WO2021073500A1 - 液晶移相器及天线 - Google Patents

液晶移相器及天线 Download PDF

Info

Publication number
WO2021073500A1
WO2021073500A1 PCT/CN2020/120626 CN2020120626W WO2021073500A1 WO 2021073500 A1 WO2021073500 A1 WO 2021073500A1 CN 2020120626 W CN2020120626 W CN 2020120626W WO 2021073500 A1 WO2021073500 A1 WO 2021073500A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
substrate
phase shifter
electrode
crystal phase
Prior art date
Application number
PCT/CN2020/120626
Other languages
English (en)
French (fr)
Inventor
武杰
丁天伦
王瑛
李亮
贾皓程
唐粹伟
李强强
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/413,312 priority Critical patent/US11876276B2/en
Publication of WO2021073500A1 publication Critical patent/WO2021073500A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present disclosure belongs to the field of communication technology, and specifically relates to a liquid crystal phase shifter and an antenna.
  • a phase shifter is a device that can adjust (or change) the phase of microwaves. It is widely used in electronic communication systems, such as phased array radar, synthetic aperture radar, radar electronic countermeasure systems, satellite communication systems, and receiving transmitters. The core components in each of the others. Therefore, high-performance phase shifters play a vital role in these systems.
  • a first aspect of the present disclosure provides a liquid crystal phase shifter.
  • the liquid crystal phase shifter includes: a first substrate and a second substrate disposed opposite to each other, and a liquid crystal located between the first substrate and the second substrate. Layer; where,
  • the first substrate includes: a first substrate, and a first electrode on the first substrate;
  • the first electrode includes: a main structure arranged on a side of the first substrate away from the liquid crystal layer, and at least one branch structure arranged on a side of the first substrate close to the liquid crystal layer; and, the At least one branch structure is respectively connected to the main structure through at least one via hole penetrating the first substrate, and is spaced apart from each other along the length direction of the main structure; and
  • the second substrate includes: a second substrate, and a second electrode on the second substrate; and the orthographic projection of the second electrode on the first substrate and the at least one branch structure on the first substrate The orthographic projections on the substrate overlap at least partially.
  • the main structure includes: a first side and a second side disposed opposite to each other in a direction perpendicular to the length direction; and the first side and the second side of the main structure Only one of the at least one branch structure is provided.
  • the main structure includes: a first side and a second side disposed opposite to each other in a direction perpendicular to the length direction, and the first side and the second side of the main structure
  • the at least one branch structure is provided on each side of the.
  • the at least one branch structure provided on the first side corresponds to the at least one branch structure provided on the second side in a one-to-one correspondence.
  • the second electrode includes a plate electrode.
  • the second electrode includes a ground electrode.
  • the at least one branch structure provided on each of the first side and the second side of the main structure includes a plurality of branch structures, and among the plurality of branch structures The distance between any two adjacent branch structures of is a fixed value.
  • the material of each of the first electrode and the second electrode includes metal.
  • the metal includes at least one of aluminum, silver, gold, chromium, molybdenum, nickel, and iron.
  • the thickness of the liquid crystal layer is less than or equal to 10 ⁇ m.
  • the thickness of the liquid crystal layer is between 5 ⁇ m and 10 ⁇ m.
  • the material of each of the first substrate and the second substrate includes a glass substrate of 100 ⁇ m to 1000 ⁇ m, a sapphire substrate, a polyethylene terephthalate substrate of 10 ⁇ m to 500 ⁇ m, and a material of 10 ⁇ m to 1000 ⁇ m.
  • the liquid crystal layer includes positive liquid crystal molecules or negative liquid crystal molecules
  • the angle between the long axis direction of each positive liquid crystal molecule and the plane where the first substrate is located is greater than 0 degree and less than or equal to 45 degrees;
  • the angle between the long axis direction of each negative liquid crystal molecule and the plane where the first substrate is located is greater than 45 degrees and less than 90 degrees.
  • the dielectric constant in the long axis direction of each liquid crystal molecule of the liquid crystal layer is greater than the dielectric constant of each of the first substrate and the second substrate.
  • each of the at least one branch structure completely covers a via hole corresponding to the branch structure in the at least one via hole.
  • a second aspect of the present disclosure provides an antenna including the liquid crystal phase shifter according to any one of the embodiments of the first aspect of the present disclosure.
  • FIG. 1 is a top view of a liquid crystal phase shifter according to an embodiment of the present disclosure
  • FIG. 2 is a plan view of the first substrate of the liquid crystal phase shifter shown in FIG. 1 close to the liquid crystal layer;
  • FIG. 3 is a cross-sectional view of the liquid crystal phase shifter shown in FIG. 1 along the line AA';
  • FIG. 4 is a cross-sectional view of the liquid crystal phase shifter shown in FIG. 1 along the line B-B';
  • FIG. 5 is a cross-sectional view of the liquid crystal phase shifter shown in FIG. 1 along the line CC';
  • FIG. 6 is a cross-sectional view of the liquid crystal phase shifter shown in FIG. 1 along the line D-D';
  • FIG. 7 is an equivalent circuit diagram of the liquid crystal phase shifter shown in FIG. 1;
  • FIG. 8 is a top view of another liquid crystal phase shifter according to an embodiment of the present disclosure.
  • FIG. 9 is a top view of the first substrate of the liquid crystal phase shifter shown in FIG. 8 close to the liquid crystal layer;
  • FIG. 10 is a cross-sectional view of the liquid crystal phase shifter shown in FIG. 9 along the line E-E'.
  • phase shifter in the related art has the disadvantages of large loss, long response time and bulkiness, and cannot meet the requirements of the rapid development of electronic communication systems.
