WO2020244282A1 - 一种超材料可调电容器结构 - Google Patents

一种超材料可调电容器结构 Download PDF

Info

Publication number
WO2020244282A1
WO2020244282A1 PCT/CN2020/080886 CN2020080886W WO2020244282A1 WO 2020244282 A1 WO2020244282 A1 WO 2020244282A1 CN 2020080886 W CN2020080886 W CN 2020080886W WO 2020244282 A1 WO2020244282 A1 WO 2020244282A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
substrate
capacitor structure
microstrip line
tunable capacitor
Prior art date
Application number
PCT/CN2020/080886
Other languages
English (en)
French (fr)
Inventor
修威
田海燕
杨光
Original Assignee
北京华镁钛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京华镁钛科技有限公司 filed Critical 北京华镁钛科技有限公司
Priority to US16/954,434 priority Critical patent/US11764449B2/en
Priority to EP20735471.3A priority patent/EP3982479A4/en
Publication of WO2020244282A1 publication Critical patent/WO2020244282A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/181Phase-shifters using ferroelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the invention relates to the technical field of phase shifters and antennas, and is especially related to continuous analog metamaterial tunable capacitors.
  • Adjustable capacitor is a kind of capacitor whose capacitance can be adjusted within a certain range. It is widely used in time-frequency response, frequency selection, phase shift control, transmission matching and other technical fields, especially based on the structure of adjustable capacitor to realize phase shifter. Method has become a technical hotspot.
  • Phase shifters are widely used in many radio frequency equipment such as phased array antennas, phase modulators and harmonic distortion cancellers.
  • the performance of phase shifters is also proposed to be miniaturized, light weight, and low insertion loss. And in the entire working bandwidth, there are higher requirements such as good flatness, large phase shift range, wide working bandwidth, good input and output port matching, low power consumption, and low cost.
  • phase shifters There are many implementation methods of existing phase shifters, but they all have certain application limitations. Among them, the active phase shifter has large power consumption and limited application scenarios. Among passive phase shifters, switching phase shifters based on PIN diodes, CMOS, MEMS, etc. cannot achieve continuous phase adjustment, and are limited in application scenarios requiring miniaturization and high phase shift accuracy; based on varactor diodes Reflective or variable capacitor phase shifters in high frequency applications will reduce the figure of merit (FOM) due to the increase in insertion loss, affecting performance indicators. In recent years, with the development of material science, phase shifters based on metamaterials such as ferroelectric film BST and liquid crystals have been used in phase shifter design research due to their large dielectric constant adjustable range or high quality factor.
  • FOM figure of merit
  • the present invention provides a tunable capacitor structure based on a metamaterial structure, which effectively reduces the size of the variable capacitor structure and the shunt attenuation of the RF signal by the bias circuit, thereby improving the
  • the quality factor of the structure largely solves the problems of miniaturization, mass production, integration and low cost of radio frequency and microwave devices and antennas, and it also adds more freedom to antenna design.
  • a metamaterial tunable capacitor structure including:
  • the microstrip line (108) has a stub (202) that is periodically loaded, and two feeding ends (111) and (112).
  • the metamaterial medium layer is composed of one or more layers of materials with adjustable dielectric constant, and may be a liquid crystal material or a ferroelectric thin film material.
  • the structure further includes:
  • the metal floor layer (104) is also provided with isolation holes (106), and the bias line (109) is further loaded with a choke (110).
  • the gap (105) may be centered relative to the microstrip line (108), or offset from the microstrip line (108) by a certain distance, and may be arranged in a uniform period or a non-uniform period.
  • the arrangement may be uniformly symmetrical, evenly cross-arranged, or non-uniformly symmetrical or cross-arranged.
  • the isolation hole (106) can be rectangular, circular, triangular or diamond; the isolation hole (106) can be a single hole, or it can be connected in series along a bias line Of multiple holes.
  • the shape of the choke (110) can be fan-shaped, triangular, linear or rectangular; the choke (110) can be one, or it can be distributed in a partial Place multiple lines on the same side or on both sides.
  • the branches (202) can be arranged in a cross or non-cross arrangement; the branches (202) can be the same length as the gap (105) or unequal length; the branches (202) ) Can be arranged uniformly or non-uniformly; the branches (202) can be in one-to-one correspondence with the gap (105), or non-one-to-one, and the branches (202) are facing the metal floor layer ( There is no gap (105) at the position of 104).
  • the bias line (109) can also be loaded on the branch (202) of the microstrip line (108).
  • the arrangement direction of the microstrip lines (108) and the slits (105) can be linear arrangement, 180 degree bend arrangement, or 90 degree bend arrangement; said gap (105) can be It is fan-shaped or rectangular; the arrangement of the slits (105) can be uniform or non-uniform.
  • the present invention has the following beneficial effects:
  • the present invention makes full use of slitting on the microstrip line floor and loading stubs on the microstrip line to achieve the slow wave effect of the microstrip line, and achieve the purpose of effectively reducing the size of the phase shifter and the loss of the phase shifter. Improved the quality factor of the phase shifter.
