)上的所述多个分支结构12中的至少一个(例如,可以是每一个)在第一基底40上的正投影部分重叠;第二导电结构22在第一基底40上的正投影与连接在主体结构11的第二侧(例如,图4A中的下侧)上的所述多个分支结构12中的至少一个(例如,可以是每一个)在第一基底40上的正投影部分重叠。
例如,第一电极层10可以为微带线(也即微带线包括主体结构11和主体结构11的第一侧和第二侧中的每一侧上的所述多个分支结构12,且主体结构11和全部的分支结构12为一体成型结构),在第一基底40背离微带线的一侧还可以设置有地电极30,且微带线 (即,第一电极层10)和地电极30在第一基底40上的正投影至少部分重叠。例如地电极30的每一个端部与第一基底40的相应端部可以齐平。地电极30和微带线构成微波传输结构,以使馈电接口馈入至微带线的大部分微波信号在地电极30和微带线之间的第一基底40中传输。如上所述,为了减小微波信号的损耗,第一基底40可以采用玻璃、陶瓷等材料来制成。这样,第一基底40基本不会吸收微波信号,故微波信号的损耗很小。而小部分的微波信号在液晶层60中传输,当微带线被施加第一电压并且第一导电结构21和第二导电结构22被施加不同于第一电压的第二电压后,液晶层60的液晶分子61偏转,液晶层60的介电常数发生变化,从而实现液晶层60中微波信号的移相。之后第一基底40微波信号在液晶层60中的微波信号交互传输,从而实现微波信号整体的移相。如上所述,第一导电结构21的左侧端部和第二基底50的左侧端部可以齐平,第二导电结构22的右侧端部和第二基底50的右侧端部可以齐平,并且地电极30的每一个端部与第一基底40的相应端部可以齐平,因此导线70可以仅位于所述移相器的外侧而不需要延伸至所述移相器的内部,如图3和图5所示,从而有效地减小了每个导线70的长度、电阻和电感。因此,容易实现期望的相移量。
例如,第一导电结构21和第二导电结构22可以分别通过导线70与地电极30的导电端子(例如,地电极30的两端)连接。此时,地电极30、第一导电结构21和第二导电结构22上所加载的信号一样,方便移相器的控制。如上所述,导线70的材料可以为金属,例如可以为铜,但也不局限于铜,还可以是银等。当然,也可以在第二基板的边缘(例如,图5所示的第二基底50和第一导电结构21的左侧边缘以及第二基底50和第二导电结构22的右侧边缘)设置导电端子,以对地电极30、第一导电结构21和第二导电结构22分别单独控制。
例如,第一电极层10中的各个分支结构12的尺寸相同,且位于主体结构11的第一侧和第二侧中的每一侧上的所述多个分支接结构中任意相邻两个之间的间距相同。当然,每一侧上的任意相邻两个 分支结构12之间的间距也可以按照一定的规律分布。而且,每一个分支结构12与第二电极层20的第一导电结构21或第二导电结构22交叠的部分的宽度可以与该分支结构12其余部分的宽度不同,如图4C所示,以调节每一个分支结构12与第二电极层20之间所形成的电容的大小,这可以根据实际产品的要求来设定。
例如,在本实施例中可以将第一电极层10的主体结构11和全部分支结构12设置为一体成型结构,也即二者同层设置,且材料相同。这样一来,这二者则可以在一次构图工艺中制备,从而可以提高生产效率。
例如,第一基底40和第二基底50可以采用厚度为100-1000微米的玻璃基板,也可采用蓝宝石衬底,还可以使用厚度为10-500微米的聚对苯二甲酸乙二酯基板、三聚氰酸三烯丙酯基板和聚酰亚胺透明柔性基板。例如,第一基底40和第二基底50可以采用介电损耗极低的高纯度石英玻璃。相比于普通玻璃基板,第一基底40和第二基底50采用高纯度石英玻璃可以有效减小对微波的损耗,使移相器具有低的功耗和高的信噪比。例如,高纯度石英玻璃指的是其中SiO 2的重量百分比大于或等于99.9%的石英玻璃。
例如,微带线、地电极30、第一导电结构21和第二导电结构22中的每一个的材料可以采用铝、银、金、铬、钼、镍或铁等金属。