  • phase shifters currently on the market are ferrite phase shifters and PIN (Positive-Intrinsic-Negative) diode phase shifters.
  • ferrite phase shifters have the disadvantages of being bulky and slow in response speed, so they are not suitable for high-speed beam scanning.
  • the PIN diode phase shifter has high power consumption, so it is not conducive to being used in a light, low-power phased array system.
  • the liquid crystal phase shifter includes a first substrate and a second substrate disposed opposite to each other, and a liquid crystal layer located between the first substrate and the second substrate.
  • the first substrate may include: a first substrate, and a first electrode on a side of the first substrate close to the liquid crystal layer.
  • the second substrate may include: a second substrate, and a second electrode located on a side of the second substrate close to the liquid crystal layer.
  • the first electrode usually includes a main structure and a branch structure connected to the main structure.
  • the second electrode usually adopts a plate-shaped electrode, and the plate-shaped electrode can exactly cover the surface of the second substrate 20 on the side close to the liquid crystal layer 30 or the surface of the second substrate 20 on the side away from the liquid crystal layer 30.
  • the orthographic projection of the plate-shaped second electrode on the first substrate inevitably overlaps the orthographic projection of the branch structure on the first substrate.
  • the microwave signal can be introduced into the main structure of the first electrode through a connector such as a connector so that the microwave signal is transmitted in the liquid crystal layer.
  • the second electrode is used as the ground electrode as an example, but the present disclosure is not limited to this.
  • the second electrode may not be a ground electrode.
  • a ground electrode can be provided on the side of the second substrate away from the liquid crystal layer, so that the first electrode and the second electrode form a current loop with the ground electrode. That's it.
  • the second electrode is used as a ground electrode and the first electrode is used as a microstrip line as an example for description.
  • various embodiments of the present disclosure provide a liquid crystal phase shifter.
  • the liquid crystal phase shifter includes a first substrate and a second substrate disposed opposite to each other, and a liquid crystal layer 30 located between the first substrate and the second substrate.
  • the first substrate may include: a first base 10 and a first electrode 1 on the first base 10.
  • the second substrate may include: a second substrate 20 and a second electrode 2 located on a side of the second substrate 20 close to the liquid crystal layer 30.
  • the first electrode 1 includes: a main structure 11 located on the side of the first substrate 10 away from the liquid crystal layer 30, and at least one branch structure 12 located on the side of the first substrate 10 close to the liquid crystal layer 30.
  • the at least one branch structure 12 respectively passes through at least one via hole 13 passing through the first substrate 10 (the position of the black dot in FIG. 1 is the via hole 13, and each via hole 13 and each branch structure 12 can be arranged in a one-to-one correspondence. ) Is connected to the main structure 11 and spaced apart from each other along the length direction of the main structure; and the orthographic projection of each branch structure 12 on the first substrate 10 (or the second substrate 20) and the second electrode 2 are in the first The orthographic projections on a substrate 10 (or a second substrate 20) at least partially overlap.
  • the microwave signal transmission medium is mainly composed of liquid crystal molecules, which can reduce The transmission loss of microwave signals also reduces the insertion loss of the liquid crystal phase shifter.
  • the first electrode 1 may include only one branch structure 12.
  • a more uniform electric field can be formed between the plurality of branch structures 12 and the second electrode 2, so that the dielectric constant of the liquid crystal layer 30 is more uniform.
  • the main structure 11 of the first electrode 1 may have a band shape, and may have the same length as the length of the first substrate 10 (ie, the size in the horizontal direction of FIG. 1 ).
  • the body structure 11 of the first electrode 1 may have a smaller width than the width of the first substrate 10 (ie, the size in the vertical direction of FIG.
  • the length of the body structure 11 of the first electrode 1 may be equal to the length of the second electrode 2, and the width of the body structure 11 of the first electrode 1 may be smaller than the width of the second electrode 2.
  • each branch structure 12 completely covers the via hole 13 corresponding to the branch structure 12, thereby preventing the material of the liquid crystal layer 30 from leaking outward.
  • the main structure 11 includes a length direction (for example, the horizontal direction in FIG. 1), and a direction perpendicular to the length direction (for example, the horizontal direction in FIG. 1).
  • Vertical direction the first side (for example, the lower side of the main structure 11 in FIG. 1 or FIG. 8) and the second side (for example, the upper side of the main structure 11 in FIG. 1 or FIG. 8), and only A plurality of branch structures 12 connected to one of the first side and the second side of the main structure 11.
  • Fig. 7 is an equivalent circuit diagram of the liquid crystal phase shifter shown in Fig. 1. As shown in FIG.
  • L 0 and C 0 are the inductance and capacitance per unit length of the first electrode 1
  • L 1 is the inductance introduced by each via 13
  • C 1 is each branch structure close to the liquid crystal layer 30 12 and the second electrode 2 are generated by overlapping capacitance (which may be simply referred to as "overlap capacitance").
  • Fig. 7 shows two branches each formed by the inductance L 1 and the overlapping capacitor C 1 connected in series. Except for the capacitor C 0 and the two overlapping capacitors C 1 , the other capacitor shown in FIG. 7 may be a parasitic capacitor.
  • the size of each overlapping capacitor C 1 can be calculated by the following formula:
  • S is the overlapping area of the orthographic projection of each branch structure 12 on the first substrate 10 and the orthographic projection of the second electrode 2 on the first substrate 10
  • d is the thickness of the liquid crystal layer 30 (for example, the liquid crystal layer 30
  • ⁇ 0 is the vacuum dielectric constant
