WO2021189238A1 - 移相器及天线 - Google Patents

移相器及天线 Download PDF

Info

Publication number
WO2021189238A1
WO2021189238A1 PCT/CN2020/080840 CN2020080840W WO2021189238A1 WO 2021189238 A1 WO2021189238 A1 WO 2021189238A1 CN 2020080840 W CN2020080840 W CN 2020080840W WO 2021189238 A1 WO2021189238 A1 WO 2021189238A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
substrate
phase shifter
electrode
patch
Prior art date
Application number
PCT/CN2020/080840
Other languages
English (en)
French (fr)
Inventor
方家
于海
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080000349.9A priority Critical patent/CN113728512B/zh
Priority to US17/258,800 priority patent/US11411544B2/en
Priority to PCT/CN2020/080840 priority patent/WO2021189238A1/zh
Publication of WO2021189238A1 publication Critical patent/WO2021189238A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting
    • H03H7/185Networks for phase shifting comprising distributed impedance elements together with lumped impedance elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/02Variable filter component
    • H03H2210/025Capacitor

Definitions

  • the invention belongs to the field of communication technology, and specifically relates to a phase shifter and an antenna.
  • the current liquid crystal phase shifter structure introduces periodic SMD capacitor loading on the upper glass substrate after the cell.
  • the adjustment of the variable capacitor is to drive the deflection of the liquid crystal molecules by adjusting the voltage difference loaded on the two metal plates on the different sides.
  • the characteristics of the liquid crystal material correspond to the variable capacitance of the capacitor. Because the CPW structure is in the same plane as the ground electrode and the signal electrode, the connection design of the structure is easier, and the functional requirement of glass perforation can be omitted.
  • the present invention aims to solve at least one of the technical problems existing in the prior art and provide a phase shifter and an antenna.
  • an embodiment of the present invention provides a phase shifter, which includes: a first substrate and a second substrate disposed opposite to each other, and a dielectric layer disposed between the first substrate and the second substrate; wherein ,
  • the first substrate includes: a first substrate, a reference electrode and a signal electrode disposed on a side of the first substrate close to the dielectric layer;
  • the signal electrode includes: a main structure and a connection in the length direction of the main structure The multiple branch structure;
  • the second substrate includes: a second base, a plurality of patch electrodes arranged on a side of the second base close to the dielectric layer; the plurality of patch electrodes are arranged in a one-to-one correspondence with the plurality of branch structures , Forming a plurality of variable capacitors; and the orthographic projection of each of the patch electrodes and the reference electrodes on the first substrate at least partially overlap;
  • the phase shifter has a first area, a second area and a third area on both sides of the first area; wherein, the variable capacitors located in the second area and the third area
  • the overlapping area of the patch electrode and the branch structure is smaller than the overlapping area of the patch electrode and the branch structure of the variable capacitor located in the first region; and in the first region There is only one type of the variable capacitor with an overlapping area in one area;
  • any two of the variable capacitors located on the same side of the first area are close to all the variable capacitors.
  • the overlapping area of the patch electrode and the branch structure of the variable capacitor in the first area is greater than or equal to the patch electrode and the branch structure far away from the variable capacitor in the first area.
  • the overlapping area of the branch structure is greater than or equal to the patch electrode and the branch structure far away from the variable capacitor in the first area.
  • the reference electrode includes: a first sub-reference electrode and a second sub-reference electrode; the signal electrode is arranged between the first sub-reference electrode and the second sub-reference electrode; each of the The patch electrode and the orthographic projection of the first sub-reference electrode and the second sub-reference electrode of the reference electrode on the first substrate at least partially overlap.
  • the overlapping areas of the patch electrode and the branch structure of each of the variable capacitors located in the second region are different; and/or,
  • the overlapping areas of the patch electrode and the branch structure of each of the variable capacitors located in the third region are different.
  • variable capacitance is set symmetrically.
  • the overlapping area of the patch electrode and the branch structure of each of the variable capacitors located in the second area increases monotonically; and/or,
  • the overlapping area of the patch electrode and the branch structure of each of the variable capacitors located in the third area increases monotonically.
  • the number of the variable capacitors located in the first area is only one, and it is satisfied that the phase shift degree of the phase shifter is greater than or equal to 360°.
  • phase shift degree of the phase shifter is greater than or equal to 360°.
  • each branch structure is the same; or, the length of each branch structure is the same.
  • the distance between any two adjacent variable capacitors is the same.
  • the branch structure runs through the main structure.
  • the branch structure and the main structure are integrally formed.
  • the reference electrode is a ground electrode.
  • the medium layer includes liquid crystal molecules.
  • an embodiment of the present invention provides an antenna including the above-mentioned phase shifter.
  • the antenna further includes at least two patch units arranged on the side of the second substrate away from the dielectric layer; the gap between the two patch units and the gap between the two patch electrodes The gap corresponds.
  • the patch unit is in contact with the second substrate.
  • Figure 1 is an equivalent model of a transmission line periodically loaded with variable capacitors in parallel.
  • Figure 2 is a top view of a phase shifter.
  • Fig. 3 is a cross-sectional view of AA' of Fig. 2.
  • Fig. 4 is an impedance change diagram of the phase shifter of Fig. 2.
  • Fig. 5 is a top view of a phase shifter according to an embodiment of the present invention.
  • Fig. 6 is a top view of another phase shifter according to an embodiment of the present invention.
  • Fig. 7 is a side view of the phase shifter of Fig. 5.
  • Fig. 8 is a cross-sectional view of AA′ of the phase shifter of Fig. 5.
  • Fig. 9 is an impedance change diagram of the phase shifter of Fig. 5;
  • Figure 10 is a graph of dielectric constant and transmission loss.
  • Figure 11 is a graph of dielectric constant and phase difference.
  • Fig. 12 is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • the transmission line is periodically loaded with variable capacitors in parallel, and the phase change can be realized by changing the capacitance of the variable capacitor.
  • the equivalent model is shown in Figure 1.
  • Lt and Ct are the equivalent line inductance and line capacitance of the transmission line, which depend on the characteristics of the transmission line and the substrate.
  • the variable capacitance Cvar(V) can be realized by MEMS capacitors, variable diode capacitors, and the like. At present, the capacitance value of the plate capacitor is changed by voltage-controlled liquid crystal, thereby preparing a liquid crystal phase shifter.
  • FIGs 2 and 3 show an exemplary liquid crystal phase shifter with CPW structure.
  • the equivalent circuit diagram is also shown in Figure 1.
  • the liquid crystal phase shifter includes a first substrate and a second substrate disposed oppositely, and a A liquid crystal layer 30 between a substrate and a second substrate.
  • the first substrate includes a first substrate 10, a ground electrode 12 and a signal electrode 11 arranged on a side of the first substrate 10 close to the liquid crystal layer;
  • the ground electrode 12 includes a first sub-ground electrode 121 and a second sub-ground electrode 122, and the signal
  • the electrode 11 is arranged between the first sub-ground electrode 121 and the second sub-ground electrode 122;
  • the signal electrode 11 includes a main body structure 111 that extends in the same direction as the first sub-ground electrode 121 and the second sub-ground electrode 122, and is connected to the main body.
  • a plurality of branch structures 112 arranged at intervals in the length direction of the structure 111.