  • the present invention adopts a bias line with isolation holes and choke stubs or high resistance ITO (Indium Tin Oxide), NiCr (Nickel Chromium) or other materials with a resistivity greater than 1 ⁇ 10 5 ⁇ m
  • ITO Indium Tin Oxide
  • NiCr Nickel Chromium
  • the produced bias line effectively reduces the adverse effect of the bias circuit on the performance of the phase shifter, and further improves the quality factor of the phase shifter; and the bias line with isolation holes and choke can be phase shifted Compared with the existing ITO bias line solution, the integrated processing of the transmitter transmission line reduces the process flow and the production cost is also low.
  • FIG. 1 is a side view of the structure of a metamaterial capacitor of a specific embodiment 1 of the present invention
  • Fig. 2(a) is a top view of the lower surface of the first substrate 102 based on the metamaterial tunable capacitor structure in a specific embodiment 1 of the present invention
  • FIG. 2(b) is a top view of the upper surface of the second substrate 103 based on the metamaterial tunable capacitor structure in a specific embodiment 1 of the present invention
  • Figure 2(c) is a top view of a metamaterial-based tunable capacitor structure according to a specific embodiment 1 of the present invention
  • Fig. 3 is a side view of the structure of a metamaterial-based tunable capacitor according to a specific embodiment 2 of the present invention
  • FIG. 4(a) is a top view of the bottom surface of the first substrate 102 based on the metamaterial tunable capacitor structure according to a specific embodiment 2 of the present invention
  • 4(b) is a top view of the upper surface of the second substrate 103 based on the metamaterial tunable capacitor structure according to a specific embodiment 2 of the present invention
  • Figure 4(c) is a top view of a metamaterial-based tunable capacitor structure according to a specific embodiment 2 of the present invention.
  • Figure 4(d) is an equivalent circuit model of a specific embodiment 2 of the present invention.
  • FIG. 5 is a top view of the structure of a metamaterial-based tunable capacitor according to a specific embodiment 3 of the present invention.
  • Fig. 6(a) is a top view of a specific embodiment 1 of the present invention using ITO (Indium Tin Oxide), NiCr (Nickel Chromium) or other materials with a resistivity greater than 1 ⁇ 10 5 ⁇ m to make a bias line;
  • ITO Indium Tin Oxide
  • NiCr Nickel Chromium
  • Figure 6(b) is a top view of a specific embodiment 2 of the present invention using ITO (Indium Tin Oxide), NiCr (Nickel Chromium) or some other material with a resistivity greater than 1 ⁇ 10 5 ⁇ m to make a bias line;
  • ITO Indium Tin Oxide
  • NiCr Nickel Chromium
  • Figure 6(c) is a top view of a specific embodiment 3 of the present invention using ITO (Indium Tin Oxide), NiCr (Nickel Chromium) or other materials with a resistivity greater than 1 ⁇ 10 5 ⁇ m to make a bias line;
  • ITO Indium Tin Oxide
  • NiCr Nickel Chromium
  • FIG. 7 is a schematic diagram of an optional shape of the isolation hole 106 on the floor layer 104 of the present invention.
  • FIG. 8 is a schematic diagram of alternative shapes of the choke 110 of the present invention.
  • an embodiment of the present invention provides a metamaterial-based tunable capacitor structure 101, which includes: a first substrate 102 and a second substrate 103 disposed oppositely, and a second substrate 103 between the first substrate 102 and the second substrate 103.
  • the metamaterial dielectric layer 107, the metal floor layer 104 located between the first substrate 102 and the metamaterial dielectric layer 107, at least two periodically arranged gaps 105 and isolation holes 106 on the metal floor layer 104, are located in the second
  • the microstrip line 108, the bias line 109, and the choke 110 between the substrate 103 and the metamaterial dielectric layer 107 are located at the feed ends 111 and 112 at both ends of the microstrip line 108.
  • 2(a), (b), (c) are respectively a top view of the lower surface of the first substrate 102, a top view of the upper surface of the second substrate 103, and the overall structure based on a metamaterial tunable capacitor structure in a specific embodiment 1 of the present invention Top view.
  • periodic gaps 105 are opened on the floor layer 104 facing the microstrip line 108 to form a slow-wave transmission structure, which makes the transmission required for phase shifting 360° in the metamaterial dielectric layer The path becomes shorter, thereby effectively reducing the size of the overall structure, and at the same time, a better FOM can be obtained.
  • the metal floor layer 104, the periodically arranged gaps 105, the metamaterial dielectric layer 107 and the microstrip line 108 together constitute a metamaterial tunable capacitor structure.
  • the metamaterial dielectric layer 107 is composed of one or more layers of materials with adjustable dielectric constant, which may be liquid crystal, ferroelectric thin film BST, and the like. Adjusting the dielectric constant of the metamaterial dielectric layer can change the capacitance value of the metamaterial tunable capacitor, thereby changing the phase shift amount of the metamaterial phase shifter.
  • the bias line 109 used to change the dielectric constant of the metamaterial dielectric layer 107 is loaded on the microstrip line 108.
  • the corresponding bias line 109 is placed close to the microstrip line on the floor layer 104