  • ⁇ r is the relative dielectric constant of the liquid crystal molecules.
  • w is the angular frequency of the microwave signal. It can be seen from the above formula that the phase velocity of microwave signals is different under different voltages. In this way, under the same transmission line length, the phase of the microwave signal is changed, thereby achieving the purpose of phase shifting the microwave signal.
  • the main structure 11 may include: a length direction (for example, the horizontal direction in FIG. 8), and a direction perpendicular to the length direction (for example, in FIG. 8
  • the first side and the second side opposite to each other are connected to at least one branch structure (for example, a plurality of branch structures) 12 on each of the first side and the second side of the main structure 11.
  • Each branch structure 12 connected to both sides of the main structure 11 has the same working principle as each branch structure 12 connected to a single side, so it will not be described in detail here.
  • the plurality of branch structures 12 connected on the first side of the main structure 11 and the plurality of branch structures 12 connected on the second side of the main structure 11 may correspond one-to-one and be in a direction perpendicular to the length direction ( For example, the vertical direction in FIG. 8 and FIG. 9) are aligned with each other, which can make the structure of the liquid crystal phase shifter simple and easy to manufacture. But the present disclosure is not limited to this.
  • the plurality of branch structures 12 connected on the first side of the main structure 11 are spaced apart from each other along the length direction of the main structure 11, and are connected on the second side of the main structure 11
  • the plurality of branch structures 12 are spaced apart from each other along the length direction of the main structure 11.
  • the spacing between each branch structure 12 connected on the same side of the main structure 11 is a fixed value (that is, the spacing between each pair of adjacent branch structures 12 connected on the same side of the main structure 11 is the same).
  • the branch structures 12 connected to the same side of the main structure 11 can also be arranged according to a preset arrangement period.
  • each of the first substrate 10 and the second substrate 20 may use a glass substrate with a thickness of 100 ⁇ m to 1000 ⁇ m, or a sapphire substrate (the thickness may also be 100 ⁇ m to 1000 ⁇ m), and A polyethylene terephthalate substrate, triallyl cyanurate substrate, and polyimide transparent flexible substrate with a thickness of 10 ⁇ m to 500 ⁇ m can be used. In this way, the microwave loss of the liquid crystal phase shifter can be effectively reduced, so that the liquid crystal phase shifter has low power consumption and high signal-to-noise ratio.
  • each of the first substrate 10 and the second substrate 20 may use high-purity quartz glass with extremely low dielectric loss.
  • high-purity quartz glass may refer to quartz glass in which the weight percentage of SiO 2 is greater than or equal to 99.9%.
  • the use of high-purity quartz glass for the first substrate 10 and/or the second substrate 20 can further effectively reduce the microwave loss of the liquid crystal phase shifter, so that the liquid crystal phase shifter has lower power consumption and more High signal-to-noise ratio.
  • the material of the first electrode 1 may include metal, for example, the metal may be aluminum, silver, gold, chromium, molybdenum, nickel, and/or iron.
  • the material of the second electrode 2 may include metal, for example, the metal may be aluminum, silver, gold, chromium, molybdenum, nickel, and/or iron.
  • the second electrode 2 may also be made of a transparent conductive oxide (for example, indium tin oxide (ITO)).
  • ITO indium tin oxide
  • the liquid crystal molecules of the liquid crystal layer 30 are positive liquid crystal molecules or negative liquid crystal molecules. It should be noted that when the liquid crystal molecules are positive liquid crystal molecules, the long axis direction of each liquid crystal molecule in the embodiments of the present disclosure is between the second electrode 2 (or the first substrate 10 or the second substrate 20). The angle between is greater than 0° and less than or equal to 45°. When the liquid crystal molecules are negative liquid crystal molecules, the angle between the long axis direction of each liquid crystal molecule in the embodiments of the present disclosure and the plane where the second electrode 2 (or the first substrate 10 or the second substrate 20) is located is greater than 45° is less than 90°. In this way, it is ensured that after the liquid crystal molecules are deflected, the dielectric constant of the liquid crystal layer 30 can be better adjusted to achieve the purpose of phase shifting the microwave signal.
  • the dielectric constant in the long axis direction of each liquid crystal molecule of the liquid crystal layer 30 may be greater than The dielectric constant of each of the first substrate 10 and the second substrate 20.
  • the material of the liquid crystal layer 30 can be selected according to actual production needs and the cost of the material.
  • the thickness of the liquid crystal layer 30 is not greater than 10 ⁇ m.
  • the thickness of the liquid crystal layer 30 includes but is not limited to 5 ⁇ m to 10 ⁇ m to ensure that the response time of the liquid crystal layer 30 is sufficiently fast.
  • embodiments of the present disclosure provide an antenna including the liquid crystal phase shifter according to any one of the above embodiments.
  • the antenna may also include a bearing unit, such as a bearing plate, and the liquid crystal phase shifter may be arranged on the bearing plate, which is not limited in the embodiments of the present disclosure.
  • the number of liquid crystal phase shifters included in the antenna can be determined according to actual requirements, and the embodiment of the present disclosure does not specifically limit it.
  • the antenna provided by the present disclosure may include one or more liquid crystal phase shifters provided by the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种液晶移相器及天线。液晶移相器包括:相对设置的第一基板和第二基板,以及位于第一基板和第二基板之间的液晶层(30)。第一基板包括:第一基底(10),以及位于第一基底(10)上的第一电极(1)。第一电极(1)包括:设置在第一基底(10)背离液晶层(30)的一侧的主体结构(11),以及设置在第一基底(10)靠近液晶层(30)一侧的至少一个分支结构(12);并且,至少一个分支结构(12)分别通过贯穿第一基底(10)的至少一个过孔(13)连接在主体结构(11)上并且沿着主体结构(11)的长度方向彼此间隔设置。第二基板包括:第二基底(20),以及位于第二基底(20)上的第二电极(2);并且第二电极(2)在第一基底(10)上的正投影与分支结构(12)在第一基底(10)上的正投影至少部分重叠。