  • the second substrate includes a second substrate 20 and a plurality of patch electrodes 21 arranged on the side of the second substrate 20 close to the liquid crystal layer.
  • the extension direction of the patch electrodes 21 is the same as the extension direction of the branch structure 112 of the signal electrode 11, and
  • the patch electrodes 21 and the branch structures 112 are arranged in one-to-one correspondence; at the same time, the projections of each patch electrode 21 and the corresponding branch structure 112, as well as the first sub-ground electrode 121 and the second sub-ground electrode 122 on the substrate are all At least partially overlap to form a current loop.
  • variable capacitor Cvra (V) The overlapping area of the variable capacitor Cvra (V) formed in this phase shifter is the same, so when the same voltage is applied to the patch electrode 21, the equivalent of each variable capacitor Cvra (V) formed is
  • the impedance is also the same, as shown in Figure 4, the impedance of each variable capacitor Cvra (V) is Z1. It should be noted here that Z0 represents the impedance value formed between the signal lead-in end of the signal electrode 11 and the ground electrode 12.
  • variable capacitor Cvra(V) In order to use the CPW periodically loaded variable capacitor Cvra(V) structure for the phased array antenna to realize the beam scanning function, it is required that the adjustable range of the phase difference of each phase shifter must be greater than 360°, so in order to achieve this value, Placing and reasonably arranging the phase shifter in a limited area requires that the overall length of the phase shifter should not be too long. Therefore, the value of the variable capacitor Cvra(V) in each cycle must be large enough to achieve the finite length difference. However, if the variable capacitance Cvra(V) has a large change value, it will inevitably cause a large change in the impedance of the equivalent transmission line, and a big problem is that the port performance deteriorates, which increases the transmission loss.
  • the embodiments of the present invention provide the following technical solutions.
  • the dielectric layer in the phase shifter includes but is not limited to the liquid crystal layer 30, the reference electrode includes but is not limited to the ground electrode 12, and the corresponding first sub The reference electrode and the second sub-reference electrode are also used to connect the ground signal, so for the convenience of description, they are represented by the first sub-ground electrode 121 and the second sub-ground electrode 122 respectively.
  • the dielectric layer is the liquid crystal layer 30, the reference electrode is the ground electrode 12, and the first sub-reference electrode and the second sub-reference electrode are the first sub-ground electrode 121 and the second sub-ground electrode 122 respectively.
  • an embodiment of the present invention provides a phase shifter, which includes: a first substrate and a second substrate disposed opposite to each other, and a phase shifter disposed between the first substrate and the second substrate.
  • Liquid crystal layer 30 Liquid crystal layer 30.
  • the first substrate includes: a first substrate 10, a substrate electrode and a signal electrode 11 arranged on the side of the first substrate 10 close to the dielectric layer;
  • the signal electrode 11 includes: a main structure 111 and a plurality of substrates connected in the length direction of the main structure 111 A branch structure 112.
  • the second substrate includes: a second substrate 20, a plurality of patch electrodes 21 arranged on the side of the second substrate 20 close to the dielectric layer; Variable capacitance Cvra (V); and the orthographic projection of each patch electrode 21 and the reference electrode on the first substrate 10 at least partially overlap.
  • the phase shifter can be divided into a first area Q1, which is divided into a second area Q2 and a third area Q3 on both sides of the first area Q1 (that is, as shown in FIG. 5, it is divided from left to right)
  • the overlap area of the variable capacitor Cvra(V) formed in the first region Q1 is smaller than the overlap area of the branch structure 112; and there is only one overlap area in the first region Q1
  • the overlap area refers to the overlap area of the orthographic projection of the patch electrode 21 and the branch structure 112 on the first substrate 10 (or the second substrate 20).
  • the patch electrode 21 and the branch structure 112 close to the variable capacitor Cvra(V) of the first area Q1
  • the overlapping area is greater than or equal to the overlapping area of the patch electrode 21 and the branch structure 112 of the variable capacitor Cvra(V) away from the first region Q1, that is, along the length direction of the main structure 111, formed
  • the capacitance value of the periodic variable capacitor Cvra(V) first increases and then decreases.
  • the capacitance value of the variable capacitor Cvra(V) is positively related to the impedance value, so along the length direction of the main structure 111, the phase shifter
  • the impedance first increases and then decreases (as shown in Figure 9, the impedance direction along the length of the main structure 111 changes from Z0-Z3-Z2-Z1-Z2-Z3-Z0; where Z1>Z2>Z3>Z0
  • the microwave signal is introduced from both ends of the main structure 111 of the signal electrode 11. In this way, it can be avoided as much as possible due to the large capacitance value of each variable capacitor Cvra (V). This causes the microwave signal to be reflected after passing through the periodic variable capacitor Cvra(V), causing a problem of large transmission loss.
  • the ground electrode 12 includes a first sub-ground electrode 121 and a second sub-ground electrode 122, and the first sub-ground electrode 121 and the second sub-ground electrode 122 connect the main structure 111 and the branch structure 112 of the signal electrode 11 It is limited between the two, and each patch electrode 21 at least partially overlaps the orthographic projection of the first sub-ground electrode 121 and the second sub-ground electrode 122 on the first substrate 10 (or the second substrate 20).
  • the main structure 111 and the patch electrode 21 form a current loop.
  • the branch structure 112 may be provided through the main structure 111.
  • the branch structure 112 and the main structure 111 can be designed as an integral structure, that is, as shown in FIG.
  • the structure 112 and the main structure 111 are prepared, and the process cost is reduced.
  • the branch structure 112 and the main structure 111 may also be electrically connected together in any manner, which is not limited in the embodiment of the present invention.
  • the ground electrode 12 may only include one of the first sub-ground electrode 121 and the second sub-ground electrode 122.
  • the transmission principle of the microwave signal is the same as the above-mentioned principle, and will not be described in detail here. .
  • the number of variable capacitors Cvra (V) located in the first region Q1 is only one, that is, only one patch capacitor and one branch structure 112 are provided in the first region Q1, and the two are in The orthographic projections on the substrate at least partially overlap to form a variable capacitor Cvra(V).
  • the capacitance value of the variable capacitor Cvra(V), that is, the overlapping area of the patch capacitor and the branch structure 112 should satisfy the microwave signal passing through the first After the first area Q1, the second area Q2, and the third area Q3, a phase shift of not less than 360° can be achieved.
  • variable capacitor Cvra (V) in the first region Q1 is one, and the phase shifter cannot achieve a 360° phase shift, a plurality of equal overlapping areas can be set in the first region Q1
  • the variable capacitance Cvra (V) of the microwave signal can realize a phase shift of not less than 360° after passing through the first area Q1, the second area Q2, and the third area Q3.
  • at least one variable capacitor Cvra(V) can also be formed in the second area Q2 and/or the third area Q3 close to the first area Q1, so that the microwave signal can pass through the first area Q1, the second area Q2, and the second area Q1.
  • a phase shift of not less than 360° can be achieved, which is not limited in the embodiment of the present invention, as long as it satisfies any two variable capacitors Cvra(V) located on the same side of the first region Q1, close to the first region
  • the overlapping area of the patch electrode 21 and the branch structure 112 of the variable capacitance Cvra (V) of Q1 is greater than or equal to that of the patch electrode 21 and the branch structure 112 far away from the variable capacitance Cvra (V) of the first region Q1 Just overlap the area.