例如,液晶层60中的液晶分子61可以为正性液晶分子61或负性液晶分子61。需要说明的是,当液晶分子61为正性液晶分子61时,每一个液晶分子61的长轴方向与所述第一基底40(或所述第二基底50)所在的平面之间的夹角大于0度小于等于45度。当液晶分子61为负性液晶分子61时,每一个液晶分子61的长轴方向与所述第一基底40(或所述第二基底50)所在的平面之间的夹角大于45度小于90度。这样,保证了液晶分子61发生偏转后,改变液晶层60的介电常数,以达到移相的目的。
本实施例的移相器中微带线不仅可以用于微波信号的传输,而且还能够用于接收对其施加的第一电压,以及第一导电结构21和第二导电结构22可以用于接收向其上施加的不同于第一电压的第二电 压,使得连接在微带线的主体结构11的第一侧的所述多个分支结构12与第一导电结构21之间,以及使得连接在微带线的主体结构11的第二侧的所述多个分支结构12与第二导电结构22之间都形成电场,以使液晶层60的对应位置的液晶分子61偏转,改变液晶层60的介电常数,从而实现微波信号的移相。而在本实施例中将第二电极层20设置在第二基底50的周边区,因此,可以缩短用于为第二电极层20施加第二电压的导线70的长度,从而可以更加有效地减小导线70的电感和电阻,因此可以更加有效地对微波信号进行移相。
在图2至图5所示的各个实施例中的任一个中,所述第一电极层10的主体结构11还可以包括阻抗匹配区(如图2或图4A中的向左的箭头所在的区),所述阻抗匹配区在平面图中可以为三角形(包括任何类型的三角形)或梯形,也可以是其他形状,被配置为使所述第一电极层10的各个部分(例如,箭头的左侧部分和右侧部分)之间的阻抗互相匹配(例如,相同),以便减小微波信号的能量损耗,从而高效地传输微波信号。例如,阻抗匹配区在平面图中的形状可以与输入的微波信号的频率、第一电极10的主体结构11和分支结构12的形状和尺寸、图2和图4A的阻抗匹配区的左侧部分的导体的形状和尺寸等因素有关,并且可以根据实际应用来设计。
在图2至图5所示的各个实施例中的任一个中,液晶盒的厚度(例如,液晶层60在第一电极层10和第二电极层20之间的部分在竖直方向上的尺寸,如图5所示)可以在大约5微米至大约20微米之间,例如在大约5微米至大约10微米之间,例如为大约5微米。该液晶盒的厚度小,使得液晶层60的液晶分子61可以响应于电场而快速旋转。这样,所述液晶盒的响应速度快。
应当理解的是,虽然图2中的第二电极层20以及图4A中的第一导电结构21和第二导电结构22被示出为非矩形,但这仅仅是示例性的。例如,图2中的第二电极层20以及图4A中的第一导电结构21和第二导电结构22中的每一个可以是矩形或不规则形状,只要调整它与每一个分支结构12的交叠面积的大小,以形成期望大小的电容即可。
本实施例提供一种液晶天线,其包括根据图2至图5所对应的实施例中的任意一个的液晶移相器。如上所述,该液晶移相器的移相效果更好。因此,该液晶天线具有更高的效率或更低的能耗。
例如,在第二基底50的背离液晶层60的一侧还可以设置有至少两个贴片单元,其中,每相邻两个贴片单元之间的间隙与相邻两个分支结构12之间的间隙对应设置(例如,在第一基底40或第二基底50上的正投影互相重叠)。这样一来,可以使得经过根据图2至图5所对应的实施例的移相器进行相位调整后的微波信号从每相邻两个贴片单元之间的间隙辐射出去。当然,在液晶天线中还可以包括馈电接口,用于将电缆中的微波信号馈入至微波信号传输结构(例如,所述微带线)上。
本公开的实施例提供了一种通信设备,该通信设备包括根据本公开的上述实施例所述的液晶天线。
本公开的实施例提供了一种操作液晶移相器的方法,其中,所述液晶移相器为根据图2至图5所对应的实施例中任一个所述的液晶移相器,所述方法可以包括以下步骤:向所述第一电极层10施加第一电压;以及向所述第二电极层20施加不同于所述第一电压的第二电压以在所述第一电极层10和所述第二电极层20之间产生电场,使得所述液晶层60的液晶分子61的长轴与所述电场的方向实质上平行(对于正性液晶分子而言)或实质上垂直(对于负性液晶分子而言)。
在没有明显冲突的情况下,上述各个实施例可以互相结合。
应当理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也属于本公开的保护范围。