Description

液晶移相器及天线
相关申请的交叉引用
本申请要求于2019年10月14日提交的中国专利申请No.201910972872.7的优先权,该专利申请的全部内容通过引用方式合并于此。
技术领域
本公开属于通信技术领域,具体涉及一种液晶移相器及一种天线。
背景技术
移相器是一种能够对微波的相位进行调整(或改变)的装置,广泛应用于电子通信系统中,是相控阵雷达、合成孔径雷达、雷达电子对抗系统、卫星通信系统、接收发射机等的每一个中的核心组件。因此高性能的移相器在这些系统中起着至关重要的作用。
发明内容
本公开的第一方面提供了一种液晶移相器,该液晶移相器包括:相对设置的第一基板和第二基板,以及位于所述第一基板和所述第二基板之间的液晶层;其中,
所述第一基板包括:第一基底,以及位于所述第一基底上的第一电极;
所述第一电极包括:设置在所述第一基底背离所述液晶层一侧的主体结构,以及设置在所述第一基底靠近所述液晶层一侧的至少一个分支结构;并且,所述至少一个分支结构分别通过贯穿所述第一基底的至少一个过孔连接在所述主体结构上并且沿着所述主体结构的长度方向彼此间隔设置;以及
所述第二基板包括:第二基底,以及位于所述第二基底上的第二电极;并且所述第二电极在第一基底上的正投影与所述至少一个分支结构在所述第一基底上的正投影至少部分重叠。
在一些实施例中,所述主体结构包括:沿垂直于所述长度方向的方向相对设置的第一侧和第二侧;并且所述主体结构的所述第一侧和所述第二侧中的仅一者设置有所述至少一个分支结构。
在一些实施例中,所述主体结构包括:沿垂直于所述长度方向的方向相对设置的第一侧和第二侧,并且所述主体结构的所述第一侧和所述第二侧中的每一侧上均设置有所述至少一个分支结构。
在一些实施例中,设置在所述第一侧上的所述至少一个分支结构与设置在所述第二侧上的所述至少一个分支结构一一对应。
在一些实施例中,所述第二电极包括板状电极。
在一些实施例中,所述第二电极包括接地电极。
在一些实施例中,设置在所述主体结构的所述第一侧和所述第二侧中的每一侧上所述至少一个分支结构包括多个分支结构,并且所述多个分支结构中的任意相邻两个分支结构之间的间距为固定值。
在一些实施例中,所述第一电极和所述第二电极中的每一个的材料包括金属。
在一些实施例中,所述金属包括铝、银、金、铬、钼、镍和铁中的至少一种。
在一些实施例中,所述液晶层的厚度小于或等于10μm。
在一些实施例中,所述液晶层的厚度在5μm至10μm之间。
在一些实施例中,所述第一基底和所述第二基底中的每一个的材料包括100μm至1000μm的玻璃基底、蓝宝石基底,10μm至500μm的聚对苯二甲酸乙二酯基底、10μm至500μm的三聚氰酸三烯丙酯基底、10μm至500μm的聚酰亚胺透明柔性基底或高纯度石英玻璃基底。
在一些实施例中,所述液晶层包括正性液晶分子或负性液晶分子;
在所述液晶层包括正性液晶分子的情况下,每一个所述正性液 晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于0度小于等于45度;以及
在所述液晶层包括负性液晶分子的情况下,每一个所述负性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于45度小于90度。
在一些实施例中,所述液晶层的每一个液晶分子的长轴方向的介电常数大于所述第一基底和所述第二基底中的每一个的介电常数。
在一些实施例中,所述至少一个分支结构中的每一个完全覆盖所述至少一个过孔中与该分支结构相对应的过孔。
本公开的第二方面提供了一种天线,该天线包括根据本公开的第一方面的各个实施例中任一个所述的液晶移相器。
附图说明
图1为根据本公开实施例的一种液晶移相器的俯视图;
图2为图1所示的液晶移相器的第一基板靠近液晶层一侧的俯视图;
图3为图1所示的液晶移相器沿着线A-A'的剖视图;
图4为图1所示的液晶移相器沿着线B-B'的剖视图;
图5为图1所示的液晶移相器沿着线C-C'的剖视图;
图6为图1所示的液晶移相器沿着线D-D'的剖视图;
图7为图1所示的液晶移相器的等效电路图;
图8为根据本公开实施例的另一种液晶移相器的俯视图;
图9为图8所示的液晶移相器的第一基板靠近液晶层一侧的俯视图;以及
图10为图9所示的液晶移相器沿着线E-E'的剖视图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和示例性实施方式对本公开作进一步详细描述。
除非另外定义,否则本公开使用的技术术语或者科学术语应当 为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同物,而不排除其他元件或者物件的存在。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的连接。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,该相对位置关系也可能相应地改变。
本发明构思的发明人发现,相关技术中的移相器具有损耗大、响应时间长以及体积庞大等缺点,无法满足电子通信系统日新月异的发展的要求。