  • the overlapping area of the variable capacitor Cvra(V) formed in the second region Q2 is different, and/or the overlapping area of the variable capacitor Cvra(V) formed in the third region Q3
  • the areas are all different.
  • the overlapping area of the variable capacitor Cvra(V) formed in the second area Q2 and the third area Q3 is monotonically increasing, that is, along the direction close to the first area In the direction of Q1, the capacitance value of the variable capacitor Cvra(V) formed in the second area Q2 and the third area Q3 increases according to a certain rule. In this way, the microwave signal transmission can be made more stable and as much as possible The reduction of transmission loss.
  • the number of variable capacitors Cvra(V) formed in the second area Q2 and the third area Q3 is the same, and the variable capacitors Cvra(V) formed in the two areas extend along the first area Q1 Symmetrical arrangement, that is, the capacitance value (or overlapping area) of the variable capacitor Cvra(V) formed in the second area Q2 and the third area Q3 has the same changing law along the direction close to the first area Q1. In this way, the microwave signal transmission can be made more stable, and the transmission loss can be reduced as much as possible.
  • the setting lengths of the branch structures 112 are set to be the same, and by setting different variable capacitors Cvra(V) in The width of the branch structure 112 is to realize the gap between any two variable capacitors Cvra(V) located on the same side of the first area Q1, close to the patch electrode 21 of the variable capacitor Cvra(V) of the first area Q1 and the branch structure 112
  • the overlapping area is greater than or equal to the overlapping area of the patch electrode 21 and the branch structure 112 of the variable capacitor Cvra (V) away from the first region Q1.
  • the length direction of the branch structure 112 is a direction perpendicular to the length direction of the main structure 111, and the width direction of the branch structure 112 is the same direction as the length direction of the main structure 111.
  • each branch structure 112 is the same, and the width gradually increases and then decreases.
  • the length of each branch structure 112 located in the same area may not be all different, as long as it satisfies any two variable capacitors Cvra(V) located on the same side of the first area Q1, close to the variable capacitor Cvra(V) of the first area Q1 V)
  • the overlapping area of the patch electrode 21 and the branch structure 112 is greater than or equal to the overlapping area of the patch electrode 21 and the branch structure 112 far from the variable capacitance Cvra (V) of the first region Q1.
  • FIG. 5 is taken as an example for description.
  • the setting widths of the branch structures 112 are set to be the same, and by setting different variable capacitors Cvra(V) in The length of the branch structure 112 is to realize that any two variable capacitors Cvra(V) located on the same side of the first area Q1, close to the patch electrode 21 of the variable capacitor Cvra(V) of the first area Q1 and the branch structure 112
  • the overlapping area is greater than or equal to the overlapping area of the patch electrode 21 and the branch structure 112 of the variable capacitor Cvra (V) away from the first region Q1.
  • each branch structure 112 located in the same area may not be all different, as long as it satisfies any two variable capacitors Cvra(V) located on the same side of the first area Q1, close to the variable capacitor Cvra(V) of the first area Q1 V)
  • the overlapping area of the patch electrode 21 and the branch structure 112 is greater than or equal to the overlapping area of the patch electrode 21 and the branch structure 112 far from the variable capacitance Cvra (V) of the first region Q1.
  • FIG. 6 is taken as an example for description.
  • the spacing between the variable capacitors Cvra(V) is the same.
  • the spacing d between the patch electrodes 21 can be set to the same spacing, and the spacing between the branch structures 112 can also be set to the same spacing.
  • the spacing between each variable capacitor Cvra (V) (or each patch electrode 21, each branch structure 112) can also be designed to monotonically increase or decrease according to a certain rule; or each variable capacitor Cvra (V) (or the spacing between each patch electrode 21 and each branch structure 112) is designed to be different and does not have a certain arrangement rule, which is not limited in the embodiment of the present invention.
  • the first substrate 10 and the second substrate 20 may be a glass substrate with a thickness of 100-1000 microns, a sapphire substrate, or a polyethylene terephthalate with a thickness of 10-500 microns may be used. Diester substrate, triallyl cyanurate substrate and polyimide transparent flexible substrate.
  • the first substrate 10 and the second substrate 20 may use high-purity quartz glass with extremely low dielectric loss. Compared with ordinary glass substrates, the use of quartz glass for the first substrate 10 and the second substrate 20 can effectively reduce the loss of microwaves, so that the phase shifter has low power consumption and high signal-to-noise ratio.
  • the material of the patch electrode 21, the branch structure 112, the main structure 111, and the ground electrode 12 may be made of metals such as aluminum, silver, gold, chromium, molybdenum, nickel, or iron.
  • the liquid crystal molecules in the liquid crystal layer 30 are positive liquid crystal molecules or negative liquid crystal molecules.
  • the included angle between the second electrodes is greater than 0 degree and less than or equal to 45 degrees.
  • the angle between the long axis direction of the liquid crystal molecules and the second electrode in the specific embodiment of the present invention is greater than 45 degrees and less than 90 degrees, which ensures that after the liquid crystal molecules are deflected, the medium of the liquid crystal layer 30 is changed. Electric constant to achieve the purpose of phase shifting.
  • the inventor compared the transmission loss and phase difference between the technical solution of the embodiment of the present invention and the two phase shifters with the largest and smallest periodically loaded variable capacitance Cvra(V); ,
  • the largest variable capacitance Cvra(V) refers to the capacitance value of the variable capacitance Cvra(V) with the largest overlap area in the embodiment of the present invention; the smallest variable capacitance Cvra(V) refers to the embodiment of the present invention The capacitance value of the variable capacitor Cvra(V) with the smallest overlap area.
  • Figure 10 is a graph of permittivity and transmission loss
  • Figure 11 is a graph of permittivity and phase difference
  • S1 represents the comparison scheme (the capacitance value is the smallest)
  • S2 represents the comparison Scheme (the capacitance value is the largest)
  • S3 represents the scheme of the present invention.
  • the transmission loss range of the comparison scheme (the capacitance value is the largest) is -18dB to -8dB, and the span is greater than 10dB.
  • the transmission loss range is only -6.8 to -4 dB through the gradual change of the impedance in each cycle, which significantly improves the consistency of the phase shifter. It should be noted here that although the minimum transmission loss of the capacitor is small, the phase shift range is approximately 0, so 360° phase shift cannot be achieved.
  • this embodiment provides an antenna including the above-mentioned phase shifter. Since the antenna includes the above-mentioned phase shifter, its phase shifting effect is better.
  • the liquid crystal antenna also includes a feeding interface for feeding the microwave signal in the cable to the microwave signal transmission structure, for example, the main structure 111 of the signal electrode 11.
  • the patch unit 22 can be directly disposed on the second substrate 20, that is, the patch unit 22 is in contact with the second substrate 20. In this way, the overall thickness of the antenna can be reduced, and the microwave signal only needs to
  • the liquid crystal layer 30 can be fed into the liquid crystal layer 30 through a layer of the second substrate 20, so that the loss of microwave signals can be reduced.
  • the patch unit 30 is arranged on a separate substrate and is attached to the side of the second substrate away from the liquid crystal layer 30.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本发明实施例提供一种移相器及天线,属于通信技术领域。本发明的移相器,其包括:相对设置的第一基板和第二基板,以及设置在第一基板和第二基板之间的介质层;其中,第一基板包括:第一基底,设置在第一基底靠近介质层一侧的参考电极和信号电极;信号电极包括:主体结构和多个分支结构;第二基板包括:第二基底,设置在第二基底靠近介质层一侧的多个贴片电极,且与多个分支结构一一对应设置,形成多个可变电容;移相器具有第一区域,分设在第一区域两侧的第二区域和第三区域;对于位于第一区域同一侧的任意两个可变电容,靠近第一区域的可变电容的贴片电极和分支结构的交叠面积,均大于或等于远离第一区域的可变电容的贴片电极和分支结构的交叠面积。