  • An isolation hole 106 is opened at the position of 108, which uses the principle of RF transmission line mismatch caused by impedance mutation, which effectively suppresses the phenomenon of RF signal loss caused by the transmission of RF signals along the bias line.
  • it is combined with the bias line 109 to be a certain distance from the microstrip line 108.
  • the choke stub 110 is loaded within the distance. Compared with the traditional bias line, this structural design greatly reduces the shunt attenuation of the RF signal by the bias line.
  • an embodiment of the present invention provides a metamaterial tunable capacitor structure 201, including: a first substrate 102 and a second substrate 103 disposed opposite to each other, and a super capacitor located between the first substrate 102 and the second substrate 103.
  • the microstrip line 108 between 103 and the metamaterial dielectric layer 107, the stubs 202 periodically loaded on the microstrip line 108, the bias line 109, and the choke 110 are located at the feeding ends 111 and 112 at both ends of the microstrip line 108.
  • FIGS. 4(a), (b), and (c) are respectively a top view of the lower surface of the first substrate 102, a top view of the upper surface of the second substrate 103, and the overall structure based on a metamaterial tunable capacitor structure in a specific embodiment 2 of the present invention Top view.
  • this structure by opening periodically arranged slits 105 on the floor layer 104 directly opposite to the microstrip line 108 and the stubs 202 periodically loaded on the microstrip line 108, a slow wave transmission structure is formed together, so that the The transmission path required for the phase shift of 360° in the material dielectric layer is shortened, thereby effectively reducing the size of the phase shifter, and at the same time, a better FOM can be obtained.
  • the metal floor layer 104, the periodically arranged gaps 105, the metamaterial dielectric layer 107 and the microstrip line 108 together constitute a metamaterial tunable capacitor structure.
  • the metamaterial dielectric layer 107 is composed of one or more layers of materials with adjustable dielectric constant, which may be liquid crystal, ferroelectric thin film BST, and the like.
  • Figure 4(d) is an equivalent circuit model of a specific embodiment 2 of the present invention.
  • 501 is the equivalent inductance formed by the gap 105 and the metal floor layer 104
  • 601 is the equivalent capacitance formed by the microstrip line 108 and the metal floor layer 104
  • 602 is the microstrip line 108 and the loaded stubs 202 are formed together with the metal floor layer 104
  • the equivalent adjustable capacitance is the equivalent adjustable capacitance.
  • Adjusting the dielectric constant of the metamaterial dielectric layer can change the capacitance value of 602, thereby changing the phase shift amount of the metamaterial phase shifter.
  • the bias line 109 used to change the dielectric constant of the metamaterial dielectric layer 107 is loaded on the microstrip line 108 or the stub 202. In order to reduce the influence of the bias line 109 on the RF signal, the corresponding bias line 109 is placed close to the floor layer 104 The position of the microstrip line 108 is opened with an isolation hole 106, which uses the principle of the mismatch of the RF transmission line caused by the sudden change of impedance, which effectively suppresses the phenomenon of RF signal loss caused by the transmission of the RF signal along the bias line.
  • the line 108 is loaded with the choke stub 110 within a certain distance. Compared with the traditional bias line, this structural design greatly reduces the attenuation of the RF signal by the bias line.
  • the FOM is 72°/dB and the phase shift is 360° in the design where the thickness of the liquid crystal layer is only 5 ⁇ m.
  • the required area is only 2.5mm ⁇ 3mm, and the index is better than the existing similar phase shifters.
  • an embodiment of the present invention provides a metamaterial tunable capacitor 301, which is a curved connection structure extended from the metamaterial tunable capacitor 101 of embodiment 1.
  • the wiring arrangement of the phaser is more flexible, and it is better adapted to the wiring arrangement of the phase shifter under different space conditions.
  • the bias line 109 of the metamaterial tunable capacitor 101, 201, 301 in the embodiment of the present invention can all be ITO (Indium Tin Oxide), NiCr ( Nichrome) or some other material with a resistivity greater than 1 ⁇ 10 5 ⁇ m is made of bias line 402 instead.
  • ITO indium tin oxide
  • NiCr nickel chromium
  • the structure of the bias line can be as described in Embodiment 1, 2 or 3.
  • the isolation hole 106 and the choke stub 110 are adopted, and the isolation hole 106 and the choke stub 110 are not required to be directly loaded on the microstrip line 108.
  • the thickness of the bias line 402 can be 10 nanometers to 200 nanometers. By reasonably controlling the thickness and square resistance of the plating layer of the bias line 402, the effect of choking and attenuation can also be achieved.
  • the isolation holes 106 on the floor layer 104 can be rectangular holes, round holes, but also can be but not limited to triangles, diamonds, polygonal holes, etc.
  • the choke 110 may have a loading sector shape, a loading triangle shape, and other structures such as but not limited to a loading rectangle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明公开了一种超材料可调电容器结构,包括第一基板、第二基板,超材料介质层,位于第一基板与超材料介质层之间的金属地板层,位于金属地板层上的周期性排布的缝隙以及隔离孔,位于第二基板与超材料介质层之间的微带线、微带线上周期加载的枝节、偏置线以及扼流节,位于微带线两端的两个馈电端。通过控制施加在所述偏置线上的电压调节可变介电常数超材料电容器的电容值,并以此实现基于该可变电容结构的时频响应、频率选择、移相控制、传输匹配等功能。本发明有效减小了可变电容结构尺寸和偏置电路对射频信号的分流衰减,从而提高了该结构的品质因数,很大程度上解决了射频微波器件及天线的微型化、批量化、集成化和低成本化难题,同时也为天线设计增加了更多的自由度。