具体而言,目前市场上绝大多数的移相器为铁氧体移相器和PIN(Positive-Intrinsic-Negative)二极管移相器。例如,铁氧体移相器具有体积庞大、响应速度慢的缺点,因此不适合高速波束扫描。PIN二极管移相器具有功耗大,因此不利于用于轻便、低功耗的相控阵系统中。
本发明构思的主要思想如下。液晶移相器包括相对设置的第一基板和第二基板,以及位于第一基板和第二基板之间的液晶层。例如,第一基板可以包括:第一基底,以及位于第一基底靠近液晶层一侧的第一电极。第二基板可以包括:第二基底,以及位于第二基底靠近液晶层一侧的第二电极。第一电极通常包括主体结构,以及连接在主体结构上的分支结构。第二电极通常采用板状电极,并且所述板状电极可以正好完全覆盖第二基底20靠近液晶层30一侧的表面或第二基底20远离液晶层30一侧的表面。这样一来,板状的第二电极在第一基底上的正投影必然与分支结构在第一基底上的正投影存在交叠。在此情况下,假若第二电极作为接地电极,则微波信号可以通过接头等连接器被引入第一电极的主体结构中以使微波信号在液晶层中传输。进 一步的,通过(例如,经由主体结构)给分支结构加载不同的电压,以使分支结构与第二电极之间产生不同的电场,以改变液晶层的液晶分子的偏转角度,从而改变液晶层的介电常数。这样,可以实现微波信号的不同移相度。
在此需要说明的是,以上是以第二电极为接地电极为例进行说明的,但本公开不限于此。例如,在实际应用中,第二电极也可以不为接地电极,此时可以在第二基底背离液晶层的一侧设置接地电极,以使第一电极、第二电极分别与接地电极形成电流回路即可。在本公开的下述实施例中,为描述方便,以第二电极为接地电极并且以第一电极为微带线为例进行说明。
第一方面,如图1至图10所示,本公开的各个实施例提供一种液晶移相器。该液晶移相器包括相对设置的第一基板和第二基板,以及位于第一基板和第二基板之间的液晶层30。例如,第一基板可以包括:第一基底10,以及位于第一基底10上的第一电极1。第二基板可以包括:第二基底20,以及位于第二基底20靠近液晶层30一侧的第二电极2。在一个示例中,第一电极1包括:位于第一基底10背离液晶层30的一侧的主体结构11,以及位于第一基底10靠近液晶层30一侧的至少一个分支结构12。所述至少一个分支结构12分别通过贯穿第一基底10的至少一个过孔13(图1中黑点所在位置即为过孔13,且各个过孔13与各个分支结构12可以是一一对应设置的)与主体结构11连接并且沿着所述主体结构的长度方向彼此间隔设置;且每一个分支结构12在第一基底10(或第二基底20)上的正投影与第二电极2在第一基底10(或第二基底20)上的正投影至少部分重叠。这样一来,可以通过给主体结构11施加电压,将电压加载至分支结构12上,以使分支结构12与第二电极2之间形成电场,从而使得液晶层30的液晶分子发生偏转,以改变液晶层30的介电常数,进而改变在液晶层30中传输的微波信号的相位。而在本公开实施例中,由于将第一电极1的分支结构12设置于第一基底10的靠近液晶层30的一侧,从而使得微波信号的传输介质中主要由液晶分子构成,因此可以降低微波信号的传输损耗,也即降低了液晶移相器的 插入损耗。
应当理解的是,虽然图1和图2中示出了第一电极1包括多个分支结构12的情况,但是第一电极1可以仅包括一个分支结构12。在第一电极1包括多个分支结构12的情况,所述多个分支结构12与第二电极2之间可以形成更加均匀的电场,从而使得液晶层30的介电常数更加均匀。在一个实施例中,第一电极1的主体结构11可以具有带状,并且可以具有和第一基底10的长度(即,在图1的水平方向上的尺寸)相同的长度。此外,第一电极1的主体结构11可以具有比第一基底10的宽度(即,在图1的竖直方向上的尺寸)更小的宽度,并且位于第一基底10的远离液晶层30的表面的中间部分中。例如,第一电极1的主体结构11的长度可以等于第二电极2的长度,并且第一电极1的主体结构11的宽度可以小于第二电极2的宽度。
在一些实施例中,每一个分支结构12完全覆盖与该分支结构12相对应的过孔13,从而防止液晶层30的材料向外泄露。
在本公开的一些实施例中,如图1至图6所示,主体结构11包括:长度方向(例如,图1中的水平方向),沿垂直于长度方向的方向(例如,图1中的竖直方向)相对设置的第一侧(例如,图1或图8中的主体结构11的下侧)和第二侧例如,图1或图8中的主体结构11的上侧),以及仅连接在主体结构11的第一侧和第二侧的一者上的多个分支结构12。图7为图1所示的液晶移相器的等效电路图。如图7所示,附图标记L 0、C 0为第一电极1单位长度的电感和电容,L 1为每一个过孔13引入的电感,C 1为靠近液晶层30的每一个分支结构12和第二电极2通过交叠产生的电容(其可以简称为“交叠电容”)。图7中示出了各自由电感L 1和交叠电容C 1串联连接而成的两个支路。除了电容C 0和两个交叠电容C 1以外,图7中所示的其余一个电容可以为寄生电容。每一个交叠电容C 1的大小可以通过以下公式来计算:
Figure PCTCN2020120626-appb-000001