Description

移相器及天线 技术领域
本发明属于通信技术领域,具体涉及一种移相器及天线。
背景技术
现今的液晶移相器结构,在对盒后的上玻璃基板引入周期性的贴片电容加载,可变电容的调节是通过调节异面两金属板上加载的电压差驱动液晶分子偏转,得到不同的液晶材料特性,对应到电容的容值可变。共表面波导(CPW)结构因其接地电极和信号电极在同一平面内,更易于结构的连接设计,可以省掉玻璃打孔的功能需求。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种移相器及天线。
第一方面,本发明实施例提供一种移相器,其包括:相对设置的第一基板和第二基板,以及设置在所述第一基板和所述第二基板之间的介质层;其中,
所述第一基板包括:第一基底,设置在所述第一基底靠近所述介质层一侧的参考电极和信号电极;所述信号电极包括:主体结构和连接在所述主体结构长度方向上的多个分支结构;
所述第二基板包括:第二基底,设置在所述第二基底靠近所述介质层一侧的多个贴片电极;所述多个贴片电极与所述多个分支结构一一对应设置,形成多个可变电容;且每一所述贴片电极与所述参考电极在所述第一基底上的正投影至少部分重叠;
所述移相器具有第一区域,分设在所述第一区域两侧的第二区域和第三区域;其中,位于所述第二区域和所述第三区域中的所述可变电容的所述贴片电极和所述分支结构的交叠面积,均小于位于所述第一区域的所述可变电 容的所述贴片电极和所述分支结构的交叠面积;且在所述第一区域中仅具有一种交叠面积的所述可变电容;
当所述第二区域和所述第三区域中的每个所述可变电容的数量均为多个时,对于位于所述第一区域同一侧的任意两个所述可变电容,靠近所述第一区域的所述可变电容的所述贴片电极和所述分支结构的交叠面积,均大于或等于远离所述第一区域的所述可变电容的所述贴片电极和所述分支结构的交叠面积。
可选地,所述参考电极包括:第一子参考电极和第二子参考电极;所述信号电极设置在所述第一子参考电极和所述第二子参考电极之间;每一所述贴片电极与所述参考电极的所述第一子参考电极和所述第二子参考电极在所述第一基底上的正投影至少部分重叠。
可选地,位于所述第二区域中的各个所述可变电容的所述贴片电极和所述分支结构的交叠面积不同;和/或,
位于所述第三区域中的各个所述可变电容的所述贴片电极和所述分支结构的交叠面积不同。
可选地,位于所述第二区域和位于所述第三区域的可变电容的数量相同,且以所述第一区域为中心,位于所述第二区域和位于所述第三区域的可变电容对称设置。
可选地,沿靠近第一区域的方向,位于所述第二区域中的各个所述可变电容的所述贴片电极和所述分支结构的交叠面积单调递增;和/或,
沿靠近第一区域的方向,位于所述第三区域中的各个所述可变电容的所述贴片电极和所述分支结构的交叠面积单调递增。
可选地,位于所述第一区域中的所述可变电容数量仅为一个,且满足所述移相器的移相度大于或者等于360°。
可选地,位于所述第一区域中的所述可变电容数量为多个,且满足所述移相器的移相度大于或者等于360°。
可选地,各个所述分支结构的宽度相同;或者,各个分支结构的长度相同。
可选地,任意两相邻所述可变电容之间的间距相同。
可选地,所述分支结构贯穿所述主体结构。
可选地,所述分支结构与所述主体结构为一体成型结构。
可选地,所述参考电极为接地电极。
可选地,所述介质层包括液晶分子。
第二方面,本发明实施例提供一种天线,其包括上述的移相器。
可选地,所述天线还包括设置在第二基底背离介质层一侧上的至少两个贴片单元;两个所述贴片单元之间的间隙与两个所述贴片电极之间的间隙对应。
可选地,所述贴片单元与所述第二基底接触。
附图说明
图1为一种传输线周期性并联加载可变电容的等效模型。
图2为一种移相器的俯视图。
图3为图2的A-A'的截面图。
图4为图2移相器的阻抗变化图。
图5为本发明实施例的一种移相器的俯视图。
图6为本发明实施例的另一种移相器的俯视图。
图7为图5的移相器的侧视图。
图8为图5移相器的A-A'的截面图。
图9为图5移相器的阻抗变化图。
图10为介电常数和传输损耗的曲线图。
图11为介电常数和相位差的曲线图。
图12为本发明实施例的天线的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在此需要说明的是,传输线周期性并联加载可变电容,通过改变可变电容的容值,可以实现相位的变化,其等效模型如图1所示。其中,Lt、Ct为传输线等效的线电感和线电容,取决于传输线及基板的特性。可变电容Cvar(V)可以通过MEMS电容、可变二极管电容等来实现。目前,通过压控液晶来实现平板电容的电容值改变,从而制备液晶移相器。
图2和3给出一种示例性的CPW结构的液晶移相器,等效电路图同样如图1所示,该液晶移相器包括相对设置的第一基板和第二基板,以及形成在第一基板和第二基板之间的液晶层30。
其中,第一基板包括第一基底10,设置在第一基底10靠近液晶层一侧的接地电极12和信号电极11;接地电极12包括第一子接地电极121和第二子接地电极122,信号电极11设置在第一子接地电极121和第二子接地电极122之间;信号电极11包括与第一子接地电极121和第二子接地电极122延 伸方向相同的主体结构111,以及连接在主体结构111长度方向上的多个间隔设置的分支结构112。
第二基板包括第二基底20,以及设置在第二基底20靠近液晶层一侧的多个贴片电极21,贴片电极21的延伸方向与信号电极11的分支结构112的延伸方向相同,且贴片电极21与分支结构112一一对应设置;同时,每个贴片电极21和与之对应的分支结构112,以及第一子接地电极121和第二子接地电极122在基底上的投影均至少部分重叠,以形成电流回路。而在这种移相器中所形成的可变电容Cvra(V)的交叠面积相同,故在给贴片电极21施加相同电压,所形成的每个可变电容Cvra(V)的等效阻抗也是相同的,如图4所示,每个可变电容Cvra(V)阻抗为Z1。在此需要说明的是,Z0代表信号电极11的信号引入端与接地电极12之间所形成的阻抗值。
为了将CPW周期加载可变电容Cvra(V)结构用于相控阵天线,实现波束扫描的功能,因此要求每个移相器的相差可调范围必须大于360°,因此为了达到该值,在有限的面积内放置并合理排布移相器,则要求移相器的整体长度不宜过长,因此每个周期内可变电容Cvra(V)的值必须足够的大,才能实现有限长内的相差。而若可变电容Cvra(V)变化值较大,则势必造成等效传输线的阻抗变化较大,则带来的很大问题是端口性能变差,从而使得传输损耗增大。
为解决上述问题,本发明实施例提供如下技术方案。在介绍本发明实施例的技术方案之前,需要说明的是,以下所提供的移相器中的介质层包括但不限于液晶层30,参考电极包括但不限于接地电极12,相应的第一子参考电极和第二子参考电极也用于连接接地信号,故为便于便描述分别用第一子接地电极121和第二子接地电极122表示。在以下描述中,介质层为液晶层30,参考电极为接地电极12,第一子参考电极和第二子参考电极分别为第一子接地电极121和第二子接地电极122为例进行描述。