Description

一种超材料可调电容器结构 技术领域
本发明涉及移相器及天线技术领域,尤其与连续的模拟超材料可调电容器相关。
背景技术
可调电容器是一种电容量可以在一定范围内调节的电容器,被广泛应用于时频响应、频率选择、移相控制、传输匹配等技术领域,特别是基于可调电容器结构实现移相器的方法成为技术热点。
移相器广泛应用于相控阵天线、相位调制器以及谐波失真抵消器等诸多射频设备中,为了获得更好的应用效果,对移相器性能也提出小型化、重量轻、插入损耗小且在整个工作带宽内的平坦度好、移相范围大、工作带宽宽、输入输出端口匹配好、低功耗、低成本等更高的要求。
现有移相器的实现方式很多,但都存在一定的应用局限。其中有源移相器功耗大,应用场景受限。在无源移相器中,基于PIN二极管、CMOS、MEMS等的开关型移相器不能实现相位的连续调节,在要求小型化和高相移精度的应用场景中受限;基于变容二极管的反射型或可变电容器型移相器在高频应用时会因插损增加从而降低品质因数(FOM),影响性能指标。近些年,随着材料科学的发展,基于铁电薄膜BST、液晶等超材料可变电容器型移相器因其介电常数可调范围大或较高的品质因数,在移相器设计研究中有着广泛的应用前景而受到越来越多的关注,也有诸多相关专利申请,如可电子地操纵的平面相控阵列天线(201280058131.4)、液晶移相器和天线(201810548743.0)、一种液晶移相器以及电子设备(201810333111.2)、MULTI-LAYERED SOFTWARE DEFINED ANTENNA AND METHOD OF MANUFACTURE(US 20180062266)等,但现有设计实现360°移相所需传输线长度较长,从而带来移相器尺寸较大、FOM降低等问题,不利于射频微波器件及天线的微型化、集成化,同时也降低了天线设计的自由度,不利于实现天线多极化工作能力,增加了馈电网络的设计难度和加工难度;此外,对于如何将调节超材料介质层介电常数的偏置电路对射频信号影响减到 最小也没有给出更好的解决方案。
发明内容
为克服现有技术的不足,本发明提供了一种基于超材料结构的可调电容器结构,该结构有效减小了可变电容结构尺寸和偏置电路对射频信号的分流衰减,从而提高了该结构的品质因数,很大程度上解决了射频微波器件及天线的微型化、批量化、集成化和低成本化难题,同时也为天线设计增加了更多的自由度。
本发明解决上述问题所采用的技术方案是:
一种超材料可调电容器结构,包括:
相对设置的第一基板(102)、第二基板(103)以及位于第一基板(102)和第二基板(103)之间的超材料介质层(107);
位于第一基板(102)与超材料介质层(107)之间的金属地板层(104);所述金属地板层(104)上具有至少2个周期性排布的缝隙(105);
位于第二基板(103)与超材料介质层(107)之间的微带线(108)、加载在微带线(108)上的偏置线(109)。
优选的,所述微带线(108)上具有周期性加载的枝节(202),以及两个馈电端(111)和(112)。
优选的,所述超材料介质层由一层或多层介电常数可调材料组成,且可为液晶材料或者铁电薄膜材料。
优选的,所述结构进一步包括:
所述金属地板层(104)上还具有隔离孔(106),所述偏置线(109)进一步加载有扼流节(110)。
优选的,所述缝隙(105)可以是相对于微带线(108)居中的,也可以是偏移微带线(108)一段距离的,可以是均匀周期排布的,也可以是非均匀周期排布的,可以是均匀对称排布的,也可以是均匀交叉排布的,还可以是非均匀对称或交叉排布的。
优选的,所述隔离孔(106)可以是矩形的,也可以是圆形的,还可以是三角形或菱形;该隔离孔(106)可以是单独一个孔,也可以是沿着偏置线串联的多个孔。
优选的,所述扼流节(110)的形状可以是扇形的,也可以是三角形的,还可以是线形或者矩形的;所述扼流节(110)可以是一个,也可以是分布在偏置线同侧或两侧的多个。
优选的,所述枝节(202)可以是交叉排列的,也可以是非交叉排列的;所述枝节(202)可以是与缝隙(105)等长的,也可以是不等长的;枝节(202)可以是均匀排列的,也可以是非均匀排列的;枝节(202)可以是与缝隙(105)错位一一对应的,也可以是非一一对应的,并且枝节(202)正对金属地板层(104)的位置没有缝隙(105)。
优选的,所述偏置线(109)还可以加载于微带线(108)的枝节(202)上。
优选的,所述微带线(108)和缝隙(105)的排列方向可以是直线排布,也可以是180度弯排布,也可以按照90度弯排布;所述缝隙(105)可以是扇形的,也可以是矩形;所述缝隙(105)排布可以是均匀的,也可以是非均匀的。
本发明相比于现有技术,具有以下有益效果是:
(1)本发明充分利用在微带线地板上开缝和在微带线上加载枝节的方式实现微带线的慢波效果,达到有效减小移相器尺寸和移相器损耗等目的,提升了移相器的品质因数。
(2)本发明通过采用具有隔离孔和扼流枝节的偏置线或高阻值的ITO(氧化铟锡)、NiCr(镍铬)或其他一些电阻率大于1×10 5Ω·m的材料制作的偏置线,有效的减小偏置电路对移相器性能带来的不利影响,进一步提升了移相器的品质因数;并且具有隔离孔和扼流节的偏置线可以和移相器传输线一体化加工,相较于现有ITO偏置线的解决方案,减少了工艺流程,制作成本也要低。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明的一个具体实施例1的超材料电容器结构侧视图;
图2(a)为本发明的一个具体实施例1的基于超材料可调电容器结构的第 一基板102下表面俯视图;