其中S为每一个分支结构12在所述第一基底10上的正投影与 第二电极2在第一基底10上的正投影的交叠面积,d为液晶层30厚度(例如,液晶层30在任一个分支结构12和第二电极2之间的尺寸,如图3所示),ε 0为真空介电常数;ε r为液晶分子的相对介电常数。通过调节主体结构11(即,每一个分支结构12)和第二电极2上的驱动电压,可以改变液晶层30的介电常数,从而可以改变交叠电容C 1的大小。微波信号的相速度Vp为:
Figure PCTCN2020120626-appb-000002
其中,w为微波信号的角频率。由以上公式可知,不同电压下微波信号的相速度不同。这样,在相同传输线长度下,微波信号的相位发生了改变,从而实现了对微波信号进行移相的目的。
在本公开的一些实施例中,如图8至图10所示,主体结构11可以包括:长度方向(例如,图8中的水平方向),沿垂直于长度方向的方向(例如,图8中的竖直方向)相对设置的第一侧和第二侧,连接在主体结构11的第一侧和第二侧中的每一侧上的至少一个分支结构(例如,多个分支结构)12。连接在主体结构11的两侧上的各个分支结构12与连接至单侧上的各个分支结构12的工作原理相同,故在此不再详细描述。例如,连接在主体结构11的第一侧上的多个分支结构12与连接在主体结构11的第二侧上的多个分支结构12可以一一对应并且在垂直于所述长度方向的方向(例如,图8和图9中的竖直方向)上彼此对齐,这样可以使得所述液晶移相器的结构简单且便于制造。但本公开不限于此。
在本公开的一些实施例中,连接在主体结构11的第一侧上的多个分支结构12沿着所述主体结构11的长度方向彼此间隔设置,并且连接在主体结构11的第二侧上的多个分支结构12沿着所述主体结构11的长度方向彼此间隔设置。连接在主体结构11同一侧的各个分支结构12之间的间距为固定值(即,连接在主体结构11同一侧的各对相邻分支结构12之间的间距相同)。这样一来,可以在分支结构12被施加电压后,使得液晶层30的介电常数均匀变化,从而使得便于对微波信号进行移相而且降低所述液晶移相器的制造难度。当然,连 接在主体结构11同一侧的各个分支结构12也可以按照预设的排布周期排布。
在本公开的一些实施例中,第一基底10和第二基底20中的每一个可以采用厚度为100μm至1000μm的玻璃基底,也可采用蓝宝石基底(其厚度也可以为100μm至1000μm),还可以使用厚度为10μm至500μm的聚对苯二甲酸乙二酯基底、三聚氰酸三烯丙酯基底和聚酰亚胺透明柔性基底。这样,可以有效减小液晶移相器对微波的损耗,使液晶移相器具有低的功耗和高的信噪比。
可替换地,第一基底10和第二基底20中的每一个可以采用介电损耗极低的高纯度石英玻璃。例如,高纯度石英玻璃可以指的是其中SiO 2的重量百分比大于或等于99.9%的石英玻璃。相比于普通玻璃基板,第一基底10和/或第二基底20采用高纯度石英玻璃可以进一步有效减小液晶移相器对微波的损耗,使液晶移相器具有更低的功耗和更高的信噪比。
在本公开的一些实施例中,第一电极1的材料可以包括金属,例如所述金属可以为铝、银、金、铬、钼、镍和/或铁。
在本公开的一些实施例中,第二电极2的材料可以包括金属,例如所述金属可以为铝、银、金、铬、钼、镍和/或铁。可替换地,第二电极2也可以采用透明导电氧化物(例如,氧化铟锡(ITO))制成。
在本公开的一些实施例中,液晶层30的液晶分子为正性液晶分子或负性液晶分子。需要说明的是,当液晶分子为正性液晶分子时,本公开实施例中的每一个液晶分子的长轴方向与第二电极2(或第一基底10或第二基底20)所在的平面之间的夹角大于0°小于等于45°。当液晶分子为负性液晶分子时,本公开实施例中的每一个液晶分子的长轴方向与第二电极2(或第一基底10或第二基底20)所在的平面之间的夹角大于45°小于90°。这样,保证了液晶分子发生偏转后,能够更好的调整液晶层30的介电常数,以实现对微波信号进行移相的目的。
在本公开的一些本实施例中,为了在液晶层30的液晶分子偏转 后更好的调整液晶层30的介电常数,液晶层30的每一个液晶分子的长轴方向的介电常数可以大于第一基底10和第二基底20中的每一个的介电常数。例如,液晶层30的材料可以根据实际生产的需要以及材料的成本进行选择。
在本公开的一些实施例中,液晶层30的厚度不大于10μm,例如,液晶层30的厚度包括但不限于5μm至10μm,以保证液晶层30的响应时间足够快。
第二方面,本公开实施例提供一种天线,其包括根据上述实施例中的任意一个所述的液晶移相器。在实际应用中,该天线还可以包括承载单元,例如承载板,所述液晶移相器可以设置在承载板上,本公开实施例对此不作任何限定。
需要说明的是,天线包括的液晶移相器的个数可以根据实际需求确定,本公开实施例并不做具体限定。换言之,本公开所提供的天线可以包括本公开所提供的一个或多个液晶移相器。
应当理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离由所附权利要求限定的本公开的保护范围的情况下,可以做出各种变型和改进,这些变型和改进也属于本公开的保护范围。