Claims (23)

  1. 一种液晶移相器,包括:
    相对设置的第一基板和第二基板,以及位于所述第一基板和所述第二基板之间的液晶层;其中,
    所述第一基板包括:第一基底,以及位于所述第一基底靠近所述液晶层的侧面上的第一电极层;
    所述第二基板包括:第二基底,以及位于所述第二基底靠近所述液晶层的侧面上的第二电极层;
    所述第一电极层包括:主体结构,所述主体结构具有相对于所述主体结构的长度方向彼此相对的第一侧和第二侧;以及连接至所述主体结构的所述第一侧和所述第二侧中的至少一侧上的多个分支结构。
  2. 根据权利要求1所述的液晶移相器,其中,所述第二电极层位于所述第二基底的周边区,且所述第二电极层在所述第一基底上的正投影与所述多个分支结构中的至少一个在所述第一基底上的正投影部分重叠。
  3. 根据权利要求2所述的液晶移相器,其中,在所述主体结构的所述第一侧和所述第二侧中的每一侧上均连接有所述多个分支结构。
  4. 根据权利要求3所述的液晶移相器,其中,连接在所述第一侧上的所述多个分支结构与连接在所述第二侧上的所述多个分支结构关于所述主体结构对称。
  5. 根据权利要求4所述的液晶移相器,其中,所述第二电极层包括:第一导电结构和第二导电结构;
    所述第一导电结构在所述第一基底上的正投影与连接在所述主 体结构的所述第一侧上的所述多个分支结构中的至少一个在所述第一基底上的正投影部分重叠;以及
    所述第二导电结构在所述第一基底上的正投影与连接在所述主体结构的所述第二侧上的所述多个分支结构中的至少一个在所述第一基底上的正投影部分重叠。
  6. 根据权利要求5所述的液晶移相器,其中,所述第一电极层为微带线;在所述第一基底背离所述液晶层的一侧设置有地电极。
  7. 根据权利要求6所述的液晶移相器,其中,所述第一导电结构和所述第二导电结构分别通过导线与所述地电极的导电端子连接,并且所述导线的电阻率和电感中的至少一个小于ITO材料的电阻率和电感中的至少相应一个。
  8. 根据权利要求5至7中任一项所述的液晶移相器,其中,所述第一导电结构和第二导电结构均为板状电极。
  9. 根据权利要求1所述的液晶移相器,其中,所述多个分支结构仅连接在所述主体结构的所述第一侧和所述第二侧中的一侧上;所述第二电极层仅位于所述第二基底与所述多个分支结构对应的一侧。
  10. 根据权利要求9所述的液晶移相器,其中,所述第二电极层为板状电极。
  11. 根据权利要求9或10所述的液晶移相器,其中,所述第一电极层为微带线;在所述第一基底背离所述液晶层的一侧设置有地电极。
  12. 根据权利要求11所述的液晶移相器,其中,所述第二电极层通过导线与所述地电极的导电端子连接,并且所述导线的电阻率和 电感中的至少一个小于ITO材料的电阻率和电感中的至少相应一个。
  13. 根据权利要求1至12中任一项所述的液晶移相器,其中,位于所述主体结构同一侧的所述多个分支结构的形状相同。
  14. 根据权利要求13所述的液晶移相器,其中,位于同一侧的所述多个分支结构中的任意相邻两个分支结构之间的间距相同。
  15. 根据权利要求1至14中任一项所述的液晶移相器,其中,所述主体结构与所述第一侧和所述第二侧中的任一侧上的所述多个分支结构为一体成型结构。
  16. 根据权利要求1至15中任一项所述的液晶移相器,其中,所述第一基底采用玻璃、陶瓷和高纯度石英玻璃中的至少一种制成。
  17. 根据权利要求1至16中任一项所述的液晶移相器,其中,所述液晶层包括正性液晶分子,并且每一个所述正性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于0度小于等于45度。
  18. 根据权利要求1至16中任一项所述的液晶移相器,其中,所述液晶层包括负性液晶分子,并且每一个所述负性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于45度小于90度。
  19. 根据权利要求1至18中任一项所述的液晶移相器,其中,所述第一电极层的主体结构包括阻抗匹配区,所述阻抗匹配区在平面图中为三角形或梯形,并且被配置为使所述第一电极层的各个部分之间的阻抗互相匹配。
  20. 根据权利要求1至19中任一项所述的液晶移相器,其中,所述液晶层在所述第一电极层和所述第二电极层之间的部分的厚度 在5微米至20微米的范围内。
  21. 一种液晶天线,包括根据权利要求1至20中任一项所述的液晶移相器。
  22. 一种通信设备,包括根据权利要求21所述的液晶天线。
  23. 一种操作液晶移相器的方法,其中,所述液晶移相器为根据权利要求1至20中任一项所述的液晶移相器,所述方法包括:
    向所述第一电极层施加第一电压;以及
    向所述第二电极层施加不同于所述第一电压的第二电压以在所述第一电极层和所述第二电极层之间产生电场,使得所述液晶层的液晶分子的长轴与所述电场的方向实质上平行或实质上垂直。
PCT/CN2019/100041 2018-08-10 2019-08-09 液晶移相器及其操作方法、液晶天线和通信设备 WO2020030135A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207014433A KR102368374B1 (ko) 2018-08-10 2019-08-09 액정 위상 시프터, 그 동작 방법, 액정 안테나, 및 통신 장치
JP2020528391A JP7424977B2 (ja) 2018-08-10 2019-08-09 液晶移相器およびその操作方法、液晶アンテナ、通信機器
EP19848404.0A EP3835853B1 (en) 2018-08-10 2019-08-09 Liquid crystal phase shifter and operating method therefor, liquid crystal antenna, and communication device
US16/642,570 US11119364B2 (en) 2018-08-10 2019-08-09 Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
US17/401,693 US11799179B2 (en) 2018-08-10 2021-08-13 Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
US18/368,649 US20240006762A1 (en) 2018-08-10 2023-09-15 Liquid Crystal Phase Shifter, Method for Operating the Same, Liquid Crystal Antenna, and Communication Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810911837.XA CN110824735A (zh) 2018-08-10 2018-08-10 液晶移相器及液晶天线
CN201810911837.X 2018-08-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/642,570 A-371-Of-International US11119364B2 (en) 2018-08-10 2019-08-09 Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
US17/401,693 Continuation-In-Part US11799179B2 (en) 2018-08-10 2021-08-13 Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2020030135A1 true WO2020030135A1 (zh) 2020-02-13