图2(b)为本发明的一个具体实施例1的基于超材料可调电容器结构的第二基板103上表面俯视图;
图2(c)为本发明的一个具体实施例1的基于超材料可调电容器结构的俯视图;
图3为本发明的一个具体实施例2的基于超材料可调电容器结构侧视图;
图4(a)为本发明的一个具体实施例2的基于超材料可调电容器结构的第一基板102下表面俯视图;
图4(b)为本发明的一个具体实施例2的基于超材料可调电容器结构的第二基板103上表面俯视图;
图4(c)为本发明的一个具体实施例2的基于超材料可调电容器结构的俯视图;
图4(d)为本发明的一个具体实施例2的等效电路模型;
图5为本发明的一个具体实施例3的基于超材料可调电容器结构俯视图;
图6(a)为本发明利用ITO(氧化铟锡)、NiCr(镍铬)或其他一些电阻率大于1×10 5Ω·m的材料制作偏置线的一个具体实施例1的俯视图;
图6(b)为本发明利用ITO(氧化铟锡)、NiCr(镍铬)或其他一些电阻率大于1×10 5Ω·m的材料制作偏置线的一个具体实施例2的俯视图;
图6(c)为本发明利用ITO(氧化铟锡)、NiCr(镍铬)或其他一些电阻率大于1×10 5Ω·m的材料制作偏置线的一个具体实施例3的俯视图;
图7为本发明地板层104上的隔离孔106的可选形状示意图;
图8为本发明扼流节110的可选形状示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例1
如图1所示,本发明实施例提供一种基于超材料可调电容器结构101,包括:相对设置的第一基板102和第二基板103以及位于第一基板102和第二基板103之间的超材料介质层107,位于第一基板102与超材料介质层107之间的金属地板层104,位于金属地板层104上的至少2个周期性排布的缝隙105以及隔离孔106,位于第二基板103与超材料介质层107之间的微带线108、偏置线109以及扼流节110,位于微带线108两端的馈电端111和112。
图2(a)、(b)、(c)分别为本发明的一个具体实施例1的基于超材料可调电容器结构的第一基板102下表面俯视图、第二基板103上表面俯视图以及整体结构俯视图。在该结构中,通过在地板层104上正对微带线108的位置开有周期排布的缝隙105,构成了慢波传输结构,使得在超材料介质层中移相360°所需的传输路径变短,从而有效的减小了整体结构的尺寸,同时也可以获得更好的FOM。
金属地板层104、周期性排布的缝隙105、超材料介质层107和微带线108共同构成了超材料可调电容器结构。其中,超材料介质层107由一层或多层介电常数可调材料组成,可以为液晶、铁电薄膜BST等。调节超材料介质层介电常数即可改变超材料可调电容器的电容值,从而改变超材料移相器的移相量。用于改变超材料介质层107介电常数的偏置线109加载于微带线108上,为了降低偏置线109对射频信号的影响,在地板层104上对应偏置线109靠近微带线108的位置开有隔离孔106,利用阻抗突变造成射频传输线失配原理,有效扼制了射频信号沿偏置线传输造成射频信号损失的现象,同时结合在偏置线109上距微带线108一定距离内加载扼流枝节110,与传统偏置线相比,这一结构设计大大降低了偏置线对射频信号的分流衰减。
基于实施例1所述液晶超材料可调电容器且工作于12.25Ghz-12.75Ghz的实物样机测试结果显示,在液晶层厚度仅为5μm的设计中,FOM为90°/dB,移相360°所需面积仅为1mm×30mm,指标优于已有同类移相器。
实施例2
如图3所示,本发明实施例提供一种超材料可调电容器结构201,包括:相对设置的第一基板102和第二基板103以及位于第一基板102和第二基板103之间的超材料介质层107,位于第一基板102与超材料介质层107之间的金属地 板层104,位于金属地板层104上的至少2个周期性排布的缝隙105以及隔离孔106,位于第二基板103与超材料介质层107之间的微带线108、微带线108上周期加载的枝节202、偏置线109以及扼流节110,位于微带线108两端的馈电端111和112。
图4(a)、(b)、(c)分别为本发明的一个具体实施例2的基于超材料可调电容器结构的第一基板102下表面俯视图、第二基板103上表面俯视图以及整体结构俯视图。在该结构中,通过在地板层104上正对微带线108的位置开有周期排布的缝隙105以及微带线108上周期加载的枝节202,共同构成了慢波传输结构,使得在超材料介质层中移相360°所需的传输路径变短,从而有效的减小了移相器的尺寸,同时也可以获得更好的FOM。
金属地板层104、周期性排布的缝隙105、超材料介质层107和微带线108共同构成了超材料可调电容器结构。其中,超材料介质层107由一层或多层介电常数可调材料组成,可以为液晶、铁电薄膜BST等。
图4(d)为本发明的一个具体实施例2的等效电路模型。501为缝隙105与金属地板层104构成的等效电感,601为微带线108与金属地板层104构成的等效电容,602为微带线108和加载的枝节202共同与金属地板层104构成的等效可调电容。
调节超材料介质层介电常数即可改变602的电容值,从而改变超材料移相器的移相量。用于改变超材料介质层107介电常数的偏置线109加载于微带线108或枝节202上,为了降低偏置线109对射频信号的影响,在地板层104上对应偏置线109靠近微带线108的位置开有隔离孔106,利用阻抗突变造成射频传输线失配原理,有效扼制了射频信号沿偏置线传输造成射频信号损失的现象,同时结合在偏置线109上距微带线108一定距离内加载扼流枝节110,与传统偏置线相比,这一结构设计大大降低了偏置线对射频信号的分流衰减。