Claims (16)

  1. 一种液晶移相器,包括:相对设置的第一基板和第二基板,以及位于所述第一基板和所述第二基板之间的液晶层;其中,
    所述第一基板包括:第一基底,以及位于所述第一基底上的第一电极;
    所述第一电极包括:设置在所述第一基底背离所述液晶层一侧的主体结构,以及设置在所述第一基底靠近所述液晶层一侧的至少一个分支结构;并且,所述至少一个分支结构分别通过贯穿所述第一基底的至少一个过孔连接在所述主体结构上并且沿着所述主体结构的长度方向彼此间隔设置;以及
    所述第二基板包括:第二基底,以及位于所述第二基底上的第二电极;并且所述第二电极在第一基底上的正投影与所述至少一个分支结构在所述第一基底上的正投影至少部分重叠。
  2. 根据权利要求1所述的液晶移相器,其中,所述主体结构包括:沿垂直于所述长度方向的方向相对设置的第一侧和第二侧;并且所述主体结构的所述第一侧和所述第二侧中的仅一者设置有所述至少一个分支结构。
  3. 根据权利要求1所述的液晶移相器,其中,所述主体结构包括:沿垂直于所述长度方向的方向相对设置的第一侧和第二侧,并且所述主体结构的所述第一侧和所述第二侧中的每一侧上均设置有所述至少一个分支结构。
  4. 根据权利要求3所述的液晶移相器,其中,设置在所述第一侧上的所述至少一个分支结构与设置在所述第二侧上的所述至少一个分支结构一一对应。
  5. 根据权利要求1-4中任一项所述的液晶移相器,其中,所述 第二电极包括板状电极。
  6. 根据权利要求1-5中任一项所述的液晶移相器,其中,所述第二电极包括接地电极。
  7. 根据权利要求1-6中任一项所述的液晶移相器,其中,设置在所述主体结构的所述第一侧和所述第二侧中的每一侧上所述至少一个分支结构包括多个分支结构,并且所述多个分支结构中的任意相邻两个分支结构之间的间距为固定值。
  8. 根据权利要求1-7中任一项所述的液晶移相器,其中,所述第一电极和所述第二电极中的每一个的材料包括金属。
  9. 根据权利要求8所述的液晶移相器,其中,所述金属包括铝、银、金、铬、钼、镍和铁中的至少一种。
  10. 根据权利要求1-9中任一项所述的液晶移相器,其中,所述液晶层的厚度小于或等于10μm。
  11. 根据权利要求10所述的液晶移相器,其中,所述液晶层的厚度在5μm至10μm之间。
  12. 根据权利要求1-11中任一项所述的液晶移相器,其中,所述第一基底和所述第二基底中的每一个的材料包括100μm至1000μm的玻璃基底、蓝宝石基底,10μm至500μm的聚对苯二甲酸乙二酯基底、10μm至500μm的三聚氰酸三烯丙酯基底、10μm至500μm的聚酰亚胺透明柔性基底或高纯度石英玻璃基底。
  13. 根据权利要求1-12中任一项所述的液晶移相器,其中,所述液晶层包括正性液晶分子或负性液晶分子;
    在所述液晶层包括正性液晶分子的情况下,每一个所述正性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于0度小于等于45度;以及
    在所述液晶层包括负性液晶分子的情况下,每一个所述负性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于45度小于90度。
  14. 根据权利要求1-13中任一项所述的液晶移相器,其中,所述液晶层的每一个液晶分子的长轴方向的介电常数大于所述第一基底和所述第二基底中的每一个的介电常数。
  15. 根据权利要求1-14中任一项所述的液晶移相器,其中,所述至少一个分支结构中的每一个完全覆盖所述至少一个过孔中与该分支结构相对应的过孔。
  16. 一种天线,包括根据权利要求1-15中任一项所述的液晶移相器。
PCT/CN2020/120626 2019-10-14 2020-10-13 液晶移相器及天线 WO2021073500A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/413,312 US11876276B2 (en) 2019-10-14 2020-10-13 Liquid crystal phase shifter and antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910972872.7A CN112731715B (zh) 2019-10-14 2019-10-14 液晶移相器及天线
CN201910972872.7 2019-10-14

Publications (1)