第一方面,如图5-9所示,本发明实施例提供一种移相器,其包括:相对设置的第一基板和第二基板,以及设置在第一基板和第二基板之间的液晶 层30。
其中,第一基板包括:第一基底10,设置在第一基底10靠近介质层一侧的基底电极和信号电极11;信号电极11包括:主体结构111和连接在主体结构111长度方向上的多个分支结构112。
第二基板包括:第二基底20,设置在第二基底20靠近介质层一侧的多个贴片电极21;多个贴片电极21与多个分支结构112一一对应设置,形成多个可变电容Cvra(V);且每一贴片电极21与参考电极在第一基底10上的正投影至少部分重叠。其中,在给主体结构111输入微波信号时,接地电极12、主体结构111、分支结构112、贴片电极21形成电流回路。
在本发明实施例中移相器可划分为第一区域Q1,分设在第一区域Q1两侧的第二区域Q2和第三区域Q3(也即如图5所示,从左至右分为第二区域Q2、第一区域Q1、第三区域Q3);其中,位于第二区域Q2和第三区域Q3中的每个形成所可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,均小于位于第一区域Q1的所形成可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积;且在第一区域Q1中仅具有一种交叠面积的可变电容Cvra(V)。
当第二区域Q2和第三区域Q3中的每个可变电容Cvra(V)的数量均为多个时,对于位于第一区域Q1同一侧的任意两个可变电容Cvra(V),靠近第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,均大于或等于远离第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积。
在此需要说明的是,交叠面积是是指贴片电极21和分支结构112在第一基底10(或者第二基底20)上的正投影的交叠面积。
在本发明实施例中,由于贴片电极21与分支结构112存在一定的交叠,因此在给主体结构111输入微波信号时,通过加载贴片电极21与分支结构112的电压存在一定的压差,而使得贴片电极21和信号电极11交叠所形成 的液晶电容中的液晶层30的介电常数发生改变,以改变微波信号的相位。而且在本发明实施例中,对于位于第一区域Q1同一侧的任意两个可变电容Cvra(V),靠近第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,均大于或等于远离第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,也即,沿主体结构111的长度方向,所形成的周期可变电容Cvra(V)的电容值呈先增大后减小的趋势,可变电容Cvra(V)的电容值与阻抗值正相关,故沿主体结构111的长度方向,移相器的阻抗呈先增大后减小的趋势(如图9所示,沿主体结构111的长度方向阻抗向由Z0-Z3-Z2-Z1-Z2-Z3-Z0;其中,Z1>Z2>Z3>Z0),同时,可以理解的是,微波信号是由信号电极11的主体结构111的两端引入的,这样一来,可以尽可能避免由于每个可变电容Cvra(V)的电容值较大而造成微波信号经过周期可变电容Cvra(V)后发生反射,造成传输损耗较大的问题。
在一些实施例中,接地电极12包括第一子接地电极121和第二子接地电极122,且第一子接地电极121和第二子接地电极122将信号电极11的主体结构111和分支结构112限制在二者之间,且每个贴片电极21均与第一子接地电极121和第二子接地电极122在第一基底10(或者第二基底20)上的正投影至少部分重叠。此时,在给主体结构111输入微波信号时,第一子接地电极121、第二子接地电极122、分支结构112。主体结构111、贴片电极21形成电流回路。
其中,为了使得微波信号传输平稳,在上述结构的基础上,可以将分支结构112贯穿主体结构111设置。在一些实施例中,分支结构112和主体结构111可以设计为一体成型结构,也即,如图7所示,分支结构112和主体结构111同层设置,且材料相同;这样一来,方便分支结构112和主体结构111的制备,且降低工艺成本。当然,分支结构112和主体结构111也可以是通过任何方式电连接在一起,在本发明实施例中并不对此做出任何限定。此时,在给主体结构111输入微波信号时,通过加载贴片电极21与分支结构112的电压存在一定的压差,而使得贴片电极21和信号电极11交叠所形成 的液晶电容中的液晶层30的介电常数发生改变,以改变微波信号的相位。
当然,在本发明实施例中,接地电极12可以仅包括第一子接地电极121和第二子接地电极122中的一者,对于微波信号的传输原理与上述原理相同,在此不再详细说明。
在一些实施例中,位于第一区域Q1中的可变电容Cvra(V)的数量仅为一个,也即在第一区域Q1中仅设置一个贴片电容和一个分支结构112,且二者在基底上的正投影至少部分重叠,形成一可变电容Cvra(V),该可变电容Cvra(V)的电容值,也即贴片电容和分支结构112的交叠面积应当满足微波信号经过第一区域Q1、第二区域Q2、第三区域Q3后可以实现不小于360°移相。
在一些实施例中,如果第一区域Q1中的可变电容Cvra(V)为一个,而该移相器无法实现360°移相时,可以在第一区域Q1中设置多个交叠面积相等的可变电容Cvra(V),以使微波信号经过第一区域Q1、第二区域Q2、第三区域Q3后可以实现不小于360°移相。当然,也可以在第二区域Q2和/或第三区域Q3靠近第一区域Q1的位置形成至少一个可变电容Cvra(V),以使微波信号经过第一区域Q1、第二区域Q2、第三区域Q3后可以实现不小于360°移相,在本发明实施例中对此不进行限定,只要满足位于第一区域Q1同一侧的任意两个可变电容Cvra(V),靠近第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,均大于或等于远离第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积即可。
在一些实施例中,第二区域Q2中所形成的可变电容Cvra(V)的交叠面积均不相同,和/或第三区域Q3中所形成的可变电容Cvra(V)的交叠面积均不相同。优选的,沿靠近第一区域Q1的方向上,第二区域Q2和第三区域Q3中所形成的可变电容Cvra(V)的交叠面积呈单调递增,也就是说,沿靠近第一区域Q1的方向上,第二区域Q2和第三区域Q3中所形成的可变电容Cvra(V)的电容值均按照一定规律增大,这样一来,可以使得微波信号传输的更加平稳,尽可能的降低了传输损耗。