基于实施例2所述液晶超材料可调电容器且工作于12.25Ghz-12.75Ghz的实物样机测试结果显示,在液晶层厚度仅为5μm的设计中,FOM为72°/dB,移相360°所需面积仅为2.5mm×3mm,指标优于已有同类移相器。
实施例3
如图5所示,本发明实施例提供一种超材料可调电容器301,该结构是在实 施例1的超材料可调电容器101基础上所延伸出的弯形连接结构,这一结构使移相器的走线排布更加灵活,也更好的适应不同空间条件下的移相器走线排布。
实施例4
如图6(a)、(b)、(c)所示,本发明实施例所述超材料可调电容器101、201、301的偏置线109均可以被ITO(氧化铟锡)、NiCr(镍铬)或其他一些电阻率大于1×10 5Ω·m的材料制作的偏置线402替代。利用ITO(氧化铟锡)、NiCr(镍铬)或其他一些电阻率大于1×10 5Ω·m的材料制作偏置线402时,偏置线结构可以按照实施例1、2或3中的那样采用隔离孔106和扼流枝节110形式,也可以无需采用隔离孔106和扼流枝节110形式,直接加载到微带线108上。此时,偏置线402厚度可以为10纳米至200纳米,通过合理控制偏置线402镀层的厚度和方阻,也可以达到扼流降衰减的作用。
实施例5
如图7所示,位于地板层104上的隔离孔106可以是矩形孔,也可以是圆孔,还可以是但不仅限于是三角形,菱形,多边形孔等。
实施例6
如图8所示,扼流节110可以是加载扇形,也可以是加载三角形,还可以是但不仅限于加载矩形等其他结构。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种超材料可调电容器结构,其特征在于,包括:
    相对设置的第一基板(102)、第二基板(103)以及位于第一基板(102)和第二基板(103)之间的超材料介质层(107);
    位于第一基板(102)与超材料介质层(107)之间的金属地板层(104);所述金属地板层(104)上具有至少2个周期性排布的缝隙(105);
    位于第二基板(103)与超材料介质层(107)之间的微带线(108)、加载在微带线(108)上的偏置线(109)。
  2. 依据权利要求1中所述的超材料可调电容器结构,其特征在于,所述微带线(108)上具有周期性加载的枝节(202),以及两个馈电端(111)和(112)。
  3. 依据权利要求1中所述的超材料可调电容器结构,其特征在于,所述超材料介质层由一层或多层介电常数可调材料组成,且可为液晶材料或者铁电薄膜材料。
  4. 依据权利要求1中所述的超材料可调电容器结构,其特征在于,所述结构进一步包括:
    所述金属地板层(104)上还具有隔离孔(106),所述偏置线(109)进一步加载有扼流节(110)。
  5. 依据权利要求1中所述的超材料可调电容器结构,其特征在于,所述缝隙(105)可以是相对于微带线(108)居中的,也可以是偏移微带线(108)一段距离的,可以是均匀周期排布的,也可以是非均匀周期排布的,可以是均匀对称排布的,也可以是均匀交叉排布的,还可以是非均匀对称或交叉排布的。
  6. 依据权利要求4所述的超材料可调电容器结构,其特征在于,所述隔离孔(106)可以是矩形的,也可以是圆形的,还可以是三角形或菱形;该隔离孔(106)可以是单独一个孔,也可以是沿着偏置线串联的多个孔。
  7. 依据权利要求4所述的超材料可调电容器结构,其特征在于,所述扼流节(110)的形状可以是扇形的,也可以是三角形的,还可以是线形或者矩形的;所述扼流节(110)可以是一个,也可以是分布在偏置线同侧或两侧的多个。
  8. 依据权利要求2所述的超材料可调电容器结构,其特征在于,所述枝节(202)可以是交叉排列的,也可以是非交叉排列的;所述枝节(202)可以是与缝隙(105)等长的,也可以是不等长的;枝节(202)可以是均匀排列的,也可 以是非均匀排列的;枝节(202)可以是与缝隙(105)错位一一对应的,也可以是非一一对应的,并且枝节(202)正对金属地板层(104)的位置没有缝隙(105)。
  9. 依据权利要求2所述的超材料可调电容器结构,其特征在于,所述偏置线(109)还可以加载于微带线(108)的枝节(202)上。
  10. 依据权利要求1所述的超材料可调电容器结构,其特征在于,所述微带线(108)和缝隙(105)的排列方向可以是直线排布,也可以是180度弯排布,也可以按照90度弯排布;所述缝隙(105)可以是扇形的,也可以是矩形;所述缝隙(105)排布可以是均匀的,也可以是非均匀的。
PCT/CN2020/080886 2019-06-03 2020-03-24 一种超材料可调电容器结构 WO2020244282A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/954,434 US11764449B2 (en) 2019-06-03 2020-03-24 Metamaterial-based variable capacitor structure
EP20735471.3A EP3982479A4 (en) 2019-06-03 2020-03-24 ADJUSTABLE METAMATERIAL CAPACITOR STRUCTURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910476279.3 2019-06-03
CN201910476279.3A CN110197939B (zh) 2019-06-03 2019-06-03 一种超材料可调电容器结构