Publication Number Publication Date
WO2021073500A1 true WO2021073500A1 (zh) 2021-04-22

Family

ID=75538442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120626 WO2021073500A1 (zh) 2019-10-14 2020-10-13 液晶移相器及天线

Country Status (3)

Country Link
US (1) US11876276B2 (zh)
CN (1) CN112731715B (zh)
WO (1) WO2021073500A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11990680B2 (en) * 2021-03-18 2024-05-21 Seoul National University R&Db Foundation Array antenna system capable of beam steering and impedance control using active radiation layer
TWI800998B (zh) * 2021-11-19 2023-05-01 友達光電股份有限公司 移相器、具有移相器的天線單元以及具有移相器的天線裝置
WO2024020871A1 (zh) * 2022-07-27 2024-02-01 京东方科技集团股份有限公司 液晶移相器和天线装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874964B2 (ja) * 1999-04-28 2007-01-31 日本放送協会 可変移相器
CN203720494U (zh) * 2014-02-18 2014-07-16 京东方科技集团股份有限公司 一种阵列基板、液晶显示面板
CN108615962A (zh) * 2018-07-18 2018-10-02 成都天马微电子有限公司 液晶移相器和天线
CN208384288U (zh) * 2018-08-10 2019-01-15 京东方科技集团股份有限公司 液晶移相器及液晶天线
CN208655852U (zh) * 2018-05-21 2019-03-26 京东方科技集团股份有限公司 一种移相器、天线、通信设备
CN110137636A (zh) * 2019-05-23 2019-08-16 京东方科技集团股份有限公司 移相器和液晶天线

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964701A (en) * 1988-10-04 1990-10-23 Raytheon Company Deflector for an optical beam
JP3322861B2 (ja) * 2000-02-21 2002-09-09 スタンレー電気株式会社 位相可変装置
EP2575211B1 (en) * 2011-09-27 2014-11-05 Technische Universität Darmstadt Electronically steerable planar phased array antenna
EP2768072A1 (en) * 2013-02-15 2014-08-20 Technische Universität Darmstadt Phase shifting device
CN108181745B (zh) * 2018-02-08 2020-08-25 京东方科技集团股份有限公司 一种液晶移相器、移相方法及其制作方法
CN108761862A (zh) * 2018-05-23 2018-11-06 成都天马微电子有限公司 一种液晶移相单元及其制作方法、液晶移相器、天线
CN108808181B (zh) * 2018-07-20 2020-05-29 成都天马微电子有限公司 液晶移相器和天线
CN208818972U (zh) * 2018-08-10 2019-05-03 北京京东方传感技术有限公司 移相器及液晶天线
CN208654481U (zh) * 2018-08-10 2019-03-26 北京京东方传感技术有限公司 液晶移相器及液晶天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874964B2 (ja) * 1999-04-28 2007-01-31 日本放送協会 可変移相器
CN203720494U (zh) * 2014-02-18 2014-07-16 京东方科技集团股份有限公司 一种阵列基板、液晶显示面板
CN208655852U (zh) * 2018-05-21 2019-03-26 京东方科技集团股份有限公司 一种移相器、天线、通信设备
CN108615962A (zh) * 2018-07-18 2018-10-02 成都天马微电子有限公司 液晶移相器和天线
CN208384288U (zh) * 2018-08-10 2019-01-15 京东方科技集团股份有限公司 液晶移相器及液晶天线
CN110137636A (zh) * 2019-05-23 2019-08-16 京东方科技集团股份有限公司 移相器和液晶天线

Also Published As

Publication number Publication date
US11876276B2 (en) 2024-01-16
CN112731715B (zh) 2022-11-11
CN112731715A (zh) 2021-04-30
US20220021094A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
WO2021073500A1 (zh) 液晶移相器及天线
CN208655852U (zh) 一种移相器、天线、通信设备
WO2021073505A1 (zh) 液晶移相器及天线
KR102368374B1 (ko) 액정 위상 시프터, 그 동작 방법, 액정 안테나, 및 통신 장치
JP7433229B2 (ja) 液晶移相器及びその操作方法、液晶アンテナ及び通信装置
US20220006165A1 (en) Feeding structure, microwave radio frequency device and antenna
US11158916B2 (en) Phase shifter and liquid crystal antenna
US11837796B2 (en) Feeding structure, microwave radio frequency device and antenna
US11264684B2 (en) Liquid crystal phase shifter comprising a liquid crystal cell with first and second substrates separated by a partition plate having first and second microstrips on opposing surfaces of the plate
US11978942B2 (en) Feeding structure, microwave radio frequency device and antenna
CN209248207U (zh) 一种液晶移相器及基于其的电磁波调控透镜
WO2021189238A1 (zh) 移相器及天线
CN104617383A (zh) 多波束扫描透镜天线
US11189920B2 (en) Control substrate, liquid crystal phase shifter and method of forming control substrate
US11843151B2 (en) Liquid crystal phase shifter having a first electrode with metal patches and a second electrode that is one-piece
US11799179B2 (en) Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
US20240186668A1 (en) Feeding structure, microwave radio frequency device and antenna
US20240136693A1 (en) Phase shifter and method for operating the same, antenna and communication device
US20240006762A1 (en) Liquid Crystal Phase Shifter, Method for Operating the Same, Liquid Crystal Antenna, and Communication Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876103

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/02/2023)