Family

ID=69414009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100041 WO2020030135A1 (zh) 2018-08-10 2019-08-09 液晶移相器及其操作方法、液晶天线和通信设备

Country Status (6)

Country Link
US (1) US11119364B2 (zh)
EP (1) EP3835853B1 (zh)
JP (1) JP7424977B2 (zh)
KR (1) KR102368374B1 (zh)
CN (1) CN110824735A (zh)
WO (1) WO2020030135A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114006163A (zh) * 2021-11-22 2022-02-01 上海天马微电子有限公司 液晶天线及其制作方法
WO2024057737A1 (ja) * 2022-09-15 2024-03-21 株式会社ジャパンディスプレイ 電波反射装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397893A (zh) * 2019-08-14 2021-02-23 京东方科技集团股份有限公司 馈电结构、微波射频器件及天线
CN112448105B (zh) * 2019-08-29 2022-02-25 京东方科技集团股份有限公司 移相器及天线
CN113540766B (zh) * 2020-04-15 2022-12-16 上海天马微电子有限公司 相控阵天线及其控制方法
CN113972453B (zh) * 2020-07-24 2022-04-05 上海天马微电子有限公司 移相器及其制作方法、天线
CN114063324B (zh) * 2020-08-06 2024-01-16 成都天马微电子有限公司 液晶移相器和液晶天线的测试方法和测试装置
CN114156641B (zh) * 2020-09-08 2024-04-19 京东方科技集团股份有限公司 天线及其制作方法、天线装置及其制作方法
CN114447577A (zh) * 2020-10-30 2022-05-06 京东方科技集团股份有限公司 天线及天线系统
US20230098813A1 (en) * 2020-11-27 2023-03-30 Boe Technology Group Co., Ltd. Phase shifter and antenna
CN114824698B (zh) * 2021-01-19 2024-04-16 京东方科技集团股份有限公司 一种移相器
CN115152089B (zh) * 2021-01-29 2024-03-15 京东方科技集团股份有限公司 移相器及其制备方法、天线
EP4145636B1 (en) * 2021-09-07 2024-03-06 TMY Technology Inc. Electromagnetic wave transmission structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140022029A1 (en) * 2011-11-14 2014-01-23 Anatoliy Volodymyrovych GLUSHCHENKO Nanoparticle-enhanced liquid crystal radio frequency phase shifter
CN106025452A (zh) * 2016-06-08 2016-10-12 合肥工业大学 一种移相单元及其构成的太赫兹反射式液晶移相器
CN107394318A (zh) * 2017-07-14 2017-11-24 合肥工业大学 一种用于反射式可调移相器的液晶移相单元
CN107994302A (zh) * 2017-11-27 2018-05-04 京东方科技集团股份有限公司 液晶移相器及其工作方法
CN108181745A (zh) * 2018-02-08 2018-06-19 京东方科技集团股份有限公司 一种液晶移相器、移相方法及其制作方法
CN208384288U (zh) * 2018-08-10 2019-01-15 京东方科技集团股份有限公司 液晶移相器及液晶天线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101082182B1 (ko) * 2009-11-27 2011-11-09 아주대학교산학협력단 기판 집적 도파관을 이용한 위상천이기
US9755286B2 (en) * 2014-12-05 2017-09-05 Huawei Technologies Co., Ltd. System and method for variable microwave phase shifter
CN106154603B (zh) * 2016-07-29 2019-12-06 合肥工业大学 一种液晶移相单元及其构成的相控天线
EP3609017A1 (en) * 2018-08-06 2020-02-12 ALCAN Systems GmbH Radio frequency phase shifting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140022029A1 (en) * 2011-11-14 2014-01-23 Anatoliy Volodymyrovych GLUSHCHENKO Nanoparticle-enhanced liquid crystal radio frequency phase shifter
CN106025452A (zh) * 2016-06-08 2016-10-12 合肥工业大学 一种移相单元及其构成的太赫兹反射式液晶移相器
CN107394318A (zh) * 2017-07-14 2017-11-24 合肥工业大学 一种用于反射式可调移相器的液晶移相单元
CN107994302A (zh) * 2017-11-27 2018-05-04 京东方科技集团股份有限公司 液晶移相器及其工作方法
CN108181745A (zh) * 2018-02-08 2018-06-19 京东方科技集团股份有限公司 一种液晶移相器、移相方法及其制作方法
CN208384288U (zh) * 2018-08-10 2019-01-15 京东方科技集团股份有限公司 液晶移相器及液晶天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3835853A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114006163A (zh) * 2021-11-22 2022-02-01 上海天马微电子有限公司 液晶天线及其制作方法
WO2024057737A1 (ja) * 2022-09-15 2024-03-21 株式会社ジャパンディスプレイ 電波反射装置