在一些实施例中,第二区域Q2和第三区域Q3中所形成的可变电容Cvra(V)的数量相同,且两个区域中所形成的可变电容Cvra(V)沿第一区域Q1对称设置,也即第二区域Q2和第三区域Q3中所形成的可变电容Cvra(V)的电容值(或者说交叠面积),沿靠近第一区域Q1的方向上,变化规律相同。这样一来,可以使得微波信号传输的更加平稳,尽可能的降低了传输损耗。
在一些实施例中,如图5所示,为实现各个可变电容Cvra(V)的交叠面积不同,将各个分支结构112设置长度设置为相同,通过设置不同可变电容Cvra(V)中分支结构112的宽度,以实现位于第一区域Q1同一侧的任意两个可变电容Cvra(V),靠近第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,均大于或等于远离第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积。
在此需要说明的是,分支结构112的长度方向为垂直于主体结构111的长度方向的方向,分支结构112的宽度方向则为与主体结构111的长度方向相同的方向。
如图5所示,由第二区域Q2到第一区域Q1再到第三区域Q3,各个分支结构112的长度相同,宽度逐渐增大再减小。此外,位于同一区域中的各个分支结构112的长度不一定全部不同,只要满足位于第一区域Q1同一侧的任意两个可变电容Cvra(V),靠近第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,均大于或等于远离第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积即可,在本发明实施例中仅以图5为例进行说明。
在一些实施例中,如图6所示,为实现各个可变电容Cvra(V)的交叠面积不同,将各个分支结构112设置宽度设置为相同,通过设置不同可变电容Cvra(V)中分支结构112的长度,以实现位于第一区域Q1同一侧的任意两个可变电容Cvra(V),靠近第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,均大于或等于远离第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积。
如图6所示,由第二区域Q2到第一区域Q1再到第三区域Q3,各个分支结构112的宽度相同,长度逐渐增大再减小。此外,位于同一区域中的各个分支结构112的长度不一定全部不同,只要满足位于第一区域Q1同一侧的任意两个可变电容Cvra(V),靠近第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,均大于或等于远离第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积即可,在本发明实施例中仅以图6为例进行说明。
在一些实施例中,各个可变电容Cvra(V)之间的间距相同。此时,可以将各个贴片电极21之间的间距d设置为相同间距,同时将各个分支结构112之间的间距也设置为相同间距。当然,也可以将各个可变电容Cvra(V)(或者说各个贴片电极21、各个分支结构112)之间的间距设计为按照一定规律单调增或者单调减;也可以将各个可变电容Cvra(V)(或者说各个贴片电极21、各个分支结构112)之间的间距设计为不同,且不具有一定的排布规律,在本发明实施例中对此不做限定。
在一些实施例中,第一基底10和第二基底20可以采用厚度为100-1000微米的玻璃基板,也可采用蓝宝石衬底,还可以使用厚度为10-500微米的聚对苯二甲酸乙二酯基板、三聚氰酸三烯丙酯基板和聚酰亚胺透明柔性基板。具体的,第一基底10和第二基底20可以采用介电损耗极低的高纯度石英玻璃。相比于普通玻璃基板,第一基底10和第二基底20采用石英玻璃可以有效减小对微波的损耗,使移相器具有低的功耗和高的信噪比。
在一些实施例,贴片电极21、分支结构112、主体结构111、接地电极12的材料均可以采用铝、银、金、铬、钼、镍或铁等金属制成。
在一些实施例中,液晶层30中的液晶分子为正性液晶分子或负性液晶分子,需要说明的是,当液晶分子为正性液晶分子时,本发明具体实施例液晶分子长轴方向与第二电极之间的夹角大于0度小于等于45度。当液晶分子为负向液晶分子时,本发明具体实施例液晶分子长轴方向与第二电极之间的夹角大于45度小于90度,保证了液晶分子发生偏转后,改变液晶层30 的介电常数,以达到移相的目的。
发明人为验证本发明实施例的移相器的效果,对本发明实施例的技术方案和周期性加载可变电容Cvra(V)最大和最小的两种移相器的传输损耗和相差进行对比;其中,可变电容Cvra(V)最大是指本发明实施例中可变电容Cvra(V)中交叠面积最大的一者的电容值;可变电容Cvra(V)最小是指本发明实施例中可变电容Cvra(V)中交叠面积最小的一者的电容值。其中,如图10和11所示,图10为介电常数和传输损耗的曲线图;图11为介电常数和相位差的曲线图;S1代表对比方案(电容取值最小);S2代表对比方案(电容值取值最大);S3代表本发明方案。如图10和11所示,在相同的移相情况下,对比方案(电容值取值最大)的传输损耗范围为-18dB~-8dB,跨度大于10dB。而本发明实施例提出的方案,通过每个周期阻抗逐渐变化的方式,使得传输损耗范围仅为-6.8~-4dB,显著提高了移相器的一致性。在此要说明的是,虽然电容最小传输损耗小,但是移相范围大致为0,故不能够实现360°移相。
第二方面,如图12所示,本实施例提供一种天线,其包括上述移相器,由于该天线包括上述的移相器,故其移相效果更好。
其中,在第二基底20的背离液晶层30的一侧还设置有至少两个贴片单元22,其中,每两个贴片单元22之间的间隙与贴片电极21之间的间隙对应设置。这样一来,可以使得经过上述的移相器进行相位调整后的微波信号从贴片单元22之间的间隙辐射出去。当然,在液晶天线中还包括馈电接口,用于将电缆中的微波信号馈入至微波信号传输结构上,例如:信号电极11的主体结构111上。
在一些实施例中,贴片单元22可以直接设置在第二基底20上,也即贴片单元22与第二基底20接触,这样一来,可以减小天线的整体厚度,同时微波信号仅需要透过一层第二基底20即可以馈入液晶层30,从而可以减小微波信号的损耗。当然将贴片单元30设置在单独的基底上,在与第二基底背离液晶层30的一侧相贴合。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示 例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (16)