Publications (1)

Publication Number Publication Date
WO2020244282A1 true WO2020244282A1 (zh) 2020-12-10

Family

ID=67753709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080886 WO2020244282A1 (zh) 2019-06-03 2020-03-24 一种超材料可调电容器结构

Country Status (4)

Country Link
US (1) US11764449B2 (zh)
EP (1) EP3982479A4 (zh)
CN (1) CN110197939B (zh)
WO (1) WO2020244282A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110197939B (zh) * 2019-06-03 2024-04-19 北京华镁钛科技有限公司 一种超材料可调电容器结构
CN112436578A (zh) * 2020-12-04 2021-03-02 中南大学湘雅三医院 一种频率可重构的磁耦合谐振式无线充电系统及充电方法
EP4145636B1 (en) * 2021-09-07 2024-03-06 TMY Technology Inc. Electromagnetic wave transmission structure
CN114122648B (zh) * 2021-11-30 2023-02-17 北京华镁钛科技有限公司 一种宽带低色散移相器
CN115995660B (zh) * 2023-02-17 2024-03-22 电子科技大学 一种小型化液晶微波移相器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202369A (zh) * 2007-12-11 2008-06-18 中国电子科技集团公司第五十五研究所 一种小型化mems开关线移相器
US20120235872A1 (en) * 2007-12-21 2012-09-20 Raytheon Company Transverse device phase shifter
CN107453013A (zh) * 2017-09-04 2017-12-08 电子科技大学 一种基于液晶材料的移相器
CN110197939A (zh) * 2019-06-03 2019-09-03 北京华镁钛科技有限公司 一种超材料可调电容器结构