Also Published As

Publication number Publication date
EP3835853A1 (en) 2021-06-16
KR20200066723A (ko) 2020-06-10
CN110824735A (zh) 2020-02-21
KR102368374B1 (ko) 2022-03-02
US20200257149A1 (en) 2020-08-13
JP7424977B2 (ja) 2024-01-30
JP2021533584A (ja) 2021-12-02
EP3835853B1 (en) 2024-05-29
EP3835853A4 (en) 2022-04-20
US11119364B2 (en) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2020030135A1 (zh) 液晶移相器及其操作方法、液晶天线和通信设备
US11698564B2 (en) Phase-shift unit, phase shifter and antenna
WO2020030046A1 (zh) 液晶移相器及其操作方法、液晶天线和通信设备
TWI672859B (zh) 具有分離的接地電極的可變介電常數天線
US11158916B2 (en) Phase shifter and liquid crystal antenna
WO2021073505A1 (zh) 液晶移相器及天线
US11949142B2 (en) Feeding structure, microwave radio frequency device and antenna
US11264684B2 (en) Liquid crystal phase shifter comprising a liquid crystal cell with first and second substrates separated by a partition plate having first and second microstrips on opposing surfaces of the plate
US11978942B2 (en) Feeding structure, microwave radio frequency device and antenna
US11837796B2 (en) Feeding structure, microwave radio frequency device and antenna
WO2021189238A1 (zh) 移相器及天线
US11189920B2 (en) Control substrate, liquid crystal phase shifter and method of forming control substrate
EP3425725B1 (en) Control panel and radiation device comprising the same
WO2021073500A1 (zh) 液晶移相器及天线
TWI749987B (zh) 天線結構及陣列天線模組
US11721898B2 (en) Phase shifter and antenna
US11799179B2 (en) Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
WO2022087872A1 (zh) 相控阵天线系统及电子装置
US20240006762A1 (en) Liquid Crystal Phase Shifter, Method for Operating the Same, Liquid Crystal Antenna, and Communication Apparatus
WO2020095786A1 (ja) 基板
US20240186668A1 (en) Feeding structure, microwave radio frequency device and antenna
TWI817662B (zh) 天線模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207014433

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020528391

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019848404

Country of ref document: EP

Effective date: 20210310