  1. 一种移相器,其包括:相对设置的第一基板和第二基板,以及设置在所述第一基板和所述第二基板之间的介质层;其中,
    所述第一基板包括:第一基底,设置在所述第一基底靠近所述介质层一侧的参考电极和信号电极;所述信号电极包括:主体结构和连接在所述主体结构长度方向上的多个分支结构;
    所述第二基板包括:第二基底,设置在所述第二基底靠近所述介质层一侧的多个贴片电极;所述多个贴片电极与所述多个分支结构一一对应设置,形成多个可变电容;且每一所述贴片电极与所述参考电极在所述第一基底上的正投影至少部分重叠;
    所述移相器具有第一区域,分设在所述第一区域两侧的第二区域和第三区域;其中,位于所述第二区域和所述第三区域中的每个所述可变电容的所述贴片电极和所述分支结构的交叠面积,均小于位于所述第一区域的所述可变电容的所述贴片电极和所述分支结构的交叠面积;且在所述第一区域中仅具有一种交叠面积的所述可变电容;
    当所述第二区域和所述第三区域中的所述可变电容的数量均为多个时,对于位于所述第一区域同一侧的任意两个所述可变电容,靠近所述第一区域的所述可变电容的所述贴片电极和所述分支结构的交叠面积,均大于或等于远离所述第一区域的所述可变电容的所述贴片电极和所述分支结构的交叠面积。
  2. 根据权利要求1所述的移相器,其中,所述参考电极包括:第一子参考电极和第二子参考电极;所述信号电极设置于所述第一子参考电极和所述第二子参考电极之间;每一所述贴片电极与所述参考电极的所述第一子参考电极和所述第二子参考电极在所述第一基底上的正投影至少部分重叠。
  3. 根据权利要求1或2所述的移相器,其中,位于所述第二区域中的各个所述可变电容的所述贴片电极和所述分支结构的交叠面积不同;和/或,
    位于所述第三区域中的各个所述可变电容的所述贴片电极和所述分支结构的交叠面积不同。
  4. 根据权利要求1-3中任一项所述的移相器,其中,位于所述第二区域和位于所述第三区域的可变电容的数量相同,且以所述第一区域为中心,位于所述第二区域和位于所述第三区域的可变电容对称设置。
  5. 根据权利要求1-4中任一项所述的移相器,其中,沿靠近所述第一区域的方向,位于所述第二区域中的各个所述可变电容的所述贴片电极和所述分支结构的交叠面积单调递增;和/或,
    沿靠近所述第一区域的方向,位于所述第三区域中的各个所述可变电容的所述贴片电极和所述分支结构的交叠面积单调递增。
  6. 根据权利要求1或2所述的移相器,其中,位于所述第一区域中的所述可变电容数量仅为一个,且满足所述移相器的移相度大于或者等于360°。
  7. 根据权利要求1或2所述的移相器,其中,位于所述第一区域中的所述可变电容数量为多个,且满足所述移相器的移相度大于或者等于360°。
  8. 根据权利要求1-7中任一项所述的移相器,其中,各个所述分支结构的宽度相同;或者,各个分支结构的长度相同。
  9. 根据权利要求1-7中任一项所述的移相器,其中,任意两相邻所述可变电容之间的间距相同。
  10. 根据权利要求1-7中任一项所述的移相器,其中,所述分支结构贯穿所述主体结构。
  11. 根据权利要求1-7中任一项所述的移相器,其中,所述分支结构与所述主体结构为一体成型结构。
  12. 根据权利要求1-7中任一项所述的移相器,其中,所述参考电极为接地电极。
  13. 根据权利要求1-7中任一项所述的移相器,其中,所述介质层包括 液晶分子。
  14. 一种天线,其包括权利要求1-13中任一项所述的移相器。
  15. 根据权利要求14所述的天线,其中,所述天线还包括设置在第二基底背离介质层一侧上的至少两个贴片单元;两个所述贴片单元之间的间隙与两个所述贴片电极之间的间隙对应。
  16. 根据权利要求15所述的天线,其中,所述贴片单元与所述第二基底接触。
PCT/CN2020/080840 2020-03-24 2020-03-24 移相器及天线 WO2021189238A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080000349.9A CN113728512B (zh) 2020-03-24 2020-03-24 移相器及天线
US17/258,800 US11411544B2 (en) 2020-03-24 2020-03-24 Phase shifter and antenna
PCT/CN2020/080840 WO2021189238A1 (zh) 2020-03-24 2020-03-24 移相器及天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080840 WO2021189238A1 (zh) 2020-03-24 2020-03-24 移相器及天线