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69113116T2 (de) * 1990-05-29 1996-04-18 Philips Electronics Nv Langsam-Wellen-Mikrostreifenübertragungsleitung und Anordnung mit einer solchen Leitung.
EP0757848A1 (fr) * 1995-02-24 1997-02-12 Thomson Csf Dephaseur hyperfrequence et application a une antenne reseaux
CA2430795A1 (en) * 2002-05-31 2003-11-30 George V. Eleftheriades Planar metamaterials for controlling and guiding electromagnetic radiation and applications therefor
EP2575211B1 (en) * 2011-09-27 2014-11-05 Technische Universität Darmstadt Electronically steerable planar phased array antenna
EP2768072A1 (en) * 2013-02-15 2014-08-20 Technische Universität Darmstadt Phase shifting device
CN106532200B (zh) * 2016-12-16 2021-11-23 合肥工业大学 一种基于石墨烯电极的反射式液晶移相单元
US10305160B2 (en) * 2016-12-21 2019-05-28 Alcatel-Lucent Canada, Inc. Dual-band radio frequency devices incorporating metamaterial type structures and related methods
CN106997839B (zh) * 2017-03-22 2018-05-04 电子科技大学 一种基于超材料的慢波结构
CN108493592B (zh) * 2018-05-03 2019-12-20 京东方科技集团股份有限公司 微带天线及其制备方法和电子设备
CN110518311A (zh) * 2018-05-21 2019-11-29 京东方科技集团股份有限公司 一种移相器及其工作方法、天线、通信设备
CN208654481U (zh) * 2018-08-10 2019-03-26 北京京东方传感技术有限公司 液晶移相器及液晶天线
CN110824734A (zh) * 2018-08-10 2020-02-21 北京京东方传感技术有限公司 液晶移相器及液晶天线
CN208818972U (zh) * 2018-08-10 2019-05-03 北京京东方传感技术有限公司 移相器及液晶天线
CN109818115A (zh) * 2019-03-24 2019-05-28 西安电子科技大学 基于左手超材料的电可调移相器
CN209786153U (zh) * 2019-06-03 2019-12-13 北京华镁钛科技有限公司 一种超材料可调电容器结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202369A (zh) * 2007-12-11 2008-06-18 中国电子科技集团公司第五十五研究所 一种小型化mems开关线移相器
US20120235872A1 (en) * 2007-12-21 2012-09-20 Raytheon Company Transverse device phase shifter
CN107453013A (zh) * 2017-09-04 2017-12-08 电子科技大学 一种基于液晶材料的移相器
CN110197939A (zh) * 2019-06-03 2019-09-03 北京华镁钛科技有限公司 一种超材料可调电容器结构

Also Published As

Publication number Publication date
CN110197939B (zh) 2024-04-19
EP3982479A4 (en) 2023-07-05
US20220130618A1 (en) 2022-04-28
CN110197939A (zh) 2019-09-03
US11764449B2 (en) 2023-09-19
EP3982479A1 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
WO2020244282A1 (zh) 一种超材料可调电容器结构
CN107453013B (zh) 一种基于液晶材料的移相器
US11158916B2 (en) Phase shifter and liquid crystal antenna
WO2021189238A1 (zh) 移相器及天线
US7839236B2 (en) Power combiners and dividers based on composite right and left handed metamaterial structures
JP2019530387A (ja) ビーム・ステアリング・アンテナのための液晶調整可能メタサーフェス
US11949142B2 (en) Feeding structure, microwave radio frequency device and antenna
CN101188159B (zh) 分段可调电感器
US20100171563A1 (en) Multiple pole multiple throw switch device based on composite right and left handed metamaterial structures
WO2021098195A1 (zh) 一种高频开关型移相器
CN111987452B (zh) 一种透射/反射可切换且幅度可调的超构材料
US20210367336A1 (en) Feeding structure, microwave radio frequency device and antenna
CN113644451B (zh) 一种有源超表面单元及包含其的可重构超表面极化控制器
JP2009543483A (ja) 伝送線路における異方性媒質のエミュレーション
Sazegar et al. Compact tunable phase shifters on screen-printed BST for balanced phased arrays
CN209880825U (zh) 一种光控可调谐太赫兹吸收器
CN111740200B (zh) 一种基于液晶衬底可连续调相的功分器
US11309616B2 (en) Tunable band-stop filter, method of driving the same and electronic device
Monti et al. Design of a 3-state reconfigurable CRLH transmission line based on MEMS switches
CN209786153U (zh) 一种超材料可调电容器结构
CN113517563A (zh) 一种有源超表面波束扫描结构
TWI737307B (zh) 超材料可調電容器結構
CN111416191B (zh) 基于可变介电常数基材的宽带相位可调移相器的制备方法
CN116960585A (zh) 一种基于慢波的液晶移相器
WO2020134419A1 (zh) 一种连续可调模拟移相器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20735471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020735471

Country of ref document: EP

Effective date: 20220103