Publications (1)

Publication Number Publication Date
WO2021189238A1 true WO2021189238A1 (zh) 2021-09-30

Family

ID=77890804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080840 WO2021189238A1 (zh) 2020-03-24 2020-03-24 移相器及天线

Country Status (3)

Country Link
US (1) US11411544B2 (zh)
CN (1) CN113728512B (zh)
WO (1) WO2021189238A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365422B (zh) * 2018-04-04 2021-01-29 京东方科技集团股份有限公司 一种信号处理装置及其制备方法
CN116941123A (zh) * 2022-02-21 2023-10-24 京东方科技集团股份有限公司 移相器、天线及电子设备
WO2023159635A1 (zh) * 2022-02-28 2023-08-31 京东方科技集团股份有限公司 移相器和天线
WO2023240396A1 (zh) * 2022-06-13 2023-12-21 京东方科技集团股份有限公司 天线、天线阵列及电子设备
WO2024098275A1 (zh) * 2022-11-09 2024-05-16 京东方科技集团股份有限公司 移相器、移相器阵列、天线阵列及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140022029A1 (en) * 2011-11-14 2014-01-23 Anatoliy Volodymyrovych GLUSHCHENKO Nanoparticle-enhanced liquid crystal radio frequency phase shifter
CN105308789A (zh) * 2013-02-15 2016-02-03 达姆施塔特工业大学 相移器件
CN108808181A (zh) * 2018-07-20 2018-11-13 成都天马微电子有限公司 液晶移相器和天线
CN109193081A (zh) * 2018-08-06 2019-01-11 艾尔康系统有限责任公司 射频移相装置
CN208818972U (zh) * 2018-08-10 2019-05-03 北京京东方传感技术有限公司 移相器及液晶天线
CN110707397A (zh) * 2019-10-17 2020-01-17 京东方科技集团股份有限公司 液晶移相器及天线
CN110824734A (zh) * 2018-08-10 2020-02-21 北京京东方传感技术有限公司 液晶移相器及液晶天线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4307177C2 (de) * 1993-03-08 1996-02-08 Lueder Ernst Schaltungsanordnung als Teil eines Schieberegisters zur Ansteuerung von ketten- oder matrixförmig angeordneten Schaltelementen
CN110518311A (zh) * 2018-05-21 2019-11-29 京东方科技集团股份有限公司 一种移相器及其工作方法、天线、通信设备
WO2019223647A1 (zh) 2018-05-21 2019-11-28 京东方科技集团股份有限公司 一种移相器及其操作方法、天线和通信设备
CN110632615B (zh) * 2019-10-30 2021-07-23 中国科学院电子学研究所 基于稀疏孔径的合成孔径激光雷达三维成像方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140022029A1 (en) * 2011-11-14 2014-01-23 Anatoliy Volodymyrovych GLUSHCHENKO Nanoparticle-enhanced liquid crystal radio frequency phase shifter
CN105308789A (zh) * 2013-02-15 2016-02-03 达姆施塔特工业大学 相移器件
CN108808181A (zh) * 2018-07-20 2018-11-13 成都天马微电子有限公司 液晶移相器和天线
CN109193081A (zh) * 2018-08-06 2019-01-11 艾尔康系统有限责任公司 射频移相装置
CN208818972U (zh) * 2018-08-10 2019-05-03 北京京东方传感技术有限公司 移相器及液晶天线
CN110824734A (zh) * 2018-08-10 2020-02-21 北京京东方传感技术有限公司 液晶移相器及液晶天线
CN110707397A (zh) * 2019-10-17 2020-01-17 京东方科技集团股份有限公司 液晶移相器及天线

Also Published As

Publication number Publication date
CN113728512A (zh) 2021-11-30
US20220140800A1 (en) 2022-05-05
CN113728512B (zh) 2022-09-09
US11411544B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2021189238A1 (zh) 移相器及天线
US11949142B2 (en) Feeding structure, microwave radio frequency device and antenna
US11158916B2 (en) Phase shifter and liquid crystal antenna
WO2021259142A1 (zh) 移相器及天线
WO2020030135A1 (zh) 液晶移相器及其操作方法、液晶天线和通信设备
WO2021037132A1 (zh) 馈电结构、微波射频器件及天线
WO2021073505A1 (zh) 液晶移相器及天线
US11264684B2 (en) Liquid crystal phase shifter comprising a liquid crystal cell with first and second substrates separated by a partition plate having first and second microstrips on opposing surfaces of the plate
US11978942B2 (en) Feeding structure, microwave radio frequency device and antenna
CN112448105B (zh) 移相器及天线
WO2020244282A1 (zh) 一种超材料可调电容器结构
US11189920B2 (en) Control substrate, liquid crystal phase shifter and method of forming control substrate
WO2022110013A1 (zh) 移相器及天线
WO2022170497A1 (zh) 阵列天线模块及其制备方法、相控阵天线系统
US20230155266A1 (en) Phase shifter and antenna
WO2022111170A1 (zh) 天线及其制作、驱动方法、天线系统
WO2023155109A1 (zh) 移相器、天线及电子设备
TWI737307B (zh) 超材料可調電容器結構
WO2024000289A1 (zh) 一种移相器单元及移相器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927348

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20927348

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04-04-2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20927348

Country of ref document: EP

Kind code of ref document: A1